13.07.2015 Views

Characterization of Ocular Fungal Infections in Egypt - The Egyptian ...

Characterization of Ocular Fungal Infections in Egypt - The Egyptian ...

Characterization of Ocular Fungal Infections in Egypt - The Egyptian ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Egypt</strong>ian Journal <strong>of</strong> Medical Microbiology, January 2006 Vol. 15, No 1came from agricultural areas with a history <strong>of</strong>trauma with vegetable or animal matter. Fullcl<strong>in</strong>ical history was obta<strong>in</strong>ed as well as fullophthalmic exam<strong>in</strong>ation and any previoustreatments were reported. Patients alreadyreceiv<strong>in</strong>g antifungal drugs were excludedfrom the study. Informed consent wasobta<strong>in</strong>ed from all subjects participat<strong>in</strong>g <strong>in</strong> thisstudy.Specimens: Three samples were taken fromeach subject: one sample for direct sta<strong>in</strong><strong>in</strong>g,the 2 nd sample for culture and the 3 rd samplewas collected <strong>in</strong> sterile phosphate bufferedsal<strong>in</strong>e (PBS, Dulbecco's GIBCO, BRL,Paisely, Scotland) and preserved at -70 o C forPCR. Specimens <strong>in</strong>cluded conjunctival swabsfrom cases <strong>of</strong> conjunctivitis (and also fromcontrols), scrapp<strong>in</strong>gs from the base, marg<strong>in</strong>and the lead<strong>in</strong>g edge <strong>of</strong> the <strong>in</strong>filtrate fromcases <strong>of</strong> corneal ulcers (by means <strong>of</strong> Kimuralikeplat<strong>in</strong>um spatula, us<strong>in</strong>g slit lampbimicroscopy) 14,15 and vitreous aspirate fromcases <strong>of</strong> endophthalmitis (us<strong>in</strong>g steriledispasable 27 gauge needle with a tubercul<strong>in</strong>syr<strong>in</strong>ge) 16,17 .Methods:I. Identification <strong>of</strong> fungi by direct smearus<strong>in</strong>g Spot Test Calc<strong>of</strong>luor White Reagent(Difco Lab., Detroit, Michigan, USA),accord<strong>in</strong>g to manufacturer's <strong>in</strong>structions.Briefly, the spot test was done by transferr<strong>in</strong>gthe specimen on a clean glass slide and gentlymix<strong>in</strong>g it with two drops <strong>of</strong> 10% KOH. Anequal volume <strong>of</strong> Calc<strong>of</strong>luor white reagent wasdispensed and mixed onto the slide thenmounted with a cover slip. <strong>The</strong> specimen wasf<strong>in</strong>ally exam<strong>in</strong>ed by a fluorescent microscope(Olympus BX40). <strong>Fungal</strong> elements display abrilliant apple-green fluorescence.II. Culture: Specimens were immediately<strong>in</strong>oculated onto Sabouraud's dextrose agar(SDA, Oxoid) 18 and Chromagar Candida(Chromagar Microbiology, France) 19 . Plateswere <strong>in</strong>cubated aerobically at 37 o C. ChromagarCandida plates were <strong>in</strong>cubated for 48 hourswhereas SDA plates were <strong>in</strong>cubated for 3weeks at least. Plates were exam<strong>in</strong>ed every 48hours for evidence <strong>of</strong> growth 14,17 . Suspectedcolonies on Chromagar Candida wereidentified accord<strong>in</strong>g to manufacturer's<strong>in</strong>structions.III. Sta<strong>in</strong><strong>in</strong>g <strong>of</strong> the suspected fungal coloniesby Lactophenol Cotton Blue (BectonDick<strong>in</strong>son Microbiology Systems, Maryland,USA) and visualization by light microscopy(Olympus BX50).IV. Identification <strong>of</strong> the different yeastcolonies by API Candida (Biomerieux, Lyon,France) us<strong>in</strong>g a 3 McFarland turbidity standardyeast suspension. <strong>The</strong> strips were <strong>in</strong>cubatedaerobically at 37 o C for 24-48 hours 20 .V. Detection <strong>of</strong> fungal DNA bysemi-nested PCR: A rapid semi-nested PCRapproach for the detection <strong>of</strong> C. albicans or A.fumigatus was applied for all specimens (fromcases and controls). A first round PCR wasachieved us<strong>in</strong>g two outer primerscorrespond<strong>in</strong>g to nucleotides 40 to 63(forward primer, UNI-F) and 637 to 654(reverse primer, UNI-R), derived from thelarge subunit ribosomal DNA (rDNA)complex <strong>of</strong> Saccharomyces cerevisiae V3region. Identification <strong>of</strong> C. albicans or A.fumigatus was then achieved by a 2 ndamplification reaction us<strong>in</strong>g species-specific<strong>in</strong>ner forward primers (Ca-F or Af-F,respectively) <strong>in</strong> comb<strong>in</strong>ation with the outerreverse primer (UNI-R) 21,22 . <strong>The</strong> follow<strong>in</strong>gselected oligonucleotide primers weresynthesized by a commercial vendor(Biosynthesis, Germany): Outer forwardprimer (UNI-F), 5'- GCA TAT CAA TAAGCG GAG GAA AAG -3', Outer reverseprimer (UNI-R), 5'- GGT CCG TGT TTCAAG ACG -3', C. albicans (<strong>in</strong>ner) forwardprimer (Ca-F), 5'- TTG GAG CGG CAGCAG GAT AAT GG -3' and A. fumigatus(<strong>in</strong>ner) forward primer (Af-F), 5'- GCA TTCGTG CCG GTG TAC TTC -3'.DNA extraction was done with aQIAamp DNA M<strong>in</strong>i Kit (Qiagen, UK). Outerprimers were <strong>in</strong>cluded <strong>in</strong> a 50 µl first PCRreaction which conta<strong>in</strong>ed 3 µl <strong>of</strong> extractedDNA, 50 mM KCl, 10 mM Tris-HCl, pH 8.3,1.0 mM MgCl 2 , 20 µM <strong>of</strong> each dATP, dCTP,dGTP and dTTP, 0.5 unit <strong>of</strong> Taq DNApolymerase (all Fermentas, Germany) and 2µM <strong>of</strong> each primer. <strong>The</strong> cycl<strong>in</strong>g parameters(us<strong>in</strong>g Perk<strong>in</strong>-Elmer 9600 thermal cycler)consisted <strong>of</strong> 30 cycles: 94 o C for 30 sec(except for 5 m<strong>in</strong>utes for the first cycle),66 o C for 90 sec and 72 o C for 15 sec (exceptfor 5 m<strong>in</strong> for the last cycle; f<strong>in</strong>al extension).Species-specific PCR (30 cycles) wasperformed <strong>in</strong> exactly the same way as the firstround PCR except that UNI-F was replacedwith either Ca-F or Af-F primer, <strong>in</strong> additionto UNI-R primer. Aliquots <strong>of</strong> 1 µl <strong>of</strong> the 1 st238


