13.07.2015 Views

Copyright © by SIAM. Unauthorized reproduction of this article is ...

Copyright © by SIAM. Unauthorized reproduction of this article is ...

Copyright © by SIAM. Unauthorized reproduction of this article is ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>SIAM</strong> J. CONTROL OPTIM.Vol. 47, No. 4, pp. 1814–1850c○ 2008 Society for Industrial and Applied MathematicsHOMOGENEOUS APPROXIMATION, RECURSIVE OBSERVERDESIGN, AND OUTPUT FEEDBACK ∗VINCENT ANDRIEU † , LAURENT PRALY ‡ , AND ALESSANDRO ASTOLFI §Abstract. We introduce two new tools that can be useful in nonlinear observer and outputfeedback design. The first one <strong>is</strong> a simple extension <strong>of</strong> the notion <strong>of</strong> homogeneous approximationto make it valid both at the origin and at infinity (homogeneity in the bi-limit). Exploiting <strong>th<strong>is</strong></strong>extension, we give several results concerning stability and robustness for a homogeneous in thebi-limit vector field. The second tool <strong>is</strong> a new recursive observer design procedure for a chain <strong>of</strong>integrator. Combining these two tools, we propose a new global asymptotic stabilization result <strong>by</strong>output feedback for feedback and feedforward systems.Key words. homogeneous approximation, output feedback and observerAMS subject classifications. 93B51, 93B52, 93D05, 93D15, 34D20DOI. 10.1137/0606758611. Introduction. The problems <strong>of</strong> designing globally convergent observers andglobally asymptotically stabilizing output feedback control laws for nonlinear systemshave been addressed <strong>by</strong> many authors following different routes. Many <strong>of</strong> these approachesexploit domination ideas and robustness <strong>of</strong> stability and/or convergence. Inview <strong>of</strong> possibly clarifying and developing further these techniques we introduce twonew tools. The first one <strong>is</strong> a simple extension <strong>of</strong> the technique <strong>of</strong> homogeneous approximationto make it valid both at the origin and at infinity. The second tool <strong>is</strong> anew recursive observer design procedure for a chain <strong>of</strong> integrator. Combining thesetwo tools, we propose a new global asymptotic stabilization result <strong>by</strong> output feedbackfor feedback and feedforward systems.To place our contribution in perspective, we consider the following system, forwhich we want to design a global asymptotic stabilizing output feedback:(1.1) ẋ 1 = x 2 , ẋ 2 = u + δ 2 (x 1 ,x 2 ), y = x 1 ,where (see notation (1.4))(1.2) δ 2 (x 1 ,x 2 ) = c 0 x q 2 + c ∞ x p 2 , (c 0,c ∞ ) ∈ R 2 , p > q > 0 .In the domination’s approach, the nonlinear function δ 2 <strong>is</strong> not treated per se inthe design but considered as a perturbation. In <strong>th<strong>is</strong></strong> framework the output feedbackcontroller <strong>is</strong> designed on the linear system(1.3) ẋ 1 = x 2 , ẋ 2 = u, y = x 1 ,∗ Received <strong>by</strong> the editors November 24, 2006; accepted for publication (in rev<strong>is</strong>ed form) February17, 2008; publ<strong>is</strong>hed electronically June 25, 2008. The work <strong>of</strong> the first and third authors was partlysupported <strong>by</strong> the Leverhulme Trust.http://www.siam.org/journals/sicon/47-4/67586.html† LAAS-CNRS, University <strong>of</strong> Toulouse, 31077 Toulouse, France (vincent.andrieu@gmail.com).Th<strong>is</strong> author’s work was done while at Electrical and Electronic Engineering Department, ImperialCollege, London.‡ Centre d’Automatique et Systèmes, École des Mines de Par<strong>is</strong>, 35 Rue Saint Honoré, 77305Fontainebleau, France (Laurent.Praly@ensmp.fr).§ Electrical and Electronic Engineering Department, Imperial College London, London, SW7 2AZ,UK (a.astolfi@ic.ac.uk), and Dipartimento di Informatica S<strong>is</strong>temi e Produzione, University <strong>of</strong> RomeTor Vergata, Via del Politecnico 1, 00133 Rome, Italy.1814<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


HOMOGENEOUS OBSERVER DESIGN 1815and will be suitable for the nonlinear system (1.1), provided the global asymptoticstability obtained for the origin <strong>of</strong> the closed-loop system <strong>is</strong> robust to the nonlineard<strong>is</strong>turbance δ 2 . For instance, the design given in [13, 27] provides a linear outputfeedback controller which <strong>is</strong> suitable for the nonlinear system (1.1) when q = 1 andc ∞ = 0. Th<strong>is</strong> result has been extended recently in [26] employing a homogeneousoutput feedback controller which allows us to deal with p ≥ 1 and c 0 = 0.Homogeneity in the bi-limit and the novel recursive observer design proposed in<strong>th<strong>is</strong></strong> paper allow us to deal with the case in which c 0 ≠ 0 and c ∞ ≠ 0. In <strong>th<strong>is</strong></strong> case,the function δ 2 <strong>is</strong> such that1. when |x 2 | <strong>is</strong> small and q = 1, δ 2 (x 2 ) can be approximated <strong>by</strong> c 0 x 2 and thenonlinearity can be approximated <strong>by</strong> a linear function;2. when |x 2 | <strong>is</strong> large, δ 2 (x 2 ) can be approximated <strong>by</strong> c ∞ x p 2 , and hence we havea polynomial growth which can be handled <strong>by</strong> a weighted homogeneous controlleras in [26].To deal with both linear and polynomial terms we introduce a generalization <strong>of</strong>weighted homogeneity which highlights the fact that a function becomes homogeneousas the state tends to the origin or to infinity but with different weights anddegrees.The paper <strong>is</strong> organized as follows. Section 2 <strong>is</strong> devoted to general propertiesrelated to homogeneity. After giving the definition <strong>of</strong> homogeneous approximationwe introduce homogeneous in the bi-limit functions and vector fields (section 2.1)and l<strong>is</strong>t some <strong>of</strong> their properties (section 2.2). Various results concerning stabilityand robustness for homogeneous in the bi-limit vector fields are given in section 2.3.In section 3 we introduce a novel recursive observer design method for a chain <strong>of</strong>integrator. Section 4 <strong>is</strong> devoted to the homogeneous in the bi-limit state feedback.Finally, in section 5, using the previous tools, we establ<strong>is</strong>h new results on stabilization<strong>by</strong> output feedback.Notation.• R + denotes the set [0, +∞).• For any nonnegative real number r the function w ↦→ w r <strong>is</strong> defined as(1.4) w r = sign(w) |w| r ∀ w ∈ R .According to <strong>th<strong>is</strong></strong> definition,(1.5)dw rdw = r|w|r−1 ,w 2 = w|w| , (w 1 >w 2 and r>0) ⇒ w r 1 >w r 2 .• The function H : R 2 + → R + <strong>is</strong> defined as(1.6) H(a, b) = a [1 + b] .1+a• Given r =(r 1 ,...,r n ) T in R n + and λ in R + , λ r ⋄ x =(λ r1 x 1 , . . . , λ rn x n ) T <strong>is</strong>the dilation <strong>of</strong> a vector x in R n with weight r. Note thatλ r 1 ⋄ (λ r 2 ⋄ x) = (λ 1 λ 2 ) r ⋄ x.• Given r =(r 1 ,...,r n ) T in (R + \{0}) n , |x| r = |x 1 | 1r 1 + ··· + |x n | 1rnhomogeneous norm with weight r and degree 1. Note that( ) r |λ r ⋄ x| r = λ |x| r ,1∣ ⋄ x|x| r∣ = 1 .r<strong>is</strong> the<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


