Tri(3-pyridyl)phosphine as Amphiphilic Ligand in the Rhodium ...

Tri(3-pyridyl)phosphine as Amphiphilic Ligand in the Rhodium ... Tri(3-pyridyl)phosphine as Amphiphilic Ligand in the Rhodium ...

znaturforsch.com
from znaturforsch.com More from this publisher
13.07.2015 Views

Tri(3-pyridyl)phosphine as Amphiphilic Ligand in the Rhodium-catalysedHydroformylation of 1-HexeneWolfgang H. Meyer a,b ,RichardJ.Bowen a , and David G. Billing aa School of Chemistry, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africab now: Sasol Technology Research and Development, PO Box 1, Sasolburg, 1947, South AfricaReprint requests to Dr. W. H. Meyer. Fax: ++27 11 522 2034. E-mail: wolfgang.meyer@sasol.comZ. Naturforsch. 2007, 62b, 339 – 345; received November 23, 2006Dedicated to Prof. Helgard G. Raubenheimer on the occasion of his 65 th birthdayThe molecular structure of carbonylchlorobis(tri(3-pyridyl)phosphine)rhodium, 1, has been determinedby X-ray diffraction methods. The N-protonated trifluoromethanesulfonate (triflate) complex3 was synthesised as a model compound for the extraction of a rhodium complex bearing amphiphilicligands which can allow catalyst recycling in the hydroformylation of alkenes by using their distributionbehavior in organic and aqueous solvents of different pH. The high water-solubility of theemployed ligand renders the recycling method as only partly successful due to insufficient extractionfrom the water phase into the organic phase. In the hydroformylation of 1-hexene the productionof n-heptanal is slightly disfavoured when using the ligand tri(3-pyridyl)phosphine as compared totriphenylphosphine which can be ascribed to a higher amount of ligand-deficient active rhodium complexesof the less basic pyridyl phosphine ligand under CO pressure.Key words: Pyridylphosphine, Amphiphilic Ligand, Rhodium, Hydroformylation, X-Ray StructureIntroductionPyridylphosphines [1] as amphiphilic ligands [2]and their metal complexes exhibit a certain solubilityin water depending on the pH value. This property canbe utilised in catalyst-product separation in homogeneouscatalysis and in catalyst recycling [2 – 10]. Somerhodium complexes with mixed phosphines containingthe phenyl group and 2-pyridyl, 3-pyridyl or 4-pyridyl group(s) have been structurally characterised[11] and used as amphiphilic catalysts [9, 11 – 13].The similar steric, but different electronic effects ofthese ligands as compared to triphenylphosphine leadto similar n/i isomer ratios (n-aldehyde/i-aldehyde) butfaster reaction rates in the hydroformylationof l-octene[12, 13]. Rhodium complexes of 2-pyridylphosphinesshow intramolecular coordination of the nitrogen atomof the pyridyl ring in solution [14]. While the structureof a rhodium complex of tri(2-pyridyl)phosphinehas been determined [14], the analogous complex withtri(3-pyridyl)phosphine has only been characterised bythe frequency of its carbonyl stretching vibration, thechemical shift in the 31 P NMR spectrum and by CHNanalysis [15].Results and DiscussionThe complex trans-[Rh(P(3-py) 3 ) 2 (CO)Cl], 1, wassynthesised in our laboratories from the reaction of[Rh(CO) 2 Cl] 2 and 4.2 equivalents of P(3-py) 3 in dichloromethaneat r. t.. Yellow crystals were obtainedvia slow diffusion of pentane into the reaction solutionafter removal of a part of the solvent invacuo. The reaction with P(4-py) 3 , however, gave ayellow powder very insoluble in dimethyl sulfoxide(DMSO) or acetone, and we suspect the formation ofoligomers by binding of the well-accessible nitrogenatoms to other rhodium centres. The chemical shiftof the coordinated ligand in the 31 P NMR spectrumas well as the frequency of the CO stretching vibrationareshowninTable1nexttothosevaluesofthe previous report where 1 was obtained in absoluteethanol from [Rh(CO) 2 Cl] 2 and P(3-py) 3 [15]. Thenew cationic complexes trans-[Rh(P(3-pyH) 3 ) 2 (CO)Cl][CF 3 SO 3 ] 6 , 3, andtrans-[Rh(P(4-pyH) 3 ) 2 (CO)Cl][CF 3 SO 3 ] 6 , 4, (Table 1) can be obtained via reactionof [Rh(CO) 2 Cl] 2 with the protonated tri(3-pyridyl)-phosphine ligand as the tris(trifluoromethanesulfonate)salt [P(3-pyH) 3 ] 3 [CF 3 SO 3 ] 3 or its 4-pyridyl analogue0932–0776 / 07 / 0300–0339 $ 06.00 © 2007 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

<strong>Tri</strong>(3-<strong>pyridyl</strong>)<strong>phosph<strong>in</strong>e</strong> <strong>as</strong> <strong>Amphiphilic</strong> <strong>Ligand</strong> <strong>in</strong> <strong>the</strong> <strong>Rhodium</strong>-catalysedHydroformylation of 1-HexeneWolfgang H. Meyer a,b ,RichardJ.Bowen a , and David G. Bill<strong>in</strong>g aa School of Chemistry, University of <strong>the</strong> Witwatersrand, PO Wits 2050, Johannesburg, South Africab now: S<strong>as</strong>ol Technology Research and Development, PO Box 1, S<strong>as</strong>olburg, 1947, South AfricaRepr<strong>in</strong>t requests to Dr. W. H. Meyer. Fax: ++27 11 522 2034. E-mail: wolfgang.meyer@s<strong>as</strong>ol.comZ. Naturforsch. 