13.07.2015 Views

Copyright © by SIAM. Unauthorized reproduction of this article is ...

Copyright © by SIAM. Unauthorized reproduction of this article is ...

Copyright © by SIAM. Unauthorized reproduction of this article is ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>SIAM</strong> J. CONTROL OPTIM.Vol. 47, No. 4, pp. 1814–1850c○ 2008 Society for Industrial and Applied MathematicsHOMOGENEOUS APPROXIMATION, RECURSIVE OBSERVERDESIGN, AND OUTPUT FEEDBACK ∗VINCENT ANDRIEU † , LAURENT PRALY ‡ , AND ALESSANDRO ASTOLFI §Abstract. We introduce two new tools that can be useful in nonlinear observer and outputfeedback design. The first one <strong>is</strong> a simple extension <strong>of</strong> the notion <strong>of</strong> homogeneous approximationto make it valid both at the origin and at infinity (homogeneity in the bi-limit). Exploiting <strong>th<strong>is</strong></strong>extension, we give several results concerning stability and robustness for a homogeneous in thebi-limit vector field. The second tool <strong>is</strong> a new recursive observer design procedure for a chain <strong>of</strong>integrator. Combining these two tools, we propose a new global asymptotic stabilization result <strong>by</strong>output feedback for feedback and feedforward systems.Key words. homogeneous approximation, output feedback and observerAMS subject classifications. 93B51, 93B52, 93D05, 93D15, 34D20DOI. 10.1137/0606758611. Introduction. The problems <strong>of</strong> designing globally convergent observers andglobally asymptotically stabilizing output feedback control laws for nonlinear systemshave been addressed <strong>by</strong> many authors following different routes. Many <strong>of</strong> these approachesexploit domination ideas and robustness <strong>of</strong> stability and/or convergence. Inview <strong>of</strong> possibly clarifying and developing further these techniques we introduce twonew tools. The first one <strong>is</strong> a simple extension <strong>of</strong> the technique <strong>of</strong> homogeneous approximationto make it valid both at the origin and at infinity. The second tool <strong>is</strong> anew recursive observer design procedure for a chain <strong>of</strong> integrator. Combining thesetwo tools, we propose a new global asymptotic stabilization result <strong>by</strong> output feedbackfor feedback and feedforward systems.To place our contribution in perspective, we consider the following system, forwhich we want to design a global asymptotic stabilizing output feedback:(1.1) ẋ 1 = x 2 , ẋ 2 = u + δ 2 (x 1 ,x 2 ), y = x 1 ,where (see notation (1.4))(1.2) δ 2 (x 1 ,x 2 ) = c 0 x q 2 + c ∞ x p 2 , (c 0,c ∞ ) ∈ R 2 , p > q > 0 .In the domination’s approach, the nonlinear function δ 2 <strong>is</strong> not treated per se inthe design but considered as a perturbation. In <strong>th<strong>is</strong></strong> framework the output feedbackcontroller <strong>is</strong> designed on the linear system(1.3) ẋ 1 = x 2 , ẋ 2 = u, y = x 1 ,∗ Received <strong>by</strong> the editors November 24, 2006; accepted for publication (in rev<strong>is</strong>ed form) February17, 2008; publ<strong>is</strong>hed electronically June 25, 2008. The work <strong>of</strong> the first and third authors was partlysupported <strong>by</strong> the Leverhulme Trust.http://www.siam.org/journals/sicon/47-4/67586.html† LAAS-CNRS, University <strong>of</strong> Toulouse, 31077 Toulouse, France (vincent.andrieu@gmail.com).Th<strong>is</strong> author’s work was done while at Electrical and Electronic Engineering Department, ImperialCollege, London.‡ Centre d’Automatique et Systèmes, École des Mines de Par<strong>is</strong>, 35 Rue Saint Honoré, 77305Fontainebleau, France (Laurent.Praly@ensmp.fr).§ Electrical and Electronic Engineering Department, Imperial College London, London, SW7 2AZ,UK (a.astolfi@ic.ac.uk), and Dipartimento di Informatica S<strong>is</strong>temi e Produzione, University <strong>of</strong> RomeTor Vergata, Via del Politecnico 1, 00133 Rome, Italy.1814<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


HOMOGENEOUS OBSERVER DESIGN 1815and will be suitable for the nonlinear system (1.1), provided the global asymptoticstability obtained for the origin <strong>of</strong> the closed-loop system <strong>is</strong> robust to the nonlineard<strong>is</strong>turbance δ 2 . For instance, the design given in [13, 27] provides a linear outputfeedback controller which <strong>is</strong> suitable for the nonlinear system (1.1) when q = 1 andc ∞ = 0. Th<strong>is</strong> result has been extended recently in [26] employing a homogeneousoutput feedback controller which allows us to deal with p ≥ 1 and c 0 = 0.Homogeneity in the bi-limit and the novel recursive observer design proposed in<strong>th<strong>is</strong></strong> paper allow us to deal with the case in which c 0 ≠ 0 and c ∞ ≠ 0. In <strong>th<strong>is</strong></strong> case,the function δ 2 <strong>is</strong> such that1. when |x 2 | <strong>is</strong> small and q = 1, δ 2 (x 2 ) can be approximated <strong>by</strong> c 0 x 2 and thenonlinearity can be approximated <strong>by</strong> a linear function;2. when |x 2 | <strong>is</strong> large, δ 2 (x 2 ) can be approximated <strong>by</strong> c ∞ x p 2 , and hence we havea polynomial growth which can be handled <strong>by</strong> a weighted homogeneous controlleras in [26].To deal with both linear and polynomial terms we introduce a generalization <strong>of</strong>weighted homogeneity which highlights the fact that a function becomes homogeneousas the state tends to the origin or to infinity but with different weights anddegrees.The paper <strong>is</strong> organized as follows. Section 2 <strong>is</strong> devoted to general propertiesrelated to homogeneity. After giving the definition <strong>of</strong> homogeneous approximationwe introduce homogeneous in the bi-limit functions and vector fields (section 2.1)and l<strong>is</strong>t some <strong>of</strong> their properties (section 2.2). Various results concerning stabilityand robustness for homogeneous in the bi-limit vector fields are given in section 2.3.In section 3 we introduce a novel recursive observer design method for a chain <strong>of</strong>integrator. Section 4 <strong>is</strong> devoted to the homogeneous in the bi-limit state feedback.Finally, in section 5, using the previous tools, we establ<strong>is</strong>h new results on stabilization<strong>by</strong> output feedback.Notation.• R + denotes the set [0, +∞).• For any nonnegative real number r the function w ↦→ w r <strong>is</strong> defined as(1.4) w r = sign(w) |w| r ∀ w ∈ R .According to <strong>th<strong>is</strong></strong> definition,(1.5)dw rdw = r|w|r−1 ,w 2 = w|w| , (w 1 >w 2 and r>0) ⇒ w r 1 >w r 2 .• The function H : R 2 + → R + <strong>is</strong> defined as(1.6) H(a, b) = a [1 + b] .1+a• Given r =(r 1 ,...,r n ) T in R n + and λ in R + , λ r ⋄ x =(λ r1 x 1 , . . . , λ rn x n ) T <strong>is</strong>the dilation <strong>of</strong> a vector x in R n with weight r. Note thatλ r 1 ⋄ (λ r 2 ⋄ x) = (λ 1 λ 2 ) r ⋄ x.• Given r =(r 1 ,...,r n ) T in (R + \{0}) n , |x| r = |x 1 | 1r 1 + ··· + |x n | 1rnhomogeneous norm with weight r and degree 1. Note that( ) r |λ r ⋄ x| r = λ |x| r ,1∣ ⋄ x|x| r∣ = 1 .r<strong>is</strong> the<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


1816 V. ANDRIEU, L. PRALY, AND A. ASTOLFI• Given r in (R + \{0}) n , S r = {x ∈ R n ||x| r = 1} <strong>is</strong> the unity homogeneoussphere. Note that each x in R n can be decomposed in polar coordinates; i.e.,there ex<strong>is</strong>t λ in R + and θ in S r sat<strong>is</strong>fying(1.7) x = λ r ⋄ θ with{ λ = |x|r(,) r1θ =|x| r⋄ x.2. Homogeneous approximation.2.1. Definitions. The use <strong>of</strong> homogeneous approximations has a long h<strong>is</strong>toryin the study <strong>of</strong> stability <strong>of</strong> an equilibrium. It can be traced back to the Lyapunovfirst order approximation theorem and has been pursued <strong>by</strong> many authors; see, forexample, Massera [16], Hahn [8], Hermes [9], and Rosier [29]. Similarly, <strong>th<strong>is</strong></strong> techniquehas been used to investigate the behavior <strong>of</strong> the solutions <strong>of</strong> dynamical systems atinfinity; see, for instance, Lefschetz in [14, Chapter IX.5] and Orsi, Praly, and Mareelsin [20]. In <strong>th<strong>is</strong></strong> section, we recall the definitions <strong>of</strong> homogeneous approximation at theorigin and at infinity and restate and/or complete some related results.Definition 2.1 (homogeneity in the 0-limit).• A function φ : R n → R <strong>is</strong> said to be homogeneous in the 0-limit with associatedtriple (r 0 ,d 0 ,φ 0 ), where r 0 in (R + \{0}) n <strong>is</strong> the weight, d 0 in R + thedegree, and φ 0 : R n → R the approximating function, if φ <strong>is</strong> continuous, φ 0<strong>is</strong> continuous and not identically zero, and, for each compact set C in R n \{0}and each ε> 0, there ex<strong>is</strong>ts λ 0 such thatmaxφ(λ r0 ⋄ x)x ∈ C∣ λ d0− φ 0 (x)∣ ≤ ε ∀ λ ∈ (0,λ 0] .• A vector field f = ∑ ni=1 f i ∂∂x i<strong>is</strong> said to be homogeneous in the 0-limit withassociated triple (r 0 , d 0 ,f 0 ), where r 0 in (R + \{0}) n <strong>is</strong> the weight, d 0 in R<strong>is</strong> the degree, and f 0 = ∑ ni=1 f 0,i ∂∂x i<strong>is</strong> the approximating vector field, if, foreach i in {1,...,n}, d 0 + r 0,i ≥ 0 and the function f i <strong>is</strong> homogeneous in the0-limit with associated triple (r 0 , d 0 + r 0,i ,f 0,i ).Th<strong>is</strong> notion <strong>of</strong> local approximation <strong>of</strong> a function or <strong>of</strong> a vector field can be foundin [9, 29, 2, 10].Example 2.2. The function δ 2 : R → R introduced in the illustrative system (1.1)<strong>is</strong> homogeneous in the 0-limit with associated triple (r 0 ,d 0 ,δ 2,0 ) = (1, q, c 0 x q 2 ). Furthermore,if q


HOMOGENEOUS OBSERVER DESIGN 1817R + <strong>is</strong> the degree, and φ ∞ : R n → R <strong>is</strong> the approximating function, if φ <strong>is</strong>continuous, φ ∞ <strong>is</strong> continuous and not identically zero, and, for each compactset C in R n \{0} and each ε> 0, there ex<strong>is</strong>ts λ ∞ such thatmaxφ(λ r∞ ⋄ x)x ∈ C∣ λ d∞− φ ∞ (x)∣ ≤ ε ∀ λ ≥ λ ∞ .• A vector field f = ∑ ni=1 f i ∂∂x i<strong>is</strong> said to be homogeneous in the ∞-limit withassociated triple (r ∞ , d ∞ ,f ∞ ), where r ∞ in (R + \{0}) n <strong>is</strong> the weight, d ∞ inR <strong>is</strong> the degree, and f ∞ = ∑ ni=1 f ∞,i ∂∂x i<strong>is</strong> the approximating vector field, if,for each i in {1,...,n}, d ∞ + r ∞,i ≥ 0 and the function f i <strong>is</strong> homogeneousin the ∞-limit with associated triple (r ∞ , d ∞ + r ∞,i ,f ∞,i ).Example 2.4. The function δ 2 : R → R given in the illustrative system (1.1) <strong>is</strong>homogeneous in the ∞-limit with associated triple (r ∞ ,d ∞ ,δ 2,∞ ) = (1, p, c ∞ x p 2 ).Furthermore, when p d 0r 0,i∀ i ∈ {1,...,n} .Example 2.9. We recall (1.6) and consider two homogeneous and positive definitefunctions φ 0 : R n → R + and φ ∞ : R n → R + with weights (r 0 ,r ∞ ) in (R + \{0}) 2n anddegrees (d 0 ,d ∞ ) in (R + \{0}) 2 . The function x ↦→ H(φ 0 (x),φ ∞ (x)) <strong>is</strong> positive definiteand homogeneous in the bi-limit with associated triples (r 0 ,d 0 ,φ 0 ) and (r ∞ ,d ∞ ,φ ∞ ).Th<strong>is</strong> way <strong>of</strong> constructing a homogeneous in the bi-limit function from two positivedefinite homogenous functions <strong>is</strong> extensively used in <strong>th<strong>is</strong></strong> paper.2.2. Properties <strong>of</strong> homogeneous approximations. To begin, we note thatthe weight and degree <strong>of</strong> a homogeneous in the 0- (resp., ∞-) limit function are1 Th<strong>is</strong> <strong>is</strong> proved <strong>by</strong> noting that, for all x in R n and all µ in R + \{0},φ 0 (µ r 0 ⋄ x)µ d 0= 1µ d lim φ (λ r 0 ⋄ (µ r 0 ⋄ x)) φ ((λµ) r 0 ⋄ x)0 λ→0 λ d = lim0λ→0 (λµ) d = φ 0 (x) ,0and similarly for the homogeneous in the ∞-limit function.<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