1816 V. ANDRIEU, L. PRALY, AND A. ASTOLFI• Given r in (R + \{0}) n , S r = {x ∈ R n ||x| r = 1} <strong>is</strong> the unity homogeneoussphere. Note that each x in R n can be decomposed in polar coordinates; i.e.,there ex<strong>is</strong>t λ in R + and θ in S r sat<strong>is</strong>fying(1.7) x = λ r ⋄ θ with{ λ = |x|r(,) r1θ =|x| r⋄ x.2. Homogeneous approximation.2.1. Definitions. The use <strong>of</strong> homogeneous approximations has a long h<strong>is</strong>toryin the study <strong>of</strong> stability <strong>of</strong> an equilibrium. It can be traced back to the Lyapunovfirst order approximation theorem and has been pursued <strong>by</strong> many authors; see, forexample, Massera [16], Hahn [8], Hermes [9], and Rosier [29]. Similarly, <strong>th<strong>is</strong></strong> techniquehas been used to investigate the behavior <strong>of</strong> the solutions <strong>of</strong> dynamical systems atinfinity; see, for instance, Lefschetz in [14, Chapter IX.5] and Orsi, Praly, and Mareelsin [20]. In <strong>th<strong>is</strong></strong> section, we recall the definitions <strong>of</strong> homogeneous approximation at theorigin and at infinity and restate and/or complete some related results.Definition 2.1 (homogeneity in the 0-limit).• A function φ : R n → R <strong>is</strong> said to be homogeneous in the 0-limit with associatedtriple (r 0 ,d 0 ,φ 0 ), where r 0 in (R + \{0}) n <strong>is</strong> the weight, d 0 in R + thedegree, and φ 0 : R n → R the approximating function, if φ <strong>is</strong> continuous, φ 0<strong>is</strong> continuous and not identically zero, and, for each compact set C in R n \{0}and each ε> 0, there ex<strong>is</strong>ts λ 0 such thatmaxφ(λ r0 ⋄ x)x ∈ C∣ λ d0− φ 0 (x)∣ ≤ ε ∀ λ ∈ (0,λ 0] .• A vector field f = ∑ ni=1 f i ∂∂x i<strong>is</strong> said to be homogeneous in the 0-limit withassociated triple (r 0 , d 0 ,f 0 ), where r 0 in (R + \{0}) n <strong>is</strong> the weight, d 0 in R<strong>is</strong> the degree, and f 0 = ∑ ni=1 f 0,i ∂∂x i<strong>is</strong> the approximating vector field, if, foreach i in {1,...,n}, d 0 + r 0,i ≥ 0 and the function f i <strong>is</strong> homogeneous in the0-limit with associated triple (r 0 , d 0 + r 0,i ,f 0,i ).Th<strong>is</strong> notion <strong>of</strong> local approximation <strong>of</strong> a function or <strong>of</strong> a vector field can be foundin [9, 29, 2, 10].Example 2.2. The function δ 2 : R → R introduced in the illustrative system (1.1)<strong>is</strong> homogeneous in the 0-limit with associated triple (r 0 ,d 0 ,δ 2,0 ) = (1, q, c 0 x q 2 ). Furthermore,if q


HOMOGENEOUS OBSERVER DESIGN 1817R + <strong>is</strong> the degree, and φ ∞ : R n → R <strong>is</strong> the approximating function, if φ <strong>is</strong>continuous, φ ∞ <strong>is</strong> continuous and not identically zero, and, for each compactset C in R n \{0} and each ε> 0, there ex<strong>is</strong>ts λ ∞ such thatmaxφ(λ r∞ ⋄ x)x ∈ C∣ λ d∞− φ ∞ (x)∣ ≤ ε ∀ λ ≥ λ ∞ .• A vector field f = ∑ ni=1 f i ∂∂x i<strong>is</strong> said to be homogeneous in the ∞-limit withassociated triple (r ∞ , d ∞ ,f ∞ ), where r ∞ in (R + \{0}) n <strong>is</strong> the weight, d ∞ inR <strong>is</strong> the degree, and f ∞ = ∑ ni=1 f ∞,i ∂∂x i<strong>is</strong> the approximating vector field, if,for each i in {1,...,n}, d ∞ + r ∞,i ≥ 0 and the function f i <strong>is</strong> homogeneousin the ∞-limit with associated triple (r ∞ , d ∞ + r ∞,i ,f ∞,i ).Example 2.4. The function δ 2 : R → R given in the illustrative system (1.1) <strong>is</strong>homogeneous in the ∞-limit with associated triple (r ∞ ,d ∞ ,δ 2,∞ ) = (1, p, c ∞ x p 2 ).Furthermore, when p d 0r 0,i∀ i ∈ {1,...,n} .Example 2.9. We recall (1.6) and consider two homogeneous and positive definitefunctions φ 0 : R n → R + and φ ∞ : R n → R + with weights (r 0 ,r ∞ ) in (R + \{0}) 2n anddegrees (d 0 ,d ∞ ) in (R + \{0}) 2 . The function x ↦→ H(φ 0 (x),φ ∞ (x)) <strong>is</strong> positive definiteand homogeneous in the bi-limit with associated triples (r 0 ,d 0 ,φ 0 ) and (r ∞ ,d ∞ ,φ ∞ ).Th<strong>is</strong> way <strong>of</strong> constructing a homogeneous in the bi-limit function from two positivedefinite homogenous functions <strong>is</strong> extensively used in <strong>th<strong>is</strong></strong> paper.2.2. Properties <strong>of</strong> homogeneous approximations. To begin, we note thatthe weight and degree <strong>of</strong> a homogeneous in the 0- (resp., ∞-) limit function are1 Th<strong>is</strong> <strong>is</strong> proved <strong>by</strong> noting that, for all x in R n and all µ in R + \{0},φ 0 (µ r 0 ⋄ x)µ d 0= 1µ d lim φ (λ r 0 ⋄ (µ r 0 ⋄ x)) φ ((λµ) r 0 ⋄ x)0 λ→0 λ d = lim0λ→0 (λµ) d = φ 0 (x) ,0and similarly for the homogeneous in the ∞-limit function.<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


