13.07.2015 Views

Using the Ammann-Beenker Tiling to Model Quasicrystals

Using the Ammann-Beenker Tiling to Model Quasicrystals

Using the Ammann-Beenker Tiling to Model Quasicrystals

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Background and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff Dimension<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong><strong>Quasicrystals</strong>Brittany Livsey, Jason Mifsud, and Francesca RomanoAugust 2, 2013Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


Research GoalBackground and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionA two-dimensional quasicrystal with an eightfold symmetrybut a nonperiodic diffraction pattern was produced in alabora<strong>to</strong>ry in <strong>the</strong> 1980s [5].Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


Research GoalBackground and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionA two-dimensional quasicrystal with an eightfold symmetrybut a nonperiodic diffraction pattern was produced in alabora<strong>to</strong>ry in <strong>the</strong> 1980s [5].This quasicrystal can be modeled ma<strong>the</strong>matically as anaperiodic octagonal tiling, known as <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong>tiling.Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


Research GoalBackground and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionA two-dimensional quasicrystal with an eightfold symmetrybut a nonperiodic diffraction pattern was produced in alabora<strong>to</strong>ry in <strong>the</strong> 1980s [5].This quasicrystal can be modeled ma<strong>the</strong>matically as anaperiodic octagonal tiling, known as <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong>tiling.Goal: Approximate <strong>the</strong> spectrum of <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong>Laplacian and analyze its Hausdorff dimensionBrittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


DefinitionsBackground and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionDefinition (Taken from [4])A simple tiling is a tiling in which1 There are only a finite number of tile types, up <strong>to</strong> translation.Put ano<strong>the</strong>r way, <strong>the</strong>re exists a finite collection of pro<strong>to</strong>tilesp i such that each tile is a translated copy of one of <strong>the</strong> p i .2 Each tile in R 2 is a polygon.3 Tiles meet full-edge <strong>to</strong> full-edge. An edge of one tile cannotpartially overlap with an edge of a neighboring tile.Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


DefinitionsBackground and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionDefinition (Taken from [4])A simple tiling is a tiling in which1 There are only a finite number of tile types, up <strong>to</strong> translation.Put ano<strong>the</strong>r way, <strong>the</strong>re exists a finite collection of pro<strong>to</strong>tilesp i such that each tile is a translated copy of one of <strong>the</strong> p i .2 Each tile in R 2 is a polygon.3 Tiles meet full-edge <strong>to</strong> full-edge. An edge of one tile cannotpartially overlap with an edge of a neighboring tile.Definition (Taken from [1])A tiling is nonperiodic if it lacks translational symmetry, and a se<strong>to</strong>f tiles is aperiodic if it admits only nonperiodic tilings.Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


BackgroundBackground and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionThe <strong>Ammann</strong>-<strong>Beenker</strong> tiling is named after <strong>the</strong> twoma<strong>the</strong>maticians who independently discovered an aperiodicoctagonal tiling, Robert <strong>Ammann</strong> and F.P.M. <strong>Beenker</strong>.Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


BackgroundBackground and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionThe <strong>Ammann</strong>-<strong>Beenker</strong> tiling is named after <strong>the</strong> twoma<strong>the</strong>maticians who independently discovered an aperiodicoctagonal tiling, Robert <strong>Ammann</strong> and F.P.M. <strong>Beenker</strong>.Properties: eightfold symmetry, nonperiodic, repeating subsetsFigure : A subset of <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> tiling modified from [1]Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


SubstitutionBackground and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionPro<strong>to</strong>tiles: a rhombus with 45 ◦ and 135 ◦ angles and a squaredivided in<strong>to</strong> two isosceles trianglesBrittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


SubstitutionBackground and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionPro<strong>to</strong>tiles: a rhombus with 45 ◦ and 135 ◦ angles and a squaredivided in<strong>to</strong> two isosceles trianglesInflate each pro<strong>to</strong>tile by α = 1 + √ 2Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


SubstitutionBackground and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionPro<strong>to</strong>tiles: a rhombus with 45 ◦ and 135 ◦ angles and a squaredivided in<strong>to</strong> two isosceles trianglesInflate each pro<strong>to</strong>tile by α = 1 + √ 2Subdivide <strong>the</strong> inflated tile with pro<strong>to</strong>tiles of <strong>the</strong> original sizeusing <strong>the</strong> matching rulesBrittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


SubstitutionBackground and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionBrittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


DefinitionsBackground and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionDefinitionLet G be a graph and let f : V → R, where V is <strong>the</strong> set of <strong>the</strong>vertices of G. The Laplacian ∆ (of G) acts on f by∆f (v) :=∑d(v,w)=1f (v) − f (w),where d(v, w) is <strong>the</strong> shortest edge distance from u <strong>to</strong> v.Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