1818 V. ANDRIEU, L. PRALY, AND A. ASTOLFInot uniquely defined. Indeed, if φ <strong>is</strong> homogeneous in the 0- (resp., ∞-) limit withassociated triple (r 0 ,d 0 ,φ 0 ) (resp., (r ∞ ,d ∞ ,φ ∞ )), then it <strong>is</strong> also homogeneous in the0- (resp., ∞-) limit with associated triple (kr 0 , k d 0 ,φ 0 ) (resp., (kr ∞ , k d ∞ ,φ ∞ )) forall k>0. (Simply change λ into λ k .)It <strong>is</strong> straightforward to show that if φ and ζ are two functions homogeneous inthe 0- (resp., ∞-) limit, with weights r φ,0 and r ζ,0 (resp., r φ,∞ and r ζ,∞ ), degrees d φ,0and d ζ,0 (resp., d φ,∞ and d ζ,∞ ), and approximating functions φ 0 and ζ 0 (resp., φ ∞and ζ ∞ ), then the following hold:P1: If there ex<strong>is</strong>ts k in R + such that kr φ,0 = r ζ,0 (resp., kr φ,∞ = r ζ,∞ ), thenthe function x ↦→ φ(x) ζ(x) <strong>is</strong> homogeneous in the 0- (resp., ∞-) limit withweight r ζ,0 , degree kd φ,0 +d ζ,0 (resp., r ζ,∞ , kd φ,∞ +d ζ,∞ ) and approximatingfunction x ↦→ φ 0 (x) ζ 0 (x) (resp., x ↦→ φ ∞ (x) ζ ∞ (x)).dP2: If, for each j in {1,...,n},φ,0r φ,0,j< d ζ,0dr ζ,0,j(resp.,φ,∞r φ,∞,j> d ζ,∞r ζ,∞,j), thenthe function x ↦→ φ(x) +ζ(x) <strong>is</strong> homogeneous in the 0- (resp., ∞-) limitwith degree d φ,0 and weight r φ,0 (resp., d φ,∞ and r φ,∞ ) and approximatingfunction x ↦→ φ 0 (x) (resp., x ↦→ φ ∞ (x)). In <strong>th<strong>is</strong></strong> case we say that the functionφ dominates the function ζ in the 0-limit (resp., in the ∞-limit).P3: If the function φ 0 + ζ 0 (resp., φ ∞ + ζ ∞ ) <strong>is</strong> not identically zero and, for eachd φ,0r φ,0,j= d ζ,0r ζ,0,jdj in {1,...,n},(resp.,φ,∞r φ,∞,j= d ζ,∞r ζ,∞,j), then the functionx ↦→ φ(x) +ζ(x) <strong>is</strong> homogeneous in the 0- (resp., ∞-) limit with degreed φ,0 and weight r φ,0 (resp., d φ,∞ and r φ,∞ ) and approximating function x ↦→φ 0 (x) +ζ 0 (x) (resp., x ↦→ φ ∞ (x)+ζ ∞ (x)).Some properties <strong>of</strong> the composition or inverse <strong>of</strong> functions are given in the followingtwo propositions, the pro<strong>of</strong>s <strong>of</strong> which are given in Appendices A and B.Proposition 2.10 (composition function). If φ : R n → R and ζ : R → R arehomogeneous in the 0- (resp., ∞-) limit functions, with weights r φ,0 and r ζ,0 (resp.,r φ,∞ and r ζ,∞ ), degrees d φ,0 > 0 and d ζ,0 ≥ 0 (resp., d φ,∞ > 0 and d ζ,∞ ≥ 0),and approximating functions φ 0 and ζ 0 (resp., φ ∞ and ζ ∞ ), then ζ ◦ φ <strong>is</strong> homogeneousin the 0- (resp., ∞-) limit with weight r φ,0 (resp., r φ,∞ ), degree d ζ,0 d φ,0r ζ,0(resp.,d ζ,∞ d φ,∞r ζ,∞), and approximating function ζ 0 ◦ φ 0 (resp., ζ ∞ ◦ φ ∞ ).Proposition 2.11 (inverse function). Let φ : R → R be a bijective homogeneousin the 0- (resp., ∞-) limit function with associated triple ( )1,d 0 ,ϕ 0 x d0 with ϕ0 ≠0and d 0 > 0 (resp., ( )1,d ∞ ,ϕ ∞ x d∞ with ϕ∞ ≠0and d ∞ > 0). Then the inversefunction φ −1 : R → R <strong>is</strong> a homogeneous in the 0- (resp., ∞-) limit function withassociated triple (1, 1 d 0, ( x ϕ 0) 1d 01) (resp., (1,d ∞, ( xϕ ∞) 1d∞ )).Despite the ex<strong>is</strong>tence <strong>of</strong> well-known results concerning the derivative <strong>of</strong> a homogeneousfunction, it <strong>is</strong> not possible to say anything, in general, when dealing withhomogeneity in the limit. For example, the functionφ(x) =x 3 + x 2 sin(x 2 )+x 3 sin(1/x)+x 2 , x ∈ R ,<strong>is</strong> homogeneous in the bi-limit with associated triples(1, 2,x2 ) (, 1, 3,x3 ) .However, its derivative <strong>is</strong> homogeneous in neither the 0-limit nor the ∞-limit. Neverthelessthe following result holds, the pro<strong>of</strong> <strong>of</strong> which <strong>is</strong> elementary.Proposition 2.12 (integral function). If the function φ : R n → R <strong>is</strong> homogeneousin the 0- (resp., ∞-) limit with associated triple (r 0 ,d 0 ,φ 0 ) (resp., (r ∞ ,d ∞ ,φ ∞ )),<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


HOMOGENEOUS OBSERVER DESIGN 1819then the function Φ i (x) = ∫ x iφ(x0 1 ,...,x i−1 , s, x i+1 ,...,x n ) ds <strong>is</strong> homogeneous inthe 0- (resp., ∞-) limit with associated triple (r 0 ,d 0 + r 0,i , Φ i,0 ) (resp., (r ∞ ,d ∞ +r ∞,i , Φ i,∞ )), with Φ i,0 (x) = ∫ x iφ0 0 (x 1 ,...,x i−1 , s, x i+1 ,...,x n ) ds (resp., Φ i,∞ (x) =∫ xiφ0 ∞ (x 1 ,...,x i−1 , s, x i+1 ,...,x n ) ds).By exploiting the definition <strong>of</strong> homogeneity in the bi-limit, it <strong>is</strong> possible to establ<strong>is</strong>hresults which are straightforward extensions <strong>of</strong> well-known results based on thestandard notion <strong>of</strong> homogeneity. These results are given as corollaries <strong>of</strong> the followingkey technical lemma, the pro<strong>of</strong> <strong>of</strong> which <strong>is</strong> given in Appendix C.Lemma 2.13 (key technical lemma). Let η : R n → R and γ : R n → R + be tw<strong>of</strong>unctions homogeneous in the bi-limit, with weights r 0 and r ∞ , degrees d 0 and d ∞ ,and approximating functions, η 0 , η ∞ and γ 0 , γ ∞ such that the following hold:{ x ∈ R n \{0} : γ(x) =0} ⊆{ x ∈ R n : η(x) < 0 } ,{ x ∈ R n \{0} : γ 0 (x) =0} ⊆{ x ∈ R n : η 0 (x) < 0 } ,{ x ∈ R n \{0} : γ ∞ (x) =0} ⊆{ x ∈ R n : η ∞ (x) < 0 } .Then there ex<strong>is</strong>ts a real number c ∗ such that, for all c ≥ c ∗ and for all x in R n \{0},(2.4)η(x) − cγ(x) < 0 , η 0 (x) − cγ 0 (x) < 0 , η ∞ (x) − cγ ∞ (x) < 0 .Example 2.14. To illustrate the importance <strong>of</strong> <strong>th<strong>is</strong></strong> lemma, consider, for (x 1 ,x 2 )in R 2 , the functionsη(x 1 ,x 2 )=x 1 x 2 −|x 1 | r 1 +r 2r 1 , γ(x 1 ,x 2 )=|x 2 | r 1 +r 2r 2 ,with r 1 > 0 and r 2 > 0. They are homogeneous in the standard sense, and thereforein the bi-limit, with the same weight r =(r 1 ,r 2 ) and the same degree d = r 1 + r 2 .Furthermore, the function γ takes positive values, and for all (x 1 ,x 2 ) in {(x 1 ,x 2 ) ∈R 2 \{0} : γ(x 1 ,x 2 )=0} we haveη(x 1 ,x 2 ) = −|x 1 | r 1 +r 2r 1 < 0 .Thus Lemma 2.13 yields the ex<strong>is</strong>tence <strong>of</strong> a positive real number c ∗ such that for allc ≥ c∗, we have(2.5) x 1 x 2 −|x 1 | r 1 +r 2r 1 − c |x 2 | r 1 +r 2r 2 < 0 ∀ (x 1 ,x 2 ) ∈ R 2 \{0} .Th<strong>is</strong> <strong>is</strong> a generalization <strong>of</strong> the procedure known as the completion <strong>of</strong> the squares inwhich, however, the constant c ∗ 1 <strong>is</strong> not specified.Corollary 2.15. Let φ : R n → R and ζ : R n → R + be two homogeneous in thebi-limit functions with the same weights r 0 and r ∞ , degrees d φ,0 , d φ,∞ and d ζ,0 , d ζ,∞ ,and approximating functions η 0 , φ ∞ and ζ 0 , ζ ∞ . If the degrees sat<strong>is</strong>fy d φ,0 ≥ d ζ,0 andd φ,∞ ≤ d ζ,∞ , and the functions ζ, ζ 0 and ζ ∞ are positive definite, then there ex<strong>is</strong>ts apositive real number c sat<strong>is</strong>fyingPro<strong>of</strong>. Consider the two functionsφ(x) ≤ cζ(x) ∀ x ∈ R n .η(x) := φ(x)+ζ(x), γ(x) := ζ(x) .<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


1820 V. ANDRIEU, L. PRALY, AND A. ASTOLFIBy property P2 (or P3) 2 in section 2.2, they are homogeneous in the bi-limit withdegrees d ζ,0 and d ζ,∞ . The function γ and its homogeneous approximations beingpositive definite, all assumptions <strong>of</strong> Lemma 2.13 are sat<strong>is</strong>fied. Therefore there ex<strong>is</strong>tsa positive real number c such thatcγ(x) > η(x) > φ(x) ∀ x ∈ R n \{0} .Finally, <strong>by</strong> continuity <strong>of</strong> the functions φ and ζ at zero, we can obtain the claim.2.3. Stability and homogeneous approximation. A very basic property <strong>of</strong>asymptotic stability <strong>is</strong> its robustness. Th<strong>is</strong> fact was already known to Lyapunov, whoproposed h<strong>is</strong> second method, in which (local) asymptotic stability <strong>of</strong> an equilibrium <strong>is</strong>establ<strong>is</strong>hed <strong>by</strong> looking at the first order approximation <strong>of</strong> the system. The case <strong>of</strong> localhomogeneous approximations <strong>of</strong> higher degree has been investigated <strong>by</strong> Massera [16],Hermes [9], Rosier [29], and Kawski [12].Proposition 2.16 (see [29]). Consider a homogeneous in the 0-limit vector fieldf : R n → R n with associated triple (r 0 , d 0 ,f 0 ). If the origin <strong>of</strong> the systemẋ = f 0 (x)<strong>is</strong> locally asymptotically stable, then the origin <strong>of</strong>ẋ = f(x)<strong>is</strong> locally asymptotically stable.Consequently, a natural strategy to ensure local asymptotic stability <strong>of</strong> an equilibrium<strong>of</strong> a system <strong>is</strong> to design a stabilizing homogeneous control law for the homogeneousapproximation in the 0-limit (see [9, 12, 5], for instance).Example 2.17. Consider the system (1.1), with q = 1 and p>q, and the linearcontrol lawu = −(c 0 + 1) x 2 − x 1 .The closed-loop vector field <strong>is</strong> homogeneous in the 0-limit with degree d 0 = 0,weight (1, 1) (i.e., we are in the linear case), and associated vector field f 0 (x 1 ,x 2 )=(x 2 , −x 1 − x 2 ) T . Selecting the Lyapunov function <strong>of</strong> degree 2,yieldsV 0 (x 1 ,x 2 ) = 1 2 |x 1| 2 + 1 2 |x 2 + x 1 | 2 ,∂V 0∂x (x) f 0(x) = −|x 1 | 2 −|x 2 + x 1 | 2 .It follows, from Lyapunov’s second method, that the control law locally asymptoticallystabilizes the equilibrium <strong>of</strong> the system. Furthermore, local asymptotic stability <strong>is</strong>preserved in the presence <strong>of</strong> any perturbation which does not change the approximatinghomogeneous function, i.e., in the presence <strong>of</strong> perturbations which are dominated<strong>by</strong> the linear part (see P2 in section 2.2).2 If φ 0 (x) +ζ 0 (x) = 0 (resp., φ ∞(x) +ζ ∞(x) = 0), the pro<strong>of</strong> can be completed <strong>by</strong> replacing ζwith 2ζ.<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


HOMOGENEOUS OBSERVER DESIGN 1821In the context <strong>of</strong> homogeneity in the ∞-limit, we have the following result.Proposition 2.18. Consider a homogeneous in the ∞-limit vector field f :R n → R n with associated triple (r ∞ , d ∞ ,f ∞ ). If the origin <strong>of</strong> the systemẋ = f ∞ (x)<strong>is</strong> globally asymptotically stable, then there ex<strong>is</strong>ts an invariant compact subset <strong>of</strong> R n ,denoted C ∞ , which <strong>is</strong> globally asymptotically stable 3 for the systemẋ = f(x) .The pro<strong>of</strong> <strong>of</strong> the proposition <strong>is</strong> given in Appendix D.As in the case <strong>of</strong> homogeneity in the 0-limit, <strong>th<strong>is</strong></strong> property can be used to designa feedback, ensuring boundedness <strong>of</strong> solutions.Example 2.19. Consider the system (1.1) with 0 < q < p < 2 and the controllaw(2.6) u = − 1(2 − p x p−12−p1 x 2 − x p2−p1 − c ∞ x p 2 −x 2 + x 12−p1) p.Th<strong>is</strong> control law <strong>is</strong> such that the closed-loop vector field <strong>is</strong> homogeneous in the ∞-limitwith degree d ∞ = p − 1, weight (2 − p, 1), and associated vector field f ∞ (x 1 ,x 2 )=(x 2 , − 12−p x p−12−p1 x 2 − x p2−p1 −(x 2 + x 12−p1 ) p ) T . For the homogeneous Lyapunov function<strong>of</strong> degree 2,V ∞ (x 1 ,x 2 ) = 2 − p2 1|x 1 |2−p + 22 ∣ x 2 + x 12−p1 ∣2,we get∂V ∣ ∣∣∣ ∞∂x (x) f ∞(x) = −|x 1 | p+12−p − x 2 + x 112−p∣p+1.It follows that the control law (2.6) guarantees boundedness <strong>of</strong> the solutions <strong>of</strong> theclosed-loop system. Furthermore, boundedness <strong>of</strong> solutions <strong>is</strong> preserved in the presence<strong>of</strong> any perturbation which does not change the approximating homogeneousfunction in the ∞-limit, i.e., in the presence <strong>of</strong> perturbations which are negligiblewith respect to the dominant homogeneous part (see P2 in section 2.2).The key step in the pro<strong>of</strong> <strong>of</strong> Propositions 2.16 and 2.18 <strong>is</strong> the converse Lyapunovtheorem given <strong>by</strong> Rosier in [29]. Th<strong>is</strong> result can also be extended to the case <strong>of</strong>homogeneity in the bi-limit.Theorem 2.20 (homogeneous in the bi-limit Lyapunov functions). Considera homogeneous in the bi-limit vector field f : R n → R n , with associated triples(r ∞ , d ∞ ,f ∞ ) and (r 0 , d 0 ,f 0 ) such that the origins <strong>of</strong> the systems(2.7) ẋ = f(x), ẋ = f ∞ (x), ẋ = f 0 (x)are globally asymptotically stable equilibria. Let d V∞ and d V0 be real numbers suchthat d V∞ > max 1≤i≤n r ∞,i and d V0 > max 1≤i≤n r 0,i . Then there ex<strong>is</strong>ts a C 1 , positivedefinite, and proper function V : R n → R + such that, for each i in {1,...,n},3 See [34] for the definition <strong>of</strong> global asymptotical stability for invariant compact sets.<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


