05.12.2012 Views

A Study of a Reconnaissance Surveillance Vehicle

A Study of a Reconnaissance Surveillance Vehicle

A Study of a Reconnaissance Surveillance Vehicle

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A <strong>Study</strong> <strong>of</strong> a <strong>Reconnaissance</strong> <strong>Surveillance</strong> <strong>Vehicle</strong><br />

Approved for Public Release (Distribution Unlimited)<br />

NPS041003 452-AS-3946.ppt 1<br />

1


TIER II + UAV GENESIS<br />

• OPERATION DESERT STORM POINTED OUT AN ISR SHORTFALL<br />

• THIS NEED TRANSLATED INTO DEVELOPING ISR SYSTEMS<br />

WHICH PROVIDE CONSIDERABLE:<br />

- REACH<br />

- PERSISTENCE<br />

AND …<br />

- ELIMINATES DIRECT PERSONAL INTERACTION<br />

NPS041003 2


GENERAL UAV ISSUES<br />

NPS041003 3


UAV Design<br />

• UAV Designs have the following attributes embedded:<br />

- AUTOMATION<br />

- PARTIAL AUTONOMY – thus need for Ground Segment<br />

ULTIMATE OBJECTIVE IS TO EVOLVE TO … FULL AUTONOMY<br />

• THE CONSEQUENCES OF THIS DESIRE:<br />

- LIABILITY<br />

- CERTIFICATION<br />

- SAFETY<br />

- RELIABILITY<br />

- AFFORDABILITY<br />

…<br />

NPS041003 4


STRATEGIC<br />

• Worldwide OPS<br />

• Self ferry / refuel<br />

• Robust Nav<br />

• Quad / dissimilar<br />

• GPS / DGPS<br />

• Inertial INS<br />

(high – quality)<br />

• ICAO / GATM<br />

• Robust COMMs<br />

• Over-flight rights<br />

UAV Operating Domains<br />

MILITARY CIVILIAN<br />

TACTICAL<br />

• In -Theater Use Only<br />

• Transport to theater<br />

• Robust Nav<br />

• GPS<br />

• Inertial INS<br />

(high – quality)<br />

• Robust COMMs<br />

COMMERCIAL<br />

• Requirements<br />

moving towards<br />

same as Manned<br />

NPS041003 5


Risk Reduction<br />

• Develop from Experience<br />

• Minimize Non-recurring Development<br />

• Test early<br />

• Design for future growth<br />

NPS041003 6


Risk Reduction<br />

• Never attempt to incorporate more than 2 major<br />

technological advances at one time<br />

• Thus minimal engine development for this application<br />

was a must<br />

•The major remaining risks were:<br />

• Large scale system integration<br />

• S<strong>of</strong>tware development<br />

• Sensor / Comms development and integration<br />

NPS041003 7


Reliability<br />

10 -09<br />

10 -07<br />

10 -05<br />

10 -03<br />

System Reliability - Flight Critical<br />

Complexity<br />

$$<br />

# Flt Computers<br />

• Quad<br />

• Triple<br />

• Dual / Triple<br />

• Single / Dual<br />

Example<br />

• Airliner<br />

(150M- 500M)<br />

• Fighter<br />

(50M – 150 M)<br />

• Moderate<br />

Cost UAVs<br />

(10M – 50 M)<br />

Availability<br />

• Reusable UAVs<br />

Expendables<br />

(300 K –10 M)<br />

NPS041003 8


Design to Cost<br />

Lowest costs are achievable by:<br />

• Simple but redundant systems<br />

• Use <strong>of</strong> parts from existing designs<br />

• Use <strong>of</strong> COTS hardware wherever possible<br />

• Tailor requirements to avoid over-design<br />

• Use <strong>of</strong> strategically placed sensors for system status<br />

• Use <strong>of</strong> smart s/w to limit, control, and “heal” failures<br />

Cost considerations must be applied from part design<br />

through testing and onto system tests.<br />

NPS041003 9


Reliability Trade Methodology<br />

Optimize Reliability / Redundancy<br />

Consistent with Cost Constraint<br />

Requirement: Desired Loss Rate <strong>of</strong> Less than 1 Per XXX Missions, ( Ps > (1- )<br />

