22.07.2015 Views

Slow and fast pathways in the human rod visual system - CVRL main

Slow and fast pathways in the human rod visual system - CVRL main

Slow and fast pathways in the human rod visual system - CVRL main

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Stockman et al.Vol. 8, No. 10/October 1991/J. Opt. Soc. Am. A 1657<strong>Slow</strong> <strong>and</strong> <strong>fast</strong> <strong>pathways</strong> <strong>in</strong> <strong>the</strong> <strong>human</strong> <strong>rod</strong> <strong>visual</strong><strong>system</strong>: electrophysiology <strong>and</strong> psychophysicsAndrew StockmanDepartment of Psychology C-009, University of California, San Diego, La Jolla, California 92093L<strong>in</strong>dsay T. SharpeNeurologische Universitatskl<strong>in</strong>ik, Hansastrasse 9, D-7800 Freiburg im Breisgau, GermanyEberhart ZrennerDepartment of Pathophysiology of Vision <strong>and</strong> Neuro-ophthalmology, University of Tiib<strong>in</strong>gen, D-7400Tiib<strong>in</strong>gen, GermanyKnut NordbyResearch Department, Norwegian Telecommunications Adm<strong>in</strong>istration, N-2007 Kjeller, NorwayReceived September 6, 1990; second revised manuscript received May 10, 1991; accepted May 14, 1991Under most conditions, <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> <strong>in</strong>tensity of a flicker<strong>in</strong>g light makes <strong>the</strong> flicker more conspicuous. Fora light flicker<strong>in</strong>g at 15 times per second, however, <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> <strong>in</strong>tensity can cause <strong>the</strong> flicker to disappearbefore reappear<strong>in</strong>g aga<strong>in</strong> at higher <strong>in</strong>tensities [Vision Res. 29, 1539 (1989)]. This flicker disappearance or nullis also evident <strong>in</strong> <strong>human</strong> electrophysiological record<strong>in</strong>gs at <strong>the</strong> same <strong>in</strong>tensity levels. These results po<strong>in</strong>t to aduality with<strong>in</strong> <strong>the</strong> <strong>rod</strong> <strong>visual</strong> pathway, <strong>in</strong> which flicker signals travel through a slow <strong>and</strong> a <strong>fast</strong> pathway <strong>and</strong><strong>the</strong>n recomb<strong>in</strong>e at a later stage. At 15 Hz <strong>the</strong> slow <strong>rod</strong> flicker signals are delayed by half a cycle relative to <strong>the</strong><strong>fast</strong> signals. Thus, when <strong>the</strong> two signals are recomb<strong>in</strong>ed, <strong>the</strong>y destructively <strong>in</strong>terfere <strong>and</strong> dim<strong>in</strong>ish <strong>the</strong> perceptionof flicker. The dual-pathway <strong>in</strong>terpretation is supported by both electroret<strong>in</strong>ographic <strong>and</strong> psychophysicalevidence show<strong>in</strong>g a phase difference of half a cycle between 15-Hz <strong>rod</strong> signals just below <strong>and</strong> just above <strong>the</strong> nullregion. These effects are apparent not only <strong>in</strong> <strong>the</strong> normal observer but also <strong>in</strong> an achromat observer who lacksfunction<strong>in</strong>g cone vision.1. INTRODUCTIONAt low scotopic adaptation levels, <strong>the</strong> delay between <strong>the</strong>transmission of <strong>rod</strong> <strong>and</strong> cone signals is large.'` As <strong>the</strong>adaptation level is <strong>in</strong>creased, however, <strong>the</strong> delay abruptlydecreases by approximately one half.' This quicken<strong>in</strong>g of<strong>the</strong> <strong>rod</strong> signal seems to be due to a change from <strong>the</strong> transmissionof <strong>rod</strong> signals through <strong>the</strong> familiar, slow <strong>rod</strong> pathwayat low <strong>in</strong>tensities to transmission through a <strong>fast</strong>er,less sensitive pathway at higher <strong>in</strong>tensities.' Evidencefor <strong>the</strong> transition comes from graphs of flicker sensitivityversus <strong>in</strong>tensity, which can be dist<strong>in</strong>ctly double branched 7 9even though detection on both branches is mediated by<strong>rod</strong>s alone, 7 ' 0 <strong>and</strong> from measurements of <strong>the</strong> relativedelay between <strong>rod</strong> <strong>and</strong> cone signals, which reveal a cleartransition from a slow to a <strong>fast</strong> <strong>rod</strong> signal as <strong>the</strong> <strong>in</strong>tensitylevel is <strong>in</strong>creased.'The delay between <strong>the</strong> slow <strong>and</strong> <strong>the</strong> <strong>fast</strong> <strong>rod</strong> signals isbetween 30 <strong>and</strong> 35 ms.1 S<strong>in</strong>ce this corresponds to approximatelyhalf <strong>the</strong> period of 15-Hz flicker, slow <strong>and</strong> <strong>fast</strong><strong>rod</strong> signals at 15 Hz will be 1800 out of phase. Consequently,destructive <strong>in</strong>terference may cause some 15-Hzscotopic lights to appear to flicker much less salientlythan would be expected if <strong>the</strong>re were only a s<strong>in</strong>gle <strong>rod</strong>signal. Moreover, if <strong>the</strong> slow <strong>and</strong> <strong>the</strong> <strong>fast</strong> <strong>rod</strong> signals aresimilar <strong>in</strong> magnitude, <strong>the</strong>ir recomb<strong>in</strong>ation may result <strong>in</strong> aflicker signal that falls below <strong>the</strong> threshold of <strong>the</strong> moredistal stages of <strong>the</strong> <strong>visual</strong> <strong>system</strong> <strong>and</strong> give rise to a perceptualflicker null (i.e., <strong>the</strong> light will no longer appear toflicker). At o<strong>the</strong>r frequencies, when <strong>the</strong> signals are lessthan 1800 out of phase, less cancellation should occur <strong>and</strong>less reduction <strong>in</strong> flicker salience should ensue (at 8 Hz, for<strong>in</strong>stance, <strong>the</strong> signals are only approximately 900 out ofphase,' <strong>and</strong> no cancellation should take place).Figure 1 illustrates <strong>the</strong> self-cancellation or null<strong>in</strong>g of<strong>rod</strong> signals at 15 Hz. Consistent with this model, wehave found a range of ret<strong>in</strong>al illum<strong>in</strong>ances for <strong>the</strong> normalobserver with<strong>in</strong> which 15-Hz <strong>rod</strong> flicker appears <strong>in</strong>visible,despite be<strong>in</strong>g well above <strong>the</strong> conventional flicker threshold(see Fig. 2 below <strong>and</strong> Ref. 1). Counter<strong>in</strong>tuitively, <strong>in</strong>creas<strong>in</strong>g<strong>the</strong> flicker amplitude of <strong>the</strong> suprathreshold stimuluscauses <strong>the</strong> flicker percept to dim<strong>in</strong>ish or disappear beforereappear<strong>in</strong>g aga<strong>in</strong> at higher <strong>in</strong>tensities.We now report a correlation between <strong>the</strong> psychophysicaldata <strong>and</strong> electrophysiological data. At 15 Hz <strong>in</strong>creas<strong>in</strong>gflicker amplitude causes <strong>the</strong> amplitude of <strong>the</strong> Ganzfeldelectroret<strong>in</strong>ogram (ERG) to fall to a m<strong>in</strong>imum at ret<strong>in</strong>alillum<strong>in</strong>ances correspond<strong>in</strong>g to <strong>the</strong> perceptual null <strong>and</strong><strong>the</strong>n to <strong>in</strong>crease aga<strong>in</strong> at lum<strong>in</strong>ances above <strong>the</strong> null. Also<strong>in</strong> agreement with psychophysical measurements,1 our0740-3232/91/101657-09$05.00 C 1991 Optical Society of America


1658 J. Opt. Soc. Am. A/Vol. 8, No. 10/October 1991INit I(t 't 1 (1: S.O\V ROD PATHWAYIIALF- CYCLE DELAYOtTU'UT OF FAST ROD PATHWAYCOMBINEDOUTPUTSFig. 1. Self-cancellation of 15-Hz <strong>rod</strong> flicker. The flicker signalp<strong>rod</strong>uced by a s<strong>in</strong>gle stimulus (INPUT) travels through ei<strong>the</strong>ra slow or a <strong>fast</strong> pathway. At 15 Hz <strong>the</strong> signal emerg<strong>in</strong>g from <strong>the</strong>slow pathway is delayed by half a cycle relative to <strong>the</strong> signalemerg<strong>in</strong>g from <strong>the</strong> <strong>fast</strong> pathway. If <strong>the</strong> outputs from <strong>the</strong> two<strong>pathways</strong> are of equal amplitude, <strong>the</strong>y will cancel each o<strong>the</strong>r <strong>and</strong>p<strong>rod</strong>uce a steady, nonflicker<strong>in</strong>g signal when recomb<strong>in</strong>ed. Thus<strong>the</strong> light will appear nulled to later stages of <strong>the</strong> <strong>visual</strong> <strong>system</strong>.To expla<strong>in</strong> <strong>the</strong> restricted range of lum<strong>in</strong>ances with<strong>in</strong> which <strong>the</strong>null is found (see Figs. 2 <strong>and</strong> 3), we assume that <strong>the</strong> lum<strong>in</strong>ancedependencies of <strong>the</strong> slow <strong>and</strong> <strong>fast</strong> signals differ, such that <strong>the</strong>former predom<strong>in</strong>ates at lum<strong>in</strong>ances below <strong>the</strong> null <strong>and</strong> <strong>the</strong> latterat lum<strong>in</strong>ances above <strong>the</strong> null, <strong>the</strong> two be<strong>in</strong>g approximately equalat lum<strong>in</strong>ances with<strong>in</strong> <strong>the</strong> null. (The higher s<strong>in</strong>usoidal harmonicsof 15-Hz square-wave flicker have frequencies higher than <strong>the</strong><strong>rod</strong> <strong>visual</strong> <strong>system</strong> can follow 8 <strong>and</strong> are not shown here.)electroret<strong>in</strong>ographic results show a phase difference ofhalf a cycle (i.e., 1800) between <strong>the</strong> 15-Hz <strong>rod</strong> signals atret<strong>in</strong>al illum<strong>in</strong>ances just below <strong>and</strong> just above <strong>the</strong> null region<strong>and</strong> thus a rapid reversal <strong>in</strong> phase as <strong>the</strong> null regionis traversed.2. METHODSA. SubjectsA normal trichromat (author LTS) <strong>and</strong> an achromat(author KN) served as <strong>the</strong> ma<strong>in</strong> observers <strong>in</strong> this study.The normal observer is slightly myopic (-2 D) withnormal color vision as <strong>in</strong>dicated by conventional acuity<strong>and</strong> color-vision tests. Dur<strong>in</strong>g <strong>the</strong> experiment he wore nocorrective spectacles. The achromat observer displays all<strong>the</strong> classic symptoms of typical, complete achromatopsia(see Ref. 11 for a full description). No evidence has beenfound for cone function <strong>in</strong> his dark adaptation, fundal reflectometry,spectral sensitivity, threshold, spatial <strong>and</strong>temporal sensitivity, <strong>and</strong> directional sensitivity to light(for a summary, see Ref. 12). He is hyperopic <strong>and</strong> dur<strong>in</strong>g<strong>the</strong> experiments wore a +9.0-D convex lens. This lensmagnified <strong>the</strong> ret<strong>in</strong>al image so that <strong>the</strong> effective <strong>visual</strong>angles for him were 1.22x larger than those stated <strong>in</strong>Subsection 2.B.1.B. Apparatus <strong>and</strong> Stimuli1. Psychophysical MeasurementsIn our psychophysical experiments we used a threechannelMaxwellian view, optical <strong>system</strong> (see also Refs. 13<strong>and</strong> 14) to p<strong>rod</strong>uce <strong>the</strong> flicker<strong>in</strong>g test stimuli <strong>and</strong> steadybackground <strong>and</strong> bleach<strong>in</strong>g fields. All three channels orig<strong>in</strong>atedfrom a 100-W tungsten-iod<strong>in</strong>e lamp run at constantcurrent. One channel provided <strong>the</strong> flicker<strong>in</strong>g, 6-diametertest light. Its wavelength was shaped by a grat<strong>in</strong>g monochromator(Job<strong>in</strong>-Yvon V-10) <strong>in</strong>to a triangular profilepeak<strong>in</strong>g at 500 nm <strong>and</strong> hav<strong>in</strong>g a half-b<strong>and</strong>width of 4 nm.A second channel provided <strong>the</strong> 16'-diameter adapt<strong>in</strong>gStockman et al.field. It was rendered monochromatic by an <strong>in</strong>terferencefilter (Schott, Ma<strong>in</strong>z) hav<strong>in</strong>g peak transmittance at640 nm <strong>and</strong> a half-b<strong>and</strong>width of 5.5 nm. The lum<strong>in</strong>ances<strong>in</strong> <strong>the</strong> three channels were attenuated by neutral-densityfilters <strong>and</strong> wedges; <strong>the</strong> latter were controlled by stepp<strong>in</strong>gmotors (Berger, Lahr). The quantal-flux densities of <strong>the</strong>light beams were measured at <strong>the</strong> plane of <strong>the</strong> observer'spupil with a calibrated radiometer-photometer (UnitedDetector Technology, Model 80X Opto-meter).Fixation was 140 temporal <strong>and</strong> was aided by a small redfixation cross. To ma<strong>in</strong>ta<strong>in</strong> <strong>rod</strong> detection over an extendedrange of background <strong>in</strong>tensities for <strong>the</strong> normal observer,we used a 500-nm test field <strong>and</strong> a 640-nmbackground field (see Refs. 1 <strong>and</strong> 15). The 500-nm testfield was flickered at 100% contrast with <strong>the</strong> use of a frequencygenerator (Wavetek) connected to an electromagneticshutter. Flicker was square wave. The shutter hadrise <strong>and</strong> fall times of less than 0.1 ms.2. Electroret<strong>in</strong>ogram MeasurementsThe test flashes for <strong>the</strong> scotopic ERG measurements weregenerated by a commercially p<strong>rod</strong>uced Ganzfeld stimulator(Nicolet). Stimulus <strong>and</strong> record<strong>in</strong>g conditions were allexactly <strong>in</strong> accordance with <strong>the</strong> International Society forCl<strong>in</strong>ical Electrophysiology of Vision's ERG st<strong>and</strong>ard. 6The subject, positioned with <strong>the</strong> aid of a headrest, stared<strong>in</strong>to <strong>the</strong> center of a Ganzfeld bowl. The bowl was homogeneouslyillum<strong>in</strong>ated by white flashes p<strong>rod</strong>uced by a xenondischarge lamp (correlated color temperature 6000 K).Each flash was triggered by a computer (Nicolet CompactFour), which was also used for <strong>the</strong> ERG record<strong>in</strong>gs. Theduration of <strong>the</strong> flashes were 100 ns. For flicker p<strong>rod</strong>ucedat a given frequency, <strong>the</strong> flash was repeated <strong>the</strong> requirednumber of times per second. The flicker p<strong>rod</strong>uced by thisdevice was full field at 100% contrast. The flash lum<strong>in</strong>ancecould be controlled over a limited range by <strong>the</strong> computer<strong>and</strong> also by <strong>the</strong> <strong>in</strong>sertion of neutral-density filters(Kodak, Wratten) <strong>in</strong>to a filter holder. Special care had tobe taken to block all <strong>the</strong> stray light that leaked <strong>in</strong>to <strong>the</strong>apparatus from both external <strong>and</strong> <strong>in</strong>ternal sources.The mean lum<strong>in</strong>ances were measured by a Gossen photometerwith CIE VA characteristics, converted to photopictrol<strong>and</strong>s (phot. Td) <strong>and</strong> <strong>the</strong>n to scotopic trol<strong>and</strong>s (scot. Td)accord<strong>in</strong>g to <strong>the</strong> formulas given by Wyszecki <strong>and</strong> Stiles.' 7Lum<strong>in</strong>ances were also checked by monitor<strong>in</strong>g <strong>the</strong> amplitudeof output of <strong>the</strong> xenon discharge lamp by a siliconphotodiode <strong>and</strong> an oscilloscope.C. ProcedureBefore beg<strong>in</strong>n<strong>in</strong>g an experiment, <strong>the</strong> subjects dark adaptedfor between 30 <strong>and</strong> 45 m<strong>in</strong>, depend<strong>in</strong>g on <strong>the</strong> adaptationlevel to be used.1. Psychophysical MeasurementsFor <strong>the</strong> normal observer (subject LTS), <strong>rod</strong> isolation fordetection of <strong>the</strong> 500-nm test light was fur<strong>the</strong>r improvedby offsett<strong>in</strong>g <strong>the</strong> light's entry po<strong>in</strong>t 3 mm nasally from <strong>the</strong>pupillary center (s<strong>in</strong>ce oblique entry light is much lesseffective for cones than for <strong>rod</strong>s' 8 9 ). (This was not necessaryfor <strong>the</strong> achromat observer KN.) To effect this, wedilated <strong>the</strong> pupil by <strong>the</strong> application of a solution of 0.5%tropicamide (Mydriaticum, Roche) 30 m<strong>in</strong> before <strong>the</strong> startof <strong>the</strong> experiment.


Stockman et al.10 V C5 IV -[Time (<strong>in</strong> )o 100Time (ms)\J~-- W//\ -0 100 200'// 8 Hz0 3' 2 1I- -of_E 1_ -1'5 -2J-3+~NORMAL3j_ 2*s 1 '= 0 -C -1-Ba ckground-4 -3 -2 -1 0 1 2 3 4Background ret<strong>in</strong>al illum<strong>in</strong>ancea -2 .-2-AL -'0-4 -3 -2 -1 0 1 2 3 4Background ret<strong>in</strong>al illum<strong>in</strong>anceTime (ms)Fig. 2. Right-h<strong>and</strong> side: 8-Hz (upper panel) <strong>and</strong> 15-Hz (lowerpanel) flicker detectability data for a normal observer LTS plottedas <strong>the</strong> logarithm of <strong>the</strong> background ret<strong>in</strong>al illum<strong>in</strong>ance(scot. Td). The squares represent conventional <strong>rod</strong> flickerthresholds measured as a function of background ret<strong>in</strong>al illum<strong>in</strong>ance.The open circles are cone thresholds measured dur<strong>in</strong>g<strong>the</strong> cone phase of recovery follow<strong>in</strong>g a 7.7 logi 0 phot. Td s (3100- K)bleach. At both 8 <strong>and</strong> 15 Hz, <strong>the</strong>re is a break <strong>in</strong> <strong>the</strong> curve atapproximately 0.0 logio scot. Td. In <strong>the</strong> lower panel (15 Hz) <strong>the</strong>dashed l<strong>in</strong>es delimit a region with<strong>in</strong> which 15-Hz flicker was <strong>in</strong>visible.Data po<strong>in</strong>ts designat<strong>in</strong>g <strong>the</strong> lower <strong>and</strong> upper limits ofthis nulled region are <strong>in</strong>dicated by filled circles <strong>and</strong> diamonds,respectively. No nulled region was found at 8 Hz. Psychophysicaldata po<strong>in</strong>ts are averaged from six sett<strong>in</strong>gs made dur<strong>in</strong>g eachof two experimental sessions. The test ret<strong>in</strong>al illum<strong>in</strong>ancesrefer to <strong>the</strong> amplitudes of <strong>the</strong> flicker<strong>in</strong>g stimuli (<strong>the</strong> mean illum<strong>in</strong>anceswould be 0.3 logi 0 unit lower). Left-h<strong>and</strong> side: 8-Hz(upper panel) <strong>and</strong> 15- Hz (lower panel) Ganzfeld electroret<strong>in</strong>ogramrecord<strong>in</strong>gs for <strong>the</strong> same normal observer, LTS. In eachpanel <strong>the</strong> flicker <strong>in</strong>tensity <strong>in</strong>creases upward <strong>in</strong> steps of approximately0.3 logie unit. The arrows po<strong>in</strong>t to <strong>the</strong> ret<strong>in</strong>al illum<strong>in</strong>ances<strong>in</strong> <strong>the</strong> flicker detectability diagram for which <strong>the</strong> meanscotopic ret<strong>in</strong>al illum<strong>in</strong>ances (discount<strong>in</strong>g <strong>the</strong> red background)correspond to <strong>the</strong> mean ERG flicker ret<strong>in</strong>al illum<strong>in</strong>ances. Therewas no background present <strong>in</strong> <strong>the</strong> ERG experiment. At 15 Hz<strong>the</strong> ERG response decreases as <strong>the</strong> ret<strong>in</strong>al illum<strong>in</strong>ance correspond<strong>in</strong>gto <strong>the</strong> perceptual null is approached <strong>and</strong> <strong>the</strong>n <strong>in</strong>creasesafter <strong>the</strong> null. Across <strong>the</strong> null <strong>the</strong> ERG response reverses <strong>in</strong>phase (as <strong>in</strong>dicated by <strong>the</strong> dashed l<strong>in</strong>es). In contrast, at 8 Hznei<strong>the</strong>r a null nor a phase reversal is found with <strong>in</strong>creas<strong>in</strong>g stimulusamplitude. The vertical scale <strong>in</strong> microvolts is <strong>in</strong>dicated <strong>in</strong>each ERG panel. Note that <strong>the</strong> vertical scale for <strong>the</strong> 8-Hz ERGrecord<strong>in</strong>gs is half that for <strong>the</strong> 15-Hz records.Thresholds at 8 <strong>and</strong> 15 Hz, <strong>and</strong> <strong>the</strong> lower <strong>and</strong> upperlimits of <strong>the</strong> 15-Hz nulled region, were determ<strong>in</strong>ed by <strong>the</strong>method of adjustment. To make a threshold sett<strong>in</strong>g, <strong>the</strong>observer varied <strong>the</strong> ret<strong>in</strong>al illum<strong>in</strong>ance of <strong>the</strong> target until<strong>the</strong> target flicker was just visible. The direction fromwhich <strong>the</strong> observer approached <strong>the</strong> threshold was alternated.After complet<strong>in</strong>g <strong>the</strong> flicker threshold sett<strong>in</strong>gs atseveral background ret<strong>in</strong>al illum<strong>in</strong>ances, <strong>the</strong> observerdeterm<strong>in</strong>ed, <strong>in</strong> a separate run, <strong>the</strong> limits of <strong>the</strong> null. Thesubject <strong>in</strong>creased <strong>the</strong> ret<strong>in</strong>al illum<strong>in</strong>ance of <strong>the</strong> supra-Vol. 8, No. 10/October 1991/J. Opt. Soc. Am. A 1659threshold <strong>rod</strong> stimulus until <strong>the</strong> sensation of flicker vanished(this was possible at 15 Hz but not at 8 Hz). Thissett<strong>in</strong>g, repeated several times, def<strong>in</strong>ed <strong>the</strong> lower limit of<strong>the</strong> null region. The upper limit of <strong>the</strong> null region (i.e.,<strong>the</strong> ret<strong>in</strong>al illum<strong>in</strong>ance level of <strong>the</strong> suprathreshold<strong>rod</strong> stimulus at which <strong>the</strong> sensation is seen once aga<strong>in</strong>)was similarly def<strong>in</strong>ed. All sett<strong>in</strong>gs were repeated sixtimes. Cone flicker thresholds for <strong>the</strong> normal observerwere determ<strong>in</strong>ed dur<strong>in</strong>g <strong>the</strong> plateau term<strong>in</strong>at<strong>in</strong>g <strong>the</strong> conephase of recovery from a white (3100-K) bleach of7.7 logl 0 phot. Td s.The achromat observer KN experienced slightly moredifficulty <strong>in</strong> sett<strong>in</strong>g <strong>the</strong> limits of <strong>the</strong> null <strong>in</strong> <strong>the</strong> psychophysicalexperiment than <strong>the</strong> normal observer becausehe had to ignore <strong>the</strong> effect of <strong>in</strong>voluntary eye movements(horizontal pendular nystagmus 2 0 ), which tended to revive<strong>the</strong> sensation