13.07.2015 Views

genetic and ecological constraints on the origins ... - Nativefishlab.net

genetic and ecological constraints on the origins ... - Nativefishlab.net

genetic and ecological constraints on the origins ... - Nativefishlab.net

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

GENETIC AND ECOLOGICAL CONSTRAINTSON THE ORIGINS AND ESTABLISHMENT OFUNISEXUAL VERTEBRATESROBERT C. VRIJENHOEKUnisexual "species" of vertebrates are tax<strong>on</strong>omically rare because <strong>the</strong>ir <strong>origins</strong> from sexual ancestors <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>ir establishment innature are subject to severe <str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g>, developmental, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>ecological</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>straints</str<strong>on</strong>g>. Interspecific hybridizati<strong>on</strong> appears necessary todisrupt normal meiotic oogenesis, <strong>the</strong>reby leading to n<strong>on</strong>recombinant all-female reproducti<strong>on</strong>, but hybridizati<strong>on</strong> can also disruptnormal developmental processes. Most new hybrids typically exhibit depressed fertility, survival, <str<strong>on</strong>g>and</str<strong>on</strong>g> developmental stability.There is no evidence for sp<strong>on</strong>taneous heterosis in newly syn<strong>the</strong>sized unisexual hybrids. The enhanced fitness characteristics ofsome naturally occurring unisexuals is due to intercl<strong>on</strong>al selecti<strong>on</strong> eliminating low-fitness cl<strong>on</strong>es <str<strong>on</strong>g>and</str<strong>on</strong>g> leaving <strong>on</strong>ly <strong>the</strong> high-fitnesscl<strong>on</strong>es.New unisexual lineages must also face a series of <str<strong>on</strong>g>ecological</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> evoluti<strong>on</strong>ary <str<strong>on</strong>g>c<strong>on</strong>straints</str<strong>on</strong>g>. The establishment of gyno<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g>hybrido<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> unisexuals requires a suitable host species whose males can be exploited as mates. Fur<strong>the</strong>rmore, <strong>the</strong> establishmentof new unisexual hybrids might be c<strong>on</strong>strained by competiti<strong>on</strong> from <strong>the</strong> parental species <str<strong>on</strong>g>and</str<strong>on</strong>g> existing cl<strong>on</strong>al lineages. The demise ofcl<strong>on</strong>al lineages might be accelerated by disappearing cl<strong>on</strong>al subniches, destabilizing hybridizati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> Muller's ratchet. Individualcl<strong>on</strong>es probably suffer a relatively high extincti<strong>on</strong> rate.The argument that asexual lineages are "evoluti<strong>on</strong>ary dead-ends" appears to be supported by recent <str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> studies. If unisexualorganisms play a significant evoluti<strong>on</strong>ary role, it may be to serve as temporary vehicles for novel gene combinati<strong>on</strong>s. Occasi<strong>on</strong>allysuch novel combinati<strong>on</strong>s might reestablish sexual reproducti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>reby produce a new species. A newly discovered sexualspecies of Poeciliopsis may be <strong>the</strong> first example of this scenario.Pages 24-31 in: Evoluti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Ecology of Unisexual Vertebrates, edited by Robert M. Dawley <str<strong>on</strong>g>and</str<strong>on</strong>g> James P. Bogart, Bulletin 466,New York State Museum, Albany, New York, USA, 1989.INTRODUCTIONApproximately 50 unisexual "species" of vertebrates havebeen recognized during <strong>the</strong> past half century. Nearly all arosefrom interspecific matings leading to hybrid genotypes sustainedby n<strong>on</strong>recombinant reproductive processes includingtrue par<strong>the</strong>nogenesis, gynogenesis, <str<strong>on</strong>g>and</str<strong>on</strong>g> hybridogenesis (Vrijenhoeket al., this volume). In many localities, <strong>the</strong>se allfemale"species" are <str<strong>on</strong>g>ecological</str<strong>on</strong>g>ly very successful, often outnumbering<strong>the</strong> bisexual (i.e., dioecious, sexually reproducing)species from which <strong>the</strong>y arose. Whenever an all-female lineagearises, it should, all o<strong>the</strong>r things being equal, rapidly replaceits bisexual ancestors, which must bear <strong>the</strong> cost of producingmales (Clant<strong>on</strong>, 1934; Williams, 1975; Maynard Smith, 1978).Despite this obvious demographic advantage, all-female lineageshave not completely replaced <strong>the</strong>ir bisexual ancestors <strong>on</strong>broad geographical scales. Therefore, we must questi<strong>on</strong> <strong>the</strong> assumpti<strong>on</strong>that all o<strong>the</strong>r things (<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g>, developmental, <str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>ecological</str<strong>on</strong>g>) are equal. Fur<strong>the</strong>rmore, when c<strong>on</strong>sidered from atax<strong>on</strong>omic perspective, we must acknowledge that morphologicallydistinct unisexual "species" are relatively rare, comprisinglittle more than 0.1% of all <strong>the</strong> named species of vertebrates.The broader phylo<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> picture str<strong>on</strong>gly suggeststhat unisexual species are evoluti<strong>on</strong>ary "dead-ends" (White,1978) <str<strong>on</strong>g>and</str<strong>on</strong>g> "no-hopers" (Darlingt<strong>on</strong>, 1939).It may seem blasphemous to begin a volume <strong>on</strong> unisexualvertebrates by drawing attenti<strong>on</strong> to <strong>the</strong>ir tax<strong>on</strong>omic rarity<str<strong>on</strong>g>and</str<strong>on</strong>g> apparent evoluti<strong>on</strong>ary hopelessness. My intent, however,is to focus <strong>on</strong> <strong>the</strong> unique opportunities that unisexual organismsprovide for exploring a broad range of evoluti<strong>on</strong>ary, <str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g>,<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>ecological</str<strong>on</strong>g> questi<strong>on</strong>s. Examinati<strong>on</strong> of unusual processesopens a window to underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing what is comm<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>what is normal. We learn about human health by studying innumerabledisorders <str<strong>on</strong>g>and</str<strong>on</strong>g> diseases, <str<strong>on</strong>g>and</str<strong>on</strong>g> we learn about <strong>the</strong>functi<strong>on</strong> of normal genes by studying <strong>the</strong> phenotypic c<strong>on</strong>sequencesof mutati<strong>on</strong>s. 'lb underst<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> functi<strong>on</strong>al propertiesof outcrossing, biparental sexuality, we must study <strong>the</strong> c<strong>on</strong>sequencesof abberrant reproductive processes. My purpose inthis chapter is to examine <str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g>, developmental, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>ecological</str<strong>on</strong>g><str<strong>on</strong>g>c<strong>on</strong>straints</str<strong>on</strong>g> that limit <strong>the</strong> <strong>origins</strong>, establishment, <str<strong>on</strong>g>and</str<strong>on</strong>g> persistenceof unisexual populati<strong>on</strong>s.IT IS HARD TO BECOME AUNISEXUAL VERTEBRATEMeiosis is a tightly coordinated <str<strong>on</strong>g>and</str<strong>on</strong>g> extremely c<strong>on</strong>servativeprocess that shows little variati<strong>on</strong> am<strong>on</strong>g sexually reproducing,diploid eukaryotes. The <str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> recombinati<strong>on</strong> (segregati<strong>on</strong>,assortment, crossing-over) that occurs during normalmeiosis produces a broad diversity of haploid gametes. Thus,<strong>the</strong> origin of a cl<strong>on</strong>ally reproducing unisexual lineage depends<strong>on</strong> some event that disrupts or circumvents recombinati<strong>on</strong>during meiosis. It is hard to become a unisexual organism be-'Center for Theoretical <str<strong>on</strong>g>and</str<strong>on</strong>g> Applied Ge<strong>net</strong>ics, Cook College, P.O. Box 231, Rutgers University, New Brunswick, New Jersey 08903, USA.24


