13.07.2015 Views

Predicted impact of barriers to migration on the Serengeti wildebeest ...

Predicted impact of barriers to migration on the Serengeti wildebeest ...

Predicted impact of barriers to migration on the Serengeti wildebeest ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Predicted</str<strong>on</strong>g> Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> Barriers <str<strong>on</strong>g>to</str<strong>on</strong>g> Migrati<strong>on</strong> <strong>on</strong> <strong>the</strong><strong>Serengeti</strong> Wildebeest Populati<strong>on</strong>Ricardo M. Holdo 1 *, John M. Fryxell 2 , Anth<strong>on</strong>y R. E. Sinclair 3 , Andrew Dobs<strong>on</strong> 4 , Robert D. Holt 51 Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Missouri, Columbia, Missouri, United States <str<strong>on</strong>g>of</str<strong>on</strong>g> America, 2 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Integrative Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Guelph, Guelph, Ontario,Canada, 3 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Zoology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> British Columbia, Vancouver, British Columbia, Canada, 4 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology and Evoluti<strong>on</strong>ary Biology, Prince<str<strong>on</strong>g>to</str<strong>on</strong>g>nUniversity, Prince<str<strong>on</strong>g>to</str<strong>on</strong>g>n, New Jersey, United States <str<strong>on</strong>g>of</str<strong>on</strong>g> America, 5 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Zoology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Florida, Gainesville, Florida, United States <str<strong>on</strong>g>of</str<strong>on</strong>g> AmericaAbstractThe <strong>Serengeti</strong> <strong>wildebeest</strong> <str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g> is a rare and spectacular example <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>on</strong>ce-comm<strong>on</strong> biological phenomen<strong>on</strong>. Aproposed road project threatens <str<strong>on</strong>g>to</str<strong>on</strong>g> bisect <strong>the</strong> <strong>Serengeti</strong> ecosystem and its integrity. The precauti<strong>on</strong>ary principle dictatesthat we c<strong>on</strong>sider <strong>the</strong> possible c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> a road completely disrupting <strong>the</strong> <str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g>. We used an existing spatiallyexplicitsimulati<strong>on</strong> model <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>wildebeest</strong> movement and populati<strong>on</strong> dynamics <str<strong>on</strong>g>to</str<strong>on</strong>g> explore how placing a barrier <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g>across <strong>the</strong> proposed route (thus creating two disjoint but mobile subpopulati<strong>on</strong>s) might affect <strong>the</strong> l<strong>on</strong>g-term size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><strong>wildebeest</strong> populati<strong>on</strong>. Our simulati<strong>on</strong> results suggest that a barrier <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g>—even without causing habitat loss—could cause <strong>the</strong> <strong>wildebeest</strong> populati<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> decline by about a third. The driver <str<strong>on</strong>g>of</str<strong>on</strong>g> this decline is <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> habitatfragmentati<strong>on</strong> (even without habitat loss) <strong>on</strong> <strong>the</strong> ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>wildebeest</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> effectively track temporal shifts in high-qualityforage resources across <strong>the</strong> landscape. Given <strong>the</strong> important role <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>wildebeest</strong> <str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g> for a number <str<strong>on</strong>g>of</str<strong>on</strong>g> key ecologicalprocesses, <strong>the</strong>se findings have potentially important ramificati<strong>on</strong>s for ecosystem biodiversity, structure, and functi<strong>on</strong> in <strong>the</strong><strong>Serengeti</strong>.Citati<strong>on</strong>: Holdo RM, Fryxell JM, Sinclair ARE, Dobs<strong>on</strong> A, Holt RD (2011) <str<strong>on</strong>g>Predicted</str<strong>on</strong>g> Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> Barriers <str<strong>on</strong>g>to</str<strong>on</strong>g> Migrati<strong>on</strong> <strong>on</strong> <strong>the</strong> <strong>Serengeti</strong> Wildebeest Populati<strong>on</strong>. PLoSONE 6(1): e16370. doi:10.1371/journal.p<strong>on</strong>e.0016370Edi<str<strong>on</strong>g>to</str<strong>on</strong>g>r: Andrew Hec<str<strong>on</strong>g>to</str<strong>on</strong>g>r, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Zurich, SwitzerlandReceived September 7, 2010; Accepted December 20, 2010; Published January 25, 2011Copyright: ß 2011 Holdo et al. This is an open-access article distributed under <strong>the</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Creative Comm<strong>on</strong>s Attributi<strong>on</strong> License, which permitsunrestricted use, distributi<strong>on</strong>, and reproducti<strong>on</strong> in any medium, provided <strong>the</strong> original author and source are credited.Funding: The authors would like <str<strong>on</strong>g>to</str<strong>on</strong>g> acknowledge financial support from <strong>the</strong> Nati<strong>on</strong>al Science Foundati<strong>on</strong> Biocomplexity Program (DEB 0308486) for supportingdevelopment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Savanna Dynamics model. The funders had no role in study design, data collecti<strong>on</strong> and analysis, decisi<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> publish, or preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> manuscript.Competing Interests: The authors have declared that no competing interests exist.