of flicker <strong>and</strong> so disturb <strong>the</strong> null. This disturbanceof <strong>the</strong> null is most likely due to <strong>the</strong> movementof <strong>the</strong> test field onto a relatively unadapted portion of<strong>the</strong> ret<strong>in</strong>a, but it may also reflect some habituation to<strong>the</strong> flicker<strong>in</strong>g stimuli. Despite his nystagmus, KN's sett<strong>in</strong>gswere reliable <strong>and</strong> proved to be stable over sessionsseparated by many months. Normal subjects were givenno special <strong>in</strong>structions, except to fixate <strong>the</strong> center of <strong>the</strong>test field.2. Electroret<strong>in</strong>ogram MeasurementsTo make <strong>the</strong> electrophysiological record<strong>in</strong>gs, we dilated<strong>the</strong> subject's pupils with 0.5% tropicamide, <strong>and</strong> fiber elect<strong>rod</strong>es(DTL) were placed on <strong>the</strong> conjunctiva of each eyenear <strong>the</strong> corneal border. Reference elect<strong>rod</strong>es (Ag-AgCl)were placed over both temporal bones, <strong>and</strong> a ground elect<strong>rod</strong>ewas attached to <strong>the</strong> earlobe. The impedance of <strong>the</strong>elect<strong>rod</strong>es was always less than 20 kW The ERG responsesto <strong>the</strong> flashes were recorded <strong>and</strong> stored by meansof a Nicolet Compact Four computer supplied with artifactrejection for amplitudes larger than 100 mV The recordswere filtered to remove responses that were too low or toohigh <strong>in</strong> frequency <strong>and</strong> averaged 100 times. S<strong>in</strong>gle recordsare rep<strong>rod</strong>uced <strong>in</strong> <strong>the</strong> figures below.3. RESULTSA. Psychophysical DataThe right-h<strong>and</strong> panels of Fig. 2 show 8-Hz (upper right)<strong>and</strong> 15-Hz (lower right) psychophysical results for <strong>the</strong> normalobserver LTS. These results have been confirmed <strong>in</strong>four o<strong>the</strong>r normal observers. In each panel <strong>the</strong> squaresrepresent a conventional <strong>rod</strong> flicker threshold curve (thatis, at each ret<strong>in</strong>al illum<strong>in</strong>ance of <strong>the</strong> red background asquare marks <strong>the</strong> ret<strong>in</strong>al illum<strong>in</strong>ance of <strong>the</strong> green targetrequired for <strong>the</strong> flicker to be just visible). The opencircles are cone flicker thresholds measured dur<strong>in</strong>g <strong>the</strong>period follow<strong>in</strong>g a <strong>rod</strong>-<strong>and</strong>-cone bleach when cone sensitivityhas recovered but <strong>rod</strong> sensitivity has not.At 8 Hz <strong>the</strong> target ret<strong>in</strong>al illum<strong>in</strong>ance required forflicker to be seen <strong>in</strong>creases with background ret<strong>in</strong>al illum<strong>in</strong>ance.There is a small <strong>in</strong>flection at a background<strong>in</strong>tensity just below 0.0 log 10 scot. Td (a consistent feature<strong>in</strong> 8-Hz data for o<strong>the</strong>r normal subjects' 9 <strong>and</strong> for <strong>the</strong> typical,complete achromat 2 l). Although it is small, this<strong>in</strong>flection suggests that 8-Hz flicker detection is notmediated by a simple, unitary mechanism-o<strong>the</strong>rwise <strong>the</strong>


1660 J. Opt. Soc. Am. A/Vol. 8, No. 10/October 1991curve would be expected to be cont<strong>in</strong>uous <strong>in</strong> shape. S<strong>in</strong>cethis <strong>in</strong>flection occurs more than 1.5 logi 0 units below conethreshold <strong>in</strong> <strong>the</strong> normal observer <strong>and</strong> s<strong>in</strong>ce it is also found<strong>in</strong> <strong>the</strong> achromat, it cannot simply reflect a transition from<strong>rod</strong> to cone vision.At 15 Hz, <strong>the</strong> data are more clearly <strong>in</strong>compatible withdetection by a unitary mechanism: Not only is <strong>the</strong>threshold curve dist<strong>in</strong>ctly double branched but adjacent toit lies a region (shown here enclosed by dashed l<strong>in</strong>es)with<strong>in</strong> which <strong>the</strong> 15-Hz flicker is completely <strong>in</strong>visible to<strong>the</strong> observer. We attribute <strong>the</strong> double branch <strong>and</strong> <strong>the</strong> disappearanceof flicker to a duality with<strong>in</strong> <strong>the</strong> <strong>rod</strong> <strong>visual</strong>pathway. These features are found at 15 Hz because it is<strong>the</strong> frequency at which <strong>the</strong> signals transmitted through<strong>the</strong> two <strong>pathways</strong> emerge out of phase <strong>and</strong> so destructively<strong>in</strong>terfere. At o<strong>the</strong>r frequencies <strong>the</strong> two signals do notemerge out of phase. At 8 Hz, for example, <strong>the</strong> two differ<strong>in</strong> phase by less than a quarter-cycle (see Ref. 1 <strong>and</strong> seeFig. 4 below).We should note that <strong>the</strong>re is not a simple correspondencebetween <strong>the</strong> two branches <strong>in</strong> <strong>the</strong> 15-Hz thresholddata <strong>and</strong> <strong>the</strong> two <strong>rod</strong> <strong>pathways</strong>. Accord<strong>in</strong>g to our model,much of <strong>the</strong> double-branched curve reflects an <strong>in</strong>teractionbetween <strong>the</strong> slow <strong>and</strong> <strong>the</strong> <strong>fast</strong> <strong>rod</strong> flicker signals; for <strong>in</strong>stance,<strong>the</strong> steeply ascend<strong>in</strong>g portion of <strong>the</strong> curve <strong>and</strong> <strong>the</strong>early portion of <strong>the</strong> upper branch reflect cancellation between<strong>the</strong> two signals. In addition, <strong>the</strong> disappearance of<strong>the</strong> lower threshold <strong>and</strong> <strong>the</strong> lower limit of <strong>the</strong> null above-1.0 logl, scot. Td does not imply that <strong>the</strong> slow <strong>rod</strong> signalis absent at <strong>the</strong>se levels. Ra<strong>the</strong>r, it means that <strong>the</strong> slower<strong>rod</strong> signal is canceled by <strong>the</strong> <strong>fast</strong>er signal, so that it nolonger exceeds threshold.As did o<strong>the</strong>r researchers," 9 we use <strong>the</strong> traditionalthreshold-versus-<strong>in</strong>tensity format <strong>in</strong> which to display ourpsychophysical 8- <strong>and</strong> 15-Hz <strong>rod</strong> flicker detection data; <strong>in</strong>o<strong>the</strong>r words we plot <strong>the</strong> scotopic lum<strong>in</strong>ance of <strong>the</strong> flicker<strong>in</strong>ggreen test light as a function of <strong>the</strong> lum<strong>in</strong>ance of <strong>the</strong>red background field. It should be noted, however, that,because <strong>the</strong> null near 15 Hz is significantly above <strong>the</strong> scotopicflicker threshold, <strong>the</strong> test lights used to p<strong>rod</strong>uce itare <strong>the</strong>mselves moderately <strong>in</strong>tense scotopic adapt<strong>in</strong>g stimuli.To <strong>the</strong> extent that <strong>the</strong> <strong>rod</strong>s adapt <strong>in</strong>dependently of<strong>the</strong> cones, <strong>the</strong> red background field should have little effecton ei<strong>the</strong>r <strong>the</strong> upper or <strong>the</strong> lower limits of <strong>the</strong> null untilits scotopic lum<strong>in</strong>ance exceeds <strong>the</strong> mean lum<strong>in</strong>ance of <strong>the</strong>test lights.B. Electroret<strong>in</strong>ographic DataThe left-h<strong>and</strong> panels of Fig. 2 show ERG results obta<strong>in</strong>edat 8 Hz (upper left) <strong>and</strong> 15 Hz (lower left) for <strong>the</strong> samenormal observer, LTS. The correspondence between <strong>the</strong>mean scotopic ERG ret<strong>in</strong>al illum<strong>in</strong>ances <strong>and</strong> <strong>the</strong> meanpsychophysical ret<strong>in</strong>al illum<strong>in</strong>ances (discount<strong>in</strong>g <strong>the</strong> redbackground) is <strong>in</strong>dicated by <strong>the</strong> arrows. The lowestflashes (for which we show ERG traces <strong>in</strong> Fig. 2) wereapproximately -0.9 logi 0 scot. Td, which is approximately1.8 logl 0 units above <strong>the</strong> absolute threshold for see<strong>in</strong>gGanzfeld 15-Hz flicker <strong>in</strong> <strong>the</strong> ERG apparatus (-2.75logl 0 scot. Td). The flashes were <strong>in</strong>creased <strong>in</strong> steps ofapproximately 0.3 logi 0 unit, as <strong>in</strong>dicated by <strong>the</strong> positionof arrows along <strong>the</strong> ord<strong>in</strong>ate of <strong>the</strong> right-h<strong>and</strong> figures.The 8-Hz ERG data, like <strong>the</strong> psychophysical data, arecomparatively uncomplicated. As <strong>the</strong> flicker amplitudeStockman et al.<strong>in</strong>creases, <strong>the</strong> ERG responses speed up (<strong>the</strong> peaks moveleftward) <strong>and</strong> grow progressively <strong>in</strong> strength. There isno evidence of a null <strong>in</strong> <strong>the</strong>se data at 8 Hz. Once aga<strong>in</strong>,this is not <strong>the</strong> case at 15 Hz: As flicker amplitude <strong>in</strong>creases,<strong>the</strong> amplitude of <strong>the</strong> ERG decl<strong>in</strong>es until a m<strong>in</strong>imumis reached at a ret<strong>in</strong>al illum<strong>in</strong>ance associated with<strong>the</strong> perceptual null <strong>and</strong> <strong>the</strong>n <strong>in</strong>creases above <strong>the</strong> null.(The ret<strong>in</strong>al illum<strong>in</strong>ance correspond<strong>in</strong>g to <strong>the</strong> center of<strong>the</strong> psychophysical null <strong>and</strong> to <strong>the</strong> dim<strong>in</strong>ution of <strong>the</strong> ERGresponse at 15 Hz is approximately -0.3 log 0 scot. Td.)Fur<strong>the</strong>rmore, as <strong>the</strong> ret<strong>in</strong>al illum<strong>in</strong>ance associated withnull is crossed, <strong>the</strong>re is an abrupt reversal <strong>in</strong> <strong>the</strong> phaseof <strong>the</strong> ERG response (i.e., <strong>the</strong> peaks become troughs<strong>and</strong> vice versa). This reversal is <strong>in</strong> accord with our selfcancellationmodel, which predicts a phase difference ofhalf a cycle between <strong>the</strong> slow 15-Hz <strong>rod</strong> signals that predom<strong>in</strong>atebelow <strong>the</strong> null <strong>and</strong> <strong>the</strong> <strong>fast</strong> 15-Hz <strong>rod</strong> signalsthat predom<strong>in</strong>ate above it. These results have been confirmed<strong>in</strong> two o<strong>the</strong>r normal subjects. (Our observers tendto differ slightly as to <strong>the</strong> best frequency for elicit<strong>in</strong>g <strong>the</strong>null <strong>in</strong> <strong>the</strong> psychophysical <strong>and</strong> ERG data, but <strong>the</strong> optimalfrequency is always <strong>in</strong> <strong>the</strong> range 14-16 Hz.)In <strong>the</strong> electrophysiological experiments Ganzfeld flickerwas used, whereas <strong>in</strong> <strong>the</strong> psychophysical experimentssmaller flicker<strong>in</strong>g fields were used. Never<strong>the</strong>less, forboth conditions, <strong>the</strong> subject reported a clear region