melting of a phase change material on a finned-tube heat exchanger

melting of a phase change material on a finned-tube heat exchanger melting of a phase change material on a finned-tube heat exchanger

fbe.deu.edu.tr
from fbe.deu.edu.tr More from this publisher
13.07.2015 Views

DOKUZ EYLÜL UNIVERSITYGRADUATE SCHOOL OF NATURAL AND APPLIEDSCIENCESMELTING OF A PHASE CHANGE MATERIALON A FINNED-TUBE HEAT EXCHANGERbyKamber Naci ÜSTÜNERSeptember, 2007İZMİR

DOKUZ EYLÜL UNIVERSITYGRADUATE SCHOOL OF NATURAL AND APPLIEDSCIENCESMELTING OF A PHASE CHANGE MATERIALON A FINNED-TUBE HEAT EXCHANGERbyKamber Naci ÜSTÜNERSeptember, 2007İZMİR


M.Sc THESIS EXAMINATION RESULT FORMWe have read the thesis entitled “MELTING OF A PHASE CHANGEMATERIAL ON A FINNED-TUBE HEAT EXCHANGER” completed byKAMBER NACİ ÜSTÜNER under supervisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ASST. PROF. TAHSİNBAŞARAN and we certify that in our opini<strong>on</strong> it is fully adequate, in scope and inquality, as a thesis for the degree <str<strong>on</strong>g>of</str<strong>on</strong>g> Master <str<strong>on</strong>g>of</str<strong>on</strong>g> Science.Asst. Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Tahsin BAŞARANSupervisor(Jury Member)(Jury Member)Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>.Dr. Cahit HELVACIDirectorGraduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural and Applied Sciencesii


ACKNOWLEDGMENTSI would like to thank to my advisors Asst. Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Tahsin Başaran and Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Dr. NuriKayansayan for their guidance.I would also like to thank Tech. Alim Zorluol for providing his expertise.Kamber Naci ÜSTÜNERiii


MELTING OF A PHASE CHANGE MATERIAL ON A FINNED-TUBEHEAT EXCHANGERABSTRACTIn this thesis study, an experimental investigeti<strong>on</strong> is carried out for solidificati<strong>on</strong>and <str<strong>on</strong>g>melting</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>phase</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g> around a horiz<strong>on</strong>tal <strong>finned</strong> <strong>tube</strong>. The effects<str<strong>on</strong>g>of</str<strong>on</strong>g> some geometrical and flow parameters <strong>on</strong> charging and discharging <str<strong>on</strong>g>of</str<strong>on</strong>g> the coldthermal energy are investigated. Afterwards the experiment results are comparedwith each other. The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this study is to reveal the <str<strong>on</strong>g>change</str<strong>on</strong>g>s in the amount <str<strong>on</strong>g>of</str<strong>on</strong>g>stored thermal energy by changing the fin diameter, fin spacing and the flow rate <str<strong>on</strong>g>of</str<strong>on</strong>g>the <strong>heat</strong> transfer fluid. It is shown that each <str<strong>on</strong>g>of</str<strong>on</strong>g> the parameters affects the amount <str<strong>on</strong>g>of</str<strong>on</strong>g>stored or released cold thermal energy in a different rate.Keywords: Thermal energy storage, Melting, Finned <strong>tube</strong>, Phase <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>iv


KANATLI BORU TİPİ BİR ISI EŞANJÖRÜNÜN ÜZERİNDEKİ BİR FAZDEĞİŞİM MALZEMESİNİN ERİMESİÖZBu tez çalışmasında yatay bir kanatlı boru etrafındaki faz değişim malzemesininkatılaşması ve erimesi için deneysel bir inceleme gerçekleştirilmiştir. Bazı geometrikve akış parametrelerinin soğu enerjisinin depolanması ve açığa çıkması üzerindekietkileri incelenmiştir. Daha s<strong>on</strong>ra deney s<strong>on</strong>uçları birbirleri ile karşılaştırılmıştır. Buçalışmanın amacı, kanat çapı, kanat aralığı ve ısı transfer akışkanının debisinideğiştirerek depolanan ısıl enerji miktarındaki değişimleri ortaya çıkartmaktır. Herbir parametrenin depolanan ya da açığa çıkarılan soğu enerji miktarını değişik biroranda etkilediği gösterilmiştir.Anahtar sözcükler: Isıl enerji depolama, Erime, Kanatlı boru, Faz değişimmalzemesiv


CONTENTSPageM.Sc THESIS EXAMINATION RESULT FORM .................................................. iiACKNOWLEDGMENTS....................................................................................... iiiABSTRACT ........................................................................................................... ivÖZ ............................................................................................................................vCHAPTER ONE - INTRODUCTION ...................................................................11.1 Thermal Energy Storage..................................................................................11.1.1 Cold Thermal Energy Storage...................................................................11.1.2 Energy Storage with PCM ........................................................................21.2 Aims <str<strong>on</strong>g>of</str<strong>on</strong>g> the Study ...........................................................................................4CHAPTER TWO - EXPERIMENTAL SETUP....................................................52.1 Introducti<strong>on</strong>.....................................................................................................52.2 C<strong>on</strong>stant Temperature Bath .............................................................................82.3 The Flow System ..........................................................................................122.4 Energy Storage Unit......................................................................................142.5 Temperature Measurement System................................................................182.6 Computer System..........................................................................................24CHAPTER THREE - EXPERIMENTAL PROCEDURE ..................................253.1 Experimental Procedure ................................................................................253.2 Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Charged and Discharged Cold Thermal Energy..................30vi


CHAPTER FOUR - EXPERIMENTAL RESULTS ...........................................36CHAPTER FIVE - CONCLUSIONS...................................................................48NOMENCLATURE..................................................................................................51REFERENCES .....................................................................................................52APPENDICES...........................................................................................................55vii


CHAPTER ONEINTRODUCTION1.1 Thermal Energy StorageEnergy storage is the storing <str<strong>on</strong>g>of</str<strong>on</strong>g> some form <str<strong>on</strong>g>of</str<strong>on</strong>g> energy that can be drawn up<strong>on</strong> at alater time to perform some useful operati<strong>on</strong>. Thermal energy storage can refer to anumber <str<strong>on</strong>g>of</str<strong>on</strong>g> technologies that store energy in a thermal reservoir for later reuse. Theycan be employed to balance energy demand between day time and night time. Thethermal reservoir may be maintained at a temperature above (hotter) or below(colder) than that <str<strong>on</strong>g>of</str<strong>on</strong>g> the ambient envir<strong>on</strong>ment.1.1.1 Cold Thermal Energy StorageThe principal applicati<strong>on</strong> today is the producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ice, chilled water, or eutecticsoluti<strong>on</strong> at night, which is then used to cool envir<strong>on</strong>ments during the day. Today,thermal energy storage systems are very popular in the world, especially in theUnited States and Europe countaries. It is because <str<strong>on</strong>g>of</str<strong>on</strong>g> the fact that these systems arethe most efficient methods to avoid costly energy price and to reduce summer timepeak load electricity demand. Cooling demand increases in the hot summer days.Because <str<strong>on</strong>g>of</str<strong>on</strong>g> this increase, electrical power demand also reaches its peak levels.Thermal energy storage systems c<strong>on</strong>vert cooling energy to use at n<strong>on</strong> peak times.They also reduce energy c<strong>on</strong>sumpti<strong>on</strong>, depending <strong>on</strong> site-specific design, notablywhere chillers can be operated at full load during the night (Ermiş, Erek, & Dinçer,2007).High peak summertime loads drive the capital expenditures <str<strong>on</strong>g>of</str<strong>on</strong>g> the electricitygenerati<strong>on</strong> industry. The industry meets these peak loads with low-efficiency peakingpower plants, usually gas turbines, which have lower capital costs but higher fuelcosts. A kilowatt-hour <str<strong>on</strong>g>of</str<strong>on</strong>g> electricity c<strong>on</strong>sumed at night can be produced at muchlower marginal cost. Utilities have begun to pass these lower costs to c<strong>on</strong>sumers.1


2The solid-liquid <str<strong>on</strong>g>phase</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the techniques for storing cold thermalenergy. This technique has caused a particular reacti<strong>on</strong> in the energy storage arealately. A large part <str<strong>on</strong>g>of</str<strong>on</strong>g> the base load can be used by using this technique. For thisreas<strong>on</strong>, the maximum generating capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> a cooling equipment can be decreased(ASHRAE, 1987).1.1.2 Energy Storage with PCMThe latent thermal energy storage using a <str<strong>on</strong>g>phase</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g> (PCM) hasattracted attenti<strong>on</strong> in the energy storage area extensively. Because during thesolidificati<strong>on</strong> and <str<strong>on</strong>g>melting</str<strong>on</strong>g> processes, PCMs have benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> high energy storagedensity and isothermal operating characteristics such as charging and discharging<strong>heat</strong> at a nearly c<strong>on</strong>stant temperature. These advantages are good for efficientoperati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> thermal systems. In recent years, the usage <str<strong>on</strong>g>of</str<strong>on</strong>g> the latent <strong>heat</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a PCMas a thermal energy storage substance has interested areas like refrigerati<strong>on</strong> and airc<strong>on</strong>diti<strong>on</strong>ing systems, solar energy systems, space craft, <strong>heat</strong>ing and cooling <str<strong>on</strong>g>of</str<strong>on</strong>g>buildings etc. Nevertheless, practical difficulties may occur in applying the latent<strong>heat</strong> method occasi<strong>on</strong>ally. Low thermal c<strong>on</strong>ductivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the PCM, density <str<strong>on</strong>g>change</str<strong>on</strong>g>,stability <str<strong>on</strong>g>of</str<strong>on</strong>g> properties under extended cycling and sometimes <str<strong>on</strong>g>phase</str<strong>on</strong>g> segregati<strong>on</strong> andsubcooling <str<strong>on</strong>g>of</str<strong>on</strong>g> the PCMs are some reas<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> these difficulties (Akgün, Aydın, &Kaygusuz, 2006).The solidificati<strong>on</strong> or <str<strong>on</strong>g>melting</str<strong>on</strong>g> periods <str<strong>on</strong>g>of</str<strong>on</strong>g> a particular PCM must be known in orderto design a latent <strong>heat</strong> storage unit. The operating circumstances and the storagec<strong>on</strong>figurati<strong>on</strong>s also must be known in order to forecast the <strong>heat</strong> transfer coefficientsduring the process <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>phase</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>. It is seen that two kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> storage c<strong>on</strong>figurati<strong>on</strong>swere stuided in the literature. One <str<strong>on</strong>g>of</str<strong>on</strong>g> them is the shell and <strong>tube</strong> type <strong>heat</strong> ex<str<strong>on</strong>g>change</str<strong>on</strong>g>r.In this kind <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heat</strong> storage unit, the PCM is put in the shell and the <strong>heat</strong> transfer fluidflows in the <strong>tube</strong>s. Ismail and Alves (1986), Cao and Faghri (1991a), Bellecci andC<strong>on</strong>ti (1993), Lacroix (1993) and Zhang and Faghri (1996a) made studies about thisc<strong>on</strong>figurati<strong>on</strong>s. The sec<strong>on</strong>d c<strong>on</strong>figurati<strong>on</strong> is a rigid capsule. The PCM is put in thiscapsule and the <strong>heat</strong> transfer fluid flows in a <strong>tube</strong> which surrounds the capsule. The


