bundle block adjustment with 3d natural cubic splines

bundle block adjustment with 3d natural cubic splines bundle block adjustment with 3d natural cubic splines

13.07.2015 Views

about correspondences between individual points in the 3D object space and theirprojected features in the 2D image space is not required in extended collinearityequations with 3D natural splines. One point on a cubic spline has 19 parameters(X c , Y c , Z c , ω, ϕ, κ, a 0 , a 1 , a 2 , a 3 , b 0 , b 1 , b 2 , b 3 , c 0 , c 1 , c 2 , c 3 , t). The differentials of (3.14)is (3.15).dx p = − f fudu +w w dw, 2dy p = − f wfvdv + dw (3.15)w2 with the differentials of du, dv, dw (3.16)⎡⎢⎣dudvdw⎤⎥⎦ = ∂RT∂ω+ ∂RT∂κ+ R T ⎡⎢⎣⎡+ R T ⎢⎣⎡+ R T ⎢⎣1000t0⎡⎢⎣⎡⎢⎣X i (t) − X CY i (t) − Y CZ i (t) − Z CX i (t) − X CY i (t) − Y CZ i (t) − Z C⎤⎡⎥⎦ da 0 + R T ⎢⎣⎤ ⎡⎥⎦ db 1 + R T ⎢⎣⎤⎡0⎥0 ⎦ dc 2 + R T ⎢⎣t 2⎤⎥⎦ dω + ∂RT∂ϕ⎤ ⎡⎥⎦ dκ − R T ⎢⎣t000t 2 0100⎡⎢⎣⎤⎡⎥⎦ da 1 + R T ⎢⎣⎤ ⎡⎥⎦ db 2 + R T ⎢⎣⎤⎡0⎥0 ⎦ dc 3 + R T ⎢⎣t 3X i (t) − X CY i (t) − Y CZ i (t) − Z C⎤⎡⎥⎦ dX c − R T ⎢⎣t 2 000t 3 0⎤⎥⎦ dϕ010⎤⎡⎥⎦ da 2 + R T ⎢⎣⎤ ⎡⎥⎦ db 3 + R T ⎢⎣⎤⎡⎥⎦ dY c − R T ⎢⎣t 3 00001a 1 + 2a 2 t + 3a 3 t 2b 1 + 2b 2 t + 3b 3 t 2c 1 + 2c 2 t + 3c 3 t 2001⎤⎤⎡⎥⎦ da 3 + R T ⎢⎣⎤⎡⎥⎦ dc 0 + R T ⎢⎣⎤⎥⎦ dt⎥⎦ dZ c01000t⎤⎥⎦ db 0⎤(3.16)⎥⎦ dc 1Substituting du, dv, dw in (3.15) by the expressions found in (3.16) leads to42

