04.12.2012 Views

An in vivo evaluation of bonding ability of comprehensive ...

An in vivo evaluation of bonding ability of comprehensive ...

An in vivo evaluation of bonding ability of comprehensive ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

dental materials xxx (2006) xxx–xxx<br />

available at www.sciencedirect.com<br />

journal homepage: www.<strong>in</strong>tl.elsevierhealth.com/journals/dema<br />

<strong>An</strong> <strong>in</strong> <strong>vivo</strong> <strong>evaluation</strong> <strong>of</strong> bond<strong>in</strong>g <strong>ability</strong> <strong>of</strong> <strong>comprehensive</strong><br />

antibacterial adhesive system <strong>in</strong>corporat<strong>in</strong>g MDPB<br />

Satoshi Imazato a,∗ , Frankl<strong>in</strong> R. Tay b , <strong>An</strong>drea V. Kaneshiro a ,<br />

Yusuke Takahashi a , Shigeyuki Ebisu a<br />

a Department <strong>of</strong> Restorative Dentistry and Endodontology, Osaka University Graduate School <strong>of</strong> Dentistry,<br />

1-8 Yamadaoka, Suita, Osaka 565-0871, Japan<br />

b Department <strong>of</strong> Oral Biology and Maxill<strong>of</strong>acial Pathology, School <strong>of</strong> Dentistry, Medical College <strong>of</strong> Georgia, Augusta, GA, USA<br />

article <strong>in</strong>fo<br />

Article history:<br />

Received 6 September 2005<br />

Accepted 5 January 2006<br />

Keywords:<br />

<strong>An</strong>tibacterial adhesive system<br />

MDPB<br />

Bond<strong>in</strong>g <strong>in</strong>terface<br />

In <strong>vivo</strong><br />

1. Introduction<br />

abstract<br />

The challenge <strong>in</strong> the cl<strong>in</strong>ical treatment <strong>of</strong> dent<strong>in</strong>al caries is<br />

the absence <strong>of</strong> a universally acceptable regime for the diagnosis<br />

<strong>of</strong> carious lesions. Active bacteria may <strong>in</strong>advertently be<br />

left beh<strong>in</strong>d by <strong>in</strong>complete caries removal. Thus, restorative<br />

Objectives. This study exam<strong>in</strong>ed the <strong>in</strong> <strong>vivo</strong> bond<strong>in</strong>g <strong>ability</strong> to sound dent<strong>in</strong> <strong>of</strong> antibacterial<br />

adhesive systems <strong>in</strong>corporat<strong>in</strong>g an antibacterial monomer MDPB based on morphological<br />

<strong>evaluation</strong> <strong>of</strong> the res<strong>in</strong>–dent<strong>in</strong> <strong>in</strong>terface.<br />

Methods. Class V cavities were prepared on the buccal surfaces <strong>of</strong> the teeth <strong>of</strong> a beagle dog<br />

and a composite fill<strong>in</strong>g performed us<strong>in</strong>g (1) commercial self-etch<strong>in</strong>g system L<strong>in</strong>er Bond<br />

2 (LB primer + LB bond), (2) experimental primer conta<strong>in</strong><strong>in</strong>g 5% MDPB and LB bond, (3)<br />

LB primer and experimental bond<strong>in</strong>g-res<strong>in</strong> conta<strong>in</strong><strong>in</strong>g 2.5% MDPB, or (4) comb<strong>in</strong>ation <strong>of</strong><br />

experimental primer and bond<strong>in</strong>g-res<strong>in</strong>. After 7 days, the tooth crown was cut and fixed<br />

<strong>in</strong> half-Karnovsky’s solution, and the sectioned surface observed under scann<strong>in</strong>g electron<br />

microscopy (SEM) after treatment with phosphoric acid and NaOCl. The ultrastructure <strong>of</strong> the<br />

bond<strong>in</strong>g <strong>in</strong>terface was also exam<strong>in</strong>ed by transmission electron microscopy (TEM). Microtensile<br />

bond strengths (�TBS) <strong>of</strong> each group were measured us<strong>in</strong>g extracted teeth.<br />

Results. SEM demonstrated that all groups produced a 1–2 �m thick hybrid layer with funnel<br />

shaped res<strong>in</strong> tags, although the length <strong>of</strong> tags was shorter for the group <strong>in</strong> which MDPBconta<strong>in</strong><strong>in</strong>g<br />

bond<strong>in</strong>g-res<strong>in</strong> was used. TEM exam<strong>in</strong>ation supported good adhesion <strong>of</strong> the<br />

<strong>comprehensive</strong> adhesive system employ<strong>in</strong>g MDPB-conta<strong>in</strong><strong>in</strong>g primer/bond<strong>in</strong>g-res<strong>in</strong>, show<strong>in</strong>g<br />

<strong>in</strong>tegrity between res<strong>in</strong> and dent<strong>in</strong>. There were no significant differences <strong>in</strong> �TBS among<br />

the four groups tested (p > 0.05, ANOVA).<br />

Significance. This study confirmed that the experimental antibacterial adhesive systems<br />

employ<strong>in</strong>g MDPB-conta<strong>in</strong><strong>in</strong>g primer or/and bond<strong>in</strong>g-res<strong>in</strong> could produce an effective bond<br />

under <strong>in</strong> <strong>vivo</strong> conditions.<br />

© 2006 Academy <strong>of</strong> Dental Materials. Published by Elsevier Ltd. All rights reserved.<br />

materials that exhibit antibacterial activity are useful for elim<strong>in</strong>at<strong>in</strong>g<br />

the harmful effects caused either by residual bacteria<br />

or bacterial microleakage.<br />

The authors have previously reported that the <strong>in</strong>corporation<br />