3shell and <strong>tube</strong> type <strong>heat</strong> ex<str<strong>on</strong>g>change</str<strong>on</strong>g>r is c<strong>on</strong>sidered as the most hopeful c<strong>on</strong>figurati<strong>on</strong> asa latent <strong>heat</strong> storage system. It provides high efficiency for a minimum volume(Erek, İlken, & Acar, 2005).Ismail and Alves (1986) made a theoretical model <str<strong>on</strong>g>of</str<strong>on</strong>g> the shell and <strong>tube</strong> type <strong>heat</strong>ex<str<strong>on</strong>g>change</str<strong>on</strong>g>r for storing energy. A similar problem is also modelled by Cao and Faghri(1991b, 1992). In this model, the <strong>heat</strong> charging and the recovery processes werecarried out by the circulating fluid. The shell wall <str<strong>on</strong>g>of</str<strong>on</strong>g> the storage unit was presumedto be adiabatic for both <str<strong>on</strong>g>of</str<strong>on</strong>g> these models. The model <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy storage in a shelland <strong>tube</strong> type <strong>heat</strong> ex<str<strong>on</strong>g>change</str<strong>on</strong>g>r was also examined by Bellecci and C<strong>on</strong>ti (1993). Theyused the enthalpy model to solve the problem. Cao and Faghri (1991a) searched thelatent <strong>heat</strong> energy storage systems for annular and countercurrent flows seperately.They stated that the storage system with the countercurrent flow is an efficientmethod to absorb <strong>heat</strong> energy (Erek, İlken, & Acar, 2005).Increasing the <strong>heat</strong> transfer surface area by using <strong>finned</strong> surfaces is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> thetechniques used in order to increase the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> energy storage. A great number <str<strong>on</strong>g>of</str<strong>on</strong>g>researches both experimental and theoretical were d<strong>on</strong>e in order to explore the effect<str<strong>on</strong>g>of</str<strong>on</strong>g> fins with rectangular cross secti<strong>on</strong> <strong>on</strong> the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>melting</str<strong>on</strong>g> and solidificati<strong>on</strong>. Astudy <str<strong>on</strong>g>of</str<strong>on</strong>g> the solidificati<strong>on</strong> around a horiz<strong>on</strong>tal <strong>finned</strong> <strong>tube</strong> with four different finspacings was d<strong>on</strong>e by Bathelt and Viskanta (1981). Sparrow, Lars<strong>on</strong> and Ramsey(1981) experimentally researched the forms <str<strong>on</strong>g>of</str<strong>on</strong>g> the frozen layer <strong>on</strong> <strong>finned</strong> <strong>tube</strong>s. Inthese experiments the <strong>finned</strong> <strong>tube</strong> were situated vertically. Padmanabhan andKhrishna (1989) theoretically examined the solidificati<strong>on</strong> within two c<strong>on</strong>centriccylinders. The cylinders had l<strong>on</strong>gitudinal fins. In that study, a relati<strong>on</strong> regarding thepercent <str<strong>on</strong>g>of</str<strong>on</strong>g> solidificati<strong>on</strong> to the fin thickness and length, the number <str<strong>on</strong>g>of</str<strong>on</strong>g> fins, the Stefanand Fourier numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> the problem was represented. Sasaguchi and Sakamoto(1989) theoretically investigated the <str<strong>on</strong>g>melting</str<strong>on</strong>g> event <strong>on</strong> the same geometry. Thenoteworthy effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the natural c<strong>on</strong>vecti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>melting</str<strong>on</strong>g> was stated <strong>on</strong> this study.Lacroix (1993) represented a theoretical model in order to estimate the transientbehaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> a shell and <strong>tube</strong> <strong>heat</strong> ex<str<strong>on</strong>g>change</str<strong>on</strong>g>r by placing the PCM <strong>on</strong> the shell side


4and <strong>heat</strong> transfer fluid circulating through the <strong>finned</strong> <strong>tube</strong> (Erek, İlken, & Acar,2005).The fact that <strong>heat</strong> transfer in a latent thermal energy storage system can beincreased by placing internally <strong>finned</strong> <strong>tube</strong>s was showed by Zhang and Faghri(1996b). A numerical model for the solidificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PCM around a radially <strong>finned</strong><strong>tube</strong> with a c<strong>on</strong>stant inner wall temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>tube</strong> was indicated by Ismail et al.(2000). Numerical experiments were carried out to research the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> finthickness, fin <str<strong>on</strong>g>material</str<strong>on</strong>g>, the number <str<strong>on</strong>g>of</str<strong>on</strong>g> the fins, aspect ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>tube</strong> arrangement andthe <strong>tube</strong> wall temperature. Erek (1999) also numerically and experimentallyresearched the solidificati<strong>on</strong> around the <strong>finned</strong> <strong>tube</strong>. In this study, fully developedvelocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>heat</strong> transfer fluid in the <strong>tube</strong> is c<strong>on</strong>sidered.1.2 Aims <str<strong>on</strong>g>of</str<strong>on</strong>g> the StudyTwo dimensi<strong>on</strong>al <str<strong>on</strong>g>phase</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> event around a horiz<strong>on</strong>tal radially <strong>finned</strong> <strong>tube</strong> wasresearched experimentally in this study. Both solidificati<strong>on</strong> and <str<strong>on</strong>g>melting</str<strong>on</strong>g> processeswere performed by using the PCM as water. For each experiment, some parameterswere <str<strong>on</strong>g>change</str<strong>on</strong>g>d and the results were obtained. The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> the fin diameter, findensity and the flow rate <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>heat</strong> transfer fluid <strong>on</strong> the charged and discharged coldthermal energy were observed. The important aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this study is to compare theresults <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiments and to evaluate how <strong>tube</strong> shape and the flow rate <str<strong>on</strong>g>of</str<strong>on</strong>g> the<strong>heat</strong> transfer fluid effect the latent cold thermal energy storage in the solidificati<strong>on</strong>and <str<strong>on</strong>g>melting</str<strong>on</strong>g> processes.In sec<strong>on</strong>d chapter <str<strong>on</strong>g>of</str<strong>on</strong>g> the thesis experimental setup is described schematically andeach unit <str<strong>on</strong>g>of</str<strong>on</strong>g> the setup is explained in detail by additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some photographs, figuresand tables. In third chapter, experimental and postexperimental procedure likecomputati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the charged and discharged cold thermal energy is explained. Infourth chapter <str<strong>on</strong>g>of</str<strong>on</strong>g> the thesis, results <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiments are dem<strong>on</strong>strated. As ac<strong>on</strong>clusi<strong>on</strong>, the last chapter represents c<strong>on</strong>cluding remarks.


CHAPTER TWOEXPERIMENTAL SETUP2.1 Introducti<strong>on</strong>All experiments <strong>on</strong> this research were performed <strong>on</strong> the experimental energystorage unit which is shown schematically in Figure 2.1a and 2.1b. In Figure 2.1b alateral view <str<strong>on</strong>g>of</str<strong>on</strong>g> the some part <str<strong>on</strong>g>of</str<strong>on</strong>g> the setup is shown.ThermocouplewiresDataloggerM<strong>on</strong>itorEnergystoragetankFinned<strong>tube</strong>ComputerFlow ratemeasurementvalveBeakerInletvalveFlow line<str<strong>on</strong>g>of</str<strong>on</strong>g> the<strong>heat</strong>transferfluidFlow adjustmentvalveC<strong>on</strong>stant temperaturebath outlet valveC<strong>on</strong>stanttemperaturebathFigure 2.1a Experimental setup5


6CameraTank top coverPlexiglass viewwindowInsulati<strong>on</strong>(styr<str<strong>on</strong>g>of</str<strong>on</strong>g>oam)Finned<strong>tube</strong>LightsourceWhitescreenTripodFigure 2.1b Lateral view <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy storage unitIn Figures 2.2 and 2.3 some photographs <str<strong>on</strong>g>of</str<strong>on</strong>g> the setup is dem<strong>on</strong>strated. The photoin Figure 2.2 shows the energy storage tank and thermocouple wires. In Figure 2.3,the flow line <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>heat</strong> transfer fluid is shown.


7Figure 2.2 Energy storage tank and thermocouple wiresFigure 2.3 The flow line <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>heat</strong> transfer fluid


8Experimental unit mainly c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> these systems:1. C<strong>on</strong>stant temperature bath2. The flow system3. Energy storage unit4. Temperature measurement system5. Computer systemThese systems are introduced and presented in the following secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> thischapter with all numbered elements <str<strong>on</strong>g>of</str<strong>on</strong>g> the setup shown in Figure 2.1a and 2.1b.2.2 C<strong>on</strong>stant Temperature BathA Haake brand T model c<strong>on</strong>stant temperature bath which is shown in Figure 2.4was employed to ensure the <strong>heat</strong> transfer fluid at a certain temperature at the inlet <str<strong>on</strong>g>of</str<strong>on</strong>g>the test secti<strong>on</strong>. This device was appropriate for the experiments. Because thec<strong>on</strong>stant temperature bath has the ability <str<strong>on</strong>g>of</str<strong>on</strong>g> working within a temperature range <str<strong>on</strong>g>of</str<strong>on</strong>g>-47°C and 100°C with a sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> ±0.1°C and with flow rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 L/min. Thestorage reservoir <str<strong>on</strong>g>of</str<strong>on</strong>g> the unit in which the <strong>heat</strong> transfer fluid was kept has a volume <str<strong>on</strong>g>of</str<strong>on</strong>g>30 L. The fluid circulates the whole setup with the aid <str<strong>on</strong>g>of</str<strong>on</strong>g> a pump inside the device.The c<strong>on</strong>stant temperature bath includes a thermostat which keeps the temperature <str<strong>on</strong>g>of</str<strong>on</strong>g>the <strong>heat</strong> transfer fluid in the reservoir within the desired range.