VRIJENHOEKcause alterati<strong>on</strong> of meiosis often leads to infertility or completesterility (see Templet<strong>on</strong>, 1982).Hybrid <strong>origins</strong> of unisexual vertebrates.- The hybrid natureof most unisexual vertebrates is well documented by morphological,cyto<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> electrophoretic studies (Vrijenhoek etal., this volume, <str<strong>on</strong>g>and</str<strong>on</strong>g> references <strong>the</strong>rein). The coupling betweenhybridity <str<strong>on</strong>g>and</str<strong>on</strong>g> unisexuality probably occurs because interspecifichybridizati<strong>on</strong> often disrupts normal meiosis (Schultz,1969; White, 1978; We<strong>the</strong>ringt<strong>on</strong> et al., 1987; Dawley, 1987;Moritz et al., this volume; but see Cuellar, 1974). Cytologicalmechanisms that circumvent or preclude synapsis between heterospecificchromosomes might rescue egg producti<strong>on</strong> in hybrids<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>reby lead to n<strong>on</strong>recombinant reproducti<strong>on</strong> (Mac-Gregor <str<strong>on</strong>g>and</str<strong>on</strong>g> Uzzell, 1964; Cuellar, 1971; Cimino, 1972a, 1972b;M<strong>on</strong>aco et al., 1984).In many cases, <strong>the</strong> sexual ancestors of unisexual hybrids aremorphologically or cyto<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g>ally identifiable. Never<strong>the</strong>less,allozyme studies indicate that <strong>the</strong>re is no c<strong>on</strong>sistent degree of<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> differentiati<strong>on</strong> between <strong>the</strong> sexual progenitors of unisexuallineages. For example, <strong>the</strong> sexual ancestors of Menidiaclarkhubsii exhibit a Nei's <str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> distance (D) of <strong>on</strong>ly 0.14,whereas for <strong>the</strong> sexual ancestors of unisexual Cnemidophorus,D averages 0.73 (Echelle et al., 1983; see also Moritz et al., thisvolume). This range of D values is not surprising, because noc<strong>on</strong>sistent level of <str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> differentiati<strong>on</strong> is associated withspeciati<strong>on</strong> in vertebrates (Nei, 1987). Nei's D values rangefrom 0.01 for some species pairs of birds to 3.00 for some salam<str<strong>on</strong>g>and</str<strong>on</strong>g>erpairs (Avise et al., 1980; Hight<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Lars<strong>on</strong>, 1979).Never<strong>the</strong>less, allopatric populati<strong>on</strong>s are likely to accumulate<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> differences that may lead to sterility in some hybrids,to various degrees of fertility in o<strong>the</strong>r hybrids, <str<strong>on</strong>g>and</str<strong>on</strong>g> to unisexualityin yet o<strong>the</strong>rs (Schultz, 1973; Berger, 1971; Vrijenhoek<str<strong>on</strong>g>and</str<strong>on</strong>g> Schultz, 1974; Turner et al., 1980; Echelle et al., 1983;Hotz et al., 1985; We<strong>the</strong>ringt<strong>on</strong> et al., 1987). Hybrid inducti<strong>on</strong>of unisexuality is ultimately a <str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> ra<strong>the</strong>r than a tax<strong>on</strong>omicproblem. Cytological <str<strong>on</strong>g>and</str<strong>on</strong>g> molecular <str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> studies of<strong>the</strong> factors involved in <strong>the</strong> inducti<strong>on</strong> of unisexuality shouldprovide a rich source of new informati<strong>on</strong> <strong>on</strong> chromosomal dynamicsduring gametogenesis.Hybridizati<strong>on</strong> is clearly <strong>the</strong> most comm<strong>on</strong> vehicle for <strong>the</strong> originof unisexual vertebrates, but it might not be <strong>the</strong> <strong>on</strong>ly <strong>on</strong>e.Electrophoretic studies suggest that par<strong>the</strong>no<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> forms of<strong>the</strong> xantusid lizard Lepidophyma flavimauclatum might havearisen sp<strong>on</strong>taneously within sexual lineages (R. Bezy, pers.comm.; see also Peccinini-Seale, this volume). Hybridizati<strong>on</strong>clearly is not necessary for <strong>the</strong> origin of many par<strong>the</strong>no<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g>insects (Suomalainen et al., 1987). Underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <strong>the</strong> <str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g>factors that induce sp<strong>on</strong>taneous par<strong>the</strong>nogenesis may prove tobe an even more difficult but never<strong>the</strong>less rewarding task (seeTemplet<strong>on</strong>, 1982).Syn<strong>the</strong>tic unisexuals.- Schultz (1973) accomplished <strong>the</strong> firstsuccessful syn<strong>the</strong>sis of a unisexual vertebrate in <strong>the</strong> laboratory.He reproduced <strong>the</strong> origin of <strong>the</strong> hybrido<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> fish Poeciliopsism<strong>on</strong>acha-lucida through crosses of P. m<strong>on</strong>acha femaleswith P. lucida males. We<strong>the</strong>ringt<strong>on</strong> et al., (1987) found thatcrosses of P. m<strong>on</strong>acha females with P. occidentalis males havea higher success rate for producing new hybrido<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g>strains. Regardless of <strong>the</strong> geographical origin of <strong>the</strong> parents,all <strong>the</strong> m<strong>on</strong>acha x occidentalis hybrids were females, <str<strong>on</strong>g>and</str<strong>on</strong>g> all<strong>the</strong> fertile hybrids were also sp<strong>on</strong>taneously hybrido<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g>.Hybridogenesis in Poeciliopsis appears to be induced by genomicinteracti<strong>on</strong>s, not specific factors restricted to a few geographicallocati<strong>on</strong>s. Attempts to reproduce <strong>the</strong> origin of <strong>the</strong>gyno<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> fish Roecilia formosa through crosses of P. mexicana<str<strong>on</strong>g>and</str<strong>on</strong>g> P. latipinna have been unsuccessful, producing <strong>on</strong>lysterile hybrids or hybrids with normal meiosis. Turner et al.(1980) suggested that <strong>the</strong> specific genomes or individual genesthat induced gynogenesis in Poecilia formosa might be restrictedto a few populati<strong>on</strong>s that have not yet been tested orwhich, perhaps, may no l<strong>on</strong>ger exist. Rec<strong>on</strong>structi<strong>on</strong> of <strong>the</strong> <strong>origins</strong>of <strong>the</strong> hybrido<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> frog Rana esculenta through crossesof Rana ridibunda x R. less<strong>on</strong>ae also had a str<strong>on</strong>g geographicalbasis. Some of <strong>the</strong> ridibunda x less<strong>on</strong>ae hybrids were hybrido<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g>,<str<strong>on</strong>g>and</str<strong>on</strong>g> o<strong>the</strong>rs had normal meiosis (Hotz et al., 1985).Studies of mitoch<strong>on</strong>drial DNA in unisexual lizards also suggestthat opportunities for <strong>the</strong> origin of new unisexual strainsmay be restricted to a few progenitors or perhaps a few geographicalpopulati<strong>on</strong>s (Moritz et al., this volume).Developmental <str<strong>on</strong>g>c<strong>on</strong>straints</str<strong>on</strong>g>.- A severe c<strong>on</strong>straint <strong>on</strong> hybrid <strong>origins</strong>of unisexual vertebrates results from <strong>the</strong> need for a delicatebalance between <strong>the</strong> disrupti<strong>on</strong> of normal gametogenesis<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> coordinati<strong>on</strong> of normal development in hybrids (Vrijenhoek<str<strong>on</strong>g>and</str<strong>on</strong>g> Lerman, 1982; We<strong>the</strong>ringt<strong>on</strong> et al., 1987). Hybridizingentities must be dissimilar enough to disrupt meiosis<str<strong>on</strong>g>and</str<strong>on</strong>g> yet not so dissimilar that somatic development ofhybrids is also disrupted. Moritz et al. (this volume) call this<strong>the</strong> "balance" hypo<strong>the</strong>sis. We<strong>the</strong>ringt<strong>on</strong> et al. (1987) examineddevelopmental abnormalities in laboratory-syn<strong>the</strong>sized hybrido<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g>strains of Poeciliopsis m<strong>on</strong>acha-lucida. A majority of16 viable strains exhibited some birth defects in <strong>the</strong> form ofcranial <str<strong>on</strong>g>and</str<strong>on</strong>g> spinal deformities. Although <strong>on</strong>ly a small proporti<strong>on</strong>of <strong>the</strong> individuals within each strain (maximum 7%) werevisibly deformed, <strong>the</strong>se abnormalities were probably symptomaticof a general weakening of developmental homeostasis.We saw no comparable birth defects in <strong>the</strong> sexual ancestors of<strong>the</strong>se hybrids. Most importantly, <strong>the</strong> syn<strong>the</strong>tic unisexual hybridshad, <strong>on</strong> average, significantly lower fertility <str<strong>on</strong>g>and</str<strong>on</strong>g> survivalthan <strong>the</strong> parental strains. Never<strong>the</strong>less, several of <strong>the</strong> syn<strong>the</strong>ticunisexuals exhibited no evidence of birth defects <str<strong>on</strong>g>and</str<strong>on</strong>g><strong>the</strong>ir fertility <str<strong>on</strong>g>and</str<strong>on</strong>g> survival was not different from that of <strong>the</strong>sexual ancestors. These 16 strains represent <strong>the</strong> survivorsfrom 33 syn<strong>the</strong>tic strains. The o<strong>the</strong>r strains could not be sustainedbey<strong>on</strong>d <strong>the</strong> sec<strong>on</strong>d or third laboratory generati<strong>on</strong> becauseof low viability <str<strong>on</strong>g>and</str<strong>on</strong>g> fertility. Intense fertility <str<strong>on</strong>g>and</str<strong>on</strong>g> viability"bottlenecks" also occurred during <strong>the</strong> formati<strong>on</strong> of newpar<strong>the</strong>no<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> lineages of Drosophila mercatorum (Templet<strong>on</strong>,1982). Only a few lucky genotypes strike <strong>the</strong> proper balancebetween meiotic disrupti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> developmental coordinati<strong>on</strong>.Sperm-dependence.- Pseudogamy (false fertilizati<strong>on</strong>) imposessevere reproductive <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>ecological</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>straints</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> establishmentof gyno<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> fishes <str<strong>on</strong>g>and</str<strong>on</strong>g> amphibians, because itforces unisexuals into parasitic relati<strong>on</strong>ship with a closely relatedbisexual species. The <strong>on</strong>ly truly par<strong>the</strong>no<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> vertebratesare reptiles. Why unisexual fishes <str<strong>on</strong>g>and</str<strong>on</strong>g> amphibianshave been unable to shed <strong>the</strong> burden of sperm-dependence is25


