13.07.2015 Views

The relative isoperimetric inequality in Cartan-Hadamard 3 ... - KIAS

The relative isoperimetric inequality in Cartan-Hadamard 3 ... - KIAS

The relative isoperimetric inequality in Cartan-Hadamard 3 ... - KIAS

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

184 Choe and Ritoré, Relative <strong>isoperimetric</strong> <strong><strong>in</strong>equality</strong>HS 2 areaðSÞ f Ð H 2 dA f Ð Ðð3:7ÞdA b nðu b Þ ds:SS qSLet us see thatÐÐð3:8Þlim dA b ¼ lim e 2u bdA ¼ 2p:b!yS b!ySLet rð pÞ :¼ dð p; p 0 Þ be the extr<strong>in</strong>sic distance to p 0 . Fix r 0 > 0 small. Observe that e 2u b convergesuniformly to 0 <strong>in</strong> S out of the ball Bð p 0 ; r 0 Þ when b ! y. For r 0 small enough, themodulus of the gradient of rj S over S X Bð p 0 ; r 0 Þ is approximately 1, and the length ofS X qBð p 0 ; rÞ, for r A ð0; r 0 Þ, is approximately pr. By apply<strong>in</strong>g the coarea formula to rj Swe getÐSXBð p 0 ; r 0 Þ dA b ¼ p Ðr 02b 2r1 þ b 2 r 2 dr þ oðr 0 Þ¼2p þ oðr 0 Þ;where oðr 0 Þ converges to 0 when r 0 ! 0. Lett<strong>in</strong>g r 0 ! 0 we get (3.8).0On the other hand, qS is a curve (possibly disconnected) that bounds a regionR H qC. Recall that n, the <strong>in</strong>ner normal to qS on S, is also the outer normal to qC. Asp 0 A qC we see that a geodesic g p : ½0; t p Š!M from p 0 to any other po<strong>in</strong>t p A qS H qCmust satisfy g g 0 p ðt pÞ; nð pÞ f 0 by the convexity of C. Hence gð‘d; nÞ f 0 for all p A qSand we deduce thatnðu b Þ¼ 2b2 dgð‘d; nÞ1 þ b 2 d 2is a nonnegative function. Discard<strong>in</strong>g the last summand <strong>in</strong> (3.7) and tak<strong>in</strong>g limits we obta<strong>in</strong>(3.1).Let us consider now the equality caseð3:9ÞH 2 SareaðSÞ ¼2p:If (3.9) holds then there is also equality <strong>in</strong> (3.6), which implies thatð3:10aÞ ‘ 2 d 2 ðv; vÞ ¼2gðv; vÞ; for any p A S; v A T p S:We also have that limb!yÐqSnðu b Þ ds ¼ 0 s<strong>in</strong>ce, after tak<strong>in</strong>g limits, there is equality <strong>in</strong> (3.7).<strong>The</strong> sequence f nðu b Þg b is po<strong>in</strong>twise <strong>in</strong>creas<strong>in</strong>g and converges to 2nðdÞ=d. By the MonotoneConvergence <strong>The</strong>orem0 e Ð qS2nðdÞ Ðds ¼ limd b!yqSnðu b Þ ds ¼ 0;and soð3:10bÞgð‘d; nÞ 1 0along qS:


186 Choe and Ritoré, Relative <strong>isoperimetric</strong> <strong><strong>in</strong>equality</strong>where N is the unit normal to S <strong>in</strong> the direction of the mean curvature vector of S. Integrat<strong>in</strong>g(3.11) on S, we obta<strong>in</strong> the classical M<strong>in</strong>kowski formula3 volðWÞ ¼ 1 H areaðSÞ:This concludes the proof <strong>in</strong> the Euclidean case.Let us consider now the hyperbolic case. By scal<strong>in</strong>g the metric g of M we may assumethat k ¼ 1, so that the <strong><strong>in</strong>equality</strong> we <strong>in</strong>tend to prove isð3:12Þð 1 þ HS 2 Þ areaðSÞ f 2p;1Þ of constant sec-with equality if and only if W is a half-ball <strong>in</strong> the hyperbolic space M 3 ðtional curvature equal to 1.Consider aga<strong>in</strong> a po<strong>in</strong>t p 0 A qS and let d be the distance to p 0 . We def<strong>in</strong>e the family ofconformal metrics g b ¼ e 2u b g, given by the functionsð3:13Þu b ¼ logð12bb 2 Þþð1 þ b 2 ; b > 1:Þ coshðdÞWhen M is the three-dimensional hyperbolic space, this family of metrics is obta<strong>in</strong>edby homothetically expand<strong>in</strong>g the spherical metric! 