2007, 62b, 339 – 345; received November 23, 2006Dedicated to Prof. Helgard G. Raubenheimer on <strong>the</strong> occ<strong>as</strong>ion of his 65 th birthdayThe molecular structure of carbonylchlorobis(tri(3-<strong>pyridyl</strong>)<strong>phosph<strong>in</strong>e</strong>)rhodium, 1, h<strong>as</strong> been determ<strong>in</strong>edby X-ray diffraction methods. The N-protonated trifluoromethanesulfonate (triflate) complex3 w<strong>as</strong> syn<strong>the</strong>sised <strong>as</strong> a model compound for <strong>the</strong> extraction of a rhodium complex bear<strong>in</strong>g amphiphilicligands which can allow catalyst recycl<strong>in</strong>g <strong>in</strong> <strong>the</strong> hydroformylation of alkenes by us<strong>in</strong>g <strong>the</strong>ir distributionbehavior <strong>in</strong> organic and aqueous solvents of different pH. The high water-solubility of <strong>the</strong>employed ligand renders <strong>the</strong> recycl<strong>in</strong>g method <strong>as</strong> only partly successful due to <strong>in</strong>sufficient extractionfrom <strong>the</strong> water ph<strong>as</strong>e <strong>in</strong>to <strong>the</strong> organic ph<strong>as</strong>e. In <strong>the</strong> hydroformylation of 1-hexene <strong>the</strong> productionof n-heptanal is slightly disfavoured when us<strong>in</strong>g <strong>the</strong> ligand tri(3-<strong>pyridyl</strong>)<strong>phosph<strong>in</strong>e</strong> <strong>as</strong> compared totriphenyl<strong>phosph<strong>in</strong>e</strong> which can be <strong>as</strong>cribed to a higher amount of ligand-deficient active rhodium complexesof <strong>the</strong> less b<strong>as</strong>ic <strong>pyridyl</strong> <strong>phosph<strong>in</strong>e</strong> ligand under CO pressure.Key words: Pyridyl<strong>phosph<strong>in</strong>e</strong>, <strong>Amphiphilic</strong> <strong>Ligand</strong>, <strong>Rhodium</strong>, Hydroformylation, X-Ray StructureIntroductionPyridyl<strong>phosph<strong>in</strong>e</strong>s [1] <strong>as</strong> amphiphilic ligands [2]and <strong>the</strong>ir metal complexes exhibit a certa<strong>in</strong> solubility<strong>in</strong> water depend<strong>in</strong>g on <strong>the</strong> pH value. This property canbe utilised <strong>in</strong> catalyst-product separation <strong>in</strong> homogeneouscatalysis and <strong>in</strong> catalyst recycl<strong>in</strong>g [2 – 10]. Somerhodium complexes with mixed <strong>phosph<strong>in</strong>e</strong>s conta<strong>in</strong><strong>in</strong>g<strong>the</strong> phenyl group and 2-<strong>pyridyl</strong>, 3-<strong>pyridyl</strong> or 4-<strong>pyridyl</strong> group(s) have been structurally characterised[11] and used <strong>as</strong> amphiphilic catalysts [9, 11 – 13].The similar steric, but different electronic effects of<strong>the</strong>se ligands <strong>as</strong> compared to triphenyl<strong>phosph<strong>in</strong>e</strong> leadto similar n/i isomer ratios (n-aldehyde/i-aldehyde) butf<strong>as</strong>ter reaction rates <strong>in</strong> <strong>the</strong> hydroformylationof l-octene[12, 13]. <strong>Rhodium</strong> complexes of 2-<strong>pyridyl</strong><strong>phosph<strong>in</strong>e</strong>sshow <strong>in</strong>tramolecular coord<strong>in</strong>ation of <strong>the</strong> nitrogen atomof <strong>the</strong> <strong>pyridyl</strong> r<strong>in</strong>g <strong>in</strong> solution [14]. While <strong>the</strong> structureof a rhodium complex of tri(2-<strong>pyridyl</strong>)<strong>phosph<strong>in</strong>e</strong>h<strong>as</strong> been determ<strong>in</strong>ed [14], <strong>the</strong> analogous complex withtri(3-<strong>pyridyl</strong>)<strong>phosph<strong>in</strong>e</strong> h<strong>as</strong> only been characterised by<strong>the</strong> frequency of its carbonyl stretch<strong>in</strong>g vibration, <strong>the</strong>chemical shift <strong>in</strong> <strong>the</strong> 31 P NMR spectrum and by CHNanalysis [15].Results and DiscussionThe complex trans-[Rh(P(3-py) 3 ) 2 (CO)Cl], 1, w<strong>as</strong>syn<strong>the</strong>sised <strong>in</strong> our laboratories from <strong>the</strong> reaction of[Rh(CO) 2 Cl] 2 and 4.2 equivalents of P(3-py) 3 <strong>in</strong> dichloromethaneat r. t.. Yellow crystals were obta<strong>in</strong>edvia slow diffusion of pentane <strong>in</strong>to <strong>the</strong> reaction solutionafter removal of a part of <strong>the</strong> solvent <strong>in</strong>vacuo. The reaction with P(4-py) 3 , however, gave ayellow powder very <strong>in</strong>soluble <strong>in</strong> dimethyl sulfoxide(DMSO) or acetone, and we suspect <strong>the</strong> formation ofoligomers by b<strong>in</strong>d<strong>in</strong>g of <strong>the</strong> well-accessible nitrogenatoms to o<strong>the</strong>r rhodium centres. The chemical shiftof <strong>the</strong> coord<strong>in</strong>ated ligand <strong>in</strong> <strong>the</strong> 31 P NMR spectrum<strong>as</strong> well <strong>as</strong> <strong>the</strong> frequency of <strong>the</strong> CO stretch<strong>in</strong>g vibrationareshown<strong>in</strong>Table1nexttothosevaluesof<strong>the</strong> previous report where 1 w<strong>as</strong> obta<strong>in</strong>ed <strong>in</strong> absoluteethanol from [Rh(CO) 2 Cl] 2 and P(3-py) 3 [15]. Thenew cationic complexes trans-[Rh(P(3-pyH) 3 ) 2 (CO)Cl][CF 3 SO 3 ] 6 , 3, andtrans-[Rh(P(4-pyH) 3 ) 2 (CO)Cl][CF 3 SO 3 ] 6 , 4, (Table 1) can be obta<strong>in</strong>ed via reactionof [Rh(CO) 2 Cl] 2 with <strong>the</strong> protonated tri(3-<strong>pyridyl</strong>)-<strong>phosph<strong>in</strong>e</strong> ligand <strong>as</strong> <strong>the</strong> tris(trifluoromethanesulfonate)salt [P(3-pyH) 3 ] 3 [CF 3 SO 3 ] 3 or its 4-<strong>pyridyl</strong> analogue0932–0776 / 07 / 0300–0339 $ 06.00 © 2007 Verlag der Zeitschrift für Naturforschung, Tüb<strong>in</strong>gen · http://znaturforsch.com