9Figure 2.4 C<strong>on</strong>stant temperature bathThe flow rate <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>heat</strong> transfer fluid were c<strong>on</strong>trolled by 4 valves. Two valveswhich are shown in Figure 2.5 were at the entrance and exit <str<strong>on</strong>g>of</str<strong>on</strong>g> the bath to open orclose the circulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the fluid.


10Figure 2.5 The inlet and the outlet valves <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>stant temperature bathThe functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the valve which installed after the exit valve <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>stanttemperature bath was to adjust the flow rate. This valve is dem<strong>on</strong>strated in Figure 2.6and also can be seen again in Figure 2.3 that shows the flow pipe line. By adjustingthis valve the flow rate was increased or decreased.Figure 2.6 The flow adjustment valveThe valve which was before the entrance valve <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>stant temperature bath asshown in Figure 2.7 was used to measure the flow rate. By opening full this valveand closing the entrance valve, all <str<strong>on</strong>g>of</str<strong>on</strong>g> the circulating <strong>heat</strong> transfer fluid were


11transferred into a beaker. At an experimental run, the chr<strong>on</strong>ometer at zero, the valvedirected the fluid to the beaker and after 10 sec<strong>on</strong>ds <str<strong>on</strong>g>of</str<strong>on</strong>g> time elapsed, the valve wasswitched back to the reservoir positi<strong>on</strong>. Then, the c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the beaker wasmeasured and this measured value was multiplied by 6 for <strong>on</strong>e minute flow rate.Thus an average value for the flow rate was estimated.Figure 2.7 Flow rate measurement valveThe <strong>heat</strong> transfer fluid was supposed to solidify the <str<strong>on</strong>g>phase</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g> bytransferring its cold thermal energy during the solidificati<strong>on</strong> processes <str<strong>on</strong>g>of</str<strong>on</strong>g> theexperiments. For this purpose, the temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> -15°C was tested in the c<strong>on</strong>stanttemperature bath for solidificati<strong>on</strong>. In <str<strong>on</strong>g>melting</str<strong>on</strong>g> parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiments, temperaturewas raised to 15°C in order to melt the solidified <str<strong>on</strong>g>phase</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>. The <strong>heat</strong>transfer fluid was chosen to be ethyl alcohol (C 2 H 5 OH) for all experiments in orderto provide liquid behaviour at a low temperature such as -15°C. Somethermophysical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> ethyl alcohol at the temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> -15°C and 15°C areshown in Table 2.1. With the flow rate values measured during the experiments, the


12values <str<strong>on</strong>g>of</str<strong>on</strong>g> density and viscosity were used to calculate Reynolds numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>heat</strong>transfer fluid.Table 2.1 Thermophysical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> ethyl alcohol (Chemical EngineeringResearch Informati<strong>on</strong> Center, 2007)T(°C) ρ (kg/m 3 ) µ (kg/ms)15 816.4 1.7x10 –3-15 842.94 3.4x10 –32.3 The Flow SystemAs shown in Figure 2.3, the flow secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the experimental setup includes ahydrodynamic entry secti<strong>on</strong>. Fully developed flow c<strong>on</strong>diti<strong>on</strong>s for the <strong>heat</strong> transferfluid at the inlet <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy storage unit must be provided to ensure the accuracy<str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment results. Therefore, the hydrodynamic entry secti<strong>on</strong> was l<strong>on</strong>genough (240 diameters) to satisfy this necessity at both laminar and turbulent flows<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heat</strong> transfer fluid (Kays, 1966).As shown in Figure 2.8, at the return <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow line and 300 mm away from theexit <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy storage unit, pipe was raised 150 mm. It was because <str<strong>on</strong>g>of</str<strong>on</strong>g> the factthat the <strong>heat</strong> transfer fluid can not fill the piping system completely especially at lowReynolds numbers. So, such an operati<strong>on</strong> was made in order to remove this risk .The entry length and the return piping secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the apparatus were made <str<strong>on</strong>g>of</str<strong>on</strong>g>PVC tubing which had 20 mm inner, 25 mm outer diameter that is shown in Figure2.9. The advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> the PVC is that the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> pipe corrosi<strong>on</strong> does not exist.The whole length <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow system including the entry secti<strong>on</strong> was approximately6.5 m. To provide isolati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow system, the whole piping was insulated with a20 mm thick <strong>tube</strong> covering foam rubber (Acar, 2003).


13Figure 2.8 Pipe rise at the exit <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy storage unitFigure 2.9 The pipe used for the flow <str<strong>on</strong>g>of</str<strong>on</strong>g> the HTF


142.4 Energy Storage UnitThe dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy storage unit was 450 mm x 550 mm x 600 mm.Energy storage unit also included the <strong>finned</strong> <strong>tube</strong> and the <str<strong>on</strong>g>phase</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>. Forthe purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> watching the solidificati<strong>on</strong> and <str<strong>on</strong>g>melting</str<strong>on</strong>g> around the <strong>finned</strong> <strong>tube</strong>, thefr<strong>on</strong>t and the back faces <str<strong>on</strong>g>of</str<strong>on</strong>g> the storage unit were 10 mm thick plexiglass with 2 mmstainless steel sheet. The other lateral faces were 3 mm thick plexiglass. The bottomsurface was also 2 mm thick stainless steel sheet. The bottom surface was coveredwith 5 cm thick styr<str<strong>on</strong>g>of</str<strong>on</strong>g>oam layers and the other surfaces (lateral and top surface) werecovered with 3 cm thick styr<str<strong>on</strong>g>of</str<strong>on</strong>g>oam layers for reducing the <strong>heat</strong> leaks through thesurfaces <str<strong>on</strong>g>of</str<strong>on</strong>g> the unit. A central window with the dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 250 mm x 180 mmwhich is shown in Figure 2.10 was formed at each styr<str<strong>on</strong>g>of</str<strong>on</strong>g>oam layer and stainless steelsheet covering the plexiglass surfaces.Figure 2.10 Plexiglass view windowOwing to these openings, momentary photographs <str<strong>on</strong>g>of</str<strong>on</strong>g> solidificati<strong>on</strong> and <str<strong>on</strong>g>melting</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>the <str<strong>on</strong>g>phase</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g> could be taken by a digital camera with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> a lightsource as shown schematically before in Figure 2.1b. These pictures <str<strong>on</strong>g>of</str<strong>on</strong>g> solidified and


15melted <str<strong>on</strong>g>phase</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g> around the <strong>finned</strong> <strong>tube</strong> were transferred from thedigital camera to a computer.As a <str<strong>on</strong>g>phase</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>, water was selected for the experiments. By removingthe 50 mm thick top cover which can be seen back in Figure 2.2, the water could bepoured into the storage tank. The thermophysical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> water is shown inTable 2.2.Table 2.2 Thermophysical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>tube</strong> <str<strong>on</strong>g>material</str<strong>on</strong>g> and PCM (Acar, 2003)Tube <str<strong>on</strong>g>material</str<strong>on</strong>g>Phase <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>SolidLiquidρ (kg/m 3 ) 8800 916.8 999.8c p (J/kg.K)420 2040 4210k (W/m.K) 52 2.2 0.567α (m 2 /s) 1.4x10 -5 1.35x10 -7L (J/kg) - 333500In this study, 5 different types <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>tube</strong>s were used in the experiments. Table 2.3shows the geometrical parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>tube</strong>s tested. As dem<strong>on</strong>strated in thistable, each <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>tube</strong>s was numbered for an easier expressi<strong>on</strong>. In the followingsecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this thesis, those numbers are used to define any <strong>tube</strong>. The <strong>finned</strong> <strong>tube</strong>shad circular fins <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stant thickness. All <str<strong>on</strong>g>of</str<strong>on</strong>g> them had the same length <str<strong>on</strong>g>of</str<strong>on</strong>g> 480 mmand their inner and outer diamaters were 20 mm and 30 mm respectively. But theirfin diameters and spacing were different. The parameters for the <strong>tube</strong>s shown in thistable were indicated as a layout in Figure 2.11.


16Table 2.3 Geometrical parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>tube</strong>s used in this studyTubetypeNumber <str<strong>on</strong>g>of</str<strong>on</strong>g>finsD i(mm)D o(mm)D f(mm)t(mm)w(mm)#1 7 20 30 54 3.4 65#2 7 20 30 64 3.4 65#3 11 20 30 54 3 40#4 15 20 30 54 3.5 27.5#5 Finless <strong>tube</strong> 20 30 - - -Br<strong>on</strong>ze alloy cylinders were used in the producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>tube</strong>s. The chemicalc<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> these solid cylinders was 87.2% Cu, 6.57% Sn, 4.13% Zn, and 1.97% Pb.In Table 2.2, the thermophysical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> this alloy were given. While producingthe <strong>tube</strong>s, at first the <strong>finned</strong> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> the alloy cylinders was an integral piece. Thenit was produced by machining <strong>on</strong> a lathe. At the start <str<strong>on</strong>g>of</str<strong>on</strong>g> the machining process, theoutside diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> the cylinders was greater than the desired fin diameter. Thedesired fin and <strong>tube</strong> sizes were formed at the chip removal process. By producing inthis way, the risk <str<strong>on</strong>g>of</str<strong>on</strong>g> a possible thermal c<strong>on</strong>tact resistance between the <strong>tube</strong> base andthe fin was removed (Acar, 2003).twD fD oD iFigure 2.11 Finned <strong>tube</strong> geometryThe <strong>finned</strong> <strong>tube</strong> was situated at the midsecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy storage unit andc<strong>on</strong>nected to the flow system to fulfill thermally symmetrical c<strong>on</strong>diti<strong>on</strong>s in thestorage tank. The system was tested for possible leaks after completing the assembly.