<strong>Egypt</strong>ian Journal <strong>of</strong> Medical Microbiology, January 2006 Vol. 15, No 1PCR amplification products were used astargets <strong>in</strong> the species-specific PCR.Post-PCR gel electrophoresis wasperformed on 2% agarose gel (Hispan agar,Spa<strong>in</strong>), conta<strong>in</strong><strong>in</strong>g 0.5 µg/ml ethidiumbromide (Amresco, USA) <strong>in</strong> 1% TBE buffer(GIBCO, BRL, Life Technologies, USA).<strong>The</strong> amplification products were visualizedus<strong>in</strong>g Spectrol<strong>in</strong>e Bio-Vision UV/White LightTransillum<strong>in</strong>ator and compared to acommercial molecular weight marker(ΦX174 DNA-HaeIII Digest, New EnglandBioLabs), which gives bands at 1353, 1078,872, 603, 310, 281, 271, 234, 194, 118, 72 bp(N.B., 281 and 271 bp bands appear as as<strong>in</strong>gle band). <strong>The</strong> expected PCR productlengths were 156 bp and 192 bp for C.albicans and A. fumigatus, respectively.Negative (sterile distilled water) and positivecontrols [C. albicans standard stra<strong>in</strong> (ATCC10232) and A. fumigatus standard stra<strong>in</strong>(ATCC 10827)] were <strong>in</strong>cluded <strong>in</strong> each PCRrun.Statistical Analysis: Data were analyzedus<strong>in</strong>g Statistical Package for Social Sciences(SPSS) s<strong>of</strong>tware, Version 11. P value < 0.05was considered significant.RESULTS:<strong>The</strong> present study <strong>in</strong>cluded 50 cases (30males and 20 females) <strong>of</strong> cl<strong>in</strong>ically suspectedoculomycosis [39 cases (78%) <strong>of</strong>keratoconjunctivitis and 11 cases (22%) <strong>of</strong>endophthalmitis] as the study group (cases),<strong>in</strong> addition to 20 healthy <strong>in</strong>dividuals (10males and 10 females) serv<strong>in</strong>g as the controlgroup.Table (1): Results <strong>of</strong> positive direct sta<strong>in</strong> with Calc<strong>of</strong>luor white sta<strong>in</strong> among cases and controlsFungusCases (N o = 50) Controls (N o = 20) P valueN o % N o %Yeasts 12 24 1 5 < 0.001Hyphae 20 40 1 5Total 32 64 2 101-a 1-b 1-cFigure (1): Calc<strong>of</strong>luor white sta<strong>in</strong>ed specimens show<strong>in</strong>g:1-a: Budd<strong>in</strong>g oval cells <strong>of</strong> C. albicans1-b: Germ tube <strong>of</strong> C. albicans1-c: Hyphal elements <strong>of</strong> septate filamentous fungi239


<strong>Egypt</strong>ian Journal <strong>of</strong> Medical Microbiology, January 2006 Vol. 15, No 1Table (2): Comparison between the isolation rates <strong>of</strong> different fungal species on Sabouraud'sdextrose agar (SDA) and Chromagar Candida among cases and controlsSDAChromagar CandidaCases Controls Cases ControlsN o % N o % N o % N o %No growth 25 50 16 80 42 84 19 95Candida Spp.* 8 16 1 5 8 16 1 5Aspergillus spp.** 8 16 1 5 0 0 0 0Penicillium 4 8 1 5 0 0 0 0Alternaria 2 4 1 5 0 0 0 0Curvularia 2 4 0 0 0 0 0 0Rhodotorula rubra 1 2 0 0 0 0 0 0Total 50 100 20 100 50 100 20 100N.B.: *Isolated candida species <strong>in</strong>cluded 4 C. albicans, 2 C. krusei, 1 C. parapsilosis and 1 C.tropicalis among cases, whereas only 1 C. parapsilosis was identified among controls(confirmed by API Candida).** Isolated Aspergillus species <strong>in</strong>cluded 4 A. fumigatus, 2 A. niger and 2 A. flavus amongcases, whereas only 1 A. fumigatus was isolated from controls (confirmed bylactophenol cotton blue sta<strong>in</strong>).2-a 2-b 2-c2-d 2-e 2-fFigure (2): Lactophenol cotton blue sta<strong>in</strong> <strong>of</strong>:2-a: A. fumigatus (show<strong>in</strong>g conidiophore hav<strong>in</strong>g a flask-shaped swollen end called vesicle).2-b: A. flavus (show<strong>in</strong>g conidiophore aris<strong>in</strong>g from a foot cell and term<strong>in</strong>at<strong>in</strong>g <strong>in</strong> a vesicle, whichproduces phialides <strong>in</strong> one or two series and unicellular conidia).2-c: A. niger (show<strong>in</strong>g black spore heads).2-d: Penicillium (show<strong>in</strong>g the brush appearance)2-e: Alternaria (show<strong>in</strong>g multi-celled conidium).2-f: C. albicans (show<strong>in</strong>g the characteristically asexual budd<strong>in</strong>g).240