<strong>of</strong> an antibacterial monomer 12-methacryloyloxydodecylpyrid<strong>in</strong>ium<br />

bromide (MDPB) was effective <strong>in</strong> provid<strong>in</strong>g<br />

∗ Correspond<strong>in</strong>g author. Tel.: +81 6 6879 2928; fax: +81 6 6879 2929.<br />

E-mail address: imazato@dent.osaka-u.ac.jp (S. Imazato).<br />

0109-5641/$ – see front matter © 2006 Academy <strong>of</strong> Dental Materials. Published by Elsevier Ltd. All rights reserved.<br />

doi:10.1016/j.dental.2006.01.005<br />

DENTAL-906; No. <strong>of</strong> Pages 7


2 dental materials xxx (2006) xxx–xxx<br />

a dent<strong>in</strong> primer and bond<strong>in</strong>g-res<strong>in</strong> with antibacterial activity<br />

[1–4]. The uncured dent<strong>in</strong> primer <strong>in</strong>corporat<strong>in</strong>g MDPB demonstrates<br />

a bactericidal effect based on the strong antibacterial<br />

activity <strong>of</strong> unpolymerized MDPB [1,3,5]. The <strong>ability</strong> <strong>of</strong> this<br />

monomer to kill residual bacteria <strong>in</strong> the prepared cavity has<br />

been also reported [6]. Bond<strong>in</strong>g-res<strong>in</strong> conta<strong>in</strong><strong>in</strong>g MDPB could<br />

<strong>in</strong>hibit the growth <strong>of</strong> bacteria on its surface by means <strong>of</strong> the<br />

action <strong>of</strong> an immobilized bactericide after the res<strong>in</strong> is polymerized,<br />

without adversely affect<strong>in</strong>g its bond<strong>in</strong>g characteristics<br />

[4]. Therefore, it is considered that the use <strong>of</strong> a <strong>comprehensive</strong><br />

antibacterial adhesive system that employs MDPB-conta<strong>in</strong><strong>in</strong>g<br />

primer and bond<strong>in</strong>g-res<strong>in</strong> should be highly effective <strong>in</strong> achiev<strong>in</strong>g<br />

the successful restorative treatment <strong>of</strong> caries. These favorable<br />

<strong>in</strong> vitro results await <strong>in</strong> <strong>vivo</strong> confirmation. Thus, the<br />

purpose <strong>of</strong> this study was to <strong>in</strong>vestigate the bond<strong>in</strong>g <strong>ability</strong><br />

<strong>of</strong> an antibacterial adhesive system <strong>in</strong>corporat<strong>in</strong>g MDPB <strong>in</strong><br />

<strong>vivo</strong> by morphological <strong>evaluation</strong> <strong>of</strong> bond<strong>in</strong>g <strong>in</strong>terface us<strong>in</strong>g<br />

a beagle dog model. The microtensile bond strength <strong>of</strong> an<br />

experimental antibacterial adhesive system was also measured<br />

under <strong>in</strong> vitro conditions. The null hypothesis tested<br />

was that there is no difference <strong>in</strong> the bond<strong>in</strong>g characteristics<br />

<strong>of</strong> MDPB-conta<strong>in</strong><strong>in</strong>g primer/bond<strong>in</strong>g-res<strong>in</strong> <strong>in</strong> vitro or<br />

<strong>in</strong> <strong>vivo</strong>.<br />

2. Materials and methods<br />

2.1. Adhesive systems<br />

<strong>An</strong> experimental adhesive system was prepared by the addition<br />

<strong>of</strong> the antibacterial monomer MDPB to a commercial<br />

product (Clearfil L<strong>in</strong>er Bond 2, Kuraray Medical Inc., Tokyo,<br />

Japan) consist<strong>in</strong>g <strong>of</strong> two-liquid type self-etch<strong>in</strong>g primer (LB<br />

primer) and a one-bottle bond<strong>in</strong>g-res<strong>in</strong> (LB bond). For the<br />

experimental primer, 10% (w/w) <strong>of</strong> MDPB was added to the Bliquid<br />

<strong>of</strong> LB primer to give 5% (w/w) after mix<strong>in</strong>g with A-liquid.<br />

The experimental bond<strong>in</strong>g-res<strong>in</strong> was prepared by <strong>in</strong>corporat<strong>in</strong>g<br />

2.5% (w/w) MDPB <strong>in</strong>to LB bond and used <strong>in</strong> comb<strong>in</strong>ation<br />

with the MDPB-conta<strong>in</strong><strong>in</strong>g primer (Table 1).<br />

2.2. In <strong>vivo</strong> bond<strong>in</strong>g procedures<br />

A beagle dog (female, 13 months old, weight 10 kg) was housed<br />

<strong>in</strong> the Osaka University <strong>An</strong>imal Facility, and used accord<strong>in</strong>g to<br />

the protocol approved by the ethical guidel<strong>in</strong>es for animal care<br />

<strong>of</strong> Osaka University Graduate School <strong>of</strong> Dentistry.<br />

Table1–Materials tested <strong>in</strong> this study<br />

The dog was subjected to general anesthesia by <strong>in</strong>tramuscular<br />

<strong>in</strong>jection <strong>of</strong> 20 mg/kg ketam<strong>in</strong>e and <strong>in</strong>travenous <strong>in</strong>jection<br />