Identify<br />

Flight<br />

Critical<br />

Items<br />

Perform<br />

Trades <strong>of</strong><br />

Cost vs.<br />

MTTCF<br />

Stop =< $ ZZ M<br />

Define<br />

Single<br />

Channel<br />

Architecture<br />

Perform<br />

Cost<br />

Analysis<br />

Ps> YYY<br />

Is Redundancy<br />

Feasible ?<br />

Define<br />

Redundant<br />

Architecture<br />

Sequential<br />

Application<br />

<strong>of</strong> Min Cost<br />

Redundancy<br />

Ps > YYY<br />

1<br />

XXX )<br />

NPS041003 10


Redundancy<br />

• Level <strong>of</strong> Redundancy – Application dependent / Cost<br />

• Mostly Similar / Some Dissimilar<br />

– Flight Critical / Mission Critical<br />

Flight Critical<br />

• Nav Equipment<br />

• Flt Computers<br />

• Flt Control S/W<br />

• Air Data<br />

• Propulsion<br />

• Electrical System<br />

• Flt Control Actuators<br />

• Altimeter<br />

• Landing gear<br />

• Nose wheel steering<br />

• Brakes<br />

Mission Critical<br />

• COMMs *<br />

• Payloads<br />

• ECS / Fuel Mgmt *<br />

• Ground segment C 2 *<br />

* Could be Flt Critical<br />

NPS041003 11


Redundancy is obtained by:<br />

Design Redundancy In<br />

• Minimizing single paths<br />

• Use automatic, s/w driven switching<br />

• Validate fail-operate by testing and demonstration<br />

• Bench (System Center) testing <strong>of</strong> s/w prior to vehicle tests<br />

• <strong>Vehicle</strong> ground tests<br />

• Flight Operations / experience<br />

NPS041003 12


DMS (Diminishing Mfg Sources) - Obsolescence<br />

• Architect to minimize effect<br />

• (H/W)<br />

• Stay with same processor family<br />

• Partition to accommodate fast changing technology<br />

• (S/W)<br />

• Use Higher Order Language ( HOL) (e.g C++)<br />

•And Certified (DO-178B) Operating System (OS)<br />

Achieve true portability / transparency<br />

• Provision with plenty <strong>of</strong> critical spares – e.g. processors<br />

• Install an effective DMS tracking system<br />

• Require OEMs to have a DMS tracking system and report changes<br />

in a timely manner<br />

LOOK AT THE ENTIRE LIFE CYCLE<br />

NPS041003 13


UAVs Do Have an Advantage<br />

NPS041003 14


Learn from Others’ Mistakes<br />

NPS041003 15


UAV Major System Attributes<br />

• Significantly lower mission costs than manned<br />

• Incorporates reliable (robust) design features<br />

• Provides protection against human induced accidents through<br />

embedded flight control limits and limited override capability<br />

(outer loop vs inner loop)<br />

• Adequate sensors to predict deterioration and failures<br />

• Use <strong>of</strong> sufficient redundancy to provide fail-operate systems<br />

