13.07.2015 Views

Copyright © by SIAM. Unauthorized reproduction of this article is ...

Copyright © by SIAM. Unauthorized reproduction of this article is ...

Copyright © by SIAM. Unauthorized reproduction of this article is ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

HOMOGENEOUS OBSERVER DESIGN 1829bi-limit stabilizing control law for the origin <strong>of</strong> the system (4.1), then there <strong>is</strong> one forthe origin <strong>of</strong> the system with state X i+1 =(X 1,...,X i+1) in R i+1 defined <strong>by</strong>(4.2) Ẋ 1 = X 2,...,Ẋ i+1 = u, i.e., Ẋ i+1 = S i+1 X i+1 + B i+1 u.1Let d 0 and d ∞ be in (−1,n−1) and consider the weights and degrees defined in (3.2).Theorem 4.1 (homogeneous in the bi-limit backstepping). Suppose there ex<strong>is</strong>tsa homogeneous in the bi-limit function φ i : R i → R with associated triples (r 0 , d 0 +r 0,i ,φ i,0 ) and (r ∞ , d ∞ + r ∞,i ,φ i,∞ ) such that the following hold:1. There ex<strong>is</strong>ts α i ≥ 1 such that the function ψ i (X i ) = φ i (X i ) αi <strong>is</strong> C 1 andfor each j in {1,...,i} the function ∂ψi <strong>is</strong> homogeneous in the bi-limit with∂X jweights (r 0,1 ,...,r 0,i ), (r ∞,1 ,...,r ∞,i ), degrees α i (r 0,i + d 0 ) − r 0,j , α i (r ∞,i +d ∞ ) − r ∞,j , and approximating functions ∂ψi0, ∂ψi∞.∂X j ∂X j2. The origin <strong>is</strong> a globally asymptotically stable equilibrium <strong>of</strong> the systems(4.3)Ẋ i = S i X i + B i φ i (X i ) , Ẋ i = S i X i + B i φ i,0 (X i ) , Ẋ i = S i X i + B i φ i,∞ (X i ) .Then there ex<strong>is</strong>ts a homogeneous in the bi-limit function φ i+1 : R i+1 → R withassociated triples (r 0 , d 0 + r 0,i+1 ,φ i+1,0 ) and (r ∞ , d ∞ + r ∞,i+1 ,φ i+1,∞ ) such that thesame properties hold, i.e.,1. there ex<strong>is</strong>ts a real number α i+1 > 1 such that the function ψ i+1 (X i+1 ) =φ i+1 (X i+1 ) αi+1 <strong>is</strong> C 1 and for each j in {1,...,i+1} the function ∂ψi+1<strong>is</strong>∂X jhomogeneous in the bi-limit with weights (r 0,1 ,...,r 0,i+1 ), (r ∞,1 ,...,r ∞,i+1 ),degrees α i+1 (r 0,i+1 + d 0 ) − r 0,j , α i+1 (r ∞,i+1 + d ∞ ) − r ∞,j , and approximatingfunctions ∂ψi+1,0∂X j, ∂ψi+1,∞;∂X j2. the origin <strong>is</strong> a globally asymptotically stable equilibrium <strong>of</strong> the systems(4.4)X i+1 = S i+1 X i+1 + B i+1 φ i+1 (X i+1 ) ,X i+1 = S i+1 X i+1 + B i+1 φ i+1,0 (X i+1 ) ,X i+1 = S i+1 X i+1 + B i+1 φ i+1,∞ (X i+1 ) .Pro<strong>of</strong>. We prove <strong>th<strong>is</strong></strong> result in three steps. First, we construct a homogeneous inthe bi-limit Lyapunov function; then we define a control law parametrized <strong>by</strong> a realnumber k. Finally, we show that there ex<strong>is</strong>ts k such that the time derivative, alongthe trajectories <strong>of</strong> systems (4.4), <strong>of</strong> the Lyapunov function and <strong>of</strong> its approximatingfunctions <strong>is</strong> negative definite.Step 1. Construction <strong>of</strong> the Lyapunov function. Let d V0 and d V∞ be positive realnumbers sat<strong>is</strong>fying(4.5) d V0 > maxj∈{1,...,n} {r 0,j}, d V∞ > maxj∈{1,...,n} {r ∞,j} ,and(4.6)d V∞r ∞,i+1≥ d V 0r 0,i+1> 1+α i .With <strong>th<strong>is</strong></strong> selection, Theorem 2.20 gives the ex<strong>is</strong>tence <strong>of</strong> a C 1 , proper, and positivedefinite function V i : R i → R + such that, for each j in {1,...,n}, the function ∂Vi∂X j<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!