13.07.2015 Views

Copyright © by SIAM. Unauthorized reproduction of this article is ...

Copyright © by SIAM. Unauthorized reproduction of this article is ...

Copyright © by SIAM. Unauthorized reproduction of this article is ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

HOMOGENEOUS OBSERVER DESIGN 1819then the function Φ i (x) = ∫ x iφ(x0 1 ,...,x i−1 , s, x i+1 ,...,x n ) ds <strong>is</strong> homogeneous inthe 0- (resp., ∞-) limit with associated triple (r 0 ,d 0 + r 0,i , Φ i,0 ) (resp., (r ∞ ,d ∞ +r ∞,i , Φ i,∞ )), with Φ i,0 (x) = ∫ x iφ0 0 (x 1 ,...,x i−1 , s, x i+1 ,...,x n ) ds (resp., Φ i,∞ (x) =∫ xiφ0 ∞ (x 1 ,...,x i−1 , s, x i+1 ,...,x n ) ds).By exploiting the definition <strong>of</strong> homogeneity in the bi-limit, it <strong>is</strong> possible to establ<strong>is</strong>hresults which are straightforward extensions <strong>of</strong> well-known results based on thestandard notion <strong>of</strong> homogeneity. These results are given as corollaries <strong>of</strong> the followingkey technical lemma, the pro<strong>of</strong> <strong>of</strong> which <strong>is</strong> given in Appendix C.Lemma 2.13 (key technical lemma). Let η : R n → R and γ : R n → R + be tw<strong>of</strong>unctions homogeneous in the bi-limit, with weights r 0 and r ∞ , degrees d 0 and d ∞ ,and approximating functions, η 0 , η ∞ and γ 0 , γ ∞ such that the following hold:{ x ∈ R n \{0} : γ(x) =0} ⊆{ x ∈ R n : η(x) < 0 } ,{ x ∈ R n \{0} : γ 0 (x) =0} ⊆{ x ∈ R n : η 0 (x) < 0 } ,{ x ∈ R n \{0} : γ ∞ (x) =0} ⊆{ x ∈ R n : η ∞ (x) < 0 } .Then there ex<strong>is</strong>ts a real number c ∗ such that, for all c ≥ c ∗ and for all x in R n \{0},(2.4)η(x) − cγ(x) < 0 , η 0 (x) − cγ 0 (x) < 0 , η ∞ (x) − cγ ∞ (x) < 0 .Example 2.14. To illustrate the importance <strong>of</strong> <strong>th<strong>is</strong></strong> lemma, consider, for (x 1 ,x 2 )in R 2 , the functionsη(x 1 ,x 2 )=x 1 x 2 −|x 1 | r 1 +r 2r 1 , γ(x 1 ,x 2 )=|x 2 | r 1 +r 2r 2 ,with r 1 > 0 and r 2 > 0. They are homogeneous in the standard sense, and thereforein the bi-limit, with the same weight r =(r 1 ,r 2 ) and the same degree d = r 1 + r 2 .Furthermore, the function γ takes positive values, and for all (x 1 ,x 2 ) in {(x 1 ,x 2 ) ∈R 2 \{0} : γ(x 1 ,x 2 )=0} we haveη(x 1 ,x 2 ) = −|x 1 | r 1 +r 2r 1 < 0 .Thus Lemma 2.13 yields the ex<strong>is</strong>tence <strong>of</strong> a positive real number c ∗ such that for allc ≥ c∗, we have(2.5) x 1 x 2 −|x 1 | r 1 +r 2r 1 − c |x 2 | r 1 +r 2r 2 < 0 ∀ (x 1 ,x 2 ) ∈ R 2 \{0} .Th<strong>is</strong> <strong>is</strong> a generalization <strong>of</strong> the procedure known as the completion <strong>of</strong> the squares inwhich, however, the constant c ∗ 1 <strong>is</strong> not specified.Corollary 2.15. Let φ : R n → R and ζ : R n → R + be two homogeneous in thebi-limit functions with the same weights r 0 and r ∞ , degrees d φ,0 , d φ,∞ and d ζ,0 , d ζ,∞ ,and approximating functions η 0 , φ ∞ and ζ 0 , ζ ∞ . If the degrees sat<strong>is</strong>fy d φ,0 ≥ d ζ,0 andd φ,∞ ≤ d ζ,∞ , and the functions ζ, ζ 0 and ζ ∞ are positive definite, then there ex<strong>is</strong>ts apositive real number c sat<strong>is</strong>fyingPro<strong>of</strong>. Consider the two functionsφ(x) ≤ cζ(x) ∀ x ∈ R n .η(x) := φ(x)+ζ(x), γ(x) := ζ(x) .<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!