• Self “healing” and self controlling systems operation<br />

• Tolerate wide environmental ranges, as operations are<br />

generally in hostile and/or unknown environments (pressures,<br />

temperatures, turbulent atmospheres, etc.)<br />

• Operate in civilian airspace (with or without waivers) over<br />

friendly as well as hostile countries.<br />

NPS041003 16


Design Requirements<br />

NPS041003 17


Original System - Goals / Requirement<br />

PROGRAM GOALS<br />

14,000 NMI<br />

65,000 FT+<br />

42 Hrs<br />

1.5 - 50 Mbps<br />

> 50 Mbps<br />

1.0/0.3m resolution (WAS/Spot)<br />

20 - 200Km/10m Range resolution<br />

EO NIIRS 6.5/6.0 (Spot/WAS)<br />

IR NIIRS 5.5/5.0 (Spot/WAS)<br />

40,000 Sq. NMI/Day<br />

1,900 Spots Targets /Day<br />

< 20 meter CEP<br />

CHARACTERISTICS<br />

Maximum Range<br />

Maximum Altitude<br />

Maximum Endurance<br />

SATCOM Datalink<br />

LOS Datalink<br />

NPS041003 18<br />

SAR<br />

MTI<br />

EO<br />

IR<br />

Wide Area Search<br />

Target Coverage<br />

Location Accuracy<br />

Just 1 Requirement - Unit Flyaway Price


50,000 Ft<br />

Steady 20Kt<br />

Crosswind<br />

Component<br />

200 NM<br />

5000 Ft<br />

Notional Mission Pr<strong>of</strong>ile<br />

1 Hr loiter<br />

at Sea Level<br />

Steady 20Kt<br />

Crosswind<br />

Component<br />

5000 Ft<br />

200 NM<br />

Standard Runway<br />

8,000’ x 150’<br />

NPS041003 19


System Selection Process<br />

• A disciplined systems approach was<br />

used to define the overall system:<br />

– Analysis<br />

– Trades<br />

– Sizing and Sortie pr<strong>of</strong>iles<br />

– Survivability issues considered<br />

– Mission radius <strong>of</strong> operations reviewed<br />

NPS041003 20


System Selection<br />

NPS041003 21


Notional examples<br />

Trades and Analyses<br />

NPS041003 22<br />

XX<br />

YYYY


Continuous<br />

coverage<br />

Analysis Approach<br />

NPS041003 23


Sizing and Sortie Pr<strong>of</strong>ile<br />

On Station<br />

at altitude<br />

XXX YYY<br />

NPS041003 24<br />

XXX<br />

YYY


Original Design Objective<br />

Balance Military Utility (MU) and Risk within Unit Flyaway Price (UFP)<br />

MU UFP 1 Loss / XXX Missions Availability Risks<br />

Reliability = YYY Ao = 0.90 Schedule<br />

Technical<br />

Costs<br />

NPS041003 25<br />

XX<br />

YY


Typical ISR UAV Cost Breakdown<br />

Airframe<br />

UFP Breakdown<br />

Description Cost Basis % UFP<br />

General Equipment<br />

Structures Estimate 22.74<br />

Landing Gear Bid 1.65<br />

Control Surf Actuation Bid 0.68<br />

Propulsion Bid 16.31<br />

Fuel System Estimate 0.75<br />

Electrical Sys Estimate 1.66<br />

Environ Ctl Sys Bid 1.02<br />

Hydraulics Estimate 1.81<br />

Payload<br />

SAR/GMTI Bid 23.29<br />

Self Defense Quotation 3.22<br />

Data Recording Quotation 0.78<br />

Payload Mgt Quotation 0.56<br />

Communications Bid 14.46<br />

ESM Quotation 2.89<br />

Avionics<br />

Avionics Estimate 3.49<br />

Mission Specific Equipment<br />

EO/IR Bid 4.61<br />

NPS041003 26


The HALE vehicle - (High Altitude Long Endurance)<br />

In Oct ‘94 Teledyne-Ryan was one <strong>of</strong> five remaining<br />

competing companies for the Tier II+, a contract to be<br />

awarded for a vehicle that could fly very high and remain on<br />

station for very long periods <strong>of</strong> time.<br />

Its mission was to fly at 65,000 feet (mostly out <strong>of</strong> harms<br />

way), and remain al<strong>of</strong>t for 40 hours, carrying three high<br />

quality sensors, an EO, an IR camera as well as a Synthetic<br />

Aperture Radar (SAR) imaging sensor.<br />

During the first phase <strong>of</strong> this competition each company team<br />

conducted their preliminary design and made a proposal to<br />

the DoD’s Advanced Research Projects Agency, acting as<br />

agent for the Defense Airborne <strong>Reconnaissance</strong> Office.<br />

NPS041003 27


Three Design Approaches Explored<br />

High Wing Loading<br />

Turb<strong>of</strong>an<br />

Span 116 Ft<br />

Low Wing Loading<br />

Turb<strong>of</strong>an<br />

Span 150 Ft<br />

Low Wing Loading<br />

Turbocharged Recip.<br />

Span 200 Ft<br />

NPS041003 28


Configuration Development<br />

NPS041003 29


Reference 1:<br />

Runway Considerations<br />

UFC 3-260-01 Airfield and Heliport Planning and Design,<br />

AFJMAN 32-1076, and FAA Circular AC 15015345144F<br />

R<br />

U<br />

N<br />

W<br />

A<br />

y<br />

Current GH<br />

Large Platform<br />

150’<br />

150 m<br />

492 ft<br />

137’ Span GH<br />

75’<br />

100 m<br />

328 ft<br />

Runway<br />

remaining<br />

signs<br />

Reference 2:<br />

NATO Approved Criteria and Standards<br />

for Airfields. 1999, BI-MNCD 85-5<br />

NPS041003 30<br />

T<br />

A<br />

X<br />

I<br />

W<br />

A<br />

y<br />

Large Platform<br />

75’<br />

Shown:<br />

NATO Runway; Std field<br />

8000’ x 150’<br />

GH/U-2 MOB 12,000’ x 300’<br />

Taxiway; Std 75’


Loral Systems, San Jose, CA<br />

Tier II+ Competition<br />

Aka the 1995 Paris Fashion Show<br />

Northrop Grumman, Melbourne, FL<br />

Lockheed Advanced Development Co. Orbital Sciences Corp., Dulles, VA<br />

All Shown at the Same Scale<br />

And Like in Paris, All Designed to the Same Requirements !<br />

NPS041003 31


The Global Hawk<br />

In 1995 the San Diego based team <strong>of</strong> Teledyne Ryan was awarded the<br />