<strong>of</strong> 10 mg/kg sodium pentobarbital. The teeth were cleaned<br />

with 3% hydrogen peroxide and 5% t<strong>in</strong>cture <strong>of</strong> iod<strong>in</strong>e. Class V<br />

cavities (3 mm × 4 mm, 1 mm depth) were prepared on the buccal<br />

surfaces <strong>of</strong> molars, can<strong>in</strong>es or <strong>in</strong>cisors us<strong>in</strong>g a high-speed<br />

diamond bur (D1, Sh<strong>of</strong>u, Kyoto, Japan) under water spray.<br />

The cavosurface marg<strong>in</strong> was but-jo<strong>in</strong>ted and surrounded<br />

by enamel. The cavities were then treated <strong>in</strong> four different<br />

ways:<br />

Group 1 (control): The cavity was treated with Clearfil L<strong>in</strong>er<br />

Bond 2 accord<strong>in</strong>g to the manufacturer’s <strong>in</strong>struction. A- and<br />

B-liquids <strong>of</strong> LB primer were mixed and applied to the cavity<br />

for 30 s. After dry<strong>in</strong>g with a gentle stream <strong>of</strong> air, LB bond<br />

was applied and cured with a light-activation unit (Quick<br />

Light, Morita, Kyoto, Japan) for 20 s. Then, a flowable composite<br />

(Clearfil Protect L<strong>in</strong>er F, Kuraray Medical Inc.) was placed<br />

<strong>in</strong> the cavity and light-cured for 40 s. The excess material<br />

beyond the cavosurface marg<strong>in</strong> was removed with a f<strong>in</strong>ish<strong>in</strong>g<br />

po<strong>in</strong>t (#60, Sh<strong>of</strong>u).<br />

Group 2: The cavity was restored <strong>in</strong> the same manner as<br />

group 1 us<strong>in</strong>g the experimental primer <strong>in</strong>stead <strong>of</strong> LB primer.<br />

Group 3: The cavity was restored us<strong>in</strong>g the control primer<br />

and the experimental bond<strong>in</strong>g-res<strong>in</strong>.<br />

Group 4: The cavity was restored <strong>in</strong> the same manner as the<br />

above three groups us<strong>in</strong>g the experimental primer and the<br />

experimental bond<strong>in</strong>g-res<strong>in</strong>.<br />

The animal was sacrificed after 7 days. Crowns <strong>of</strong> the<br />

restored teeth were cut and immersed <strong>in</strong> half-Karnovsky’s<br />

solution (pH 7.4) for 5 h at 4 ◦ C. The bond<strong>in</strong>g <strong>in</strong>terfaces were<br />

exam<strong>in</strong>ed by scann<strong>in</strong>g electron microscopy (SEM) or transmission<br />

electron microscopy (TEM).<br />

2.3. SEM exam<strong>in</strong>ation<br />

The specimens were sectioned longitud<strong>in</strong>ally through the<br />

center <strong>of</strong> the restoration us<strong>in</strong>g a slow-speed saw equipped<br />

with a diamond-impregnated disk (Isomet, Buehler, Lake<br />

Bluff, IL, USA) under water cool<strong>in</strong>g. The sectioned surface<br />

was polished with silicon carbide papers <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g f<strong>in</strong>eness,<br />

and f<strong>in</strong>ally on l<strong>in</strong>en with 0.3 �m alum<strong>in</strong>um oxide.<br />

The polished surfaces were treated with 50% phosphoric<br />

acid for 30 s, then with 10% NaOCl for 2 m<strong>in</strong>, followed by<br />

r<strong>in</strong>s<strong>in</strong>g with a copious amount <strong>of</strong> water after each treatment.<br />

The fixed specimens were dehydrated <strong>in</strong> ascend<strong>in</strong>g<br />

Materials Composition Batch number<br />

L<strong>in</strong>er Bond 2 (Kuraray Medical Inc.)<br />

LB primer HEMA, water, Phenyl-P A-liquid: 007; B-liquid: 009<br />

LB bond Bis-GMA, HEMA, MDP, micr<strong>of</strong>iller 0078<br />

Experimental primer LB primer + 5% MDPB (10% MDPB <strong>in</strong> B-liquid)<br />

Experimental bond<strong>in</strong>g-res<strong>in</strong> LB bond + 2.5% MDPB<br />

HEMA: 2-hydroxyethyl methacrylate; Phenyl-P: 2-methacryloyloxyethyl phenyl hydrogen phosphate; Bis-GMA: bisphenyl glycidyl methacrylate;<br />

MDP: 10-methacryloyloxydecyl dihydrogen phosphate; MDPB: 12-metahcryloyloxydodecylpyrid<strong>in</strong>ium bromide.


grades <strong>of</strong> ethanol, and freeze-dried. After be<strong>in</strong>g sputter-coated<br />

with gold, the res<strong>in</strong>–dent<strong>in</strong> <strong>in</strong>terfaces were exam<strong>in</strong>ed under<br />

a scann<strong>in</strong>g electron microscope (JSM-5310LV, JEOL, Tokyo,<br />

Japan) at 20–25 kV. Three restorations were exam<strong>in</strong>ed for each<br />

group.<br />

2.4. TEM exam<strong>in</strong>ation<br />

The specimens <strong>of</strong> groups 1 and 4 were prepared accord<strong>in</strong>g to<br />

the TEM protocol reported by Tay et al. [7]. Briefly, the specimens<br />

were completely dem<strong>in</strong>eralized <strong>in</strong> ethylenediam<strong>in</strong>e<br />

tetraacetic acid (pH 7.0), post-fixed <strong>in</strong> 1% osmium tetroxide,<br />

and dehydrated <strong>in</strong> ascend<strong>in</strong>g grades <strong>of</strong> ethanol (30–100%).<br />

After embedd<strong>in</strong>g <strong>in</strong> epoxy res<strong>in</strong>, 90–100 nm thick sections<br />

were prepared with an ultramicrotome. Sections were doublesta<strong>in</strong>ed<br />

with uranyl acetate and Reynold’s lead citrate to<br />

exam<strong>in</strong>e the ultrastructural characteristics <strong>of</strong> the res<strong>in</strong>–dent<strong>in</strong><br />