340 W. H. Meyer et al. · <strong>Tri</strong>(3-<strong>pyridyl</strong>)<strong>phosph<strong>in</strong>e</strong> <strong>as</strong> <strong>Amphiphilic</strong> <strong>Ligand</strong> <strong>in</strong> <strong>the</strong> <strong>Rhodium</strong>-catalysed HydroformylationTable 1. Selected analytical data for trans-[Rh(PR 3 ) 2 (CO)Cl] (R = 3-py, Ph) and trans-[Rh(PR ′ 3) 2 (CO)Cl][CF 3 SO 3 ] 6 (R ′ =3-pyH, 4-pyH).Compound ν(CO), cm −1 δ 31 P{ 1 H}, ppm 1 J Rh−P ,Hz ∆δ 31 P{ 1 H}, ppm 13 C δ(CO), ppm Reference[Rh(P(3-py) 3 ) 2 (CO)Cl] (1) 1989 2 16.7 4 130.2 40.3 186.0 this work[Rh(P(3-py) 3 ) 2 (CO)Cl] (1) 1978 21.9 128.9 – – [15][Rh(PPh 3 ) 2 (CO)Cl] (2) 1978 2 29.6 4 127.0 34.6 187.1 this work“[Rh(P(4-py) 3 ) 2 (CO)Cl]” 1994 2 26.1 5 – 36.8 – this work[Rh(P(3-pyH) 3 ) 2 (CO)Cl][CF 3 SO 3 ] 6 (3) 2014 3 18.8 5 127.3 2.4 – this work[Rh(P(4-pyH) 3 ) 2 (CO)Cl][CF 3 SO 3 ] 6 (4) 2015 3 30.5 5 144.1 6 31.2 – this work1 δ 31 P{ 1 H}(complex)– δ 31 P{ 1 H}(ligand); 2 CH 2 Cl 2 ; 3 CH 3 CN; 4 CDCl 3 ; 5 [D 6 ]DMSO; 6 [D 6 ]acetone.Table 2. Calculated energy values for g<strong>as</strong>-ph<strong>as</strong>e protonationof <strong>phosph<strong>in</strong>e</strong>s.Structure ∆E 0 , kcal mol −1 Structure ∆E 0 , kcal mol −1PPh 3 −244.7 P(2-py) 3 −242.3P(3-py) 3 −229.9 P(4-py) 3 −224.0[P(4-pyH) 3 ] 3 [CF 3 SO 3 ] 3 <strong>in</strong> acetonitrile <strong>as</strong> yellow precipitates.Table 1 also <strong>in</strong>cludes <strong>the</strong> relevant referencecompound trans-[Rh(PPh 3 ) 2 (CO)Cl], 2. The coord<strong>in</strong>ativesaturation of <strong>the</strong> nitrogen atoms of <strong>the</strong> protonated4-<strong>pyridyl</strong> <strong>phosph<strong>in</strong>e</strong> ligand w<strong>as</strong> expected to prevent <strong>the</strong>previously noticed presumed oligomerisation when us<strong>in</strong>g<strong>the</strong> non-protonated ligand. Complex 3 can also beobta<strong>in</strong>ed via direct protonation of 1 with triflic acid <strong>in</strong>dichloromethane.While trans-[Rh(P(2-py) 3 ) 2 (CO)Cl], 5, showsadditional<strong>in</strong>tramolecular coord<strong>in</strong>ation by <strong>the</strong> nitrogenatom of one <strong>pyridyl</strong> r<strong>in</strong>g <strong>in</strong> solution [14], such behaviorw<strong>as</strong> not observed for complex 1.The <strong>in</strong>cre<strong>as</strong>e <strong>in</strong> ν(CO) follows <strong>the</strong> sequence:2 < 1 < “[Rh(P(4-py) 3 ) 2 (CO)Cl]” < 3 < 4,and is <strong>in</strong> l<strong>in</strong>e with <strong>the</strong> decre<strong>as</strong>e <strong>in</strong> <strong>the</strong> b<strong>as</strong>icity or electrondonor ability <strong>in</strong> <strong>the</strong> sequence:PPh 3 > P(3-py) 3 > P(4-py) 3 >> [P(3-pyH) 3 ] 3+ > [P(4-pyH) 3 ] 3+ ,caus<strong>in</strong>g a more electropositive rhodium centre and <strong>the</strong>well-known effect of less electron donation to <strong>the</strong> π ∗orbital of <strong>the</strong> CO moiety from <strong>the</strong> metal, result<strong>in</strong>g <strong>in</strong>a higher bond order of <strong>the</strong> CO fragment and consequentlya higher ν(CO) stretch<strong>in</strong>g vibration [16].The trend of ligand b<strong>as</strong>icity w<strong>as</strong> confirmed bymolecular model<strong>in</strong>g calculations of <strong>the</strong> energy profile<strong>as</strong>sociated with <strong>the</strong> reaction:<strong>phosph<strong>in</strong>e</strong> + H + −→ <strong>phosph<strong>in</strong>e</strong>-H +Protonation of <strong>the</strong> ligands decre<strong>as</strong>es <strong>the</strong> b<strong>as</strong>icityquite considerably (Table 2).Table 3. Selected bond lengths (Å) and angles (deg) for 1with estimated standard deviations <strong>in</strong> paren<strong>the</strong>ses.Rh(1)–C(1) 1.811(2) Rh(1)–P(1) 2.3336(5)Rh(1)–P(2) 2.3232(5) Rh(1)–Cl(1) 2.3623(5)C(1)–O(1) 1.138(2)O(1)–C(1)–Rh 176.1(2) C(1)–Rh(1)–P(2) 92.44(7)C(1)–Rh(1)–P(1) 89.93(7) P(2)–Rh(1)–Cl(1) 85.712(19)P(1)–Rh(1)–Cl(1) 92.455(18) P(2)–Rh(1)–P(1) 172.898(17)C(1)–Rh(1)–Cl(1) 175.03(8)Fig. 1. ORTEP plot of complex 1.The crystal structure of 1 (Fig. 1) is similar to <strong>the</strong>structures of <strong>the</strong> PPh 3 [10 – 13], P(2-py) 3 [14], PPh 2 (2-py) [14, 15] and PPh 2 (3-py) [11] analogues with a nearsquare planar coord<strong>in</strong>ation of <strong>the</strong> rhodium centre and<strong>the</strong> two <strong>phosph<strong>in</strong>e</strong> ligands <strong>in</strong> trans position (see Table 3for selected bond lengths and angles and Table 4 forcrystal data and ref<strong>in</strong>ement details).In <strong>the</strong> hydroformylation of 1-hexene with an <strong>in</strong>situ system consist<strong>in</strong>g of acetylacetonatodicarbonylrhodiumand ei<strong>the</strong>r triphenyl<strong>phosph<strong>in</strong>e</strong> or tri(3-<strong>pyridyl</strong>)<strong>phosph<strong>in</strong>e</strong><strong>as</strong> ligand some differences are apparentconcern<strong>in</strong>g <strong>the</strong> ratio of formed n-aldehyde to i-aldehyde, turnover number and preformation versusnon-preformation (Table 5). Under preformation conditions,a higher n/i ratio <strong>as</strong> well <strong>as</strong> higher turnovernumbers are achieved us<strong>in</strong>g triphenyl<strong>phosph<strong>in</strong>e</strong> <strong>as</strong> ligand(compare runs 1, 2 and 3 with 4, 5 and 6). The re-


