bundle block adjustment with 3d natural cubic splines

bundle block adjustment with 3d natural cubic splines bundle block adjustment with 3d natural cubic splines

13.07.2015 Views

(a, f(a)), ( a+b, f ( ))a+b2 2 , (b, f(b)). The three unknowns, a0 , a 1 , and a 2 , are obtainedfrom the following three equations:ff(a) = f 2 (a) = a 0 + a 1 a + a 1 a 2( ) ( )( ) ( ) 2a + b a + ba + b a + b= f 2 = a 0 + a 1 + a 1 (3.32)2222f(b) = f 2 (b) = a 0 + a 1 b + a 1 b 2Three unknowns areThusa 0 = a2 f(b) + abf(b) − 4abf ( )a+b2 + abf(a) + b 2 f(a)a 2 − 2ab + b 2a 1 = af(a) − 4af ( a+b2) (+ 3af(b) + 3bf(a)) − 4bfa+b2a 2 − 2ab + b 2)+ f(b)))+ bf(b)a 2 = 2 ( f(a) − 2f ( a+b2(3.33)a 2 − 2ab + b 2∫ abf(x)dx ∼ ===∫ ab∫ ab[Substituting (3.33) into (3.34) leads tof 2 (x)dx(a0 + a 1 x + a 2 x 2) dx (3.34)a 0 x + a 1x 22 + a 2x 3 ] b3a= a 0 (b − a) + a 1b 2 − a 22+ a 2b 3 − a 33∫ abf 2 (x)dx = b − a6[( ) ]a + bf(a) + 4f + f(b)2(3.35)In addition, Simpson’s rule can be derived by different methods such as the Lagrangepolynomial, the method of coefficients and the approximation by a second50

order polynomial using Newton’s divided difference polynomial. The error of Simpson’srule is known to be(b − a)5e = −2880 f 4 (ξ), a < ξ < b (3.36)The error of multiple segments using Simpson’s rule is the sum of each error ofSimpson’s rule as∑ n/2(b − a)5 i=1 f (4) (ξ i )e = −90n 4 n(3.37)The error is proportional to (b − a) 5 .Simpson’s rule is the numerical approximation of definite integrals. The geometricintegration of the arc-length in the image space can be calculated by Simpon’s ruleas followings.∫ t2Arc(t) =∫ t2t 1t 1f(t)dt ∼ =t 2 − t 16f(t)dt[f(t 1 ) + 4f( ) t2 + t 12]+ f(t 2 )f(t) = √ (x ′ p(t)) 2 + (y p(t)) ′ 2{(√= −f u(t) ) ′ } 2 {(+ −f v(t) ) ′ } 2(3.38)w(t)w(t)() √= −f u′ (t)w(t) − u(t)w ′ 2 ()(t)+ −f v′ (t)w(t) − v(t)w ′ 2(t)w 2 (t)w 2 (t)df(t) = 1 [12 (f(t))− 2 f 2x ′ p(t) w′w du − 2 2x′ p(t) 1 w du′ + 2y p(t) ′ w′w dv − 2 2y′ p(t) 1 w dv′{+ 2x ′ p(t) u′ w 2 − (u ′ w − uw ′ )2w− 2ywp(t) ′ v′ w 2 − (v ′ w − vw ′ })2wdw4 w 4+{2x ′ p(t) u w + 2 2y′ p(t) v } ]dw ′w 2Arc(t) − t0 2 − t 0 16[( tf(t 0 01) + 4f 2 + t 0 ) ]1+ f(t 022)(3.39)51

(a, f(a)), ( a+b, f ( ))a+b2 2 , (b, f(b)). The three unknowns, a0 , a 1 , and a 2 , are obtainedfrom the following three equations:ff(a) = f 2 (a) = a 0 + a 1 a + a 1 a 2( ) ( )( ) ( ) 2a + b a + ba + b a + b= f 2 = a 0 + a 1 + a 1 (3.32)2222f(b) = f 2 (b) = a 0 + a 1 b + a 1 b 2Three unknowns areThusa 0 = a2 f(b) + abf(b) − 4abf ( )a+b2 + abf(a) + b 2 f(a)a 2 − 2ab + b 2a 1 = af(a) − 4af ( a+b2) (+ 3af(b) + 3bf(a)) − 4bfa+b2a 2 − 2ab + b 2)+ f(b)))+ bf(b)a 2 = 2 ( f(a) − 2f ( a+b2(3.33)a 2 − 2ab + b 2∫ abf(x)dx ∼ ===∫ ab∫ ab[Substituting (3.33) into (3.34) leads tof 2 (x)dx(a0 + a 1 x + a 2 x 2) dx (3.34)a 0 x + a 1x 22 + a 2x 3 ] b3a= a 0 (b − a) + a 1b 2 − a 22+ a 2b 3 − a 33∫ abf 2 (x)dx = b − a6[( ) ]a + bf(a) + 4f + f(b)2(3.35)In addition, Simpson’s rule can be derived by different methods such as the Lagrangepolynomial, the method of coefficients and the approximation by a second50

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!