<strong>in</strong>terfaces, us<strong>in</strong>g a transmission electron microscope (Philips<br />

EM208S, E<strong>in</strong>dhoven, Netherlands) operat<strong>in</strong>g at 80 kV.<br />

2.5. Microtensile bond strength tests<br />

Forty extracted human third molars were employed for<br />

microtensile bond test<strong>in</strong>g. The teeth were collected after the<br />

patients’ <strong>in</strong>formed consents were obta<strong>in</strong>ed under a protocol<br />

reviewed and approved by the <strong>in</strong>stitutional review board from<br />

the Medical College <strong>of</strong> Georgia, USA. These teeth were stored<br />

<strong>in</strong> 0.5% chloram<strong>in</strong>es T until use. Occlusal enamel was removed<br />

from each tooth us<strong>in</strong>g the Isomet saw under water cool<strong>in</strong>g,<br />

creat<strong>in</strong>g flat surfaces for bond<strong>in</strong>g <strong>in</strong> mid-coronal dent<strong>in</strong>.<br />

Each surface was further abraded with 180-grit silicon carbide<br />

papers to create cl<strong>in</strong>ically relevant smear layers for dent<strong>in</strong><br />

bond<strong>in</strong>g. The four groups <strong>of</strong> commercial/experimental twostep<br />

self-etch adhesives were used <strong>in</strong> the manner previously<br />

described, with 10 teeth employed for each group. Incremental<br />

composite build up was performed on each bonded tooth<br />

surface us<strong>in</strong>g a light-cured micro-hybrid composite (Clearfil<br />

AP-X, Kuraray Medical Inc.) to a height <strong>of</strong> 4 mm.<br />

After 24 h <strong>of</strong> water storage, two 0.9-mm thick slabs were<br />

obta<strong>in</strong>ed from each bonded tooth us<strong>in</strong>g the Isomet saw under<br />

water cool<strong>in</strong>g. These slabs were further sectioned to produce<br />

0.9 mm × 0.9 mm beams conta<strong>in</strong><strong>in</strong>g the res<strong>in</strong>–dent<strong>in</strong> <strong>in</strong>terface.<br />

The four longest beams were selected from those acquired<br />

from each tooth. Each beam was fixed to a modified Bencor<br />

Multi-T test<strong>in</strong>g assembly (Danville Eng<strong>in</strong>eer<strong>in</strong>g, San Ramon,<br />

CA, USA) us<strong>in</strong>g cyanoacrylate adhesive (Zapit; DVA, Corona,<br />

CA, USA). The beams were pulled to failure under tension<br />

us<strong>in</strong>g a universal test<strong>in</strong>g mach<strong>in</strong>e (Model 4440; Instron Inc.,<br />

Canton, MA, USA) at a crosshead speed <strong>of</strong> 1 mm per m<strong>in</strong>ute.<br />

The exact dimension <strong>of</strong> each fractured beam was then <strong>in</strong>dividually<br />

measured us<strong>in</strong>g a digital caliper (Model CD-6BS; Mitsutoyo,<br />

Tokyo, Japan), from which the tensile bond strength was<br />

calculated. Means were taken from the four beams derived<br />

from the same tooth and the bond strength data for each<br />

group was expressed with the tooth <strong>in</strong>stead <strong>of</strong> an <strong>in</strong>dividual<br />

beam as the test<strong>in</strong>g unit (N = 10). Data from the four<br />

groups were statistically analyzed us<strong>in</strong>g one way analysis<br />

<strong>of</strong> variance and Tukey’s post hoc multiple comparison test<br />

with ˛ = 0.05.<br />

dental materials xxx (2006) xxx–xxx 3<br />

Fig. 1 – Scann<strong>in</strong>g electron micrographs <strong>of</strong> the res<strong>in</strong>–dent<strong>in</strong><br />

<strong>in</strong>terface produced by the control adhesive system L<strong>in</strong>er<br />

Bond 2.<br />

3. Results<br />

3.1. SEM observation<br />

Representative bonded <strong>in</strong>terfaces <strong>of</strong> each group are shown <strong>in</strong><br />

Figs. 1–4. Groups 1 and 2 demonstrated <strong>in</strong>terfaces with approximately<br />

a 1–2 �m thick hybrid layer and res<strong>in</strong> tags extend<strong>in</strong>g<br />

5–8 �m <strong>in</strong>to the dent<strong>in</strong> (Figs. 1 and 2). A filigree pattern <strong>of</strong><br />

the res<strong>in</strong>-<strong>in</strong>filtrated layer and cone shape <strong>of</strong> res<strong>in</strong> tags, were<br />

clearly observed.<br />

The thickness <strong>of</strong> the hybrid layer produced for groups 3 and<br />

4 was similar to those <strong>of</strong> groups 1 and 2. However, the res<strong>in</strong><br />

tags extended up to only 2–3 �m for these groups and were<br />

shorter compared with those with LB bond (groups 1 and 2),<br />

although a funnel-shaped configuration <strong>of</strong> the tag necks was<br />

apparent (Figs. 3 and 4).<br />

3.2. TEM observation<br />

TEMs <strong>of</strong> res<strong>in</strong>–dent<strong>in</strong> <strong>in</strong>terfaces <strong>of</strong> groups 1 and 4 are shown <strong>in</strong><br />

Figs. 5 and 6, respectively. Hybrid layers with<strong>in</strong> the underly<strong>in</strong>g<br />

<strong>in</strong>tact dent<strong>in</strong> <strong>in</strong> both groups were about 1 �m thick. Formation<br />

<strong>of</strong> a hybridized smear layer <strong>in</strong>corporat<strong>in</strong>g smear layer remnants<br />

were observed at the top part <strong>of</strong> the hybridized complex.