1822 V. ANDRIEU, L. PRALY, AND A. ASTOLFI∂Vthe function x ↦→∂x i<strong>is</strong> homogeneous in the bi-limit with associated triples (r 0 ,d V0 − r 0,i , ∂V0∂x i) and (r ∞ ,d V∞ − r ∞,i , ∂V∞∂x i), and the functions x ↦→ ∂V∂x(x) f(x), x ↦→∂V 0∂x (x) f 0(x), and x ↦→ ∂V∞∂x (x) f ∞(x) are negative definite.The pro<strong>of</strong> <strong>is</strong> given in Appendix E. A direct consequence <strong>of</strong> <strong>th<strong>is</strong></strong> result <strong>is</strong> an inputto-statestability (ISS) property with respect to d<strong>is</strong>turbances (see [31]). To illustrate<strong>th<strong>is</strong></strong> property, consider the system with exogenous d<strong>is</strong>turbance δ =(δ 1 ,...,δ m ) inR m ,(2.8) ẋ = f(x, δ) ,with f : R n ×R m a continuous vector field homogeneous in the bi-limit with associatedtriples (d 0 , (r 0 , r 0 ),f 0 ) and (d ∞ , (r ∞ , r ∞ ),f ∞ ), where r 0 and r ∞ in (R + \{0}) m arethe weights associated with the d<strong>is</strong>turbance δ.Corollary 2.21 (ISS property). If the origins <strong>of</strong> the systemsẋ = f(x, 0), ẋ = f 0 (x, 0), ẋ = f ∞ (x, 0)are globally asymptotically stable equilibria, then under the hypotheses <strong>of</strong> Theorem2.20 the function V given <strong>by</strong> Theorem 2.20 sat<strong>is</strong>fies, 4 for all δ =(δ 1 ,...,δ m ) in R mand x in R n ,(d∂VV0 +d 0d∂x (x) f(x, δ) ≤ −c V∞)+d∞dV H V (x) V0d, V(x) V∞∑ m (d V0 +d 0d V∞)+d∞r(2.9) + c δ H |δ j | 0,j r, |δ j | ∞,jwhere c V and c δ are positive real numbers.In other words, system (2.8) with δ as input sat<strong>is</strong>fies an ISS property. The pro<strong>of</strong><strong>of</strong> <strong>th<strong>is</strong></strong> corollary <strong>is</strong> given in Appendix F.Finally, we have also the following small-gain result for homogeneous in the bilimitvector fields.Corollary 2.22 (small-gain). Under the hypotheses <strong>of</strong> Corollary 2.21, thereex<strong>is</strong>ts a real number c G > 0 such that, for each class K function γ z and KL functionβ δ , there ex<strong>is</strong>ts a class KL function β x such that, for each function t ∈ [0,T) ↦→(x(t),δ(t),z(t)), T ≤ +∞, with xC 1 and δ and z continuous, which sat<strong>is</strong>fy (2.8) on[0,T) and, for all 0 ≤ s ≤ t ≤ T ,(2.10)(2.11)we have( )|z(t)| ≤ max{β δ |z(s)|,t− s , sups≤κ≤tj=1}γ z (|x(κ)|)( ) { (|δ i (t)| ≤ max{β δ |z(s)|,t− s ,c G sup H |x(κ)|r 0,i)} }r 0, |x(κ)| r∞,ir ∞,s≤κ≤t(2.12) |x(t)| ≤ β x (|(x(s),z(s))|,t− s), 0 ≤ s ≤ t ≤ T.,,4 The function H <strong>is</strong> defined in (1.6).<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


HOMOGENEOUS OBSERVER DESIGN 1823The pro<strong>of</strong> <strong>is</strong> given in Appendix G.Example 2.23. An interesting case, which can be dealt with <strong>by</strong> Corollary 2.22, <strong>is</strong>when the δ i ’s are outputs <strong>of</strong> auxiliary systems with state z i in R ni , i.e.,(2.13) δ i (t) := δ i (z i (t),x(t)), ż i = g i (z i ,x) .It can be checked that the bounds (2.11) and (2.10) are sat<strong>is</strong>fied <strong>by</strong> all the solutions<strong>of</strong> (2.8) and (2.13) if there ex<strong>is</strong>t positive definite and radially unbounded functionsZ i : R ni → R + ; class K functions ω 1 , ω 2 , and ω 3 ; and a positive real number ɛ in(0, 1) such that for all x in R n , for all i in {1,...,m}, and z i in R ni , we have∂Z i|δ i (z i ,x)| ≤ ω 1 (x)+ω 2 (Z i (z i )), (z i ) g i (z i ,x) ≤ −Z i (z i )+ω 3 (|x|) ,∂z iω 1 (x)+ω 2 ([1 + ɛ] ω 3 (|x|)) ≤ c G H ( )|x| r0,ir 0, |x| r∞,ir ∞ .Another important result exploiting Theorem 2.20 deals with finite time convergence<strong>of</strong> solutions toward a globally asymptotically stable equilibrium (see [4]). It <strong>is</strong>well known that when the origin <strong>of</strong> the homogeneous approximation in the 0-limit<strong>is</strong> globally asymptotically stable with a strictly negative degree, then solutions convergeto the origin in finite time (see [3]). We extend <strong>th<strong>is</strong></strong> result <strong>by</strong> showing that if,furthermore, the origin <strong>of</strong> the homogeneous approximation in the ∞-limit <strong>is</strong> globallyasymptotically stable with strictly positive degree, then the convergence time doesn’tdepend on the initial condition. Th<strong>is</strong> <strong>is</strong> expressed <strong>by</strong> the following corollary.Corollary 2.24 (uniform and finite time convergence). Under the hypotheses<strong>of</strong> Theorem 2.20, if we have d ∞ > 0 > d 0 , then all solutions <strong>of</strong> the system ẋ = f(x)converge in finite time to the origin, uniformly in the initial condition.The pro<strong>of</strong> <strong>is</strong> given in Appendix H.3. Recursive observer design for a chain <strong>of</strong> integrators. The notion <strong>of</strong>homogeneity in the bi-limit <strong>is</strong> instrumental in introducing a new observer designmethod. Throughout <strong>th<strong>is</strong></strong> section we consider a chain <strong>of</strong> integrators, with state X n =(X 1,...,X n) in R n , namely,(3.1) Ẋ 1 = X 2 , . . . , Ẋ n = u, or in compact form, Ẋ n = S n X n + B n u,where S n <strong>is</strong> the shift matrix <strong>of</strong> order n, i.e., S n X n = (X 2,...,X n, 0) T and B n =(0,...,0, 1) T 1. By selecting arbitrary vector field degrees d 0 and d ∞ in (−1,n−1), wesee that, to possibly obtain homogeneity in the bi-limit <strong>of</strong> the associated vector field,we must choose the weights r 0 =(r 0,1 ,...,r 0,n ) and r ∞ =(r ∞,1 ,...,r ∞,n ) as(3.2)r 0,n = 1 , r 0,i = r 0,i+1 − d 0 = 1 − d 0 (n − i) ,r ∞,n = 1 , r ∞,i = r ∞,i+1 − d ∞ = 1 − d ∞ (n − i) .The goal <strong>of</strong> <strong>th<strong>is</strong></strong> section <strong>is</strong> to introduce a global homogeneous in the bi-limit observerfor the system (3.1). Th<strong>is</strong> design follows a recursive method, which constitutes one <strong>of</strong>the main contributions <strong>of</strong> <strong>th<strong>is</strong></strong> paper.The idea <strong>of</strong> designing an observer recursively starting from X n and going backwardstowards X 1 <strong>is</strong> not new. It can be found, for instance, in [28, 26, 23, 30, 35] andin [7, Lemma 6.2.1]. Nevertheless, the procedure we propose <strong>is</strong> new and extends theresults in [23, Lemmas 1 and 2] to the homogeneous in the bi-limit case.<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


1824 V. ANDRIEU, L. PRALY, AND A. ASTOLFIAlso, as opposed to what <strong>is</strong> proposed in [28, 26], 5 <strong>th<strong>is</strong></strong> observer <strong>is</strong> an exact observer(with any input u) for a chain <strong>of</strong> integrators. The observer <strong>is</strong> given <strong>by</strong> the system 6(3.3)˙ˆX n = S n ˆXn + B n u + K 1 (ˆX 1 − X 1) ,with state ˆX n = (ˆX 1,...,ˆX n), and where K 1 : R n → R n <strong>is</strong> a homogeneous in thebi-limit vector field with weights r 0 , r ∞ and degrees d 0 , d ∞ . The output injectionvector field K 1 has to be selected such that the origin <strong>is</strong> a globally asymptoticallystable equilibrium for the system(3.4) Ė 1 = S n E 1 + K 1 (e 1 ), E 1 = (e 1 ,...,e n ) T ,and also for its homogeneous approximations. The construction <strong>of</strong> K 1 <strong>is</strong> performedvia a recursive procedure whose induction argument <strong>is</strong> as follows.Consider the system on R n−i given <strong>by</strong>(3.5) Ė i+1 = S n−i E i+1 + K i+1 (e i+1 ), E i+1 =(e i+1 ,...,e n ) T ,with S n−i the shift matrix <strong>of</strong> order n − i, i.e., S n−i E i+1 =(e i+2 ,...,e n , 0) T , andK i+1 : R n−i → R n−i a homogeneous in the bi-limit vector field, whose associatedtriples are ((r 0,i+1 ,...,r 0,n ), d 0 ,K i+1,0 ) and ((r ∞,i+1 ,...,r ∞,n ), d ∞ ,K i+1,∞ ).Theorem 3.1 (homogeneous in the bi-limit observer design). Consider the system(3.5) and its homogeneous approximation at infinity and around the origin,Ė i+1 = S n−i E i+1 + K i+1,0 (e i+1 ), Ė i+1 = S n−i E i+1 + K i+1,∞ (e i+1 ) .Suppose the origin <strong>is</strong> a globally asymptotically stable equilibrium for these systems.Then there ex<strong>is</strong>ts a homogeneous in the bi-limit vector field K i : R n−i+1 → R n−i+1 ,with associated triples ((r 0,i ,...,r 0,n ), d 0 ,K i,0 ) and ((r ∞,i ,...,r ∞,n ), d ∞ ,K i,∞ ), suchthat the origin <strong>is</strong> a globally asymptotically stable equilibrium for the systems(3.6)Ė i = S n−i+1 E i + K i (e i ) ,Ė i = S n−i+1 E i + K i,0 (e i ), E i =(e i ,...,e n ) T ,Ė i = S n−i+1 E i + K i,∞ (e i ) .Pro<strong>of</strong>. We prove <strong>th<strong>is</strong></strong> result in two steps. First, we define a homogeneous in thebi-limit Lyapunov function. Then we construct the vector field K i , depending on aparameter l which, if sufficiently large, renders negative definite the derivative <strong>of</strong> <strong>th<strong>is</strong></strong>Lyapunov function along the solutions <strong>of</strong> the system.Step 1. Definition <strong>of</strong> the Lyapunov function. Let d W0 and d W∞ be positive realnumbers sat<strong>is</strong>fying(3.7) d W0 > 2 max 1≤j≤ n r 0,j + d 0 , d W∞ > 2 max 1≤j≤ n r ∞,j + d ∞ ,and(3.8)d W∞r ∞,i≥ d W 0r 0,i.5 Note the term x i in (3.15) <strong>of</strong> [28], for instance.6 To simplify the presentation, we use the compact notation K 1 (ˆX 1−X 1) for K 1 (ˆX 1−X 1, 0,...,0).<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


HOMOGENEOUS OBSERVER DESIGN 1825The selection (3.2) implies r 0,j + d 0 > 0 and r ∞,j + d ∞ > 0 for each j in {1,...,n}.Hence,d W0> max1≤j≤ n r 0,j, d W∞ > max1≤j≤ n r ∞,j ,and we can invoke Theorem 2.20 for the system (3.4) and its homogeneous approximationsgiven in (3.5). Th<strong>is</strong> implies that there ex<strong>is</strong>ts a C 1 , positive definite, and properfunction W i+1 : R n−i → R + such that, for each j in {i+1,...,n}, the function ∂Wi+1∂e j<strong>is</strong> homogeneous in the bi-limit with associated triples((r 0,i+1 ,...,r 0,n ),d W0 − r 0,j , ∂W )i+1,0and∂e j((r ∞,i+1 ,...,r ∞,n ),d W∞ − r ∞,j , ∂W )i+1,∞.∂e jMoreover, for all E i+1 ∈ R n−i \{0}, we have(3.9)(3.10) q i (s) =∂W i+1∂E i+1(E i+1 )(S n−i E i+1 + K i+1 (e i+1 )) < 0 ,∂W i+1,0(E i+1 )(S n−i E i+1 + K i+1,0 (e i+1 )) < 0 ,∂E i+1∂W i+1,∞(E i+1 )(S n−i E i+1 + K i+1,∞ (e i+1 )) < 0 .∂E i+1Consider the function q i : R → R defined as⎧⎨⎩r 0,i +d 0r 0,ir 0,i+d 0sr ∞,ir ∞,i+d ∞sr 0,i, |s| ≤ 1 ,r ∞,i +d∞r ∞,i+ r0,ir 0,i+d 0− r∞,ir ∞,i+d ∞, |s| ≥ 1 .Since we have 0


1826 V. ANDRIEU, L. PRALY, AND A. ASTOLFILet W i: R n−i+1 → R + be defined <strong>by</strong>W i (E i+1 ,s) = W i+1 (E i+1 )+∫ s−∫ sq −1i (e i+1)q −1i (e i+1)(d W0 −r 0,irh 0,i)d W∞ −r ∞,i+ hr ∞,idh(dq −1W0 −r 0,iri (e i+1 ) 0,i+ q −1d W∞ −r ∞,i)ri (e i+1 ) ∞,idh .Th<strong>is</strong> function <strong>is</strong> C 1 , and <strong>by</strong> (3.8), Proposition 2.12 yields that it <strong>is</strong> homogeneous inthe bi-limit with weights (r 0,i+1 ,...,r 0,n ) and (r ∞,i+1 ,...,r ∞,n ) for E i+1 , r 0,i andr ∞,i for s, and degrees d W0 and d W∞ . Furthermore, for each j in {i +1,...,n}, thefunctions ∂Wi∂e j(E i+1 ,s) are also homogeneous in the bi-limit with the same weightsand with degrees d W0 − r 0,j and d W∞ − r ∞,j .Step 2. Construction <strong>of</strong> the vector field K i . Given a positive real number l, wedefine the vector field K i : R n−i → R n−i as()−qK i (e i )=i (le i ).K i+1 (q i (le i ))By Proposition 2.10 and the properties we have establ<strong>is</strong>hed for q i , K i <strong>is</strong> a homogeneousin the bi-limit vector field. We show now that selecting l large enough yields theasymptotic stability properties. To begin with, note that for all E i =(E i+1 ,e i ) inR n−i ,∂W i (E i+1 , le i )∂E i(E i )(S n−i+1 E i + K i (e i )) ≤ T 1 (E i+1 , le i ) − lT 2 (E i+1 , le i ) ,with the functions T 1 and T 2 defined asT 1 (E i+1 ,ϑ i )=T 2 (E i+1 ,ϑ i )=∂W i(E i+1 ,ϑ i )(S n−i E i+1 + K i+1 (q i (ϑ i ))) ,∂E i+1(dϑ − q −1W0 −r 0,iri (e i+1 ) 0,id W0 −r 0,ir 0,ii)d W∞ −r ∞,ir+ ϑ∞,ii − q −1d W∞ −r ∞,iri (e i+1 ) ∞,i×(q i (ϑ i ) − e i+1 ) .These functions are homogeneous in the bi-limit with weights (r ∞,i ,...,r ∞,n ) and(r 0,i ,...,r 0,n ), degrees d 0 + d W0 and d ∞ + d W∞ , and continuous approximating functionsT 1,0 (E i+1 ,ϑ i )= ∂W i,0∂E i+1(E i+1 ,ϑ i )(S n−i E i+1 + K i+1,0 (q i,0 (ϑ i ))) ,T 1,∞ (E i+1 ,ϑ i )= ∂W i,∞(E i+1 ,ϑ i )(S n−i E i+1 + K i+1,∞ (q i,∞ (ϑ i ))) ,∂E i+1()dT 2,0 (E i+1 ,ϑ i )= ϑ − q −1i,0 (e W0 −r 0,iri+1) 0,i(q i,0 (ϑ i ) − e i+1 ) ,d W0 −r 0,ir 0,iiandT 2,∞ (E i+1 ,ϑ i )=(ϑd W∞ −r ∞,ir ∞,ii)d W∞ −r ∞,i− q −1i,∞ (e i+1)r ∞,i(q i,∞ (ϑ i ) − e i+1 ) .<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