21 tanh 2 ðd=2Þ1 þ tanh 2 g:ðd=2ÞFrom (3.2) we obta<strong>in</strong> the follow<strong>in</strong>g relation for the sectional curvatures of the tangentplane to S.e 2u bðK s Þ b¼ K s þ 1 þ e 2u b1 þ b 2 ð3:14Þþð1 b 2 Þþð1 þ b 2 Þ coshðdÞ P 2 ‘ 2 coshðdÞðe i ; e i Þ 2 coshðdÞ ;i¼1where fe 1 ; e 2 g is a g-orthonormal basis of the tangent plane to S. By the Hessian Comparison<strong>The</strong>orem we know that ‘ 2 coshðdÞ f coshðdÞg. So we obta<strong>in</strong>ð3:15Þe 2u bðK s Þ bf K s þ e 2u bþ 1:Equality holds <strong>in</strong> (3.15) if and only if ‘ 2 coshðdÞðe i ; e i Þ¼coshðdÞ for i ¼ 1; 2. From equation(3.3) and <strong><strong>in</strong>equality</strong> (3.15) we obta<strong>in</strong>Ð1 þ HSð 2 Þ dA f Ð ÐdA b nðu b Þ ds:S qSAs <strong>in</strong> the previous case one shows that lim dA b ! 2p and, by the convexity of C, thatb!yÐnðu b Þ f 0, which yields the desired estimate (3.12).S


Choe and Ritoré, Relative <strong>isoperimetric</strong> <strong><strong>in</strong>equality</strong>187If equality holds <strong>in</strong> (3.12) then we conclude, as <strong>in</strong> the Euclidean case, that‘ 2 coshðdÞðv; vÞ ¼coshðdÞ for any unit tangent vector v to S at any po<strong>in</strong>t of S, that H isconstant, and that gð‘d; nÞ ¼0 at any po<strong>in</strong>t of qS.Condition ‘ 2 coshðdÞðv; vÞ ¼coshðdÞ for any unit tangent vector v to S at any po<strong>in</strong>tof S implies, by the standard comparison theorems, that the metric g of W (i.e., on the coneover S with vertex p 0 ), has constant sectional curvatures equal to 1. Moreover, conditiongð‘d; nÞ ¼0 at any po<strong>in</strong>t of qS implies that R is a totally geodesic surface. F<strong>in</strong>ally, as S hasconstant mean curvature H > 1, we see as <strong>in</strong> [Mo], <strong>The</strong>orem 9, by tak<strong>in</strong>g <strong>in</strong>ner parallels,thatÐcoshðdÞþH s<strong>in</strong>hðdÞh‘d; Ni dA f 0; N ? SSwith equality if and only if W is a half ball <strong>in</strong> hyperbolic space. But s<strong>in</strong>ce the metric of W ishyperbolic, we have ‘ 2 coshðdÞ ¼coshðdÞg <strong>in</strong> W so that <strong>in</strong>tegrat<strong>in</strong>gon S we getD S coshðdÞ ¼2 coshðdÞþ2H s<strong>in</strong>hðdÞh‘d; NiÐScoshðdÞþH s<strong>in</strong>hðdÞh‘d; Ni dA ¼ 0:This completes the proof <strong>in</strong> the hyperbolic case k ¼ 1.F<strong>in</strong>ally, if S is merely C 1; 1 , the arguments <strong>in</strong> the proof apply without changes s<strong>in</strong>cethe pr<strong>in</strong>cipal curvatures of S, and hence the mean and the Gauss curvature, are def<strong>in</strong>ed almosteverywhere. <strong>The</strong> divergence theorem still holds under our weak hypothesis. rBy us<strong>in</strong>g the mean comparison result <strong>in</strong> Proposition 3.1 we can now prove the <strong>isoperimetric</strong>comparison theorem.