W. H. Meyer et al. · <strong>Tri</strong>(3-<strong>pyridyl</strong>)<strong>phosph<strong>in</strong>e</strong> <strong>as</strong> <strong>Amphiphilic</strong> <strong>Ligand</strong> <strong>in</strong> <strong>the</strong> <strong>Rhodium</strong>-catalysed Hydroformylation 341Table 4. Crystal data and ref<strong>in</strong>ement details for 1.FormulaC 31 H 24 ClN 6 OP 2 RhFormula weight 696.86Temperature [K] 293(2)Wavelength [Å] 0.71073Crystal size [mm 3 ] 0.40 × 0.22 × 0.20Crystal systemmonocl<strong>in</strong>icSpace group P2 1 /cUnit cell dimensions [Å], [deg] a = 12.0017(13)b = 13.8843(15)c = 18.4256(19)β = 105.730(2)Volume [Å 3 ] 2955.4(5)Z 4Density (calculated) [mg m −3 ] 1.566F(000) [e] 1408Absorption coefficient [mm −1 ] 0.813Absorption correctionempiricalMax. and m<strong>in</strong>. transmission 0.8542 / 0.7368Theta range for data 1.76 to 28.31collection [ ◦ ]hkl ranges −15 ≤ h ≤ 10,−17 ≤ k ≤ 18,−23 ≤ l ≤ 24Reflections collected 20282Completeness to θ = 28.31 ◦ 99.5 %Independent reflections 7325 (R <strong>in</strong>t = 0.0233)Data / parameters 7325 / 403Goodness-of-fit on F 2 1.036F<strong>in</strong>al R <strong>in</strong>dices [I ≥ 2σ(I)] R1 = 0.0255, wR2 = 0.0620R <strong>in</strong>dices (all data)* R1 = 0.0372, wR2 = 0.0657Largest diff. peak and hole [eÅ −3 ] 0.316 / −0.313* w =1/[σ 2 (F o 2 )+(0.0342P) 2 where P =(F o 2 + 2F c 2 )/3action is f<strong>as</strong>ter for triphenyl<strong>phosph<strong>in</strong>e</strong> <strong>as</strong> w<strong>as</strong> observedby monitor<strong>in</strong>g <strong>the</strong> pressure drop of <strong>the</strong> hydroformylationreaction. These differences are less obvious ifcatalyst preformation is not performed: <strong>the</strong> n/i ratio isslightly higher at lower L:Rh ratios (compare runs 7and 8 with 10 and 11), but fairly equal at a L:Rh ratioof 10. Turnover numbers are <strong>in</strong> general slightly higherwith triphenyl<strong>phosph<strong>in</strong>e</strong> <strong>as</strong> ligand. The trends are lessconsistent than <strong>in</strong> <strong>the</strong> c<strong>as</strong>e of catalyst preformation.Consider<strong>in</strong>g equal steric bulk of <strong>the</strong> two differentligands, <strong>the</strong>ir electronic properties could be responsiblefor <strong>the</strong> different n/i ratios: For <strong>the</strong> more b<strong>as</strong>ic triphenyl<strong>phosph<strong>in</strong>e</strong>ligand <strong>the</strong> equilibrium of[RhL 2 (CO)H]+CO ⇄ [RhL(CO) 2 H]+L (1)would be shifted fur<strong>the</strong>r to <strong>the</strong> left side than for <strong>the</strong><strong>pyridyl</strong><strong>phosph<strong>in</strong>e</strong> which <strong>in</strong> turn would result <strong>in</strong> a morepreferred n-aldehyde formation due to <strong>the</strong> higher stericbulk near <strong>the</strong> rhodium centre. Simultaneously, a higherstabilis<strong>in</strong>g effect of <strong>the</strong> more b<strong>as</strong>ic ligand can be responsiblefor higher turnover numbers.Table 5. Catalytic results of <strong>the</strong> hydroformylation of 1-hexene.Run <strong>Ligand</strong> L:Rh Time (m<strong>in</strong>) n/i TON1 PPh 3 10.0 30 3.4 3002 PPh 3 10.0 30 5.6 3003 PPh 3 10.0 30 4.4 3104 P(3-py) 3 10.0 30 3.3 1905 P(3-py) 3 10.0 30 3.1 2606 P(3-py) 3 10.0 30 3.5 2507 PPh 3 2.0 180 2.6 4208 PPh 3 3.0 120 2.5 4209 PPh 3 10.0 120 2.9 40010 P(3-py) 3 2.0 120 1.9 46011 P(3-py) 3 3.5 120 2.3 34012 P(3-py) 3 10.0 120 3.2 380Run 1 – 5 <strong>in</strong> 20 mL cyclohexane, run 6 – 12 <strong>in</strong> 20 mL toluene. Run1 – 6: 1 h preformation at 80 ◦ C, 20 bar CO/H 2 . Run 7 – 12: no preformation.[Rh(CO) 2 acac]: 9.4 mg, 1-hexene: 2.0 g, T =80 ◦ C, P =20 bar CO/H 2 .To <strong>as</strong>sess <strong>the</strong> extractability of <strong>the</strong> ligand ei<strong>the</strong>r froman organic ph<strong>as</strong>e <strong>in</strong>to a water ph<strong>as</strong>e at low pH or fromwater <strong>in</strong>to an organic ph<strong>as</strong>e at higher pH, <strong>the</strong> distributioncoefficient (D = c(<strong>in</strong> H 2 O)/[c(<strong>in</strong> H 2 O) + c(<strong>in</strong> organicph<strong>as</strong>e)]) [13] w<strong>as</strong> established <strong>in</strong> a cyclohexanewatermixture at different (f<strong>in</strong>al) pH values (Table 6and Fig. 2). Less than 3 % of <strong>the</strong> P(3-py) 3 ligand rema<strong>in</strong>s<strong>in</strong> <strong>the</strong> chosen organic ph<strong>as</strong>e <strong>in</strong> a s<strong>in</strong>gle extractionwith water of pH 2.5. However, a re-extraction of <strong>the</strong>ligand from water of pH ∼ 7 leaves about 45 % <strong>in</strong> <strong>the</strong>water ph<strong>as</strong>e. The ligand P(3-py) 3 shows <strong>the</strong> expectedtrends when compar<strong>in</strong>g it to <strong>the</strong> already <strong>in</strong>vestigatedamphiphilic ligands PPh(3-py) 2 and PPh 2 (3-py) [13]by ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a higher water-solubility up to higherpH values. The distribution coefficient appears to bemost favourable for PPh 2 (3-py) of <strong>the</strong> ligand seriesPPh n (3-py) 3−n (n = 0, 1, 2) with respect to <strong>the</strong> desiredsolubility switch from aqueous to organic solution depend<strong>in</strong>gon <strong>the</strong> pH value [13].In two recycl<strong>in</strong>g experiments, extraction of <strong>the</strong><strong>pyridyl</strong><strong>phosph<strong>in</strong>e</strong> ligand and <strong>the</strong> rhodium complexes<strong>in</strong>to a water ph<strong>as</strong>e and <strong>the</strong> re-extraction <strong>in</strong>to toluene atdifferent pH values of <strong>the</strong> water ph<strong>as</strong>e w<strong>as</strong> attempted.In both c<strong>as</strong>es <strong>the</strong> recycled catalyst showed activity anda constant selectivity with<strong>in</strong> experimental error. Accord<strong>in</strong>gto ICP-AES analysis, 99.3 % ± 0.4 % of <strong>the</strong>employed rhodium <strong>in</strong> run 2 (Table 7) w<strong>as</strong> extracted<strong>in</strong>to <strong>the</strong> water ph<strong>as</strong>e, and 62.7 % ± 0.2 % recycled andused <strong>in</strong> run 2a. Although run 2a gave satisfactory results,<strong>the</strong> extraction procedure w<strong>as</strong> not acceptable becauseof high rhodium losses due to an <strong>in</strong>sufficient distributioncoefficient <strong>in</strong> <strong>the</strong> different solvents, and dueto visible decomposition produc<strong>in</strong>g a brown volumi-