* E-mail: holdor@missouri.eduIntroducti<strong>on</strong>The <strong>Serengeti</strong> <strong>wildebeest</strong> <str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g> is a unique part <str<strong>on</strong>g>of</str<strong>on</strong>g> ourbiological heritage. Large-scale ungulate <str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g>s, now rare,were <strong>on</strong>ce comm<strong>on</strong>place across <strong>the</strong> globe [1,2,3,4]. Many<str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g>s, such as those <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Great Plains bis<strong>on</strong>, <strong>the</strong> <strong>wildebeest</strong>and springbok <str<strong>on</strong>g>of</str<strong>on</strong>g> sou<strong>the</strong>rn Africa, and most recently <strong>the</strong> saigaantelope <strong>on</strong> <strong>the</strong> Russian steppes, have collapsed in his<str<strong>on</strong>g>to</str<strong>on</strong>g>ric times[1]. Landscape fragmentati<strong>on</strong> and <strong>the</strong> c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> man-made<str<strong>on</strong>g>barriers</str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g> movement are widely c<strong>on</strong>sidered <str<strong>on</strong>g>to</str<strong>on</strong>g> have c<strong>on</strong>tributed <str<strong>on</strong>g>to</str<strong>on</strong>g>such declines [1,2,5]. The <strong>Serengeti</strong> is a rare example where –through brilliant foresight – a large-scale ungulate <str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g> hasbeen saved because <str<strong>on</strong>g>of</str<strong>on</strong>g> well-executed reserve design.The Government <str<strong>on</strong>g>of</str<strong>on</strong>g> Tanzania has recently announced plans <str<strong>on</strong>g>to</str<strong>on</strong>g>c<strong>on</strong>struct an all-wea<strong>the</strong>r road bisecting <strong>the</strong> nor<strong>the</strong>rn porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>Serengeti</strong> Nati<strong>on</strong>al Park [6]. C<strong>on</strong>cerns have been raised that sucha road might truncate <strong>the</strong> <strong>wildebeest</strong> <str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g> with disastrousc<strong>on</strong>sequences for <strong>the</strong> carrying capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> this species in <strong>the</strong>system, leading <str<strong>on</strong>g>to</str<strong>on</strong>g> direct and indirect effects <str<strong>on</strong>g>impact</str<strong>on</strong>g>ing many o<strong>the</strong>rspecies and ecosystem processes [6]. To understand quantitativelyhow disrupting <strong>the</strong> <str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g> might <str<strong>on</strong>g>impact</str<strong>on</strong>g> <strong>the</strong> <strong>wildebeest</strong>populati<strong>on</strong>, it is first necessary <str<strong>on</strong>g>to</str<strong>on</strong>g> characterize how mobility and<strong>the</strong> ability <str<strong>on</strong>g>to</str<strong>on</strong>g> track spatially- and temporally-varying resourcesc<strong>on</strong>tribute <str<strong>on</strong>g>to</str<strong>on</strong>g> sustain migra<str<strong>on</strong>g>to</str<strong>on</strong>g>ry ungulates in this ecosystem,compared <str<strong>on</strong>g>to</str<strong>on</strong>g> <strong>the</strong>ir sedentary counterparts. Forage quality andfood intake peak at intermediate levels <str<strong>on</strong>g>of</str<strong>on</strong>g> grass biomass[7,8,9,10,11], and migra<str<strong>on</strong>g>to</str<strong>on</strong>g>ry ungulates are effective at findinghigh-quality forage patches across heterogeneous landscapesin a range <str<strong>on</strong>g>of</str<strong>on</strong>g> ecosystems [5,10,11], including <strong>the</strong> <strong>Serengeti</strong>[9,12,13,14]. This ability <str<strong>on</strong>g>to</str<strong>on</strong>g> track transient areas <str<strong>on</strong>g>of</str<strong>on</strong>g> highproductivity across <strong>the</strong> landscape translates in<str<strong>on</strong>g>to</str<strong>on</strong>g> a demographicadvantage for migra<str<strong>on</strong>g>to</str<strong>on</strong>g>ry animals over sedentary <strong>on</strong>es [11,15].Landscape fragmentati<strong>on</strong>, by disrupting movement patterns andlowering <strong>the</strong> efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> resource use over <strong>the</strong> annual cycle, canlead <str<strong>on</strong>g>to</str<strong>on</strong>g> reduced populati<strong>on</strong> growth and a lower carrying capacityfor migra<str<strong>on</strong>g>to</str<strong>on</strong>g>ry ungulates in landscapes with high functi<strong>on</strong>alheterogeneity [5,13,15,16,17].Previous models have explored <strong>the</strong> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> resourceheterogeneity in <strong>the</strong> c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g> in <strong>the</strong> <strong>Serengeti</strong>[9,13,14,17]. By fitting an existing movement model [9] <str<strong>on</strong>g>to</str<strong>on</strong>g>resource availability and <strong>wildebeest</strong> distributi<strong>on</strong> data, Holdo et al.