CONSTRAINTS ON UNISEXUAL VERTEBRATESunclear (Uzzell, 1970). We do not know what happens to <strong>the</strong>sperm pr<strong>on</strong>ucleus after activati<strong>on</strong> of gyno<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> eggs, or hownuclear fusi<strong>on</strong> is blocked. Fur<strong>the</strong>rmore, we do not know howcleavage is activated in par<strong>the</strong>no<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> reptiles. The origin ofnew par<strong>the</strong>no<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> reptiles might be severely c<strong>on</strong>strainedbecause an endogenous mechanism to activate embryogenesismust arise simultaneously with a mechanism that circumventsnormal meiosis. Unless both mechanisms are byproductsof <strong>the</strong> same dysgenic event (e.g., hybridizati<strong>on</strong>), <strong>the</strong>origin of new par<strong>the</strong>nogens seems very unlikely. Despite <strong>the</strong>c<strong>on</strong>siderable effort over <strong>the</strong> past 50 years, fundamental cyto<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g><str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>to<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> processes are still unknown to us. Studiesof <strong>the</strong>se aberrant processes in unisexual organisms shouldserve as excellent tools for elucidating critical aspects of normalfertilizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> early development.Hybrido<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> unisexuals also require sperm from males ofa related sexual species, but <strong>the</strong>y are not truly pseudogamous,because <strong>the</strong> egg <str<strong>on</strong>g>and</str<strong>on</strong>g> sperm pr<strong>on</strong>ucleii fuse <str<strong>on</strong>g>and</str<strong>on</strong>g> a true hybrid isformed. During hybrido<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> reproducti<strong>on</strong>, <strong>on</strong>ly <strong>the</strong> haploidmaternal genome is transmitted to <strong>the</strong> eggs without recombinati<strong>on</strong>(Schultz, 1969; Uzzell <str<strong>on</strong>g>and</str<strong>on</strong>g> Berger, 1975; Graf <str<strong>on</strong>g>and</str<strong>on</strong>g> Polls,this volume). This form of reproducti<strong>on</strong> has been called "hemicl<strong>on</strong>al"(Kailman, cit. in Vrijenhoek et al., 1977). Because hybridogensare also sperm-dependent, <strong>the</strong>y also suffer <strong>the</strong>pseudogamy c<strong>on</strong>straint.'lb appreciate <strong>the</strong> severity of this c<strong>on</strong>straint, we must imaginea pair of bisexual species with c<strong>on</strong>specific mating preferences.If, for example, interspecific matings occur <strong>on</strong>ce in every100 courtships, <str<strong>on</strong>g>and</str<strong>on</strong>g> if <strong>the</strong> resulting unisexual hybrids are exactlyintermediate in <strong>the</strong>ir attractiveness to males, <strong>the</strong> hybridswould be mated <strong>on</strong>ce in every 50 courtships. It is difficultto imagine a pseudogamous form successfully invading a bisexualpopulati<strong>on</strong> under such c<strong>on</strong>diti<strong>on</strong>s. Special behavioralc<strong>on</strong>diti<strong>on</strong>s must exist in <strong>the</strong> sexual host before pseudogamousunisexuals can become established. For example, traits involvedin mate selecti<strong>on</strong> might not be additive in some hybrids,placing <strong>the</strong> hybrids bey<strong>on</strong>d a critical mate-selecti<strong>on</strong>threshold. However, behavioral studies with Poeciliopsis revealedthat <strong>the</strong> situati<strong>on</strong> is more complex. The unisexuals exploit<strong>the</strong> dominance hierarchies formed by sexual males(McKay, 1971). Dominant males prevent subordinate malesfrom mating with <strong>the</strong> preferred bisexual females, <str<strong>on</strong>g>and</str<strong>on</strong>g> thus <strong>the</strong>subordinate males defer <strong>the</strong>ir mating attempts to unisexualfemales.Having invaded a bisexual populati<strong>on</strong>, pseudogamous unisexualsface a sec<strong>on</strong>d peril — <strong>the</strong> twofold advantage of allfemalereproducti<strong>on</strong> should lead to <strong>the</strong>ir own demise (Clant<strong>on</strong>,1934). Assuming unisexual <str<strong>on</strong>g>and</str<strong>on</strong>g> bisexual forms occupy equivalentniches, <strong>the</strong> unisexuals should rapidly replace <strong>the</strong> bisexuals,<strong>the</strong>reby eliminating <strong>the</strong>ir source of sperm. The persistenceof stable unisexual/bisexual complexes has beenexplored by several investigators (Uzzell, 1964, 1969; Moore<str<strong>on</strong>g>and</str<strong>on</strong>g> McKay, 1971; Moore, 1976, 1984; Kiester et al., 1981;Keegan-Rogers, 1984; Stenseth et al., 1985). Based <strong>on</strong> studiesof gyno<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> Poeciliopsis, Moore (1976) identified three factorsaffecting <strong>the</strong> dynamics of this simple host-parasite system:(1) primary fitness (i.e., fertility <str<strong>on</strong>g>and</str<strong>on</strong>g> survival), (2) <strong>the</strong> twofoldadvantage of all-female reproducti<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> (3) afrequency-dependent mating preference <strong>on</strong> <strong>the</strong> part of sexualmales. Assuming equal primary fitnesses <str<strong>on</strong>g>and</str<strong>on</strong>g> equal niches,Moore showed how factors 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> 3 could lead to a stable equilibriumbetween unisexual <str<strong>on</strong>g>and</str<strong>on</strong>g> bisexual forms. When bisexualindividuals predominate, <strong>the</strong> males establish dominancehierarchies, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> subordinate males mate with <strong>the</strong> unisexuals.As <strong>the</strong> unisexual females increase in frequency becauseof <strong>the</strong>ir twofold advantage, males become scarce. Solitarymales prefer <strong>the</strong>ir c<strong>on</strong>specific bisexual females, <str<strong>on</strong>g>and</str<strong>on</strong>g> thus unisexualfemales have a low probability of inseminati<strong>on</strong>. At equilibrium<strong>the</strong> two-fold advantage of unisexuals is balanced by<strong>the</strong>ir lowered mating success. The c<strong>on</strong>diti<strong>on</strong>s necessary forstable coexistence between a sperm parasite <str<strong>on</strong>g>and</str<strong>on</strong>g> its sexualhost are restrictive (Stenseth et al., 1985; Kirkendall <str<strong>on</strong>g>and</str<strong>on</strong>g>Stenseth, 1988). Some form of density- or frequencydependent,unisexual mating success appears to be a generalrequirement. Also, <strong>the</strong> assumpti<strong>on</strong>s of equal primary fitnesses<str<strong>on</strong>g>and</str<strong>on</strong>g> completely overlapping <str<strong>on</strong>g>ecological</str<strong>on</strong>g> niches are probably unrealistic(Vrijenhoek, 1978; Moore, 1984; Schenck <str<strong>on</strong>g>and</str<strong>on</strong>g> Vrijenhoek,1986).IT'S HARD TO FIND A JOB ASA UNISEXUAL VERTEBRATEEcological weeds.- The <str<strong>on</strong>g>ecological</str<strong>on</strong>g> problems faced by unisexualvertebrates have received c<strong>on</strong>siderable attenti<strong>on</strong>. Pseudogamousunisexuals suffer <strong>the</strong> most severe c<strong>on</strong>straint, because<strong>the</strong>se sperm parasites cannot escape from, or outcompete,<strong>the</strong>ir sexual hosts. True par<strong>the</strong>nogens, however, are free toplay <strong>the</strong> role of fugitive species, relying <strong>on</strong> superior col<strong>on</strong>izati<strong>on</strong>ability <str<strong>on</strong>g>and</str<strong>on</strong>g> a potential for rapid increase attributable toall-female reproducti<strong>on</strong>. Par<strong>the</strong>no<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> forms of Cnemidophorusmay be <strong>the</strong> zoological equivalents of "weedy species"(Wright <str<strong>on</strong>g>and</str<strong>on</strong>g> Lowe, 1968), having a high intrinsic rate of increase<str<strong>on</strong>g>and</str<strong>on</strong>g> excepti<strong>on</strong>al col<strong>on</strong>izing abilities (Maslin, 1971). Theweeds hypo<strong>the</strong>sis assumes par<strong>the</strong>nogens are inferior competitorswithin <strong>the</strong> natural habitats of <strong>the</strong> parental species (Moore,1984). The successful establishment of weedy par<strong>the</strong>no<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g>forms depends up<strong>on</strong> <strong>the</strong> availability of disturbed (disclimax) ormarginal habitats in which <strong>the</strong> parental forms are inferiorcompetitors (Cuellar, 1977a). Because of worldwide habitat destructi<strong>on</strong>due to human activities, Suomalainen et al. (1987, p.199) jestingly suggested <strong>the</strong> future may not be so hopeless forpar<strong>the</strong>nogens that "thrive in disturbed habitats <str<strong>on</strong>g>and</str<strong>on</strong>g>. . . toleratepolluti<strong>on</strong> better than bisexuals?'Hybridizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> an intermediate niche.- A variant of <strong>the</strong>weeds hypo<strong>the</strong>sis is <strong>the</strong> intermediate niche hypo<strong>the</strong>sis (Moore,1984). Because hybrids tend to be intermediate in morphology<str<strong>on</strong>g>and</str<strong>on</strong>g> presumably o<strong>the</strong>r characteristics that would c<strong>on</strong>strain<strong>the</strong>ir ability to use food <str<strong>on</strong>g>and</str<strong>on</strong>g> spatial resources, unisexual hybridsmight be best suited for ecot<strong>on</strong>al regi<strong>on</strong>s or intermediateniches in which <strong>the</strong> parental species are inferior competitors.This hypo<strong>the</strong>sis assumes <strong>the</strong> parental species are eachadapted to different regi<strong>on</strong>s al<strong>on</strong>g an <str<strong>on</strong>g>ecological</str<strong>on</strong>g> gradient. Althoughhybrid intermediacy may play a role in c<strong>on</strong>straining<strong>the</strong> broad-scale geographical distributi<strong>on</strong> of some unisexualhybrids (Moore, 1984), factors affecting <strong>the</strong> local distributi<strong>on</strong>26