ofnulled or reduced flicker at 15 Hz. With <strong>the</strong> Ganzfeld,though, <strong>the</strong> null was less uniform <strong>and</strong> could be disturbedmore easily by eye movements. In <strong>the</strong> ERG experimentwe asked <strong>the</strong> normal subject to rate <strong>the</strong> magnitude of <strong>the</strong>perceived flicker. The rat<strong>in</strong>gs for 15-Hz flicker, <strong>in</strong> ascend<strong>in</strong>gorder of <strong>the</strong> stimulus ret<strong>in</strong>al illum<strong>in</strong>ances shown<strong>in</strong> <strong>the</strong> left-h<strong>and</strong> panel of Fig. 2, were as follows: 5, 4, 0, 2,4, 6, <strong>and</strong> 8, with flicker at <strong>the</strong> lowest ERG ret<strong>in</strong>al illum<strong>in</strong>ancebe<strong>in</strong>g def<strong>in</strong>ed as 5. These perceptual rat<strong>in</strong>gs correlateroughly with <strong>the</strong> change <strong>in</strong> <strong>the</strong> amplitude of <strong>the</strong>ERG record<strong>in</strong>gs. Importantly, <strong>the</strong>y show that a reduction<strong>in</strong> <strong>the</strong> perceived flicker or a flicker null can be obta<strong>in</strong>edwith white full-field flicker just as it can with a green,6° test field <strong>and</strong> at comparable ret<strong>in</strong>al illum<strong>in</strong>ances. But<strong>the</strong> rat<strong>in</strong>gs correspond only approximately to <strong>the</strong> amplitudesof <strong>the</strong> ERG records: For <strong>in</strong>stance, <strong>the</strong> observertended to give higher phenomenological flicker rat<strong>in</strong>gs to<strong>the</strong> two flash levels below <strong>the</strong> perceptual null than to <strong>the</strong>two above <strong>the</strong> perceptual null, though <strong>the</strong> latter havegreater peak amplitudes. This discrepancy, however,may reflect <strong>the</strong> fact that different <strong>pathways</strong> predom<strong>in</strong>atebelow <strong>and</strong> above <strong>the</strong> null.C. Control for Cone IntrusionBoth <strong>the</strong> double branch <strong>and</strong> <strong>the</strong> null region found <strong>in</strong> <strong>the</strong>15-Hz data occur at ret<strong>in</strong>al illum<strong>in</strong>ances that are belowcone threshold (Fig. 2, lower-right-h<strong>and</strong> panel, opencircles), suggest<strong>in</strong>g that <strong>rod</strong>s are pr<strong>in</strong>cipally responsiblefor those phenomena. O<strong>the</strong>r psychophysical controlexperiments support this conclusion. 8 9 Rod isolation for<strong>the</strong> full-field white flicker used <strong>in</strong> <strong>the</strong> ERG experiment isless secure, however. As a control we measured 15-HzERG responses <strong>in</strong> <strong>the</strong> normal trichromatic observer LTSbefore <strong>and</strong> after a <strong>rod</strong> bleach. These are shown <strong>in</strong> Fig. 3.As <strong>in</strong> Fig. 2 (lower-left-h<strong>and</strong> panel), <strong>the</strong> left-h<strong>and</strong> panel<strong>in</strong> Fig. 3 shows 15-Hz ERG records made at a series ofret<strong>in</strong>al illum<strong>in</strong>ances, <strong>in</strong> this case separated by steps of


l | l . r lStockman et al.2.5 ,tuV {4 NORMAL,_o~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0 100 200Time (ms) Time (ms)Fig. 3. Left-h<strong>and</strong> panel: 15-Hz ERG records for normaltrichromat LTS before <strong>rod</strong> bleach. As before (Fig. 2, right-h<strong>and</strong>panel), <strong>the</strong>re is a clear flicker null <strong>and</strong> a phase reversal. We attribute<strong>the</strong>se phenomena to <strong>the</strong> <strong>rod</strong> <strong>system</strong>. Right-h<strong>and</strong>panel: ERG records made at <strong>the</strong> same ret<strong>in</strong>al illum<strong>in</strong>ances butdur<strong>in</strong>g <strong>the</strong> cone plateau of dark adaptation (4-10 m<strong>in</strong>) follow<strong>in</strong>g afull-field, bright bleach<strong>in</strong>g light (see <strong>the</strong> text for details). Forthis condition <strong>the</strong>re are no responses at those ret<strong>in</strong>al illum<strong>in</strong>ancesfor which we f<strong>in</strong>d <strong>the</strong> phase reversal <strong>and</strong> null <strong>in</strong> <strong>the</strong> unbleachedeye. In both panels <strong>the</strong> flicker <strong>in</strong>tensity <strong>in</strong>creasesupward <strong>in</strong> steps of approximately 0.2 logio unit.-15 Hz -UwCZwGI, I0 100 2000 1I I . I .12 pV ACFiROMAT, ' .6 ' 26Time (ms)I11II0)WCC1:3- -132_C -I314 Hz-4 -3 -2 -1 0 1 2 3 4Background ret<strong>in</strong>al illum<strong>in</strong>anceFig. 4. Right-h<strong>and</strong> panel: 14-Hz flicker detectability data for atypical, complete achromat observer KN. Details are like thosefor Fig. 2. These data have many features <strong>in</strong> common with <strong>the</strong>data for <strong>the</strong> normal observer. The flicker threshold curve isdouble branched, <strong>and</strong> <strong>the</strong>re is an adjo<strong>in</strong><strong>in</strong>g region with<strong>in</strong> which<strong>the</strong> flicker is <strong>in</strong>visible. The only important differences are that<strong>the</strong> nulled region <strong>and</strong> <strong>the</strong> transition from <strong>the</strong> lower branch to <strong>the</strong>upper branch are found at higher scotopic ret<strong>in</strong>al illum<strong>in</strong>ancesfor <strong>the</strong> achromat than for <strong>the</strong> normal observer. Left-h<strong>and</strong>panel: 14-Hz electroret<strong>in</strong>ogram record<strong>in</strong>gs for <strong>the</strong> achromatKN. Details are like those for Fig. 2, left-h<strong>and</strong> panel. For <strong>the</strong>achromat KN, as for <strong>the</strong> normal observer LTS (Fig. 2), <strong>the</strong> ERGsignal reaches a m<strong>in</strong>imum at ret<strong>in</strong>al illum<strong>in</strong>ances associatedwith <strong>the</strong> perceptual null <strong>and</strong> reverses <strong>in</strong> phase as <strong>the</strong> null is traversed.In accordance with <strong>the</strong> psychophysical results, <strong>the</strong> ERGnull is found at higher ret<strong>in</strong>al illum<strong>in</strong>ances for <strong>the</strong> achromat thanfor <strong>the</strong> normal.approximately 0.2 logio unit. In accord with <strong>the</strong> previousrecords <strong>the</strong> amplitude of <strong>the</strong> ERG decl<strong>in</strong>es to a m<strong>in</strong>imumat a ret<strong>in</strong>al illum<strong>in</strong>ance at which <strong>the</strong> subject sees a perceptualflicker null <strong>and</strong> <strong>the</strong>n <strong>in</strong>creases <strong>in</strong> opposite phaseabove <strong>the</strong> null. The right-h<strong>and</strong> panel of Fig. 3 shows15-Hz ERG measurements made at <strong>the</strong> same ret<strong>in</strong>al illum<strong>in</strong>ancesas those shown <strong>in</strong> <strong>the</strong> left-h<strong>and</strong> panel butdur<strong>in</strong>g <strong>the</strong> cone plateau (between 4 <strong>and</strong> 10 m<strong>in</strong>) follow<strong>in</strong>g<strong>the</strong> ext<strong>in</strong>ction of a bleach<strong>in</strong>g light. We effected <strong>the</strong>bleach<strong>in</strong>g by first expos<strong>in</strong>g <strong>the</strong> observer for 5 m<strong>in</strong> to <strong>the</strong>IIIIIIIVol. 8, No. 10/October 1991/J. Opt. Soc. Am. A 1661brightest Ganzfeld illum<strong>in</strong>ation that could be p<strong>rod</strong>uced by<strong>the</strong> ERG apparatus (4.74 logi 0 phot. Td), <strong>the</strong>n by expos<strong>in</strong>ghim to 50 flashes (7.0 logi 0 phot. Td s) of a modified funduscamera (Olympus) superimposed upon <strong>the</strong> bright background(5.5 logi 0 phot. Td) used to focus <strong>the</strong> camera with<strong>in</strong><strong>the</strong> subject's eye. These extreme procedures wereemployed to provide a full-field bleach of <strong>the</strong> eye <strong>in</strong> orderto prevent <strong>the</strong> ERG records measured dur<strong>in</strong>g <strong>the</strong> coneplateau from be<strong>in</strong>g contam<strong>in</strong>ated by <strong>rod</strong> flicker responsesfrom unbleached peripheral areas of <strong>the</strong> <strong>visual</strong> field.Even so, <strong>the</strong> measures were only partially successful: Acrescent-shaped upper-right portion of <strong>the</strong> <strong>visual</strong> field,partially obscured by <strong>the</strong> eyelid dur<strong>in</strong>g <strong>the</strong> <strong>in</strong>tense bleach<strong>in</strong>gby <strong>the</strong> fundus camera, was less bleached than <strong>the</strong> restof <strong>the</strong> eye <strong>and</strong> recovered its sensitivity much <strong>fast</strong>er.Thus, even after only 4 m<strong>in</strong> of dark adaptation, somescotopic flicker could be detected <strong>in</strong> this region at <strong>the</strong>highest ret<strong>in</strong>al illum<strong>in</strong>ance used.This limitation notwithst<strong>and</strong><strong>in</strong>g, <strong>the</strong> ERG measurementsshow no correlated 15-Hz response until ret<strong>in</strong>al illum<strong>in</strong>ancesare reached well above those for which <strong>the</strong>phase reversal <strong>and</strong> null are found <strong>in</strong> <strong>the</strong> left-h<strong>and</strong> panel.At <strong>the</strong> highest level, <strong>the</strong>re may be a weak 15-Hz flickerresponse, but it is irregular <strong>and</strong> reduced <strong>in</strong> amplitudecompared with <strong>the</strong> response measured before <strong>the</strong> <strong>rod</strong>bleach. These signals may derive ei<strong>the</strong>r from partiallybleached <strong>rod</strong>s (see above) or from cones. Whatever <strong>the</strong>irorig<strong>in</strong>, <strong>the</strong> signals cannot be <strong>the</strong> primary basis of <strong>the</strong> <strong>fast</strong><strong>rod</strong> pathway. In <strong>the</strong> unbleached eye <strong>the</strong> <strong>fast</strong> <strong>rod</strong> signalsat this level must be strong enough first to nullify <strong>the</strong> slow<strong>rod</strong> signals <strong>and</strong> <strong>the</strong>n to p<strong>rod</strong>uce <strong>the</strong> large signals found <strong>in</strong><strong>the</strong> normal ERG response.D. Achromat DataA second, important control for <strong>the</strong> possible effects of conecontam<strong>in</strong>ation <strong>in</strong> <strong>the</strong> data of <strong>the</strong> normal observer is provided<strong>in</strong> Fig. 4, which shows 14-Hz flicker detectabilitydata (right-h<strong>and</strong> panel) <strong>and</strong> 14-Hz ERG record<strong>in</strong>gs (lefth<strong>and</strong>panel) from an achromat observer, KN, who has beenconsistently shown to lack function<strong>in</strong>g cone vision.101213,0The results for this observer also provide a critical test of<strong>the</strong> validity of <strong>the</strong> self-cancellation model <strong>in</strong> a <strong>visual</strong> <strong>system</strong>that transmits only <strong>rod</strong> signals.The psychophysical results for <strong>the</strong> achromat are similarto those for <strong>the</strong> normal observer. Like <strong>the</strong> normal observer,<strong>the</strong> achromat exhibits a clearly double-branchedflicker threshold curve with an adjo<strong>in</strong><strong>in</strong>g region of flicker<strong>in</strong>visibility (for KN, 14 Hz is better than 15 Hz for elicit<strong>in</strong>g<strong>the</strong> null; see Subsection 3.E). Also like <strong>the</strong> normalobserver, <strong>the</strong> achromat's ERG responses (at 14 Hz)decrease to a m<strong>in</strong>imum at a ret<strong>in</strong>al illum<strong>in</strong>ance correspond<strong>in</strong>gto <strong>the</strong> psychophysical null (his phenomenologicalreport of reduced flicker magnitude also co<strong>in</strong>cides) <strong>and</strong><strong>the</strong>n <strong>in</strong>crease with <strong>the</strong> opposite phase above <strong>the</strong> null. Thesimilarities between <strong>the</strong> achromat <strong>and</strong> <strong>the</strong> normal observer<strong>in</strong>dicate that self-cancellation is a property of <strong>the</strong> <strong>rod</strong><strong>visual</strong> <strong>system</strong> <strong>and</strong> does not depend on function<strong>in</strong>g cones.E. Phase Lags between <strong>the</strong> <strong>Slow</strong> <strong>and</strong> Fast Rod PathwaysIn <strong>the</strong> normal observer it is possible to compare <strong>the</strong> speedsof <strong>the</strong> slow <strong>and</strong> <strong>the</strong> <strong>fast</strong> <strong>rod</strong> signals by measur<strong>in</strong>g <strong>the</strong>speed of <strong>rod</strong> signals relative to cone signals. Such psychophysicaldata are shown as open circles <strong>in</strong> <strong>the</strong> right-h<strong>and</strong>


