04.12.2012 Views

SAMBAHAIR SYSTEM - HAIR VISUAL APPEARANCE ...

SAMBAHAIR SYSTEM - HAIR VISUAL APPEARANCE ...

SAMBAHAIR SYSTEM - HAIR VISUAL APPEARANCE ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

SAMBA <strong>HAIR</strong> <strong>SYSTEM</strong><br />

- <strong>HAIR</strong> <strong>VISUAL</strong> <strong>APPEARANCE</strong><br />

CHARACTERIZATION-<br />

N. Lechocinski,M. Ikeda, P. Clemenceau, S. Breugnot<br />

Bossa Nova Technologies, Venice, CA, USA<br />

CITE Tokyo, March 09


• Bossa Nova Technologies company profile<br />

• Technical background :<br />

• Polarization, Interaction between light and sample, Hair visual appearance<br />

• Hair measurement setup :<br />

• Setup, Images acquired, Angular profiles<br />

• Luster parameter<br />

• Usual luster formulae, issue with polarization, new luster formula<br />

• Experimental results<br />

• On black, red and blond hair<br />

• Color analysis allows full understanding of light scattering<br />

• Comparison with goniophotometry<br />

• Video<br />

• Conclusion<br />

Table of contents


� LLC Created in 2002. Located in California, USA<br />

� Team of engineers and scientists specialized in optics, electronics,<br />

imaging and software development<br />

� Bossa Nova Technologies manufactures sensors, non destructive testing<br />

systems, and visual appearance measurement systems<br />

Systems for the cosmetic industry<br />

SAMBA<br />

Face System<br />

SAMBA<br />

Hair System<br />

Company profile


Light can be characterized by three fundamental properties :<br />

• its intensity<br />

• its spectrum (visible spectrum (color), also infrared, UV, …)<br />

• its polarization<br />

Technical background: Polarization of light<br />

Related to amplitude of light vibration<br />

Related to frequency/wavelength of light vibration<br />

Related to orientation of light vibration


Light source<br />

Vertical Polarizer<br />

Pigments<br />

Sample (Skin, hair…)<br />

DIFFUSED/SCATTERED LIGHT<br />

Depolarized Light<br />

Polarization is a tool to study light scattering.<br />

Technical background: light scattering<br />

It allows to separate reflections (specular light) from diffusion.<br />

We use it to characterize the visual appearance of hair.<br />

SPECULAR<br />

Polarization is<br />

preserved


Technical background: interaction of light with hair fibers<br />

POLARIZED<br />

Chroma= Colored band<br />

coming from the internal<br />

reflection<br />

Shine= White band<br />

coming from the<br />

reflection on the surface<br />

UNPOLARIZED<br />

Diffused light: uniform<br />

background color coming<br />

from internal scattering<br />

Visual appearance of hair can be measured by measuring the light scattering


The setup used is based on three main elements:<br />

• A polarized illumination (2)<br />

• A cylinder on which the sample is positioned (3)<br />

• A polarization camera (1)<br />

Hair System setup<br />

Polarized illumination and polarization camera allow<br />

measuring independently reflections and diffusion.<br />

Cylinder is used to record angular distribution profiles<br />

The cylinder also reproduces the human head<br />

curvature<br />

SAMBA Hair System is a visual setup based on polarization imaging


Hair System setup<br />

Each section on the image<br />

corresponds to an angle of<br />

incidence on the cylinder.<br />

Using a cylinder allows recording<br />

all angles on a single image,<br />

without moving the cylinder.<br />

This is a visual setup.


Polarization imaging physically separates reflections from diffusion on a complete<br />

hair tress in just seconds.<br />

Intensity image<br />

(seen by the eye)<br />

Specular image<br />

(reflections only)<br />

= +<br />

Acquisition of the images (data)<br />

Diffused image<br />

(internal scattering)<br />

Diffused light and reflections<br />

are physically separated<br />

without using fits or<br />

mathematical decomposition.<br />

As reflections are<br />

responsible of the luster<br />

sensation, polarization is a<br />

useful tool to help quantify<br />

luster.