342 W. H. Meyer et al. · <strong>Tri</strong>(3-<strong>pyridyl</strong>)<strong>phosph<strong>in</strong>e</strong> <strong>as</strong> <strong>Amphiphilic</strong> <strong>Ligand</strong> <strong>in</strong> <strong>the</strong> <strong>Rhodium</strong>-catalysed HydroformylationpH 0.69 1.55 2.55 3.89 4.5 7.2f 0.962 0.967 0.973 0.827 0.617 0.422f ′ 0.959 0.965 0.970 0.815 0.625 0.494f av 0.960 0.966 0.972 0.821 0.621 0.458Table 6. Distribution coefficientof P(3-py) 3 <strong>in</strong> water/cyclohexane at different pHvalues.Table 7. Catalytic results of <strong>the</strong> recycle runs.Run <strong>Ligand</strong> L:Rh Time/m<strong>in</strong> n/i Yield/% TON rel. Rh amount/%1 P(3-py) 3 10.0 30 3.5 52 250 1001a P(3-py) 3 > 10.0 45 3.1 42 – not determ<strong>in</strong>ed2 P(3-py) 3 10.0 30 3.1 51 260 1002a P(3-py) 3 > 10.0 30 2.9 53 680 63All runs: Preformation and catalysis at 80 ◦ C, 20 bar CO/H 2 <strong>in</strong> 20 mL toluene, hydroformylation of 2.0 g 1-hexene. Run 1 and 2:[Rh(CO) 2 acac]: 9.4 mg. Run 1a: extracted at pH 1 <strong>in</strong>to water (3 × 5 mL), re-extracted at pH 6 <strong>in</strong>to toluene (3 × 6.7 mL). Run 2a: extractedat pH 1 <strong>in</strong>to water (4 × 5 mL), re-extracted at pH 9 <strong>in</strong>to toluene (4 × 5mL).Fig. 2. Dependence of distribution coefficient on pH valuefor P(3-py) 3 <strong>in</strong> cyclohexane/water.nous matter between <strong>the</strong> organic and water ph<strong>as</strong>e. Therhodium recovery of about 63 % is similar to that ofvan Leeuwen’s group of 57 % us<strong>in</strong>g <strong>the</strong> ligand PPh(3-py) 2 who also reported an unsatisfactory retention ofcatalytic activity [13].ConclusionA protonated complex trans-[Rh(P(3-pyH) 3 ) 2 (CO)Cl][CF 3 SO 3 ] 6 , 3, can be formed ei<strong>the</strong>r via <strong>the</strong> reactionof <strong>the</strong> triply protonated tri(3-<strong>pyridyl</strong>)<strong>phosph<strong>in</strong>e</strong>ligand with [Rh(CO) 2 Cl] 2 <strong>as</strong> <strong>the</strong> triflate salt or bydirect protonation of trans-[Rh(P(3-py) 3 ) 2 (CO)Cl], 1,with triflic acid. Its formation toge<strong>the</strong>r with <strong>the</strong> distributionbehaviour of <strong>the</strong> amphiphilic ligand <strong>in</strong> mixturesof water and organic solvents at different pHvalues suggests <strong>the</strong> possibility of a recycl<strong>in</strong>g procedureof rhodium compounds. Such catalyst recycl<strong>in</strong>gw<strong>as</strong>, however, found not fe<strong>as</strong>ible due to low catalystrecycle and visible catalyst decomposition. Thus, <strong>the</strong>ligand P(3-py) 3 does not show advantages over already<strong>in</strong>vestigated ligands <strong>in</strong> <strong>the</strong> series PPh n (3-py) 3−n(n =0,1,2).A comparison with PPh 3 of catalyst selectivity withrespect to formation of n-aldehydes and i-aldehydesshowed a slightly lower n/i ratio when us<strong>in</strong>g P(3-py) 3under <strong>the</strong> chosen conditions. S<strong>in</strong>ce <strong>the</strong> cone angle andsteric bulk of both ligands can be considered identical,<strong>the</strong> different b<strong>as</strong>icity of <strong>the</strong> <strong>phosph<strong>in</strong>e</strong>s is consideredresponsible for this effect. It is presumed that both<strong>the</strong> lower electron density on <strong>the</strong> rhodium centre anda higher catalysis contribution of <strong>phosph<strong>in</strong>e</strong> liganddeficientactive species <strong>as</strong> compared to PPh 3 contributeto this observation.Experimental SectionG<strong>as</strong> chromatography w<strong>as</strong> performed on a Hewlett HP3396A <strong>in</strong>strument fitted with a flame ionisation detectorand with dimethylpolysiloxane <strong>as</strong> stationary ph<strong>as</strong>e, anoven temperature of 250 ◦ C and a flow rate of 0.8 mmm<strong>in</strong> −1 of helium. NMR spectroscopic analysis w<strong>as</strong> carriedout on a Bruker Advance DRX 400 <strong>in</strong>strument. Infraredspectra were recorded with a Bruker Vector 22 <strong>in</strong>strument.<strong>Rhodium</strong> concentrations were determ<strong>in</strong>ed on anICP-AES <strong>in</strong>strument Ciros by Spectro. For <strong>the</strong> determ<strong>in</strong>ationof <strong>phosph<strong>in</strong>e</strong> concentrations <strong>the</strong> UV-vis <strong>in</strong>strumentCary 100 by Varian w<strong>as</strong> used. Solvents and 1-hexene wereobta<strong>in</strong>ed from Aldrich and purified us<strong>in</strong>g standard laboratoryprocedures. <strong>Tri</strong>flic acid, sodium carbonate, sodiumacetate, magnesium sulphate, hydrochloric acid (PA), nitricacid (PA) and sulphuric acid (PA) were purch<strong>as</strong>edfrom Aldrich and used without fur<strong>the</strong>r treatment. Bis(dicarbonylchlororhodium)and acetylacetonatodi(carbonyl)-rhodium were obta<strong>in</strong>ed from Strem. <strong>Tri</strong>(3-<strong>pyridyl</strong>)<strong>phosph<strong>in</strong>e</strong>[23], tri(4-<strong>pyridyl</strong>)<strong>phosph<strong>in</strong>e</strong> [23] and carbonylchlorobis(triphenyl<strong>phosph<strong>in</strong>e</strong>)rhodium[24] were syn<strong>the</strong>sised accord<strong>in</strong>gto published procedures. All manipulations werecarried out under an <strong>in</strong>ert atmosphere us<strong>in</strong>g Schlenk techniques.