1662 J. Opt. Soc. Am. A/Vol. 8, No. 10/October 1991ACHROMAT 'aIZ x+ <strong>Slow</strong> Fast X:5Hz 5Hz c NORMALW8~~~~~5 pV~~~~~~~~~~~~~~N,,- m \ ,.ACHROMAT (ERG)(ERG)0 NORMAL (psycho-,270- physics)17 ~~170i, 0 5 10 15 20so i 1550 200 0 so 100150 200 0 FTime (ms) Time (ms)Frequency (Hz)Fig. 5. Left-h<strong>and</strong> panel: ERG record<strong>in</strong>gs for <strong>the</strong> achromat KNmade at a ret<strong>in</strong>al illum<strong>in</strong>ance below his perceptual null (leftrecord<strong>in</strong>gs) <strong>and</strong> at a ret<strong>in</strong>al illum<strong>in</strong>ance above <strong>the</strong> null (rightrecord<strong>in</strong>gs) at frequencies rang<strong>in</strong>g from 5 to 17 Hz. The verticall<strong>in</strong>e <strong>in</strong> each trace is an estimate of <strong>the</strong> peak <strong>in</strong> <strong>the</strong> ERG recordcorrespond<strong>in</strong>g to <strong>the</strong> flash that occurred at time zero. For <strong>the</strong>slow pathway <strong>the</strong>re is a delay of 90-115 ms between <strong>the</strong> flash <strong>and</strong><strong>the</strong> ERG response; for <strong>the</strong> <strong>fast</strong> pathway <strong>the</strong> delay is 70-80 ms.Right-h<strong>and</strong> panel: Squares are <strong>the</strong> phase differences <strong>in</strong> degreesbetween <strong>the</strong> slow <strong>and</strong> <strong>fast</strong> <strong>rod</strong> signals for <strong>the</strong> achromat KN estimatedfrom <strong>the</strong> ERG records shown <strong>in</strong> <strong>the</strong> left-h<strong>and</strong> panel. Thefilled circles are similar data for <strong>the</strong> normal subject, also estimatedfrom ERG record<strong>in</strong>gs (not shown). The open circles arephase differences between <strong>the</strong> slow <strong>and</strong> <strong>fast</strong> <strong>rod</strong> signals for <strong>the</strong>normal subject estimated psychophysically. These were obta<strong>in</strong>edby subtract<strong>in</strong>g <strong>the</strong> <strong>rod</strong>-cone phase differences measured justbelow <strong>the</strong> null (at a time-averaged ret<strong>in</strong>al illum<strong>in</strong>ance of -0.43logio scot. Td) from those measured just above <strong>the</strong> null (at 0.45logio scot. Td). (See Fig. 6 of Ref. 1.)panel of Fig. 5, <strong>in</strong> which <strong>the</strong> phase difference between <strong>the</strong>slow <strong>and</strong> <strong>fast</strong> <strong>rod</strong> signals <strong>in</strong> degrees is plotted as a functionof frequency. These data were obta<strong>in</strong>ed by a flicker cancellationtechnique, <strong>in</strong> which <strong>the</strong> observer is presentedwith <strong>rod</strong> <strong>and</strong> cone stimuli flicker<strong>in</strong>g at <strong>the</strong> same frequency<strong>and</strong> is asked to adjust <strong>the</strong>ir relative phase <strong>and</strong> ret<strong>in</strong>al illum<strong>in</strong>anceto cancel <strong>the</strong> perception of flicker (for more details,see Ref. 1). If <strong>rod</strong>s <strong>and</strong> cones were equally <strong>fast</strong> (i.e.,if <strong>the</strong>re were no delay between <strong>the</strong>ir signals), flicker cancellationwould be best when <strong>the</strong> <strong>rod</strong> <strong>and</strong> cone stimuliwere physically out of phase. S<strong>in</strong>ce <strong>the</strong> <strong>rod</strong>s are actuallyslower than cones, <strong>the</strong> <strong>rod</strong> stimulus must be advanced relativeto <strong>the</strong> out-of-phase cone stimulus to achieve <strong>the</strong> null.As predicted by our self-cancellation model, <strong>the</strong> phasedifference measured psychophysically grows monotonicallywith frequency <strong>and</strong> reaches approximately 1800 between<strong>the</strong> slow <strong>and</strong> <strong>fast</strong> signals at 15 Hz.If, as we believe, <strong>the</strong> slow <strong>and</strong> <strong>fast</strong> <strong>rod</strong> signals are differentiated<strong>in</strong> <strong>the</strong> ERG record<strong>in</strong>gs, an electrophysiological estimateof <strong>the</strong> phase differences between <strong>the</strong> slow <strong>and</strong> <strong>the</strong><strong>fast</strong> <strong>rod</strong> signals should be similar to <strong>the</strong> psychophysicalestimate. Such estimates can be obta<strong>in</strong>ed for both <strong>the</strong>achromat <strong>and</strong> <strong>the</strong> normal observer from <strong>the</strong> relative delaybetween <strong>the</strong> slow <strong>and</strong> <strong>fast</strong> <strong>rod</strong> ERG responses. The lefth<strong>and</strong>panel of Fig. 5 shows ERG record<strong>in</strong>gs for achromatKN made below <strong>the</strong> null (left-h<strong>and</strong> records) <strong>and</strong> above <strong>the</strong>null (right-h<strong>and</strong> records). In each record<strong>in</strong>g <strong>the</strong> verticall<strong>in</strong>e is an estimate of <strong>the</strong> time taken (<strong>the</strong> delay) for <strong>the</strong>response to <strong>the</strong> flicker pulse at time zero to appear <strong>in</strong> <strong>the</strong>ERG. S<strong>in</strong>ce <strong>the</strong> delay of ei<strong>the</strong>r <strong>the</strong> slow or <strong>the</strong> <strong>fast</strong> <strong>rod</strong>responses is roughly constant with temporal frequency,<strong>the</strong> position of <strong>the</strong> peak correspond<strong>in</strong>g to <strong>the</strong> pulse at timezero is roughly <strong>the</strong> same for all temporal frequencies.The difference <strong>in</strong> <strong>the</strong> delay between <strong>the</strong> slow response(left-h<strong>and</strong> side) <strong>and</strong> <strong>the</strong> <strong>fast</strong> response (right-h<strong>and</strong> side) isplotted as a phase difference <strong>in</strong> degrees by <strong>the</strong> squares <strong>in</strong><strong>the</strong> right-h<strong>and</strong> panel of Fig. 5. The filled circles representsimilar data for <strong>the</strong> normal subject, also estimatedfrom ERG record<strong>in</strong>gs (not shown). For <strong>the</strong> normal observer<strong>the</strong> phase differences between <strong>the</strong> slow <strong>and</strong> <strong>the</strong> <strong>fast</strong><strong>rod</strong> signals obta<strong>in</strong>ed electrophysiologically agree well with<strong>the</strong> phase differences determ<strong>in</strong>ed psychophysically.Fur<strong>the</strong>r, <strong>the</strong> estimate obta<strong>in</strong>ed electrophysiologically for<strong>the</strong> achromat is comparable with <strong>the</strong> psychophysical <strong>and</strong>electrophysiological estimates for <strong>the</strong> normal observer.4. DISCUSSIONStockman et al.In summary, <strong>the</strong> flicker detectability data <strong>and</strong> <strong>the</strong> ERGrecord<strong>in</strong>gs for both <strong>the</strong> normal observer <strong>and</strong> <strong>the</strong> achromatprovide strong support for a duality <strong>in</strong> <strong>the</strong> <strong>rod</strong> <strong>visual</strong> <strong>system</strong>,<strong>in</strong> which <strong>rod</strong> signals are transmitted through ei<strong>the</strong>ra slow, sensitive pathway predom<strong>in</strong>at<strong>in</strong>g <strong>in</strong> dim light or a<strong>fast</strong>, less sensitive one predom<strong>in</strong>at<strong>in</strong>g <strong>in</strong> brighter light.Near 15 Hz, both observers exhibit a region of flicker selfcancellationwell above conventional threshold. This nullseems to be <strong>the</strong> result of destructive <strong>in</strong>terference betweenslow <strong>and</strong> <strong>fast</strong> <strong>rod</strong> signals that are out of phase with eacho<strong>the</strong>r close to 15 Hz. The cancellation is found not onlypsychophysically but also <strong>in</strong> <strong>the</strong> ERG. Accompany<strong>in</strong>g <strong>the</strong>null is a rapid change of phase. This phase reversal suggeststhat cancellation is <strong>in</strong>deed <strong>the</strong> cause of <strong>the</strong> null:When <strong>the</strong> two signals are exactly equal <strong>in</strong> strength <strong>and</strong> <strong>in</strong>opposite phase <strong>the</strong>re will be complete cancellation, but,if <strong>the</strong>re is any imbalance <strong>in</strong> <strong>the</strong> strengths of <strong>the</strong> two signals,<strong>the</strong> result will have <strong>the</strong> phase of whichever is <strong>the</strong>stronger signal. In short, <strong>the</strong>re will be a rapid phasetransition of 180° as <strong>the</strong> 15-Hz <strong>fast</strong> <strong>rod</strong> signal equals <strong>and</strong><strong>the</strong>n exceeds <strong>the</strong> strength of <strong>the</strong> slow signal, <strong>and</strong> <strong>the</strong> transitionwill be accompanied by a flicker null.A. Comparison of Normal <strong>and</strong> AchromatOne <strong>in</strong>terest<strong>in</strong>g difference between <strong>the</strong> results for <strong>the</strong>achromat <strong>and</strong> those for <strong>the</strong> normal observer, but one thatseems not to be central to our model, is that <strong>the</strong> achromat'snull occurs at a higher <strong>in</strong>tensity (compare Figs. 2 <strong>and</strong> 4).This difference is unlikely to be <strong>the</strong> result of <strong>the</strong> normalobserver's cones detect<strong>in</strong>g <strong>the</strong> target <strong>and</strong> p<strong>rod</strong>uc<strong>in</strong>g t<strong>in</strong>y,subthreshold flicker signals because <strong>the</strong> cone signalswould actually be <strong>in</strong> phase with <strong>the</strong> slow <strong>rod</strong> signals at15 Hz", 3 <strong>and</strong> out of phase with <strong>the</strong> <strong>fast</strong> <strong>rod</strong> signals. Thus<strong>the</strong>ir effect would be to add to <strong>the</strong> slow <strong>rod</strong> signals <strong>and</strong>cancel <strong>the</strong> <strong>fast</strong> ones, so that both <strong>the</strong> upper <strong>and</strong> <strong>the</strong> lowerlimits of <strong>the</strong> null <strong>in</strong> <strong>the</strong> normal observer would be raisedquite<strong>the</strong> reverse of what we found..The displacement of <strong>the</strong> null might <strong>in</strong>stead be caused bya change <strong>in</strong> <strong>the</strong> relative strengths of <strong>the</strong> slow <strong>and</strong> <strong>fast</strong> <strong>rod</strong>signals between <strong>the</strong> normal observer <strong>and</strong> <strong>the</strong> achromat.If <strong>the</strong> quickness of <strong>the</strong> <strong>fast</strong> <strong>rod</strong> signals occurs because<strong>the</strong>y, but not <strong>the</strong> slow signals, are transmitted partlythrough a pathway that is ostensibly a cone pathway (oneof <strong>the</strong> possibilities suggested <strong>in</strong> Ref. 1), <strong>the</strong>n a deficiencyof cone <strong>pathways</strong> <strong>in</strong> <strong>the</strong> achromat might weaken <strong>the</strong> <strong>fast</strong><strong>rod</strong> signals <strong>and</strong> so elevate <strong>the</strong> null. Histological studies of<strong>the</strong> ret<strong>in</strong>as of totally color-bl<strong>in</strong>d observers 2 2 - 2 5 (not all ofwhom may have been typical, complete achromats) differ