As the function q −1iHOMOGENEOUS OBSERVER DESIGN 1827<strong>is</strong> continuous, strictly increasing and onto, the functionϑd W0 −r 0,ir 0,iid− q −1W0 −r 0,iri (e i+1 ) 0,id W∞ −r ∞,ir+ ϑ∞,ii − q −1d W∞ −r ∞,iri (e i+1 ) ∞,ihas a unique zero at q i (ϑ i )=e i+1 and has the same sign as q i (ϑ i ) − e i+1 . It followsthatOn the other hand, for all E i ≠ 0,T 2 (E i+1 ,ϑ i ) ≥ 0 ∀ (E i+1 ,ϑ i ) ∈ R n−i ,T 2 (E i+1 ,ϑ i )=0 ⇒ q i (ϑ i ) = e i+1 .T 1 (E i+1 ,q −1i (e i+1 )) = ∂W i+1∂E i+1(E i+1 )(S n−i E i+1 + K i+1 (e i+1 )) < 0 .Hence (3.9) yields{(Ei+1 ,ϑ i ) ∈ R n−i+1 \{0} : T 2 (E i+1 ,ϑ i ) = 0 }⊆{(Ei+1 ,ϑ i ) ∈ R n−i+1 : T 1 (E i+1 ,ϑ i ) < 0 } .By following the same argument, it can be shown that <strong>th<strong>is</strong></strong> property holds also forthe homogeneous approximations, i.e.,{(Ei+1 ,ϑ i ) ∈ R n−i+1 \{0} : T 2,0 (E i+1 ,ϑ i ) = 0 }{⊆ (Ei+1 ,ϑ i ) ∈ R n−i+1 : T 1,0 (E i+1 ,ϑ i ) < 0 } ,{(Ei+1 ,ϑ i ) ∈ R n−i+1 \{0} : T 2,∞ (E i+1 ,ϑ i ) = 0 }⊆{(Ei+1 ,ϑ i ) ∈ R n−i+1 : T 1,∞ (E i+1 ,ϑ i ) < 0 } .Therefore, <strong>by</strong> Lemma 2.13, there ex<strong>is</strong>ts l ∗ such that, for all l ≥ l ∗ and all (E i+1 ,ϑ i ) ≠0,T 1 (E i+1 ,ϑ i ) − lT 2 (E i+1 ,ϑ i ) < 0 ,T 1,0 (E i+1 ,ϑ i ) − lT 2,0 (E i+1 ,ϑ i ) < 0 ,T 1,∞ (E i+1 ,ϑ i ) − lT 2,∞ (E i+1 ,ϑ i ) < 0 .Th<strong>is</strong> implies that the origin <strong>is</strong> a globally asymptotically stable equilibrium <strong>of</strong> thesystems (3.6), which concludes the pro<strong>of</strong>.To construct the function K 1 , which defines the observer (3.3), it <strong>is</strong> sufficient toiterate the construction proposed in Theorem 3.1 starting from{ 11+dK n (e n ) = −0(l n e n ) 1+d0 , |l n e n |≤ 1 ,11+d ∞(l n e n ) 1+d∞ + 11+d 0− 11+d ∞, |l n e n |≥ 1 ,where l n <strong>is</strong> any strictly positive real number. Indeed, K n <strong>is</strong> a homogeneous in thebi-limit vector field with approximating functions K n,0 (e n )= 11+d 0(l n e n ) 1+d0 andK n,∞ (e n )= 11+d ∞(l n e n ) 1+d∞ . Th<strong>is</strong> selection implies that the origin <strong>is</strong> a globallyasymptotically stable equilibrium for the systems ė n = K n (e n ), ė n = K n,0 (e n ),and ė n = K n,∞ (e n ).<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


1828 V. ANDRIEU, L. PRALY, AND A. ASTOLFIConsequently the assumptions <strong>of</strong> Theorem 3.1 are sat<strong>is</strong>fied for i + 1 = n. We canapply it recursively up to i = 1, obtaining the vector field K 1 .As a result <strong>of</strong> <strong>th<strong>is</strong></strong> procedure we obtain a homogeneous in the bi-limit observer,which globally asymptotically observes the state <strong>of</strong> the system (3.1), and also thestate for its homogeneous approximations around the origin and at infinity. In otherwords, the origin <strong>is</strong> a globally asymptotically stable equilibrium <strong>of</strong> the systems(3.12) Ė 1 = S n E 1 + K 1 (e 1 ) , Ė 1 = S n E 1 + K 1,0 (e 1 ) , Ė 1 = S n E 1 + K 1,∞ (e 1 ) .Remark 3.2. Note that when 0 ≤ d 0 ≤ d ∞ , we have 1 ≤ r0,i+d0r 0,ii =1,...,n and we can replace the function q i in (3.10) <strong>by</strong> the simpler function≤ r∞,i+d∞r ∞,iforr 0,i +d 0rq i (s) = s 0,ir ∞,i +d∞+ sr ∞,i,which has been used already in [1].Example 3.3. Consider a chain <strong>of</strong> integrators <strong>of</strong> dimension two, with the followingweights and degrees:()(r 0 , d 0 ) = (2 − q, 1), q− 1 , (r ∞ , d ∞ ) =()(2 − p, 1), p− 1 .When q ≥ p (i.e., d 0 ≤ d ∞ ), <strong>by</strong> following the above recursive observer design weobtain two positive real numbers l 1 and l 2 such that the systemwith(3.13) q 2 (s) =˙ˆX 1 = ˆX 2 − q 1 (l 1 e 1 ) , ˙ˆX 2 = u − q 2 (l 2 q 1 (l 1 e 1 )) ,e 1 = ˆX 1 − y,{ 1q sq , |s| ≤ 1,1p sp + 1 q − 1 p , |s| ≥ 1, q 1 (s) ={(2 − q) s12−q , |s| ≤ 1,(2 − p)s 12−p + p − q, |s| ≥ 1,<strong>is</strong> a global observer for the system Ẋ 1 = X 2, Ẋ 2 = u, y = X 1. Furthermore, its homogeneousapproximations around the origin and at infinity are also global observersfor the same system.4. Recursive design <strong>of</strong> a homogeneous in the bi-limit state feedback.It <strong>is</strong> well known that the system (3.1) can be rendered homogeneous <strong>by</strong> using astabilizing homogeneous state feedback which can be designed <strong>by</strong> backstepping (see[21, 25, 19, 26, 33, 10], for instance). We show in <strong>th<strong>is</strong></strong> section that <strong>th<strong>is</strong></strong> property canbe extended to the case <strong>of</strong> homogeneity in the bi-limit. More prec<strong>is</strong>ely, we show thatthere ex<strong>is</strong>ts a homogeneous in the bi-limit function φ n such that the system (3.1) withu = φ n (X n ) <strong>is</strong> homogeneous in the bi-limit, with weights r 0 and r ∞ and degrees d 0and d ∞ . Furthermore, its origin and the origin <strong>of</strong> the approximating systems in the0-limit and in the ∞-limit are globally asymptotically stable equilibria.To design the state feedback we follow the approach <strong>of</strong> Praly and Mazenc [25]. To<strong>th<strong>is</strong></strong> end, consider the auxiliary system with state X i =(X 1,...,X i) in R i ,1≤ i


HOMOGENEOUS OBSERVER DESIGN 1829bi-limit stabilizing control law for the origin <strong>of</strong> the system (4.1), then there <strong>is</strong> one forthe origin <strong>of</strong> the system with state X i+1 =(X 1,...,X i+1) in R i+1 defined <strong>by</strong>(4.2) Ẋ 1 = X 2,...,Ẋ i+1 = u, i.e., Ẋ i+1 = S i+1 X i+1 + B i+1 u.1Let d 0 and d ∞ be in (−1,n−1) and consider the weights and degrees defined in (3.2).Theorem 4.1 (homogeneous in the bi-limit backstepping). Suppose there ex<strong>is</strong>tsa homogeneous in the bi-limit function φ i : R i → R with associated triples (r 0 , d 0 +r 0,i ,φ i,0 ) and (r ∞ , d ∞ + r ∞,i ,φ i,∞ ) such that the following hold:1. There ex<strong>is</strong>ts α i ≥ 1 such that the function ψ i (X i ) = φ i (X i ) αi <strong>is</strong> C 1 andfor each j in {1,...,i} the function ∂ψi <strong>is</strong> homogeneous in the bi-limit with∂X jweights (r 0,1 ,...,r 0,i ), (r ∞,1 ,...,r ∞,i ), degrees α i (r 0,i + d 0 ) − r 0,j , α i (r ∞,i +d ∞ ) − r ∞,j , and approximating functions ∂ψi0, ∂ψi∞.∂X j ∂X j2. The origin <strong>is</strong> a globally asymptotically stable equilibrium <strong>of</strong> the systems(4.3)Ẋ i = S i X i + B i φ i (X i ) , Ẋ i = S i X i + B i φ i,0 (X i ) , Ẋ i = S i X i + B i φ i,∞ (X i ) .Then there ex<strong>is</strong>ts a homogeneous in the bi-limit function φ i+1 : R i+1 → R withassociated triples (r 0 , d 0 + r 0,i+1 ,φ i+1,0 ) and (r ∞ , d ∞ + r ∞,i+1 ,φ i+1,∞ ) such that thesame properties hold, i.e.,1. there ex<strong>is</strong>ts a real number α i+1 > 1 such that the function ψ i+1 (X i+1 ) =φ i+1 (X i+1 ) αi+1 <strong>is</strong> C 1 and for each j in {1,...,i+1} the function ∂ψi+1<strong>is</strong>∂X jhomogeneous in the bi-limit with weights (r 0,1 ,...,r 0,i+1 ), (r ∞,1 ,...,r ∞,i+1 ),degrees α i+1 (r 0,i+1 + d 0 ) − r 0,j , α i+1 (r ∞,i+1 + d ∞ ) − r ∞,j , and approximatingfunctions ∂ψi+1,0∂X j, ∂ψi+1,∞;∂X j2. the origin <strong>is</strong> a globally asymptotically stable equilibrium <strong>of</strong> the systems(4.4)X i+1 = S i+1 X i+1 + B i+1 φ i+1 (X i+1 ) ,X i+1 = S i+1 X i+1 + B i+1 φ i+1,0 (X i+1 ) ,X i+1 = S i+1 X i+1 + B i+1 φ i+1,∞ (X i+1 ) .Pro<strong>of</strong>. We prove <strong>th<strong>is</strong></strong> result in three steps. First, we construct a homogeneous inthe bi-limit Lyapunov function; then we define a control law parametrized <strong>by</strong> a realnumber k. Finally, we show that there ex<strong>is</strong>ts k such that the time derivative, alongthe trajectories <strong>of</strong> systems (4.4), <strong>of</strong> the Lyapunov function and <strong>of</strong> its approximatingfunctions <strong>is</strong> negative definite.Step 1. Construction <strong>of</strong> the Lyapunov function. Let d V0 and d V∞ be positive realnumbers sat<strong>is</strong>fying(4.5) d V0 > maxj∈{1,...,n} {r 0,j}, d V∞ > maxj∈{1,...,n} {r ∞,j} ,and(4.6)d V∞r ∞,i+1≥ d V 0r 0,i+1> 1+α i .With <strong>th<strong>is</strong></strong> selection, Theorem 2.20 gives the ex<strong>is</strong>tence <strong>of</strong> a C 1 , proper, and positivedefinite function V i : R i → R + such that, for each j in {1,...,n}, the function ∂Vi∂X j<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


1830 V. ANDRIEU, L. PRALY, AND A. ASTOLFI<strong>is</strong> homogeneous in the bi-limit with weights (r 0,1 ,...,r 0,i ), (r ∞,1 ,...,r ∞,i ), degreesd V0 − r 0,j , d V∞ − r ∞,j , and approximating functions ∂Vi,0. Moreover, we havefor all X i ∈ R i \{0},∂X j, ∂Vi,∞∂X j(4.7)∂V i∂X i(X i )[S i X i + B i φ i (X i )] < 0 ,∂V i,0(X i )[S i X i + B i φ i,0 (X i )] < 0 ,∂X i∂V i,∞(X i )[S i X i + B i φ i,∞ (X i )] < 0 .∂X iFollowing [21], consider the Lyapunov function V i+1 : R i+1 → R + defined <strong>by</strong>∫ X i+1(d V0 −r 0,i+1d V0 −r 0,i+1)rV i+1 (X i+1 ) = V i (X i )+ h 0,i+1 r− φ i (X i ) 0,i+1dhφ i(X i)∫ X i+1(d V∞ −r ∞,i+1d V∞ −r ∞,i+1)r+ h ∞,i+1 r− φ i (X i ) ∞,i+1dh .φ i(X i)Th<strong>is</strong> function <strong>is</strong> positive definite and proper. Furthermore, as d V∞ and d V0 sat<strong>is</strong>fy(4.6), we haved V∞ − r ∞,i+1r ∞,i+1≥ d V 0− r 0,i+1r 0,i+1>α i ≥ 1 .Since the function ψ i (X i )=φ i (X i ) αi <strong>is</strong> C 1 , <strong>th<strong>is</strong></strong> inequality yields that the functionV i+1 <strong>is</strong> C 1 . Finally, for each j in {1,...,n}, the function ∂Vi+1<strong>is</strong> homogeneous in∂X jthe bi-limit with associated triples((r 0,1 ,...,r 0,i+1 ),d V0 − r 0,j , ∂V ) (i+1,0, (r ∞,1 ,...,r ∞,i+1 ),d V∞ − r ∞,j , ∂V )i+1,∞.ψ i+1∂X jStep 2. Definition <strong>of</strong> the control law. Recall (1.6) and consider the function: R i+1 → R defined <strong>by</strong>∫ αXii+1 −φi(Xi)α i (ψ i+1 (X i+1 )=−kH |s| αi+1 d 0 +r 0,i+10α i r 0,i+1−1, |s|α i+1d∞+r ∞,i+1where k in R + <strong>is</strong> a design parameter and α i+1 <strong>is</strong> selected as{ }αi r 0,i+1 α i r ∞,i+1α i+1 ≥ max,, 1d 0 + r 0,i+1 d ∞ + r ∞,i+1α i r ∞,i+1.∂X j)−1ds ,ψ i+1 takes values with the same sign as X i+1 − φ i (X i ), <strong>is</strong> C 1 , and, <strong>by</strong> Proposition2.12, <strong>is</strong> homogeneous in the bi-limit. Furthermore, <strong>by</strong> Proposition 2.10, for each jin {1,...,i +1}, the function ∂ψi+1<strong>is</strong> homogeneous in the bi-limit, with weights∂X j(r 0,1 ,...,r 0,i+1 ), (r ∞,1 ,...,r ∞,i+1 ), degrees α i+1 (r 0,i+1 + d 0 ) − r 0,j , α i+1 (r ∞,i+1 +d ∞ ) − r ∞,j , and approximating functions ∂ψi+1,0 ∂ψ,i+1,∞. With <strong>th<strong>is</strong></strong> at hand, we∂X j ∂X jchoose the control law φ i+1 asφ i+1 (X i+1 ) = ψ i+1 (X i+1 ) 1α i+1 .<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