<strong>The</strong>orem 3.2. Let M be a three-dimensional <strong>Cartan</strong>-<strong>Hadamard</strong> manifold with sectionalcurvatures bounded above by a nonpositive constant k, and let MðkÞ be the threedimensional<strong>Cartan</strong>-<strong>Hadamard</strong> manifold with constant sectional curvatures equal to k. Assumethat C H M is a proper convex doma<strong>in</strong> with smooth boundary and that H H MðkÞ isa half space. <strong>The</strong>n we haveð3:16ÞI C f I H ;which <strong>in</strong> turn implies that for any bounded f<strong>in</strong>ite perimeter set D H M C we haveð3:17ÞareaðqDÞ Cf I H volðDÞ :Moreover, equality holds <strong>in</strong> (3.17) if and only if D is isometric to a half ball <strong>in</strong> MðkÞ.Proof. S<strong>in</strong>ce the existence of <strong>isoperimetric</strong> regions is a crucial po<strong>in</strong>t of our arguments,but it is not guaranteed <strong>in</strong> the noncompact M C , we first construct an exhaustionof M C by <strong>relative</strong>ly compact sets fE k g k A N . We take p 0 A qC, and def<strong>in</strong>e E k ¼ Bð p 0 ; r k Þ C,where r k is an <strong>in</strong>creas<strong>in</strong>g diverg<strong>in</strong>g sequence of positive numbers, and Bð p 0 ; r k Þ is the closedball centered at p 0 of radius r k .


188 Choe and Ritoré, Relative <strong>isoperimetric</strong> <strong><strong>in</strong>equality</strong>S<strong>in</strong>ce E k is bounded, <strong>isoperimetric</strong> regions exist on E k for any given volumev A ð0; vol E k Þ. <strong>The</strong> boundary S of any <strong>isoperimetric</strong> region W <strong>in</strong> E k satisfies the regularityproperties of Lemma 2.1 provided there is no po<strong>in</strong>t <strong>in</strong> S X qC X ðqE k Þ C. Assume there isq 0 A S X qC X ðqE k Þ C. <strong>The</strong> set qE k is conta<strong>in</strong>ed <strong>in</strong> the geodesic sphere qBð p 0 ; r k Þ, whichmeets qC at q 0 at an angle less than or equal to p=2. Reflect<strong>in</strong>g locally W with respect toqC and blow<strong>in</strong>g up W and the metric from q 0 , [Gr1], we obta<strong>in</strong> a cone <strong>in</strong> R 3 which is aream<strong>in</strong>imiz<strong>in</strong>g <strong>in</strong> a wedge of R 3 . This implies regularity if the angle is p=2 and it is not possibleif the angle is less than p=2; see [G], Thm. 15.5.Fix k A N and assume that W k is an <strong>isoperimetric</strong> region <strong>in</strong> E k . <strong>The</strong> set W k may haveseveral components. Let W k ¼ W 1 k W W2 k , where W1 k consists of the components of W k touch<strong>in</strong>gqC (<strong>in</strong> an orthogonal way), and W 2 k consists of the components of W k disjo<strong>in</strong>t from qC.