[14] found support for <strong>the</strong> hypo<strong>the</strong>sis that <strong>wildebeest</strong> track <strong>the</strong>seas<strong>on</strong>al availability <str<strong>on</strong>g>of</str<strong>on</strong>g> intermediate forage biomass in <strong>the</strong><strong>Serengeti</strong> (by maximizing green grass intake), but also identifiedan underlying fixed gradient <str<strong>on</strong>g>of</str<strong>on</strong>g> plant N c<strong>on</strong>tent as an additi<strong>on</strong>aldriver <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g>. The combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> intermediate biomassand high protein c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> grasses in <strong>the</strong> <strong>Serengeti</strong> plains make<strong>the</strong>m an important resource during <strong>the</strong> wet seas<strong>on</strong>. The remnants<str<strong>on</strong>g>of</str<strong>on</strong>g> green biomass in <strong>the</strong> nor<strong>the</strong>rn woodlands provide a nutriti<strong>on</strong>alrefuge during <strong>the</strong> dry seas<strong>on</strong>; by being able <str<strong>on</strong>g>to</str<strong>on</strong>g> track and exploithigh-quality forage throughout <strong>the</strong> annual cycle, <strong>the</strong>refore,migra<str<strong>on</strong>g>to</str<strong>on</strong>g>ry <strong>wildebeest</strong> can substantially increase <strong>the</strong>ir nutriti<strong>on</strong>alinput and reproductive output compared <str<strong>on</strong>g>to</str<strong>on</strong>g> sedentary animalswith similar metabolic and nutriti<strong>on</strong>al demands. Disrupting <strong>the</strong>adaptive migra<str<strong>on</strong>g>to</str<strong>on</strong>g>ry movements <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>wildebeest</strong> can be expected <str<strong>on</strong>g>to</str<strong>on</strong>g>reduce effective carrying capacity, and reduce <strong>the</strong> ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>PLoS ONE | www.plos<strong>on</strong>e.org 1 January 2011 | Volume 6 | Issue 1 | e16370


Road Impact <strong>on</strong> Wildebeest Migrati<strong>on</strong>ecosystem <str<strong>on</strong>g>to</str<strong>on</strong>g> sustain large numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> ungulates. This wasrecognized by Owen-Smith [17], who used a mean-field model<str<strong>on</strong>g>of</str<strong>on</strong>g> herbivore populati<strong>on</strong> dynamics <str<strong>on</strong>g>to</str<strong>on</strong>g> predict that fragmenting <strong>the</strong><strong>Serengeti</strong> landscape would have a dire <str<strong>on</strong>g>impact</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><strong>wildebeest</strong> populati<strong>on</strong> that <strong>the</strong> system could support.Here, we use <strong>the</strong> specific road proposal that has recently beenlaid out for <strong>the</strong> <strong>Serengeti</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> explore <strong>the</strong> potential <str<strong>on</strong>g>impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>developing <str<strong>on</strong>g>barriers</str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g> (Fig. 1). We draw <strong>on</strong> ageographically-realistic model <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system, in which fragmentati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> habitat in<str<strong>on</strong>g>to</str<strong>on</strong>g> two pieces is assumed <str<strong>on</strong>g>to</str<strong>on</strong>g> occur, precluding<str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g> across <strong>the</strong> barrier provided by <strong>the</strong> road, but no actualhabitat loss. Also, <str<strong>on</strong>g>to</str<strong>on</strong>g> better understand <strong>the</strong> role <str<strong>on</strong>g>of</str<strong>on</strong>g> movement indriving populati<strong>on</strong> size, we c<strong>on</strong>trast our findings with a null model<str<strong>on</strong>g>of</str<strong>on</strong>g> no <str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g>, in which we force <strong>the</strong> <strong>wildebeest</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> becomesedentary and c<strong>on</strong>fined <str<strong>on</strong>g>to</str<strong>on</strong>g> restricted home ranges, with nomovement even within <strong>the</strong> two pieces separated by <strong>the</strong> road.Although this does not represent a real scenario (e.g., <strong>wildebeest</strong>are unlikely <str<strong>on</strong>g>to</str<strong>on</strong>g> try <str<strong>on</strong>g>to</str<strong>on</strong>g> persist in <strong>the</strong> plains in <strong>the</strong> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> surfacewater during <strong>the</strong> dry seas<strong>on</strong>), it serves <str<strong>on</strong>g>to</str<strong>on</strong>g> illustrate <strong>the</strong> potential role<str<strong>on</strong>g>of</str<strong>on</strong>g> movement in determining ungulate carrying capacity.ResultsModel simulati<strong>on</strong>s predicted that <strong>the</strong> impositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a barrier <str<strong>on</strong>g>to</str<strong>on</strong>g><str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g> at <strong>the</strong> site <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> proposed road c<strong>on</strong>structi<strong>on</strong> couldplausibly cause significant drops in <strong>the</strong> <strong>wildebeest</strong> populati<strong>on</strong>. Thesimulated barrier caused a mean drop in populati<strong>on</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> 35%(SD = 5%, N = 100 runs, Fig. 2) compared <str<strong>on</strong>g>to</str<strong>on</strong>g> having no barrier.Figure 1. Map <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>Serengeti</strong> ecosystem showing protectedareas and geographic features. The SD model lattice is shown as ared grid (with <strong>the</strong> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> simulated ecosystem in black), with <strong>the</strong>modeled approximati<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> <strong>the</strong> proposed road in blue. The road divides<strong>the</strong> ecosystem in<str<strong>on</strong>g>to</str<strong>on</strong>g> nor<strong>the</strong>rn and sou<strong>the</strong>rn comp<strong>on</strong>ents. Key <str<strong>on</strong>g>to</str<strong>on</strong>g>abbreviati<strong>on</strong>s: SNP = <strong>Serengeti</strong> Nati<strong>on</strong>al Park, NCA = Ngor<strong>on</strong>goroC<strong>on</strong>servati<strong>on</strong> Area, MMGR = Masai Mara Game Reserve, MGR = MaswaGR, IGR = Ikor<strong>on</strong>go GR, GGR = Grumeti Game Reserve. Water bodiesare shown in dark grey, and <str<strong>on</strong>g>to</str<strong>on</strong>g>pography in lighter shades <str<strong>on</strong>g>of</str<strong>on</strong>g> grey.doi:10.1371/journal.p<strong>on</strong>e.0016370.g001Even though <strong>the</strong> highly-s<str<strong>on</strong>g>to</str<strong>on</strong>g>chastic nature <str<strong>on</strong>g>of</str<strong>on</strong>g> rainfall in <strong>the</strong> systemimposes a great deal <str<strong>on</strong>g>of</str<strong>on</strong>g> uncertainty in model outcome (Fig. 2A),<strong>the</strong> comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> barrier and no barrier scenarios for a givenset <str<strong>on</strong>g>of</str<strong>on</strong>g> rainfall c<strong>on</strong>diti<strong>on</strong>s showed clear effects <strong>on</strong> populati<strong>on</strong> decline(Fig. 2B). Hence, even without any habitat loss or increase inpoaching, a partial disrupti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>wildebeest</strong> <str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g> ispredicted <str<strong>on</strong>g>to</str<strong>on</strong>g> negatively affect <strong>wildebeest</strong> numbers, as well a cause ashift in habitat use patterns during <strong>the</strong> dry seas<strong>on</strong> (Fig. 3). Wec<strong>on</strong>trast this with <strong>the</strong> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> no <str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g> scenario, whichpredicted a collapse <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>wildebeest</strong> populati<strong>on</strong> from an initial(present-day) populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.2 milli<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> less than 10% <str<strong>on</strong>g>of</str<strong>on</strong>g> thatnumber over time (Fig. 4A). An examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sites in nor<strong>the</strong>rnand sou<strong>the</strong>rn <strong>Serengeti</strong> helps identify <strong>the</strong> mechanism that linksmovement and populati<strong>on</strong> dynamics (Fig. 4B). During <strong>the</strong>populati<strong>on</strong> crash that results from restricting movement (<strong>the</strong> first10 years <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> simulati<strong>on</strong>), resource availability Z is maximizedduring <strong>the</strong> wet seas<strong>on</strong> (Dec-May) in <strong>the</strong> South, and per capitapopulati<strong>on</strong> growth is much higher than for sedentary <strong>wildebeest</strong>with home ranges restricted <str<strong>on</strong>g>to</str<strong>on</strong>g> <strong>the</strong> North, but <strong>the</strong> opposite is truelate in <strong>the</strong> dry seas<strong>on</strong> (Sep-Oct). When averaged across <strong>the</strong> entirepopulati<strong>on</strong> (<strong>the</strong> red line in Fig. 4B), <strong>the</strong> sedentary strategy isoutperformed by <strong>the</strong> migra<str<strong>on</strong>g>to</str<strong>on</strong>g>ry <strong>on</strong>e, and <strong>the</strong> latter sustains asubstantially greater populati<strong>on</strong>. Per capita populati<strong>on</strong> changeeventually equalizes in <strong>the</strong> two scenarios, but at far lowerpopulati<strong>on</strong> density in <strong>the</strong> no <str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g> case.The global sensitivity and uncertainty analysis (Table 1)suggested that our c<strong>on</strong>clusi<strong>on</strong> that <strong>the</strong> <strong>wildebeest</strong> populati<strong>on</strong> willdecline as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> barrier c<strong>on</strong>structi<strong>on</strong> is robust (Table 2). The95% c<strong>on</strong>fidence interval (across 1000 iterati<strong>on</strong>s) for