(4.8)Step 3. Selection <strong>of</strong> k. Note thatHOMOGENEOUS OBSERVER DESIGN 1831∂V i+1∂X i+1(X i+1 )[S i+1 X i+1 + B i+1 φ i+1 (X i+1 )] = T 1 (X i+1 ) − kT 2 (X i+1 ) ,with the functions T 1 and T 2 defined asT 1 (X i+1 )= ∂V i+1(X i+1 )[S i X i + B i X i+1)]∂X i(T 2 (X i+1 )=Xd V0 −r 0,i+1r 0,i+1i+1 − φ i (X i )d V0 −r 0,i+1r 0,i+1+ Xd V∞ −r ∞,i+1r ∞,i+1i+1 − φ i (X i )d V∞ −r ∞,i+1r ∞,i+1)φ i+1 (X i+1 ) .By the definition <strong>of</strong> homogeneity in the bi-limit and Proposition 2.10, these functionsare homogeneous in the bi-limit with weights (r 0,1 ,...,r 0,i+1 ) and (r ∞,1 ,...,r ∞,i+1 )and degrees d V0 + d 0 and d V∞ + d ∞ . Moreover, since φ i+1 (X i+1 ) has the same sign asX i+1 − φ i (X i ), T 2 (X i+1 ) <strong>is</strong> nonnegative for all X i+1 in R i+1 and, as φ i+1 (X i+1 )=0only if X i+1 − φ i (X i ) = 0, we getT 2 (X i+1 ) = 0 =⇒ X i+1 = φ i (X i ) ,X i+1 = φ i (X i ) =⇒ T 1 (X i+1 )= ∂V i∂X i(X i )[S i X i + B i φ i (X i )] .Consequently, equations (4.7) yield{Xi+1 ∈ R i+1 \{0} : T 2 (X i+1 )=0 } ⊆ { X i+1 ∈ R i+1 : T 1 (X i+1 ) < 0 } .The same implication holds for the homogeneous approximations <strong>of</strong> the two functionsat infinity and around the origin, i.e.,{Xi+1 ∈ R i+1 \{0} : T 2,0 (X i+1 )=0 } ⊆ { X i+1 ∈ R i+1 : T 1,0 (X i+1 ) < 0 } ,{Xi+1 ∈ R i+1 \{0} : T 2,∞ (X i+1 )=0 } ⊆ { X i+1 ∈ R i+1 : T 1,∞ (X i+1 ) < 0 } .Hence, <strong>by</strong> Lemma 2.13, there ex<strong>is</strong>ts k ∗ > 0 such that, for all k ≥ k ∗ , we have for allX i+1 ≠ 0,∂V i+1(X i+1 )[S i+1 X i+1 + B i+1 φ i+1 (X i+1 )] < 0 ,∂X i+1∂V i+1,0(X i+1 )[S i+1 X i+1 + B i+1 φ i+1,0 (X i+1 )] < 0 ,∂X i+1∂V i+1,∞(X i+1 )[S i+1 X i+1 + B i+1 φ i+1,∞ (X i+1 )] < 0 .∂X i+1Th<strong>is</strong> implies that the origin <strong>is</strong> a globally asymptotically stable equilibrium <strong>of</strong> thesystems (4.4).To construct the function φ n it <strong>is</strong> sufficient to iterate the construction in Theorem4.1 starting fromφ 1 (X 1) = ψ 1 (X 1) 1α 1 , ψ 1 (X 1) =−k 1∫ X 1with k 1 > 0.0()H |s| α1 r 0,2rr −1 α ∞,20,1, |s|1 r −1 ∞,1ds ,<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


1832 V. ANDRIEU, L. PRALY, AND A. ASTOLFIAt the end <strong>of</strong> the recursive procedure, we have that the origin <strong>is</strong> a globally asymptoticallystable equilibrium <strong>of</strong> the systems(4.9)X n = S n X n + B n φ n (X n ) ,X n = S n X n + B n φ n,0 (X n ) ,X n = S n X n + B n φ n,∞ (X n ) .Remark 4.2. Note that if d 0 ≥ 0 and d ∞ ≥ 0, then we can select α i = 1 for all1 ≤ i ≤ n, and if d 0 ≤ 0 and d ∞ ≥ d 0 , then we can select α i = r0,1r 0,i+1. Finally, ifd ∞ ≤ 0 and d 0 ≥ d ∞ , then we can select α i =r∞,1r ∞,i+1.Remark 4.3. As in the observer design, when d 0 ≤ d ∞ , we have r0,i+1+d0r 0,i+1≤for i =1,...,n and we can replace the function ψ i <strong>by</strong> the simpler functionr ∞,i+1+d ∞r ∞,i+1((4.10) ψ i+1 (X i+1 ) = −k|X αii+1 − φ i(X i ) αi | αi+1 d 0 +r 0,i+1α i r 0,i+1+|X αii+1 − φ i(X i ) αi | αi+1 d∞+r ∞,i+1)α i r ∞,i+1Finally, if 0 ≤ d 0 ≤ d ∞ , then <strong>by</strong> taking α i = 1 (see Remark 4.2) and φ(X i+1 ) =ψ i+1 (X i+1 ) as defined in (4.10), we recover the design in [1].Example 4.4. Consider a chain <strong>of</strong> integrators <strong>of</strong> dimension two with weights anddegrees(r 0 , d 0 ) =()(2 − q, 1), q− 1 , (r ∞ , d ∞ ) =()(2 − p, 1), p− 1 ,with 2 > p > q > 0. Given k 1 > 0, using the proposed backstepping procedure weobtain a positive real number k 2 such that the feedback∫ X 1−φ i(X 1)(4.11) φ 2 (X 1, X 2) =−k 2 H ( |s| q−1 , |s| p−1) ds ,0∫ Xwith φ 1 (X 1) =−k11 H(|s| q−1 p−12−q0 , |s|2−p ) ds, renders the origin a globally asymptoticallystable equilibrium <strong>of</strong> the closed-loop system. Furthermore, as a consequence <strong>of</strong>the robustness result in Corollary 2.22, there <strong>is</strong> a positive real number c G such that, ifthe positive real numbers |c 0 | and |c ∞ | associated with δ i in (1.2) are smaller than c G ,then the control law φ 2 globally asymptotically stabilizes the origin <strong>of</strong> system (1.1).5. Application to nonlinear output feedback design.5.1. Results on output feedback. The tools presented in the previous sectionscan be used to derive two new results on stabilization <strong>by</strong> output feedback for theorigin <strong>of</strong> nonlinear systems. The output feedback <strong>is</strong> designed for a simple chain <strong>of</strong>integrators,(5.1) ẋ = S n x + B n u, y = x 1 ,where x <strong>is</strong> in R n , y <strong>is</strong> the output in R, and u <strong>is</strong> the control input in R. It <strong>is</strong> thenshown to be adequate to solve the output feedback stabilization problem for the origin<strong>of</strong> systems for which <strong>th<strong>is</strong></strong> chain <strong>of</strong> integrators can be considered as the dominant part<strong>of</strong> the dynamics..<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


HOMOGENEOUS OBSERVER DESIGN 1833Such a domination approach has a long h<strong>is</strong>tory. It <strong>is</strong> the cornerstone <strong>of</strong> the resultsin [13] (see also [27] and [24]), where a linear controller was introduced to deal withnonlinear systems. Th<strong>is</strong> approach has also been followed with nonlinear controllers in[22] and more recently in combination with weighted homogeneity in [35, 26, 28] andthe references therein.In the context <strong>of</strong> homogeneity in the bi-limit, we use <strong>th<strong>is</strong></strong> approach exploiting theproposed backstepping and recursive observer designs. Following the idea introduced<strong>by</strong> Qian in [26] (see also [27]), the output feedback we proposed <strong>is</strong> given <strong>by</strong>(5.2)˙ˆX n = L()S n ˆXn + B n φ n (ˆX n )+K 1 (x 1 − ˆX 1) , u = L n φ n (ˆX n ) ,with ˆX n in R n and where φ n and K 1 are continuous functions and L <strong>is</strong> a positivereal number. Employing the recursive procedure given in sections 3 and 4, we get thefollowing theorem, whose pro<strong>of</strong> <strong>is</strong> in section 5.2.1Theorem 5.1. For all real numbers d 0 and d ∞ in (−1,n−1), there ex<strong>is</strong>ts ahomogeneous in the bi-limit function φ n : R n → R with associated triples (r 0 , 1+d 0 ,φ n,0 ) and (r ∞ , 1+d ∞ ,φ n,∞ ) and a homogeneous in the bi-limit vector field K 1 :R n → R n with associated triples (r 0 , d 0 ,K 1,0 ) and (r ∞ , d ∞ ,K 1,∞ ) such that for allreal numbers L>0 the origin <strong>is</strong> a globally asymptotically stable equilibrium <strong>of</strong> thesystems (5.1) and (5.2) and their homogeneous approximations.We can then apply Corollary 2.22 to get an output feedback result for nonlinearsystems described <strong>by</strong>(5.3) ẋ = S n x + B n u + δ(t), y = x 1 ,where δ : R + → R n <strong>is</strong> a continuous function related to the solutions as described inthe two corollaries below and proved in section 5.2. Depending on whether d 0 ≤ d ∞or d ∞ ≤ d 0 , we get an output feedback result for systems in feedback or feedforwardform.Corollary 5.2 (feedback form). If, in the design <strong>of</strong> φ n and K 1 , we selectd 0 ≤ d ∞ , then for all positive real numbers c 0 and c ∞ there ex<strong>is</strong>ts a real numberL ∗ > 0 such that for every L in [L ∗ , +∞), the following holds:• For every class K function γ z and class KL function β δ , we can find two classKL functions β x and βˆx such that, for each function t ∈ [0,T) ↦→ (x(t), ˆX n (t),δ(t),z(t)),T ≤ +∞, with (x, ˆX n ) C 1 and δ and z continuous, which sat<strong>is</strong>fies (5.3), (5.2), andfor i in {1,...,n} and 0 ≤ s ≤ t


1834 V. ANDRIEU, L. PRALY, AND A. ASTOLFICorollary 5.3 (feedforward form). If, in the design <strong>of</strong> φ n and K 1 , we selectd ∞ ≤ d 0 , then for all positive real numbers c 0 and c ∞ there ex<strong>is</strong>ts a real numberL ∗ > 0 such that for every L in (0,L ∗ ], the following holds:• For every class K function γ z and class KL function β δ , we can find two classKL functions β x and βˆx such that, for each function t ∈ [0,T) ↦→ (x(t), ˆX n (t),δ(t),z(t)), T ≤ +∞, with (x, ˆX n ) C 1 and δ and z continuous, which sat<strong>is</strong>fies (5.3), (5.2),and for i in {1,...,n} and 0 ≤ s ≤ t 0 such that for all L in [L ∗ , +∞), the output feedback(5.2) <strong>is</strong> globally asymptotically stabilizing. Compared to already publ<strong>is</strong>hed results (see[13] and [26], for instance), the novelty <strong>of</strong> <strong>th<strong>is</strong></strong> case <strong>is</strong> in the simultaneous presence <strong>of</strong>the terms |x j | 1−d 0 (n−i−1)1−d 0 (n−j)and |x j | 1−d∞(n−i−1)1−d∞(n−j).On the other hand, if there ex<strong>is</strong>t two real numbers d 0 and d ∞ sat<strong>is</strong>fying −1 0 such that for all L in (0,L ∗ ], the output feedback(5.2) <strong>is</strong> globally asymptotically stabilizing.⎞⎠ ,⎞⎠ ,<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


HOMOGENEOUS OBSERVER DESIGN 1835Example 5.5. Consider the illustrative system (1.1). The bound (5.6) gives thecondition(5.7) 0 < q < p < 2 .Th<strong>is</strong> <strong>is</strong> almost the least conservative condition we can obtain with the dominationapproach. Specifically, it <strong>is</strong> shown in [18] that, when p>2, there <strong>is</strong> no stabilizing outputfeedback. However, when p = 2, (5.6) <strong>is</strong> not sat<strong>is</strong>fied, although the stabilizationproblem <strong>is</strong> solvable (see [18]).By Corollary 2.24, when (5.7) holds, the output feedback⎧˙ˆX 1 = L ˆX 2 − Lq ⎪⎨1 (l 1 e 1 ) ,u = L 2 φ 2 (ˆX 1, ˆX 2), ˙ˆX 2 = u L − Lq 2(l 2 q 1 (l 1 e 1 )) ,⎪⎩e 1 = ˆX 1 − y,with l 1 , l 2 , φ 2 , q 1 , and q 2 defined in (3.13) and (4.11) and with picking d 0 in (−1,q−1]and d ∞ in [p − 1, 1), globally asymptotically stabilizes the origin <strong>of</strong> the system (1.1),with L chosen sufficiently large. Furthermore, if d 0 <strong>is</strong> chosen strictly negative and d ∞strictly positive, <strong>by</strong> Corollary 2.24, convergence to the origin occurs in finite time,uniformly in the initial conditions.Example 5.6. To illustrate the feedforward result consider the system 7ẋ 1 = x 2 + x 3 23 + z 3 , ẋ 2 = x 3 , ẋ 3 = u, ż = −z 4 + x 3 , y = x 1 .For any ε> 0, there ex<strong>is</strong>ts a class KL function β δ such that{}|z(t)| 3 ≤ max β δ (|z(s)|,t− s), (1 + ε) sups≤κ≤t|x 3 (κ)| 3 4 .Therefore <strong>by</strong> letting δ 1 = x 3 23 +z 3 we get, for all 0 ≤ s ≤ t


1836 V. ANDRIEU, L. PRALY, AND A. ASTOLFITh<strong>is</strong> yields(5.9)⎧⎪⎨⎪⎩ddτ ̂X n = S n ̂Xn + B n φ n (ˆX n )) + K 1 (e 1 ) ,ddτ E 1 = S n E 1 + K 1 (e 1 )with E 1 =(e 1 ,...,e n ), ̂X n =(ˆX 1,...,ˆX n). The right-hand side <strong>of</strong> (5.9) <strong>is</strong> a vectorfield which <strong>is</strong> homogeneous in the bi-limit with weights (r 0 ,r 0 ), (r ∞ ,r ∞ ).Given d U > max j {r 0,j ,r ∞,j }, <strong>by</strong> applying Theorem 2.20 twice, we get two C 1 ,proper, and positive definite functions V : R n → R + and W : R n → R + such thatfor each i in {1,...,n}, the functions ∂V∂x iand ∂W∂e iare homogeneous in the bi-limit,with weights r 0 and r ∞ , degrees d U −r 0,i and d U −r ∞,i , and approximating functions∂V 0∂ ˆX j , ∂V∞∂ ˆX j(5.10)and ∂W0∂e jand for all E 1 ≠ 0,(5.11), ∂W∞∂e j. Moreover, for all ̂X n ≠ 0,∂V∂ ̂X (̂X n )∂V 0∂ ̂X(̂X n )n∂V ∞∂ ̂X(̂X n )n[]S n ̂Xn + B n φ n (̂X n ) < 0 ,[S n ̂Xn + B n φ n,0 (̂X n )]< 0 ,[]S n ̂Xn + B n φ n,∞ (̂X n ) < 0 ,∂W(E 1 )(S n E 1 + K 1 (e 1 )) < 0 ,∂E 1∂W 0(E 1 )(S n E 1 + K 1,0 (e 1 )) < 0 ,∂E 1∂W ∞(E 1 )(S n E 1 + K 1,∞ (e 1 )) < 0 .∂E 1Consider now the Lyapunov function candidate(5.12) U(ˆX n ,E 1 ) = V (ˆX n )+c W (E 1 ) ,where c <strong>is</strong> a positive real number to be specified. Letη(ˆX n ,E 1 )= ∂V ()∂ ̂X(̂X n ) S n ˆXn + B n φ n (ˆX n )+K 1 (e 1 )nγ(E 1 )=− ∂W∂E 1(E 1 )(S n E 1 + K 1 (e 1 )) .These two functions are continuous and homogeneous in the bi-limit with associatedtriples ((r 0 ,r 0 ),d U + d 0 ,η 0 ), ((r ∞ ,r ∞ ),d U + d ∞ ,η ∞ ) and ((r 0 ,r 0 ),d U + d 0 ,γ 0 ),((r ∞ ,r ∞ ),d U + d ∞ ,γ ∞ ), where γ 0 , γ ∞ and η 0 , η ∞ are continuous functions. Furthermore,<strong>by</strong> (5.11), γ(E 1 ) <strong>is</strong> negative definite. Hence, <strong>by</strong> (5.10), we have{} {}(ˆX n ,E 1 ) ∈ R 2n \{0} : γ(E 1 )=0 ⊆ (ˆX n ,E 1 ) ∈ R 2n : η(ˆX n ,E 1 ) < 0 ,{} {}(ˆX n ,E 1 ) ∈ R 2n \{0} : γ 0 (E 1 )=0 ⊆{}(ˆX n ,E 1 ) ∈ R 2n \{0} : γ ∞ (E 1 )=0 ⊆(ˆX n ,E 1 ) ∈ R 2n : η 0 (ˆX n ,E 1 ) < 0 ,{}(ˆX n ,E 1 ) ∈ R 2n : η ∞ (ˆX n ,E 1 ) < 0 .,<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