1818 V. ANDRIEU, L. PRALY, AND A. ASTOLFInot uniquely defined. Indeed, if φ <strong>is</strong> homogeneous in the 0- (resp., ∞-) limit withassociated triple (r 0 ,d 0 ,φ 0 ) (resp., (r ∞ ,d ∞ ,φ ∞ )), then it <strong>is</strong> also homogeneous in the0- (resp., ∞-) limit with associated triple (kr 0 , k d 0 ,φ 0 ) (resp., (kr ∞ , k d ∞ ,φ ∞ )) forall k>0. (Simply change λ into λ k .)It <strong>is</strong> straightforward to show that if φ and ζ are two functions homogeneous inthe 0- (resp., ∞-) limit, with weights r φ,0 and r ζ,0 (resp., r φ,∞ and r ζ,∞ ), degrees d φ,0and d ζ,0 (resp., d φ,∞ and d ζ,∞ ), and approximating functions φ 0 and ζ 0 (resp., φ ∞and ζ ∞ ), then the following hold:P1: If there ex<strong>is</strong>ts k in R + such that kr φ,0 = r ζ,0 (resp., kr φ,∞ = r ζ,∞ ), thenthe function x ↦→ φ(x) ζ(x) <strong>is</strong> homogeneous in the 0- (resp., ∞-) limit withweight r ζ,0 , degree kd φ,0 +d ζ,0 (resp., r ζ,∞ , kd φ,∞ +d ζ,∞ ) and approximatingfunction x ↦→ φ 0 (x) ζ 0 (x) (resp., x ↦→ φ ∞ (x) ζ ∞ (x)).dP2: If, for each j in {1,...,n},φ,0r φ,0,j< d ζ,0dr ζ,0,j(resp.,φ,∞r φ,∞,j> d ζ,∞r ζ,∞,j), thenthe function x ↦→ φ(x) +ζ(x) <strong>is</strong> homogeneous in the 0- (resp., ∞-) limitwith degree d φ,0 and weight r φ,0 (resp., d φ,∞ and r φ,∞ ) and approximatingfunction x ↦→ φ 0 (x) (resp., x ↦→ φ ∞ (x)). In <strong>th<strong>is</strong></strong> case we say that the functionφ dominates the function ζ in the 0-limit (resp., in the ∞-limit).P3: If the function φ 0 + ζ 0 (resp., φ ∞ + ζ ∞ ) <strong>is</strong> not identically zero and, for eachd φ,0r φ,0,j= d ζ,0r ζ,0,jdj in {1,...,n},(resp.,φ,∞r φ,∞,j= d ζ,∞r ζ,∞,j), then the functionx ↦→ φ(x) +ζ(x) <strong>is</strong> homogeneous in the 0- (resp., ∞-) limit with degreed φ,0 and weight r φ,0 (resp., d φ,∞ and r φ,∞ ) and approximating function x ↦→φ 0 (x) +ζ 0 (x) (resp., x ↦→ φ ∞ (x)+ζ ∞ (x)).Some properties <strong>of</strong> the composition or inverse <strong>of</strong> functions are given in the followingtwo propositions, the pro<strong>of</strong>s <strong>of</strong> which are given in Appendices A and B.Proposition 2.10 (composition function). If φ : R n → R and ζ : R → R arehomogeneous in the 0- (resp., ∞-) limit functions, with weights r φ,0 and r ζ,0 (resp.,r φ,∞ and r ζ,∞ ), degrees d φ,0 > 0 and d ζ,0 ≥ 0 (resp., d φ,∞ > 0 and d ζ,∞ ≥ 0),and approximating functions φ 0 and ζ 0 (resp., φ ∞ and ζ ∞ ), then ζ ◦ φ <strong>is</strong> homogeneousin the 0- (resp., ∞-) limit with weight r φ,0 (resp., r φ,∞ ), degree d ζ,0 d φ,0r ζ,0(resp.,d ζ,∞ d φ,∞r ζ,∞), and approximating function ζ 0 ◦ φ 0 (resp., ζ ∞ ◦ φ ∞ ).Proposition 2.11 (inverse function). Let φ : R → R be a bijective homogeneousin the 0- (resp., ∞-) limit function with associated triple ( )1,d 0 ,ϕ 0 x d0 with ϕ0 ≠0and d 0 > 0 (resp., ( )1,d ∞ ,ϕ ∞ x d∞ with ϕ∞ ≠0and d ∞ > 0). Then the inversefunction φ −1 : R → R <strong>is</strong> a homogeneous in the 0- (resp., ∞-) limit function withassociated triple (1, 1 d 0, ( x ϕ 0) 1d 01) (resp., (1,d ∞, ( xϕ ∞) 1d∞ )).Despite the ex<strong>is</strong>tence <strong>of</strong> well-known results concerning the derivative <strong>of</strong> a homogeneousfunction, it <strong>is</strong> not possible to say anything, in general, when dealing withhomogeneity in the limit. For example, the functionφ(x) =x 3 + x 2 sin(x 2 )+x 3 sin(1/x)+x 2 , x ∈ R ,<strong>is</strong> homogeneous in the bi-limit with associated triples(1, 2,x2 ) (, 1, 3,x3 ) .However, its derivative <strong>is</strong> homogeneous in neither the 0-limit nor the ∞-limit. Neverthelessthe following result holds, the pro<strong>of</strong> <strong>of</strong> which <strong>is</strong> elementary.Proposition 2.12 (integral function). If the function φ : R n → R <strong>is</strong> homogeneousin the 0- (resp., ∞-) limit with associated triple (r 0 ,d 0 ,φ 0 ) (resp., (r ∞ ,d ∞ ,φ ∞ )),<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


HOMOGENEOUS OBSERVER DESIGN 1819then the function Φ i (x) = ∫ x iφ(x0 1 ,...,x i−1 , s, x i+1 ,...,x n ) ds <strong>is</strong> homogeneous inthe 0- (resp., ∞-) limit with associated triple (r 0 ,d 0 + r 0,i , Φ i,0 ) (resp., (r ∞ ,d ∞ +r ∞,i , Φ i,∞ )), with Φ i,0 (x) = ∫ x iφ0 0 (x 1 ,...,x i−1 , s, x i+1 ,...,x n ) ds (resp., Φ i,∞ (x) =∫ xiφ0 ∞ (x 1 ,...,x i−1 , s, x i+1 ,...,x n ) ds).By exploiting the definition <strong>of</strong> homogeneity in the bi-limit, it <strong>is</strong> possible to establ<strong>is</strong>hresults which are straightforward extensions <strong>of</strong> well-known results based on thestandard notion <strong>of</strong> homogeneity. These results are given as corollaries <strong>of</strong> the followingkey technical lemma, the pro<strong>of</strong> <strong>of</strong> which <strong>is</strong> given in Appendix C.Lemma 2.13 (key technical lemma). Let η : R n → R and γ : R n → R + be tw<strong>of</strong>unctions homogeneous in the bi-limit, with weights r 0 and r ∞ , degrees d 0 and d ∞ ,and approximating functions, η 0 , η ∞ and γ 0 , γ ∞ such that the following hold:{ x ∈ R n \{0} : γ(x) =0} ⊆{ x ∈ R n : η(x) < 0 } ,{ x ∈ R n \{0} : γ 0 (x) =0} ⊆{ x ∈ R n : η 0 (x) < 0 } ,{ x ∈ R n \{0} : γ ∞ (x) =0} ⊆{ x ∈ R n : η ∞ (x) < 0 } .Then there ex<strong>is</strong>ts a real number c ∗ such that, for all c ≥ c ∗ and for all x in R n \{0},(2.4)η(x) − cγ(x) < 0 , η 0 (x) − cγ 0 (x) < 0 , η ∞ (x) − cγ ∞ (x) < 0 .Example 2.14. To illustrate the importance <strong>of</strong> <strong>th<strong>is</strong></strong> lemma, consider, for (x 1 ,x 2 )in R 2 , the functionsη(x 1 ,x 2 )=x 1 x 2 −|x 1 | r 1 +r 2r 1 , γ(x 1 ,x 2 )=|x 2 | r 1 +r 2r 2 ,with r 1 > 0 and r 2 > 0. They are homogeneous in the standard sense, and thereforein the bi-limit, with the same weight r =(r 1 ,r 2 ) and the same degree d = r 1 + r 2 .Furthermore, the function γ takes positive values, and for all (x 1 ,x 2 ) in {(x 1 ,x 2 ) ∈R 2 \{0} : γ(x 1 ,x 2 )=0} we haveη(x 1 ,x 2 ) = −|x 1 | r 1 +r 2r 1 < 0 .Thus Lemma 2.13 yields the ex<strong>is</strong>tence <strong>of</strong> a positive real number c ∗ such that for allc ≥ c∗, we have(2.5) x 1 x 2 −|x 1 | r 1 +r 2r 1 − c |x 2 | r 1 +r 2r 2 < 0 ∀ (x 1 ,x 2 ) ∈ R 2 \{0} .Th<strong>is</strong> <strong>is</strong> a generalization <strong>of</strong> the procedure known as the completion <strong>of</strong> the squares inwhich, however, the constant c ∗ 1 <strong>is</strong> not specified.Corollary 2.15. Let φ : R n → R and ζ : R n → R + be two homogeneous in thebi-limit functions with the same weights r 0 and r ∞ , degrees d φ,0 , d φ,∞ and d ζ,0 , d ζ,∞ ,and approximating functions η 0 , φ ∞ and ζ 0 , ζ ∞ . If the degrees sat<strong>is</strong>fy d φ,0 ≥ d ζ,0 andd φ,∞ ≤ d ζ,∞ , and the functions ζ, ζ 0 and ζ ∞ are positive definite, then there ex<strong>is</strong>ts apositive real number c sat<strong>is</strong>fyingPro<strong>of</strong>. Consider the two functionsφ(x) ≤ cζ(x) ∀ x ∈ R n .η(x) := φ(x)+ζ(x), γ(x) := ζ(x) .<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