VRIJENHOEK<str<strong>on</strong>g>and</str<strong>on</strong>g> abundance of individual diploid <str<strong>on</strong>g>and</str<strong>on</strong>g> triploid unisexualcl<strong>on</strong>es are far more complex (Schenck <str<strong>on</strong>g>and</str<strong>on</strong>g> Vrijenhoek, 1986,this volume).Heterotic generalists.- Because of <strong>the</strong> str<strong>on</strong>g coupling betweenhybridizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> unisexuality, some investigators believeunisexual organisms might be heterotic (Schultz, 1971,1977, 1982; Cole, 1975; White, 1978). The high levels of heterozygosityfound in unisexual organisms (reviewed by Moore,1984; Vrijenhoek, 1989) might allow <strong>the</strong>m to exploit a broaderrange of envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s than <strong>the</strong>ir parental species.However, Moore (1984) cauti<strong>on</strong>ed that a distincti<strong>on</strong> must bemade between hybrid vigor in somatic characteristics <str<strong>on</strong>g>and</str<strong>on</strong>g> trueheterosis in characters affecting Darwinian fitness. Based <strong>on</strong>his review of <strong>the</strong> populati<strong>on</strong> dynamics <str<strong>on</strong>g>and</str<strong>on</strong>g> biogeography ofunisexual Poeciliopsis, Moore (1984) found no substantive evidencefor heterotic fitness.Never<strong>the</strong>less, evidence for hybrid vigor in <strong>the</strong> form of broadenvir<strong>on</strong>mental tolerances <str<strong>on</strong>g>and</str<strong>on</strong>g> rapid growth has been reportedfor some unisexual strains (Schultz, 1982). When c<strong>on</strong>sidered in<strong>the</strong> c<strong>on</strong>text of envir<strong>on</strong>mental tolerances al<strong>on</strong>e, <strong>the</strong> heterosishypo<strong>the</strong>sis becomes a special form of <strong>the</strong> "general-purposegenotype" hypo<strong>the</strong>sis (Baker, 1965). Lynch (1984) clarified thishypo<strong>the</strong>sis by stating that general-purpose genotypes have <strong>the</strong>lowest variance in fitness in a temporally variable envir<strong>on</strong>ment(i.e., exhibit <strong>the</strong> highest geometrical mean fitness). Thehybrido<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> frog, Rana esculenta, appears to have broaderopti<strong>on</strong>s for overwintering survival than ei<strong>the</strong>r of its parentalspecies gunner <str<strong>on</strong>g>and</str<strong>on</strong>g> Nopp, 1979). Also, <strong>the</strong> hybrido<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> fishP. m<strong>on</strong>acha-lucida has broader <strong>the</strong>rmal tolerances than ei<strong>the</strong>rof its parental species, but this result could not be extended too<strong>the</strong>r unisexual forms (Bulger <str<strong>on</strong>g>and</str<strong>on</strong>g> Schultz, 1979). The triploidgyno<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> form, P. m<strong>on</strong>acha-2 lucida, is more heterozygousthan <strong>the</strong> hybridogen but not more tolerant to <strong>the</strong>rmal extremes.Also, P. m<strong>on</strong>acha-occidentalis has high heterozygosity,but its <strong>the</strong>rmal tolerance is intermediate to its parentalspecies (Bulger <str<strong>on</strong>g>and</str<strong>on</strong>g> Schultz, 1982). Broad envir<strong>on</strong>mental tolerancesare not a generalizable c<strong>on</strong>sequence of hybridity inunisexual hybrids.We<strong>the</strong>ringt<strong>on</strong> et al. (1987) used syn<strong>the</strong>tic Poeciliopsism<strong>on</strong>acha-lucida strains to test whe<strong>the</strong>r <strong>the</strong> hybrids were sp<strong>on</strong>taneouslyheterotic for characters related to fitness. In <strong>the</strong> relativelyc<strong>on</strong>stant envir<strong>on</strong>ment of our laboratory, <strong>the</strong> syn<strong>the</strong>tichybridogens exhibit, <strong>on</strong> average, significantly lower survivorship,lower fertility, <str<strong>on</strong>g>and</str<strong>on</strong>g> higher frequencies of developmentalabnormalities than <strong>the</strong> sexual strains from which <strong>the</strong>y werederived. Although some syn<strong>the</strong>tic strains are comparable to<strong>the</strong> parental strains for <strong>the</strong>se characteristics, n<strong>on</strong>e are better.In c<strong>on</strong>trast, two natural unisexual strains have superior survival.Since all <strong>the</strong> unisexuals, syn<strong>the</strong>tic <str<strong>on</strong>g>and</str<strong>on</strong>g> natural, have essentially<strong>the</strong> same level of heterozygosity, <strong>on</strong>e cannot attribute<strong>the</strong> qualities found <strong>on</strong>ly in <strong>the</strong> natural strains to heterosis. Instead,<strong>the</strong> variance am<strong>on</strong>g strains is attributable to <strong>the</strong> differentcombining abilities of <strong>the</strong> haploid m<strong>on</strong>acha genomes thatwere 'frozen" in <strong>the</strong>se strains. Some m<strong>on</strong>acha genomes makegood combinati<strong>on</strong>s with lucida, <str<strong>on</strong>g>and</str<strong>on</strong>g> some do not. The fitness of<strong>the</strong>se unisexual hybrids is a property of <strong>the</strong> general combiningabilities of <strong>the</strong>ir hemicl<strong>on</strong>al m<strong>on</strong>acha genomes, not sp<strong>on</strong>taneousheterosis.Great cauti<strong>on</strong> must be exercised in making inferences about<strong>the</strong> sp<strong>on</strong>taneous fitness <str<strong>on</strong>g>and</str<strong>on</strong>g> niche breadth of all unisexual hybridsfrom studies of a few naturally occurring forms. Extantunisexuals are <strong>the</strong> good combinati<strong>on</strong>s, <strong>the</strong> genotypes that survivedin nature because <strong>the</strong>y can compete with or displace <strong>the</strong>bisexual ancestors from some porti<strong>on</strong> of <strong>the</strong> available niche(see below). We d<strong>on</strong>'t often get to see nature's failures. Laboratorysyn<strong>the</strong>sis of more unisexual hybrid forms is needed to establish<strong>the</strong> generality of this result.Frozen niche-variati<strong>on</strong>.- Vrijenhoek (1979, 1984a) proposedthat <strong>the</strong> l<strong>on</strong>g term success of unisexual populati<strong>on</strong>s depends<strong>on</strong> <strong>the</strong> opportunity for recruitment of new cl<strong>on</strong>es from <str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g>allyvariable sexual ancestors. Ge<strong>net</strong>ic variati<strong>on</strong> for lifehistory<str<strong>on</strong>g>and</str<strong>on</strong>g> niche-related characters is frozen <str<strong>on</strong>g>and</str<strong>on</strong>g> faithfullyreplicated in new cl<strong>on</strong>es. The c<strong>on</strong>sequence of intercl<strong>on</strong>al selecti<strong>on</strong>is a structured assemblage of cl<strong>on</strong>es that can subdivide<str<strong>on</strong>g>and</str<strong>on</strong>g> efficiently exploit food <str<strong>on</strong>g>and</str<strong>on</strong>g> spatial resources. Extensivecl<strong>on</strong>al diversity has been found in many unisexual vertebratepopulati<strong>on</strong>s (reviews in Parker, 1979; Moore, 1984; but seeCuellar, 1977b).Support for <strong>the</strong> frozen niche-variati<strong>on</strong> model has been foundin field <str<strong>on</strong>g>and</str<strong>on</strong>g> laboratory studies of unisexual Poeciliopsis. Ourprimary observati<strong>on</strong>s have been <strong>the</strong> following: (1) Relative to<strong>the</strong>ir sexual progenitors, unisexual populati<strong>on</strong>s composed ofmultiple cl<strong>on</strong>es are numerically more successful than m<strong>on</strong>ocl<strong>on</strong>alpopulati<strong>on</strong>s (Vrijenhoek, 1979, 1984b). (2) Multicl<strong>on</strong>alpopulati<strong>on</strong>s occupy a broader range of microhabitats thanm<strong>on</strong>ocl<strong>on</strong>al populati<strong>on</strong>s (Vrijenhoek, 1984a). (3) Differencesexist am<strong>on</strong>g cl<strong>on</strong>es in <strong>the</strong> use of food <str<strong>on</strong>g>and</str<strong>on</strong>g> spatial resources (Vrijenhoek,1978; Schenck <str<strong>on</strong>g>and</str<strong>on</strong>g> Vrijenhoek, 1986, this volume).Additi<strong>on</strong>al examples of <str<strong>on</strong>g>ecological</str<strong>on</strong>g> differentiati<strong>on</strong> am<strong>on</strong>g coexistinganimal cl<strong>on</strong>es have recently been reviewed (Bell, 1982;Lynch, 1984; Vrijenhoek, 1984a, 1989; Case <str<strong>on</strong>g>and</str<strong>on</strong>g> 'Paper, 1986;see also, Schultz <str<strong>on</strong>g>and</str<strong>on</strong>g> Fielding, this volume).The frozen niche-variati<strong>on</strong> model is based <strong>on</strong> <strong>the</strong> hypo<strong>the</strong>sisthat <strong>the</strong> sexual ancestors of cl<strong>on</strong>al lineages c<strong>on</strong>tain <str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g>variati<strong>on</strong> for traits affecting niche-breadth. My colleagues <str<strong>on</strong>g>and</str<strong>on</strong>g>I are using <strong>the</strong> syn<strong>the</strong>tic P. m<strong>on</strong>acha-lucida hybridogens totest this hypo<strong>the</strong>sis. The syn<strong>the</strong>tic hemicl<strong>on</strong>es have frozen significantdifferences in size at birth <str<strong>on</strong>g>and</str<strong>on</strong>g> juvenile growth rate(We<strong>the</strong>ringt<strong>on</strong>, 1988). They exhibit different growth rate reacti<strong>on</strong>norms under high <str<strong>on</strong>g>and</str<strong>on</strong>g> low quality diets (We<strong>the</strong>ringt<strong>on</strong>,1988). Early reproductive investment differs markedly am<strong>on</strong>g<strong>the</strong> strains (Weeks, pers. comm.). We are also examining <strong>the</strong>syn<strong>the</strong>tic hemicl<strong>on</strong>es for a variety of characteristics includingtrophic morphology, <str<strong>on</strong>g>and</str<strong>on</strong>g> foraging <str<strong>on</strong>g>and</str<strong>on</strong>g> predatory behavior.IT'S HARD TO PERSIST AS AUNISEXUAL VERTEBRATEThe disappearing niche.- The idea that asexual species areextincti<strong>on</strong>-pr<strong>on</strong>e has had a l<strong>on</strong>g history (reviewed by Bell,1982). The absence of <str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> recombinati<strong>on</strong> in an asexual lineageis believed to prevent adjustments to a c<strong>on</strong>stantly changingphysical <str<strong>on</strong>g>and</str<strong>on</strong>g> biotic envir<strong>on</strong>ment. The c<strong>on</strong>cept of a changingenvir<strong>on</strong>ment must be c<strong>on</strong>sidered in two parts: spatialheterogeneity <str<strong>on</strong>g>and</str<strong>on</strong>g> temporal variati<strong>on</strong> (Bell, 1982). If individ-27