HOMOGENEOUS OBSERVER DESIGN 1837Consequently, <strong>by</strong> Lemma 2.13, there ex<strong>is</strong>ts a positive real number c ∗ such that, for allc > c ∗ and all (ˆX n ,E 1 ) ≠ (0, 0), the Lyapunov function U, defined in (5.12), sat<strong>is</strong>fies∂U()∂ ˆX(ˆX n ,E 1 ) S n ˆXn + B n φ n (ˆX n )+K 1 (e 1 )n+ ∂U∂E 1(ˆX n ,E 1 )(E 1 )(S n E 1 + K 1 (e 1 )) < 0and the same holds for the homogeneous approximations in the 0-limit and in the∞-limit; hence the claim.Pro<strong>of</strong> <strong>of</strong> Corollary 5.2. We write the dynamics <strong>of</strong> the system (5.3) in the coordinatesˆX n and E 1 and in the time τ given in (5.8). Th<strong>is</strong> yields(5.13)with⎧⎪⎨⎪⎩ddτ ̂X n = S n ̂Xn + B n φ n (ˆX n )) + K 1 (e 1 ),ddτ E 1 = S n E 1 + K 1 (e 1 )+D(L)(δ1D(L) =L ,..., δ )nL n .We denote the solution <strong>of</strong> <strong>th<strong>is</strong></strong> system, starting from (̂X n (0),E 1 (0)) in R 2n at time τ,<strong>by</strong> (̂X τ,n (τ),E τ,1 (τ)). We have(5.14) x i (t) = L i−1 (ˆX τ,i (Lt) − e τ,i (Lt)) .The right-hand side <strong>of</strong> (5.13) <strong>is</strong> a vector field which <strong>is</strong> homogeneous in the bi-limitwith weights (r 0 ,r 0 ), (r ∞ ,r ∞ ) for (̂X n ,E 1 ) and (r 0 , r ∞ ) for D(L), where r 0,i = r 0,i +d 0and r ∞,i = r ∞,i + d ∞ for each i in {1,...,n}.The time function τ ↦→ δ( τ L) <strong>is</strong> considered as an input, and when D(L) = 0,Theorem 5.1 implies global asymptotic stability <strong>of</strong> the origin <strong>of</strong> the system (5.13)and <strong>of</strong> its homogeneous approximations. To complete the pro<strong>of</strong> we show that thereex<strong>is</strong>ts L ∗ such that the “input” D(L) sat<strong>is</strong>fies the small-gain condition (2.11) <strong>of</strong> Corollary2.22 for all L>L ∗ . Using (5.8) and (5.14), assumption (5.4) becomes, for all0 ≤ σ ≤ τ < LT and all i in {1,...,n},∣ δi( τL)∣ ∣L i{ (1 ∣∣∣z ( σ)∣ )∣∣≤ maxL i β τ − σδ , ,L L{i∑L −i ∣sup σ≤κ≤τ ∣L (j−1) (ˆX τ,j(κ) − e τ,j (κ)) ∣c 0j=11−d 0 (n−i−1)1−d 0 (n−j)i∑∣(5.15) + c ∞ ∣L (j−1) (ˆX τ,j(κ) − e τ,j (κ)) ∣Note that when 1 ≤ j ≤ i ≤ n, the function s ↦→ 1−(n−i−1) s1−(n−j) s<strong>is</strong> strictly increas-n−i) in (n+1−j , ij−1 ). As d 0 ≤ d ∞ < 1n−1, we have for all1ing, mapping (−1,1 ≤ j ≤ i ≤ n,n−1j=11−d∞(n−i−1)1−d∞(n−j)}}1 − d 0 (n − i − 1)1 − d 0 (n − j)≤ 1 − d ∞(n − i − 1)1 − d ∞ (n − j)


1838 V. ANDRIEU, L. PRALY, AND A. ASTOLFIHence, selecting L ≥ 1, there ex<strong>is</strong>ts a real number ɛ> 0 such thatL −ɛTh<strong>is</strong> implies∣ ( {∣δ τ i ∣(L)∣1 ∣∣∣z ( σ)∣ ∣∣L i ≤ maxL i β τ − σδ ,L L{i∑L −ɛ sup σ≤κ≤τOn the other hand, the function(̂X n ,E 1 ) ↦→ c 01−d∞(n−i−1)(j−1)≥ L1−d∞(n−j) −i ≥ L (j−1) 1−d 0 (n−i−1)1−d 0 (n−j) −i .i∑j=1c 0j=1),|(ˆX τ,j(κ) − e τ,j (κ))| 1−d 0 (n−i−1)1−d 0 (n−j)+ c ∞i∑j=1|ˆX j − e j | 1−d 0 (n−i−1)1−d 0 (n−j)+ c ∞i∑|(ˆX τ,j(κ) − e τ,j (κ))| 1−d∞(n−i−1)1−d∞(n−j)j=1|ˆX j − e j | 1−d∞(n−i−1)1−d∞(n−j)}}<strong>is</strong> homogeneous in the bi-limit with weights (r 0 ,r 0 ) and (r ∞ ,r ∞ ) and degrees 1 −d 0 (n − i − 1) = r 0,i + d 0 and 1 − d ∞ (n − i − 1) = r ∞,i + d ∞ (see (3.2)). Hence, <strong>by</strong>Corollary 2.15, there ex<strong>is</strong>ts a positive real number c 1 such thati∑c 0j=1|ˆX j − e j | 1−d 0 (n−i−1)1−d 0 (n−j)+ c ∞i∑j=1(5.16) ≤ c 1 H|ˆX j − e j | 1−d∞(n−i−1)1−d∞(n−j)()|(̂X n ,E 1 )| d0+r0,i(r , |(̂X 0,r 0) n ,E 1 )| d∞+r∞,i(r ∞,r ∞).Hence, <strong>by</strong> Corollary 2.22 (applied in the τ time-scale), there ex<strong>is</strong>ts c G such that forany L ∗ large enough such that c 1 L ∗−ε ≤ c G , the conclusion holds.Pro<strong>of</strong> <strong>of</strong> Corollary 5.3. The pro<strong>of</strong> <strong>is</strong> similar to the previous one with the onlydifference being that, when i and j sat<strong>is</strong>fy 3 ≤ i +2 ≤ j ≤ n, the function s ↦→1−(n−i−1) s1−(n−j) s<strong>is</strong> strictly decreasing, mapping (−1,1n−1 ) in ( icondition −1 < d ∞ ≤ d 0 < 1n−11 − d ∞ (n − i − 1)1 − d ∞ (n − j)gives the inequalities≥ 1 − d 0(n − i − 1)1 − d 0 (n − j)j−1 ,>n−in+1−jij − 1 .). Moreover theHence (5.16) holds, and <strong>by</strong> selecting L


HOMOGENEOUS OBSERVER DESIGN 1839From Corollary 2.22, the result holds for all L ∗ small enough to sat<strong>is</strong>fy c 1 L ∗ε ≤c G .6. Conclusion. We have presented two new tools that can be useful in nonlinearcontrol design. The first one <strong>is</strong> introduced to formalize the notion <strong>of</strong> homogeneousapproximation valid both at the origin and at infinity. With <strong>th<strong>is</strong></strong> formal<strong>is</strong>m we havegiven several novel results concerning asymptotic stability, robustness analys<strong>is</strong>, andalso finite time convergence (uniformly in the initial conditions). The second one <strong>is</strong>a new recursive design for an observer for a chain <strong>of</strong> integrators. The combination <strong>of</strong>these two tools allows us to obtain a new result on stabilization <strong>by</strong> output feedbackfor systems whose dominant homogeneous in the bi-limit part <strong>is</strong> a chain <strong>of</strong> integrators.Appendix A. Pro<strong>of</strong> <strong>of</strong> Proposition 2.10. We give the pro<strong>of</strong> only in the 0-limit case since the ∞-limit case <strong>is</strong> similar. Let C be an arbitrary compact subset <strong>of</strong>R n \{0} and ɛ any strictly positive real number. By the definition <strong>of</strong> homogeneity inthe 0-limit, there ex<strong>is</strong>ts λ 1 > 0 such that we have∣φ(λ r φ,0⋄ x)λ d φ,0− φ 0 (x)∣ ≤ 1 ∀ x ∈ C, ∀ λ ∈ (0,λ 1] .Hence, as φ 0 <strong>is</strong> a continuous function on R n , for all λ in (0,λ 1 ], the function x ↦→φ(λ r 0 ⋄ x)λ d φ,0takes its values in a compact set C φ = φ 0 (C) +B 1 , where B 1 <strong>is</strong> theunity ball.Now, as ζ 0 <strong>is</strong> continuous on the compact subset C φ , it <strong>is</strong> uniformly continuous;i.e., there ex<strong>is</strong>ts ν> 0 such that|z 1 − z 2 | < ν =⇒ |ζ 0 (z 1 ) − ζ 0 (z 2 )| < ɛ .Also there ex<strong>is</strong>ts µ ɛ > 0 sat<strong>is</strong>fyingζ(µ r ζ,0z)∣ µ d − ζζ,0 0 (z)∣ ≤ ɛ ∀ z ∈ C φ , ∀ µ ∈ (0,µ ɛ ] ,or equivalently, since d φ,0 > 0,ζ(λ d φ,0z)(− ζ∣0 (z)∣ ≤ ɛ ∀ z ∈ C φ , ∀ λ ∈ 0,µd φ,0 d ζ,0rλ ζ,0r ζ,0d φ,0ɛSimilarly, there ex<strong>is</strong>ts λ ν such thatφ(λ r φ,0⋄ x)∣ λ d − φφ,0 0 (x)∣ ≤ ν ∀ x ∈ C, ∀ λ ∈ (0,λ ν] .It follows that∣ ζ(φ(λ r φ,0⋄ x))∣∣∣∣ d∣ φ,0 d ζ,0− ζ 0 (φ 0 (x))rλ ζ,0∣ ≤ ζ(φ(λ r (φ,0⋄ x)) φ(λr φ,0) ∣ ⋄ x)∣∣∣d φ,0 d ζ,0− ζ 0rλ ζ,0λ d φ,0( +φ(λr∣ ζ φ,0)⋄ x)0λ d − ζφ,00 (φ 0 (x))∣{≤ 2 ɛ ∀ x ∈ C, ∀ λ ∈ min λ 1 ,λ ν ,µ].r ζ,0d φ,0ɛ}.Th<strong>is</strong> establ<strong>is</strong>hes homogeneity in the 0-limit <strong>of</strong> the function ζ ◦ φ.<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


1840 V. ANDRIEU, L. PRALY, AND A. ASTOLFIAppendix B. Pro<strong>of</strong> <strong>of</strong> Proposition 2.11. We give the pro<strong>of</strong> only in the 0-limit case since the ∞-limit case <strong>is</strong> similar. The function φ being a bijection, we canassume without loss <strong>of</strong> generality that it <strong>is</strong> a strictly increasing function (otherw<strong>is</strong>e wetake −φ). Th<strong>is</strong>, together with homogeneity in the 0-limit, implies that ϕ 0 <strong>is</strong> strictlypositive. Moreover, for each δ> 0, there ex<strong>is</strong>ts t 0 (δ) > 0 such that∣ φ(t) ∣∣∣∣ − ϕ 0 ≤ δ ∀ t ∈ (0,t 0 (δ)] .t d0By letting λ = φ(t), <strong>th<strong>is</strong></strong> givesϕ 0 − δ ≤λφ −1 (λ) d0 ≤ ϕ 0 + δ ∀ λ ∈ (0,φ(t 0 (δ))] , ∀ δ> 0 .Since for δ < ϕ 0 the term on the left <strong>is</strong> strictly positive, these inequalities give( 1) 1d 0ϕ 0 + δ≤ φ−1 (λ)λ 1d 01Then since the function δ ↦→ (ϕ ) 1d 00−δex<strong>is</strong>ts δ 1 (ɛ 1 ) > 0 sat<strong>is</strong>fying( 1ϕ 0) 1d 0− ɛ 1 ≤Th<strong>is</strong> yields(φ −1 (λ)∣λ 1d 0≤1ϕ 0 + δ 1 (ɛ 1 )( ) 11d 0∀ λ ∈ (0,φ −1 (t 0 (δ))], ∀ δ ∈ (0,ϕ 0 ) .ϕ 0 − δ) 1d 0<strong>is</strong> continuous at zero, for every ɛ 1 > 0 there≤(1ϕ 0 − δ 1 (ɛ 1 )) 1d 0( ) ∣11d 0 ∣∣∣∣− ≤ ɛ 1 ∀ λ ∈ (0,λ − (ɛ 1 )] ,ϕ 0with λ − (ɛ 1 )=φ(t 0 (δ 1 (ɛ 1 ))). With a similar argument, we getφ −1 ( ) ∣1(−λ) 1d 0 ∣∣∣∣ + ≤ ɛ 1 ∀ λ ∈ (0,λ + (ε 1 )]∣ d 0 ϕ 0λ 1for some λ + > 0. Let λ 0 = min{λ − ,λ + }.Now, for x ≠ 0 and λ> 0, we have∣φ −1 (λx)∣λ 1d 0( ) ∣1xd 0 ∣∣∣∣− = |x| 1d 0ϕ 0∣ ∣∣∣∣φ −1 (λx)(xλ) 1d 0≤( ) ∣11d 0 ∣∣∣∣− .ϕ 0Therefore, for any compact set C <strong>of</strong> R\{0} and any ɛ> 0, <strong>by</strong> letting ɛ 1 =we have|x| 1d 0 ɛ 1 ≤ ɛ, 0 < |λx| ≤ λ 0 (ɛ 1 ) ∀ λ ∈and thereforeφ −1 (λx)∣λ 1d 0( ) ∣1xd 0 ∣∣∣∣− ≤ ɛϕ 0∀ λ ∈(0,( 1ϕ 0) 1d 0+ ɛ 1 .ɛmax x∈C |x| 1d 0,]λ 0 (ɛ 1 ), ∀ x ∈ C,max x∈C |x|(]λ 0 (ɛ 1 )0,, ∀ x ∈ C.max x∈C |x|Th<strong>is</strong> establ<strong>is</strong>hes homogeneity in the 0-limit <strong>of</strong> the function φ −1 .<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