W. H. Meyer et al. · <strong>Tri</strong>(3-<strong>pyridyl</strong>)<strong>phosph<strong>in</strong>e</strong> <strong>as</strong> <strong>Amphiphilic</strong> <strong>Ligand</strong> <strong>in</strong> <strong>the</strong> <strong>Rhodium</strong>-catalysed Hydroformylation 343trans-[Rh(P(3-py) 3 ) 2 (CO)Cl] (1)To 100 mg of [Rh(CO) 2 Cl] 2 (0.257 mmol) <strong>in</strong> 4 mLof CH 2 Cl 2 a solution of 280 mg P(3-py) 3 (1.055 mmol,4.1eq.)<strong>in</strong>4mLofCH 2 Cl 2 w<strong>as</strong> added at r. t. with stirr<strong>in</strong>g.After 2 h <strong>the</strong> volume of <strong>the</strong> solvent w<strong>as</strong> reduced toabout 2 mL <strong>in</strong> vacuo, <strong>the</strong> rema<strong>in</strong><strong>in</strong>g solution layered with3mLofn-pentane, and <strong>the</strong> mixture stored at −20 ◦ C. Yellowcrystals (197 mg) were obta<strong>in</strong>ed after 2 d correspond<strong>in</strong>gtoayieldof55%.–IR(CH2 Cl 2 ): ν = 1989 cm −1(CO). – 1 H NMR (400.1 MHz, CDCl 3 ): δ = 8.83 (br,m, 1H), 8.73 (m, 6H), 8.08 (m, br, 6H), 7.41 (m, 6H). –13 C NMR (75.5 MHz, CDCl 3 ): δ = 186.0 (s, CO), 154.1(s), 151.9 (s), 142.0 (s), 126.9 (m, C ipso ), 123.6 (s). – 31 P{ 1 H} NMR (162.0 MHz, CDCl 3 ): δ = 16.7 (d, 1 J Rh−P =130.2 Hz). – C 31 H 24 N 6 ClOP 2 Rh (696.9): calcd. C 53.43,H 3.47, N 12.06; found C 53.27, H 3.63, N 11.98.trans-[Rh(P(3-pyH) 3 ) 2 (CO)Cl][CF 3 SO 3 ] 6 (3)To 50 mg of [Rh(CO) 2 Cl] 2 (0.129 mmol) <strong>in</strong> 3 mLof CH 2 Cl 2 a solution of 377 mg [P(3-pyH) 3 ][CF 3 SO 3 ] 3(0.527 mmol, 4.1 eq.) <strong>in</strong> 3 mL of CH 3 CN w<strong>as</strong> added at r. t.with stirr<strong>in</strong>g. After 2 h, 342 mg of <strong>the</strong> precipitated complexw<strong>as</strong> collected <strong>as</strong> a yellow powder <strong>in</strong> 83 % yield. – IR(CH 3 CN): ν = 2014 cm −1 (CO). – 1 H NMR (400.1 MHz,[D 6 ]DMSO): δ = 13.4 (s, br, 6H, NH), 8.97 (m, br, 6H) and8.86 (m, 6H), 8.29 (m, 6H), 7.75 (m, 6H), 2.06 (s, 1.5H,CH 3 CN). – 31 P { 1 H} NMR (162.0 MHz, [D 6 ]DMSO): δ =18.8 (d, 1 J Rh−P = 127.3 Hz). – C 37 H 30 N 6 ClF 18 O 19 S 6 P 2 Rh(1597.3): calcd. C 27.82, H 1.89, N 5.26; found C 27.71,H 2.03, N 5.29.[P(3-pyH) 3 ][CF 3 SO 3 ] 3To 150 mg of P(3-py) 3 (0.565 mmol) <strong>in</strong> 5 mL ofCH 2 Cl 2 /CH 3 CN 270 mg of CF 3 SO 3 H (1.8 mmol, 3.2 eq.)w<strong>as</strong> added dropwise with stirr<strong>in</strong>g. The precipitate obta<strong>in</strong>edafter reduc<strong>in</strong>g <strong>the</strong> volume of <strong>the</strong> reaction mixture to almostdryness w<strong>as</strong> w<strong>as</strong>hed with small amounts of coldCH 2 Cl 2 and dried <strong>in</strong> vacuo result<strong>in</strong>g <strong>in</strong> 390 mg of a whitepowder correspond<strong>in</strong>g to a yield of 96 %. – 1 H NMR(400.1 MHz, [D 6 ]DMSO): δ = 13.5 (s, br, 3H, NH), 9.13(m, 3H), 9.06 (m, 3H), 8.59 (m, 3H), 7.98 (m, 3H). –31 P{ 1 H} NMR (162.0 MHz, [D 6 ]DMSO): δ = 16.4 (s). –C 18 H 15 N 3 F 9 O 9 S 3 P (715.5): calcd. C 30.22, H 2.11, N 5.87;found C 29.49, H 2.37, N 5.80.[P(4-pyH) 3 ][CF 3 SO 3 ] 3The procedure described above gave similar yields for<strong>the</strong> correspond<strong>in</strong>g 4-<strong>pyridyl</strong> compound. – 1 H NMR (ppm,400.1 MHz, [D 6 ]DMSO): δ = 12.6 (s, br, 3H, NH), 8.87(m,3H),7.83(m,3H).– 31 P { 1 H} NMR (162.0 MHz,[D 6 ]DMSO): δ = −0.7 (s). – C 18 H 15 N 3 F 9 O 9 S 3 P (715.5):calcd. C 30.22, H 2.11, N 5.87; found C 29.87, H 2.25,N 5.89.trans-[Rh(P(4-pyH) 3 ) 2 (CO)Cl][CF 3 SO 3 ] 6 (4)The procedure described above for 3 gave similar yieldsof 4. – IR (CH 3 CN): ν = 2015 cm −1 (CO). – 1 HNMR(400.1 MHz, [D 6 ]DMSO): δ = 14.47 (s, br, 6H, NH), 8.91(d, 3 J HH = 5.1 Hz, 12H), 7.94 (d, 3 J HH = 5.1 Hz, 12H). – 31 P{ 1 H} NMR (162.0 MHz, [D 6 ]acetone, 203K): δ = 34.7 (d,1 J Rh−P = 144.1 Hz). – C 37 H 30 N 6 ClF 18 O 19 S 6 P 2 Rh (1597.3):calcd. C 27.82, H 1.89, N 5.26; found C 27.35, H 2.05,N 5.11.X-Ray structure determ<strong>in</strong>ationIntensity data were collected at ambient temperature ona Bruker SMART 1K CCD area detector diffractometerwith graphite-monochromated MoK α radiation. Data reductionw<strong>as</strong> carried out us<strong>in</strong>g <strong>the</strong> program SAINT+ [25],and absorption corrections were made us<strong>in</strong>g <strong>the</strong> programSADABS [25].The crystal structure of 1 w<strong>as</strong> solved by Direct Methodsus<strong>in</strong>g SHELXTL [26]. Non-hydrogen atoms were firstref<strong>in</strong>ed isotropically, followed by anisotropic ref<strong>in</strong>ement byfull-matrix le<strong>as</strong>t-squares calculations b<strong>as</strong>ed on F 2 us<strong>in</strong>gSHELXL97 [27]. Hydrogen atoms were positioned geometricallyand allowed to ride on <strong>the</strong>ir respective parent atomsfor <strong>the</strong> f<strong>in</strong>al ref<strong>in</strong>ements, with isotropic <strong>the</strong>rmal parameters,whilst allow<strong>in</strong>g <strong>the</strong> C–H distance to ref<strong>in</strong>e. Diagrams andpublication material were generated us<strong>in</strong>g W<strong>in</strong>GX [28] andPLATON [29].CCDC 628116 conta<strong>in</strong>s <strong>the</strong> supplementary crystallographicdata for this paper. These data can be obta<strong>in</strong>ed freeof charge from The Cambridge Crystallographic Data Centrevia www.ccdc.cam.ac.uk/data request/cif.CatalysisCatalytic hydroformylation runs were performed <strong>in</strong> a50 mL sta<strong>in</strong>less steel autoclave equipped with a dropp<strong>in</strong>gfunnel <strong>in</strong> <strong>the</strong> c<strong>as</strong>e of preformation runs. About 13.4 mg[Rh(CO) 2 acac] (M = 258.0 g mol −1 , 51.9 µmol) and <strong>the</strong> desiredamount of <strong>phosph<strong>in</strong>e</strong> ligand were dissolved <strong>in</strong> 20 mL oftoluene or cyclohexane and transferred to <strong>the</strong> autoclave afterstirr<strong>in</strong>g for 5 m<strong>in</strong> at r. t.. The catalyst w<strong>as</strong> preformed at 80 ◦ Cand20barCO/H 2 (1 : 1) followed by <strong>the</strong> addition of 2.0 g 1-hexene via <strong>the</strong> dropp<strong>in</strong>g funnel. If preformation w<strong>as</strong> not carriedout, 2.0 g 1-hexene w<strong>as</strong> added to <strong>the</strong> catalyst solution beforetransfer of this solution to <strong>the</strong> autoclave and subsequen<strong>the</strong>at<strong>in</strong>g up to 80 ◦ C under 20 bar CO/H 2 (1 : 1). In all c<strong>as</strong>es<strong>the</strong> reactor w<strong>as</strong> isolated from <strong>the</strong> g<strong>as</strong> supply and <strong>the</strong> pressuredrop monitored over time. The reactor w<strong>as</strong> cooled down <strong>in</strong>ice water after <strong>the</strong> desired reaction time and <strong>the</strong> solution w<strong>as</strong>


344 W. H. Meyer et al. · <strong>Tri</strong>(3-<strong>pyridyl</strong>)<strong>phosph<strong>in</strong>e</strong> <strong>as</strong> <strong>Amphiphilic</strong> <strong>Ligand</strong> <strong>in</strong> <strong>the</strong> <strong>Rhodium</strong>-catalysed Hydroformylationsubmitted to a vacuum distillation to separate volatiles from<strong>the</strong> catalyst and excess ligand. This solution w<strong>as</strong> transferred<strong>in</strong>to a three-necked fl<strong>as</strong>k conta<strong>in</strong><strong>in</strong>g a suspension of a sufficientamount (about 0.5 g) of LiAlH 4 <strong>in</strong> 20 mL of e<strong>the</strong>r toreduce <strong>the</strong> formed aldehydes to <strong>the</strong> alcohols overnight. Afteraqueous workup (pH ∼ 1) <strong>the</strong> alcohols <strong>as</strong> well <strong>as</strong> unreactedalkenes were extracted three times <strong>in</strong>to e<strong>the</strong>r. The comb<strong>in</strong>edorganic ph<strong>as</strong>es were dried over MgSO 4 and analysed via g<strong>as</strong>chromatography us<strong>in</strong>g n-hexanol <strong>as</strong> a standard.Recycl<strong>in</strong>g experiments were carried out with preformation(see above). After <strong>the</strong> catalysis <strong>the</strong> reaction mixture w<strong>as</strong>transferred to a Schlenk tube under argon and extracted threetimes with 2 × 7mLand1× 6 mL of distilled water of pH 1(H 2 SO 4 ). The rema<strong>in</strong><strong>in</strong>g organic ph<strong>as</strong>e w<strong>as</strong> dried and reducedwith LiAlH 4 <strong>as</strong> described above. The aqueous ph<strong>as</strong>e(a part w<strong>as</strong> kept for rhodium analysis) w<strong>as</strong> neutralised us<strong>in</strong>gNa 2 CO 3 and extracted with toluene (7 mL, 7 mL, 6 mL) atpH 6 for run 1 or at pH 9 after addition of NaAc for run 2. Thedeterm<strong>in</strong>ation of <strong>the</strong> rhodium amounts w<strong>as</strong> carried out viaICP-AES after digest<strong>in</strong>g all relevant rhodium residues withaqua regia.The distribution coefficient of P(3-py) 3 <strong>in</strong> watercyclohexanemixtures w<strong>as</strong> determ<strong>in</strong>ed at different f<strong>in</strong>al pHvalues (H 2 SO 4 <strong>as</strong> acid, NaOH <strong>as</strong> b<strong>as</strong>e) accord<strong>in</strong>g to <strong>the</strong> publishedformula [13]. Portions of 2 mL of <strong>the</strong> same amountof P(3-py) 3 <strong>in</strong> cyclohexane were shaken with 2 mL of waterof a certa<strong>in</strong> pH. After settl<strong>in</strong>g for about 15 m<strong>in</strong> bothph<strong>as</strong>es were analysed via UV-vis at 259 nm (organic ph<strong>as</strong>e)or 261 nm (aqueous ph<strong>as</strong>e) to determ<strong>in</strong>e <strong>the</strong> <strong>phosph<strong>in</strong>e</strong>concentration.Computational detailsAll geometry optimisations were performed with <strong>the</strong>DMol 3 Density Functional Theory (DFT) code [30 – 32] <strong>as</strong>implemented <strong>in</strong> <strong>the</strong> MaterialsStudio TM (Version 3.2) programsuite rele<strong>as</strong>ed by Accelrys Inc. The revised PBE nonlocalgeneralised gradient approximation (GGA) exchangecorrelationfunctional of Hammer, Hanson and Nørskov [33](termed RPBE), w<strong>as</strong> used throughout this study. DMol 3utilises a b<strong>as</strong>is set