1820 V. ANDRIEU, L. PRALY, AND A. ASTOLFIBy property P2 (or P3) 2 in section 2.2, they are homogeneous in the bi-limit withdegrees d ζ,0 and d ζ,∞ . The function γ and its homogeneous approximations beingpositive definite, all assumptions <strong>of</strong> Lemma 2.13 are sat<strong>is</strong>fied. Therefore there ex<strong>is</strong>tsa positive real number c such thatcγ(x) > η(x) > φ(x) ∀ x ∈ R n \{0} .Finally, <strong>by</strong> continuity <strong>of</strong> the functions φ and ζ at zero, we can obtain the claim.2.3. Stability and homogeneous approximation. A very basic property <strong>of</strong>asymptotic stability <strong>is</strong> its robustness. Th<strong>is</strong> fact was already known to Lyapunov, whoproposed h<strong>is</strong> second method, in which (local) asymptotic stability <strong>of</strong> an equilibrium <strong>is</strong>establ<strong>is</strong>hed <strong>by</strong> looking at the first order approximation <strong>of</strong> the system. The case <strong>of</strong> localhomogeneous approximations <strong>of</strong> higher degree has been investigated <strong>by</strong> Massera [16],Hermes [9], Rosier [29], and Kawski [12].Proposition 2.16 (see [29]). Consider a homogeneous in the 0-limit vector fieldf : R n → R n with associated triple (r 0 , d 0 ,f 0 ). If the origin <strong>of</strong> the systemẋ = f 0 (x)<strong>is</strong> locally asymptotically stable, then the origin <strong>of</strong>ẋ = f(x)<strong>is</strong> locally asymptotically stable.Consequently, a natural strategy to ensure local asymptotic stability <strong>of</strong> an equilibrium<strong>of</strong> a system <strong>is</strong> to design a stabilizing homogeneous control law for the homogeneousapproximation in the 0-limit (see [9, 12, 5], for instance).Example 2.17. Consider the system (1.1), with q = 1 and p>q, and the linearcontrol lawu = −(c 0 + 1) x 2 − x 1 .The closed-loop vector field <strong>is</strong> homogeneous in the 0-limit with degree d 0 = 0,weight (1, 1) (i.e., we are in the linear case), and associated vector field f 0 (x 1 ,x 2 )=(x 2 , −x 1 − x 2 ) T . Selecting the Lyapunov function <strong>of</strong> degree 2,yieldsV 0 (x 1 ,x 2 ) = 1 2 |x 1| 2 + 1 2 |x 2 + x 1 | 2 ,∂V 0∂x (x) f 0(x) = −|x 1 | 2 −|x 2 + x 1 | 2 .It follows, from Lyapunov’s second method, that the control law locally asymptoticallystabilizes the equilibrium <strong>of</strong> the system. Furthermore, local asymptotic stability <strong>is</strong>preserved in the presence <strong>of</strong> any perturbation which does not change the approximatinghomogeneous function, i.e., in the presence <strong>of</strong> perturbations which are dominated<strong>by</strong> the linear part (see P2 in section 2.2).2 If φ 0 (x) +ζ 0 (x) = 0 (resp., φ ∞(x) +ζ ∞(x) = 0), the pro<strong>of</strong> can be completed <strong>by</strong> replacing ζwith 2ζ.<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


HOMOGENEOUS OBSERVER DESIGN 1821In the context <strong>of</strong> homogeneity in the ∞-limit, we have the following result.Proposition 2.18. Consider a homogeneous in the ∞-limit vector field f :R n → R n with associated triple (r ∞ , d ∞ ,f ∞ ). If the origin <strong>of</strong> the systemẋ = f ∞ (x)<strong>is</strong> globally asymptotically stable, then there ex<strong>is</strong>ts an invariant compact subset <strong>of</strong> R n ,denoted C ∞ , which <strong>is</strong> globally asymptotically stable 3 for the systemẋ = f(x) .The pro<strong>of</strong> <strong>of</strong> the proposition <strong>is</strong> given in Appendix D.As in the case <strong>of</strong> homogeneity in the 0-limit, <strong>th<strong>is</strong></strong> property can be used to designa feedback, ensuring boundedness <strong>of</strong> solutions.Example 2.19. Consider the system (1.1) with 0 < q < p < 2 and the controllaw(2.6) u = − 1(2 − p x p−12−p1 x 2 − x p2−p1 − c ∞ x p 2 −x 2 + x 12−p1) p.Th<strong>is</strong> control law <strong>is</strong> such that the closed-loop vector field <strong>is</strong> homogeneous in the ∞-limitwith degree d ∞ = p − 1, weight (2 − p, 1), and associated vector field f ∞ (x 1 ,x 2 )=(x 2 , − 12−p x p−12−p1 x 2 − x p2−p1 −(x 2 + x 12−p1 ) p ) T . For the homogeneous Lyapunov function<strong>of</strong> degree 2,V ∞ (x 1 ,x 2 ) = 2 − p2 1|x 1 |2−p + 22 ∣ x 2 + x 12−p1 ∣2,we get∂V ∣ ∣∣∣ ∞∂x (x) f ∞(x) = −|x 1 | p+12−p − x 2 + x 112−p∣p+1.It follows that the control law (2.6) guarantees boundedness <strong>of</strong> the solutions <strong>of</strong> theclosed-loop system. Furthermore, boundedness <strong>of</strong> solutions <strong>is</strong> preserved in the presence<strong>of</strong> any perturbation which does not change the approximating homogeneousfunction in the ∞-limit, i.e., in the presence <strong>of</strong> perturbations which are negligiblewith respect to the dominant homogeneous part (see P2 in section 2.2).The key step in the pro<strong>of</strong> <strong>of</strong> Propositions 2.16 and 2.18 <strong>is</strong> the converse Lyapunovtheorem given <strong>by</strong> Rosier in [29]. Th<strong>is</strong> result can also be extended to the case <strong>of</strong>homogeneity in the bi-limit.Theorem 2.20 (homogeneous in the bi-limit Lyapunov functions). Considera homogeneous in the bi-limit vector field f : R n → R n , with associated triples(r ∞ , d ∞ ,f ∞ ) and (r 0 , d 0 ,f 0 ) such that the origins <strong>of</strong> the systems(2.7) ẋ = f(x), ẋ = f ∞ (x), ẋ = f 0 (x)are globally asymptotically stable equilibria. Let d V∞ and d V0 be real numbers suchthat d V∞ > max 1≤i≤n r ∞,i and d V0 > max 1≤i≤n r 0,i . Then there ex<strong>is</strong>ts a C 1 , positivedefinite, and proper function V : R n → R + such that, for each i in {1,...,n},3 See [34] for the definition <strong>of</strong> global asymptotical stability for invariant compact sets.<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