CONSTRAINTS ON UNISEXUAL VERTEBRATESual cl<strong>on</strong>es of an asexual "species" tend to exploit differentpatches in a spatially heterogeneous envir<strong>on</strong>ment, <strong>the</strong>n <strong>the</strong>l<strong>on</strong>gevity of each cl<strong>on</strong>e would be a functi<strong>on</strong> of <strong>the</strong> predictability<str<strong>on</strong>g>and</str<strong>on</strong>g> l<strong>on</strong>gevity of its specialized subniche. However, in anenvir<strong>on</strong>ment that changes unpredictably between generati<strong>on</strong>s,cl<strong>on</strong>al specialists will rapidly disappear. Such temporalunpredictability should favor <strong>the</strong> cl<strong>on</strong>e with a general-purposegenotype (Lynch, 1984). The maintenance of cl<strong>on</strong>al diversity intemporally unpredictable envir<strong>on</strong>ments requires c<strong>on</strong>stant replacementby new cl<strong>on</strong>es as old cl<strong>on</strong>es are lost. Over <strong>the</strong> l<strong>on</strong>gterm,sexual species are more likely to persist in temporallyunpredictable envir<strong>on</strong>ments, because in each generati<strong>on</strong> <strong>the</strong>yregenerate a broad array of genotypes that exploit ephemeralresources as <strong>the</strong>y appear <str<strong>on</strong>g>and</str<strong>on</strong>g> disappear (Bell, 1982).Destabilizing hybridizati<strong>on</strong>.- The geographical distributi<strong>on</strong>of some par<strong>the</strong>nogens may be limited by <strong>the</strong>ir inability toblock <str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> interference by <strong>the</strong>ir sexual relatives (Lynch,1984). Occasi<strong>on</strong>al matings of par<strong>the</strong>no<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> lizards with <strong>on</strong>eof <strong>the</strong>ir sexual ancestors can lead to higher levels of polyploidy<str<strong>on</strong>g>and</str<strong>on</strong>g> sterility. The disjunct distributi<strong>on</strong>s of many par<strong>the</strong>no<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g>forms <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>ir sexual ancestors may be due to <strong>the</strong> inabilityof par<strong>the</strong>nogens to protect <strong>the</strong>ir mode of reproducti<strong>on</strong>from disruptive matings. This interesting c<strong>on</strong>straint <strong>on</strong> <strong>the</strong>geographical distributi<strong>on</strong> of par<strong>the</strong>nogens warrants fur<strong>the</strong>rinvestigati<strong>on</strong>. It might also affect <strong>the</strong> distributi<strong>on</strong> of some hybridogens(Lynch, 1984).Muller's ratchet.- Muller (1964) proposed that asexual reproducti<strong>on</strong>is like a ratchet mechanism; <strong>the</strong> fitness of an asexuallineage cannot increase from generati<strong>on</strong> to generati<strong>on</strong>, but instead,it can <strong>on</strong>ly decline because of an accumulati<strong>on</strong> of deleteriousmutati<strong>on</strong>s. The ratchet will advance if <strong>the</strong> genome-widemutati<strong>on</strong> rate is high, if selecti<strong>on</strong> against new mutati<strong>on</strong>s isweak, <str<strong>on</strong>g>and</str<strong>on</strong>g> if <strong>the</strong> effective size of <strong>the</strong> asexual populati<strong>on</strong> issmall (Maynard Smith, 1978). For vertebrates, <strong>the</strong> genomicmutati<strong>on</strong> rate is probably high enough that most eggs willcarry at least <strong>on</strong>e slightly deleterious mutati<strong>on</strong> (Vrijenhoek,1984b). Small populati<strong>on</strong>s are affected because offspring carryingno new mutati<strong>on</strong>s will have a good chance of not occurringin <strong>the</strong> next generati<strong>on</strong>. Whe<strong>the</strong>r <strong>the</strong> ratchet mechanismreally limits unisexual vertebrates is unknown, but if unisexualhybrids have elevated mutati<strong>on</strong> rates due to hybrid dysgenesis(Kidwell et al., 1977), <strong>the</strong> ratchet mechanism mightc<strong>on</strong>tribute to a significant reducti<strong>on</strong> in mean fitness over a fewhundred generati<strong>on</strong>s [see Pamilo et al. (1987) for computersimulati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> an analysis of this problem]. Evidence for anaccumulati<strong>on</strong> of potentially deleterious mutati<strong>on</strong>s has beenfound in hybrido<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> Poeciliopsis <str<strong>on</strong>g>and</str<strong>on</strong>g> Rana (Leslie <str<strong>on</strong>g>and</str<strong>on</strong>g> Vrijenhoek,1978, 1980; Spinella <str<strong>on</strong>g>and</str<strong>on</strong>g> Vrijenhoek, 1982; Hotz,1983; Graf <str<strong>on</strong>g>and</str<strong>on</strong>g> Polls, this volume). Never<strong>the</strong>less, in regi<strong>on</strong>swhere endemic cl<strong>on</strong>al <strong>origins</strong> are possible, <strong>the</strong> ratchet mechanismprobably does not limit unisexual populati<strong>on</strong>s, becausenew cl<strong>on</strong>es might arise often enough to replace deterioratingcl<strong>on</strong>es.FROM NO-HOPERS TO HOPEFUL MONSTERSThe c<strong>on</strong>clusi<strong>on</strong> that asexuality per se is an evoluti<strong>on</strong>ary deadend for higher organisms is well supported by <strong>the</strong> overall taxo-nomic rarity of asexual "species" of vertebrates <str<strong>on</strong>g>and</str<strong>on</strong>g> insects(Maynard Smith, 1978; White, 1978). Although morphologically<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>ecological</str<strong>on</strong>g>ly diverse cl<strong>on</strong>al lineages have arisen polyphyleticallyfrom extant sexual relatives, J am unaware of substantiveevidence that any strictly asexual lineage of higherplants or animals has generated morphologically or <str<strong>on</strong>g>ecological</str<strong>on</strong>g>lydiscrete descendent forms that also reproduce asexually[bdelloid rotifers <str<strong>on</strong>g>and</str<strong>on</strong>g> traminine aphids might be excepti<strong>on</strong>s,but careful <str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> studies are needed (Maynard Smith,1986)]. Lynch <str<strong>on</strong>g>and</str<strong>on</strong>g> Gabriel (1983) found that phenotypic diversificati<strong>on</strong>could occur at similar rates in sexual <str<strong>on</strong>g>and</str<strong>on</strong>g> asexualpopulati<strong>on</strong>s, but <strong>the</strong> asexual mutati<strong>on</strong> rate had to be at leasttwice that of <strong>the</strong> sexual lineage. Elevated mutati<strong>on</strong> ratesmight occur in asexual lineages, but never<strong>the</strong>less <strong>the</strong> assumpti<strong>on</strong>that most mutati<strong>on</strong>s might c<strong>on</strong>tribute to adaptive variati<strong>on</strong>is not realistic. Because most new mutati<strong>on</strong>s are mildlydeleterious (Simm<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> Crow, 1977), <strong>the</strong> ratchet mechanism<str<strong>on</strong>g>and</str<strong>on</strong>g> associated <str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> "hitchhiking" are more likely to causedeteriorati<strong>on</strong> of cl<strong>on</strong>es (Felsenstein, 1974).If asexuality c<strong>on</strong>tributes anything to <strong>the</strong> evoluti<strong>on</strong> of biologicaldiversity, it might serve as a temporary vehicle for <strong>the</strong> replicati<strong>on</strong>of unusual gene combinati<strong>on</strong>s. In his seminal papers<strong>on</strong> unisexuality, hybridizati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> polyploidy in <strong>the</strong> vertebrates,Schultz (1969, 1980) suggested that asexual reproducti<strong>on</strong>might be a stepping-st<strong>on</strong>e in <strong>the</strong> evoluti<strong>on</strong> of gene duplicati<strong>on</strong><str<strong>on</strong>g>and</str<strong>on</strong>g> higher ploidy levels. For example, additi<strong>on</strong> of a fourthgenome (A) to a cl<strong>on</strong>ally reproducing allotriploid form (ABB)may balance meiosis <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>reby produce a new sexually reproducingallotetraploid (AABB) species (see also Astaurov,1969; Vasilev et al., this volume). Perhaps <strong>the</strong> tax<strong>on</strong>omicallydiverse, sexually reproducing tetraploid fishes in <strong>the</strong> familiesSalm<strong>on</strong>idae <str<strong>on</strong>g>and</str<strong>on</strong>g> Catastomidae arose in this way; but, unfortunately,<strong>the</strong> evoluti<strong>on</strong>ary histories of <strong>the</strong>se fishes are obscuredby <str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> changes that have accumulated in <strong>the</strong> 25 to 100 milli<strong>on</strong>years since <strong>the</strong>y arose (see Allendorf <str<strong>on</strong>g>and</str<strong>on</strong>g> Thorgaard, 1984;Ferris, 1984). Unisexuality appears to be involved in <strong>the</strong> morerecent <strong>origins</strong> of some polyploid cyprinid fishes (Collares-Pereira, 1985; this volume).A sexual species of unisexual origin.