<strong>Egypt</strong>ian Journal <strong>of</strong> Medical Microbiology, January 2006 Vol. 15, No 1Table (3): Results <strong>of</strong> culture <strong>in</strong> relation to the cl<strong>in</strong>ical diagnosis <strong>of</strong> casesCulture ResultsKeratoconjunctivitis EndophthalmitisN o % N o %No growth 22 56.4 3 27.2Aspergillus species 6 15.4 2 18.2A. fumigatus 2 5.1 2 18.2A. niger2 5.1 0 0A. flavus 2 5.1 0 0Candida species 4 10.3 4 36.4C. albicans 2 5.1 2 18.2C. krusei1 2.6 1 9.1C. tropicalis 1 2.6 0 0C. parapsilosis 0 0 1 9.1Penicillium 2 5.1 2 18.2Alternaria 2 5.1 0 0Curvularia 2 5.1 0 0Rhodotorula rubra 1 2.6 0 0Total 39 100 11 100N.B.: - Positive fungal culture was obta<strong>in</strong>ed <strong>in</strong> 17 cases (43.6%) <strong>of</strong> keratoconjunctivits and <strong>in</strong> 8 cases(72.7%) <strong>of</strong> endophthalmitis.Comparison between keratoconjunctivitis andendophthalmitis cases, regard<strong>in</strong>g the commonpredispos<strong>in</strong>g factors, revealed that out <strong>of</strong> the39 cases <strong>of</strong> keratoconjunctivitis, 22 cases(88%) had a def<strong>in</strong>ite history <strong>of</strong> trauma and 3cases (12%) were post-surgical. However, out<strong>of</strong> the 11 cases <strong>of</strong> endophthalmitis, 9 caseswere exogenous endophthalmitis [6 cases(54.5%); follow<strong>in</strong>g cataract operations and 3cases (27.2%); follow<strong>in</strong>g trauma] and 2 cases(18.2%) were endogenous endophthalmitis.Table (4): Comparison between direct smear and culture, regard<strong>in</strong>g detection <strong>of</strong> mycosis amongcasesCultureTestPositiveNegativeTotalN o % N o % N o (%)Direct Positive 24 48 8 16 32 (64%)Smear a Negative 1 2 17 34 18 (36%)Total 25 50 25 50 50 (100%)aSensitivity = 96% Specificity = 68% Accuracy = 82%Positive Predictive Value (PPV) = 75% Negative Predictive Value (NPV) = 94.4%API Candida results revealed 4isolates <strong>of</strong> C. albicans, 2 isolates <strong>of</strong> C. krusei,1 isolate <strong>of</strong> C. tropicalis and 1 isolate <strong>of</strong> C.parapsilosis (a total <strong>of</strong> 8 Candida isolates)among cases, whereas among controls, APICandida could identify only one Candidaspecies (C. parapsilosis). <strong>The</strong>re was acomplete agreement (100%) between theresults <strong>of</strong> Chromagar Candida and APICandida <strong>in</strong> the identification <strong>of</strong> the differentCandida species.Among the 50 cases <strong>of</strong> suspectedocular mycosis, PCR - performed directly oncl<strong>in</strong>ical specimens - revealed 6 positive (12%)C. albicans and 7 positive (14%) A.fumigatus. However, among controls, onlyone positive A. fumigatus (5%) was detectedby PCR. No statistically significant differencewas found - regard<strong>in</strong>g the detection rates <strong>of</strong> A.fumigatus by PCR - between cases andcontrols (P value 0.28). Compared to culture,PCR proved to be 100% sensitive <strong>in</strong> thedetection <strong>of</strong> C. albicans and A. fumigatus.241


<strong>Egypt</strong>ian Journal <strong>of</strong> Medical Microbiology, January 2006 Vol. 15, No 11 2 3 4 5 6 7 8Figure (3): Gel electrophoresis show<strong>in</strong>g C. albicans and A. fumigatus - PCR productsLane 1: positive control for A. fumigatus (ATCC 10827), giv<strong>in</strong>g band at 192 bp. Lanes 2and 3: positive samples for A. fumigatus. Lane 4: PCR molecular weight marker(ΦX174 DNA-HaeIII Digest, New England BioLabs), which gives bands at 1353,1078, 872, 603, 310, 281, 271, 234, 194, 118, 72 bp (281 and 271 bp bandsappear<strong>in</strong>g as a s<strong>in</strong>gle band). Lane 5: positive control for C. albicans (ATCC10232), giv<strong>in</strong>g band at 156 bp. Lanes 6 and 7: positive samples for C. albicans.Lane 8: negative control (H2O).Table (5): Results <strong>of</strong> culture and PCR analysis for C. albicans <strong>of</strong> specimens from patients withpresumed oculomycosisSpecies-Specific PCRC. albicans CultureforPositiveNegativeTotalC. albicans a N o % N o % N o (%)Positive 4 8 2 4 6 (12%)Negative 0 0 44 88 44 (88%)Total 4 8 46 92 50 (100%)aSensitivity = 100% Specificity = 95.7% Accuracy = 97.9%Positive Predictive Value (PPV) = 66.7% Negative Predictive Value (NPV) = 100%for A. fumigatusTable (6): Results <strong>of</strong> culture and PCR analysis for A. fumigatus <strong>of</strong> specimens from patients withpresumed oculomycosisSpecies-Specific PCRA. fumigatus CulturePositiveNegativeTotalN o % N o % N o (%)Positive 4 8 3 6 7 (14%)Negative 0 0 43 86 43 (86%)Total 4 8 46 92 50 (100%)aSensitivity = 100% Specificity = 93.5% Accuracy = 96.8%Positive Predictive Value (PPV) = 57.1% Negative Predictive Value (NPV) = 100%DISCUSSION<strong>Ocular</strong> <strong>in</strong>fections due to opportunisticfungal pathogens are steadily <strong>in</strong>creas<strong>in</strong>g 6,23 .<strong>Fungal</strong> keratitis is a major ophthalmologicproblem <strong>in</strong> the tropical regions <strong>of</strong> the worldand it is one <strong>of</strong> the frequent causes <strong>of</strong> cornealdamage <strong>in</strong> develop<strong>in</strong>g countries 24-26 .242


<strong>Egypt</strong>ian Journal <strong>of</strong> Medical Microbiology, January 2006 Vol. 15, No 1Preservation <strong>of</strong> vision requires early diagnosisand early <strong>in</strong>stitution <strong>of</strong> fungal therapy 6,27 .Non-specific fluorochromatic sta<strong>in</strong>shave become popular for the detection <strong>of</strong>fungi <strong>in</strong> ocular samples. Calc<strong>of</strong>luor whiteappears to be the most widely used <strong>of</strong> thesesta<strong>in</strong>s 28 . In the present study, 50 cases <strong>of</strong>suspected oculomycosis were <strong>in</strong>vestigated.Direct microscopic exam<strong>in</strong>ation withCalc<strong>of</strong>luor white sta<strong>in</strong>, mounted with 10%KOH revealed fungal elements <strong>in</strong> 32 cases(64%), whereas positive fungal cultures; ondifferent culture media; were obta<strong>in</strong>ed <strong>in</strong> 25cases (50%). Direct smear and fungal culturematched (were both positive or negative) <strong>in</strong>41 (82%) <strong>of</strong> the 50 specimens from cases.Similar results were reported by Nag et al. 29who stated that a wet mount