17The photos <str<strong>on</strong>g>of</str<strong>on</strong>g> the some <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>tube</strong>s used in the experiments are shown in Figure2.12a to 2.12d.Figure 2.12a The <strong>tube</strong> #1 (7 <strong>finned</strong> with small diameter)Figure 2.12b The <strong>tube</strong> #2 (7 <strong>finned</strong> with big diameter)Figure 2.12c The <strong>tube</strong> #3 (11 <strong>finned</strong>)Figure 2.12d The <strong>tube</strong> #5 (finless)


182.5 Temperature Measurement SystemTemperature measurement system c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> thermocouples and data logger. It isessential to measure the temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>finned</strong> <strong>tube</strong> wall and the fin tip foraccurate determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>heat</strong> transfer to the <str<strong>on</strong>g>phase</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>. In this study,type T-24 thermocouples which were manufactured by Omega Engineering Inc. wereused as shown in Figure 2.13. Calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the thermocouples had been d<strong>on</strong>e in theprevious experimental studies which were performed a few years ago. It was learnedfrom those studies that 1°C should be added to every measured values in order to getthe true temperature values.Figure 2.13 Thermocouples used in the experimentsAs shown in Figure 2.14, during the experiments, temperatures at 20 differentpoints in the system were measured and recorded. So, for all <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>tube</strong>s used in theexperiments, 20 thermocouples were used. Figure 2.14 dem<strong>on</strong>strates a model <str<strong>on</strong>g>of</str<strong>on</strong>g>thermocouple arrangement for the <strong>tube</strong>s #1 and #2 which have 7 fins. Twothermocouples, which were shown with the numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 and 2 in that figure, wereinstalled to measure the <strong>heat</strong> transfer fluid temperatures at the inlet and outlet <str<strong>on</strong>g>of</str<strong>on</strong>g> thetest secti<strong>on</strong>.


1913 12 11 10 9 8 7 6 5 4 3C1A3B32A2B21A1B1Figure 2.14 Installati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the thermocouplesBecause <str<strong>on</strong>g>of</str<strong>on</strong>g> the large number <str<strong>on</strong>g>of</str<strong>on</strong>g> temperatures to be measured, the output record <str<strong>on</strong>g>of</str<strong>on</strong>g>the data was d<strong>on</strong>e by the help <str<strong>on</strong>g>of</str<strong>on</strong>g> a HP type 34970A data logger. With an accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g>±1°C, this data logger, which is shown in Figure 2.15, measured the millivolt outputs<str<strong>on</strong>g>of</str<strong>on</strong>g> the thermocouples. The signal output <str<strong>on</strong>g>of</str<strong>on</strong>g> the data logger were transmitted andrecorded in a pers<strong>on</strong>al computer. For this process the s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware “HP-Benchlink” wasused.The values <str<strong>on</strong>g>of</str<strong>on</strong>g> temperatures were scanned by the data logger every 30 sec<strong>on</strong>dsduring both solidificati<strong>on</strong> and <str<strong>on</strong>g>melting</str<strong>on</strong>g> processes. These values could be observed <strong>on</strong>the computer screen simultaneously by the help <str<strong>on</strong>g>of</str<strong>on</strong>g> the HP Benchlink s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware. Also,the inlet and outlet temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>heat</strong> transfer fluid could be seen graphically,so the inlet temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> the alcohol could be kept c<strong>on</strong>stant.


20Figure 2.15 HP DataloggerThermocouple installati<strong>on</strong>s for each <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>tube</strong>s were different. For the <strong>tube</strong>s#1-2, #3 and #4, this arrangement is shown in Table 2.4a, Table 2.4b and Table 2.4crespectively. For the <strong>tube</strong> #5, which is the finless <strong>tube</strong>, the points where thethermocouples installed were the same as the <strong>tube</strong>s #1 and #2. All thermocoupleswere installed to the <strong>tube</strong>s by oxy-acetylene welding.For the Tables 2.4a to 2.4c, A 1 and B 1 show the left and right base <str<strong>on</strong>g>of</str<strong>on</strong>g> the middlefin respectively. In accordance with that, A 2 and B 2 show the middle points <str<strong>on</strong>g>of</str<strong>on</strong>g> themiddle fin. A 3 and B 3 show the tip points <str<strong>on</strong>g>of</str<strong>on</strong>g> the middle fin. The thermocouplenumber 20 was used for point C 1 which was above and in the line <str<strong>on</strong>g>of</str<strong>on</strong>g> the middle fin tomeasure the water temperature. All these points can be seen back in Figure 2.14. Thereas<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> using much more thermocouples near the middle fin is the fact thatphotographs were taken just ahead <str<strong>on</strong>g>of</str<strong>on</strong>g> this fin.


21Table 2.4a Data logger channel c<strong>on</strong>necti<strong>on</strong>s for the <strong>tube</strong>s #1 and #2 (7 fins)ChannelNoThermocoupleNo101 1102 2The point measuredHeat transfer fluid inlettemperatureHeat transfer fluid outlettemperature103 3 2nd fin base temperature104 4 2nd fin tip temperature105 5 3rd fin base temperature106 6 3rd fin tip temperature107 7 4th fin base temperature108 8 4th fin tip temperature109 9 5th fin base temperature110 10 5th fin tip temperature111 11 6th fin base temperature112 12 6th fin tip temperature113 13 7th fin base temperature114 14 A 1115 15 A 2116 16 A 3117 17 B 1118 21 B 2119 22 B 3120 20 C 1


22Table 2.4b Data logger channel c<strong>on</strong>necti<strong>on</strong>s for the <strong>tube</strong> #3 (11 fins)ChannelNoThermocoupleNo101 1102 2The point measuredHeat transfer fluid inlettemperatureHeat transfer fluid outlettemperature103 3 3rd fin base temperature104 4 3rd fin tip temperature105 5 5th fin base temperature106 6 5th fin tip temperature107 7 6th fin base temperature108 8 6th fin tip temperature109 9 7th fin base temperature110 10 7th fin tip temperature111 11 8th fin base temperature112 12 9th fin tip temperature113 13 10th fin base temperature114 14 A 1115 15 A 2116 16 A 3117 17 B 1118 21 B 2119 22 B 3120 20 C 1


23Table 2.4c Data logger channel c<strong>on</strong>necti<strong>on</strong>s for the <strong>tube</strong> #4 (15 fins)ChannelNoThermocoupleNo101 1102 2The point measuredHeat transfer fluid inlettemperatureHeat transfer fluid outlettemperature103 3 2nd fin tip temperature104 4 3rd fin base temperature105 5 7th fin base temperature106 6 7th fin tip temperature107 7 8th fin base temperature108 8 8th fin tip temperature109 9 9th fin base temperature110 10 9th fin tip temperature111 11 10th fin base temperature112 12 14th fin base temperature113 13 14th fin tip temperature114 14 A 1115 15 A 2116 16 A 3117 17 B 1118 21 B 2119 22 B 3120 20 C 1


242.6 Computer SystemDuring the experiments, the data scanned by the data logger were recorded <strong>on</strong> apers<strong>on</strong>el computer. The values scanned every 30 sec<strong>on</strong>ds were be able to watchedsimultaneously <strong>on</strong> the computer screen by the help <str<strong>on</strong>g>of</str<strong>on</strong>g> HP Benchlink Data Loggers<str<strong>on</strong>g>of</str<strong>on</strong>g>tware as shown in Figure 2.16. In additi<strong>on</strong>, the inlet and the outlet temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g>the <strong>heat</strong> transfer fluid were able to viewed graphically to ensure the inlet temperatureto be c<strong>on</strong>stant.Figure 2.16 A view <str<strong>on</strong>g>of</str<strong>on</strong>g> HP Benchlink Data Logger s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware


CHAPTER THREEEXPERIMENTAL PROCEDURE3.1 Experimental ProcedureFirstly, the thermocouples were installed to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>finned</strong> <strong>tube</strong>s to be tested forstarting a particular set <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments. Then the <strong>finned</strong> <strong>tube</strong> with the thermocouples<strong>on</strong> it was assembled to the storage tank The <str<strong>on</strong>g>phase</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g> (water) waspoured into the energy storage tank at a temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.3-0.8 °C. Then a precoolingprocess was performed by pouring big ice pieces into the water. By applying thisprocess, the temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> the water was decreased more and became closer to 0°C.To make a more homogeneous temperature distributi<strong>on</strong> in the water, the water withthe ice pieces in it was stirred with a l<strong>on</strong>g stick. After this mixing process, all icepieces were taken out carefully. The total amount <str<strong>on</strong>g>of</str<strong>on</strong>g> the water stored in the tank wasat a level such that the test <strong>tube</strong> becomes oriented at the horiz<strong>on</strong>tal symmetry line <str<strong>on</strong>g>of</str<strong>on</strong>g>the tank. Ethyl alcohol at a predetermined flow rate was circulated through thesystem. After adjustment <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow rate by the help <str<strong>on</strong>g>of</str<strong>on</strong>g> a beaker which is describedin the previous chapter, the circulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the alcohol was closed by the valves andthe c<strong>on</strong>stant temperature bath was regulated for the desired inlet temperature whichwas -15°C. Then the ethyl alcohol at the specified inlet temperature was let abruptlyinto the test secti<strong>on</strong> by opening the outlet valve <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>stant temperature bath. Foreach experiment, this procedure was repeated and a seven hours solidificati<strong>on</strong>process started. By the end <str<strong>on</strong>g>of</str<strong>on</strong>g> seven hours, the circulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the alcohol was cutclosing the outlet valve <str<strong>on</strong>g>of</str<strong>on</strong>g> the bath. For <str<strong>on</strong>g>melting</str<strong>on</strong>g> process, the inlet temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> theethyl alcohol was raised to 15°C. Then the circulati<strong>on</strong> was started again. In a <strong>on</strong>e dayexperimentati<strong>on</strong> durati<strong>on</strong>, all <str<strong>on</strong>g>of</str<strong>on</strong>g> these processes were performed for <strong>on</strong>e differentflow rate and different test <strong>tube</strong>s.Inlet temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> -15°C was studied for 5 different <strong>tube</strong>s: Two 7 <strong>finned</strong> (withdifferent fin diameters - #1 and #2), <strong>on</strong>e 11 <strong>finned</strong> (#3), <strong>on</strong>e 15 <strong>finned</strong> (#4) and <strong>on</strong>efinless <strong>tube</strong> (#5). In the previous chapter, all <str<strong>on</strong>g>of</str<strong>on</strong>g> these <strong>tube</strong>s were numbered for aneasier expressi<strong>on</strong>. Three different values <str<strong>on</strong>g>of</str<strong>on</strong>g> Reynolds numbers were c<strong>on</strong>sidered,25