contract and the Tier II Plus - (Global Hawk) was born.<br />

Teledyne Ryan Aeronautical<br />

Then . . . . . . . . . . . . . . . . . . . and Now<br />

NPS041003 32


System Overview<br />

Wide-band data<br />

transmission options:<br />

• 1.5, 8, 20, 30, 48.7, 137,<br />

or 274 megabits/second<br />

CDL C2<br />

& Sensor<br />

Mission Control Element<br />

(C 2 & Sensor)<br />

C2 &<br />

Sensor<br />

Ku SATCOM<br />

Sensor<br />

C2 & Sensor<br />

C2<br />

CDL Sensor<br />

Tactical Users<br />

(Sensors Only)<br />

INMARSAT C 2<br />

(Backup)<br />

UHF SATCOM<br />

Launch &<br />

Recovery Unit<br />

(C 2 Only)<br />

NPS041003 33<br />

C2<br />

C2<br />

C2 LOS<br />

ATC Link


System Elements<br />

NPS041003 34


Carbon wing, tail<br />

and engine nacelle<br />

48” Ku-band<br />

Satcom antenna<br />

Satcom<br />

Radome<br />

Aluminum<br />

airframe<br />

EO / IR<br />

Sensor<br />

Northrop Grumman-RQ-4A<br />

(Tier II+ Air <strong>Vehicle</strong>)<br />

UHF Satcom<br />

antenna<br />

Synthetic<br />

Aperture Radar<br />

RR Allison AE3007H<br />

turb<strong>of</strong>an engine<br />

5 psia and conditioned<br />

air for payload /<br />

avionics compartments<br />

Wing span - 116 feet<br />

Take<strong>of</strong>f Wt - 25,600 lbs<br />

Payload - 2,000 lbs<br />

Endurance - 31.5 hrs<br />

Air vehicle avionics<br />

Redundant electromechanical<br />

actuators<br />

Common Data<br />

Link (CDL)<br />

Ground Control Panel<br />

Wing and fuselage<br />

fuel tanks used for<br />

cooling<br />

NPS041003 35


ACTD Modularity - Original Design<br />

ISS EO/IR<br />

SAR<br />

Wing Pods<br />

NPS041003 36


Design Performance<br />

NPS041003 37


Persistence and payload -<br />

large drivers in assessing true<br />

mission performance / system<br />

capability.<br />

Speed - supports warfighter’s<br />

time to area <strong>of</strong> interest.<br />

Payload<br />

(lbs)<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

NPS041003 38<br />

10<br />

U-2<br />

20<br />

Endurance<br />

(hours)<br />

Global Hawk<br />

30<br />

Good<br />

500<br />

40<br />

400<br />

300<br />

0<br />

100<br />

200<br />

Good<br />

Good<br />

Speed<br />

(nm/hr)


Wing Lift Coefficient<br />

1.40<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

-0.20<br />

-0.40<br />

Drag Polar<br />

Drag Polar at Mach=0.60<br />

(AEDC-16T TF-910), Mach=0.60, RN/mac= 0.877x10^6<br />

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08<br />

Drag Coefficient<br />

NPS041003 39


Gross Weight (pounds)<br />

CG Travel vs Body Angle with Fuel Burn<br />

UAV4_5/21/02 Longitudinal CG Travel<br />

@ Zero Degress , For Weight & Balance Various FUEL DENSITY<br />

27000<br />

26500<br />

26000<br />

25500<br />

25000<br />

24500<br />

24000<br />

23500<br />

23000<br />

22500<br />

22000<br />

21500<br />

21000<br />

20500<br />

20000<br />

19500<br />

19000<br />

18500<br />

18000<br />

17500<br />

17000<br />

16500<br />

16000<br />

15500<br />

15000<br />

14500<br />

14000<br />

13500<br />

13000<br />

12500<br />

12000<br />

11500<br />

383.00 383.50 384.00 384.50 385.00 385.50 386.00 386.50 3<br />

Center- Of Gravity, Ycg, Fus. Sta., (inches)<br />

6.5 lbs gal 6.4 lbs/gal<br />

NPS041003 40


Design Implementation<br />

&<br />

Design Specifics<br />

NPS041003 41


Redundancy Implementation<br />

Outboard Spoilers<br />

Inboard Ailerons Outboard Ailerons<br />

Outboard Ruddervators<br />

Dual FADECs*<br />

Dual Air Data Systems<br />

Dual Dissimilar Navigation Systems<br />

- Cross Channel Data Link<br />

Inboard Spoilers<br />

Inboard Ruddervators<br />

Dual IMMCs*<br />

Dual Flight Critical Buses<br />

Dual Power Buses<br />

FADEC - Full Authority Digital Engine Control IMMC- Integrated Mission Management Computer<br />