with 10% KOHshowed fungal elements <strong>in</strong> 68% <strong>of</strong> cornealulcers, while culture was positive <strong>in</strong> only26.4% <strong>of</strong> the cases. Moreover, other studiesreported higher sensitivity <strong>of</strong> fungal detectionus<strong>in</strong>g KOH and Calc<strong>of</strong>luor white sta<strong>in</strong> thanculture 7,24 . Calc<strong>of</strong>luor white sensitivity <strong>of</strong> 80–90% <strong>in</strong> culture-proven mycotic keratitis hasbeen reported 28 . This agrees with our results,where Calc<strong>of</strong>luor white sta<strong>in</strong> showed asensitivity <strong>of</strong> 96% <strong>in</strong> culture-proven cases <strong>of</strong>oculomycosis. Calc<strong>of</strong>luor white fluorescentsta<strong>in</strong><strong>in</strong>g proved to be a simple technique thatovercomes the difficulties and time <strong>in</strong>volved<strong>in</strong> sta<strong>in</strong><strong>in</strong>g 24,28,30 .Even with the advent <strong>of</strong> many newtechniques, culture rema<strong>in</strong>s the “goldstandard” and the cornerstone <strong>of</strong> the diagnosis<strong>of</strong> most ophthalmic mycoses, except forrh<strong>in</strong>osporidiosis, where direct microscopicexam<strong>in</strong>ation <strong>of</strong> samples yields more reliableresults 3,24,25,28,31 . Wherever possible, it is bestto use more than one culture medium, and to<strong>in</strong>cubate these at 37°C and at 25-30°C for theoptimal recovery <strong>of</strong> ocular fungi 32 .Our culture results among cases(show<strong>in</strong>g 50% positivity) are similar to those<strong>of</strong> El-Sawy et al. 33 and El-Mowafy et al. 34who detected fungal isolation from cultures <strong>in</strong>45% and 47.5% <strong>of</strong> cases <strong>of</strong> cl<strong>in</strong>icallysuspected fungal keratitis, respectively.In the present study, positive fungalculture was obta<strong>in</strong>ed <strong>in</strong> 17 cases (43.6%) <strong>of</strong>keratoconjunctivitis. <strong>The</strong> most prevalentisolates were Aspergillus species thenCandida species, followed by Penicillium,Alternaria, Curvularia and lastlyRhodotorula rubra. This agrees with theresults <strong>of</strong> Tanure et al. 35 . On the other hand,different fungal species were isolated <strong>in</strong> 8cases (72.7%) <strong>of</strong> endophthalmitis; the mostcommon were Candida species followed byAspergillus fumigatus and lastly Penicillium.Internationaly, Aspergillus species isthe most common isolate (27%-64%) <strong>in</strong> cases<strong>of</strong> fungal keratitis worldwide, followed byfusarium (6%-32%) and penicillium (2%-29%) 1 . Similar studies also concluded thatfilamentous fungi are the pr<strong>in</strong>cipal causes <strong>of</strong>mycotic keratitis <strong>in</strong> most parts <strong>of</strong> the world;either Aspergillus spp. or Fusarium spp. werethe most common isolates. Dematiaceousfungi, such as Curvularia spp. and Bipolarisspp., are the third most important cause <strong>of</strong>keratitis <strong>in</strong> a number <strong>of</strong> studies 3,24,25,36-39 . Astudy conducted <strong>in</strong> Saudi Arabia, concludedthat the higher prevalence <strong>of</strong> Aspergillusspecies; among cases <strong>of</strong> keratitis; could beexpla<strong>in</strong>ed by the fact that its spores couldsurvive the hot dry weather 37 , as is the case <strong>in</strong><strong>Egypt</strong>.Keratitis; due to yeasts and yeast-likefungi; is most frequently caused by C.albicans. Keratitis due to this organism tendsto occur more frequently <strong>in</strong> areas wheretraumatic keratitis is uncommon, but whereother predispos<strong>in</strong>g factors caus<strong>in</strong>g epithelialor stromal ulceration are important 40 , forexample, due to previous herpes simplexkeratitis, contact lens-<strong>in</strong>duced cornealabrasions 14 or <strong>in</strong> patients with dry eyes 41 . C.albicans and related fungi have been<strong>in</strong>frequent isolates <strong>in</strong> most studies performed<strong>in</strong> tropical countries, possibly due to thepredom<strong>in</strong>ance <strong>of</strong> livelihoods, such asagriculture, which carry a higher risk for theoccurrence <strong>of</strong> trauma-related keratitis causedby filamentous fungi than for keratitis due toC. albicans 42 .In the present study, <strong>of</strong> the 39 cases <strong>of</strong>keratoconjunctivitis, 22 cases (88%) had adef<strong>in</strong>ite history <strong>of</strong> trauma and 3 cases (12%)were post-surgical. Moreover, <strong>of</strong> the 11 cases<strong>of</strong> endophthalmitis, 6 cases (54.5%) werecl<strong>in</strong>ically manifested follow<strong>in</strong>g cataractoperations, 3 cases (27.2%) followed traumaand 2 cases (18.2%) occurred secondary tohematogenous dissem<strong>in</strong>ation <strong>in</strong> patientshav<strong>in</strong>g debilitat<strong>in</strong>g diseases (endogenousendophthalmitis).Many studies reported that a def<strong>in</strong>itehistory <strong>of</strong> ocular trauma (usually withvegetable matter) was the most common243