<strong>The</strong>n by (3.1)ðk þ H 2 ðqW 1 k Þ areaðqWCÞ 1 k Þ C f 2p½Kfcomponents of W1 kgŠ f 2p:On the other hand, by [Kl] or [R],ðk þ H 2 ðqW 2 k Þ areaðqWCÞ 2 k Þ C f 4p½Kfcomponents of W2 kgŠ f 0:Add<strong>in</strong>g both <strong>in</strong>equalities we getand henceðk þ H 2 ðqW k Þ CÞ areaðqW k Þ Cf 2p;ð3:18ÞH ðqWk Þ Cf H k areaðqW k Þ C;where H k ðaÞ denotes the mean curvature of a geodesic sphere of area 2a <strong>in</strong> MðkÞ. By Proposition3.1, equality holds <strong>in</strong> (3.18) if and only if W k is isometric to a geodesic half ball <strong>in</strong>MðkÞ.Denote by I k the <strong>isoperimetric</strong> profile of E k . By standard arguments, [Hs], pp. 170–172, we have I k is cont<strong>in</strong>uous and <strong>in</strong>creas<strong>in</strong>g, when I k is smooth at v 0 then I 0 k ðv 0Þ¼2H, where H is the constant mean curvature<strong>in</strong> the <strong>in</strong>terior of E k of any <strong>isoperimetric</strong> region of volume v 0 , and left and right derivatives of I k exist everywhere.S<strong>in</strong>ce I k is a cont<strong>in</strong>uous monotone function with left and right derivatives at every po<strong>in</strong>t, itis absolutely cont<strong>in</strong>uous.<strong>The</strong> cont<strong>in</strong>uity of I k follows from the convergence of <strong>isoperimetric</strong> regions. To provethe monotonicity of I k we just need to show that the constant mean curvature H of theboundary of an <strong>isoperimetric</strong> region W <strong>in</strong> the <strong>in</strong>terior of E k is positive. Let S ¼ qW C .IfSdoes not touch ðqE k Þ Cthen there is an outer parallel qC t to qC, which is tangent to S at


Choe and Ritoré, Relative <strong>isoperimetric</strong> <strong><strong>in</strong>equality</strong>189some po<strong>in</strong>t and leaves S on one side. Standard comparison theorems show that the pr<strong>in</strong>cipalcurvatures of qC t are nonnegative. By the maximum pr<strong>in</strong>ciple, H f 0. But <strong>in</strong> caseH ¼ 0, we obta<strong>in</strong> from the maximum pr<strong>in</strong>ciple that S and qC t locally co<strong>in</strong>cide and, by aconnectedness argument, that a connected component of S is conta<strong>in</strong>ed <strong>in</strong> qC t , which givesus a contradiction. If S X ðqE k Þ Cis not empty then the maximum pr<strong>in</strong>ciple shows that H islarger than or equal to the mean curvature of ðqE k Þ Cat some po<strong>in</strong>t, which is strictly positives<strong>in</strong>ce geodesic spheres <strong>in</strong> a <strong>Cartan</strong>-<strong>Hadamard</strong> manifold are strictly convex.<strong>The</strong> computation of the derivative I 0 k ðv 0Þ is standard by mak<strong>in</strong>g a variation supportedaround a po<strong>in</strong>t of S X <strong>in</strong>tðE k Þ. <strong>The</strong> fact that left and right derivatives always exist followsfrom the convergence of <strong>isoperimetric</strong> regions of volumes v k ! v 0 to an <strong>isoperimetric</strong> regionof volume v 0 , see [Hs], p. 171.Let J k be the restriction of the <strong>isoperimetric</strong> profile of MðkÞ to the <strong>in</strong>tervalð0; vol E k Þ. Let f ðaÞ, gðaÞ be the <strong>in</strong>verse functions of I k , J k , respectively. We know thatg 0 ðaÞ ¼Jk 0ðaÞ 1 ¼ 2H k ðaÞ 1, and that, when f0exists, f 0 ðaÞ ¼Ik 0ðaÞ 1 ¼ð2HÞ 1 , whereH is the mean curvature <strong>in</strong> the <strong>in</strong>terior of E k of any <strong>isoperimetric</strong> region of volume f ðaÞ.By Proposition 3.1, we obta<strong>in</strong> g 0 ðaÞ f f 0 ðaÞ a.e. S<strong>in</strong>ce f is absolutely cont<strong>in</strong>uous (and g issmooth), we have gðaÞ f f ðaÞ. It follows that I k f J k .If equality holds for some v 0 , then for a 0 ¼ J k ðv 0 Þ¼I k ðv 0 Þ we have gða 0 Þ¼ f ða 0 Þ.S<strong>in</strong>ce g 0 f f 0 we obta<strong>in</strong> that f 1 g <strong>in</strong> the <strong>in</strong>terval ð0; a 0 Þ and so H k ða 0 Þ 1 ¼ Hða 0 Þ 1 .IfW 0is any <strong>isoperimetric</strong> region of volume v 0 then Proposition 3.1 implies that W 0 is isometric toa half ball <strong>in</strong> MðkÞ of volume v 0 .F<strong>in</strong>ally let W H M C be <strong>relative</strong>ly compact with smooth boundary. <strong>The</strong>n W H E k forsome k, andPðWÞ f I k volðWÞ f I H volðWÞ :If equality holds then W is an <strong>isoperimetric</strong> region <strong>in</strong> E k and I k volðWÞ ¼ I H volðWÞ .Bythe discussion <strong>in</strong> the above paragraph we have that W is isometric to a half ball <strong>in</strong> MðkÞ ofvolume volðWÞ. rCorollary 3.3. Suppose that M is a three-dimensional <strong>Cartan</strong>-<strong>Hadamard</strong> manifold,C H M a proper convex doma<strong>in</strong> with smooth boundary, and D bounded and of f<strong>in</strong>ite perimeter<strong>in</strong> M @ C. <strong>The</strong>nareaðqD @ qCÞ 3 f 18p volðDÞ 2 ;and equality holds if and only if D is a flat half ball.4. <strong>The</strong> <strong>relative</strong> <strong>isoperimetric</strong> <strong><strong>in</strong>equality</strong> for a general convex setIn this section, C will denote a bounded strictly convex body <strong>in</strong> R 3 . No assumptionon the regularity of its boundary is made. We say that a convex body is strictly convex if itsboundary does not conta<strong>in</strong> a nontrivial segment [Sch], p. 77. Recall that p is an extremepo<strong>in</strong>t of C if it cannot be written <strong>in</strong> the form p ¼ lx þð1 lÞy, with x; y A C, x 3 y, and


190 Choe and Ritoré, Relative <strong>isoperimetric</strong> <strong><strong>in</strong>equality</strong>l A ð0; 1Þ. Any po<strong>in</strong>t <strong>in</strong> the boundary of a strictly convex set is an extreme po<strong>in</strong>t. A cap of Caround p is a set of the form C X H þ , where H þ is a closed half space with p A <strong>in</strong>t H þ ,[Sch], pp. 18–19.For strictly convex sets we have the follow<strong>in</strong>g result:<strong>The</strong>orem 4.1. Let C H R 3 be a proper convex doma<strong>in</strong> which is strictly convex, andH H R 3 a half space. <strong>The</strong>n, for any v > 0,I C ðvÞ > I H ðvÞ:That is, equality never holds <strong>in</strong> the above <strong><strong>in</strong>equality</strong> for these convex bodies.Proof. Us<strong>in</strong>g