NPS041003 42


Navigation & Guidance Schematic<br />

NPS041003 43


Fuel / ECS Functional Block Diagram<br />

NPS041003 44


Maintainability / Accessibility<br />

Access Door Location / Identification<br />

NPS041003 45


Sensor Block Diagram<br />

NPS041003 46


Integrated Sensor Suite<br />

NPS041003 47


48<br />

EO Imagery: January 16, 2001<br />

Edwards Air Force Base, CA<br />

Altitude: 60,000+ ft.<br />

Slant Range: 33 km.<br />

Approved for Public Release<br />

February 20, 2002


Daytime IR Imagery: March 26, 1999<br />

NAS China Lake, CA<br />

Altitude: 61,000+ ft.<br />

Slant Range: 22.6 km.<br />

C-130<br />

Thermal Shadow<br />

AV-8 Harrier<br />

Thermal Shadow<br />

Approved for Public Release<br />

NPS041003 49 49<br />

February 20, 2002


50<br />

SAR Imagery: February 20, 1999<br />

Lake Success Dam, CA<br />

Altitude: 62,000+ ft.<br />

Slant Range: 86.3 km.<br />

Approved for Public Release<br />

February 20, 2002


Global Hawk Airborne Integrated<br />

Communication Subsystem<br />

NPS041003 51


MCE Communications Schematic<br />

NPS041003 52


Air <strong>Vehicle</strong>-to-Ground Stations Interfaces<br />

DGPS Corrections<br />

NPS041003 53


An MCE at Suffolk, VA<br />

NPS041003 54


All-Encompassing System Development &<br />

Verification Environment is a Must<br />

Global Hawk is not a UAV. Global Hawk is a SYSTEM. In order to develop<br />

and test this system, a Systems Center provides the following capabilities to<br />

ensure total system verification before each flight event.<br />

� An environment which exactly represents the vehicle baseline(s) and permits<br />

version management<br />

The Systems Center provides:<br />

� Test planning and procedural development for the air vehicle segment, the ground<br />

segment and any number <strong>of</strong> individual payload subsystems<br />

� Hardware and s<strong>of</strong>tware integration at the subsystem, segment and systems levels<br />

� System s<strong>of</strong>tware development, test and integration<br />

� Mission planning and validation<br />

� Flight control and monitoring<br />

� Payload control and monitoring<br />

NPS041003 55


Typical Mission Example<br />

• Mission Planning Inputs (loaded in IMMCs at preflight)<br />

• Waypoint Nav Data for complete Mission Plan<br />

• Sensor commands for collection data<br />

• All Contingency actions and routes<br />

• All limits for guidance modes and flight control logic<br />

• CCO (pilot) Inputs in flight (from LRE or MCE) as allowed<br />

by guidance modes and control laws and logic. Pilots can;<br />

• Control vehicle heading (<strong>of</strong>f mission plan) for ATC or sensor needs<br />

• Set altitude levels, climb/descent rates for ATC or mission needs (within limits)<br />

• Control onboard radios, IFF, re-task sensor collection type / locations<br />

• Revise temporary routing for ATC or mission needs<br />

• Guidance Modes and Mode Transition Logic enforced<br />

throughout flight<br />

• Flight Control Laws and Logic enforced throughout flight<br />

NPS041003 56


.<br />

Pre-flight Checkout<br />

Remove before Flight<br />

Ground Save pin / flag<br />

Air start air IN<br />

NPS041003 57


Tow from<br />

ramp/hangar<br />

Mission Start Waypoints<br />

Runway<br />

Last Taxi WPt. This is only location vehicle<br />

will accept take<strong>of</strong>f cmd from LRE or MCE. Lift<strong>of</strong>f<br />