<strong>Egypt</strong>ian Journal <strong>of</strong> Medical Microbiology, January 2006 Vol. 15, No 1predispos<strong>in</strong>g factor for mycotic keratitis,(occurr<strong>in</strong>g <strong>in</strong> 44 to 55% <strong>of</strong> patients); lessfrequently reported risk factors <strong>in</strong>cludeprolonged use <strong>of</strong> topical corticosteroids oranti-bacterials, systemic diseases such asdiabetes mellitus, pre-exist<strong>in</strong>g ocular diseases,contact lens wear and previous ocularsurgery 2,24,39,42-44 . On the other hand, mycoticendophthalmitis has been reported to occurafter cataract surgery (61%), trauma (28%) oras metastatic endogenous endophthalmitis(11%) 45 . <strong>The</strong> yeast C. albicans is the mostcommon cause <strong>of</strong> endogenousendophthalmitis 46 . Moreover, Candidaspecies are particularly likely to causeexogenous endophthalmitis. In this sett<strong>in</strong>g,<strong>in</strong>fection may be due to peri-operativecontam<strong>in</strong>ation <strong>of</strong> lens prostheses orcontam<strong>in</strong>ation <strong>of</strong> fluids used for irrigation <strong>of</strong>the eye. Infection may be also enhanced bythe pre- and post-operative use <strong>of</strong> topicalcorticosteroids and anti-bacterial agents 42 .However, Aspergillus endophthalmitis is thecommonest type <strong>of</strong> vision-threaten<strong>in</strong>g fungalendophthalmitis encountered <strong>in</strong> India 47 .Our results revealed that Sabouraud'sdextrose agar allowed for the recovery <strong>of</strong>most fungal pathogens with<strong>in</strong> 2 weeks <strong>of</strong><strong>in</strong>cubation. Generally, the duration <strong>of</strong><strong>in</strong>cubation - for most yeasts - is one week,although the range <strong>of</strong> time for recovery <strong>of</strong>dimorphic fungi may extend to 4-6weeks 25,48,49 .<strong>The</strong> present study also showed acomplete agreement (100%) between theresults <strong>of</strong> Chromagar Candida and APICandida <strong>in</strong> the identification <strong>of</strong> the differentCandida species, however, the yeast colonycolor development (on Chromagar Candida)or its proper identification (by API Candida)was better reported after 48 hours <strong>of</strong><strong>in</strong>cubation, as previously noted 20,50 . Thisdelay <strong>in</strong> the identification by cultural and/orbiochemical procedures or the limited yield <strong>of</strong>vitreous cultures (<strong>in</strong> cases <strong>of</strong> endophthalmitis)has led to a search for more rapidtechniques 51 . <strong>The</strong> speed and sensitivity <strong>of</strong>PCR makes it an ideal choice for the basis <strong>of</strong>a rapid identification system 51,52 . PCR hasbeen reported to be a more sensitive and rapiddiagnostic tool, compared to the conventionalmycologic methods <strong>in</strong> the diagnosis <strong>of</strong>oculomycosis, where 55.8% <strong>of</strong> cases <strong>of</strong>fungal endophthalmitis were positive byconventional methods versus 74.4% byPCR 47 . Similarly, Hidalgo et al. 51 andLohmann et al. 53 concluded that PCR had ahigher rate <strong>of</strong> positive fungal identificationthan by microscopy or diagnostic culture.This is similar to our results.Us<strong>in</strong>g species-specific primers <strong>in</strong> thepresent study, PCR could detect 6 positive C.albicans (12%) and 7 positive A. fumigatus(14%) among cases <strong>of</strong> suspectedoculomycosis; versus only 1 positive A.fumigatus (5%) among the control group. Nostatistically significant difference was found -regard<strong>in</strong>g the detection rates <strong>of</strong> A. fumigatusby PCR - between cases and controls (P value0.28), which might be expla<strong>in</strong>ed by the smallsample size <strong>in</strong>cluded <strong>in</strong> the study. However,us<strong>in</strong>g culture, 4 C. albicans (8%) and 4 A.fumigatus (8%) isolates were recovered fromcases and only one A. fumigatus isolate wasrecovered from controls. Among the 50 cases<strong>in</strong> the present study, PCR and fungal culturefor C. albicans and A. fumigatus matched <strong>in</strong>48 (96%) and 47 (94%) <strong>of</strong> the specimens,respectively. In 2 (4%) and 3 (6%) casespecimens, PCR detected C. albicans and A.fumigatus, respectively, where no organismwas found <strong>in</strong> culture. All <strong>of</strong> these patientsappeared cl<strong>in</strong>ically to have ocular fungal<strong>in</strong>fections, and fungi were present onCalc<strong>of</strong>luor white smear for all.PCR would probably be most valuable<strong>in</strong> provid<strong>in</strong>g a positive result <strong>in</strong> a shorterperiod than that required for culture 6,12,53 and<strong>in</strong> identification <strong>of</strong> a fungal isolate whichdoes not sporulate 54 . Moreover, PCR <strong>of</strong>fersthe ability to analyze specimens far fromwhere they are collected 11,13 . Eventually, PCRmight solidly complement the current “goldstandard” diagnostic techniques for guid<strong>in</strong>gmanagement or support<strong>in</strong>g research studies <strong>of</strong>oculomycosis 13 . However, concern persistsregard<strong>in</strong>g the specificity <strong>of</strong> this technique andthe problems that may arise from theproduction <strong>of</strong> false-positive results. PCR doesnot dist<strong>in</strong>guish viable from non-viableorganisms; it may therefore be difficult toassess the relevance <strong>of</strong> a positive PCR result<strong>in</strong> a heal<strong>in</strong>g corneal ulcer, where culture isnegative 55 , or <strong>in</strong> locations such as theconjunctival sac, where fungi may be foundas transient commensals 13 . Although PCR isextremely sensitive and specific, it cannot beused to monitor the patient’s response totreatment. Moreover, A few culture mediawill suffice to detect and grow the common244