Stockman et al.greatly <strong>in</strong> <strong>the</strong>ir results (for a discussion, see Sharpe <strong>and</strong>Nordby,"1 p. 273). Each study divulged <strong>the</strong> presence ofmorphologically <strong>in</strong>tact cones or conelike structures <strong>in</strong> <strong>the</strong>enucleated ret<strong>in</strong>as, even though little or no evidence wasfound for cone function <strong>in</strong> previous cl<strong>in</strong>ical <strong>and</strong> psychophysical<strong>in</strong>vestigations of <strong>the</strong> subject's vision. In <strong>the</strong> firsthistological <strong>in</strong>vestigation 22 cones were found to be scarce<strong>and</strong> malformed <strong>in</strong> <strong>the</strong> fovea but to be normally distributed<strong>and</strong> normally shaped <strong>in</strong> <strong>the</strong> periphery. However, <strong>in</strong> <strong>the</strong>three subsequent studies 2 3 - 2 5 <strong>the</strong> cone numbers <strong>in</strong> <strong>the</strong>totally color-bl<strong>in</strong>d eye were found to be vastly fewer thanthose found <strong>in</strong> <strong>the</strong> normal ret<strong>in</strong>a. It is conceivable, <strong>the</strong>refore,that <strong>the</strong>re are some cones <strong>in</strong> <strong>the</strong> eye of our achromatobserver that are structurally malformed or functionallyimpaired or too few <strong>in</strong> number to provide an <strong>in</strong>dependent<strong>visual</strong> signal but that suffice to leave <strong>in</strong>tact a vestigialcone <strong>system</strong>. Although it is unable to contribute to visionper se, this <strong>system</strong> might provide a weakened pathway for<strong>the</strong> <strong>fast</strong> <strong>rod</strong> signals.Ano<strong>the</strong>r difference between <strong>the</strong> data for <strong>the</strong> normal observer<strong>and</strong> for <strong>the</strong> achromat is that <strong>the</strong> phase differencebetween <strong>the</strong> slow <strong>and</strong> <strong>the</strong> <strong>fast</strong> <strong>rod</strong> signals grows a littlemore quickly for <strong>the</strong> achromat than for <strong>the</strong> normal observer(Fig. 5, left-h<strong>and</strong> panel). One consequence of thiseffect is that <strong>the</strong> slow <strong>and</strong> <strong>fast</strong> <strong>rod</strong> signals are out of phaseat a lower frequency than those for <strong>the</strong> normal observer, aresult that is consistent with <strong>the</strong> need to use 14 Hz ra<strong>the</strong>rthan 15 Hz to improve <strong>the</strong> null for <strong>the</strong> achromat. Thesedifferences <strong>in</strong> phase delay between <strong>the</strong> achromat <strong>and</strong><strong>the</strong> normal observer may also be related to <strong>the</strong> need touse higher-illum<strong>in</strong>ation levels to p<strong>rod</strong>uce flicker selfcancellation<strong>in</strong> <strong>the</strong> achromat. The phase delay between<strong>the</strong> achromat's slow <strong>and</strong> <strong>fast</strong> <strong>rod</strong> signals measured <strong>in</strong> <strong>the</strong>region of his null would be expected to be larger if, forexample, light adaptation differentially speeds up <strong>the</strong> <strong>fast</strong><strong>rod</strong> signals.B. O<strong>the</strong>r ConsiderationsWhen we describe <strong>the</strong> <strong>rod</strong> <strong>visual</strong> <strong>system</strong> as be<strong>in</strong>g duallyorganized <strong>in</strong>to slow <strong>and</strong> <strong>fast</strong> <strong>pathways</strong>, we are referr<strong>in</strong>g <strong>in</strong><strong>the</strong> first <strong>in</strong>stance to <strong>the</strong> delay of <strong>the</strong> two <strong>rod</strong> responses(see Fig. 5, above), ra<strong>the</strong>r than to <strong>the</strong> shapes of <strong>the</strong>temporal-frequency response of <strong>the</strong> <strong>rod</strong>s. Conner 9 <strong>and</strong>Sharpe et al.' measured <strong>the</strong> shapes of <strong>the</strong> <strong>rod</strong> temporalfrequencyresponses of <strong>the</strong> slow <strong>and</strong> <strong>the</strong> <strong>fast</strong> <strong>rod</strong> <strong>pathways</strong>.At lum<strong>in</strong>ances well below <strong>the</strong> 15-Hz null region, for whichwe assume that <strong>the</strong> slow pathway predom<strong>in</strong>ates, <strong>the</strong> frequencyresponse is low pass. Similarly, <strong>the</strong> frequencyresponses measured just below <strong>and</strong> just above <strong>the</strong> nullregion are also low pass <strong>in</strong> shape, but presumably <strong>in</strong> thisregion nei<strong>the</strong>r reflects <strong>the</strong> exclusive activity of a s<strong>in</strong>glepathway. At higher-lum<strong>in</strong>ance levels, for which weassume that <strong>the</strong> <strong>fast</strong> pathway predom<strong>in</strong>ates, <strong>the</strong> frequencyresponse becomes b<strong>and</strong>pass <strong>and</strong> slightly more extended tohigher frequencies. Thus, <strong>in</strong> addition to <strong>the</strong> large difference<strong>in</strong> response delay between <strong>the</strong> <strong>rod</strong> <strong>pathways</strong>, <strong>the</strong>re isevidence for a change <strong>in</strong> <strong>the</strong> shape of <strong>the</strong> temporalfrequencyresponse.One o<strong>the</strong>r aspect of <strong>the</strong> results shown <strong>in</strong> Fig. 5 shouldbe mentioned. It is that <strong>the</strong> phase difference between <strong>the</strong>slow <strong>and</strong> <strong>fast</strong> <strong>rod</strong> signals falls toward O as <strong>the</strong> frequencyis reduced. This result argues aga<strong>in</strong>st a model for <strong>the</strong>null <strong>in</strong> which <strong>the</strong> cancellation is between a signal <strong>and</strong> aVol. 8, No. 10/October 1991/J. Opt. Soc. Am. A 1663phase-reversed version of <strong>the</strong> same signal because such amodel predicts a phase difference of 1800 at all frequencies,not just at 15 Hz as we f<strong>in</strong>d.C. Rod-Cone Interactions <strong>in</strong> FlickerThere is a considerable body of literature on <strong>rod</strong>-cone <strong>in</strong>teractionsaffect<strong>in</strong>g both cone <strong>and</strong> <strong>rod</strong> flicker detection(see, for example, Refs. 26-29). However, <strong>the</strong>re seems tobe no need to <strong>in</strong>voke any of <strong>the</strong> reported effects to expla<strong>in</strong>our data, which to a first approximation can be expla<strong>in</strong>edas a simple cancellation between two <strong>rod</strong> signals. In anearlier paper,' we discussed some evidence for small nonl<strong>in</strong>ear<strong>in</strong>teractions between <strong>the</strong> two <strong>rod</strong> signals.A comparable perceptual null or loss of flicker perceptionhas been demonstrated for suprathreshold mesopicflicker at 7-8 Hz. 4 6 However, we can expla<strong>in</strong> that nullby assum<strong>in</strong>g a cancellation between what we refer to asslow <strong>rod</strong> signals <strong>and</strong> cone signals, which are close to outof phase near such frequencies.3-6 As discussed above,<strong>the</strong> perceptual null near 15 Hz, however, cannot be soexpla<strong>in</strong>ed.D. Mammalian Rod PathwaysIn <strong>the</strong> cat-<strong>the</strong> mammalian species for which we have <strong>the</strong>most detailed <strong>in</strong>formation-<strong>the</strong>re are at least two major<strong>pathways</strong> by which <strong>rod</strong> signals can travel through <strong>the</strong>ret<strong>in</strong>a from <strong>the</strong> <strong>rod</strong>s to <strong>the</strong> ganglion cells (see, for example,Refs. 30-32 <strong>and</strong> Ref. 33 for a recent review). The ma<strong>in</strong>pathway is from <strong>rod</strong>s to <strong>rod</strong> bipolars, to AII amacr<strong>in</strong>ecells, <strong>and</strong> <strong>the</strong>n to ei<strong>the</strong>r ON cone bipolars <strong>and</strong> ON ganglioncells or to OFF ganglion cells. The secondary pathwayrelies on direct gap junctions between <strong>rod</strong>s <strong>and</strong> conesthrough which <strong>rod</strong> signals have access to cone bipolars<strong>and</strong> <strong>the</strong>nce to ON <strong>and</strong> OFF ganglion cells. 34 In <strong>the</strong> tigersalam<strong>and</strong>er it has been shown that <strong>the</strong> electrical coupl<strong>in</strong>gbetween <strong>rod</strong>s <strong>and</strong> cones can be streng<strong>the</strong>ned by light. 35Much less is known about <strong>the</strong> cellular <strong>pathways</strong> of <strong>the</strong>primate ret<strong>in</strong>a, but recent evidence suggests that, for <strong>the</strong>primate as for <strong>the</strong> cat, <strong>the</strong>re is always a direct feed between<strong>the</strong> cone bipolars <strong>and</strong> ganglion cells, whereas <strong>the</strong>reis much more amacr<strong>in</strong>e <strong>in</strong>fluence <strong>and</strong> (or) <strong>in</strong>tervention between<strong>the</strong> <strong>rod</strong> bipolars <strong>and</strong> ganglion cells.' 637 And, of <strong>the</strong>25 amacr<strong>in</strong>e-cell types described so far <strong>in</strong> <strong>the</strong> primate,33" 9<strong>the</strong> A6 can be identified with <strong>the</strong> All amacr<strong>in</strong>e of <strong>the</strong>cat.' 9 42 Never<strong>the</strong>less, <strong>the</strong>re may be important differencesbetween <strong>the</strong> microcircuitry of <strong>the</strong> cat <strong>and</strong> <strong>the</strong> primateret<strong>in</strong>a. For one th<strong>in</strong>g, gap junctions between <strong>rod</strong><strong>and</strong> cone photoreceptors may not be so well developed<strong>in</strong> primates as <strong>the</strong>y are <strong>in</strong> lower vertebrates. 4 ' For ano<strong>the</strong>r,<strong>the</strong> situation is complicated by <strong>the</strong> synaptic wir<strong>in</strong>gassociated with <strong>the</strong> primate's highly developed sense ofcolor vision.E. Site of <strong>the</strong> Flicker NullThe low-lum<strong>in</strong>ance scotopic ERG records shown here arelikely to be predom<strong>in</strong>antly b-wave responses (see, for example,Refs. 44-47). The orig<strong>in</strong> of <strong>the</strong> b wave has beenknown for some time to be after <strong>the</strong> receptors 4 " but before<strong>the</strong> ganglion cells. 49 Much evidence suggests that itssource is <strong>the</strong> glial (Muller) cells 5 0 ' 5 ' <strong>and</strong> that it is determ<strong>in</strong>edpredom<strong>in</strong>antly by activity <strong>in</strong> <strong>the</strong> depolariz<strong>in</strong>g (ON)bipolar cells. 52 ' 5 ' If so, <strong>in</strong> order for <strong>the</strong> slow <strong>and</strong> <strong>the</strong> <strong>fast</strong>