of numeric atomic functions, which areexact solutions to <strong>the</strong> Kohn-Sham equations for <strong>the</strong> atoms;<strong>in</strong> <strong>the</strong> present study an all electron polarised split valenceb<strong>as</strong>is set, termed double numeric polarised (DNP) h<strong>as</strong> beenused [34]. All geometry optimisations employed highly efficientdelocalised <strong>in</strong>ternal coord<strong>in</strong>ates [35]. The tolerance forconvergence of <strong>the</strong> SCF density w<strong>as</strong> set to 10 −5 Ha while <strong>the</strong>tolerance for energy convergence w<strong>as</strong> set to 2×10 −6 Ha. Additionalconvergence criteria <strong>in</strong>clude <strong>the</strong> tolerance for convergedgradient (4×10 −4 Ha Å −1 ) and <strong>the</strong> tolerance for convergedatom displacement (5 × 10 −4 Å).AcknowledgementThe authors thank Jan-Albert van den Berg from S<strong>as</strong>olTechnology, R&D, Analytical Solutions for <strong>the</strong> molecularmodel<strong>in</strong>g calculations.[1] G. R. Newkome, Chem. Rev. 1993, 93, 2067.[2] P. C. J. Kamer, J. N. H. Reek, P. W. N. M. van Leeuwen<strong>in</strong> Aqueous-Ph<strong>as</strong>e Organometallic Catalysis, 2 nd ed.(Eds.: B. Cornils, W. A. Herrmann), Wiley-VCH,We<strong>in</strong>heim, 2004, pp. 686.[3] M. S. Goedheijt, P. C. J. Kamer, J. N. H. Reek,P. W. N. M. van Leeuwen <strong>in</strong> Aqueous-Ph<strong>as</strong>eOrganometallic Catalysis, 2 nd ed. (Eds.: B. Cornils,W. A. Herrmann), Wiley-VCH, We<strong>in</strong>heim, 2004,pp. 121.[4] Q. Peng, Y. Yang, C. Wang, X. Liao, Y. Yuan, CatalysisLett. 2003, 88, 219.[5] A. Solsona, J. Suades, R. Mathieu, J. Organomet.Chem. 2003, 669, 172.[6] S. Bischoff, M. Kant, Catalysis Today 2001, 66, 183.[7] M. S. Goedheijt, B. E. Hanson, J. N. H. Reek, P. C. J.Kamer, P. W. N. M. van Leeuwen, J. Am. Chem. Soc.2000, 122, 1650.[8] M. Karlsson, M. Johansson, C. Andersson, J. Chem.Soc., Dalton Trans. 1999, 4187.[9] K. Kurtev, D. Ribola, R. A. Jones, D. J. Cole-Hamilton,G. Wilk<strong>in</strong>son, J. Chem. Soc., Dalton Trans. 1980, 55.[10] A. Buhl<strong>in</strong>g, J. W. Elgersma, S. Nkrumah, P. C. J.Kamer, P. W. N. M. van Leeuwen, J. Chem. Soc., Dalton.Trans. 1996, 2143.[11] R. H. Lait<strong>in</strong>en, J. So<strong>in</strong><strong>in</strong>en, P. Suomala<strong>in</strong>en, T. A.Pakkanen, M. Ahlgrén, J. Pursia<strong>in</strong>en, Acta Chem.Scand. 1999, 53, 335.[12] A. Buhl<strong>in</strong>g, P. C. J. Kamer, P. W. N. M. van Leeuwen,J. Mol. Catal. A 1995, 98, 69.[13] A. Buhl<strong>in</strong>g, P. C. J. Kamer, P. W. N. M. van Leeuwen,J. W. Elgersma, J. Mol. Catal. A 1997, 116, 297.[14] K. Wajda, F. Pruchnik, T. Lis, Inorg. Chim. Acta 1980,40, 207.[15] K. Wajda-Hermanowicz, F. P. Pruchnik, TransitionMet. Chem. 1988, 13, 101.[16] J. D. Atwood, Inorganic and Organometallic ReactionMechanisms, 2 nd ed., Wiley-VCH, New York, 1997,pp. 95.[17] A. L. Rhe<strong>in</strong>gold, S. J. Geib, Acta Cryst. 1987, C43,784.[18] P. A. Chaloner, C. Claver, P. B. Hitchcock, A. M. M<strong>as</strong>deu,A. Ruiz, Acta Cryst. 1991, C47, 1307.[19] Y.-J. Chen, Y.-C. Wang, Y. Wang, Acta Cryst. 1991,C47, 2441.


W. H. Meyer et al. · <strong>Tri</strong>(3-<strong>pyridyl</strong>)<strong>phosph<strong>in</strong>e</strong> <strong>as</strong> <strong>Amphiphilic</strong> <strong>Ligand</strong> <strong>in</strong> <strong>the</strong> <strong>Rhodium</strong>-catalysed Hydroformylation 345[20] K. R. Dunbar, S. C. Haefner, Inorg. Chem. 1992, 31,3676.[21] J. P. Farr, M. M. Olmstead, A. L. Balch, J. Am. Chem.Soc. 1980, 102, 6654.[22] J.P.Farr,M.M.Olmstead,C.H.Hunt,A.L.Balch,Inorg.Chem. 1981, 20, 1182.[23] R. J. Bowen, A. C. Garner, S. J. Berners-Price, I. D.Jenk<strong>in</strong>s, R. E. Sue, J. Organomet. Chem. 1998, 554,181.[24] The same procedure <strong>as</strong> for <strong>the</strong> syn<strong>the</strong>sis of compound1 w<strong>as</strong> applied.[25] SAINT+ (version 6.02). Bruker AXS Inc., Madison,Wiscons<strong>in</strong> (USA) 1999.[26] G. M. Sheldrick, SHELXTL (version 5.1), Bruker AXSInc., Madison, Wiscons<strong>in</strong> (USA) 1999.[27] G. M. Sheldrick, SHELXL97, Program for CrystalStructure Ref<strong>in</strong>ement, University of Gött<strong>in</strong>gen, Gött<strong>in</strong>gen(Germany) 1997.[28] L. J. Farrugia, J. Appl. Cryst., 1999, 32, 837.[29] A. L. Spek, P. LATON, A. Multipurpose CrystallographicTool, Utrecht University, Utrecht (The Ne<strong>the</strong>rlands)2002. See also: A. L. Spek, Acta Crystallogr.1990, A46, C34.[30] B. Delley, J. Chem. Phys. 1990, 92, 508.[31] B. Delley, J. Phys. Chem. 1996, 100, 6107.[32] B. Delley, J. Chem. Phys. 2000, 113, 7756.[33] B. Hammer, L. B. Hansen, J. K. Nørskov, Phys. Rev. B1999, 59, 7413.[34] B. Delley, Theoretical and Computational Chemistry<strong>in</strong> Modern Density Functional Theory: A. Tool forChemistry, Vol. 2 (Eds.: J. M. Sem<strong>in</strong>ario, P. Politzer),Elsevier, Amsterdam, 1995.[35] J. Andzelm, R. D. K<strong>in</strong>g-Smith, G. Fitzgerald, Chem.Phys. Lett. 2001, 335, 321.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!