Cross sections<br />

N orm a lize d units<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-45 -30 -15 0 15 30 45<br />

Angle (deg)<br />

From the images to the profiles and numerical data<br />

Specular image Diffused image<br />

Specular angular distributions<br />

(Luminance and color)<br />

Averaging<br />

along the<br />

hair tress<br />

L<br />

R<br />

G<br />

B<br />

N orm alized units<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Diffused angular distributions<br />

(Luminance and color)<br />

-45 -30 -15 0 15 30 45<br />

Angle (deg)<br />

Characterization of the<br />

profiles with numerical<br />

parameters such as maxima,<br />

integrals and width<br />

L<br />

R<br />

G<br />

B<br />

LUSTER


Luster qualifies the visual appearance of the object.<br />

Luster is strongly linked to the idea of quality and beauty of an object.<br />

Scientists have tried to compute a parameter that would quantify the visual luster<br />

sensation.<br />

Luster sensation is considered to depend on 3 main parameters:<br />

The amount of<br />

reflected light<br />

Higher<br />

luster<br />

The more reflected light<br />

there is, the higher the<br />

luster is<br />

The sharpness of the<br />

reflection<br />

Higher<br />

luster<br />

The sharper the reflection is,<br />

the higher the luster is<br />

Luster parameter<br />

The background on which<br />

the reflection is observed<br />

Higher<br />

luster<br />

The darker the<br />

background is, the higher<br />

the luster is


Usual Luster formulae<br />

Several Luster formulae have been developed and published by scientists using<br />

goniometers and other instruments to tentatively quantify human perception of<br />

Luster.<br />

The parameters used in the formulae are :<br />

• S the total amount of the specular light<br />

• D the total amount of the diffused light<br />

•θ1/2<br />

the width of the specular light distribution<br />

The 4 most used formulae are:<br />

LRe ich − Robbins<br />

=<br />

S<br />

D*θθθθ<br />

1/<br />

2<br />

L<br />

TRI<br />

=<br />

S<br />

S + D<br />

θθθθ ref<br />

θθθθ 1/<br />

2<br />

Examples of luster formulae<br />

L Stamm<br />

S − D<br />

S<br />

These formulae were designed with a mathematical separation of specular<br />

and diffused light (curve fitting and other method).<br />

They can be used with the physical separation of diffused and specular light<br />

distribution with polarization.<br />

=<br />

L Guiolet =<br />

S<br />

D


Usual Luster formulae<br />

Bossa Nova Technologies luster:<br />

L<br />

New formula adapted to polarization imaging<br />

Using the existing formulae with polarization imaging does not always gives a good<br />

correlation with visual assessment (especially for dark hair).<br />

We developed a formula that is adapted to polarization imaging.<br />

It gives more dynamic range and better-correlated measurements.<br />

It works on every type of hair and especially on dark samples where other formula<br />

tended to lack sensitivity.<br />

BNT<br />

=<br />

Sin<br />

( D + S ) * W<br />

out<br />

visual<br />

Presented at the TRI conference in 2008.<br />

Article to come in the Journal of Cosmetic Science<br />

Small<br />

visual<br />

width<br />

large<br />

angular<br />

width


Experimental results: black hair<br />

Black hair<br />

Reflectance<br />

(Arbitrary Units)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Reich-Robbins<br />

+ 15.5 %<br />

TRI<br />

+ 26.8 %<br />

Black Hair<br />

-45 -30 -15 0 15 30 45<br />

Angle (deg)<br />

Specular Light Untreated<br />

Diffused Light Untreated<br />

Specular Light Treated<br />

Diffused Light Treated<br />

Bossa Nova Technologies<br />

+ 116.1 %


Red hair<br />

Reflectance<br />

(Arbitrary Units) Experimental results: red hair<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Reich-Robbins<br />

+ 62.7 %<br />

TRI<br />

Red Hair<br />

-45 -30 -15 0 15 30 45<br />

Angle (deg)<br />

+ 33.5 %<br />

Specular Light Untreated<br />

Diffused Light Untreated<br />

Specular Light Treated<br />

Diffused Light Treated<br />

Bossa Nova Technologies<br />

+ 84.5 %


Experimental results: blond hair<br />

Reflectance<br />

(Arbitrary Units)<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Reich-Robbins<br />