populati<strong>on</strong>size, even without a barrier present, ranged from completeextincti<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> over 2.5 milli<strong>on</strong> animals (Table 2). Still, whenc<strong>on</strong>trolling for rainfall regime, <strong>the</strong> no barrier scenario c<strong>on</strong>sistentlyoutperformed <strong>the</strong> barrier scenario (Table 2), with a medianpopulati<strong>on</strong> drop <str<strong>on</strong>g>of</str<strong>on</strong>g> 37% (95% CI: 16–73%). An examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>individual parameter effects suggested a c<strong>on</strong>trast between effects<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g>tal populati<strong>on</strong> size and <strong>on</strong> predicted populati<strong>on</strong> dropfollowing barrier c<strong>on</strong>structi<strong>on</strong>. Wildebeest populati<strong>on</strong> size wasmost sensitive <str<strong>on</strong>g>to</str<strong>on</strong>g>: (1) uncertainty in grass producti<strong>on</strong> (rainfall effec<str<strong>on</strong>g>to</str<strong>on</strong>g>n maximum grass growth y, a parameter that shifts <strong>the</strong> grassincremental growth curve <str<strong>on</strong>g>to</str<strong>on</strong>g>wards <strong>the</strong> origin [<strong>the</strong>reby mimickingobserved overcompensati<strong>on</strong> effects] s; (2) <strong>the</strong> decay rate <str<strong>on</strong>g>of</str<strong>on</strong>g> greengrass d G ; (3) <strong>the</strong> slope for <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> dry grass D <strong>on</strong> fire k 1 ) andquality parameters (q <strong>the</strong> power functi<strong>on</strong> that enhances <strong>the</strong>attractiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> protein-rich grasses in Eq. 1); and (4) demographicparameters (b W ) (Table 1). On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> threemost important parameters for populati<strong>on</strong> decline caused bybarrier c<strong>on</strong>structi<strong>on</strong> were again y and s (maximum grass growthand decay rate), but also Q, which is <strong>the</strong> parameter that influences<strong>the</strong> strength <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> switching resp<strong>on</strong>se that determines movementrate in Eq. 2. I.e., as Q increases, small changes in resourceavailability result in more movement across <strong>the</strong> landscape. Thishighlights <strong>the</strong> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> relati<strong>on</strong>ship between habitatfragmentati<strong>on</strong> and mobility in determining populati<strong>on</strong> viability.Discussi<strong>on</strong>One key fac<str<strong>on</strong>g>to</str<strong>on</strong>g>r underlying <strong>the</strong> superabundance <str<strong>on</strong>g>of</str<strong>on</strong>g> migra<str<strong>on</strong>g>to</str<strong>on</strong>g>ryungulate populati<strong>on</strong>s in <strong>Serengeti</strong> (and elsewhere) is <strong>the</strong> ability <str<strong>on</strong>g>of</str<strong>on</strong>g>animals <str<strong>on</strong>g>to</str<strong>on</strong>g> efficiently track spatiotemporal variati<strong>on</strong> in resourceavailability across landscapes with str<strong>on</strong>g but noisy resourcegradients [11,14,16]. In <strong>Serengeti</strong>, a barrier <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g> woulddisrupt <strong>the</strong> natural seas<strong>on</strong>al patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat use across <strong>the</strong>segradients. The short-grass plains in <strong>the</strong> South <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Serengeti</strong> have ashort growing seas<strong>on</strong> and are unsuitable for year-round occupan-PLoS ONE | www.plos<strong>on</strong>e.org 2 January 2011 | Volume 6 | Issue 1 | e16370


Road Impact <strong>on</strong> Wildebeest Migrati<strong>on</strong>Figure 3. Simulated seas<strong>on</strong>al distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>wildebeest</strong> and resources across <strong>the</strong> landscape. The <strong>wildebeest</strong> panels show <strong>the</strong>percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g>tal populati<strong>on</strong> that occupies each cell in <strong>the</strong> lattice (based <strong>on</strong> m<strong>on</strong>th-end counts) in <strong>the</strong> wet (January) and at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> dry(Oc<str<strong>on</strong>g>to</str<strong>on</strong>g>ber) seas<strong>on</strong>s for <strong>the</strong> no barrier and barrier scenarios. The resource panels show <strong>the</strong> mean daily values <str<strong>on</strong>g>of</str<strong>on</strong>g> Z (Eq. 1 in <strong>the</strong> text) across <strong>the</strong> landscapefor <strong>the</strong> no barrier scenario.doi:10.1371/journal.p<strong>on</strong>e.0016370.g003and model improvement. In <strong>the</strong> meantime, <strong>the</strong> present modelprovides a rare quantitative <str<strong>on</strong>g>to</str<strong>on</strong>g>ol for investigating <strong>the</strong> likely <str<strong>on</strong>g>impact</str<strong>on</strong>g><str<strong>on</strong>g>of</str<strong>on</strong>g> disrupting <strong>the</strong> <str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Serengeti</strong> <strong>wildebeest</strong> populati<strong>on</strong>.Given <strong>the</strong> ic<strong>on</strong>ic importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>wildebeest</strong> <str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g>, bothfor its <str<strong>on</strong>g>to</str<strong>on</strong>g>urism potential and ecological significance, we advocatefur<strong>the</strong>r research <strong>on</strong> <strong>the</strong> potential c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> habitatfragmentati<strong>on</strong>. O<strong>the</strong>r models, both simpler [17] and morecomplex than ours (such as <strong>the</strong> SAVANNA model [26,27]) havebeen or could potentially be applied <str<strong>on</strong>g>to</str<strong>on</strong>g> this problem, and anensemble modeling approach would potentially provide a morerobust evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> risks associated with roadc<strong>on</strong>structi<strong>on</strong>. For example, despite our overall predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>populati<strong>on</strong> decline with barrier c<strong>on</strong>structi<strong>on</strong>, our results are morec<strong>on</strong>servative than were previous estimates generated by <strong>the</strong>simpler mean field model developed by Owen-Smith [17]. Part<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> reas<strong>on</strong> for this might be <strong>the</strong> ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sou<strong>the</strong>rnsubpopulati<strong>on</strong> in our geographically-realistic model <str<strong>on</strong>g>to</str<strong>on</strong>g> accessreas<strong>on</strong>ably wet porti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ecosystem south <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> road during<strong>the</strong> dry seas<strong>on</strong>, as opposed <str<strong>on</strong>g>to</str<strong>on</strong>g> projecti<strong>on</strong>s based <strong>on</strong> <strong>the</strong> simpler twocompartment(Mara versus plains) implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> earliermodel [17]. Additi<strong>on</strong>al approaches could resolve <strong>the</strong>se discrepancies– but it should be noted that all <str<strong>on</strong>g>of</str<strong>on</strong>g> our results suggest that <strong>the</strong>expected fragmentati<strong>on</strong> resulting from road c<strong>on</strong>structi<strong>on</strong> wouldnot have str<strong>on</strong>gly negative c<strong>on</strong>sequences for <strong>the</strong> keys<str<strong>on</strong>g>to</str<strong>on</strong>g>ne<strong>wildebeest</strong> populati<strong>on</strong> and thus much <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>Serengeti</strong>ecosystem.Materials and MethodsStudy system and modeling frameworkThe <strong>Serengeti</strong> ecosystem extends over more than 30,000 km 2 inTanzania and Kenya, with <strong>the</strong> <strong>Serengeti</strong> Nati<strong>on</strong>al Park as itsdominant feature (Fig. 1). Here we define <strong>the</strong> ecosystem as <strong>the</strong>polyg<strong>on</strong> defined by <strong>the</strong> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>wildebeest</strong> <str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g> (Fig. 1).The <str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g> is driven by two abiotic gradients: a seas<strong>on</strong>al rainfallgradient that increases from <strong>the</strong> <strong>Serengeti</strong> plains in <strong>the</strong> sou<strong>the</strong>asternporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ecosystem <str<strong>on</strong>g>to</str<strong>on</strong>g>wards <strong>the</strong> northwestern woodlands nearLake Vic<str<strong>on</strong>g>to</str<strong>on</strong>g>ria, and an opposing gradient <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing soil fertility.During <strong>the</strong> wet seas<strong>on</strong>, between December and April, <strong>the</strong><strong>wildebeest</strong> seek high-protein grasses in <strong>the</strong> plains, but as <strong>the</strong> dryseas<strong>on</strong> progresses, <strong>the</strong>y shift <str<strong>on</strong>g>to</str<strong>on</strong>g>wards <strong>the</strong> wetter woodlands in search<str<strong>on</strong>g>of</str<strong>on</strong>g> remaining pockets <str<strong>on</strong>g>of</str<strong>on</strong>g> green (but low-quality) forage.To investigate <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> imposing movement c<strong>on</strong>straints <strong>on</strong><strong>wildebeest</strong> populati<strong>on</strong> dynamics, we used a recently-publishedmodel <str<strong>on</strong>g>of</str<strong>on</strong>g> savanna herbivore, vegetati<strong>on</strong>, and fire dynamics, <strong>the</strong> SDmodel [14,24,28]. This is a discrete-time model that partiti<strong>on</strong>s <strong>the</strong>ecosystem in<str<strong>on</strong>g>to</str<strong>on</strong>g> a spatially-realistic grid with a spatial resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>10 km, and tracks <strong>the</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> grass, <strong>wildebeest</strong> movement andpopulati<strong>on</strong> dynamics, fire, and tree dynamics in each lattice cell.Envir<strong>on</strong>mental s<str<strong>on</strong>g>to</str<strong>on</strong>g>chasticity is introduced through <strong>the</strong> randomgenerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>thly rainfall surfaces. The surfaces were generatedby interpolating rain gauge data from <strong>the</strong> his<str<strong>on</strong>g>to</str<strong>on</strong>g>rical record for <strong>the</strong>period 1960–2006. To preserve intra-annual spatiotemporalcorrelati<strong>on</strong>s in <strong>the</strong> data, 12-m<strong>on</strong>th runs spanning complete wetand dry seas<strong>on</strong> cycles were kept as a single unit. Model simulati<strong>on</strong>sdraw <strong>the</strong>se units or rainfall ‘‘years’’ (which actually extend fromNovember <str<strong>on</strong>g>to</str<strong>on</strong>g> Oc<str<strong>on</strong>g>to</str<strong>on</strong>g>ber) randomly from <strong>the</strong> record.In <strong>the</strong> model, grass producti<strong>on</strong> and decay are functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> rainfall(both seas<strong>on</strong>al and m<strong>on</strong>thly) and grazing intensity. Two comp<strong>on</strong>entsare tracked in each cell: green and dry grass. The proteinc<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> former is dictated by a separate layer <str<strong>on</strong>g>of</str<strong>on</strong>g> ecosystemwidegrass N c<strong>on</strong>tent, developed from field data. Wildebeest moveat a weekly time step across <strong>the</strong> landscape, and <strong>the</strong>ir movements andlocal populati<strong>on</strong> growth are determined by a quantity we call Z, anindex <str<strong>on</strong>g>of</str<strong>on</strong>g> resource availability. Previously, we used a model selecti<strong>on</strong>approach <str<strong>on</strong>g>to</str<strong>on</strong>g> derive <strong>the</strong> form for Z that best fit observed <strong>wildebeest</strong>movement data. A functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> green forage intake (I G ) and greenforage protein c<strong>on</strong>tent (N) provided <strong>the</strong> best fit:PLoS ONE | www.plos<strong>on</strong>e.org 4 January 2011 | Volume 6 | Issue 1 | e16370


Road Impact <strong>on</strong> Wildebeest Migrati<strong>on</strong>Z than <strong>the</strong> cell <strong>the</strong>y have left. In our initial versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> model[28], movement and local populati<strong>on</strong> dynamics were slightlydecoupled. The former was a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Z and <strong>the</strong> latter <str<strong>on</strong>g>of</str<strong>on</strong>g> Z/W,as follows:ZDW~ b W {m W exp {a WWW{HzVð3ÞIn eq. 3, DW is <strong>the</strong> change in <strong>wildebeest</strong> populati<strong>on</strong> density in agiven lattice cell at each time step. This is a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> localpopulati<strong>on</strong> dynamics (<strong>the</strong> first term <strong>on</strong> <strong>the</strong> r.h.s.) minus e<str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g>H plus im<str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g> V from neighboring cells. The implementati<strong>on</strong>in eq. 3 independently provides good fits <str<strong>on</strong>g>to</str<strong>on</strong>g> movement dataand populati<strong>on</strong> dynamic data, but it is largely phenomenologicalin that <strong>the</strong> fac<str<strong>on</strong>g>to</str<strong>on</strong>g>r that drives movement (Z) differs from <strong>the</strong> fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rthat maximizes per capita populati<strong>on</strong> growth (a proxy for fitness).A side effect <str<strong>on</strong>g>of</str<strong>on</strong>g> this is that simulated <strong>wildebeest</strong> do not necessarilymake movement ‘‘choices’’ that maximize fitness. To make <strong>the</strong>model more mechanistic and internally c<strong>on</strong>sistent, we replaced Z/W <strong>on</strong> <strong>the</strong> r.h.s. <str<strong>on</strong>g>of</str<strong>on</strong>g> eq. 3 with Z:DW~ ½b W {m W exp ð{a W ZÞŠW{HzV ð4ÞThis required a recalibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> parameter a w from 0.21 <str<strong>on</strong>g>to</str<strong>on</strong>g> 0.24in eq. 3 <str<strong>on</strong>g>to</str<strong>on</strong>g> produce a l<strong>on</strong>g-term <strong>wildebeest</strong> populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.2milli<strong>on</strong> under ‘‘normal’’ c<strong>on</strong>diti<strong>on</strong>s. This is <strong>the</strong> mean steady-statesize <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>Serengeti</strong> <strong>wildebeest</strong> populati<strong>on</strong> post-rinderpest (whendisease kept <strong>the</strong> populati<strong>on</strong> in check). We kept all o<strong>the</strong>r modelparameters unaltered with respect <str<strong>on</strong>g>to</str<strong>on</strong>g> earlier model versi<strong>on</strong>s. Thefull set <str<strong>on</strong>g>of</str<strong>on</strong>g> model equati<strong>on</strong>s and parameters is given in [28].Figure 4. Simulated effects <str<strong>on</strong>g>of</str<strong>on</strong>g> movement <strong>on</strong> <strong>wildebeest</strong>populati<strong>on</strong> size in <strong>the</strong> <strong>Serengeti</strong>: A) mean (100 runs) populati<strong>on</strong>size for <strong>the</strong> default (no barrier, <str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g>/movement allowed) scenario(black) from Fig. 2 and a no <str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g> scenario in which <strong>wildebeest</strong> aretreated as residents and prevented from moving am<strong>on</strong>g lattice cells(red). The standard