HOMOGENEOUS OBSERVER DESIGN 1841Appendix C. Pro<strong>of</strong> <strong>of</strong> Lemma 2.13. The pro<strong>of</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> lemma <strong>is</strong> divided intothree parts.1. We first show, <strong>by</strong> contradiction, that there ex<strong>is</strong>ts a real number c 0 sat<strong>is</strong>fyingη 0 (θ) − cγ 0 (θ) < 0 ∀ θ ∈ S r0 , ∀ c ≥ c 0 .Suppose there <strong>is</strong> no such c 0 . Th<strong>is</strong> means there <strong>is</strong> a sequence (θ i ) i∈N in S r0which sat<strong>is</strong>fiesη 0 (θ i ) − iγ 0 (θ i ) ≥ 0 ∀ i ∈ N .The sequence (θ i ) i∈N lives in a compact set. Thus we can extract a convergentsubsequence (θ il ) l∈N which converges to a point denoted θ ∞ .As the functions η 0 and γ 0 are bounded on S r0 and γ 0 takes nonnegativevalues, 8 γ 0 (θ il ) must go to 0 as i l goes to infinity. Since the functions η 0 andγ 0 are continuous, we get γ 0 (θ ∞ ) = 0 and η 0 (θ ∞ ) ≥ 0, which <strong>is</strong> impossible.Consequently, there ex<strong>is</strong>t c 0 and ε 0 > 0 such that(C.1) η 0 (θ) − cγ 0 (θ) ≤ −ε 0 < 0 ∀ θ ∈ S r0 , ∀ c ≥ c 0 .Moreover, since the functions η 0 and γ 0 are homogeneous in the standardsense (see Remark 2.6), we have the second inequality in (2.4).Following the same argument, we can find positive real numbers c ∞ and ε ∞such that(C.2) η ∞ (θ) − cγ ∞ (θ) < −ε ∞ ∀ θ ∈ S r∞ , ∀ c ≥ c ∞ ,and the third inequality in (2.4) holds.In the rest <strong>of</strong> the pro<strong>of</strong>, letc 1 = max{c 0 ,c ∞ }, ε 1 = min{ε 0 ,ε ∞ } .2. Since η and γ are homogeneous in the 0-limit, there ex<strong>is</strong>ts λ 0 such that, forall λ ∈ (0,λ 0 ] and all θ ∈ S r0 , we haveη(λ r0 ⋄ θ) ≤ λ d0 η 0 (θ) +λ d0 ε 14 , λd0 γ 0 (θ) − λ d0 ε 14c 1≤ γ(λ r0 ⋄ θ) ,which readily givesη(λ r0 ⋄ θ) − c 1 γ(λ r0 ⋄ θ) ≤ λ d0 η 0 (θ) +λ d0 ε 12 − c 1λ d0 γ 0 (θ) .Using (C.1), we getη(λ r0 ⋄ θ) − c 1 γ(λ r0 ⋄ θ) ≤ −λ d0 ε 12and therefore, since γ takes nonnegative values,∀ λ ∈ (0,λ 0 ] , ∀ θ ∈ S r0 ,η(λ r0 ⋄ θ) − cγ(λ r0 ⋄ θ) ≤−λ d0 ε 12∀ λ ∈ (0,λ 0 ] , ∀ θ ∈ S r0 , ∀ c ≥ c 1 .8 Indeed, if we had γ 0 (x) < 0 for some x in R n \{0}, <strong>by</strong> letting ɛ = − γ 0(x), the homogeneity in2the 0-limit <strong>of</strong> γ would give a real number λ> 0 sat<strong>is</strong>fying γ(λr 0 ⋄x)λ d ≤ γ0 0 (x) +ɛ = γ 0(x)< 0. Th<strong>is</strong>2contradicts the fact that γ takes nonnegative values only. Also <strong>by</strong> continuity we have γ 0 (0) ≥ 0.<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


1842 V. ANDRIEU, L. PRALY, AND A. ASTOLFISimilarly, there ex<strong>is</strong>ts λ ∞ sat<strong>is</strong>fyingη(λ r∞ ⋄θ)−cγ(λ r∞ ⋄θ) ≤−λ d∞ ε 12Consequently, for each c ≥ c 1 , the setif not empty, must be a subset <strong>of</strong>∀ λ ∈ [λ ∞ , +∞) , ∀ θ ∈ S r∞ , ∀ c ≥ c 1 .{x ∈ R n \{0} |η(x) − cγ(x) ≥ 0} ,C = {x ∈ R n : |x| r0 ≥ λ 0 } ⋃ {x ∈ R n : |x| r∞ ≤ λ ∞ } ,which <strong>is</strong> compact and does not contain the origin.3. Suppose now that for all c the first inequality in (2.4) <strong>is</strong> not true. Th<strong>is</strong> meansthat, for all integers c larger than c 1 , there ex<strong>is</strong>ts x c in R n sat<strong>is</strong>fyingη(x c ) − cγ(x c ) ≥ 0 ,and therefore x c <strong>is</strong> in C. Since C <strong>is</strong> a compact set, there <strong>is</strong> a convergentsubsequence (x cl ) l∈N which converges to a point denoted x ∗ different fromzero. Also as above, we must have γ(x ∗ ) = 0 and η(x ∗ ) ≥ 0. But <strong>th<strong>is</strong></strong>contradicts the assumption, namely,{ x ∈ R n \{0} , γ(x) =0} ⇒ η(x) < 0 .Appendix D. Pro<strong>of</strong> <strong>of</strong> Proposition 2.18. Because the vector field f <strong>is</strong> homogeneousin the ∞-limit, its approximating vector field f ∞ <strong>is</strong> homogeneous in thestandard sense (see Remark 2.6). Let d V∞ be a positive real number larger thanr ∞,i for all i in {1,...,n}. Following Rosier [29], there ex<strong>is</strong>ts a C 1 , positive definite,proper, and homogeneous function V ∞ : R n → R + , with weight r ∞ and degree d V∞ ,sat<strong>is</strong>fying(D.1)∂V ∞∂x (x)f ∞(x) < 0 ∀ x ≠ 0 .From P1 in section 2.2, we know that the function x ↦→ ∂V∞∂x(x)f(x) <strong>is</strong> homogeneousin the ∞-limit with associated triple ( r ∞ , d ∞ + d V∞ , ∂V∞∂x (x)f ∞(x) ) . Letɛ ∞ = − 1 2 maxθ ∈ S r∞{ ∂V∞∂x (θ)f ∞(θ)and note that, <strong>by</strong> inequality (D.1), ɛ ∞ <strong>is</strong> a strictly positive real number. By thedefinition <strong>of</strong> homogeneity in the ∞-limit, there ex<strong>is</strong>ts λ ∞ such that∂V ∞∂x(λ r∞ ⋄ θ)f(λ r∞ ⋄ θ)∣ λ d − ∂V ∞V∞ +d∞∂x (θ)f ∞(θ)∣ ≤ ɛ ∞ ∀ θ ∈ S r∞ , ∀ λ ≥ λ ∞ .Th<strong>is</strong> yields∂V ∞∂x (λr∞ ⋄ θ)f(λ r∞ ⋄ θ) ≤ λ d V∞ +d∞ ( ∂V∞∂x (θ)f ∞(θ) +ɛ ∞)≤−λ d V∞ +d∞ ɛ ∞ ∀ θ ∈ S r∞ , ∀ λ ≥ λ ∞ ,},<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


HOMOGENEOUS OBSERVER DESIGN 1843or in other words,(D.2)∂V ∞∂x (x) f(x) < 0 ∀ x : |x| r ∞≥ λ ∞ .Th<strong>is</strong> establ<strong>is</strong>hes global asymptotic stability <strong>of</strong> the compact setwhere v ∞ <strong>is</strong> given <strong>by</strong>C ∞ = {x : V ∞ (x) ≤ v ∞ } ,v ∞ = max|x| r∞ = λ ∞{V ∞ (x)} .Appendix E. Pro<strong>of</strong> <strong>of</strong> Theorem 2.20. The pro<strong>of</strong> <strong>is</strong> divided into three steps.First, we define three Lyapunov functions V 0 , V m , and V ∞ . Then we build anotherLyapunov function V from these three. Finally, we show that its derivative alongthe trajectories <strong>of</strong> the system (2.7) and its homogeneous approximations are negativedefinite.1. As establ<strong>is</strong>hed in the pro<strong>of</strong> <strong>of</strong> Proposition 2.18, there ex<strong>is</strong>t a positive realnumber λ ∞ and a C 1 positive definite, proper, and homogeneous functionV ∞ : R n → R + , with weight r ∞ and degree d V∞ sat<strong>is</strong>fying (D.2). Similarly,there ex<strong>is</strong>t a number λ 0 > 0 and a C 1 positive definite, proper, and homogeneousfunction V 0 : R n → R + , with weight r 0 and degree d V0 , sat<strong>is</strong>fying(E.1)∂V 0∂x (x) f(x) < 0 ∀ x : 0 < |x| r 0≤ λ 0 .Finally, the global asymptotic stability <strong>of</strong> the origin <strong>of</strong> the system ẋ = f(x)implies the ex<strong>is</strong>tence <strong>of</strong> a C 1 , positive definite, and proper function V m :R n → R + sat<strong>is</strong>fying(E.2)∂V m(x) f(x) < 0 ∀ x ≠0.∂x2. Now we build a function V from the functions V m , V ∞ , and V 0 . For <strong>th<strong>is</strong></strong>, wefollow a technique used <strong>by</strong> Mazenc in [17] (see also [15]). Let v ∞ and v 0 betwo strictly positive real numbers such that v 0


1844 V. ANDRIEU, L. PRALY, AND A. ASTOLFILetV (x) = ω ∞ ϕ ∞ (V m (x))V ∞ (x)+ [1 − ϕ ∞ (V m (x))] ϕ 0 (V m (x)) V m (x)+ω 0 [1 − ϕ 0 (V m (x))] V 0 (x) ,where ϕ 0 and ϕ ∞ are C 1 nondecreasing functions sat<strong>is</strong>fying(E.3)(E.4)ϕ 0 (s) = 0 ∀ s ≤ 1 2 v 0, ϕ 0 (s) = 1 ∀ s ≥ v 0 ,ϕ ∞ (s) = 0 ∀ s ≤ v ∞ , ϕ ∞ (s) = 1 ∀ s ≥ 2v ∞ .Then V <strong>is</strong> C 1 , positive definite, and proper. Moreover, <strong>by</strong> construction,⎧ω 0 V 0 (x) ∀ x : V m (x) ≤ 1 2 v 0 ,⎪⎨V (x) =⎪⎩ϕ 0 (V m (x)) V m (x)+ω 0 [1 − ϕ 0 (V m (x))] V 0 (x)∀ x :12 v 0 ≤ V m (x) ≤ v 0 ,V m (x) ∀ x : v 0 ≤ V m (x) ≤ v ∞ ,ω ∞ ϕ ∞ (V m (x))V ∞ (x) + [1 − ϕ ∞ (V m (x))] V m (x)∀ x : v ∞ ≤ V m (x) ≤ 2 v ∞ ,ω ∞ V ∞ (x) ∀ x : V m (x) ≥ 2 v ∞ .Thus for each i in {1,...,n},(E.5)and(E.6)∂V∂x i(x) = ω ∞∂V ∞∂x i(x)∀ x : V m (x) > 2 v ∞∂V∂x i(x) = ω 0∂V 0∂x i(x) ∀ x : V m (x) < 1 2 v 0 .Since ∂V∞∂x iand ∂V0∂x iare homogeneous in the standard sense, <strong>th<strong>is</strong></strong> proves that∂Vfor each i in {1,...,n},∂x i<strong>is</strong> homogeneous in the bi-limit, with weights r 0and r ∞ and degrees d V0 − r 0,i and d V∞ − r ∞,i .3. It remains to show that the Lie derivative <strong>of</strong> V along f <strong>is</strong> negative definite.To <strong>th<strong>is</strong></strong> end note that, for all x such that 1 2 v 0 ≤ V m (x) ≤ v 0 ,∂V∂x (x)f(x) = ϕ′ 0(V m (x)) [V m (x) − ω 0 V 0 (x)] ∂V m∂x (x)f(x)+ ω 0 [1 − ϕ 0 (V m (x))] ∂V 0∂x (x)f(x)+ϕ 0(V m (x)) ∂V m∂x (x)f(x)and, for all x such that v ∞ ≤ V m (x) ≤ 2 v ∞ ,∂V∂x (x)f(x) = ϕ′ ∞(V m (x)) [ω ∞ V ∞ (x) − V m (x)] ∂V m∂x (x)f(x)+ ω ∞ ϕ ∞ (V m (x)) ∂V ∞∂x (x)f(x) + [1 − ϕ ∞(V m (x))] ∂V m∂x (x)f(x) .By (D.2), (E.1), (E.2), (E.3), and (E.4), these inequalities imply∂V(x) f(x) < 0 ∀ x ≠ 0 ,∂xwhich proves the claim.<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


HOMOGENEOUS OBSERVER DESIGN 1845Appendix F. Pro<strong>of</strong> <strong>of</strong> Corollary 2.21. Recall (1.6) and consider the functionsη 1 : R n × R m → R and γ 1 : R n × R m → R + defined asη 1 (x, δ) = ∂V∂x (x) [f(x, δ) − 1 2 f(x, 0) ], γ 1 (x, δ) =m∑j=1(d V0 +d 0 d V∞)+d∞rH |δ j | 0,j r, |δ j | ∞,j.These functions are homogeneous in the bi-limit with weights r 0 and r ∞ for x and r 0and r ∞ for δ and degrees d V0 +d 0 and d V∞ +d ∞ . Since the function x ↦→ ∂V∂x(x) f(x, 0)<strong>is</strong> negative definite, then{(x, δ) ∈ R n+m \{0} : γ 1 (x, δ) = 0} ⊆{ (x, δ) ∈ R n+m : η 1 (x, δ) < 0} .Moreover, since the homogeneous approximations <strong>of</strong> η are negative definite, we get{(x, δ) ∈ R n+m \{0} : γ 1,0 (x, δ) = 0} ⊆{ (x, δ) ∈ R n+m : η 1,0 (x, δ) < 0} ,{(x, δ) ∈ R n+m \{0} : γ 1,∞ (x, δ) = 0} ⊆{ (x, δ) ∈ R n+m : η 1,∞ (x, δ) < 0} .Hence, <strong>by</strong> Lemma 2.13, there ex<strong>is</strong>ts a positive real number c δ such that(F.1)[∂V∂x (x) f(x, δ) − 1 ]2 f(x, 0)≤ c δm∑j=1(d V0 +d 0 d V∞)+d∞rH |δ j | 0,j r, |δ j | ∞,jConsider now the functions η 2 : R n → R + and γ 2 : R n → R + defined as(d V0 +d 0d V∞)+d∞dη 2 (x) =H V (x) V0d,V(x) V∞, γ 2 (x) =− 1 ∂V(x) f(x, 0) .2 ∂xThey are homogeneous in the bi-limit with weights r 0 and r ∞ and degrees d V0 + d 0and d V∞ + d ∞ . Since γ 2 and its homogeneous approximations are positive definite,<strong>by</strong> Corollary 2.15 there ex<strong>is</strong>ts a positive real number c V such that(d1 ∂VV0 +d 0d(F.2)2 ∂x (x) f(x, 0) ≤ −c V∞)+d∞dV H V (x) V0d,V(x) V∞.The two inequalities (F.1) and (F.2) yield the claim.Appendix G. Pro<strong>of</strong> <strong>of</strong> Corollary 2.22. Let d V0 and d V∞ be such that theassumption <strong>of</strong> Theorem 2.20 holds. For each i in {1,...,m}, let µ i : R + → R + bethe strictly increasing function defined as (see (1.6))(G.1) µ i (s) = H (s qi ,s pi ) ,wherep i = d ∞ + d V∞r ∞,i, q i = d 0 + d V0r 0,i.We first prove that the inequality given <strong>by</strong> Corollary 2.21 implies that the system(2.8), with δ as input and x as output, <strong>is</strong> ISS with a linear gain between ∑ mi=1 µ i(|δ i |)and H(|x| d0+d V 0r 0, |x| d∞+d V∞r ∞α(s) = H). To do so we introduce the function α : R + → R + as(d 0 +d V0 d∞+d V∞)ds V0 d,s V∞, s ≥ 0 ..<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