+ 80.1 %<br />

Blond Hair<br />

-45 -30 -15 0 15 30 45<br />

Angle (deg)<br />

TRI<br />

+ 43.7 %<br />

Specular Light Untreated<br />

Diffused Light Untreated<br />

Specular Light Treated<br />

Diffused Light Treated<br />

Bossa Nova Technologies<br />

+ 109.5 %


intensity<br />

Color analysis allows further understanding<br />

Usual Luster formulae<br />

Mathematical algorithm based on<br />

color information<br />

(Assuming that shine is white)<br />

Images calculated from profiles<br />

Color analysis allows a full decomposition<br />

of light scattering in hair fibers<br />

Intensity<br />

Shine<br />

Chroma<br />

Diffused<br />

Intensity= Shine + Chroma + Diffused<br />

New research focused on internal reflection ?<br />

New lusters taking into account chroma?


Color analysis allows further understanding<br />

The internal reflection (chroma) plays a big part in the visual appearance of hair<br />

Black Brown Red Blond<br />

Dark Bright<br />

• On untreated healthy hair, the shine (surface reflection) is comparable for all samples<br />

• As the hair becomes brighter, the chroma (internal reflection) increases as well as the diffused light<br />

• Chroma and diffused (carrying color information) play an important part on the visual appearance


Set-up<br />

Data<br />

Measurement<br />

process<br />

Shine-<br />

Chroma-<br />

Diffuse<br />

components<br />

separation<br />

GONIOPHOTOMETER<br />

Black box<br />

Angular Profiles only<br />

• Slow<br />

• On single fiber (or a few)<br />

• 1 angle at a time<br />

Use of mathematical fits and<br />

strong assumptions to<br />

separate shine-chromadiffuse<br />

components<br />

Comparison with goniophotometer<br />

SAMBA<br />

SAMBA<br />

SAMBA <strong>HAIR</strong> <strong>SYSTEM</strong><br />

Visual (verifiable with the eye)<br />

Angular Profiles + Images<br />

• On real tresses<br />

• All angles in one shot<br />

• No Mathematical fit<br />

• Physical extraction of diffuse<br />

component using polarization<br />

• Physical separation of shinechroma<br />

using color analysis


• SAMBA <strong>HAIR</strong> <strong>SYSTEM</strong> is a cutting-edge instrument that objectively quantifies visual<br />

appearance of hair<br />

• It uses a visual configuration (measurement verifiable with the human eye)<br />

• Easy to operate (one button operation, seconds for a measurements)<br />

• Well-known luster formulae are calculated in seconds on a complete hair tress<br />

• The system offers numerical data as well as images<br />

• A new BNT luster formula was developed to adapt to measurements made with polarization<br />

imaging<br />

• A powerful color analysis allows to fully understand light scattering on all types of hair.<br />

• SAMBA <strong>HAIR</strong> <strong>SYSTEM</strong> provides a new physical analysis of the internal reflection (chroma).<br />

New research should be conducted to evaluate the importance of chroma, leading to new lusters<br />

taking into account chroma in the formula.<br />

• A great tool widely used in the cosmetic industry to evaluate product efficacy, improve<br />

formulations and substantiate claims.<br />

Conclusion


Thank you<br />

Come see us on boothH-06(タレスレーザー株式会社)<br />

(Live demo of SAMBA Hair and Face systems)<br />

東京都大田区大森北2-16-4 大阪府吹田市広芝町9-12<br />

Bossa Nova Technologies<br />

606 Venice Blvd, Suite B<br />

Venice, CA 90291<br />

タレスレーザー タレスレーザー株式会社 株式会社<br />

USA<br />

東京都大田区大森北 大阪府吹田市広芝町 東京都大田区大森北<br />

Tel. 03-5753-4541(東京<br />

Tel.<br />

Tel. 310 577<br />

東京 東京)<br />

06-6192-7111(大阪<br />

info@thaleslaser.co.jp<br />

www.thaleslaser.co.jp<br />

8114 大阪 大阪) 大阪<br />

Email:<br />

info@bossanovatech.com<br />

www.bossanovatech.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!