DefinitionsBackground and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionDefinitionLet G be a graph and let f : V → R, where V is <strong>the</strong> set of <strong>the</strong>vertices of G. The Laplacian ∆ (of G) acts on f by∆f (v) :=∑d(v,w)=1f (v) − f (w),where d(v, w) is <strong>the</strong> shortest edge distance from u <strong>to</strong> v.DefinitionEquivalently, <strong>the</strong> Laplacian ∆ := D − A. The degree matrix, D,is a zero matrix with <strong>the</strong> number of neighbors of tile i in <strong>the</strong> (i, i)entry. The adjacency matrix, A, is a zero matrix with a 1 in <strong>the</strong>(i, j) entry if tile i is neighbors with tile j.Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


ExampleBackground and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionExampleGiven a graph with 3 nodes, let us compute <strong>the</strong> Laplacian.Consider <strong>the</strong> graph P 3 , and <strong>the</strong> function f (1) = a, f (2) = b,f (3) = c where a, b, c ∈ R. By definition:∆f (1) =∑d(1,w)=1f (1) − f (w) = f (1) − f (2) = a − b.With similar computations for ∆f (2) and ∆f (3), we get <strong>the</strong>following column vec<strong>to</strong>rs:⎛ ⎞ ⎛⎞af = ⎝b⎠ and ∆f = ⎝ca − b(b − a) + (b − c)c − b⎠ .Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


ExampleBackground and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionExampleThus <strong>the</strong> Laplacian matrix is⎛1 −1⎞0∆ = ⎝−1 2 −1⎠ .0 −1 1Notice that this matrix is equivalent <strong>to</strong> subtracting <strong>the</strong> adjacencymatrix A from <strong>the</strong> degree matrix D:⎛ ⎞ ⎛ ⎞⎛⎞1 0 0 0 1 01 −1 0D = ⎝0 2 0⎠ , A = ⎝1 0 1⎠ , (D−A) = ⎝−1 2 −1⎠ .0 0 1 0 1 00 −1 1Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


DefinitionsBackground and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionDefinitionThe spectrum of a matrix is <strong>the</strong> set of its eigenvalues (withmultiplicity).ExampleThe spectrum of⎛1 −1⎞0∆ = ⎝−1 2 −1⎠0 −1 1from <strong>the</strong> last example is {0, 1, 3}.Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


LabelingBackground and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionBrittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


Internal AdjacenciesBackground and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionThe internal adjacencies for <strong>the</strong> triangle:Tile 1 Side Tile 2 SideTriangle 1 3 Rhombus 1 2Triangle 2 3 Rhombus 2 1Triangle 2 2 Rhombus 1 1Triangle 3 3 Rhombus 2 2Triangle 3 2 Rhombus 1 4Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


Starting IterationBackground and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionThe external adjacencies for a triangle side 1 neighboring a triangleon side 1:Child of Tile 1 Side Child of Tile 2 SideTriangle 1 2 Triangle 1 2Triangle 2 1 Triangle 2 1Rhombus 2 4 Rhombus 2 4Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


Background and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionGenerating <strong>the</strong> <strong>Tiling</strong>S<strong>to</strong>re tiles as data structures. Each structure is assigned anid, shape, children, and n1, n2, n3, n4 if such neighborsexist.Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


Background and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionGenerating <strong>the</strong> <strong>Tiling</strong>S<strong>to</strong>re tiles as data structures. Each structure is assigned anid, shape, children, and n1, n2, n3, n4 if such neighborsexist.We write a function genAB<strong>Tiling</strong> that takes a cell array oftiles as input. This function applies <strong>the</strong> substitution rules bygenerating <strong>the</strong> new tiles for <strong>the</strong> next iteration and establishing<strong>the</strong> internal and external adjacencies.Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


Background and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionGenerating <strong>the</strong> <strong>Tiling</strong>S<strong>to</strong>re tiles as data structures. Each structure is assigned anid, shape, children, and n1, n2, n3, n4 if such neighborsexist.We write a function genAB<strong>Tiling</strong> that takes a cell array oftiles as input. This function applies <strong>the</strong> substitution rules bygenerating <strong>the</strong> new tiles for <strong>the</strong> next iteration and establishing<strong>the</strong> internal and external adjacencies.To create <strong>the</strong> data structures representing <strong>the</strong> starting square,we enter <strong>the</strong> following in <strong>the</strong> terminal window:t r i a n g l e 1 = s t r u c t ( ‘ id ’ , 1 , ‘ shape ’ , ‘ t ’ ) ;t r i a n g l e 2 = s t r u c t ( ‘ id ’ , 2 , ‘ shape ’ , ‘ t ’ ) ;t r i a n g l e 1 . n1 = t r i a n g l e 2 . i d ;t r i a n g l e 2 . n1 = t r i a n g l e 1 . i d ;Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