261000, 1500, 2000 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heat</strong> transfer fluid (ethyl alcohol) for each <strong>tube</strong>. The inlet andthe outlet temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> the ethyl alcohol and the tested <strong>tube</strong> surface temperatureswere measured and recorded at every thirty sec<strong>on</strong>ds by the data logger. As shown inTable 3.1, fifteen different experiments were carried out every single day. Each <str<strong>on</strong>g>of</str<strong>on</strong>g>these experiments c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> solidificati<strong>on</strong> and <str<strong>on</strong>g>melting</str<strong>on</strong>g> parts.Table 3.1 Experiments performed in this studyTest No Tube No Reynolds HTF inlet temperature (°C)number Solidificati<strong>on</strong> Melting1 #1 1000 -15 152 #1 1500 -15 153 #1 2000 -15 154 #2 1000 -15 155 #2 1500 -15 156 #2 2000 -15 157 #3 1000 -15 158 #3 1500 -15 159 #3 2000 -15 1510 #4 1000 -15 1511 #4 1500 -15 1512 #4 2000 -15 1513 #5 1000 -15 1514 #5 1500 -15 1515 #5 2000 -15 15For solidificati<strong>on</strong> part <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiments, experimental run lasted 7 hours. For alltypes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>tube</strong>s this durati<strong>on</strong> was the same. The images <str<strong>on</strong>g>of</str<strong>on</strong>g> solidificati<strong>on</strong> around the<strong>finned</strong> <strong>tube</strong> were taken at every 20 minutes periods. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> these images for the<strong>tube</strong> #1 were shown in Figures 3.1a to 3.1c. For <str<strong>on</strong>g>melting</str<strong>on</strong>g> part, the experimentdurati<strong>on</strong>s were different for all experiments. Since the finish <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>melting</str<strong>on</strong>g> at any pointaround the ice was waited, the <str<strong>on</strong>g>melting</str<strong>on</strong>g> time was different for each experiment.


27Figure 3.1a 20 th minute <str<strong>on</strong>g>of</str<strong>on</strong>g> the solidificati<strong>on</strong> for the <strong>tube</strong> #1Figure 3.1b 60 th minute <str<strong>on</strong>g>of</str<strong>on</strong>g> the solidificati<strong>on</strong> for the <strong>tube</strong> #1


28Figure 3.1c 7 th hour <str<strong>on</strong>g>of</str<strong>on</strong>g> the solidificati<strong>on</strong> for the <strong>tube</strong> #1After 7 hours <str<strong>on</strong>g>of</str<strong>on</strong>g> solidificati<strong>on</strong>, the temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> the ethyl alcohol in the c<strong>on</strong>stanttemperature bath was increased to 15°C for <str<strong>on</strong>g>melting</str<strong>on</strong>g> part <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiments. Thetemperature <str<strong>on</strong>g>of</str<strong>on</strong>g> the thermocouples which were c<strong>on</strong>nected to the base <str<strong>on</strong>g>of</str<strong>on</strong>g> the middle fin(as shown in Figure 2.14 – A 1 and B 1 points) was waited to reach 0°C. Because thosethermocoples were to measure the temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>tube</strong> surface. So the <str<strong>on</strong>g>melting</str<strong>on</strong>g>part <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment was started. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>vecti<strong>on</strong> factor, <str<strong>on</strong>g>melting</str<strong>on</strong>g>durati<strong>on</strong> was shorter than the solidificati<strong>on</strong> process. So, to observe the <str<strong>on</strong>g>change</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>melting</str<strong>on</strong>g> carefully, the photos were taken every 5 minutes for <str<strong>on</strong>g>melting</str<strong>on</strong>g> parts <str<strong>on</strong>g>of</str<strong>on</strong>g> theexperiments. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> these photos for the <strong>tube</strong> #1 were shown in Figure 3.2a and3.2b.


29Figure 3.2a 60 th minute <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>melting</str<strong>on</strong>g> for the <strong>tube</strong> #1Figure 3.2b 3rd hour <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>melting</str<strong>on</strong>g> for the <strong>tube</strong> #1To take the photos, the covers at the fr<strong>on</strong>t and the back openings <str<strong>on</strong>g>of</str<strong>on</strong>g> the plexiglasssurfaces were taken out. The white light rays from a lamp were reflected into the testsecti<strong>on</strong> by the help <str<strong>on</strong>g>of</str<strong>on</strong>g> a white screen. Thus the essential enlightment for taking clearpictures <str<strong>on</strong>g>of</str<strong>on</strong>g> the solidificati<strong>on</strong> and <str<strong>on</strong>g>melting</str<strong>on</strong>g> fields around the <strong>tube</strong> was provided. As


30shown in Figure 3.3, the digital camera was mounted at the center <str<strong>on</strong>g>of</str<strong>on</strong>g> the fr<strong>on</strong>twindow <str<strong>on</strong>g>of</str<strong>on</strong>g> the test secti<strong>on</strong>, and was directed perpendicular to the approaching lightrays. Every 20 minutes for the solidificati<strong>on</strong> process and every 5 minutes for the<str<strong>on</strong>g>melting</str<strong>on</strong>g> process, the camera took the images <str<strong>on</strong>g>of</str<strong>on</strong>g> ice around the <strong>tube</strong> at the size <str<strong>on</strong>g>of</str<strong>on</strong>g>2816x2112 pixels. Then these images were transmitted to a pers<strong>on</strong>al computer.Figure 3.3 The camera positi<strong>on</strong> at the fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> the view window <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy storage unit3.2 Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Charged and Discharged Cold Thermal EnergyFor the solidificati<strong>on</strong> part <str<strong>on</strong>g>of</str<strong>on</strong>g> the experimental run, the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> negative energystored comprises latent <strong>heat</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ice and sensible <strong>heat</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both ice and water. So, thetotal energy stored is,E = E + E + E(3.1)total sensible, water sensible, ice latent,icewhere,( )E = m c T − T(3.2)sensible, water water p,water i water


31( )E = m c T − T(3.3)Esensible, ice ice p,ice ice frlatent,ice= m L(3.4)iceDuring the experiment, solidified and melted diameters <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>phase</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g><str<strong>on</strong>g>material</str<strong>on</strong>g> and temperatures were collected periodically for computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the latent<strong>heat</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ice and sensible <strong>heat</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water and ice. In the process <str<strong>on</strong>g>of</str<strong>on</strong>g> solidificati<strong>on</strong>,equati<strong>on</strong>s (3.3) and (3.4) were used in order to determine the stored energy. Since theinitial temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> the water, T i , was almost equal to zero, equati<strong>on</strong> (3.2) was notused for computing the stored cold energy. Nevertheless, for sensible <strong>heat</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ice, theequati<strong>on</strong> (3.3) could not be used directly. Because, a new equati<strong>on</strong> was to be derivedas a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>finned</strong> <strong>tube</strong> wall temperature, T w , and solidified <str<strong>on</strong>g>phase</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g><str<strong>on</strong>g>material</str<strong>on</strong>g> radius, r ice , at a certain instant <str<strong>on</strong>g>of</str<strong>on</strong>g> time. The derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this kind <str<strong>on</strong>g>of</str<strong>on</strong>g>equati<strong>on</strong> is as follows (Acar, 2003):Logarithmic temperature distributi<strong>on</strong> in a cylindrical system is described as,ql2πk T( −T)1 2= (3.5)r2lnr1C<strong>on</strong>ducti<strong>on</strong> in the solid <str<strong>on</strong>g>phase</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g> is written as,( 2π)q = − k rldTdrq dr2π kl r= − dTrrpoTq drq r= − dT2π kl∫r∫ ln2π kl rTwpo= T − TwBecause the temperature at solid-liquid interface <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>phase</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g> isequal to zero,q rln2π kl ricepo= T(3.6)w


32After combining the equati<strong>on</strong>s (3.5) and (3.6),TTw⎛ln r ⎞⎜ r ⎟po= 1− ⎝ ⎠⎛ rlnice ⎞⎜ r ⎟⎝ po ⎠Sensible <strong>heat</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ice may be written as,⎛ ⎛ rpo⎞ ⎞r lnice ⎛rice ⎞rice⎜ ⎜ r ⎟ ⎟Es = ρc( 2π rdrdx)( T Tfr ) 2πρ c rTdr dx 2πρcTwdx r 1⎝ ⎠∫ − = = ⎜ − ⎟dr⎜ ∫ ⎟ ∫rpo rpo r⎛ r ⎞⎝ ⎠⎜po lnice⎟⎜ ⎜ r ⎟ ⎟⎝ ⎝ po ⎠ ⎠Integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the above equati<strong>on</strong> yields the sensible <strong>heat</strong> stored in unit length <str<strong>on</strong>g>of</str<strong>on</strong>g>the <str<strong>on</strong>g>phase</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g> (Acar, 2003).⎡⎤2n2E⎢2 2r ⎛ice, ir ⎛ice,ir ⎞ ⎞⎥spo= ∑ ρπ cT ⎢w ( rice, i− rpo,i ) + ⎜1− 2ln − ⎟⎥(3.7)∆x i=1 ⎢⎛ rice , i ⎞ ⎜ r ⎜por ⎟ice,i⎟2ln⎝ ⎠ ⎥⎢⎜ r ⎟ ⎝ ⎠⎣⎝ po ⎠⎥⎦During the <str<strong>on</strong>g>melting</str<strong>on</strong>g> process, the discharged cold thermal energy was computedusing the equati<strong>on</strong>s (3.2) and (3.4). As in the solidificati<strong>on</strong> process, the equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>the sensible <strong>heat</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water could not be used directly. So equati<strong>on</strong> (3.7) was againused for computing the sensible <strong>heat</strong>. Melting area radii were applied in that equati<strong>on</strong>instead <str<strong>on</strong>g>of</str<strong>on</strong>g> the ice radii.Taking into c<strong>on</strong>siderati<strong>on</strong> the equati<strong>on</strong>s (3.1) to (3.7), an exact computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> themass <str<strong>on</strong>g>of</str<strong>on</strong>g> ice which was took shape during the solidificati<strong>on</strong> process <str<strong>on</strong>g>of</str<strong>on</strong>g> theexperimental run was an extremely important problem and must be d<strong>on</strong>e precisely.Luminous images which clearly showed the boundaries <str<strong>on</strong>g>of</str<strong>on</strong>g> the ice formed around the<strong>finned</strong> <strong>tube</strong> were obtained. By the help <str<strong>on</strong>g>of</str<strong>on</strong>g> a s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware (AutoCad 2007), vertical gridlines oriented with a horiz<strong>on</strong>tal distance <str<strong>on</strong>g>of</str<strong>on</strong>g> δx=1 mm were generated <strong>on</strong> the pictures