4 dental materials xxx (2006) xxx–xxx<br />

Fig. 2 – Scann<strong>in</strong>g electron micrographs <strong>of</strong> the res<strong>in</strong>–dent<strong>in</strong><br />

<strong>in</strong>terface produced by the experimental primer conta<strong>in</strong><strong>in</strong>g<br />

MDPB and LB bond.<br />

Dent<strong>in</strong>al tubules were <strong>in</strong>variably occupied by smear plugs <strong>in</strong><br />

both groups.<br />

As the experimental bond<strong>in</strong>g-res<strong>in</strong> was prepared by handmix<strong>in</strong>g<br />

<strong>of</strong> MDPB with LB bond, many voids were observed <strong>in</strong><br />

the bond<strong>in</strong>g-res<strong>in</strong> layer for group 4 due to the entrapment <strong>of</strong><br />

air bubbles (Fig. 6a).<br />

3.3. Microtensile bond strength tests<br />

Fig. 7 <strong>in</strong>dicates the results <strong>of</strong> the microtensile bond strength<br />

test. There were no significant differences among the four<br />

groups (p > 0.05). The mean tensile bond strength values<br />

ranged from 30.8 to 34.9 MPa.<br />

4. Discussion<br />

The microtensile test performed on human teeth demonstrated<br />

that usage <strong>of</strong> 2.5% MDPB-conta<strong>in</strong><strong>in</strong>g bond<strong>in</strong>g-res<strong>in</strong> <strong>in</strong><br />

comb<strong>in</strong>ation with the control or a 5% MDPB-conta<strong>in</strong><strong>in</strong>g primer<br />

did not adversely affect the dent<strong>in</strong> bond<strong>in</strong>g <strong>ability</strong> <strong>of</strong> the parent<br />

commercial system without MDPB under <strong>in</strong> vitro conditions.<br />

These results supported the previous f<strong>in</strong>d<strong>in</strong>gs obta<strong>in</strong>ed<br />

by conventional tensile bond strength tests [4]. The addition <strong>of</strong><br />

Fig. 3 – Scann<strong>in</strong>g electron micrographs <strong>of</strong> the res<strong>in</strong>–dent<strong>in</strong><br />

<strong>in</strong>terface produced by the control primer (LB primer) and<br />

the experimental bond<strong>in</strong>g-res<strong>in</strong> conta<strong>in</strong><strong>in</strong>g MDPB.<br />

extra components such as free, non-polymerizable antimicrobials<br />

frequently <strong>in</strong>terrupts the physical form <strong>of</strong> the polymers,<br />

lead<strong>in</strong>g to a reduction <strong>in</strong> their physical properties [8]. However,<br />

the synthetic monomer MDPB is a polymerizable bactericide<br />

and does not adversely affect cur<strong>in</strong>g <strong>of</strong> the primer and<br />

bond<strong>in</strong>g-res<strong>in</strong> [4]. Cur<strong>in</strong>g <strong>ability</strong> <strong>of</strong> bond<strong>in</strong>g-res<strong>in</strong> is one <strong>of</strong> the<br />

important factors for obta<strong>in</strong><strong>in</strong>g a strong bond to dent<strong>in</strong>al substrate<br />

[9,10]. Hence, <strong>in</strong>corporation <strong>of</strong> MDPB is advantageous<br />

over the addition <strong>of</strong> free antimicrobials such as chlorhexid<strong>in</strong>e.<br />

The pH value <strong>of</strong> the primer <strong>in</strong> the control self-etch<strong>in</strong>g system<br />

L<strong>in</strong>er Bond 2 is about 1.4. The thickness <strong>of</strong> the hybrid layer<br />

produced <strong>in</strong> <strong>vivo</strong> for all groups <strong>in</strong> the beagle dog model was<br />

1–2 �m when exam<strong>in</strong>ed under SEM. This value was similar to<br />

that reported for L<strong>in</strong>er Bond 2 by <strong>in</strong> vitro tests [11]. S<strong>in</strong>ce the<br />

addition <strong>of</strong> MDPB does not affect the pH value <strong>of</strong> the primer<br />

(data not shown), it is speculated that the same degree <strong>of</strong> dem<strong>in</strong>eralization<br />

<strong>of</strong> the smear layer and <strong>in</strong>tertubular dent<strong>in</strong> as the<br />

control primer was obta<strong>in</strong>ed for the MDPB-conta<strong>in</strong><strong>in</strong>g primer.<br />

The fact that there were no differences <strong>in</strong> the appearance and<br />

thickness <strong>of</strong> the hybrid layers among all groups <strong>in</strong>dicates that<br />

the experimental bond<strong>in</strong>g-res<strong>in</strong> conta<strong>in</strong><strong>in</strong>g MDPB could penetrate<br />

well <strong>in</strong>to the dem<strong>in</strong>eralized dent<strong>in</strong>al surface to produce<br />

optimal hybridization with exposed collagen. However, res<strong>in</strong>


Fig. 4 – Scann<strong>in</strong>g electron micrographs <strong>of</strong> the res<strong>in</strong>–dent<strong>in</strong><br />