deviati<strong>on</strong>s for each scenario are indicated withdashed lines. B) Mean m<strong>on</strong>thly per capita populati<strong>on</strong> change (r)weighted spatially by <strong>wildebeest</strong> occupancy during <strong>the</strong> initial 10-yearperiod <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> collapse shown in A: <strong>the</strong> <str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g> and no<str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g> scenarios are c<strong>on</strong>trasted, as well as values <str<strong>on</strong>g>of</str<strong>on</strong>g> r for individualcells from <strong>the</strong> nor<strong>the</strong>rn woodlands (N cell) and sou<strong>the</strong>rn plains (S cell)from <strong>the</strong> no <str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g> scenario.doi:10.1371/journal.p<strong>on</strong>e.0016370.g004Z~gI G N qHere, g is <strong>the</strong> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each cell occupied by grass (afuncti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tree cover, which for simplicity and <str<strong>on</strong>g>to</str<strong>on</strong>g> limit sources <str<strong>on</strong>g>of</str<strong>on</strong>g>uncertainty we keep c<strong>on</strong>stant in <strong>the</strong> present simulati<strong>on</strong>s) and q is aparameter. Wildebeest e<str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g> from a lattice cell (H) is afuncti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> local resource availability Z and expected Z across <strong>the</strong>entire landscape, E(Z):H~ EZ ð ÞQðZÞ Q zEZ ð Þ QEmigrating <strong>wildebeest</strong> distribute <strong>the</strong>mselves proporti<strong>on</strong>atelythroughout <strong>the</strong> subset <str<strong>on</strong>g>of</str<strong>on</strong>g> target cells in <strong>the</strong> landscape with greaterð1Þð2ÞModel scenariosWe used <strong>the</strong> SD model <str<strong>on</strong>g>to</str<strong>on</strong>g> make l<strong>on</strong>g-term (100-yearsimulati<strong>on</strong>s) projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>wildebeest</strong> abundance for both ‘‘nobarrier’’ (<strong>the</strong> status quo), and ‘‘barrier’’ scenarios, under which <strong>the</strong>proposed road acts as a physical barrier <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g> and cleaves<strong>the</strong> ecosystem in<str<strong>on</strong>g>to</str<strong>on</strong>g> two separate habitats: a Nor<strong>the</strong>rn compartmentcomprising 6,700 km 2 , and a Sou<strong>the</strong>rn compartment comprising24,000 km 2 , or 22 and 78% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> current extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g>,respectively. Both <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se compartments c<strong>on</strong>tain mixtures <str<strong>on</strong>g>of</str<strong>on</strong>g> opengrasslands (mainly in <strong>the</strong> sou<strong>the</strong>rn plains) and woodland withvariable amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> tree cover. To simulate <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> abarrier, we split <strong>the</strong> model lattice in<str<strong>on</strong>g>to</str<strong>on</strong>g> a nor<strong>the</strong>rn and sou<strong>the</strong>rncompartment, with <strong>the</strong> size and shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> compartmentsdetermined by <strong>the</strong> proposed road layout [6] (Fig. 1). When nobarrier is present, <strong>wildebeest</strong> are able <str<strong>on</strong>g>to</str<strong>on</strong>g> move freely across <strong>the</strong>entire landscape according <str<strong>on</strong>g>to</str<strong>on</strong>g> eq. 1, but when a barrier is present,we assumed that <strong>the</strong> sou<strong>the</strong>rn and nor<strong>the</strong>rn subpopulati<strong>on</strong>s <strong>on</strong>lymove within <strong>the</strong>ir compartments. To test for an effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>barrier <strong>on</strong> <strong>wildebeest</strong> populati<strong>on</strong> size, we c<strong>on</strong>ducted 100 modelruns, each with randomly-drawn rainfall time series (but withidentical time series applied <str<strong>on</strong>g>to</str<strong>on</strong>g> <strong>the</strong> barrier and no barrier scenariosfor each run), and calculated <strong>the</strong> percent deviati<strong>on</strong> in final<strong>wildebeest</strong> populati<strong>on</strong> size between <strong>the</strong> two scenarios (for <strong>the</strong>barrier scenario, <strong>the</strong> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nor<strong>the</strong>rn and sou<strong>the</strong>rn subpopulati<strong>on</strong>s).We also simulated an extreme ‘‘no <str<strong>on</strong>g>migrati<strong>on</strong></str<strong>on</strong>g>’’ scenario thateffectively prevents <strong>the</strong> <strong>wildebeest</strong> from moving am<strong>on</strong>g latticecells, essentially forcing <strong>the</strong>m <str<strong>on</strong>g>to</str<strong>on</strong>g> become sedentary, i.e., groups <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>wildebeest</strong> can forage within <strong>the</strong>ir 100 km 2 home ranges (latticecells), but not in adjacent cells. Though not necessarily a realisticPLoS ONE | www.plos<strong>on</strong>e.org 5 January 2011 | Volume 6 | Issue 1 | e16370

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!