33as shown in Figure 3.4a and 3.4b for the solidificati<strong>on</strong> and <str<strong>on</strong>g>melting</str<strong>on</strong>g> processesrespectively.The diameters <str<strong>on</strong>g>of</str<strong>on</strong>g> the solidified or melted <str<strong>on</strong>g>phase</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g> were measured atevery 1 mm <str<strong>on</strong>g>of</str<strong>on</strong>g> the module by measuring vertical distances between the ice-boundarygrid-line intersecti<strong>on</strong>s. Then these measured diameter values were c<strong>on</strong>verted to theactual diameters by proporti<strong>on</strong>ing with the fin diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> that image.Figure 3.4a Vertical grid lines formed in the s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware Autocad 2007 for computingsolidified ice diameters


34Figure 3.4b Vertical grid lines formed in the s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware Autocad 2007 for computingmelted ice diametersC<strong>on</strong>sidering diameter at a certain locati<strong>on</strong> i, the volume <str<strong>on</strong>g>of</str<strong>on</strong>g> ice formed at themodule <str<strong>on</strong>g>of</str<strong>on</strong>g> the tested <strong>tube</strong> becomes,πV ∑ d x V(3.8)i22ice, cell=iδ −<strong>tube</strong>,cell4 i1where i 1 and i 2 are the vertical grid lines <strong>on</strong> the left and right side <str<strong>on</strong>g>of</str<strong>on</strong>g> the module asshown in Figures 3.4a and 3.4b.For the experiments, it was assumed that the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> ice formed or melted ateach module is at the same amount as the middle module <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>tube</strong>s which wascomputed during the study. So, the volume <str<strong>on</strong>g>of</str<strong>on</strong>g> ice formed around the whole <strong>finned</strong><strong>tube</strong> surface up to that instant time was,Vice= Vice,cell2l( w + t)(3.9)


35where l is the length <str<strong>on</strong>g>of</str<strong>on</strong>g> the tested <strong>tube</strong>, w is the space between the fins and t is thethickness <str<strong>on</strong>g>of</str<strong>on</strong>g> the fins (Acar, 2003). For the finless <strong>tube</strong>, the middle module wasselected between the same points where the fins were existed for the <strong>finned</strong> <strong>tube</strong>s #1or #2.After determining the solidified and melted volumes <str<strong>on</strong>g>of</str<strong>on</strong>g> the water, the masses <str<strong>on</strong>g>of</str<strong>on</strong>g>these volumes were computed. Eventually the latent energies could be computed.


36CHAPTER FOUREXPERIMENTAL RESULTSThe stored energy values were calculated for each experiment as described in theprevious chapter. The stored energy values were displayed as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> timeunder the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> some parameters which are the fin density, the fin diameter andReynolds numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>heat</strong> transfer fluid. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> the breakdown <str<strong>on</strong>g>of</str<strong>on</strong>g> thec<strong>on</strong>stant temperature bath, experiments could not be completed for the <strong>tube</strong> #4. Forthis <strong>tube</strong>, <strong>on</strong>ly Re=1000 solidificati<strong>on</strong>-<str<strong>on</strong>g>melting</str<strong>on</strong>g> parts and Re=1500 solidificati<strong>on</strong> partwere able to be experimented.In Figures 4.1a to 4.1e, the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Reynolds numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>heat</strong> transfer fluid<strong>on</strong> the total stored energy were shown. Those figures were for solidificati<strong>on</strong> parts <str<strong>on</strong>g>of</str<strong>on</strong>g>the experiments. For the most <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiments, it can be seen from the figures thatincrease <str<strong>on</strong>g>of</str<strong>on</strong>g> Reynolds number means increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the solidificati<strong>on</strong> and stored coldenergy. Since the breakdown occured in the c<strong>on</strong>stant temperature bath during theexperiment <strong>on</strong> the <strong>tube</strong> #4, the values for Re=2000 could not be get for thatexperiment. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> that, as shown in Figure 4.1d, stored energy <str<strong>on</strong>g>change</str<strong>on</strong>g> withtime is seen <strong>on</strong>ly for Re=1000 and Re=1500. For both Reynolds numbers, it is seenthat the values <str<strong>on</strong>g>of</str<strong>on</strong>g> the stored energy is almost identical. Another unexpected resulthappened for the <strong>tube</strong> #2 which is seen at Figure 4.1b. The stored energy is nearlymore for Re=1500 compared to Re=2000.


3730002500Q (kJ)200015001000Re=1000Re=1500Re=200050000 2 4 6 8t (h)Figure 4.1a The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Reynolds number <strong>on</strong> total stored energy for the <strong>tube</strong> #1 duringsolidificati<strong>on</strong>30002500Q (kJ)200015001000Re=1000Re=1500Re=200050000 2 4 6 8t (h)Figure 4.1b The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Reynolds number <strong>on</strong> total stored energy for the <strong>tube</strong> #2 duringsolidificati<strong>on</strong>


3830002500Q (kJ)200015001000Re=1000Re=1500Re=200050000 2 4 6 8t (h)Figure 4.1c The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Reynolds number <strong>on</strong> total stored energy for the <strong>tube</strong> #3 duringsolidificati<strong>on</strong>300025002000Q (kJ)1500Re=1000Re=1500100050000 2 4 6 8t (h)Figure 4.1d The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Reynolds number <strong>on</strong> total stored energy for the <strong>tube</strong> #4 duringsolidificati<strong>on</strong>


3930002500Q (kJ)200015001000Re=1000Re=1500Re=200050000 2 4 6 8t (h)Figure 4.1e The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Reynolds number <strong>on</strong> total stored energy for the <strong>tube</strong> #5 duringsolidificati<strong>on</strong>In Figures 4.2a to 4.2d those effects were shown for <str<strong>on</strong>g>melting</str<strong>on</strong>g> secti<strong>on</strong>. Because <str<strong>on</strong>g>of</str<strong>on</strong>g>the breakdown <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>stant temperature bath during experiments cited before, thecomparis<strong>on</strong> could not be made for the <strong>tube</strong> #4 for which <strong>on</strong>ly values for Re=1000were obtained. The complex nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>melting</str<strong>on</strong>g> can be clearly seen from thesefigures. While the durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all solidificati<strong>on</strong> secti<strong>on</strong>s was kept c<strong>on</strong>stant as 7 hours,the <str<strong>on</strong>g>melting</str<strong>on</strong>g> durati<strong>on</strong> was different for all experiments. Because, at the beginning <str<strong>on</strong>g>of</str<strong>on</strong>g>the <str<strong>on</strong>g>melting</str<strong>on</strong>g> secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiments which followed the solidificati<strong>on</strong> secti<strong>on</strong>, theice volume was also different for each experiment. Eventually each <str<strong>on</strong>g>melting</str<strong>on</strong>g>experiment lasted for dissimilar durati<strong>on</strong>. Figures show that Reynolds number alsoeffects the <str<strong>on</strong>g>melting</str<strong>on</strong>g> period. The effect is in the same directi<strong>on</strong> as is in solidificati<strong>on</strong>.As we increase the Reynolds number, the result will be an increase in the meltedvolume and the discharged cold energy. For those series <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments, theunexpected result was for the <strong>tube</strong> #1 which is shown in Figure 4.2a. It can be seenthat the least discharged cold energy happened for Re=2000.


4025002000Re=1000Re=1500Re=2000Q (kJ)1500100050000 1 2 3 4 5t (h)Figure 4.2a The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Reynolds number <strong>on</strong> discharging <str<strong>on</strong>g>of</str<strong>on</strong>g> total stored energy for the<strong>tube</strong> #1 during <str<strong>on</strong>g>melting</str<strong>on</strong>g>25002000Q (kJ)15001000Re=1000Re=1500Re=200050000 1 2 3 4 5t (h)Figure 4.2b The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Reynolds number <strong>on</strong> discharging <str<strong>on</strong>g>of</str<strong>on</strong>g> total stored energy for the<strong>tube</strong> #2 during <str<strong>on</strong>g>melting</str<strong>on</strong>g>


4125002000Q (kJ)15001000Re=1000Re=1500Re=200050000 1 2 3 4 5t (h)Figure 4.2c The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Reynolds number <strong>on</strong> discharging <str<strong>on</strong>g>of</str<strong>on</strong>g> total stored energy for the<strong>tube</strong> #3 during <str<strong>on</strong>g>melting</str<strong>on</strong>g>25002000Q (kJ)15001000Re=1000Re=1500Re=200050000 1 2 3 4 5t (h)Figure 4.2d The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Reynolds number <strong>on</strong> discharging <str<strong>on</strong>g>of</str<strong>on</strong>g> total stored energy for the<strong>tube</strong> #5 during <str<strong>on</strong>g>melting</str<strong>on</strong>g>