<strong>in</strong>terface produced by the comb<strong>in</strong>ation <strong>of</strong> the experimental<br />

primer/bond<strong>in</strong>g-res<strong>in</strong> conta<strong>in</strong><strong>in</strong>g MDPB.<br />

tags formed <strong>in</strong> the tubules showed an apparent difference<br />

between the control (groups 1 and 2) and the MDPB-conta<strong>in</strong><strong>in</strong>g<br />

experimental bond<strong>in</strong>g-res<strong>in</strong> (groups 3 and 4), the latter be<strong>in</strong>g<br />

shorter than the former. This discrepancy was not observed<br />

dental materials xxx (2006) xxx–xxx 5<br />

when the experimental bond<strong>in</strong>g-res<strong>in</strong> was exam<strong>in</strong>ed under <strong>in</strong><br />

vitro condition us<strong>in</strong>g extracted human teeth [4]. In this study,<br />

cavities were prepared <strong>in</strong> sound dent<strong>in</strong> and it seems that the<br />

dent<strong>in</strong>al fluid <strong>in</strong> the tubule caused a disturbance <strong>of</strong> the <strong>in</strong>filtration<br />

<strong>of</strong> bond<strong>in</strong>g-res<strong>in</strong> for groups 3 and 4. One <strong>of</strong> the possible<br />

reasons for this is the greater viscosity <strong>of</strong> MDPB-conta<strong>in</strong><strong>in</strong>g<br />

bond<strong>in</strong>g-res<strong>in</strong> compared with the control. Incorporation <strong>of</strong><br />

MDPB <strong>in</strong>creases the viscosity <strong>of</strong> Bis-GMA based res<strong>in</strong> probably<br />

due to molecular <strong>in</strong>teraction. The concentration <strong>of</strong> MDPB<br />

added to bond<strong>in</strong>g-res<strong>in</strong> was set at 2.5% as this was the maximum<br />

amount <strong>of</strong> MDPB which would not to cause an adverse<br />

<strong>in</strong>fluence on handl<strong>in</strong>g properties. However, a slight <strong>in</strong>crease<br />

<strong>in</strong> the viscosity was obta<strong>in</strong>ed even at 2.5% MDPB. In addition,<br />

MDPB is more hydrophobic than HEMA, so that the hydrophobicity<br />

<strong>of</strong> the experimental bond<strong>in</strong>g-res<strong>in</strong> is greater than that<br />

<strong>of</strong> the control. Although <strong>in</strong>filtration <strong>in</strong>to the dem<strong>in</strong>eralized<br />

smear layer and <strong>in</strong>tertubular dent<strong>in</strong> was not affected, it is<br />

likely that penetration <strong>of</strong> MDPB-conta<strong>in</strong><strong>in</strong>g bond<strong>in</strong>g-res<strong>in</strong> <strong>in</strong>to<br />

the dent<strong>in</strong>al tubule was limited under <strong>in</strong> <strong>vivo</strong> conditions due<br />

to outflow <strong>of</strong> dent<strong>in</strong>al fluid.<br />

TEM images <strong>of</strong> the bond<strong>in</strong>g <strong>in</strong>terface demonstrated cont<strong>in</strong>uity<br />

<strong>of</strong> res<strong>in</strong> and dent<strong>in</strong> with the production <strong>of</strong> hybridized<br />

dent<strong>in</strong> and hybridized smear layers for both the control and<br />

the experimental antibacterial adhesive systems employ<strong>in</strong>g<br />

MDPB-conta<strong>in</strong><strong>in</strong>g primer/bond<strong>in</strong>g-res<strong>in</strong> (Figs. 5 and 6). As<br />

depicted by SEM, formation <strong>of</strong> 1–2 �m thick hybridized layers<br />

with irregular surfaces was clearly observed. Occlusion <strong>of</strong><br />

dent<strong>in</strong>al tubules was manifested by the SEM observation <strong>of</strong><br />

funnel-shaped res<strong>in</strong> tags even for the experimental system.<br />

This morphologic feature is <strong>in</strong>dicative <strong>of</strong> the creation <strong>of</strong> tight<br />

seals at the tubule orifices. Thus, it may be concluded from<br />

the SEM and TEM <strong>evaluation</strong> that ultrastructure <strong>of</strong> the <strong>in</strong>terface<br />

<strong>of</strong> the experimental adhesive system conta<strong>in</strong><strong>in</strong>g MDPB<br />

was not different from that <strong>of</strong> the control, with the exception<br />

that shorter res<strong>in</strong> tags were identified for experimental systems<br />

with the MDPB-conta<strong>in</strong><strong>in</strong>g bond<strong>in</strong>g-res<strong>in</strong>.<br />

It is well known that <strong>in</strong> vitro <strong>evaluation</strong> <strong>of</strong> the bond<strong>in</strong>g<br />

<strong>ability</strong> <strong>of</strong> adhesive systems us<strong>in</strong>g extracted teeth sometimes<br />

does not reflect reality. For example, smear layers produced<br />

by 600-grit abrasive papers <strong>in</strong> vitro does not simulate what<br />

Fig. 5 – Transmission electron micrograph <strong>of</strong> the res<strong>in</strong>–dent<strong>in</strong> <strong>in</strong>terface produced by L<strong>in</strong>er Bond 2 system (control). (a) Low<br />

magnification view <strong>of</strong> the res<strong>in</strong>–dent<strong>in</strong> <strong>in</strong>terface. (b) High magnification view <strong>of</strong> the hybrid layer. A: filled adhesive; P:<br />

experimental MDPB-primer; Hs: loose, discont<strong>in</strong>uous hybridized smear layer; H: 1 �m thick hybrid layer formed <strong>in</strong> the<br />

<strong>in</strong>tertubular dent<strong>in</strong> (D); T: dent<strong>in</strong>al tubule.