1664 J. Opt. Soc. Am. A/Vol. 8, No. 10/October 1991<strong>rod</strong>s signals both to be evident <strong>in</strong> <strong>the</strong> b wave of <strong>the</strong> ERG,<strong>the</strong> two signals must be segregated at or before <strong>the</strong> bipolarcell level.Where <strong>the</strong>n does <strong>the</strong> cancellation take place? One attractivepossibility is that it occurs at <strong>the</strong> depolariz<strong>in</strong>g(ON) cone bipolars, one of <strong>the</strong> po<strong>in</strong>ts at which <strong>the</strong> twoanatomical <strong>pathways</strong> convey<strong>in</strong>g <strong>rod</strong> signals <strong>in</strong> <strong>the</strong> mammalianeye converge. At <strong>the</strong> scotopic levels at which <strong>the</strong>15-Hz null is found, <strong>the</strong> cone bipolars might be driven by<strong>the</strong> <strong>rod</strong> signals travel<strong>in</strong>g through <strong>the</strong> cone photoreceptors<strong>and</strong> <strong>the</strong> <strong>rod</strong> signals travel<strong>in</strong>g through <strong>the</strong> <strong>rod</strong> bipolars <strong>and</strong><strong>the</strong> AII amacr<strong>in</strong>e cells. The most obvious problem withthis model, however, is that <strong>the</strong> signal <strong>in</strong> <strong>the</strong> <strong>rod</strong> bipolarcell, although able to cancel <strong>the</strong> signal <strong>in</strong> <strong>the</strong> depolariz<strong>in</strong>gON cone bipolar, rema<strong>in</strong>s itself uncanceled. And, despiteits be<strong>in</strong>g uncanceled, <strong>the</strong>re is no trace of it <strong>in</strong> <strong>the</strong> b waveof <strong>the</strong> ERG, even though its (assumed) signal is clearly evidentbelow <strong>the</strong> null. Ano<strong>the</strong>r problem with this type ofmodel is that <strong>the</strong> <strong>rod</strong> signal enter<strong>in</strong>g <strong>the</strong> cones shouldappear <strong>in</strong> both ON- <strong>and</strong> OFF-cone bipolars, so that <strong>the</strong>signal <strong>in</strong> <strong>the</strong> OFF-cone bipolars rema<strong>in</strong>s uncanceled too.To some extent, we can contend with <strong>the</strong>se difficulties byargu<strong>in</strong>g that <strong>the</strong> null <strong>in</strong> <strong>the</strong> b wave is <strong>the</strong> result of <strong>the</strong>electrical cancellation of signals <strong>in</strong> <strong>the</strong> separate <strong>rod</strong> <strong>and</strong>cone bipolars, whereas <strong>the</strong> perceptual null is due to neuralcancellation at a later site, say, at <strong>the</strong> ganglion cell layer.But <strong>the</strong>n one must additionally assume that <strong>the</strong> electricalcancellation at <strong>the</strong> bipolar-cell level co<strong>in</strong>cides exactly with<strong>the</strong> physiological cancellation at <strong>the</strong> later stage.There is a fur<strong>the</strong>r objection, however, to <strong>the</strong> argumentthat <strong>the</strong> <strong>fast</strong>er <strong>rod</strong> signals travel over <strong>the</strong> cone gap-junctionpathway <strong>and</strong> that <strong>the</strong> locus of <strong>in</strong>teraction between <strong>the</strong>slower <strong>and</strong> <strong>fast</strong>er signals is <strong>the</strong> depolariz<strong>in</strong>g cone bipolars.It concerns <strong>the</strong> typical, complete achromat observer;namely, how does <strong>the</strong> <strong>fast</strong>er pathway orig<strong>in</strong>ate <strong>in</strong> <strong>the</strong> achromatobserver for whom <strong>the</strong>re is no psychophysical evidenceof postreceptoral cone vision <strong>and</strong> for whom <strong>the</strong>majority of <strong>the</strong> anatomical evidence 2 l- 2 4 suggests that conephotoreceptors are altoge<strong>the</strong>r miss<strong>in</strong>g or reduced to atmost 5-10% of <strong>the</strong>ir normal population (but see <strong>the</strong> discussionabove)?Thus attempt<strong>in</strong>g to correlate <strong>the</strong> psychophysically isolatedslow <strong>and</strong> <strong>fast</strong> <strong>pathways</strong> with <strong>the</strong> electrophysiologicallyrevealed <strong>rod</strong> bipolar <strong>and</strong> cone gap-junction <strong>pathways</strong>may turn out to be misdirected. 5 4 It seems possible that<strong>the</strong> <strong>in</strong>teraction lead<strong>in</strong>g to <strong>the</strong> cancellation is tak<strong>in</strong>g placeei<strong>the</strong>r at <strong>the</strong> <strong>rod</strong> bipolars <strong>the</strong>mselves or before <strong>the</strong> bipolarcell level, possibly with<strong>in</strong> <strong>the</strong> <strong>rod</strong> spherules, <strong>and</strong> that horizontalcells are implicated somehow. But wherever <strong>the</strong>site of cancellation, <strong>the</strong> prom<strong>in</strong>ence of <strong>the</strong> slow <strong>and</strong> <strong>the</strong><strong>fast</strong> signals <strong>in</strong> ERG record<strong>in</strong>gs does suggest that microelect<strong>rod</strong>erecord<strong>in</strong>gs should easily reveal <strong>the</strong> neuralsubstrate of <strong>the</strong> two signals.5. CONCLUSIONContrary to <strong>the</strong> traditional view that <strong>the</strong> <strong>human</strong> nighttime<strong>rod</strong> <strong>visual</strong> <strong>system</strong> is a relatively uncomplicated, unitaryprocess, we report electrophysiological <strong>and</strong> perceptual evidencefor a duality of organization. In addition to <strong>the</strong>familiar, slow <strong>rod</strong> signal, a <strong>fast</strong>er signal becomes prom<strong>in</strong>entat higher <strong>in</strong>tensities.ACKNOWLEDGMENTSWe thank Donald I. A. MacLeod <strong>and</strong> Ethan Montag forhelpful comments <strong>and</strong> Cornelia von Gruben for technicalassistance. We are especially grateful to Klaus RU<strong>the</strong>r forhis many contributions to <strong>the</strong> <strong>in</strong>vestigations. This researchwas supported by <strong>the</strong> National Science Foundation(BNS 88-12401), <strong>the</strong> Hoffmann-La Roche-Foundation, <strong>the</strong>Deutsche Forschungsgeme<strong>in</strong>schaft [SFB 325 (B4)], <strong>and</strong><strong>the</strong> Heisenberg Program.REFERENCESStockman et al.1. L. T. Sharpe, A. Stockman, <strong>and</strong> D. I. A. MacLeod, "Rodflicker perception: scotopic duality, phase lags <strong>and</strong> destructive<strong>in</strong>terference," Vision Res. 29, 1539-1559 (1989).2. W McDougall, "The sensations excited by a s<strong>in</strong>gle momentarystimulation of <strong>the</strong> eye," Br. J. Psychol. 1, 279-301(1904).3. F Ver<strong>in</strong>ga <strong>and</strong> J. Roeloffs, "Electro-optical stimulation <strong>in</strong> <strong>the</strong><strong>human</strong> ret<strong>in</strong>a," Nature (London) 211, 321-322 (1966).4. D. I. A. MacLeod, "Rods cancel cones <strong>in</strong> flicker," Nature(London) 235, 173-174 (1972).5. T. E. Frumkes, M. D. Sekuler, M. C. Barris, E. H. Reiss, <strong>and</strong>L. M. Chalupa, "Rod-cone <strong>in</strong>teraction <strong>in</strong> <strong>human</strong> scotopicvision-I. Temporal analysis," Vision Res. 13, 1269-1282(1973).6. T. J. T. P. Van den Berg <strong>and</strong> H. J. Spekreijse, "Interactionbetween <strong>rod</strong> <strong>and</strong> cone signals studied with temporal s<strong>in</strong>ewave stimulation," J. Opt. Soc. Am. 67, 1210-1217 (1977).7. S. Hecht, S. Shlaer, E. L. Smith, C. Haig, <strong>and</strong> J. C. Pesk<strong>in</strong>,"The <strong>visual</strong> functions of <strong>the</strong> complete colorbl<strong>in</strong>d," J. Gen.Physiol. 31, 459-472 (1948).8. J. D. Conner <strong>and</strong> D. I. A. MacLeod, "Rod photoreceptors detectrapid flicker," Science 195, 689-699 (1977).9. J. D. Conner, "The temporal properties of <strong>rod</strong> vision,"J. Physiol. (London) 332, 139-155 (1982).10. R. F. Hess <strong>and</strong> K. Nordby, "Spatial <strong>and</strong> temporal limitsof vision <strong>in</strong> <strong>the</strong> achromat," J. Physiol. (London) 371, 365-385(1986).11. L. T. Sharpe <strong>and</strong> K. Nordby, "Total colour bl<strong>in</strong>dness: an <strong>in</strong>t<strong>rod</strong>uction,"<strong>in</strong> Night Vision: Basic, Cl<strong>in</strong>ical <strong>and</strong> AppliedAspects, R. F. Hess, L. T. Sharpe, <strong>and</strong> K. Nordby, eds. (CambridgeU. Press, Cambridge, 1990), pp. 253-289.12. L. T. Sharpe <strong>and</strong> K. Nordby, "The photoreceptors <strong>in</strong> <strong>the</strong>achromat," <strong>in</strong> Night Vision: Basic, Cl<strong>in</strong>ical <strong>and</strong> AppliedAspects, R. F Hess, L. T. Sharpe, <strong>and</strong> K. Nordby, eds. (CambridgeU. Press, Cambridge, 1990), pp. 335-389.13. K. Nordby <strong>and</strong> L. T. Sharpe, "The directional sensitivityof <strong>the</strong> photoreceptors <strong>in</strong> <strong>the</strong> <strong>human</strong> achromat," J. Physiol.(London) 399, 267-281 (1987).14. L. T. Sharpe <strong>and</strong> V. Volbrecht, "Estimat<strong>in</strong>g middle- <strong>and</strong> longwavecone sensitivity with large, long <strong>and</strong> t<strong>in</strong>y, brief targets,"Perception (to be published).15. M. Aguilar <strong>and</strong> W S. Stiles, "Saturation of <strong>the</strong> <strong>rod</strong> mechanismof <strong>the</strong> ret<strong>in</strong>a at high levels of stimulation," Opt. Acta 1,59-65 (1954).16. M. F Marmor, G. B. Arden, S. E. G. Nilsson, <strong>and</strong> E. Zrenner,"St<strong>and</strong>ard for cl<strong>in</strong>ical electroret<strong>in</strong>ography," Arch. Ophthalmol.107, 816-819 (1989).17. G. Wyszecki <strong>and</strong> W S. Stiles, Color Science: Concepts <strong>and</strong>Methods, Quantitative Data <strong>and</strong> Formulae, 2nd ed. (Wiley,New York, 1982).18. W S. Stiles <strong>and</strong> B. H. Crawford, "The lum<strong>in</strong>ous efficiencyof monochromatic rays enter<strong>in</strong>g <strong>the</strong> eye pupil at differentpo<strong>in</strong>ts," Proc. R. Soc. London Ser. B 112, 428-450 (1933).19. W S. Stiles, "The directional sensitivity of <strong>the</strong> ret<strong>in</strong>a <strong>and</strong> <strong>the</strong>spectral sensitivities of <strong>the</strong> <strong>rod</strong>s <strong>and</strong> cones," Proc. R. Soc.London Ser. B 127, 64-105 (1939).20. L. T. Sharpe, H. Collewijn, <strong>and</strong> K. Nordby, "Fixation, pursuit<strong>and</strong> nystagmus <strong>in</strong> a complete achromat," Cl<strong>in</strong>. Vision Sci. 1,39-49 (1986).