1822 V. ANDRIEU, L. PRALY, AND A. ASTOLFI∂Vthe function x ↦→∂x i<strong>is</strong> homogeneous in the bi-limit with associated triples (r 0 ,d V0 − r 0,i , ∂V0∂x i) and (r ∞ ,d V∞ − r ∞,i , ∂V∞∂x i), and the functions x ↦→ ∂V∂x(x) f(x), x ↦→∂V 0∂x (x) f 0(x), and x ↦→ ∂V∞∂x (x) f ∞(x) are negative definite.The pro<strong>of</strong> <strong>is</strong> given in Appendix E. A direct consequence <strong>of</strong> <strong>th<strong>is</strong></strong> result <strong>is</strong> an inputto-statestability (ISS) property with respect to d<strong>is</strong>turbances (see [31]). To illustrate<strong>th<strong>is</strong></strong> property, consider the system with exogenous d<strong>is</strong>turbance δ =(δ 1 ,...,δ m ) inR m ,(2.8) ẋ = f(x, δ) ,with f : R n ×R m a continuous vector field homogeneous in the bi-limit with associatedtriples (d 0 , (r 0 , r 0 ),f 0 ) and (d ∞ , (r ∞ , r ∞ ),f ∞ ), where r 0 and r ∞ in (R + \{0}) m arethe weights associated with the d<strong>is</strong>turbance δ.Corollary 2.21 (ISS property). If the origins <strong>of</strong> the systemsẋ = f(x, 0), ẋ = f 0 (x, 0), ẋ = f ∞ (x, 0)are globally asymptotically stable equilibria, then under the hypotheses <strong>of</strong> Theorem2.20 the function V given <strong>by</strong> Theorem 2.20 sat<strong>is</strong>fies, 4 for all δ =(δ 1 ,...,δ m ) in R mand x in R n ,(d∂VV0 +d 0d∂x (x) f(x, δ) ≤ −c V∞)+d∞dV H V (x) V0d, V(x) V∞∑ m (d V0 +d 0d V∞)+d∞r(2.9) + c δ H |δ j | 0,j r, |δ j | ∞,jwhere c V and c δ are positive real numbers.In other words, system (2.8) with δ as input sat<strong>is</strong>fies an ISS property. The pro<strong>of</strong><strong>of</strong> <strong>th<strong>is</strong></strong> corollary <strong>is</strong> given in Appendix F.Finally, we have also the following small-gain result for homogeneous in the bilimitvector fields.Corollary 2.22 (small-gain). Under the hypotheses <strong>of</strong> Corollary 2.21, thereex<strong>is</strong>ts a real number c G > 0 such that, for each class K function γ z and KL functionβ δ , there ex<strong>is</strong>ts a class KL function β x such that, for each function t ∈ [0,T) ↦→(x(t),δ(t),z(t)), T ≤ +∞, with xC 1 and δ and z continuous, which sat<strong>is</strong>fy (2.8) on[0,T) and, for all 0 ≤ s ≤ t ≤ T ,(2.10)(2.11)we have( )|z(t)| ≤ max{β δ |z(s)|,t− s , sups≤κ≤tj=1}γ z (|x(κ)|)( ) { (|δ i (t)| ≤ max{β δ |z(s)|,t− s ,c G sup H |x(κ)|r 0,i)} }r 0, |x(κ)| r∞,ir ∞,s≤κ≤t(2.12) |x(t)| ≤ β x (|(x(s),z(s))|,t− s), 0 ≤ s ≤ t ≤ T.,,4 The function H <strong>is</strong> defined in (1.6).<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


HOMOGENEOUS OBSERVER DESIGN 1823The pro<strong>of</strong> <strong>is</strong> given in Appendix G.Example 2.23. An interesting case, which can be dealt with <strong>by</strong> Corollary 2.22, <strong>is</strong>when the δ i ’s are outputs <strong>of</strong> auxiliary systems with state z i in R ni , i.e.,(2.13) δ i (t) := δ i (z i (t),x(t)), ż i = g i (z i ,x) .It can be checked that the bounds (2.11) and (2.10) are sat<strong>is</strong>fied <strong>by</strong> all the solutions<strong>of</strong> (2.8) and (2.13) if there ex<strong>is</strong>t positive definite and radially unbounded functionsZ i : R ni → R + ; class K functions ω 1 , ω 2 , and ω 3 ; and a positive real number ɛ in(0, 1) such that for all x in R n , for all i in {1,...,m}, and z i in R ni , we have∂Z i|δ i (z i ,x)| ≤ ω 1 (x)+ω 2 (Z i (z i )), (z i ) g i (z i ,x) ≤ −Z i (z i )+ω 3 (|x|) ,∂z iω 1 (x)+ω 2 ([1 + ɛ] ω 3 (|x|)) ≤ c G H ( )|x| r0,ir 0, |x| r∞,ir ∞ .Another important result exploiting Theorem 2.20 deals with finite time convergence<strong>of</strong> solutions toward a globally asymptotically stable equilibrium (see [4]). It <strong>is</strong>well known that when the origin <strong>of</strong> the homogeneous approximation in the 0-limit<strong>is</strong> globally asymptotically stable with a strictly negative degree, then solutions convergeto the origin in finite time (see [3]). We extend <strong>th<strong>is</strong></strong> result <strong>by</strong> showing that if,furthermore, the origin <strong>of</strong> the homogeneous approximation in the ∞-limit <strong>is</strong> globallyasymptotically stable with strictly positive degree, then the convergence time doesn’tdepend on the initial condition. Th<strong>is</strong> <strong>is</strong> expressed <strong>by</strong> the following corollary.Corollary 2.24 (uniform and finite time convergence). Under the hypotheses<strong>of</strong> Theorem 2.20, if we have d ∞ > 0 > d 0 , then all solutions <strong>of</strong> the system ẋ = f(x)converge in finite time to the origin, uniformly in the initial condition.The pro<strong>of</strong> <strong>is</strong> given in Appendix H.3. Recursive observer design for a chain <strong>of</strong> integrators. The notion <strong>of</strong>homogeneity in the bi-limit <strong>is</strong> instrumental in introducing a new observer designmethod. Throughout <strong>th<strong>is</strong></strong> section we consider a chain <strong>of</strong> integrators, with state X n =(X 1,...,X n) in R n , namely,(3.1) Ẋ 1 = X 2 , . . . , Ẋ n = u, or in compact form, Ẋ n = S n X n + B n u,where S n <strong>is</strong> the shift matrix <strong>of</strong> order n, i.e., S n X n = (X 2,...,X n, 0) T and B n =(0,...,0, 1) T 1. By selecting arbitrary vector field degrees d 0 and d ∞ in (−1,n−1), wesee that, to possibly obtain homogeneity in the bi-limit <strong>of</strong> the associated vector field,we must choose the weights r 0 =(r 0,1 ,...,r 0,n ) and r ∞ =(r ∞,1 ,...,r ∞,n ) as(3.2)r 0,n = 1 , r 0,i = r 0,i+1 − d 0 = 1 − d 0 (n − i) ,r ∞,n = 1 , r ∞,i = r ∞,i+1 − d ∞ = 1 − d ∞ (n − i) .The goal <strong>of</strong> <strong>th<strong>is</strong></strong> section <strong>is</strong> to introduce a global homogeneous in the bi-limit observerfor the system (3.1). Th<strong>is</strong> design follows a recursive method, which constitutes one <strong>of</strong>the main contributions <strong>of</strong> <strong>th<strong>is</strong></strong> paper.The idea <strong>of</strong> designing an observer recursively starting from X n and going backwardstowards X 1 <strong>is</strong> not new. It can be found, for instance, in [28, 26, 23, 30, 35] andin [7, Lemma 6.2.1]. Nevertheless, the procedure we propose <strong>is</strong> new and extends theresults in [23, Lemmas 1 and 2] to the homogeneous in the bi-limit case.<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