6 dental materials xxx (2006) xxx–xxx<br />

Fig. 6 – Transmission electron micrograph <strong>of</strong> the res<strong>in</strong>–dent<strong>in</strong> <strong>in</strong>terface produced by the experimental primer and the<br />

experimental bond<strong>in</strong>g-res<strong>in</strong> conta<strong>in</strong><strong>in</strong>g MDPB. (a) Low magnification view. As the experimental bond<strong>in</strong>g-res<strong>in</strong> was<br />

prepared by hand-mix<strong>in</strong>g <strong>of</strong> MPDB with LB Bond, numerous air voids (po<strong>in</strong>ter) could be seen with<strong>in</strong> the adhesive layer (A).<br />

C: flowable composite. (b) A high magnification view <strong>of</strong> the previous figure, show<strong>in</strong>g the hybridized complex that comprised<br />

the surface hybridized smear layer (Hs) and the underly<strong>in</strong>g hybrid layer (H) <strong>in</strong> <strong>in</strong>tact <strong>in</strong>tertubular dent<strong>in</strong> (D).<br />

dentists produce <strong>in</strong> a cl<strong>in</strong>ical sett<strong>in</strong>g, and bond strengths <strong>of</strong><br />

mild self-etch<strong>in</strong>g primers measured under such <strong>in</strong> vitro conditions<br />

are suggested to be overestimated [12]. Most <strong>in</strong> vitro<br />

bond strength tests, <strong>in</strong>clud<strong>in</strong>g the one <strong>in</strong> the present study,<br />

were performed on flat tooth surfaces that are highly compliant<br />

and with m<strong>in</strong>imal polymerization shr<strong>in</strong>kage stresses<br />

[13]. Recent studies showed that bond strengths <strong>of</strong> the adhesives<br />

were substantially reduced when test<strong>in</strong>g was performed<br />

on cavities with low compliance such as Class I and Class II<br />

cavities [14,15]. Therefore, observation <strong>of</strong> res<strong>in</strong>–dent<strong>in</strong> <strong>in</strong>terfaces<br />

under <strong>in</strong> <strong>vivo</strong> conditions provides important <strong>in</strong>formation<br />

on the cl<strong>in</strong>ical efficacy <strong>of</strong> bond<strong>in</strong>g. Although we have to<br />

reject the null hypothesis, s<strong>in</strong>ce <strong>in</strong> <strong>vivo</strong> res<strong>in</strong> <strong>in</strong>filtration <strong>in</strong>to<br />

dent<strong>in</strong>al tubules was slightly affected for MDPB-conta<strong>in</strong><strong>in</strong>g<br />

Fig. 7 – Microtensile bond strengths <strong>of</strong> each group<br />

measured us<strong>in</strong>g extracted teeth. There were no significant<br />

differences among all specimens (p > 0.05, ANOVA).<br />

bond<strong>in</strong>g-res<strong>in</strong>, the present results us<strong>in</strong>g a beagle dog model<br />

demonstrated that experimental adhesive systems employ<strong>in</strong>g<br />

MDPB-conta<strong>in</strong><strong>in</strong>g primer/bond<strong>in</strong>g-res<strong>in</strong> were able to exhibit<br />

satisfactory performance <strong>in</strong> <strong>vivo</strong>. Self-etch<strong>in</strong>g systems are<br />

claimed to have advantages over etch-and-r<strong>in</strong>se systems as<br />

there is little discrepancy between the depth <strong>of</strong> decalcification<br />

and bond<strong>in</strong>g-res<strong>in</strong> penetration [16]. This is also expected<br />

to be valid for the experimental adhesive systems.<br />

It has been reported that polymerized res<strong>in</strong> matrices<br />

are vulnerable to hydrolytic degradation after water sorption<br />

[17,18], and bond<strong>in</strong>g agents that conta<strong>in</strong> hydrophilic<br />

monomers exhibit lower bond dur<strong>ability</strong> compared with<br />

those conta<strong>in</strong><strong>in</strong>g hydrophobic monomers [19]. Incorporation<br />

<strong>of</strong> MDPB, which <strong>in</strong>creases the hydrophobicity <strong>of</strong> the adhesives,<br />

may result <strong>in</strong> greater hydrolytic st<strong>ability</strong> <strong>of</strong> the bond<strong>in</strong>g <strong>in</strong>terface.<br />

It would be <strong>of</strong> <strong>in</strong>terest <strong>in</strong> the future to exam<strong>in</strong>e the dur<strong>ability</strong><br />

<strong>of</strong> res<strong>in</strong>–dent<strong>in</strong> bonds made by the MDPB-conta<strong>in</strong><strong>in</strong>g<br />

primer/bond<strong>in</strong>g-res<strong>in</strong>. Further <strong>in</strong>vestigations should be also<br />

aimed at assess<strong>in</strong>g the antibacterial effects <strong>of</strong> this adhesive<br />

system aga<strong>in</strong>st microorganisms that are capable <strong>of</strong> penetrat<strong>in</strong>g<br />

these <strong>in</strong>terfaces by microleakage, as well as its cl<strong>in</strong>ical<br />

performance.<br />

Acknowledgments<br />

This work was supported by a Grant-<strong>in</strong>-aid for Scientific<br />

Research (15209066, 16390545) from the Japan Society for the<br />

Promotion <strong>of</strong> Science and the 21st Century COE at Osaka University<br />

Graduate School <strong>of</strong> Dentistry supported by the M<strong>in</strong>istry<br />

<strong>of</strong> Education, Culture, Sports, Science and Technology.<br />

references<br />

[1] Imazato S, K<strong>in</strong>omoto Y, Tarumi H, Torii M, Russell RRB,<br />

McCabe JF. Incorporation <strong>of</strong> antibacterial monomer MDPB<br />

<strong>in</strong> dent<strong>in</strong> primer. J Dent Res 1997;76:768–72.