Stockman et al.21. L. T. Sharpe, C. C. Fach, <strong>and</strong> A. Stockman, "Spectral propertiesof <strong>the</strong> two <strong>rod</strong> <strong>pathways</strong>," submitted to Vision Res.22. H. Larsen, "Demonstration mikroskopischer Priparate vone<strong>in</strong>em monochromatischen Auge," Kl<strong>in</strong>. Monatsbl. Augenheilk67, 301-302 (1921).23. R. Harrison, D. Hoefnagel, <strong>and</strong> J. N. Hayward, "Congenitaltotal colour bl<strong>in</strong>dness, a cl<strong>in</strong>ico-pathological report," Arch.Ophthalmol. 64, 685-692 (1960).24. H. F. Falls, J. R. Wolter, <strong>and</strong> M. Alpern, "Typical totalmonochromacy," Arch. Ophthalmol. 74, 610-616 (1965).25. M. Glickste<strong>in</strong> <strong>and</strong> G. G. Heath, "Receptors <strong>in</strong> <strong>the</strong> monochromateye," Vision Res. 15, 633-636 (1975).26. S. H. Goldberg, T. E. Frumkes, <strong>and</strong> R. W Nygaard, "Inhibitory<strong>in</strong>fluence of unstimulated <strong>rod</strong>s <strong>in</strong> <strong>the</strong> <strong>human</strong> ret<strong>in</strong>a:evidence provided by exam<strong>in</strong><strong>in</strong>g cone flicker," Science 221,180-182 (1983).27. K. R. Alex<strong>and</strong>er <strong>and</strong> G. A. Fishman, "Rod-cone <strong>in</strong>teraction<strong>in</strong> flicker perimetry," Br. J. Ophthalmol. 68, 303-309 (1984).28. N. J. Coletta <strong>and</strong> A. J. Adams, "Rod-cone <strong>in</strong>teraction <strong>in</strong>flicker detection," Vision Res. 24, 1333-1340 (1984).29. T. E. Frumkes, F. Naarendorp, <strong>and</strong> S. H. Goldberg, "The <strong>in</strong>fluenceof cone adaptation upon <strong>rod</strong> mediated flicker," VisionRes. 26, 1167-1176 (1986).30. H. Kolb <strong>and</strong> R. Nelson, "Rod <strong>pathways</strong> <strong>in</strong> <strong>the</strong> ret<strong>in</strong>a of <strong>the</strong>cat," Vision Res. 23, 301-302 (1983).31. P. Sterl<strong>in</strong>g, "Microcircuitry of <strong>the</strong> cat ret<strong>in</strong>a," Ann. Rev.Neurosci. 6, 149-185 (1983).32. P. Sterl<strong>in</strong>g, M. Freed, <strong>and</strong> R. G. Smith, "Microcircuitry <strong>and</strong>functional architecture of <strong>the</strong> cat ret<strong>in</strong>a," Trends Neurosci.9, 186-192 (1986).33. N. W Daw, R. J. Jensen, <strong>and</strong> W J. Brunken, "Rod <strong>pathways</strong> <strong>in</strong>mammalian ret<strong>in</strong>ae," Trends Neurosci. 13, 110-115 (1990).34. R. Nelson, "Cat cones have <strong>rod</strong> <strong>in</strong>put: a comparison of <strong>the</strong>response properties of cones <strong>and</strong> horizontal cell bodies <strong>in</strong> <strong>the</strong>ret<strong>in</strong>a of <strong>the</strong> cat," J. Comp. Neurol. 172, 109-136 (1977).35. X.-L. Yang <strong>and</strong> S. M. Wu, "Modulation of <strong>rod</strong>-cone coupl<strong>in</strong>g bylight," Science 244, 352-354 (1989).36. L. Chase <strong>and</strong> J. E. Dowl<strong>in</strong>g, 'A comparison of <strong>rod</strong> <strong>and</strong> cone<strong>pathways</strong> <strong>in</strong> <strong>the</strong> primate ret<strong>in</strong>a," Invest. Ophthalmol. Vis.Sci. Suppl. 31, 207 (1990).37. U. Gri<strong>in</strong>ert <strong>and</strong> P. R. Mart<strong>in</strong>, "Rod bipolar cells <strong>in</strong> <strong>the</strong>macaque monkey ret<strong>in</strong>a: light <strong>and</strong> electron microscopy,"Invest. Ophthalmol. Vis. Sci. Suppl. 31, 536 (1990).38. R. W Rodieck, "Starburst amacr<strong>in</strong>e cells of <strong>the</strong> primateret<strong>in</strong>a," J. Comp. Neurol. 285, 18-37 (1989).39. A. P. Mariani, 'Amacr<strong>in</strong>e cells of <strong>the</strong> rhesus monkey ret<strong>in</strong>a,"Invest. Ophthalmol. Vis. Sci. Suppl. 29, 198 (1988).Vol. 8, No. 10/October 1991/J. Opt. Soc. Am. A 166540. H. Kolb <strong>and</strong> E. V. Famiglietti, "Rod <strong>and</strong> cone <strong>pathways</strong> <strong>in</strong> <strong>the</strong><strong>in</strong>ner plexiform layer of cat ret<strong>in</strong>a," Science 186, 47-49(1974).41. E. V Famiglietti <strong>and</strong> H. Kolb, 'A bistratified amacr<strong>in</strong>e cell<strong>and</strong> synaptic circuitry <strong>in</strong> <strong>the</strong> <strong>in</strong>ner plexiform layer of <strong>the</strong>ret<strong>in</strong>a," Bra<strong>in</strong> Res. 84, 293-300 (1975).42. A. Hendrickson, M. A. Koontz, R. G. Pourcho, P. V. Sarthy,<strong>and</strong> D. J. Goebel, "Localization of glyc<strong>in</strong>e-conta<strong>in</strong><strong>in</strong>g neurons<strong>in</strong> <strong>the</strong> macaca monkey ret<strong>in</strong>a," J. Comp. Neurol. 273, 473-487 (1988).43. E. Raviola <strong>and</strong> N. B. Gilula, "Gap junctions between photoreceptorcells <strong>in</strong> <strong>the</strong> vertebrate ret<strong>in</strong>a," Proc. Natl. Acad. Sci.U.S.A. 70, 1677-1681 (1973).44. W Miiller-Limmroth, Elektrophysiologie des Gesichtss<strong>in</strong>ns:Theorie und Praxis der Elektroret<strong>in</strong>ographie (Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>, 1950), p. 114.45. H. Bornsche<strong>in</strong> <strong>and</strong> G. Schubert, "Das photopische Flimmer-Elektroret<strong>in</strong>ogramm des Menschen," Z. Biol. 106, 229-238(1953).46. E. Dodt <strong>and</strong> J. B. Wal<strong>the</strong>r, "Der photopische Dom<strong>in</strong>ator imFlimmer-ERG der Katze," Pfliigers Arch. 266, 175-186(1958).47. P. Gouras <strong>and</strong> R. D. Gunkel, "The frequency response of normal,<strong>rod</strong> achromat <strong>and</strong> nyetalope ERG's to s<strong>in</strong>usoidalmonochromatic light stimulation," Doc. Ophthalmol. 18,137-150 (1964).48. R. Granit, Sensory Mechanisms of Ret<strong>in</strong>a (Oxford U. Press,London, 1947).49. W K. Noell, "The orig<strong>in</strong> of <strong>the</strong> electroret<strong>in</strong>ogram," Am. J.Ophthalmol. 28, 78-90 (1954).50. D. S. Faber, 'Analysis of <strong>the</strong> slow transret<strong>in</strong>al potentials <strong>in</strong>response to light," Ph.D. dissertation (University of NewYork, Buffalo, Buffalo, N.Y., 1969).51. R. F. Miller <strong>and</strong> J. E. Dowl<strong>in</strong>g, "Intracellular responses of <strong>the</strong>Muller (glial) cells of mudpuppy ret<strong>in</strong>a: <strong>the</strong>ir relation to <strong>the</strong>b-wave of <strong>the</strong> electroret<strong>in</strong>ogram," J. Neurophysiol. 33, 323-341 (1970).52. E. Dick <strong>and</strong> R. F. Miller, "Light-evoked potassium activity <strong>in</strong>mudpuppy ret<strong>in</strong>a: its relationship to <strong>the</strong> b-wave of <strong>the</strong> electroret<strong>in</strong>ogram,"Bra<strong>in</strong> Res. 154, 388-394 (1978).53. L. Gurevich, R. A. Stockton, <strong>and</strong> M. M. Slaughter, "Comparisonsof <strong>the</strong> waveforms of <strong>the</strong> b-wave of <strong>the</strong> ERG <strong>and</strong> on bipolarcells," Invest. Ophthalmol. Vis. Sci. Suppl. 31, 114 (1990).54. L. T. Sharpe <strong>and</strong> A. Stockman, "Dual <strong>rod</strong> <strong>pathways</strong>," <strong>in</strong> FromPigments to Perception. Advances <strong>in</strong> Underst<strong>and</strong><strong>in</strong>gVisual Processes, A. Valberg <strong>and</strong> B. B. Lee, eds. (Plenum,London, 1991), pp. 53-66.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!