- Given <strong>the</strong> pessimistic<strong>the</strong>me expressed in <strong>the</strong> introducti<strong>on</strong>, it is perhaps fitting that Ishould c<strong>on</strong>clude this paper by reporting <strong>the</strong> discovery of a newsexual species whose immediate ancestor was a unisexual vertebrate(a formal descripti<strong>on</strong> of this new species is in preparati<strong>on</strong>;herein I summarize <strong>the</strong> salient points). A morphologicallydistinct, diploid species of Poeciliopsis inhabits a marshyarea in <strong>the</strong> headwaters of <strong>the</strong> Rio Magdelena (S<strong>on</strong>ora, Mexico).Allozyme studies indicate that it arose from a hybrido<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g>form, P. m<strong>on</strong>acha-occidentalis hemicl<strong>on</strong>e Ia (Angus, 1980),with which it still occurs. Apparently, <strong>the</strong> hybrido<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g>mechanism broke down, <str<strong>on</strong>g>and</str<strong>on</strong>g> recombinati<strong>on</strong> occurred between<strong>the</strong> m<strong>on</strong>acha <str<strong>on</strong>g>and</str<strong>on</strong>g> occidentalis genomes. This resulted in a new,self-perpetuating, mosaic genotype that reproduces sexually,has normal Mendelian inheritance, <str<strong>on</strong>g>and</str<strong>on</strong>g> has a 1:1 primary sexratio.Crossing experiments revealed that <strong>the</strong> new species isreproductively isolated from both its hybrido<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> ancestor<str<strong>on</strong>g>and</str<strong>on</strong>g> P. occidentalis. I plan to name this new species in h<strong>on</strong>or ofR. Jack Schultz, a foresighted pi<strong>on</strong>eer in this field of research.Although an apparent c<strong>on</strong>tradicti<strong>on</strong>, this discovery clearly28


CONSTRAINTS ON UNISEXUAL VERTEBRATESsupports my general <strong>the</strong>sis that strictly asexual reproducti<strong>on</strong>is an evoluti<strong>on</strong>ary dead end. The unisexual lineage that gaverise to this new sexual species was itself drawn from <strong>the</strong> recombinantvariati<strong>on</strong> in a sexual gene pool. When that unisexuallineage gave rise to something new, it did so because cl<strong>on</strong>alreproducti<strong>on</strong> broke down. The new sexual species is a productof recombinati<strong>on</strong>, not cl<strong>on</strong>ing. Although mutati<strong>on</strong>al changeshave occurred in <strong>the</strong> hemicl<strong>on</strong>al genomes that gave rise to thisnew species (Spinella <str<strong>on</strong>g>and</str<strong>on</strong>g> Vrijenhoek, 1982), <strong>the</strong> critical transiti<strong>on</strong>sin this unusual speciati<strong>on</strong> pathway involved recombinati<strong>on</strong>.SUMMARY AND CONCLUSIONSIn general, <strong>the</strong> origin of new unisexual vertebrates depends<strong>on</strong> a delicate balance between meiotic disrupti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> developmentalcoordinati<strong>on</strong> in interspecific hybrids (We<strong>the</strong>ringt<strong>on</strong> etal., 1987; Moritz et al., this volume). Once formed, a new unisexuallineage must ei<strong>the</strong>r invade a sexual populati<strong>on</strong> or becomeestablished in habitats that are <str<strong>on</strong>g>ecological</str<strong>on</strong>g>ly suboptimalfor its sexual ancestors. Some par<strong>the</strong>no<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> lizards arethought adept at col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> occupati<strong>on</strong> of marginal habitats,but o<strong>the</strong>rs coexist with <strong>on</strong>e or more of <strong>the</strong>ir sexual relatives.Sperm-dependent unisexual fishes <str<strong>on</strong>g>and</str<strong>on</strong>g> amphibiansmust live with a sexual relative. Fur<strong>the</strong>rmore, <strong>the</strong> c<strong>on</strong>diti<strong>on</strong>snecessary for a stable sperm-dependent relati<strong>on</strong>ship may behighly restrictive (Stenseth et al., 1985). Studies of <str<strong>on</strong>g>ecological</str<strong>on</strong>g>interacti<strong>on</strong>s between unisexual hybrids <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>ir sexual ancestorscan offer many new insights <strong>on</strong> factors that promotecoexistence between closely related taxa that are morphologically<str<strong>on</strong>g>and</str<strong>on</strong>g> behaviorally very similar.Discoveries of abundant cl<strong>on</strong>al diversity in many unisexualpopulati<strong>on</strong>s should alert us to <strong>the</strong> danger of erecting simple<str<strong>on</strong>g>ecological</str<strong>on</strong>g> hypo<strong>the</strong>ses that assume <strong>the</strong> existence of <strong>on</strong>ly <strong>on</strong>e"kind" of bisexual form <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>e "kind" of unisexual form instable complexes. Evidence for niche partiti<strong>on</strong>ing between coexistingcl<strong>on</strong>es <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>ir sexual ancestors is accumulatingfrom careful field studies (Schenck <str<strong>on</strong>g>and</str<strong>on</strong>g> Vrijenhoek, 1986, thisvolume). Most of <strong>the</strong> cl<strong>on</strong>al diversity observed in unisexualvertebrates stems from multiple hybridizati<strong>on</strong> events. Experimentalstudies are showing that new cl<strong>on</strong>es are likely to differsubstantially in many traits that could affect resource use inspatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporally heterogeneous envir<strong>on</strong>ments(We<strong>the</strong>ringt<strong>on</strong>, 1988). Over <strong>the</strong> l<strong>on</strong>g term, individual cl<strong>on</strong>esprobably are evoluti<strong>on</strong>ary dead ends, but <strong>the</strong> unisexual populati<strong>on</strong>might persist because of recurrent cl<strong>on</strong>al <strong>origins</strong>. Thishypo<strong>the</strong>sis needs to be tested. Applicati<strong>on</strong> of molecular approacheswill help us learn more about <strong>the</strong> relative ages of individualcl<strong>on</strong>es. The limited data currently available suggestthat extant unisexual vertebrates represent relatively recentevoluti<strong>on</strong>ary events (Avise <str<strong>on</strong>g>and</str<strong>on</strong>g> Vrijenhoek, 1987; Goddard etal., this volume; Lowcock, this volume; Moritz et al., this volume).Despite <strong>the</strong> <str<strong>on</strong>g>ecological</str<strong>on</strong>g> success of cl<strong>on</strong>ally diverse populati<strong>on</strong>sof unisexual fishes, amphibians, <str<strong>on</strong>g>and</str<strong>on</strong>g> lizards, we lack evidencethat strictly asexual lineages are clado<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g>, that <strong>the</strong>y cansplit into diversified descendent cl<strong>on</strong>al lineages. Although <strong>the</strong>apparent example of speciati<strong>on</strong> reported here does involve aunisexual ancestor, <strong>the</strong> product of this event was a new sexualspecies, not a new cl<strong>on</strong>e. Fur<strong>the</strong>rmore, <strong>the</strong> origin of this morphologically<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>ecological</str<strong>on</strong>g>ly distinct species involved <str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g>recombinati<strong>on</strong>, <strong>the</strong> essence of sexuality. Clado<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> speciati<strong>on</strong><str<strong>on</strong>g>and</str<strong>on</strong>g> sexual recombinati<strong>on</strong> may be closely intertwined(Stanley, 1975). The phylo<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> rarity of asexual "species"would not appear, <strong>the</strong>refore, to require any special explanati<strong>on</strong>s.A low rate of origin of novel unisexual forms might simplybe balanced by a high rate of extincti<strong>on</strong>, keeping <strong>the</strong> overallfrequency of unisexual "species" low. lb draw an analogywith events at <strong>the</strong> genic level, we could imagine all unisexual"species" as mutants <str<strong>on</strong>g>and</str<strong>on</strong>g> all <strong>the</strong> bisexual species as wild-typealleles at a hypo<strong>the</strong>tical locus c<strong>on</strong>trolling meiosis. As such, unisexualityis not even a valid polymorphism. The tax<strong>on</strong>omicrarity of unisexual "species" could be determined by a higherlevel process comparable to mutati<strong>on</strong>-selecti<strong>on</strong> balance at <strong>the</strong>genic level.ACKNOWLEDGEMENTSI wish to thank my colleagues, J. We<strong>the</strong>ringt<strong>on</strong>, R. Schenck,K. Kotora, S. Weeks, J. Quattro, D. Baldwin, L. Vukovich, <str<strong>on</strong>g>and</str<strong>on</strong>g>C. Sadowski for <strong>the</strong>ir collaborati<strong>on</strong> <strong>on</strong> <strong>the</strong> Poeciliopsis project.Research was supported by Grant BSR86-00661 from <strong>the</strong> Nati<strong>on</strong>alScience Foundati<strong>on</strong>.LITERATURE CITEDALLENDORF, F. W, AND G. H. THORGAARD. 1984. Thtraploidy<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> evoluti<strong>on</strong> of salm<strong>on</strong>id fishes, pp. 1-53. In: Evoluti<strong>on</strong>aryGe<strong>net</strong>ics of Fishes. B. J. Turner (ed.). Plenum Press, New York.ANGUS, R. A. 1980. Geographical dispersal <str<strong>on</strong>g>and</str<strong>on</strong>g> cl<strong>on</strong>al diversity inunisexual fish populati<strong>on</strong>s. Amer. Natur. 