42For a specific value <str<strong>on</strong>g>of</str<strong>on</strong>g> the fin density and Reynolds number <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>heat</strong> transferfluid (Re=1000 and Re=2000), the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the fin diameter <strong>on</strong> the stored anddischarged cold energy is indicated in Figures 4.3a and 4.3b for solidificati<strong>on</strong> and<str<strong>on</strong>g>melting</str<strong>on</strong>g> secti<strong>on</strong>s respectively. The <strong>tube</strong>s #1 and #2 which have same fin density isused for this process. In Figure 4.3a, for solidificati<strong>on</strong>, it is clearly seen that theincrease <str<strong>on</strong>g>of</str<strong>on</strong>g> the fin diameter increases the stored cold energy. Especially for higherReynolds numbers, this increase becomes higher. For example, when Re=2000, thedifference <str<strong>on</strong>g>of</str<strong>on</strong>g> the stored energy between D f =54 mm and D f =64 mm is more apparent.The results <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiments show that it is more complex for <str<strong>on</strong>g>melting</str<strong>on</strong>g>. As shown inFigure 4.3b, for Re=1000 the situati<strong>on</strong> is just the opposite in <str<strong>on</strong>g>melting</str<strong>on</strong>g> part <str<strong>on</strong>g>of</str<strong>on</strong>g> theexperiments. The increase in the fin diameter does not increase the discharged coldenergy. But for Re=2000, the values are more closer for both fin diameters.25002000Q (kJ)1500100050000 2 4 6 8t (h)Df=54 mm(Re=1000)Df=64 mm(Re=1000)Df=54 mm(Re=2000)Df=64 mm(Re=2000)Figure 4.3a The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the fin diameter <strong>on</strong> total stored energy for the <strong>tube</strong>s #1 and #2during solidificati<strong>on</strong>


4325002000Q (kJ)15001000500Df=54 mm(Re=1000)Df=64 mm(Re=1000)Df=54 mm(Re=2000)Df=64 mm(Re=2000)00 1 2 3 4 5t (h)Figure 4.3b The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the fin diameter <strong>on</strong> discharging <str<strong>on</strong>g>of</str<strong>on</strong>g> total stored energy for the <strong>tube</strong>s#1 and #2 during <str<strong>on</strong>g>melting</str<strong>on</strong>g>In Figures 4.4a to 4.4c, effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the fin densitiy <strong>on</strong> the stored cold energy isdisplayed for different Reynolds numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>heat</strong> transfer fluid and c<strong>on</strong>stant findiamater. The results show that the stored energy generally increases with theincrease <str<strong>on</strong>g>of</str<strong>on</strong>g> the fin density. For all Reynolds numbers, the least energy was stored forthe <strong>tube</strong> #1 which has 7 fins. It is expected that would be the finless <strong>tube</strong> but allexperiments show the same result. Although the <strong>tube</strong> #4 has the biggest fin densitywhich is 15 fins, as can be seen in Figure 4.4b, for Re=1500, the most energy storageoccured for the <strong>tube</strong> #3 which has 11 fins. This is an excepti<strong>on</strong> for the general nature<str<strong>on</strong>g>of</str<strong>on</strong>g> the fin density-stored energy relati<strong>on</strong>.


4430002500Q (kJ)200015001000Tube #1Tube #3Tube #4Tube #550000 2 4 6 8t (h)Figure 4.4a The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the fin density <strong>on</strong> total stored energy for Re=1000 duringsolidificati<strong>on</strong>30002500Q (kJ)200015001000Tube #1Tube #3Tube #4Tube #550000 2 4 6 8t (h)Figure 4.4b The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the fin density <strong>on</strong> total stored energy for Re=1500 duringsolidificati<strong>on</strong>


4530002500Q (kJ)200015001000Tube #1Tube #3Tube #550000 2 4 6 8t (h)Figure 4.4c The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the fin density <strong>on</strong> total stored energy for Re=2000 duringsolidificati<strong>on</strong>Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the fin density <strong>on</strong> discharge <str<strong>on</strong>g>of</str<strong>on</strong>g> the stored cold energy is indicated fordifferent Reynolds numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>heat</strong> transfer fluid and c<strong>on</strong>stant fin diamater inFigures 4.5a to 4.5c. It can be seen that the relati<strong>on</strong> between the fin density and theenergy resembles the solidificati<strong>on</strong> results. But it must be noted that, at the first hours<str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>melting</str<strong>on</strong>g>, the fin densitiy-discharged cold energy relati<strong>on</strong>ship is more stable.More energy discharges as the fin density increases for the first parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>melting</str<strong>on</strong>g>.


4625002000Q (kJ)15001000Tube #1Tube #3Tube #4Tube #550000 1 2 3 4 5t (h)Figure 4.5a The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the fin density <strong>on</strong> discharging <str<strong>on</strong>g>of</str<strong>on</strong>g> total stored energy for Re=1000during <str<strong>on</strong>g>melting</str<strong>on</strong>g>25002000Q (kJ)15001000Tube #1Tube #3Tube #550000 1 2 3 4 5t (h)Figure 4.5b The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the fin density <strong>on</strong> discharging <str<strong>on</strong>g>of</str<strong>on</strong>g> total stored energy for Re=1500during <str<strong>on</strong>g>melting</str<strong>on</strong>g>


4725002000Q (kJ)15001000Tube #1Tube #3Tube #550000 1 2 3 4 5t (h)Figure 4.5c The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the fin density <strong>on</strong> discharging <str<strong>on</strong>g>of</str<strong>on</strong>g> total stored energy forRe=2000 during <str<strong>on</strong>g>melting</str<strong>on</strong>g>The values <str<strong>on</strong>g>of</str<strong>on</strong>g> stored and discharged energy were listed in the Appendicessecti<strong>on</strong> which is at the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the thesis.


CHAPTER FIVECONCLUSIONSIn this study, the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> the fin density, the fin diameter and Reynolds numbers<str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>heat</strong> transfer fluid <strong>on</strong> storing latent cold energy were investigatedexperimentally. These effects were observed for both charging and discharging <str<strong>on</strong>g>of</str<strong>on</strong>g> thecold energy. For this purpose, a series <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments were performed and the resultswere recorded. The parameters that were <str<strong>on</strong>g>change</str<strong>on</strong>g>d during the experiments were asfollows:- Reynolds number <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>heat</strong> transfer fluid,- the fin diameter,- the fin spacing.It was known that the parameters like time and the inlet temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>heat</strong>transfer fluid were another effective factors <strong>on</strong> the thermal storage in theexperiments. No doubt as the time elapsed, the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> energy charging ordischarging was increased. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the inlet temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>heat</strong> transferfluid was not investigated in this study. For each experiment -15°C was the inlettemperature during the charging <str<strong>on</strong>g>of</str<strong>on</strong>g> the cold energy. This value was increased to 15°Cfor <str<strong>on</strong>g>melting</str<strong>on</strong>g> process in each <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiments. The inlet temperature would effectthe energy storage primarily, especially <strong>on</strong> the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> solidificati<strong>on</strong> and <str<strong>on</strong>g>melting</str<strong>on</strong>g>.As described in the previous chapters, five different shaped <strong>tube</strong>s were used in thetests in order to figure out the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> the fin diameter and spacing <strong>on</strong> the energystorage. The Reynolds number <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>heat</strong> transfer fluid was altered by the valves inthe experimental setup to be Re=1000, Re=1500 and Re=2000.It was clearly seen that the increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow Reynolds number <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>heat</strong>transfer fluid increased the stored energy during solidificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>phase</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g><str<strong>on</strong>g>material</str<strong>on</strong>g>. Same result was occured for the <str<strong>on</strong>g>melting</str<strong>on</strong>g> process. But for the <strong>tube</strong> #1 theresults were unexpected and c<strong>on</strong>trary.48


49The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the fin diameter was investigated <strong>on</strong> the <strong>tube</strong>s #1 and #2 which havesame fin density that was seven <strong>tube</strong>s for whole <strong>tube</strong>. For the same Reynoldsnumbers, increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the fin diameter increased the stored energy duringsolidificati<strong>on</strong>. Especially at higher Reynolds numbers, that effect was more apparent.Those results were also valid for the first hours <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>melting</str<strong>on</strong>g> processes. But in thefollowing hours <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiments, these tendencies shifted completely for each <str<strong>on</strong>g>of</str<strong>on</strong>g>the flow rates.The experiments brought out some interesing results about the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the findensity <strong>on</strong> the energy storage. As expected, increasing <str<strong>on</strong>g>of</str<strong>on</strong>g> the fin density resulted inmore energy storage during solidificati<strong>on</strong> process. But, especially at high Reynoldsnumbers, the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> the stored energy for the <strong>tube</strong> #5 which was finless washigher than for the <strong>tube</strong> #1 which had 7 fins for the same length. After this point,increasing the fin density more caused more energy storage. This result may showthat increasing the <strong>heat</strong> transfer area by the use <str<strong>on</strong>g>of</str<strong>on</strong>g> the fins effects the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> thestored energy <strong>on</strong>ly using more than a specific number <str<strong>on</strong>g>of</str<strong>on</strong>g> fins. For the <str<strong>on</strong>g>melting</str<strong>on</strong>g>processes, the results were more complicated than the <strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> the solidificati<strong>on</strong>again. This result was seen for all <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiments. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the naturalc<strong>on</strong>vecti<strong>on</strong> <strong>on</strong> this results certainly can not be forgotten at this point. At the firsthours <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>melting</str<strong>on</strong>g>, it was seen that the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> the discharged cold energy wereincreased by the increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the fin density. But as the time passed, some small<str<strong>on</strong>g>change</str<strong>on</strong>g>s happened again.By looking the general results <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiments, it was seen that someunexpected c<strong>on</strong>clusi<strong>on</strong>s compared to the general tendencies <str<strong>on</strong>g>of</str<strong>on</strong>g> the results existed.There are many factors such as instrumental manufacturing errors, human naturereading errrors, envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong> effects or calibrati<strong>on</strong> errors that may causesome diversi<strong>on</strong>s in the experiments. At some moments <str<strong>on</strong>g>of</str<strong>on</strong>g> the tests, these diversi<strong>on</strong>scan happen because <str<strong>on</strong>g>of</str<strong>on</strong>g> the factors such as thermocouples, data logger system, inlettemperature measurement, surface temperature measurement, flow rate reading,system leakages and so <strong>on</strong>.


50As a c<strong>on</strong>clusi<strong>on</strong>, in this study the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> the fin diameter, fin density and theflow Reynolds number <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>heat</strong> transfer fluid <strong>on</strong> charging and discharging <str<strong>on</strong>g>of</str<strong>on</strong>g> thecold thermal energy using a <str<strong>on</strong>g>phase</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g> around a <strong>finned</strong> <strong>tube</strong> wereinvestigated experimentally and the results were compared. The results generallyshowed that the increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the fin diameter, fin density and Reynolds numberincreased the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> charging and discharging cold thermal energy duringsolidificati<strong>on</strong> and <str<strong>on</strong>g>melting</str<strong>on</strong>g> processes respectively.