<strong>Vehicle</strong> must be aligned with CL, hiked, and<br />

may auto abort if not within V1/D1 limits or CL<br />

Taxi WPt (Turn WPt). <strong>Vehicle</strong> steers along path<br />

to WPts, turns short to Last Taxi WPt. Stops.<br />

Aircraft is prepared for flight by the ground<br />

crew at the Mission Start WPt. Taxi<br />

command issued from LRE (local) or MCE<br />

(can be very distant via satellite).<br />

A/V steers to Take<strong>of</strong>f WPt<br />

and picks up the Navigation<br />

plan, gear is retracted, Ralt<br />

stdby and enters Climb<br />

mode for flight.<br />

~ Surveyed WPts<br />

(Differential GPS used to provide<br />

precision horizontal steering)<br />

NPS041003 58


Mission Start WPt<br />

• INS alignment<br />

• Engine started<br />

• Mission plan loaded<br />

• TO abort criteria loaded<br />

• Nav lights ON<br />

• Ralt to STANDBY<br />

• IFF modes / BIT set<br />

• DGPS freq / ID set<br />

• Recorder pwr ON<br />

Turn WPt<br />

• Strobe lights ON<br />

• Recorder ON<br />

Normal Taxi / Take<strong>of</strong>f / Departure<br />

Last taxi WPt<br />

• UAV stops<br />

• Auto Nose gear HIKE<br />

• Ralt ON<br />

• IFF code SET<br />

• CCO commands take<strong>of</strong>f<br />

Auto take<strong>of</strong>f abort, C4<br />

• Based on V1, D1 prior to lift<strong>of</strong>f<br />

• Nominal … Variable<br />

• (50’ min per turn for 90* turns at 4kts)<br />

• Multiple taxi points optional as req’d, only one mandatory<br />

Safe return WPt (1st in-flight WPt)<br />

• C3 planned straight ahead<br />

• Cruise alt cmd’d via mission plan<br />

Take<strong>of</strong>f lift <strong>of</strong>f point<br />

• Normal TO, 65% fuel = 2300’-3500’<br />

• Hike failure, 65% fuel = 2800’ - 4000’<br />

1000’ 200’ 5000’, MGTOW specification runway distance<br />

Landing Gear UP<br />

• Lift<strong>of</strong>f, +2000’ agl<br />

In-flight WPts<br />

• WPts after first, set to<br />

facilitate contingencies,<br />

landings at various locations<br />

at EAFB eg lakebeds<br />

NPS041003 59<br />

X<br />

Underline = Action points<br />

X


Speed Schedule<br />

NPS041003 60


Temperature<br />

~<br />

Degrees F<br />

100<br />

60<br />

20<br />

-20<br />

-60<br />

-100<br />

Atmospheres<br />

Aircraft Temperature Envelope<br />

SL 20,000 40,000 60,000<br />

NPS041003 Altitude ~ Feet<br />

61


Lightning Protection Zones<br />

Aircraft Must Still Protect Itself and All Internal Equipment<br />

NPS041003 62


VN Diagram<br />

Global Hawk Vn Diagram<br />

Light Wt.<br />

Heavy Wt.<br />

Light Wt.<br />

Hvy Wt.<br />

NPS041003 63


NPS041003 64


Gust<br />

Exceedance<br />

(1000 Hrs)<br />

Gust Exceedance (1000 hrs)<br />

10 8<br />

10 7<br />

10 6<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

10 0<br />

Exceedences Experienced<br />

On-Station Operating Stress Is Benign<br />

Nz Exceedance for Worst-Case Turbulence Flight<br />

Typical Nz Exceedance for Unmanned and Manned Aircraft<br />

Unmanned<br />

Manned<br />

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4<br />

Nz (g)<br />

NPS041003<br />

Nz ~ g’s<br />

65<br />

Manned


Mission Monitoring, an MCE<br />

NPS041003 66


An Example <strong>of</strong> a Flight Control HCI<br />

Flight Monitor HCI<br />

This Human Computer Interface<br />

screen is readily recognized by<br />

most pilots and is used to interpret<br />

vehicle flight mode and condition,<br />

and provides the ability to control<br />

(send commands to) the vehicle<br />

by the remote operator.<br />

Hyper-linked “Buttons” allow<br />

access to other HCI’s for<br />

additional commands or access to<br />

vehicle systems status. Mouse<br />

clicks bring up these screens for<br />

continuous or periodic monitoring<br />

as desired.<br />

Bottom section shows current<br />

autonomous systems status.<br />

NPS041003 67


H367-0244C<br />

Another Screen, the Flight Monitor HCI<br />

Flight Control HCI<br />

This Human Computer Interface screen<br />

is also readily recognized, using typical<br />

“tape” displays for vehicle data.<br />

It is also used to command basic vehicle<br />

functions via hyper-linked buttons for<br />

vehicle control.<br />

This screen, the Flight Control and<br />

<strong>Vehicle</strong> Status (next page) HCI’s are the<br />

primary Global Hawk screens used by<br />

the pilots for air vehicle monitoring and<br />

control.<br />

Additional HCI’s are used for Nav,<br />

sensor operation and communications<br />

functions.<br />

NPS041003 68


The Air <strong>Vehicle</strong> Status HCI<br />

H367-0245A<br />

This HCI, the Air <strong>Vehicle</strong> Status screen (available from the Flight Control HCI, via the<br />

AVS button) is the pilots way <strong>of</strong> maintaining his continuous view <strong>of</strong> the vehicle health.<br />

Data is continuous down-linked to the ground stations with the status <strong>of</strong> each system.<br />

These Green, Yellow, Red, and Flashing Red buttons reflect the status <strong>of</strong> each system.<br />

Additional HCI’s are available under each <strong>of</strong> these buttons for complete pictures <strong>of</strong> that<br />

specific systems status at any time for evaluation by the pilot.<br />

For example, the ECS status can be monitored when flight temperatures are extreme to<br />

predict vehicles’ potential for going Yellow, Red or Flashing Red and take preemptive<br />