115:531-550.ASTAUROV, B. L. 1969. Experimental polyploidy in animals. Ann.Rev. Ge<strong>net</strong>. 3:99-126.AVISE, J. C., AND R. C. VRIJENHOEK. 1987. Mode of inheritance<str<strong>on</strong>g>and</str<strong>on</strong>g> variati<strong>on</strong> of mitoch<strong>on</strong>drial DNA in hybrido<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> fishes of<strong>the</strong> genus Poeciliopsis. Mol. Biol. Evol. 4:514-525.AVISE, J. C., J. C. PATTON, AND C. F. AQUADRO. 1980. Evoluti<strong>on</strong>ary<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g>s of birds. I. Relati<strong>on</strong>ships am<strong>on</strong>g North Americanthrushes <str<strong>on</strong>g>and</str<strong>on</strong>g> allies. The Auk 97:135-147.BAKER, H. G. 1965. Characteristics <str<strong>on</strong>g>and</str<strong>on</strong>g> modes of origin of weeds, pp.147-172. In: Ge<strong>net</strong>ics of Col<strong>on</strong>izing Species. H. G. Baker <str<strong>on</strong>g>and</str<strong>on</strong>g> G.L. Stebbins (eds.). Academic Press, New York.BELL, G. 1982. The Masterpiece of Nature: The Evoluti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Ge<strong>net</strong>icsof Sexuality. Univ. Calif. Press, Berkeley.BERGER, L. 1971. Viability, sex <str<strong>on</strong>g>and</str<strong>on</strong>g> morphology of F2 generati<strong>on</strong>within forms of Rana esculenta-complex. Zoo!. Pol<strong>on</strong>iae 21:373-393.BULGER, A. J., AND R. J. SCHULTZ. 1979. Heterosis <str<strong>on</strong>g>and</str<strong>on</strong>g> intercl<strong>on</strong>alvariati<strong>on</strong> in <strong>the</strong>rmal tolerance in unisexual fish. Evoluti<strong>on</strong>33:848-859.BULGER, A. J., AND R. J. SCHULTZ. 1982. Origins of <strong>the</strong>rmal adaptati<strong>on</strong>in nor<strong>the</strong>rn vs. sou<strong>the</strong>rn populati<strong>on</strong>s of a unisexual hybridfish. Evoluti<strong>on</strong> 36:1041-1050.CASE, M. L., AND T. J. TAPER. 1986. On <strong>the</strong> coexistence <str<strong>on</strong>g>and</str<strong>on</strong>g> coevoluti<strong>on</strong>of asexual <str<strong>on</strong>g>and</str<strong>on</strong>g> sexual competitors. Evoluti<strong>on</strong> 40:366-387.29


VRIJENHOEKCIMINO, M. C. 1972a. Meiosis in triploid all-female fish (Poeciliopsis,Poeciliidae). Science 175:1484-1486.CIMINO, M. C. 1972b. Egg producti<strong>on</strong>, polyploidizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> evoluti<strong>on</strong>in a diploid all-female fish of <strong>the</strong> genus Poeciliopsis. Evoluti<strong>on</strong>26:294-306.CLANTON, W 1934. An unusual situati<strong>on</strong> in <strong>the</strong> salam<str<strong>on</strong>g>and</str<strong>on</strong>g>er A mbystomajeffers<strong>on</strong>ianuin (Green). Occ. Pap. Mus. Zool. (Univ. Michigan)290:1-15.COLE, C. J. 1975. Evoluti<strong>on</strong> of par<strong>the</strong>no<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> species of reptiles, pp.340-355. In: Intersexuality in <strong>the</strong> Animal Kingdom. R. Reinboth(ed.), Springer:Verlag, Berlin-Heidelberg-New York.COLLARES-PEREIRA, M. J. 1985. The "Rutilus alburnoides (Steindacher,1866) complex" (Pisces, Cyprinidae). II. First data <strong>on</strong><strong>the</strong> karyology of a well-established diploid-triploid group. Arquivosdo Museu Bocage (Serie A) 3:69-89.COLLARES-PEREIRA, M. J. This volume. Hybridizati<strong>on</strong> in Europeancyprinids: Evoluti<strong>on</strong>ary potential of unisexual populati<strong>on</strong>s.CUELLAR, 0. 1971. Reproducti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> mechanism of meiotic restituti<strong>on</strong>in <strong>the</strong> par<strong>the</strong>no<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> lizard Cnemidophorus uniparens.J. Morphol. 133:139-166.CUELLAR, 0. 1974. On <strong>the</strong> origin of par<strong>the</strong>nogenesis in vertebrates:The cyto<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> factors. Amer. Natur. 108:625-648.CUELLAR, 0. 1977a. Animal par<strong>the</strong>nogenesis. Science 197:837-843.CUELLAR, 0. 1977b. Ge<strong>net</strong>ic homogeneity <str<strong>on</strong>g>and</str<strong>on</strong>g> speciati<strong>on</strong> in <strong>the</strong> par<strong>the</strong>no<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g>lizards Cnemidophorus velox <str<strong>on</strong>g>and</str<strong>on</strong>g> C. mexicanus,evidence from interspecific histocompatibility. Evoluti<strong>on</strong>31:24-31.DARLINGTON, C. D. 1939. The Evoluti<strong>on</strong> of Ge<strong>net</strong>ic Systems. CambridgeUniv. Press, Cambridge, U.K.DAWLEY, R. M. 1987. Hybridizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> polyploidy in a community ofthree sunfish species (Pisces: Centrarchidae). Copeia 1987:326-335.ECHELLE, A. A., A. F. ECHELLE, AND C. D. CROZIER. 1983. Evoluti<strong>on</strong>of an all-female fish, Menidia clarkhubbsi (A<strong>the</strong>rinidae).Evoluti<strong>on</strong> 37:772-784.FELSENSTEIN, J. 1974. The evoluti<strong>on</strong>ary advantage of recombinati<strong>on</strong>.Ge<strong>net</strong>ics 78:737-756.FERRIS, S. D. 1984. 'Ibtraploidy <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> evoluti<strong>on</strong> of catastomidfishes, pp. 55-93. In: Evoluti<strong>on</strong>ary Ge<strong>net</strong>ics of Fishes. B. J.Turner (ed.). Plenum Press, New York.GODDARD, K. A., R. M. DAWLEY, AND T. E. DOWLING. This volume.Origin <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> relati<strong>on</strong>ships of diploid, triploid, <str<strong>on</strong>g>and</str<strong>on</strong>g>diploid-triploid mosaic biotypes in <strong>the</strong> Phoxinus eos-neogaeusunisexual complex.GRAF, J.-D., AND M. POLLS PELAZ. This volume. Evoluti<strong>on</strong>ary <str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g>sof <strong>the</strong> Rana esculenta complex.HIGHTON, R., AND A. LARSON. 1979. The <str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> relati<strong>on</strong>ships of<strong>the</strong> salam<str<strong>on</strong>g>and</str<strong>on</strong>g>ers of <strong>the</strong> genus Plethod<strong>on</strong>. Syst. Zool. 28:579-599.HOTZ, H. 1983. Genic diversity am<strong>on</strong>g water frog genomes inheritedwith <str<strong>on</strong>g>and</str<strong>on</strong>g> without recombinati<strong>on</strong>. Ph.D. <strong>the</strong>sis, University ofZurich, Switzerl<str<strong>on</strong>g>and</str<strong>on</strong>g>.HOTZ, H., G. MANCINO, S. BUCCIINNOCENTI, M. RAGGHIANTI,L. BERGER, AND T. M. UZZELL. 1985. Rana rid ibunda variesgeographically in inducing cl<strong>on</strong>al gametogenesis in interspecieshybrids. J. Exper. Zool. 236:199-210.KEEGAN-ROGERS, V. 1984. Unfamiliar-female mating advantageam<strong>on</strong>g cl<strong>on</strong>es of unisexual fish (Poeciliopsis: Poeciliidae). Copeia1984:169-174.KIDWELL, M. G., J. F. KIDWELL, AND J. A. SVED. 1977. Hybriddysgenesis in Drosophila melanogaster: A syndrome of aberranttraits including mutati<strong>on</strong>, sterility, <str<strong>on</strong>g>and</str<strong>on</strong>g> male recombinati<strong>on</strong>.Ge<strong>net</strong>ics 86:813-833.KIESTER, A. R., T. NAGYLAKI, AND B. SHAFFER. 1981. Populati<strong>on</strong>dynamics of species with gyno<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> sibling species.Theor. Pop. Biol. 19:358-369.KIRKENDALL, L. R., AND N. C. STENSETH. 1988. Ecological <str<strong>on</strong>g>and</str<strong>on</strong>g>evoluti<strong>on</strong>ary stability of pseudogamy: Effects of partial nicheoverlap between sexual <str<strong>on</strong>g>and</str<strong>on</strong>g> asexual females. Evoluti<strong>on</strong>, inpress.LESLIE, J. F., AND R. C. VRIJENHOEK. 1978. Ge<strong>net</strong>ic dissecti<strong>on</strong> ofcl<strong>on</strong>ally inherited genomes of Poeciliopsis. I. Linkage analysis<str<strong>on</strong>g>and</str<strong>on</strong>g> preliminary assessment of deleterious gene loads. Ge<strong>net</strong>ics90:801-811.LESLIE, J. F., AND R. C. VRIJENHOEK. 1980. C<strong>on</strong>siderati<strong>on</strong> of Muller'sratchet mechanism through studies of <str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> linkage <str<strong>on</strong>g>and</str<strong>on</strong>g>genomic compatibilities in cl<strong>on</strong>ally reproducing Poeciliopsis.Evoluti<strong>on</strong> 34:1105-1115.LOWCOCK, L. A. This volume. Biogeography of hybrid complexes ofAmbystoma: Interpreting unisexual-bisexual data throughspace <str<strong>on</strong>g>and</str<strong>on</strong>g> time.LYNCH, M. 1984. Destabilizing hybridizati<strong>on</strong>, general-purpose genotypes<str<strong>on</strong>g>and</str<strong>on</strong>g> geographical par<strong>the</strong>nogenesis. Quart. Rev. Biol.59:257-290.LYNCH, M., AND W. GABRIEL. 1983. Phenotypic evoluti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> par<strong>the</strong>nogenesis.Amer. Natur. 122:745-764.MACGREGOR, H. C., AND T. M. UZZELL. 1964. Gynogenesis in salam<str<strong>on</strong>g>and</str<strong>on</strong>g>ersrelated to Ambystoma jeffers<strong>on</strong>ianum. Science143:1043-1045.MASLIN, T. P. 1971. Par<strong>the</strong>nogenesis in reptiles. Amer. Zool. 11:361-380.MAYNARD SMITH, J. 1978. The Evoluti<strong>on</strong> of Sex. Cambridge Univ.Press, Cambridge, UK.MAYNARD SMITH, J. 1986. C<strong>on</strong>templating life without sex. Nature324:300-301.MCKAY, F E. 1971. Behavioral aspects of populati<strong>on</strong> dynamics inunisexual-bisexual Poeciliopsis (Pisces: Poeciliidae). Ecology52:778-790.MONACO, P. J., E. M. RASCH, AND J. S. BALSANO. 