standard results on the Hausdor¤ metric, we can f<strong>in</strong>d a sequenceof convex bodies with smooth boundary C k H R 3 , with C H C k for all n A N, converg<strong>in</strong>g<strong>in</strong> the Hausdor¤ distance to C. Let W H ðR 3 Þ Cbe a <strong>relative</strong>ly compact set and def<strong>in</strong>eW k ¼ W X ðR 3 Þ Ck. <strong>The</strong>n volðW k Þ!volðWÞ and P C ðWÞ f P Ck ðW k Þ. S<strong>in</strong>ce the <strong>relative</strong> <strong>isoperimetric</strong><strong><strong>in</strong>equality</strong> (2.1) is satisfied <strong>in</strong> ðR 3 Þ Ck, we have P C ðWÞ f P Ck ðW k Þ f I H volðW k Þ .Tak<strong>in</strong>g limits, we get P C ðWÞ f I H volðWÞ , and the <strong>isoperimetric</strong> <strong><strong>in</strong>equality</strong> I C ðvÞ f I H ðvÞholds <strong>in</strong> ðR 3 Þ C.To see that this <strong><strong>in</strong>equality</strong> is always strict, consider a region W H ðR 3 Þ Csuchthat equality P C ðWÞ ¼I H volðWÞ holds. Let p be a po<strong>in</strong>t <strong>in</strong> the <strong>in</strong>terior, <strong>relative</strong> to qC,of qW X qC. <strong>The</strong> strict convexity implies that p is an extreme po<strong>in</strong>t of C. By [Sch], Lemma1.4.6, there is a cap P þ of C around p conta<strong>in</strong>ed <strong>in</strong> the <strong>in</strong>terior of qW X qC. Let P bethe half space obta<strong>in</strong>ed as the closure of the complement of the half space determ<strong>in</strong><strong>in</strong>gP þ . Consider the convex set C 0 ¼ C X P , and W 0 ¼ W W ðC X P þ Þ. We haveP C 0ðW 0 Þ¼P C ðWÞ, and volðWÞ < volðW 0 Þ. HenceP C 0ðW 0 Þ¼P C ðWÞ ¼I H volðWÞ < I H volðW 0 Þ ;and so I C volðW 0 Þ < I H volðW 0 Þ . This is a contradiction, s<strong>in</strong>ce we have already provedthat <strong>in</strong> ðR 3 Þ C0 the <strong>isoperimetric</strong> <strong><strong>in</strong>equality</strong> I C ðvÞ f I H ðvÞ holds. rRemark 4.2. <strong>The</strong> first paragraph <strong>in</strong> the proof of <strong>The</strong>orem 4.1 shows that the <strong>isoperimetric</strong><strong><strong>in</strong>equality</strong> areaðqD @ qCÞ 3 f 18p volðDÞ 2 holds for any region D outside a convexset C with nonsmooth boundary <strong>in</strong> R 3 . <strong>The</strong> authors have not characterized what happens<strong>in</strong> the equality case, and they believe that techniques di¤erent from the ones used <strong>in</strong> thispaper should be employed.References[A] T. Aub<strong>in</strong>, Problèmes isopérimétriques et espaces de Sobolev, J. Di¤. Geom. 11 (1976), 573–598.[BG] E. Bombieri and E. Giusti, Harnack’s <strong><strong>in</strong>equality</strong> for elliptic di¤erential equations on m<strong>in</strong>imal surfaces,Invent. Math. 15 (1972), 24–46.[BZ] Y. D. Burago and V. A. Zalgaller, Geometric <strong>in</strong>equalities, Spr<strong>in</strong>ger, Berl<strong>in</strong> 1988.[C1] J. Choe, Relative <strong>isoperimetric</strong> <strong><strong>in</strong>equality</strong> for doma<strong>in</strong>s outside a convex set, Arch. Inequ. Appl. 1 (2003),241–250.