Background and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionGenerating <strong>the</strong> <strong>Tiling</strong>From <strong>the</strong> tilings generated by genAB<strong>Tiling</strong>, we form anadjacency matrix in makeLaplacian.Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


Background and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionGenerating <strong>the</strong> <strong>Tiling</strong>From <strong>the</strong> tilings generated by genAB<strong>Tiling</strong>, we form anadjacency matrix in makeLaplacian.Since this tiling has conventionally been studied with rhombiand squares, we call <strong>the</strong> function trianglePairs <strong>to</strong> output acell array of pairs of ids corresponding <strong>to</strong> 2 triangles meetingalong side 1. We use <strong>the</strong>se pairs <strong>to</strong> create an adjacencymatrix representing <strong>the</strong> tiling with rhombi and squares.Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


Background and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionGenerating <strong>the</strong> <strong>Tiling</strong>From <strong>the</strong> tilings generated by genAB<strong>Tiling</strong>, we form anadjacency matrix in makeLaplacian.Since this tiling has conventionally been studied with rhombiand squares, we call <strong>the</strong> function trianglePairs <strong>to</strong> output acell array of pairs of ids corresponding <strong>to</strong> 2 triangles meetingalong side 1. We use <strong>the</strong>se pairs <strong>to</strong> create an adjacencymatrix representing <strong>the</strong> tiling with rhombi and squares.Finally, we create <strong>the</strong> degree matrix and subtract <strong>the</strong>adjacency matrix from it <strong>to</strong> get <strong>the</strong> Laplacian.Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


DefinitionsBackground and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionDefinitionA cumulative distribution function (CDF) describes <strong>the</strong>probability that a real-valued random variable X with a givenprobability distribution will be found at a value ≤ x ∈ R.DefinitionThe support of a CDF is <strong>the</strong> smallest closed set whosecomplement has probability zero.Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


Eigenvalues PlotBackground and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionBrittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


Background and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionCumulative Distribution FunctionBrittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


Hausdorff DimensionBackground and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionDefinition (Taken from [3])Let X ⊆ R n . Let |U| := sup{|x − y| : x, y ∈ U}. We say {U i } is aδ-cover of X if X ⊂ ⋃ ∞i=1 U i and 0 ≤ |U i | ≤ δ. For all δ > 0,{ ∞}Hδ s (X ) := inf ∑|U i | s : {U i } is a δ - cover of F .i=1The s-dimensional Hausdorff measure of X isH s (X ) := lim Hδ s (X ).δ→0The Hausdorff dimension of X isdim H X := inf{s ≥ 0 : H s (X ) = 0} = sup{s : H s (X ) = ∞}.Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


Background and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionHausdorff Dimension ExamplesThe Hausdorff dimension of <strong>the</strong> unit interval [0, 1] is 1.Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


Background and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionHausdorff Dimension ExamplesThe Hausdorff dimension of <strong>the</strong> unit interval [0, 1] is 1.The Hausdorff dimension of an open ball in R 2 is 2.Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


Background and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionHausdorff Dimension ExamplesThe Hausdorff dimension of <strong>the</strong> unit interval [0, 1] is 1.The Hausdorff dimension of an open ball in R 2 is 2.The Hausdorff dimension of <strong>the</strong> Can<strong>to</strong>r set is between 0 and 1.Figure : The Middle Third Can<strong>to</strong>r SetBrittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


Background and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionApproximating <strong>the</strong> Hausdorff DimensionInput <strong>the</strong> list of eigenvalues corresponding <strong>to</strong> our largestsubstitution iteration of <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> tiling.Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


Background and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionApproximating <strong>the</strong> Hausdorff DimensionInput <strong>the</strong> list of eigenvalues corresponding <strong>to</strong> our largestsubstitution iteration of <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> tiling.Examine δ-covers of <strong>the</strong> interval [0, 8].Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


Background and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionApproximating <strong>the</strong> Hausdorff DimensionInput <strong>the</strong> list of eigenvalues corresponding <strong>to</strong> our largestsubstitution iteration of <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> tiling.Examine δ-covers of <strong>the</strong> interval [0, 8].Consider intervals in [0, 8] of length 1 2 i , where i ∈ {1, ..., 7}.Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


Background and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionApproximating <strong>the</strong> Hausdorff DimensionInput <strong>the</strong> list of eigenvalues corresponding <strong>to</strong> our largestsubstitution iteration of <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> tiling.Examine δ-covers of <strong>the</strong> interval [0, 8].Consider intervals in [0, 8] of length 1 2 i , where i ∈ {1, ..., 7}.Keep track of <strong>the</strong> least and greatest eigenvalues found in <strong>the</strong>interval. Determine <strong>the</strong> smallest length of this intervalcontaining all eigenvalues in <strong>the</strong> interval.Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