<strong>Egypt</strong>ian Journal <strong>of</strong> Medical Microbiology, January 2006 Vol. 15, No 1ocular pathogens, but PCR must bemultiplexed for each microorganism that issuspected 56 . <strong>The</strong> difficulty <strong>of</strong> DNA extraction(some filamentous fungi have a sturdy cellwall; which is resistant to standard DNAextraction procedures) and the presence <strong>of</strong>PCR <strong>in</strong>hibitors <strong>in</strong> human specimens are some<strong>of</strong> the difficulties encountered with fungaldetection <strong>in</strong> ocular samples 57 . F<strong>in</strong>ally, PCRcan detect only fungi for which the DNAsequence is known and primers areavailable 58 .To conclude, the <strong>in</strong>creased awareness<strong>of</strong> ocular fungal <strong>in</strong>fections, the betterrecognition <strong>of</strong> their cl<strong>in</strong>ical features and theimproved laboratory diagnostic techniques,will all lead to an <strong>in</strong>crease <strong>in</strong> the frequency <strong>of</strong>correct diagnosis. A rapid and accuratediagnosis <strong>of</strong> oculomycosis will improve thechances <strong>of</strong> a complete recovery, especially <strong>in</strong>the tropics, where patients may delaypresent<strong>in</strong>g to an ophthalmologist. Calc<strong>of</strong>luorwhite fluorescent sta<strong>in</strong><strong>in</strong>g proved to be asimple and reliable technique for <strong>in</strong>itiation <strong>of</strong>antifungal therapy. Culture methods rema<strong>in</strong>important diagnostic tools that add to theproper identification and characterization <strong>of</strong>oculomycosis, however, new culture medianeed to be developed. PCR is a potentiallyvaluable technique for diagnos<strong>in</strong>g ocularfungal pathogens, particularly, if panfungalprimers are used and optimized. AlthoughPCR is expensive and requires laboratoryexpertise, yet the loss <strong>of</strong> an eye, due to delay<strong>in</strong> laboratory diagnosis, is devastat<strong>in</strong>g.References:1. Alexandrakis G, Kanellopoulous J,Donald S, et al. (2002): <strong>Fungal</strong>keratitis. In: Kuhn F and Pieramici D(eds.): <strong>Ocular</strong> trauma: Pr<strong>in</strong>ciples andPractice, P. 293-301, Thieme MedicalPublishers, New York.2. Sr<strong>in</strong>ivasan R, Kanungo R and GoyalJL (1991): Spectrum <strong>of</strong> oculomycosis <strong>in</strong>South India. Acta Ophthalmologica, 66:774-779.3. Garg P, Gop<strong>in</strong>ath G, Choudhary Kand Rao GN (2000): Keratomycosis:cl<strong>in</strong>ical and microbiological experiencewith dematiaceous fungi. Ophthalmol.,107: 574-580.4. Bloom PA, Laidlaw DA, Easty DL, etal. (1992): Treatment failure <strong>in</strong> a case <strong>of</strong>fungal keratitis caused byPseudallescheria boydii. Br. J.Ophthalmol., 76 (6): 367-368.5. Thomas PA (2003): <strong>Fungal</strong> <strong>in</strong>fection <strong>of</strong>the cornea. Eye, 17: 852-862.6. Kumar M and Shukla PK (2005): Use<strong>of</strong> PCR target<strong>in</strong>g <strong>of</strong> <strong>in</strong>ternal transcribedspacer regions and s<strong>in</strong>gle-strandedconformation polymorphism analysis <strong>of</strong>sequence variation <strong>in</strong> different regions <strong>of</strong>rRNA genes <strong>in</strong> fungi for rapid diagnosis<strong>of</strong> mycotic keratitis. J. Cl<strong>in</strong>. Microbiol.,43(2): 662-668.7. Sharma S, Kunimoto DY, Gop<strong>in</strong>than Uet al. (2002): Evaluation <strong>of</strong> cornealscrap<strong>in</strong>g smear exam<strong>in</strong>ation methods <strong>in</strong>the diagnosis <strong>of</strong> bacterial and fungalkeratitis: a survey <strong>of</strong> eight years <strong>of</strong>laboratory experience. Cornea, 21(7):643-647.8. Chandler FW (1991): Histologicdiagnosis <strong>of</strong> mycotic diseases, p. 235-242. In: Gatti F, de Vroey C and Persi A(eds.): Human mycoses <strong>in</strong> tropicalcountries. Health Cooperation Papers N o13. Organizzazione per la CooperazioneSanitaria Internazionale, Bologna, Italy.9. Mendonza L, Ajello L and McG<strong>in</strong>nisMR (1996): <strong>Infections</strong> caused by theoomycetous pathogen Pythium<strong>in</strong>sidiosum. J. Mycol. Med., 6: 151-164.10. Ahmad, S, Khan Z, Mustafa AS et al.(2002): Semi-nested PCR for diagnosis<strong>of</strong> candidemia: comparison with culture,antigen detection, and biochemicalmethods for species identification. J.Cl<strong>in</strong>. Microbiol., 40: 2483-2489.11. Wu Z, Tsumura Y, Blomquist G, et al.(2003): 18S rRNA gene variation amongcommon airborne fungi anddevelopment <strong>of</strong> specific oligonucleotideprobes for the detection <strong>of</strong> fungal isolate.Appl. Environ. Microbiol., 69: 5389-5397.12. Ferrer C, Munoz G, Alio JL et al.(2002): Polymerase cha<strong>in</strong> reactiondiagnosis <strong>in</strong> fungal keratitis caused byAlternaria alternata. Am. J. Ophthalmol.,133: 398-399.13. Gaudio, PA, Gop<strong>in</strong>athan U, SangwanV, et al. (2002): Polymerase cha<strong>in</strong>reaction based detection <strong>of</strong> fungi <strong>in</strong><strong>in</strong>fected corneas. Br. J. Ophthalmol.,86(7): 755-760.14. Forster RK (1994): <strong>Fungal</strong> keratitis andconjunctivitis: Cl<strong>in</strong>ical aspects. In:245