Choe and Ritoré, Relative <strong>isoperimetric</strong> <strong><strong>in</strong>equality</strong>191[C2] J. Choe, <strong>The</strong> double cover <strong>relative</strong> to a convex set and the <strong>relative</strong> <strong>isoperimetric</strong> <strong><strong>in</strong>equality</strong>, J. Aust. Math.Soc. 80 (2006), 375–382.[Cr] C. Croke, A sharp four dimensional <strong>isoperimetric</strong> <strong><strong>in</strong>equality</strong>, Comment. Math. Helv. 59 (1984), 187–192.[G] E. Giusti, M<strong>in</strong>imal surfaces and functions of bounded variation, Monogr. Math. 80, Birkhäuser Verlag,Basel-Boston 1984.[GMT] E. Gonzalez, U. Massari and I. Taman<strong>in</strong>i, On the regularity of boundaries of sets m<strong>in</strong>imiz<strong>in</strong>g perimeterwith a volume constra<strong>in</strong>t, Indiana Univ. Math. J. 32 (1983), 25–37.[GLP] M. Gromov, J. Lafonta<strong>in</strong>e and P. Pansu, Structures métriques pour les variétés Riemanniennes, Cedic/Fernand Nathan, Paris 1981.[Gr1] M. Grüter, Optimal regularity for codimension one m<strong>in</strong>imal surfaces with a free boundary, Manuscr.Math. 58 (1987), 295–343.[Gr2] M. Grüter, Boundary regularity for solutions of a partition<strong>in</strong>g problem, Arch. Rat. Mech. Anal. 97(1987), 261–270.[Hs] Wu-Yi Hsiang, On soap bubbles and <strong>isoperimetric</strong> regions <strong>in</strong> noncompact symmetric spaces, I, TohokuMath. J. (2) 44 (1992), no. 2, 151–175.[K] I. Kim, An optimal <strong>relative</strong> <strong>isoperimetric</strong> <strong><strong>in</strong>equality</strong> <strong>in</strong> concave cyl<strong>in</strong>drical doma<strong>in</strong>s <strong>in</strong> R n , J. Inequ. Appl.1 (2000), 97–102.[Kl] B. Kle<strong>in</strong>er, An <strong>isoperimetric</strong> comparison theorem, Invent. Math. 108 (1992), 37–47.[LY] P. Li and S. T. Yau, A new conformal <strong>in</strong>variant and its applications to the Willmore conjecture and thefirst eigenvalue of compact surfaces, Invent. Math. 69 (1982), 269–291.[Mo] S. Montiel, Unicity of constant mean curvature hypersurfaces <strong>in</strong> some Riemannian manifolds, IndianaUniv. Math. J. 48 (1999), 711–748.[MoR] S. Montiel and A. Ros, Compact hypersurfaces: the Alexandrov theorem for higher order mean curvatures,Di¤erential geometry, Longman Sci. Tech., Harlow (1991), 279–296.[R] M. Ritoré, Optimal <strong>isoperimetric</strong> <strong>in</strong>equalities for three-dimensional <strong>Cartan</strong>-<strong>Hadamard</strong> manifolds, Globaltheory of m<strong>in</strong>imal surfaces, Clay Math. Proc. 2 (2005), 395–404.[Sch] R. Schneider, Convex bodies: the Brunn-M<strong>in</strong>kowski theory, Cambridge Univ. Press, Cambridge 1993.[StZ] E. Stredul<strong>in</strong>sky and W. P. Ziemer, Area m<strong>in</strong>imiz<strong>in</strong>g sets subject to a volume constra<strong>in</strong>t <strong>in</strong> a convex set, J.Geom. Anal. 7 (1997), 653–677.[Wh] B. White, Existence of smooth embedded surfaces of prescribed genus that m<strong>in</strong>imize parametric evenelliptic functionals on 3-manifolds, J. Di¤. Geom. 33 (1991), 413–443.Korea Institute for Advanced Study, 207-43 Cheongryangri 2-dong, Dongdaemun-gu,Seoul 130-722, South-Koreae-mail: choe@kias.re.krDepartamento de Geometría y Topología, Facultad de Ciencias, Universidad de Granada,18071 Granada, Españae-mail: ritore@ugr.esE<strong>in</strong>gegangen 16. Juli 2004, <strong>in</strong> revidierter Fassung 16. Februar 2006

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!