1824 V. ANDRIEU, L. PRALY, AND A. ASTOLFIAlso, as opposed to what <strong>is</strong> proposed in [28, 26], 5 <strong>th<strong>is</strong></strong> observer <strong>is</strong> an exact observer(with any input u) for a chain <strong>of</strong> integrators. The observer <strong>is</strong> given <strong>by</strong> the system 6(3.3)˙ˆX n = S n ˆXn + B n u + K 1 (ˆX 1 − X 1) ,with state ˆX n = (ˆX 1,...,ˆX n), and where K 1 : R n → R n <strong>is</strong> a homogeneous in thebi-limit vector field with weights r 0 , r ∞ and degrees d 0 , d ∞ . The output injectionvector field K 1 has to be selected such that the origin <strong>is</strong> a globally asymptoticallystable equilibrium for the system(3.4) Ė 1 = S n E 1 + K 1 (e 1 ), E 1 = (e 1 ,...,e n ) T ,and also for its homogeneous approximations. The construction <strong>of</strong> K 1 <strong>is</strong> performedvia a recursive procedure whose induction argument <strong>is</strong> as follows.Consider the system on R n−i given <strong>by</strong>(3.5) Ė i+1 = S n−i E i+1 + K i+1 (e i+1 ), E i+1 =(e i+1 ,...,e n ) T ,with S n−i the shift matrix <strong>of</strong> order n − i, i.e., S n−i E i+1 =(e i+2 ,...,e n , 0) T , andK i+1 : R n−i → R n−i a homogeneous in the bi-limit vector field, whose associatedtriples are ((r 0,i+1 ,...,r 0,n ), d 0 ,K i+1,0 ) and ((r ∞,i+1 ,...,r ∞,n ), d ∞ ,K i+1,∞ ).Theorem 3.1 (homogeneous in the bi-limit observer design). Consider the system(3.5) and its homogeneous approximation at infinity and around the origin,Ė i+1 = S n−i E i+1 + K i+1,0 (e i+1 ), Ė i+1 = S n−i E i+1 + K i+1,∞ (e i+1 ) .Suppose the origin <strong>is</strong> a globally asymptotically stable equilibrium for these systems.Then there ex<strong>is</strong>ts a homogeneous in the bi-limit vector field K i : R n−i+1 → R n−i+1 ,with associated triples ((r 0,i ,...,r 0,n ), d 0 ,K i,0 ) and ((r ∞,i ,...,r ∞,n ), d ∞ ,K i,∞ ), suchthat the origin <strong>is</strong> a globally asymptotically stable equilibrium for the systems(3.6)Ė i = S n−i+1 E i + K i (e i ) ,Ė i = S n−i+1 E i + K i,0 (e i ), E i =(e i ,...,e n ) T ,Ė i = S n−i+1 E i + K i,∞ (e i ) .Pro<strong>of</strong>. We prove <strong>th<strong>is</strong></strong> result in two steps. First, we define a homogeneous in thebi-limit Lyapunov function. Then we construct the vector field K i , depending on aparameter l which, if sufficiently large, renders negative definite the derivative <strong>of</strong> <strong>th<strong>is</strong></strong>Lyapunov function along the solutions <strong>of</strong> the system.Step 1. Definition <strong>of</strong> the Lyapunov function. Let d W0 and d W∞ be positive realnumbers sat<strong>is</strong>fying(3.7) d W0 > 2 max 1≤j≤ n r 0,j + d 0 , d W∞ > 2 max 1≤j≤ n r ∞,j + d ∞ ,and(3.8)d W∞r ∞,i≥ d W 0r 0,i.5 Note the term x i in (3.15) <strong>of</strong> [28], for instance.6 To simplify the presentation, we use the compact notation K 1 (ˆX 1−X 1) for K 1 (ˆX 1−X 1, 0,...,0).<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


HOMOGENEOUS OBSERVER DESIGN 1825The selection (3.2) implies r 0,j + d 0 > 0 and r ∞,j + d ∞ > 0 for each j in {1,...,n}.Hence,d W0> max1≤j≤ n r 0,j, d W∞ > max1≤j≤ n r ∞,j ,and we can invoke Theorem 2.20 for the system (3.4) and its homogeneous approximationsgiven in (3.5). Th<strong>is</strong> implies that there ex<strong>is</strong>ts a C 1 , positive definite, and properfunction W i+1 : R n−i → R + such that, for each j in {i+1,...,n}, the function ∂Wi+1∂e j<strong>is</strong> homogeneous in the bi-limit with associated triples((r 0,i+1 ,...,r 0,n ),d W0 − r 0,j , ∂W )i+1,0and∂e j((r ∞,i+1 ,...,r ∞,n ),d W∞ − r ∞,j , ∂W )i+1,∞.∂e jMoreover, for all E i+1 ∈ R n−i \{0}, we have(3.9)(3.10) q i (s) =∂W i+1∂E i+1(E i+1 )(S n−i E i+1 + K i+1 (e i+1 )) < 0 ,∂W i+1,0(E i+1 )(S n−i E i+1 + K i+1,0 (e i+1 )) < 0 ,∂E i+1∂W i+1,∞(E i+1 )(S n−i E i+1 + K i+1,∞ (e i+1 )) < 0 .∂E i+1Consider the function q i : R → R defined as⎧⎨⎩r 0,i +d 0r 0,ir 0,i+d 0sr ∞,ir ∞,i+d ∞sr 0,i, |s| ≤ 1 ,r ∞,i +d∞r ∞,i+ r0,ir 0,i+d 0− r∞,ir ∞,i+d ∞, |s| ≥ 1 .Since we have 0


1826 V. ANDRIEU, L. PRALY, AND A. ASTOLFILet W i: R n−i+1 → R + be defined <strong>by</strong>W i (E i+1 ,s) = W i+1 (E i+1 )+∫ s−∫ sq −1i (e i+1)q −1i (e i+1)(d W0 −r 0,irh 0,i)d W∞ −r ∞,i+ hr ∞,idh(dq −1W0 −r 0,iri (e i+1 ) 0,i+ q −1d W∞ −r ∞,i)ri (e i+1 ) ∞,idh .Th<strong>is</strong> function <strong>is</strong> C 1 , and <strong>by</strong> (3.8), Proposition 2.12 yields that it <strong>is</strong> homogeneous inthe bi-limit with weights (r 0,i+1 ,...,r 0,n ) and (r ∞,i+1 ,...,r ∞,n ) for E i+1 , r 0,i andr ∞,i for s, and degrees d W0 and d W∞ . Furthermore, for each j in {i +1,...,n}, thefunctions ∂Wi∂e j(E i+1 ,s) are also homogeneous in the bi-limit with the same weightsand with degrees d W0 − r 0,j and d W∞ − r ∞,j .Step 2. Construction <strong>of</strong> the vector field K i . Given a positive real number l, wedefine the vector field K i : R n−i → R n−i as()−qK i (e i )=i (le i ).K i+1 (q i (le i ))By Proposition 2.10 and the properties we have establ<strong>is</strong>hed for q i , K i <strong>is</strong> a homogeneousin the bi-limit vector field. We show now that selecting l large enough yields theasymptotic stability properties. To begin with, note that for all E i =(E i+1 ,e i ) inR n−i ,∂W i (E i+1 , le i )∂E i(E i )(S n−i+1 E i + K i (e i )) ≤ T 1 (E i+1 , le i ) − lT 2 (E i+1 , le i ) ,with the functions T 1 and T 2 defined asT 1 (E i+1 ,ϑ i )=T 2 (E i+1 ,ϑ i )=∂W i(E i+1 ,ϑ i )(S n−i E i+1 + K i+1 (q i (ϑ i ))) ,∂E i+1(dϑ − q −1W0 −r 0,iri (e i+1 ) 0,id W0 −r 0,ir 0,ii)d W∞ −r ∞,ir+ ϑ∞,ii − q −1d W∞ −r ∞,iri (e i+1 ) ∞,i×(q i (ϑ i ) − e i+1 ) .These functions are homogeneous in the bi-limit with weights (r ∞,i ,...,r ∞,n ) and(r 0,i ,...,r 0,n ), degrees d 0 + d W0 and d ∞ + d W∞ , and continuous approximating functionsT 1,0 (E i+1 ,ϑ i )= ∂W i,0∂E i+1(E i+1 ,ϑ i )(S n−i E i+1 + K i+1,0 (q i,0 (ϑ i ))) ,T 1,∞ (E i+1 ,ϑ i )= ∂W i,∞(E i+1 ,ϑ i )(S n−i E i+1 + K i+1,∞ (q i,∞ (ϑ i ))) ,∂E i+1()dT 2,0 (E i+1 ,ϑ i )= ϑ − q −1i,0 (e W0 −r 0,iri+1) 0,i(q i,0 (ϑ i ) − e i+1 ) ,d W0 −r 0,ir 0,iiandT 2,∞ (E i+1 ,ϑ i )=(ϑd W∞ −r ∞,ir ∞,ii)d W∞ −r ∞,i− q −1i,∞ (e i+1)r ∞,i(q i,∞ (ϑ i ) − e i+1 ) .<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