actions as appropriate to continue the mission.<br />

NPS041003 69


Typical Emergency Logic Tree, Flashing Red<br />

NPS041003 70


Examples <strong>of</strong> Autonomous Operations<br />

NPS041003 71


Extended Range Demonstration<br />

Alaska Cope Thunder Ranges<br />

Airworthiness and Sensor Flight Test<br />

First Flight, February 28, 1998<br />

21 Flights, 150 Flight Hours<br />

System Upgrades<br />

Maritime Modes Development<br />

October 2000 - April 2001<br />

UAV 2001 - Paris, France<br />

June 13, 2001<br />

Flight Operations Summary<br />

Initiation <strong>of</strong> Military Utility Demonstrations<br />

June 19, 1999<br />

October 19, 1999 Linked Seas 00 Exercise<br />

Equatorial Flight<br />

March 19, 2001<br />

Deployment to Edinburgh RAAFB<br />

April 22, 2001<br />

Australian Demonstrations<br />

April 26 - June 6, 2001<br />

May 8, 2000<br />

Deployment to Eglin AFB<br />

April 21 - June 19, 2000<br />

NPS041003 72


Post-flight Checks<br />

NPS041003 73


74<br />

Approved for Public Release<br />

February 20, 2002


Summary<br />

1. UAVs will demonstrate lower operating costs and<br />

will satisfy or exceed user requirements<br />

2. World Wide Operations (WWO) will require<br />

significant levels <strong>of</strong> reliability and redundancy<br />

3. Reusable UAVs are part <strong>of</strong> a network centric system<br />

4. Ground segment importance will diminish with<br />

increased autonomy on the UAV<br />

NPS041003 75


BACKUP<br />

NPS041003 76


Typical Dual VMS Aircraft Loss Rate Comparisons<br />

(Based on Analysis for 100% <strong>of</strong> Engine Failures Result in UAV Loss)<br />

B-777**<br />

F-22**<br />

UAV<br />

Quad VMS*<br />

F-16*<br />

UAV<br />

Dual VMS*<br />

PLOC +<br />

1E-9<br />

1E-7<br />

8E-6<br />

5E-5<br />

2E-4<br />

* Includes Propulsion System Failures<br />

** Failures Due to Redundant VMS Only<br />

+ Probability <strong>of</strong> Loss <strong>of</strong> Control<br />

%<br />

O<br />

c<br />

c<br />

u<br />

r<br />

e<br />

n<br />

c<br />

e<br />

45%<br />

40%<br />

35%<br />

30%<br />

25%<br />

20%<br />

15%<br />

10%<br />

5%<br />

0%<br />

Dual VMS Details<br />

Dual Flight Computers<br />

INS/GPS<br />

Landing System<br />

Electrical<br />

Dual Actuators<br />

Fuel/Transfer<br />

Single Engine<br />

Airdata<br />

NPS041003 77


Typical Quad VMS Aircraft Loss Rate Comparisons<br />

(Based on Analysis for 100% <strong>of</strong> Engine Failures Result in UAV Loss)<br />