51NOMENCLATUREc p specific <strong>heat</strong> (J kg -1 K -1 )D diameter (m)E energy charged or dischargedk thermal c<strong>on</strong>ductivity (W m -1 K -1 )l length <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>tube</strong> (m)L specific latent <strong>heat</strong> (J kg -1 )m mass (kg)t fin thickness (m)T temperature (K)w fin spacing (m)Q total charged or discharged energy (J)Greek Symbolsα thermal diffusivity (m 2 s -1 )µ dynamic viscosity (kg m -1 s -1 )ρ density (kg m -3 )Subscriptsf fini initial c<strong>on</strong>diti<strong>on</strong> or inner surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>tube</strong>o outer surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>tube</strong>p pipes sensiblew wallfr freeze point


52REFERENCESAcar, M. A. (2003). Study <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>finned</strong> <strong>tube</strong> thermal energy storage systems. M. Scthesis. İzmir: Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural and Applied Sciences <str<strong>on</strong>g>of</str<strong>on</strong>g> Dokuz EylülUniversity.Akgün, M., Aydın, O., & Kaygusuz, K. (2006). Experimental study <strong>on</strong><str<strong>on</strong>g>melting</str<strong>on</strong>g>/solidificati<strong>on</strong> characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> a paraffin as PCM. Energy C<strong>on</strong>versi<strong>on</strong> &Management, 48, 669-678ASHRAE, (1987). Thermal Storage, HVAC Handbook. Chapter 46.Bathelt, A. G., & Viskanta, R. (1981). Heat transfer and interface moti<strong>on</strong> during<str<strong>on</strong>g>melting</str<strong>on</strong>g> and solidificati<strong>on</strong> around a <strong>finned</strong> horiz<strong>on</strong>tal sink/source. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> HeatTransfer, 103, 720-726.Bellecci, C., & C<strong>on</strong>ti, M. (1993). Phase <str<strong>on</strong>g>change</str<strong>on</strong>g> thermal storage: Transient behaviouranalysis <str<strong>on</strong>g>of</str<strong>on</strong>g> a solar receiver/storage module using the enthalpy method.Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Heat Mass Transfer, 36, 2157-2163.Cao, Y., & Faghri, A. (1991a). A PCM/forced c<strong>on</strong>vecti<strong>on</strong> transient analysis <str<strong>on</strong>g>of</str<strong>on</strong>g>energy storage systems with annular and countercurrent flows. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> HeatTransfer ASME, 113, 37-42Cao, Y., & Faghri, A. (1991b). Performance characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> a thermal energystorage module: A transient PCM/forced c<strong>on</strong>vecti<strong>on</strong> c<strong>on</strong>jugate analysis.Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Heat Mass Transfer, 34, 93-101.Cao, Y., & Faghri, A. (1992). A study <str<strong>on</strong>g>of</str<strong>on</strong>g> thermal energy storage system withc<strong>on</strong>jugate turbulent forced c<strong>on</strong>vecti<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Heat Transfer ASME, 114,1019-1027.


53Chemical Engineering Research Informati<strong>on</strong> Center. Retrieved May 12, 2007, fromhttp://www.cheric.org/research/kdb/hcprop/cmpsrch.phpErek, A. (1999). Phase <str<strong>on</strong>g>change</str<strong>on</strong>g> around <strong>finned</strong> horiz<strong>on</strong>tal cylinder: A c<strong>on</strong>jugateproblem. Ph. D. Thesis, Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural and Applied Sciences <str<strong>on</strong>g>of</str<strong>on</strong>g>Dokuz Eylül University, İzmir.Erek, A., İlken, Z., & Acar, M. A. (2005). Experimental and numerical investigati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> thermal energy storage with a <strong>finned</strong> <strong>tube</strong>. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> EnergyResearch, 29, 283-301.Ermiş, K., Erek, A., & Dinçer, İ. (2007). Heat transfer analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>phase</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>process in a <strong>finned</strong>-<strong>tube</strong> thermal energy storage system using artificial neuralnetwork. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Heat and Mass Transfer, 50, 3163-3175.Ismail, K. A. R., & Alves, C. L. F. (1986). Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the shell-and-<strong>tube</strong> PCMstorage system. Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the 8 th Internati<strong>on</strong>al Heat Transfer C<strong>on</strong>ference,1781-1786.Ismail, K. A. R., Henriquuez, J. R., Moura, L. F. M., & Ganzarolli, M. M. (2000). Iceformati<strong>on</strong> around isothermal radial <strong>finned</strong> <strong>tube</strong>s. Energy C<strong>on</strong>versi<strong>on</strong> &Management, 41, 585-605.Kays, W. M. (1966). C<strong>on</strong>vective <strong>heat</strong> and mass transfer. USA: McGraw-Hill, Inc.Lacroix, M. (1993). Study <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>heat</strong> transfer behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> a latent <strong>heat</strong> thermalenergy storage unit with a <strong>finned</strong> <strong>tube</strong>. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Heat MassTransfer, 36, 2083-2092.Padmanabhan, P. V., & Khrishna, M. V. (1989). Outward <str<strong>on</strong>g>phase</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> in acylindirical annulus with axial fins <strong>on</strong> the inner <strong>tube</strong>. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g>Heat Mass Transfer, 29, 1855-1868.


54Sasaguchi, K., Sakamoto, Y. (1989). Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> natural c<strong>on</strong>vecti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>melting</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a<str<strong>on</strong>g>phase</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g> around a <strong>finned</strong> <strong>tube</strong>. Transacti<strong>on</strong>s JSME, 55 (513), 1418-1425.Sparrow, E. M., Lars<strong>on</strong>, E. D., & Ramsey, J. M. (1981). Freezing <strong>on</strong> a <strong>finned</strong> <strong>tube</strong>for either c<strong>on</strong>ducti<strong>on</strong>-c<strong>on</strong>trolled or natural c<strong>on</strong>vecti<strong>on</strong>-c<strong>on</strong>trolled <strong>heat</strong> transfer.Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Heat Mass Transfer, 24, 273-284.Zhang, Y., & Faghri, A. (1996a). Analytical soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> thermal energy storagesystem with c<strong>on</strong>jugate laminar forced c<strong>on</strong>vecti<strong>on</strong>. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> HeatMass Transfer, 39, 717-724.Zhang, Y., & Faghri, A. (1996b). Heat transfer enhancement in latent <strong>heat</strong> thermalenergy storage system by using the internally <strong>finned</strong> <strong>tube</strong>. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g>Heat Mass Transfer, 39, 3165-3173.


55APPENDICESThe amount <str<strong>on</strong>g>of</str<strong>on</strong>g> stored or discharged energy values which were computed forvarious moments <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiments were shown in the tables below:Table A.1 Stored cold energy values during solidificati<strong>on</strong> for different types <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>tube</strong>sSTORED COLD ENERGY DURING SOLIDIFICATION (kJ)TimeThe Tube with 7 fins (small diameter)Re=1000 Re=1500 Re=20001 h 465.1233 487.7256 507.75083 h 1042.0899 1085.5919 1147.75075 h 1489.2954 1569.2243 1660.68697 h 1899.6531 1997.3825 2107.6186TimeThe Tube with 7 fins (big diameter)Re=1000 Re=1500 Re=20001 h 473.7579 571.0884 569.08273 h 1067.6749 1259.7312 1246.40085 h 1577.8662 1833.314 1809.27587 h 2021.3978 2310.6098 2280.5383TimeThe Tube with 11 finsRe=1000 Re=1500 Re=20001 h 551.2066 613.6911 628.55963 h 1211.3304 1324.6057 1359.6725 h 1753.1456 1897.1291 1953.87 h 2211.2828 2384.5758 2449.4652TimeThe Tube with 15 finsRe=1000 Re=1500 Re=20001 h 556.2254 548.3738 -3 h 1218.6818 1214.1003 -5 h 1752.1832 1751.9004 -7 h 2208.6264 2226.9176 -TimeFinless TubeRe=1000 Re=1500 Re=20001 h 477.1801 520.6518 539.17093 h 1069.4347 1153.6989 1201.47065 h 1553.3472 1689.7218 1735.95897 h 1973.8844 2138.2263 2199.004


56Table A.2 Discharged cold energy values during <str<strong>on</strong>g>melting</str<strong>on</strong>g> for different types <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>tube</strong>sDISCHARGED COLD ENERGY DURING MELTING (kJ)The Tube with 7 fins (small diameter)Time Re=1000 Time Re=1500 Time Re=20001 h 448.3041 1 h 493.7468 1 h 459.0172 h 1015.9644 2 h 1007.0009 2 h 931.64973 h 1402.8351 3 h 1416.0396 3 h 1365.82753 h10 min 1493.2719 3 h 25 min 1606.5708 3 h 45 min 1716.06The Tube with 7 fins (big diameter)Time Re=1000 Time Re=1500 Time Re=20001 h 504.3091 1 h 576.2106 1 h 585.4692 h 869.5788 2 h 907.9708 2 h 946.46393 h 1146.7751 3 h 1306.6439 3 h 1302.77383 h50 min 1441.2511 3 h 35 min 1576.2119 3 h 45 min 1638.1376The Tube with 11 finsTime Re=1000 Time Re=1500 Time Re=20001 h 555.2559 1 h 632.7589 1 h 633.37632 h 894.0558 2 h 1041.1548 2 h 1337.9353 h 1220.3964 3 h 1550.1354 3 h 1966.88213 h55 min 1576.7178 3 h 55 min 2065.9477 3 h 20 min 2039.5786The Tube with 15 finsTime Re=1000 Time Re=1500 Time Re=20001 h 636.2979 1 h - 1 h -2 h 1020.5167 2 h - 2 h -2 h55 min 1381.8937 3 h - 3 h -Finless TubeTime Re=1000 Time Re=1500 Time Re=20001 h 375.8135 1 h 400.5101 1 h 469.51892 h 846.2338 2 h 1022.5844 2 h 1150.41383 h 1125.3109 3 h 1503.8376 3 h 1612.10374 h 1478.1333 3 h 25 min 1638.3692 3 h 20 min 1714.9487

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!