As the function q −1iHOMOGENEOUS OBSERVER DESIGN 1827<strong>is</strong> continuous, strictly increasing and onto, the functionϑd W0 −r 0,ir 0,iid− q −1W0 −r 0,iri (e i+1 ) 0,id W∞ −r ∞,ir+ ϑ∞,ii − q −1d W∞ −r ∞,iri (e i+1 ) ∞,ihas a unique zero at q i (ϑ i )=e i+1 and has the same sign as q i (ϑ i ) − e i+1 . It followsthatOn the other hand, for all E i ≠ 0,T 2 (E i+1 ,ϑ i ) ≥ 0 ∀ (E i+1 ,ϑ i ) ∈ R n−i ,T 2 (E i+1 ,ϑ i )=0 ⇒ q i (ϑ i ) = e i+1 .T 1 (E i+1 ,q −1i (e i+1 )) = ∂W i+1∂E i+1(E i+1 )(S n−i E i+1 + K i+1 (e i+1 )) < 0 .Hence (3.9) yields{(Ei+1 ,ϑ i ) ∈ R n−i+1 \{0} : T 2 (E i+1 ,ϑ i ) = 0 }⊆{(Ei+1 ,ϑ i ) ∈ R n−i+1 : T 1 (E i+1 ,ϑ i ) < 0 } .By following the same argument, it can be shown that <strong>th<strong>is</strong></strong> property holds also forthe homogeneous approximations, i.e.,{(Ei+1 ,ϑ i ) ∈ R n−i+1 \{0} : T 2,0 (E i+1 ,ϑ i ) = 0 }{⊆ (Ei+1 ,ϑ i ) ∈ R n−i+1 : T 1,0 (E i+1 ,ϑ i ) < 0 } ,{(Ei+1 ,ϑ i ) ∈ R n−i+1 \{0} : T 2,∞ (E i+1 ,ϑ i ) = 0 }⊆{(Ei+1 ,ϑ i ) ∈ R n−i+1 : T 1,∞ (E i+1 ,ϑ i ) < 0 } .Therefore, <strong>by</strong> Lemma 2.13, there ex<strong>is</strong>ts l ∗ such that, for all l ≥ l ∗ and all (E i+1 ,ϑ i ) ≠0,T 1 (E i+1 ,ϑ i ) − lT 2 (E i+1 ,ϑ i ) < 0 ,T 1,0 (E i+1 ,ϑ i ) − lT 2,0 (E i+1 ,ϑ i ) < 0 ,T 1,∞ (E i+1 ,ϑ i ) − lT 2,∞ (E i+1 ,ϑ i ) < 0 .Th<strong>is</strong> implies that the origin <strong>is</strong> a globally asymptotically stable equilibrium <strong>of</strong> thesystems (3.6), which concludes the pro<strong>of</strong>.To construct the function K 1 , which defines the observer (3.3), it <strong>is</strong> sufficient toiterate the construction proposed in Theorem 3.1 starting from{ 11+dK n (e n ) = −0(l n e n ) 1+d0 , |l n e n |≤ 1 ,11+d ∞(l n e n ) 1+d∞ + 11+d 0− 11+d ∞, |l n e n |≥ 1 ,where l n <strong>is</strong> any strictly positive real number. Indeed, K n <strong>is</strong> a homogeneous in thebi-limit vector field with approximating functions K n,0 (e n )= 11+d 0(l n e n ) 1+d0 andK n,∞ (e n )= 11+d ∞(l n e n ) 1+d∞ . Th<strong>is</strong> selection implies that the origin <strong>is</strong> a globallyasymptotically stable equilibrium for the systems ė n = K n (e n ), ė n = K n,0 (e n ),and ė n = K n,∞ (e n ).<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


1828 V. ANDRIEU, L. PRALY, AND A. ASTOLFIConsequently the assumptions <strong>of</strong> Theorem 3.1 are sat<strong>is</strong>fied for i + 1 = n. We canapply it recursively up to i = 1, obtaining the vector field K 1 .As a result <strong>of</strong> <strong>th<strong>is</strong></strong> procedure we obtain a homogeneous in the bi-limit observer,which globally asymptotically observes the state <strong>of</strong> the system (3.1), and also thestate for its homogeneous approximations around the origin and at infinity. In otherwords, the origin <strong>is</strong> a globally asymptotically stable equilibrium <strong>of</strong> the systems(3.12) Ė 1 = S n E 1 + K 1 (e 1 ) , Ė 1 = S n E 1 + K 1,0 (e 1 ) , Ė 1 = S n E 1 + K 1,∞ (e 1 ) .Remark 3.2. Note that when 0 ≤ d 0 ≤ d ∞ , we have 1 ≤ r0,i+d0r 0,ii =1,...,n and we can replace the function q i in (3.10) <strong>by</strong> the simpler function≤ r∞,i+d∞r ∞,iforr 0,i +d 0rq i (s) = s 0,ir ∞,i +d∞+ sr ∞,i,which has been used already in [1].Example 3.3. Consider a chain <strong>of</strong> integrators <strong>of</strong> dimension two, with the followingweights and degrees:()(r 0 , d 0 ) = (2 − q, 1), q− 1 , (r ∞ , d ∞ ) =()(2 − p, 1), p− 1 .When q ≥ p (i.e., d 0 ≤ d ∞ ), <strong>by</strong> following the above recursive observer design weobtain two positive real numbers l 1 and l 2 such that the systemwith(3.13) q 2 (s) =˙ˆX 1 = ˆX 2 − q 1 (l 1 e 1 ) , ˙ˆX 2 = u − q 2 (l 2 q 1 (l 1 e 1 )) ,e 1 = ˆX 1 − y,{ 1q sq , |s| ≤ 1,1p sp + 1 q − 1 p , |s| ≥ 1, q 1 (s) ={(2 − q) s12−q , |s| ≤ 1,(2 − p)s 12−p + p − q, |s| ≥ 1,<strong>is</strong> a global observer for the system Ẋ 1 = X 2, Ẋ 2 = u, y = X 1. Furthermore, its homogeneousapproximations around the origin and at infinity are also global observersfor the same system.4. Recursive design <strong>of</strong> a homogeneous in the bi-limit state feedback.It <strong>is</strong> well known that the system (3.1) can be rendered homogeneous <strong>by</strong> using astabilizing homogeneous state feedback which can be designed <strong>by</strong> backstepping (see[21, 25, 19, 26, 33, 10], for instance). We show in <strong>th<strong>is</strong></strong> section that <strong>th<strong>is</strong></strong> property canbe extended to the case <strong>of</strong> homogeneity in the bi-limit. More prec<strong>is</strong>ely, we show thatthere ex<strong>is</strong>ts a homogeneous in the bi-limit function φ n such that the system (3.1) withu = φ n (X n ) <strong>is</strong> homogeneous in the bi-limit, with weights r 0 and r ∞ and degrees d 0and d ∞ . Furthermore, its origin and the origin <strong>of</strong> the approximating systems in the0-limit and in the ∞-limit are globally asymptotically stable equilibria.To design the state feedback we follow the approach <strong>of</strong> Praly and Mazenc [25]. To<strong>th<strong>is</strong></strong> end, consider the auxiliary system with state X i =(X 1,...,X i) in R i ,1≤ i