B-777**<br />

F-22**<br />

UAV<br />

Quad VMS*<br />

F-16*<br />

UAV<br />

Dual VMS*<br />

PLOC<br />

1E-9<br />

1E-7<br />

8E-6<br />

5E-5<br />

2E-4<br />

* Includes Propulsion System Failures<br />

** Failures Due to Redundant VMS Only<br />

%<br />

O<br />

c<br />

c<br />

u<br />

r<br />

e<br />

n<br />

c<br />

e<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

NPS041003 78<br />

0%<br />

Quad VMS Details<br />

Single Engine<br />

Landing System<br />

Fuel/Transfer<br />

Dual Actuators<br />

Quad Flt Computers<br />

Note - Systems with Very small Contributions were Deleted


Design Requirements<br />

NPS041003 79


Temporary Hangars<br />

Reference: BigTop Manufacturing Co<br />

3255 N US 19, Perry FL 32347<br />

Item = 150’ x 80 x 36 x 10<br />

Item = 166’ x 80’ x 36’ x 10’<br />

Alternate supplier is Rubb Building Systems<br />

256’ Hangar at Boston<br />

Logan airport by Rubb<br />

NPS041003 80


Affordability<br />

UFP<br />

COTS<br />

Interchangeability<br />

Compatibility<br />

Capability<br />

Design Goals<br />

Design for Growth<br />

Mission Effectiveness<br />

Reliability<br />

Fault detection<br />

Fault tolerance<br />

Redundancy<br />

Reconfiguration<br />

Availability<br />

Maintainability<br />

Accessibility<br />

Testability<br />

Repairability<br />

Survivability<br />

Susceptibility<br />

Vulnerability<br />

Flexibility / Adaptability<br />

Retr<strong>of</strong>itability<br />

Plug-n-Play<br />

Modularity<br />

NPS041003 81


Targeting Accuracy<br />

Targeting Timeliness<br />

Image Quality<br />

Flexibility (User friendly)<br />

Utility Model<br />

Utility Elements<br />

MILITARY UTILITY<br />

• Best system selection<br />

• Cost effective balance<br />

Others<br />

# <strong>of</strong> UAV’s Required for<br />

Continuous <strong>Surveillance</strong><br />

Area Coverage per Day<br />

# Targets per Day<br />

Survivability<br />

NPS041003 82


Design Implementation<br />

&<br />

Design Specifics<br />

NPS041003 83


Engine and Control System<br />

NPS041003 84


Electrical Power Schematic<br />

NPS041003 85


Hydraulic Block Diagram<br />

NPS041003 86


<strong>Vehicle</strong> Fuel System Schematic<br />

NPS041003 87


Fuel System Pictorial<br />

NPS041003 88


Single Event Upsets >≅ 40 K Ft<br />

Cold at surface = cold at altitude<br />

Warm at surface = warm at altitude<br />

65° N<br />

Edwards AFB<br />

Equator, & ± 5 deg<br />

- Atmospheres -<br />

Hydrostatic nature<br />

<strong>of</strong> our atmosphere<br />

Temperate at surface =<br />

temperate at altitude<br />

Hot at surface =<br />

Cold at altitude<br />

NPS041003 89<br />

Edinburgh RAAFB


A Real-world Turbulence Event<br />

• Date: January 22, 1999<br />

• Time: 17:22Z<br />

• Location: 36.126° N Latitude, 118.007° W Longitude<br />

• Altitude: 55,000 ft<br />

• Event Description: Over a period <strong>of</strong> 30 seconds the aircraft<br />

experienced a Mach Number increase from 0.60 to 0.65 before the<br />

control system compensated for the speed change. Altitude rate,<br />

during the event, varied between +3,000 fpm and -1,000 fpm.<br />

Maximum load factor attained was 1.25 g’s.<br />

• Mission Summary: Excluding the turbulence event the aircraft<br />

experienced altitude rate variations from +2,000 fpm to -2,000 fpm<br />

and load factor varied from +0.6 g to 1.3 g during the cruise climb.<br />

Mach Number varied between 0.57 and 0.63.<br />

NPS041003 90


AV2 -4 T urb ulence Even t.5<br />

Altitude<br />

Altitude<br />

Rat e<br />

Mach No.<br />

Air spe ed<br />

Err or<br />

Load<br />

Fac tor<br />

Ft<br />

Ft/Min<br />

Kt cas<br />

60000<br />

55000<br />

60000 60500 61000 61500 62000<br />

4000<br />

2000<br />

0<br />

-2000<br />

60000<br />

0.65<br />

60500 61000 61500 62000<br />

0.60<br />

GLOBAL HAWK PROGRAM INFORMATION<br />

Altitude Rate<br />

0.55<br />

60000 60500 61000 61500 62000<br />

10<br />

6<br />

2<br />

-2<br />

-6<br />

Velocity Error<br />

-10<br />

60000<br />

1.5<br />

60500 61000 61500 62000<br />

1.0<br />

g 50000<br />

AV2-4 Turbulence Event Data<br />

NPS041003 91<br />

Mach<br />

Load Factor<br />

0.5<br />

60000 60500 61000 61500 62000<br />

TIME Sec<br />

Altitude<br />

85


AV2-4 Turbulence Event.14<br />

Turbulence Event Conclusions<br />

� There is correlation between turbulence experienced and<br />

the NRL Mountain Wave Forecast Model<br />

� Mountain wave turbulence does not fit standard definitions for<br />

Light, Moderate and Severe turbulence levels<br />

— Standard turbulence level definitions are based on high frequency<br />

turbulence<br />

— MIL-F-8785C Dryden turbulence is high frequency (~short period)<br />

in nature and does not represent high altitude mountain wave<br />

turbulence experienced to date<br />

— High altitude mountain wave turbulence is considered low<br />

frequency (~phugoid) in nature and is characterized by variations in<br />

altitude, altitude rate, pitch attitude and Mach Number<br />

GLOBAL HAWK PROGRAM INFORMATION<br />

NPS041003 92<br />

87


Turbulence Event Conclusions<br />

� Flight control system is tolerant to significant high<br />

altitude atmospheric disturbances<br />

— Airspeed is King. Aircraft controls to calibrated airspeed<br />

schedule. Altitude is NOT controlled during cruise climb. Aircraft<br />

does not respond directly to Mach variations or altitude<br />

variations.<br />

— Flight control laws were improved to respond faster<br />

to airspeed variations resulting in smaller Mach Number transients<br />

and larger altitude & altitude rate variations<br />

No evidence <strong>of</strong> roll or yaw control issues to date<br />

AV2-4 Turbulence Event.15<br />

NPS041003 GLOBAL HAWK PROGRAM INFORMATION<br />

93<br />

88


Abort Take<strong>of</strong>f Logic Tree, Auto or Pilot Commanded<br />

NPS041003 94


Typical Fault Logic, Lost Carrier<br />

NPS041003 95


Typical RTB Logic, Autonomous or Commanded<br />

Flight Test Only<br />

NPS041003 96


Airspace Coordination Requirements<br />

• Controlled Airspace: Class A, B, C, D, E and F<br />

(International)<br />

• Uncontrolled Airspace: Class G<br />

• Special Use Airspace: Prohibited, Restricted,<br />

Warning, Alert and Military Operations Areas<br />

>FL600<br />

CLASS E<br />

NPS041003 97


Civil Navigation Requirements<br />

NPS041003 98


Civil <strong>Surveillance</strong> Requirements<br />

NPS041003 99

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!