bundle block adjustment with 3d natural cubic splines

bundle block adjustment with 3d natural cubic splines bundle block adjustment with 3d natural cubic splines

13.07.2015 Views

A k EOP =A i SP =A i t =A kiAL =⎡⎢⎣M k1i1.M kmi1N k1i1.N kmi1Mi2 k1 · · · Mi6k1Mi2 km · · · Mi6kmNi2 k1 · · · Ni6k1Ni2 km · · · Ni6km⎤⎡Mi7 1 Mi8 1 · · · Mi181 .M i7 m Mi8 m · · · Mi18m N i7 1 Ni8 1 · · · Ni181⎢⎣.Ni7 m Ni8 m · · · Ni18m⎥⎦⎡Mi19 1 Mi20 1 · · · Mi18+n1 .M i19 m Mi20 m · · · Mi18+nm N i19 1 Ni20 1 · · · Ni18+n1⎢⎣ .Ni19 m Ni20 m · · · Ni18+nm ⎡⎤⎢⎣A k1i1.A kmi1A k1i2 · · · A k1i20A kmi2 · · · A kmi20ξ k EOP = [ dX k C dY k C dZ k C dω k dϕ k dκ k ] T⎥⎦⎤⎥⎦⎤⎥⎦ξ i SP = [ da i0 da i1 da i2 da i3 db i0 db i1 db i2 db i3 dc i0 dc i1 dc i2 dc i3] Tξ i t = [ dt i1 dt i2 · · · dt in] Ty ki =[x kip+ f u0w 0y kip+ f v0w 0Arc(t) kip− Arc(t) 0 ] Twith Arc(t) 0 = t0 2 −t0 16[f 0 (t 0 1) + 4f ( ) 0 t 0 2 +t0 12 + f 0 (t 0 2) ] , m the number of images, n thenumber of points on a spline segment, k the kth image and i the ith spline segment.The partial derivatives of symbolic representations (M, N, A) of the extended60

collinearity model are described in appendix A. Since the equation system of theintegrated model has datum defects of seven, the control information about the coordinatesystem is required to obtain the seven transformation parameters. In a generalphotogrammetric network, the rank deficiency referred as datum defects is seven.Estimates of the unknown parameters are obtained by the least squares solutionwhich minimizes the sum of squared deviations. A non-linear least squares system isrequired in the conventional non-linear photogrammetric solution to obtain orientationparameters. Many observations in photogrammetry are random variables whichare considered as different values in the case of repeated observations such as imagecoordinates of points on images. Each measured observation represents an estimateof random variables of the image coordinates of points on images. If image coordinatesof points are measured using the digital photogrammetric workstation, thevalues would be measured slightly differently for each measurement. The integratedand linearized Gauss-Markov model and the least squares estimated parameter vectorwith its dispersion matrix arey ki = A IM ξ IM + e⎡A k EOP A i SP A i ⎤t⎢⎥A IM = ⎣⎦A kiALξ IM = [ ] TξEOP k ξSP i ξti (4.3)ˆξ IM = (A T IMP A IM ) −1 A T IMP y kiD(ˆξ IM ) = σ 2 o(A T IMP A IM ) −1with e˜N(0, σoP 2 −1 ) the error vector with zero mean and cofactor matrix P −1 , andvariance component σo 2 which can be known or not, ˆξ IM the least squares estimatedparameter vector and D(ˆξ IM ) the dispersion matrix.61

A k EOP =A i SP =A i t =A kiAL =⎡⎢⎣M k1i1.M kmi1N k1i1.N kmi1Mi2 k1 · · · Mi6k1Mi2 km · · · Mi6kmNi2 k1 · · · Ni6k1Ni2 km · · · Ni6km⎤⎡Mi7 1 Mi8 1 · · · Mi181 .M i7 m Mi8 m · · · Mi18m N i7 1 Ni8 1 · · · Ni181⎢⎣.Ni7 m Ni8 m · · · Ni18m⎥⎦⎡Mi19 1 Mi20 1 · · · Mi18+n1 .M i19 m Mi20 m · · · Mi18+nm N i19 1 Ni20 1 · · · Ni18+n1⎢⎣ .Ni19 m Ni20 m · · · Ni18+nm ⎡⎤⎢⎣A k1i1.A kmi1A k1i2 · · · A k1i20A kmi2 · · · A kmi20ξ k EOP = [ dX k C dY k C dZ k C dω k dϕ k dκ k ] T⎥⎦⎤⎥⎦⎤⎥⎦ξ i SP = [ da i0 da i1 da i2 da i3 db i0 db i1 db i2 db i3 dc i0 dc i1 dc i2 dc i3] Tξ i t = [ dt i1 dt i2 · · · dt in] Ty ki =[x kip+ f u0w 0y kip+ f v0w 0Arc(t) kip− Arc(t) 0 ] T<strong>with</strong> Arc(t) 0 = t0 2 −t0 16[f 0 (t 0 1) + 4f ( ) 0 t 0 2 +t0 12 + f 0 (t 0 2) ] , m the number of images, n thenumber of points on a spline segment, k the kth image and i the ith spline segment.The partial derivatives of symbolic representations (M, N, A) of the extended60

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!