<strong>Egypt</strong>ian Journal <strong>of</strong> Medical Microbiology, January 2006 Vol. 15, No 1Smol<strong>in</strong> G and Thr<strong>of</strong>t RA (eds.): <strong>The</strong>Cornea: Scientific foundations andCl<strong>in</strong>ical practice, 3 rd ed., P. 239-250,Little Brown & Co., Boston.15. Mounir A, Hamza I, Salah M et al.(1996): Recent trends <strong>in</strong> management <strong>of</strong>fungal keratitis. Bul. Opthalmol. Soc.<strong>Egypt</strong>, Vol 89: 809.16. Jones DB, Liesegang TJ et al. (1981):Cumitech 13, American Society forMicrobiology, Wash<strong>in</strong>gton DC.17. Goodman NL and Roberts GD (1998):Laboratory diagnosis. In: Ajello L andHay RJ (eds.): Topley & Wilson'sMicrobiology and Microbial <strong>Infections</strong>,Vol. 4, Ch. 5, P. 75-87, Arnold, NewYork.18. Liesegang TJ (1998): <strong>Fungal</strong> keratitis.In: Kaufman HE, Barron BA andMcdonald MB (eds.): <strong>The</strong> cornea, Vol. 1,2 nd ed., P. 219-245, Butterworth –He<strong>in</strong>emann.19. Odds FG and Bernaerts R (1994):Chromagar Candida, a new differentialisolation medium. Presumptiveidentification <strong>of</strong> cl<strong>in</strong>ically importantCandida species. J. Cl<strong>in</strong>. Microbiol., 32:1923-1929.20. Hidalgo HF, Vandapel O, DuchesneMA et al. (1996): Comparison <strong>of</strong> the newAPI Candida system to the ID 32 Csystem for identification <strong>of</strong> cl<strong>in</strong>icallyimportant yeast species. J. Cl<strong>in</strong>.Microbiol. , 34 (7): 1846-1848.21. Haynes KA, Westerneng TJ, Fell W etal. (1995): Rapid detection andidentification <strong>of</strong> pathogenic fungi bypolymerase cha<strong>in</strong> reaction amplification<strong>of</strong> large subunit ribosomal DNA. J. Med.Vet. Mycol., 33: 319-325.22. Haynes KA and Westerneng TJ (1996):Rapid identification <strong>of</strong> Candida albicans,Candida glabrata, Candida parapsilosisand Candida krusei by species-specificPCR <strong>of</strong> large subunit ribosomal DNA. J.Med. Microbiol., 44: 390-396.23. Feldmesser M (2001): <strong>Ocular</strong> Fungi. In:Agarwal S and Apple D (eds.): Textbook<strong>of</strong> Ophthalmology, Vol. 4, (1 st ed.), P.2783, Jaypee Brothers, New Delhi.24. Gop<strong>in</strong>athan U, Garg P, Fernandes S, etal. (2002): <strong>The</strong> epidemiological featuresand laboratory results <strong>of</strong> fungal keratitis.A 10-year review at a referral eye carecenter <strong>in</strong> South India. Cornea, 21(6): 555-559.25. Leck AK, Thomas PA, Hagan M, et al.(2002): Aetiology <strong>of</strong> suppurative cornealulcers <strong>in</strong> Ghana and South India andepidemiology <strong>of</strong> fungal keratitis. Br. J.Ophthomol., 86 (11): 1211-1215.26. Prats CH, Tello FL, Jose ABS, et al.(2004): Voriconazole <strong>in</strong> fungal keratitiscaused by Scedoporium apiospermum.Ann. Pharmacol., 38: 414-417.27. Araffa RC, Av<strong>in</strong> I, Ishibashi Y, et al.(1985): Calc<strong>of</strong>luor and <strong>in</strong>k-potassiumhydroxide preparation for identify<strong>in</strong>gfungi. Am. J. Ophthalmol., 100: 719.28. Chander J and Sharma A (1994):Prevalence <strong>of</strong> fungal corneal ulcers <strong>in</strong>Northern India. Infection, 22: 207–209.29. Nag DR, Chatterjee S, Chattersee S, etal. (2002): Role <strong>of</strong> potassium hydroxidemount <strong>in</strong> rapid diagnosis <strong>of</strong> fungalcorneal ulcers. J. Indian Med. Assoc., 100(1): 18.30. Sharma S, Silverberg, M., Mehta, P, etal. (1998): Early diagnosis <strong>of</strong> mycotickeratitis: predictive value <strong>of</strong> potassiumhydroxide preparation. Indian J.Ophthalmol., 46: 31-35.31. Richardson MD and Shankland GS(1999): Rhizopus, Rhicomucor,Absidia,and other agents <strong>of</strong> systemic andsubcutaneous zygomycoses, In: MurrayPR, Baron EJ, Pfaller MA, et al. (eds.):Manual <strong>of</strong> Cl<strong>in</strong>ical Microbiology, 7 th ed.,P. 1242–1258, ASM, Wash<strong>in</strong>gton, D.C.32. Upadhyay M P, Karmacharya PCD,Koirala S, et al. (1991): Epidemiologicalcharacteristics, predispos<strong>in</strong>g factors andaetiological diagnosis <strong>of</strong> cornealulceration <strong>in</strong> Nepal. Am. J. Ophthalmol.,111, 92–99.33. El-Saway A, Youssef W and Refai MK(1990): Prevalence and management <strong>of</strong>mycotic <strong>in</strong>fections <strong>of</strong> external eye. Bull.Ophthalmol. Soc. <strong>Egypt</strong>, 83: 661.34. El-Mowafy N, Abdalla MI and Refai M(1983): <strong>Fungal</strong> flora <strong>of</strong> the conjunctivalsac <strong>in</strong> healthy and diseased eyes. Bull.Ophthalmol. Soc. <strong>Egypt</strong>, 76: 19.35. Tanure MA, Cohen EJ, Grewal S et al.(2000): Spectrum <strong>of</strong> fungal keratitis atWills Eye Hospital, Philadelphia,Pennsylvania. Cornea, 19: 307-312.36. Sr<strong>in</strong>ivasan M, Gonzales CA, George C,et al. (1997): Epidemiology and246


<strong>Egypt</strong>ian Journal <strong>of</strong> Medical Microbiology, January 2006 Vol. 15, No 1aetiological diagnosis <strong>of</strong> cornealulceration <strong>in</strong> Madurai, South India. Br. J.Ophthalmol., 81: 965–971.37. Khairallah SH, Byrne KA andTabbara KF (1992): <strong>Fungal</strong> keratitis <strong>in</strong>Saudi Arabia. Doc. Ophthalmol., 79: 269.38. Sun X-G, Zhang Y, Ran LT, et al.(2004): Etiological analysis on ocularfungal <strong>in</strong>fection <strong>in</strong> the period 1989-2000.Ch<strong>in</strong>ese Med. J., 117(4): 598-600.39. Bharathi MJ, Ramakrishna R, Vasu S,et al. (2003): Epidemiologicalcharacteristics and laboratory diagnosis <strong>of</strong>fungal keratitis. A three-year study.Indian J. Opthalmol., 51(4): 315-321.40. Jones DB (1980): Strategy for the <strong>in</strong>itialmanagement <strong>of</strong> suspected microbialkeratitis. In: Barraquer JI, B<strong>in</strong>der PS,Buxton, JN, et al. (eds.): Symposium onmedical and surgical diseases <strong>of</strong> thecornea. Transactions <strong>of</strong> the New OrleansAcademy <strong>of</strong> Ophthalmology, 293-301, C.V. Mosby, St. Louis, Mo.41. Klotz SA, Penn CC, Negvesky GJ, et al.