[2] Imazato S, Ehara A, Torii M, Ebisu S. <strong>An</strong>tibacterial activity<br />

<strong>of</strong> dent<strong>in</strong> primer conta<strong>in</strong><strong>in</strong>g MDPB after cur<strong>in</strong>g. J Dent<br />

1998;26:267–71.<br />

[3] Imazato S, Torii Y, Takatsuka T, Inoue K, Ebi N, Ebisu S.<br />

Bactericidal effect <strong>of</strong> dent<strong>in</strong> primer conta<strong>in</strong><strong>in</strong>g<br />

antibacterial monomer methacryloyloxydodecylpyrid<strong>in</strong>ium<br />

bromide (MDPB) aga<strong>in</strong>st bacteria <strong>in</strong> human carious dent<strong>in</strong>.<br />

J Oral Rehabil 2001;28:314–9.<br />

[4] Imazato S, K<strong>in</strong>omoto Y, Tarumi H, Ebisu S, Tay FR.<br />

<strong>An</strong>tibacterial activity and bond<strong>in</strong>g characteristics <strong>of</strong> an<br />

adhesive res<strong>in</strong> conta<strong>in</strong><strong>in</strong>g antibacterial monomer MDPB.<br />

Dent Mater 2003;19:313–9.<br />

[5] Imazato S, Ebi N, Tarumi H, Russell RRB, Kaneko T, Ebisu<br />

S. Bactericidal activity and cytotoxicity <strong>of</strong> antibacterial<br />

monomer MDPB. Biomaterials 1999;20:899–903.<br />

[6] Imazato S, Kaneko T, Takahashi Y, Noiri Y, Ebisu S. In <strong>vivo</strong><br />

antibacterial effects <strong>of</strong> dent<strong>in</strong> primer <strong>in</strong>corporat<strong>in</strong>g MDPB.<br />

Oper Dent 2004;29:369–75.<br />

[7] Tay FR, Mould<strong>in</strong>g KM, Pashley DH. Distribution <strong>of</strong><br />

nan<strong>of</strong>illers from a simplified-step adhesive <strong>in</strong><br />

acid-conditioned dent<strong>in</strong>. J Adhes Dent 1999;1:103–17.<br />

[8] Addy M, Handley R. The effects <strong>of</strong> the <strong>in</strong>corporation <strong>of</strong><br />

chlorhexid<strong>in</strong>e acetate on some physical properties <strong>of</strong><br />

polymerized and plasticized acrylics. J Oral Rehabil<br />

1981;8:155–63.<br />

[9] Takahashi A, Sato Y, Uno S, Pereira PN, Sano H. Effects <strong>of</strong><br />

mechanical properties <strong>of</strong> adhesive res<strong>in</strong>s on bond strength<br />

to dent<strong>in</strong>. Dent Mater 2002;18:263–8.<br />

[10] Ikeda T, De Munck J, Shirai K, Hikita K, Inoue S, Sano H, et<br />

al. Effect <strong>of</strong> fracture strength <strong>of</strong> primer-adhesive mixture<br />

on bond<strong>in</strong>g effectiveness. Dent Mater 2005;21:413–20.<br />

dental materials xxx (2006) xxx–xxx 7<br />

[11] Nakajima M, Sano H, Burrow MF, Tagami J, Yoshiyama M,<br />

Ebisu S, et al. Tensile bond strength and SEM <strong>evaluation</strong> <strong>of</strong><br />

caries-affected dent<strong>in</strong> us<strong>in</strong>g dent<strong>in</strong> adhesives. J Dent Res<br />

1995;74:1679–88.<br />

[12] Koibuchi H, Yasuda N, Nakabayashi N. Bond<strong>in</strong>g to dent<strong>in</strong><br />

with a self-etch<strong>in</strong>g primer: the effect <strong>of</strong> smear layers. Dent<br />

Mater 2001;17:122–6.<br />

[13] Alster D, Venhoven BA, Feilzer AJ, Davidson CL. Influence<br />

<strong>of</strong> compliance <strong>of</strong> the substrate materials on<br />

polymerization contraction stress <strong>in</strong> th<strong>in</strong> res<strong>in</strong> composite<br />

layers. Biomaterials 1997;18:337–41.<br />

[14] Yoshikawa T, Sano H, Burrow MF, Tagami J, Pashley DH.<br />

Effects <strong>of</strong> dent<strong>in</strong> depth and cavity configuration on bond<br />

strength. J Dent Res 1999;78:898–905.<br />

[15] Bouillaguet S, Ciucchi B, Jacoby T, Wataha JC, Pashley D.<br />

Bond<strong>in</strong>g characteristics to dent<strong>in</strong> walls <strong>of</strong> class II cavities,<br />

<strong>in</strong> vitro. Dent Mater 2001;17:316–21.<br />

[16] Van Meerbeek B, Munck JD, Yoshida Y, Inoue S, Vargas M,<br />

Vijay P, et al. Adhesion to enamel and dent<strong>in</strong>: current<br />

status and future challenges. Oper Dent 2003;28:215–35.<br />

[17] Santerre JP, Shajii L, Leung BW. Relation <strong>of</strong> dental<br />

composite formulations to their degradation and the<br />

release <strong>of</strong> hydrolyzed polymeric-res<strong>in</strong>-derived products.<br />

Crit Rev Oral Biol Med 2001;12:136–51.<br />

[18] Mohsen NM, Craig RG, Filisko FE. The effects <strong>of</strong> moisture<br />

on the dielectric relaxation <strong>of</strong> urethane dimethacrylate<br />

polymer and composites. J Oral Rehabil 2001;28:376–<br />

92.<br />

[19] El Zohairy AA, De Gee AJ, Hassan FM, Feilzer AJ. The effect<br />

<strong>of</strong> adhesives with various degrees <strong>of</strong> hydrophilicity on<br />

res<strong>in</strong> ceramic bond dur<strong>ability</strong>. Dent Mater 2004;20:778–87.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!