1984. Apomicticreproducti<strong>on</strong> in <strong>the</strong> Amaz<strong>on</strong> mollie, Poecilia A•rmosa, <str<strong>on</strong>g>and</str<strong>on</strong>g> itstriploid hybrids, pp. 311-328. In: Evoluti<strong>on</strong>ary Ge<strong>net</strong>ics ofFishes. B. J. Turner (ed.). Plenum Press, New York.MOORE, W. 5.1976. Comp<strong>on</strong>ents of fitness in <strong>the</strong> unisexual fish Poeciliopsism<strong>on</strong>acha-occidentalis. Evoluti<strong>on</strong> 30:564-578.MOORE, W. S. 1984. Evoluti<strong>on</strong>ary ecology of unisexual fishes, pp. 329-398. In: Evoluti<strong>on</strong>ary Ge<strong>net</strong>ics of Fishes. B. J. Turner (ed.).Plenum Press, New York.MOORE, W. S., AND F. E. MCKAY. 1971. Coexistence in unisexualbisexualspecies complexes of Poeciliopsis (Pisces: Poeciliidae).Ecology 52:791-799.MORITZ, C., W. M. BROWN, L. D. DENSMORE, J. W. WRIGHT. D.VYAS, S. DONNELLAN, M. ADAMS, AND P. BAVERSTOCK.This volume. Ge<strong>net</strong>ic diversity <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> dynamics of hybrid par<strong>the</strong>nogenesisin Cnemidophorus (Thiidae) <str<strong>on</strong>g>and</str<strong>on</strong>g> Heter<strong>on</strong>otia(Gekk<strong>on</strong>idae).MULLER, H. J. 1964. The relati<strong>on</strong> of mutati<strong>on</strong> to mutati<strong>on</strong>al advance.Mutat. Res. 1:2-9.NEI, M. 1987. Molecular Evoluti<strong>on</strong>ary Ge<strong>net</strong>ics. Columbia Univ.Press, New York.PAMILO, R, M. NEI, AND W LI. 1987. Accumulati<strong>on</strong> of mutati<strong>on</strong>s insexual <str<strong>on</strong>g>and</str<strong>on</strong>g> asexual populati<strong>on</strong>s. Ge<strong>net</strong>. Res. Cambr. 49:135-146.PARKER, E. D. 1979. Ecological implicati<strong>on</strong>s of cl<strong>on</strong>al diversity inpar<strong>the</strong>no<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> morphospecies. Amer. Zool. 19:753-762.PECCININI-SEALE, D. M. This volume. Ge<strong>net</strong>ic studies <strong>on</strong> bisexual<str<strong>on</strong>g>and</str<strong>on</strong>g> unisexual populati<strong>on</strong>s of Amaz<strong>on</strong>ian Cnemidophorus.30


CONSTRAINTS ON UNISEXUAL VERTEBRATESSCHENCK, R. A., AND R. C. VRIJENHOEK. 1986. Spatial <str<strong>on</strong>g>and</str<strong>on</strong>g> temporalfactors affecting coexistence am<strong>on</strong>g sexual <str<strong>on</strong>g>and</str<strong>on</strong>g> cl<strong>on</strong>al ofPoeciliopsis. Evoluti<strong>on</strong> 40:1060-1070.SCHENCK, R. A., AND R. C. VRIJENHOEK. This volume. Coexistenceam<strong>on</strong>g sexual <str<strong>on</strong>g>and</str<strong>on</strong>g> asexual forms of Poeciliopsis: Foragingbehavior <str<strong>on</strong>g>and</str<strong>on</strong>g> habitat selecti<strong>on</strong>.SCHULTZ, R. J. 1969. Hybridizati<strong>on</strong>, unisexuality, <str<strong>on</strong>g>and</str<strong>on</strong>g> polyploidy in<strong>the</strong> teleost Poeciliopsis (Poeciliidae) <str<strong>on</strong>g>and</str<strong>on</strong>g> o<strong>the</strong>r vertebrates.Amer. Natur. 103:605-619.SCHULTZ, R. J. 1971. Special adaptive problems associated with unisexualfishes. Amer. Zool. 11:351-360.SCHULTZ, R. J. 1973. Unisexual fish: Laboratory syn<strong>the</strong>sis of a "species'.Science 179:180-181.SCHULTZ, R. J. 1977. Evoluti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> ecology of unisexual fishes. Evol.Biol. 10:277-331.SCHULTZ, R. J. 1980. The role of polyploidy in <strong>the</strong> evoluti<strong>on</strong> of fishes,pp. 313-339. In: Polyploidy: Biological Relevance. W. H. Lewis(ed.). Plenum Publ. Co., New York.SCHULTZ, R. J. 1982. Competiti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> adaptati<strong>on</strong> am<strong>on</strong>g diploid <str<strong>on</strong>g>and</str<strong>on</strong>g>polyploid cl<strong>on</strong>es of unisexual fishes, pp. 103-119. In: Evoluti<strong>on</strong><str<strong>on</strong>g>and</str<strong>on</strong>g> Ge<strong>net</strong>ics of Life Histories. H. Dingle <str<strong>on</strong>g>and</str<strong>on</strong>g> J. P. Hegmann(eds.). Springer-Verlag, Berlin-Heidelberg-New York.SCHULTZ, R. J., AND E. FIELDING. This volume. Fixed genotypes invariable envir<strong>on</strong>ments.SIMMONS, M. J., AND J. F. CROW. 1977. Mutati<strong>on</strong>s affecting fitnessin Drosophila populati<strong>on</strong>s. Ann. Rev. Ge<strong>net</strong>. 11:49-78.SPINELLA, D. G., AND R. C. VRIJENHOEK. 1982. Ge<strong>net</strong>ic dissecti<strong>on</strong>of cl<strong>on</strong>ally inherited genomes of Poeciliopsis: II. Investigati<strong>on</strong>of a silent carboxylesterase allele. Ge<strong>net</strong>ics 100:279-286.STANLEY, S. M. 1975. Clades versus cl<strong>on</strong>es in evoluti<strong>on</strong>: Why we havesex. Science 190:382-383.STENSETH, N. C., L. R. KIRKENDALL, AND N. MORAN. 1985. On<strong>the</strong> evoluti<strong>on</strong> of pseudogamy. Evoluti<strong>on</strong> 39:294-307.SUOMALAINEN, E., A. SAURA, AND J. LOKKI. 1987. Cytology <str<strong>on</strong>g>and</str<strong>on</strong>g>evoluti<strong>on</strong> in par<strong>the</strong>nogenesis. CRC Press, Boca Rat<strong>on</strong>, Florida.TEMPLETON, A. R. 1982. The prophecies of par<strong>the</strong>nogenesis, pp. 75-102. In: Evoluti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Ge<strong>net</strong>ics of Life Histories. H. Dingle <str<strong>on</strong>g>and</str<strong>on</strong>g>J. P. Hegmann (eds.). SpringerNerlag, Berlin-Heidelberg-NewYork.TUNNER, H. G., AND H. NOPP. 1979. Heterosis in <strong>the</strong> comm<strong>on</strong> Europeanwater frog. Naturwissenschaften 66:268-269.TURNER, B. J., B. L. BREIT AND R. R. MILLER. 1980. Interspecifichybridizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> evoluti<strong>on</strong>ary origin of a gyno<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> fish,Poecilia fiwmosa. Evoluti<strong>on</strong> 34:917-922.UZZELL, T. M. 1964. Relati<strong>on</strong>s of <strong>the</strong> diploid <str<strong>on</strong>g>and</str<strong>on</strong>g> triploid species of <strong>the</strong>Ambystoma jelPrs<strong>on</strong>ianum complex (Amphibia, Caudata). Copeia1964:257-300.UZZELL, T. M. 1969. Notes <strong>on</strong> spermatophore producti<strong>on</strong> by salam<str<strong>on</strong>g>and</str<strong>on</strong>g>ersof <strong>the</strong> Ambystoma jefftrs<strong>on</strong>ianum complex (Amphibia,Caudate). Copeia 1969:602-612.UZZELL, T. M. 1970. Meiotic mechanisms of naturally occurring unisexualvertebrates. Amer. Natur. 104:433-445.UZZELL, T. M., AND L. BERGER. 1975. Electrophoretic phenotypesof Rana ridibunda, Rana less<strong>on</strong>ae, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>ir hybrido<str<strong>on</strong>g>ge<strong>net</strong>ic</str<strong>on</strong>g> associate,Rana esculenta. Proc. Acad. Sci. Phila. 127:13-24.VASIL'EV, V. P., K. D. VASILEVA, AND A. G. OSINOV. This volume.Evoluti<strong>on</strong> of a diploid-triploid-tetraploid complex in fishes of<strong>the</strong> genus Cobitis (Pisces, Cobitidae).VRIJENHOEK, R. C. 1978. Coexistence of cl<strong>on</strong>es in a heterogeneousenvir<strong>on</strong>ment. Science 199:549-552.VRIJENHOEK, R. C. 1979. Factors affecting cl<strong>on</strong>al diversity <str<strong>on</strong>g>and</str<strong>on</strong>g> coexistence.Amer. Zool. 19:787-797.VRIJENHOEK, R. C. 1984a. Ecological differentiati<strong>on</strong> am<strong>on</strong>g cl<strong>on</strong>es:The frozen niche variati<strong>on</strong> model, pp. 217-231. In: Populati<strong>on</strong>Biology <str<strong>on</strong>g>and</str<strong>on</strong>g> Evoluti<strong>on</strong>. K. Wohrmann <str<strong>on</strong>g>and</str<strong>on</strong>g> V. Loeschcke (eds.).Springer-Verlag, Berlin-Heidelberg-New York.VRIJENHOEK, R. C. 1984b. The evoluti<strong>on</strong> of cl<strong>on</strong>al diversity in Poeciliopsis,pp. 399-429. In: Evoluti<strong>on</strong>ary Ge<strong>net</strong>ics of Fishes. B. J.Turner (ed.). Plenum Press, New York.VRIJENHOEK, R. C. 1989. Ge<strong>net</strong>ic diversity <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> ecology of asexualpopulati<strong>on</strong>s, in press. In: Populati<strong>on</strong> Biology <str<strong>on</strong>g>and</str<strong>on</strong>g> Evoluti<strong>on</strong>.K. Wohrmann <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Jain (eds.). Springer-Verlag, Berlin-Heidelberg-New York.VRIJENHOEK, R. C., R. M. DAWLEY, C. J. COLE,' AND J. P. BO-GART. This volume. A list of <strong>the</strong> known unisexual vertebrates.VRIJENHOEK, R. C., AND S. LERMAN. 1982. Heterozygosity <str<strong>on</strong>g>and</str<strong>on</strong>g>developmental stability under sexual <str<strong>on</strong>g>and</str<strong>on</strong>g> asexual breeding systems.Evoluti<strong>on</strong> 36:768-776.VRIJENHOEK, R. C., AND R. J. SCHULTZ. 1974. Evoluti<strong>on</strong> of a trihybridunisexual fish (Poeciliopsis, Poeciliidae). Evoluti<strong>on</strong>28:767-781.VRIJENHOEK, R. C., R. A. ANGUS, AND R. J. SCHULTZ. 1977.Variati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> heterozygosity in sexually vs. cl<strong>on</strong>ally reproducingpopulati<strong>on</strong>s of Poeciliopsis. Evoluti<strong>on</strong> 31:767-781.WETHERINGTON, J. D. 1988. Ge<strong>net</strong>ic variati<strong>on</strong> am<strong>on</strong>g syn<strong>the</strong>tichemicl<strong>on</strong>es of Poeciliopsis. Ph.D. <strong>the</strong>sis, Rutgers Univ., NewBrunswick, New Jersey.WETHERINGTON, J. D., K. E. KOTORA, AND R. C. VRIJENHOEK.1987. A test of <strong>the</strong> sp<strong>on</strong>taneous heterosis hypo<strong>the</strong>sis for unisexualvertebrates. Evoluti<strong>on</strong> 41:721-731.WHITE, M. J. D. 1978. Modes of Speciati<strong>on</strong>. Freeman, San Francisco.WILLIAMS, G. C. 1975. Sex <str<strong>on</strong>g>and</str<strong>on</strong>g> Evoluti<strong>on</strong>. Princet<strong>on</strong> UniversityPress, Princet<strong>on</strong>, New Jersey.WRIGHT, J. W, AND C. H. LOWE. 1968. Weeds, polyploids, par<strong>the</strong>nogenesis<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> geographical <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>ecological</str<strong>on</strong>g> distributi<strong>on</strong> of allfemalespecies of Cnemidophorus. Copeia 1968:128-138.31

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!