(2000): <strong>Fungal</strong> and parasitic <strong>in</strong>fections <strong>of</strong>the eye. Cl<strong>in</strong>. Microbiol. Rev., 13(4):662-685.42. Thomas PA (2000): Current perspectiveson ophthalmic mycoses. Cl<strong>in</strong>. Microbiol.Rev., 16(4): 730-797.43. Panda A, Sharma N, Das G et al.(1997): Mycotic keratitis <strong>in</strong> children:epidemiologic and microbiologicevaluation. Cornea, 16: 293-299.44. Wilhelmus KR and Jones DB (2001):Curvularia keratitis. Trans. Am.Ophthalmol. Soc. , 99: 111-132.45. Newell F (1982): Mycotic <strong>in</strong>fections.Ophthalmol., 5: 391-395.46. Liesegang TJ and Forster RF (1980):Spectrum <strong>of</strong> microbial keratitis <strong>in</strong> SouthFlorida. Am. J. Ophthamol., 90: 38.47. Anand AR, Madhavan HN, Sudha NV,et al. (2001): Polymerase cha<strong>in</strong> reaction<strong>in</strong> the diagnosis <strong>of</strong> Aspergillusendophthalmitis. Indian J. Med. Res.,114: 133-140.48. Telenti A and Roberts GD (1989):Laboratory detection <strong>of</strong> fungaemia. J.Cl<strong>in</strong>. Microbiol., 8: 825-831.49. Goldblum D, Frueh BE, Gian-MarcoSarra G-M, et al. (2005): Topicalcasp<strong>of</strong>ung<strong>in</strong> for treatment <strong>of</strong> keratitiscaused by Candida albicans <strong>in</strong> a rabbitmodel. Antimicrob. Agents Chemother.,49(4): 1359-1363.50. Haynes KA and Westerneng TJ (1996):Rapid identification <strong>of</strong> Candida albicans,Candida glabrata, Candida parapsilosisand Candida krusei by species-specificPCR <strong>of</strong> large subunit ribosomal DNA. J.Med. Microbiol., 44: 390.51. Hidalgo JA, Alangaden GJ, Elliot D etal. (2000): <strong>Fungal</strong> endophthalmitisdiagnosis by detection <strong>of</strong> Candidaalbicans DNA <strong>in</strong> <strong>in</strong>traocular fluid by use<strong>of</strong> a species-specific polymerase cha<strong>in</strong>reaction assay. J. Infect. Dis., 181(3):1198-1201.52. Okhravi N, Adamson P and Lighman S(2000): Use <strong>of</strong> PCR <strong>in</strong> endophthalmitis.<strong>Ocular</strong> Immunol. Inflamm., 8: 189.53. Lohmann CP, L<strong>in</strong>de H and Reische U(2000): Improved detection <strong>of</strong>microorganisms by polymerase cha<strong>in</strong>reaction <strong>in</strong> delayed endophthalmitis aftercataract. Ophthalmol., 107(6): 1047.54. Badenoch PR, Coster DJ, WetherallBI, et al. (2001): Pythium <strong>in</strong>sidiosumkeratitis confirmed by DNA sequenceanalysis. Br. J. Ophthalmol., 85: 502.55. Alexandrakis G, Jalali S and Gloor P(1998): Diagnosis <strong>of</strong> Fusarium keratitis<strong>in</strong> an animal model us<strong>in</strong>g polymerasecha<strong>in</strong> reaction. Br. J. Ophthalmol., 82:306-311.56. Reiss E, Tanaka K, Bruker G, et al.(1998): Molecular diagnosis andepidemiology <strong>of</strong> fungal <strong>in</strong>fections. Med.Mycol., 36: 249-25757. Hui M, Ip M, Chan PK, et al. (2000):Rapid identification <strong>of</strong> medicallyimportant Candida to species level bypolymerase cha<strong>in</strong> reaction and s<strong>in</strong>glestrandconformational polymorphism.Diagn. Microbiol. Infect. Dis., 38: 95-99.58. Rajeev B and Biswas J (1998):Molecular biologic techniques <strong>in</strong>ophthalmic pathology. Indian J.Ophthalmol., 46: 3–13.247


<strong>Egypt</strong>ian Journal <strong>of</strong> Medical Microbiology, January 2006 Vol. 15, No 1توصيف عدوى فطريات العين في مصر٢١١١إيمان أحمد الصعيدي ، زينب عبد الخالق إبراهيم ، شروق خميس الحدقي ، هشام عادل حسنقسم الميكروبيولوجيا الطبية٢١والمناعة وقسم الرمد – كلية الطب -جامعة القاهرةيعتبر التهاب العين الفطرى من الأمراض المتزايدة والتى تمثل تحديا ً كبيرا ً وذلك لتأخر تشخيصهاوبالتالى تأخر علاجها مما قد يؤدى إلى مضاعفات كثيرة بالعين.‏ ويعد التهاب القرنية أكثر هذه الأمراضشيوعا"،‏ ولكن يمكن أن تحدث مثل هذه الإصابة في أى جزء آخر من العين.‏ وتمثل الإصابات الفطرية للقرنيةحواليلها.‏%٥٠من كل حالات العدوى الميكروبية للقرنية والتي تم إثباتها فعليا"‏ بالزرع.‏تحدث الإصابات الفطرية بواسطة عدد كبير من أنواع وسلالات الفطريات،‏ تبعا"‏ للمنطقة الجغرافيةوهذه الأعداد في تزايد مستمر.‏ ويمكن أن يساعد التشخيص السريع والدقيق لهذه الفطريات في بدء العلاج الفعالكان الهدف من هذه الدراسة هو تقييم استعمال التفاعل المتسلسل لخميرة البلمرة في تشخيص عدوىفطريات العين،‏ بالمقارنة بالطرق التشخيصية التقليدية الآخرى،‏ وذلك من خلال عدد ٥٠ حالة بها احتمالالتهاب فطرىبالعين تم تشخيصها إكلينيكيا"‏ وأيضا"‏ عدد٢٠ شخصا"‏وجودكمجموعة ضابطة.‏ تم أخذ مسحات منالملتحمة أو عينات من القرح القرنية أوالسائل الزجاجى بالعين من الحالات،‏ بينما تم أخذ مسحات من الملتحمةمن المجموعة الضابطة.‏تشخيص عددعن نتائجحالات إيجابيةوقد أظهرت نتائج البحث أنه تم تشخيص عدد٣٢ حالة (%٦٤)٢٥ حالة (%٥٠)عن طريق صبغة الكلكوفلور و كذلكعن طريق الزرع في المرضى.‏ أما بالنسبة للمجموعة الضابطة،‏ فقد تم الكشفإيجابية بنفس هذه الصبغة وكذلك بالزرع في عدد٢ و٤ أشخاص فقط،‏ على التوالي.‏تم تشخيص نسبة أكبر من الحالات عن طريق التفاعل المتسلسل لخميرة البلمرة،‏ حيث وجد عدد٦(%١٢)للفطور البيض وكذلك عدد٧ حالاتإيجابيةأما بالنسبة للمجموعة الضابطة،‏ فقد تم تشخيص حالة واحدة فقط فيها(%١٤)(%٥)للرشاشيات الدخناء في المرضى.‏للرشاشية الدخناء.‏خلص البحث إلى أن صبغة الكلكوفلور وكذلك التفاعل المتسلسل لخميرة البلمرة من الطرق الواعدة فيتشخيص حالات عدوى فطريات العين،‏ ولكن يبقى للزرع أهمية تشخيصية كبرى.‏248

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!