Background and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionApproximating <strong>the</strong> Hausdorff DimensionInput <strong>the</strong> list of eigenvalues corresponding <strong>to</strong> our largestsubstitution iteration of <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> tiling.Examine δ-covers of <strong>the</strong> interval [0, 8].Consider intervals in [0, 8] of length 1 2 i , where i ∈ {1, ..., 7}.Keep track of <strong>the</strong> least and greatest eigenvalues found in <strong>the</strong>interval. Determine <strong>the</strong> smallest length of this intervalcontaining all eigenvalues in <strong>the</strong> interval.For values of s ranging from 0 <strong>to</strong> 1.1, calculate Hδ s (X ) bysumming over <strong>the</strong> length of each interval raised <strong>to</strong> s.Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


Background and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionApproximating <strong>the</strong> Hausdorff DimensionWe want <strong>to</strong> find <strong>the</strong> s value in <strong>the</strong> definition of Hausdorffdimension where H s (X ) jumps from ∞ <strong>to</strong> 0, where X is <strong>the</strong> set ofeigenvalues. To do this, we use a methodology similar <strong>to</strong> <strong>the</strong> onedetailed by Chorin in [2] and output <strong>the</strong> following table:si 0.65 0.75 0.85 0.95 1.051 8.73 8.12 7.55 7.03 6.542 10.70 9.24 7.98 6.89 5.953 13.03 10.48 8.50 6.78 5.464 15.74 11.80 8.85 6.64 4.995 18.73 13.07 9.12 6.37 4.456 21.82 14.13 9.15 5.94 3.857 24.01 14.36 8.59 5.15 3.09Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


Future WorkBackground and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionDue <strong>to</strong> limited computing power, we were only able <strong>to</strong>generate <strong>the</strong> first five substitution iterations of <strong>the</strong> tiling. In<strong>the</strong> future, a better approximation could be calculated byusing larger subsets of <strong>the</strong> infinite tiling.Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


Future WorkBackground and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionDue <strong>to</strong> limited computing power, we were only able <strong>to</strong>generate <strong>the</strong> first five substitution iterations of <strong>the</strong> tiling. In<strong>the</strong> future, a better approximation could be calculated byusing larger subsets of <strong>the</strong> infinite tiling.The same approach that we used for <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong>tiling can be used <strong>to</strong> study o<strong>the</strong>r aperiodic tilings that modelquasicrystals with different symmetries.Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


Future WorkBackground and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionDue <strong>to</strong> limited computing power, we were only able <strong>to</strong>generate <strong>the</strong> first five substitution iterations of <strong>the</strong> tiling. In<strong>the</strong> future, a better approximation could be calculated byusing larger subsets of <strong>the</strong> infinite tiling.The same approach that we used for <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong>tiling can be used <strong>to</strong> study o<strong>the</strong>r aperiodic tilings that modelquasicrystals with different symmetries.The approximation of <strong>the</strong> spectrum that we have calculatedprovides information <strong>to</strong> physicists about <strong>the</strong> movement of <strong>the</strong>electrons in a quasicrystal. With <strong>the</strong> information we haveprovided, more research can be performed in that area as well.Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


AcknowledgementsBackground and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionWe would like <strong>to</strong> thank our men<strong>to</strong>r, May Mei, for herguidance throughout this research project and our project TA,Drew Zemke, for assistance throughout this project, especiallywith MatLab.We would also like <strong>to</strong> thank <strong>the</strong> Cornell UniversityMa<strong>the</strong>matics Department and <strong>the</strong> NSF for funding thisproject.We also thank Baake, Grimm, and Moody for <strong>the</strong>ir detailedexposition, “What is aperiodic order?” and for inspiring <strong>the</strong>images used in this presentation.Finally, we thank Derek Young for his contributions <strong>to</strong> <strong>the</strong>introduction of this research project.Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>


BibliographyBackground and MotivationGenerating <strong>the</strong> <strong>Tiling</strong>Analyzing <strong>the</strong> SpectrumHausdorff DimensionM. Baake, U. Grimm, and R. Moody.What is aperiodic order?arXiv:0203252, 2002.Alexandre Joel Chorin.Numerical estimates of hausdorff dimension.Journal of Computational Physics, 46(3):390 – 396, 1982.K. Falconer.Hausdorff Measure and Dimension, pages 27–38.John Wiley & Sons, Ltd, 2005.L. Sadun.Topology of tiling spaces, volume 46 of University LectureSeries.American Ma<strong>the</strong>matical Society, Providence, RI, 2008.Brittany Livsey, Jason Mifsud, and Francesca Romano<strong>Using</strong> <strong>the</strong> <strong>Ammann</strong>-<strong>Beenker</strong> <strong>Tiling</strong> <strong>to</strong> <strong>Model</strong> <strong>Quasicrystals</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!