1846 V. ANDRIEU, L. PRALY, AND A. ASTOLFITh<strong>is</strong> function <strong>is</strong> a bijection, strictly increasing, and homogeneous in the bi-limit withd V0 +d 0d V0d V∞ +d∞dapproximating functions s and s V∞. Moreover, from Proposition 2.10,the function x ↦→ α(V (x)) <strong>is</strong> positive definite and homogeneous in the bi-limit withassociated weights r 0 and r ∞ and degrees d 0 + d V0 and d ∞ + d V∞ . Moreover, itsd V0 +d 0d V0d V∞ +d∞d V∞approximating homogeneous functions V 0 (x) and V ∞ (x) are positivedefinite as well. Hence, we get from Corollary 2.15 the ex<strong>is</strong>tence <strong>of</strong> a positive realnumber c 1 sat<strong>is</strong>fying()(G.2) H |x| d0+d V 0r 0, |x| d∞+d V∞r ∞≤ c 1 α(V (x)) ∀ x ∈ R n .On the other hand, from inequality (2.9) in Corollary 2.21, we have the property{}(x, δ) ∈ R n × R m(G.3): α(V (x)) ≥ 2 c δc Vm∑µ i (|δ i |){i=1⊆ (x, δ) ∈ R n × R m :∂V∂x (x) f(x, δ) ≤ −c V2 α(V (x)) }In the following, let t ∈ [0,T) ↦→ (x(t),δ(t),z(t)) be any function which sat<strong>is</strong>fies (2.8)on [0,T) and (2.10) and (2.11) for all 0 ≤ s ≤ t ≤ T . From [32], we know the inclusion(G.3) implies the ex<strong>is</strong>tence <strong>of</strong> a class KL function β V such that, for all 0 ≤ s ≤ t ≤ T ,(G.4)⎧⎨V (x(t)) ≤ max⎩ β V (V (x(s)),t− s) ,sups≤κ≤t⎧ ⎛⎨⎩ α−1 ⎝ 2c δc Vm∑j=1⎞⎫⎫⎬⎬µ j (|δ j (κ)|) ⎠⎭⎭ .With α acting on both sides <strong>of</strong> inequality (G.4), (G.2) gives, for all 0 ≤ s ≤ t ≤ T ,()H |x(t)| d0+d V 0r 0, |x(t)| d∞+d V∞r ∞⎧⎧⎫⎫⎨(G.5) ≤ max⎩ c 1 α ◦ β V (V (x(s)),t− s) , 2c ⎨1c δm∑ ⎬⎬sup µc V ⎩ j (|δ j (κ)|)⎭⎭ .s≤κ≤tTh<strong>is</strong> <strong>is</strong> the linear gain property required. To conclude the pro<strong>of</strong> it remains to showthe ex<strong>is</strong>tence <strong>of</strong> c G such that a small gain property <strong>is</strong> sat<strong>is</strong>fied.First, note that the function x ↦→ H(|x| d0+d V 0r 0, |x| d∞+d V∞r ∞) <strong>is</strong> positive definiteand homogeneous in the bi-limit with weights r 0 and r ∞ and degrees d 0 + d V0 andd ∞ + d V∞( . ( By Proposition 2.10, for i in {1,...,m} the same holds with the functionrx ↦→ µ i H |x|0,i))r 0, |x| r∞,ir ∞ . Hence, <strong>by</strong> Corollary 2.15, there ex<strong>is</strong>ts a positive realnumber c 2 sat<strong>is</strong>fying( ((G.6) µ i H |x|r 0,i)) ()r 0, |x| r∞,ir ∞ ≤ c2 H |x| d0+d V 0r 0, |x| d∞+d V∞r ∞∀ x ∈ R n .Let C i for i in {1,...,m} be the class K ∞ functions defined asC i (c) = max{c qi ,c pi } + c p i q iq i +p i + c pi+qi .From (G.1), we get, for each s>0 and c>0,µ i (cs)µ i (s)= c (1 + [ qi sqi )(1 + c pi s pi ) 1+cp(1 + s pi )(1 + c qi s qi ) ≤ i]s pi+qicqi1+c qi s + s qipi+qi 1+c qi s + s cpi piqi+pi 1+s pij=1.,<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


HOMOGENEOUS OBSERVER DESIGN 1847wherec qi 1+cpi s pi+qi1+c qi s pi+qi ≤ max{cqi ,c pi } ,Hence, <strong>by</strong> continuity at 0, we havec qi s qi1+c qi s qi+pi ≤ c p i q iq i +p i ,c qi c pi s pi1+s pi ≤ c pi+qi .(G.7) µ i (cs) ≤ C i (c) µ i (s) ∀ (c, s) ∈ R 2 + .Consider the positive real numbers c 1 , c 2 , c δ , and c V previously introduced, and selectc G in R + sat<strong>is</strong>fying( )c V(G.8) c G < min1≤i≤m C−1 i.2 mc 1 c 2 c δTo show that such a selection for c G <strong>is</strong> appropriate, observe that <strong>by</strong> (G.6) and (G.7)and µ i acting on both sides <strong>of</strong> the inequality (2.11), we get for each i in {1,...,m}and all 0 ≤ s ≤ t ≤ T ,µ i (|δ i (t)|) ≤ max{µ i ◦ β δ (|z(s)|,t− s) ,C i (c G ) c 2{ (sup Hs≤κ≤tConsequentlym∑{µ i (|δ i (t)|) ≤ max m max {µ i ◦ β δ (|z(s)|,t− s)} ,1≤i≤mi=1{ ((G.9) (m max 1≤i≤m C i (c G ) c 2 ) sup s≤κ≤t HSince (G.8) yields2c 1 c δc V|x(κ)| d0+d V 0r 0|x(κ)| d0+d V 0r 0m max1≤i≤m C i(c G ) c 2 < 1 ,)} }, |x(κ)| d∞+d V∞r ∞.)} }, |x(κ)| d∞+d V∞r ∞.the ex<strong>is</strong>tence <strong>of</strong> the function β x follows from (2.10), (G.5), (G.9), and the (pro<strong>of</strong> <strong>of</strong>the) small-gain theorem [11].Appendix H. Pro<strong>of</strong> <strong>of</strong> Corollary 2.24. First, observe that the continuity <strong>of</strong>f 0 , at least, on R n \{0} implies|d 0 | = −d 0 ≤ min1≤i≤n r 0,i ≤ max1≤i≤n r 0,i < d V0 .Then, let V be the function given in Theorem 2.20 and, since d 0 < 0 < d ∞ , the functionφ(x) =V (x)d V0 +d 0d V0+ V (x)d V∞ +d∞d V∞<strong>is</strong> homogeneous in the bi-limit with weightsr 0 and r ∞ , degrees d V0 + d 0 and d V∞ + d ∞ , and approximating functions V (x)d V∞ +d∞d V∞d V0 +d 0d V0and V (x) . Moreover, the function ζ(x) = − ∂V∂x(x) f(x) <strong>is</strong> homogeneous inthe bi-limit with the same weights and degrees as φ. Furthermore, since the functionζ and its homogeneous approximations are positive definite, Corollary 2.15 yields astrictly positive real number c such that(H.1)(d∂VV0 +d 0∂x (x) f(x) ≤ −c dV (x) V0d V∞)+d∞d+ V (x) V∞∀ x ∈ R n .<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


1848 V. ANDRIEU, L. PRALY, AND A. ASTOLFILet x ic in R n \{0} be the initial condition <strong>of</strong> a solution <strong>of</strong> the system ẋ = f(x), andlet V xic : R + → R + be the function <strong>of</strong> time given <strong>by</strong> the evaluation <strong>of</strong> V along <strong>th<strong>is</strong></strong>solution. Thenfrom which we get{ ˙ {d V∞ +d∞dV xic (t) ≤ −cV xic (t) V∞∀ t ≥ 0 ,V xic (t) ≤(d ∞d V∞1) dct + V (x ic ) − d∞ V∞d∞d V∞≤(d ∞d V∞1ct) d V∞d∞∀ t>0 .Therefore, setting T 1= d V∞cd ∞, we haveV xic (t) ≤ 1 ∀ t ≥ T 1 , ∀ x ic ∈ R nandd{ ˙ {V0 −|d 0 |dV xic (t) ≤ −cV xic (t) V0∀ t ≥ 0 .As a result, we get⎧⎨(V xic (t) ≤ max − |d |d0|0 |c(t − T⎩1 )+V xic (T 1 )d V0⎧⎫⎨(≤ max 1 − |d ) d V 0|d0|0 | ⎬c(t − T 1 ) , 0⎩ d V0 ⎭d V0) d V 0|d 0 |, 0⎫⎬⎭ ,∀ t ≥ T 1 .Therefore, setting T 2 = d V 0c|d 0| yieldsV xic (t) = 0hence the claim.∀ t ≥ T 1 + T 2 = 1 c(dV∞+ d )V 0, ∀ x ic ∈ R n ,d ∞ |d 0 |Acknowledgments. The second author <strong>is</strong> extremely grateful to Wilfrid Perruquettiand Emmanuel Moulay for the many d<strong>is</strong>cussions about the notion <strong>of</strong> homogeneityin the bi-limit. Also, all the authors would like to thank the anonymousreviewers for their comments, which were extremely helpful in improving the quality<strong>of</strong> the paper.REFERENCES[1] V. Andrieu, L. Praly, and A. Astolfi, Nonlinear output feedback design via domination andgeneralized weighted homogeneity, in Proceedings <strong>of</strong> the 45th IEEE Conference on Dec<strong>is</strong>ionand Control, San Diego, 2006, pp. 6391–6396.[2] A. Bacciotti and L. Rosier, Liapunov Functions and Stability in Control Theory, LectureNotes in Control and Inform. Sci. 267, Springer, Berlin, 2001.[3] S. P. Bhat and D. S. Bernstein, Geometric homogeneity with applications to finite-timestability, Math. Control Signals Systems, 17 (2005), pp. 101–127.<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


HOMOGENEOUS OBSERVER DESIGN 1849[4] S. P. Bhat and D. S. Bernstein, Finite-time stability <strong>of</strong> continuous autonomous systems,<strong>SIAM</strong> J. Control Optim., 38 (2000), pp. 751–766.[5] J.-M. Coron and L. Praly, Adding an integrator for the stabilization problem, Systems ControlLett., 17 (1991), pp. 89–104.[6] J.-M. Coron and L. Rosier, A relation between continuous time-varying and d<strong>is</strong>continuousfeedback stabilization, J. Math. Systems Estim. Control, 4 (1994), pp. 67–84.[7] J. P. Gauthier and I. Kupka, Determin<strong>is</strong>tic Observation Theory And Applications, CambridgeUniversity Press, Cambridge, UK, 2001.[8] W. Hahn, Stability <strong>of</strong> Motion, Springer-Verlag, Berlin, 1967.[9] H. Hermes, Homogeneous coordinates and continuous asymptotically stabilizing feedback controls,in Differential Equations: Stability and Control, Lecture Notes in Pure Appl.Math. 109, S. Elaydi, ed., Marcel Dekker, New York, 1991, pp. 249–260.[10] Y. Hong, Finite-time stabilization and stabilizability <strong>of</strong> a class <strong>of</strong> controllable systems, SystemsControl Lett., 46 (2002), pp. 231–236.[11] Z.-P. Jiang, A. Teel, and L. Praly, Small-gain theorem for ISS systems and applications,Math. Control Signals Systems, 7 (1994), pp. 95–120.[12] M. Kawski, Stabilization <strong>of</strong> nonlinear systems in the plane, Systems Control Lett., 12 (1989),pp. 169–175.[13] H. Khalil and A. Saberi, Adaptive stabilization <strong>of</strong> a class <strong>of</strong> nonlinear systems using highgainfeedback, IEEE Trans. Automat. Control, 32 (1987), pp. 1031–1035.[14] S. Lefschetz, Differential Equations: Geometric Theory, 2nd ed., Dover, New York, 1977.[15] W. Liu, Y. Chitour, and E. Sontag, On finite-gain stabilizability <strong>of</strong> linear systems subjectto input saturation, <strong>SIAM</strong> J. Control Optim., 34 (1996), pp. 1190–1219.[16] J. L. Massera, Contributions to stability theory, Ann. <strong>of</strong> Math., 64 (1956), pp. 182–206.[17] F. Mazenc, Stabil<strong>is</strong>ation de trajectoires, ajout d’intégration, commandes saturées, Mémoirede thèse en Mathématiques et Automatique de l’École Nationale Supérieure des Mines dePar<strong>is</strong>, Avril 1996.[18] F. Mazenc, L. Praly, and W. P. Dayawansa, Global stabilization <strong>by</strong> output feedback: Examplesand counter-examples, Systems Control Lett., 23 (1994), pp. 119–125.[19] P. Morin and C. Samson, Application <strong>of</strong> backstepping techniques to the time-varying exponentialstabil<strong>is</strong>ation <strong>of</strong> chained form systems, European J. Control, 3 (1997), pp. 15–36.[20] R. Orsi, L. Praly, and I. Mareels, Sufficient conditions for the ex<strong>is</strong>tence <strong>of</strong> an unboundedsolution, Automatica, 37 (2001), pp. 1609–1617.[21] L. Praly, B. d’Andréa-Novel, and J.-M. Coron, Lyapunov design <strong>of</strong> stabilizing controllersfor cascaded systems, IEEE Trans. Automat. Control, 36 (1991), pp. 1177–1181.[22] L. Praly and Z.-P. Jiang, Stabilization <strong>by</strong> output feedback for systems with ISS inversedynamics, Systems Control Lett., 21 (1993), pp. 19–33.[23] L. Praly and Z.-P. Jiang, Further results on robust semiglobal stabilization with dynamicinput uncertainties, in Proceedings <strong>of</strong> the 37th Annual IEEE Conference on Dec<strong>is</strong>ion andControl, Tampa, 1998, pp. 891–896.[24] L. Praly and Z.-P. Jiang, Linear output feedback with dynamic high gain for nonlinearsystems, Systems Control Lett., 53 (2004), pp. 107–116.[25] L. Praly and F. Mazenc, Design <strong>of</strong> Homogeneous Feedbacks for a Chain <strong>of</strong> Integrators andApplications, Internal report E 173, CAS, Ecole des Mines de Par<strong>is</strong>, Par<strong>is</strong>, December 11,1995; rev<strong>is</strong>ed April 15, 1996.[26] C. Qian, A homogeneous domination approach for global output feedback stabilization <strong>of</strong> a class<strong>of</strong> nonlinear systems, in Proceedings <strong>of</strong> the IEEE American Control Conference, Portland,2005, pp. 4708–4715.[27] C. Qian and W. Lin, Output feedback control <strong>of</strong> a class <strong>of</strong> nonlinear systems: A nonseparationprinciple paradigm, IEEE Trans. Automat. Control, 47 (2002), pp. 1710–1715.[28] C. Qian and W. Lin, Recursive observer design, homogeneous approximation, and nonsmoothoutput feedback stabilization <strong>of</strong> nonlinear systems, IEEE Trans. Automat. Control, 51(2006), pp. 1457–1471.[29] L. Rosier, Homogeneous Lyapunov function for homogeneous continuous vector field, SystemsControl Lett., 19 (1992), pp. 467–473.[30] H. Shim and J. Seo, Recursive nonlinear observer design: Beyond the uniform observability,IEEE Trans. Automat. Control, 48 (2003), pp. 294–298.[31] E. D. Sontag, Input to state stability: Basic concepts and results, in Nonlinear and OptimalControl Theory, P. N<strong>is</strong>tri and G. Stefani, eds., Springer-Verlag, Berlin, 2006, pp. 163–220.[32] E. Sontag and Y. Wang, Lyapunov characterizations <strong>of</strong> input to output stability, <strong>SIAM</strong> J.Control Optim., 39 (2000), pp. 226–249.<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


1850 V. ANDRIEU, L. PRALY, AND A. ASTOLFI[33] M. Tzamtzi and J. Tsinias, Explicit formulas <strong>of</strong> feedback stabilizers for a class <strong>of</strong> triangularsystems with uncontrollable linearization, Systems Control Lett., 38 (1999), pp. 115–126.[34] F. W. Wilson, Jr., Smoothing derivatives <strong>of</strong> functions and applications, Trans. Amer. Math.Soc., 139 (1969), pp. 413–428.[35] B. Yang and W. Lin, Homogeneous observers, iterative design, and global stabilization <strong>of</strong>high-order nonlinear systems <strong>by</strong> smooth output feedback, IEEE Trans. Automat. Control,49 (2004), pp. 1069–1080.<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!