dx p = M 1 dX C + M 2 dY C + M 3 dZ C + M 4 dω + M 5 dϕ + M 6 dκ + M 7 da 0 + M 8 da 1+ M 9 da 2 + M 10 da 3 + M 11 db 0 + M 12 db 1 + M 13 db 2 + M 14 db 3 + M 15 dc 0+ M 16 dc 1 + M 17 dc 2 + M 18 dc 3 + M 19 dtdy p = N 1 dX C + N 2 dY C + N 3 dZ C + N 4 dω + N 5 dϕ + N 6 dκ + N 7 da 0 + N 8 da 1+ N 9 da 2 + N 10 da 3 + N 11 db 0 + N 12 db 1 + N 13 db 2 + N 14 db 3 + N 15 dc 0+ N 16 dc 1 + N 17 dc 2 + N 18 dc 3 + N 19 dt(3.17)M 1 , · · · , M 19 , N 1 , · · · , N 19 denote the partial derivatives of the extended collinearityequation for curves. Detailed derivations are in Appendix A.1. The linearized extendedcollinearity equations by Taylor expansion, ignoring 2nd and higher orderterms can be written as followings.x p + f u0w 0 = M 1 dX C + M 2 dY C + M 3 dZ C + M 4 dω + M 5 dϕ + M 6 dκ + M 7 da 0+M 8 da 1 + M 9 da 2 + M 10 da 3 + M 11 db 0 + M 12 db 1 + M 13 db 2+M 14 db 3 + M 15 dc 0 + M 16 dc 1 + M 17 dc 2 + M 18 dc 3 + M 19 dt+e xy p + f v0w 0 = N 1 dX C + N 2 dY C + N 3 dZ C + N 4 dω + N 5 dϕ + N 6 dκ + N 7 da 0+N 8 da 1 + N 9 da 2 + N 10 da 3 + N 11 db 0 + N 12 db 1 + N 13 db 2+N 14 db 3 + N 15 dc 0 + N 16 dc 1 + N 17 dc 2 + N 18 dc 3 + N 19 dt+e y (3.18)with u 0 , v 0 , w 0 the approximate parameters by (X 0 C, Y 0 C, Z 0 C, ω 0 , ϕ 0 , κ 0 , a 0 0, a 0 1, a 0 2, a 0 3,b 0 0, b 0 1, b 0 2, b 0 3, c 0 0, c 0 1, c 0 2, c 0 3, t 0 ) and e x , e y the stochastic errors of x p , y p the observed photocoordinates with zero expectation respectively.Orientation parameters including43

dx p = M 1 dX C + M 2 dY C + M 3 dZ C + M 4 dω + M 5 dϕ + M 6 dκ + M 7 da 0 + M 8 da 1+ M 9 da 2 + M 10 da 3 + M 11 db 0 + M 12 db 1 + M 13 db 2 + M 14 db 3 + M 15 dc 0+ M 16 dc 1 + M 17 dc 2 + M 18 dc 3 + M 19 dtdy p = N 1 dX C + N 2 dY C + N 3 dZ C + N 4 dω + N 5 dϕ + N 6 dκ + N 7 da 0 + N 8 da 1+ N 9 da 2 + N 10 da 3 + N 11 db 0 + N 12 db 1 + N 13 db 2 + N 14 db 3 + N 15 dc 0+ N 16 dc 1 + N 17 dc 2 + N 18 dc 3 + N 19 dt(3.17)M 1 , · · · , M 19 , N 1 , · · · , N 19 denote the partial derivatives of the extended collinearityequation for curves. Detailed derivations are in Appendix A.1. The linearized extendedcollinearity equations by Taylor expansion, ignoring 2nd and higher orderterms can be written as followings.x p + f u0w 0 = M 1 dX C + M 2 dY C + M 3 dZ C + M 4 dω + M 5 dϕ + M 6 dκ + M 7 da 0+M 8 da 1 + M 9 da 2 + M 10 da 3 + M 11 db 0 + M 12 db 1 + M 13 db 2+M 14 db 3 + M 15 dc 0 + M 16 dc 1 + M 17 dc 2 + M 18 dc 3 + M 19 dt+e xy p + f v0w 0 = N 1 dX C + N 2 dY C + N 3 dZ C + N 4 dω + N 5 dϕ + N 6 dκ + N 7 da 0+N 8 da 1 + N 9 da 2 + N 10 da 3 + N 11 db 0 + N 12 db 1 + N 13 db 2+N 14 db 3 + N 15 dc 0 + N 16 dc 1 + N 17 dc 2 + N 18 dc 3 + N 19 dt+e y (3.18)<strong>with</strong> u 0 , v 0 , w 0 the approximate parameters by (X 0 C, Y 0 C, Z 0 C, ω 0 , ϕ 0 , κ 0 , a 0 0, a 0 1, a 0 2, a 0 3,b 0 0, b 0 1, b 0 2, b 0 3, c 0 0, c 0 1, c 0 2, c 0 3, t 0 ) and e x , e y the stochastic errors of x p , y p the observed photocoordinates <strong>with</strong> zero expectation respectively.Orientation parameters including43

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!