HOMOGENEOUS OBSERVER DESIGN 1829bi-limit stabilizing control law for the origin <strong>of</strong> the system (4.1), then there <strong>is</strong> one forthe origin <strong>of</strong> the system with state X i+1 =(X 1,...,X i+1) in R i+1 defined <strong>by</strong>(4.2) Ẋ 1 = X 2,...,Ẋ i+1 = u, i.e., Ẋ i+1 = S i+1 X i+1 + B i+1 u.1Let d 0 and d ∞ be in (−1,n−1) and consider the weights and degrees defined in (3.2).Theorem 4.1 (homogeneous in the bi-limit backstepping). Suppose there ex<strong>is</strong>tsa homogeneous in the bi-limit function φ i : R i → R with associated triples (r 0 , d 0 +r 0,i ,φ i,0 ) and (r ∞ , d ∞ + r ∞,i ,φ i,∞ ) such that the following hold:1. There ex<strong>is</strong>ts α i ≥ 1 such that the function ψ i (X i ) = φ i (X i ) αi <strong>is</strong> C 1 andfor each j in {1,...,i} the function ∂ψi <strong>is</strong> homogeneous in the bi-limit with∂X jweights (r 0,1 ,...,r 0,i ), (r ∞,1 ,...,r ∞,i ), degrees α i (r 0,i + d 0 ) − r 0,j , α i (r ∞,i +d ∞ ) − r ∞,j , and approximating functions ∂ψi0, ∂ψi∞.∂X j ∂X j2. The origin <strong>is</strong> a globally asymptotically stable equilibrium <strong>of</strong> the systems(4.3)Ẋ i = S i X i + B i φ i (X i ) , Ẋ i = S i X i + B i φ i,0 (X i ) , Ẋ i = S i X i + B i φ i,∞ (X i ) .Then there ex<strong>is</strong>ts a homogeneous in the bi-limit function φ i+1 : R i+1 → R withassociated triples (r 0 , d 0 + r 0,i+1 ,φ i+1,0 ) and (r ∞ , d ∞ + r ∞,i+1 ,φ i+1,∞ ) such that thesame properties hold, i.e.,1. there ex<strong>is</strong>ts a real number α i+1 > 1 such that the function ψ i+1 (X i+1 ) =φ i+1 (X i+1 ) αi+1 <strong>is</strong> C 1 and for each j in {1,...,i+1} the function ∂ψi+1<strong>is</strong>∂X jhomogeneous in the bi-limit with weights (r 0,1 ,...,r 0,i+1 ), (r ∞,1 ,...,r ∞,i+1 ),degrees α i+1 (r 0,i+1 + d 0 ) − r 0,j , α i+1 (r ∞,i+1 + d ∞ ) − r ∞,j , and approximatingfunctions ∂ψi+1,0∂X j, ∂ψi+1,∞;∂X j2. the origin <strong>is</strong> a globally asymptotically stable equilibrium <strong>of</strong> the systems(4.4)X i+1 = S i+1 X i+1 + B i+1 φ i+1 (X i+1 ) ,X i+1 = S i+1 X i+1 + B i+1 φ i+1,0 (X i+1 ) ,X i+1 = S i+1 X i+1 + B i+1 φ i+1,∞ (X i+1 ) .Pro<strong>of</strong>. We prove <strong>th<strong>is</strong></strong> result in three steps. First, we construct a homogeneous inthe bi-limit Lyapunov function; then we define a control law parametrized <strong>by</strong> a realnumber k. Finally, we show that there ex<strong>is</strong>ts k such that the time derivative, alongthe trajectories <strong>of</strong> systems (4.4), <strong>of</strong> the Lyapunov function and <strong>of</strong> its approximatingfunctions <strong>is</strong> negative definite.Step 1. Construction <strong>of</strong> the Lyapunov function. Let d V0 and d V∞ be positive realnumbers sat<strong>is</strong>fying(4.5) d V0 > maxj∈{1,...,n} {r 0,j}, d V∞ > maxj∈{1,...,n} {r ∞,j} ,and(4.6)d V∞r ∞,i+1≥ d V 0r 0,i+1> 1+α i .With <strong>th<strong>is</strong></strong> selection, Theorem 2.20 gives the ex<strong>is</strong>tence <strong>of</strong> a C 1 , proper, and positivedefinite function V i : R i → R + such that, for each j in {1,...,n}, the function ∂Vi∂X j<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


1830 V. ANDRIEU, L. PRALY, AND A. ASTOLFI<strong>is</strong> homogeneous in the bi-limit with weights (r 0,1 ,...,r 0,i ), (r ∞,1 ,...,r ∞,i ), degreesd V0 − r 0,j , d V∞ − r ∞,j , and approximating functions ∂Vi,0. Moreover, we havefor all X i ∈ R i \{0},∂X j, ∂Vi,∞∂X j(4.7)∂V i∂X i(X i )[S i X i + B i φ i (X i )] < 0 ,∂V i,0(X i )[S i X i + B i φ i,0 (X i )] < 0 ,∂X i∂V i,∞(X i )[S i X i + B i φ i,∞ (X i )] < 0 .∂X iFollowing [21], consider the Lyapunov function V i+1 : R i+1 → R + defined <strong>by</strong>∫ X i+1(d V0 −r 0,i+1d V0 −r 0,i+1)rV i+1 (X i+1 ) = V i (X i )+ h 0,i+1 r− φ i (X i ) 0,i+1dhφ i(X i)∫ X i+1(d V∞ −r ∞,i+1d V∞ −r ∞,i+1)r+ h ∞,i+1 r− φ i (X i ) ∞,i+1dh .φ i(X i)Th<strong>is</strong> function <strong>is</strong> positive definite and proper. Furthermore, as d V∞ and d V0 sat<strong>is</strong>fy(4.6), we haved V∞ − r ∞,i+1r ∞,i+1≥ d V 0− r 0,i+1r 0,i+1>α i ≥ 1 .Since the function ψ i (X i )=φ i (X i ) αi <strong>is</strong> C 1 , <strong>th<strong>is</strong></strong> inequality yields that the functionV i+1 <strong>is</strong> C 1 . Finally, for each j in {1,...,n}, the function ∂Vi+1<strong>is</strong> homogeneous in∂X jthe bi-limit with associated triples((r 0,1 ,...,r 0,i+1 ),d V0 − r 0,j , ∂V ) (i+1,0, (r ∞,1 ,...,r ∞,i+1 ),d V∞ − r ∞,j , ∂V )i+1,∞.ψ i+1∂X jStep 2. Definition <strong>of</strong> the control law. Recall (1.6) and consider the function: R i+1 → R defined <strong>by</strong>∫ αXii+1 −φi(Xi)α i (ψ i+1 (X i+1 )=−kH |s| αi+1 d 0 +r 0,i+10α i r 0,i+1−1, |s|α i+1d∞+r ∞,i+1where k in R + <strong>is</strong> a design parameter and α i+1 <strong>is</strong> selected as{ }αi r 0,i+1 α i r ∞,i+1α i+1 ≥ max,, 1d 0 + r 0,i+1 d ∞ + r ∞,i+1α i r ∞,i+1.∂X j)−1ds ,ψ i+1 takes values with the same sign as X i+1 − φ i (X i ), <strong>is</strong> C 1 , and, <strong>by</strong> Proposition2.12, <strong>is</strong> homogeneous in the bi-limit. Furthermore, <strong>by</strong> Proposition 2.10, for each jin {1,...,i +1}, the function ∂ψi+1<strong>is</strong> homogeneous in the bi-limit, with weights∂X j(r 0,1 ,...,r 0,i+1 ), (r ∞,1 ,...,r ∞,i+1 ), degrees α i+1 (r 0,i+1 + d 0 ) − r 0,j , α i+1 (r ∞,i+1 +d ∞ ) − r ∞,j , and approximating functions ∂ψi+1,0 ∂ψ,i+1,∞. With <strong>th<strong>is</strong></strong> at hand, we∂X j ∂X jchoose the control law φ i+1 asφ i+1 (X i+1 ) = ψ i+1 (X i+1 ) 1α i+1 .<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


(4.8)Step 3. Selection <strong>of</strong> k. Note thatHOMOGENEOUS OBSERVER DESIGN 1831∂V i+1∂X i+1(X i+1 )[S i+1 X i+1 + B i+1 φ i+1 (X i+1 )] = T 1 (X i+1 ) − kT 2 (X i+1 ) ,with the functions T 1 and T 2 defined asT 1 (X i+1 )= ∂V i+1(X i+1 )[S i X i + B i X i+1)]∂X i(T 2 (X i+1 )=Xd V0 −r 0,i+1r 0,i+1i+1 − φ i (X i )d V0 −r 0,i+1r 0,i+1+ Xd V∞ −r ∞,i+1r ∞,i+1i+1 − φ i (X i )d V∞ −r ∞,i+1r ∞,i+1)φ i+1 (X i+1 ) .By the definition <strong>of</strong> homogeneity in the bi-limit and Proposition 2.10, these functionsare homogeneous in the bi-limit with weights (r 0,1 ,...,r 0,i+1 ) and (r ∞,1 ,...,r ∞,i+1 )and degrees d V0 + d 0 and d V∞ + d ∞ . Moreover, since φ i+1 (X i+1 ) has the same sign asX i+1 − φ i (X i ), T 2 (X i+1 ) <strong>is</strong> nonnegative for all X i+1 in R i+1 and, as φ i+1 (X i+1 )=0only if X i+1 − φ i (X i ) = 0, we getT 2 (X i+1 ) = 0 =⇒ X i+1 = φ i (X i ) ,X i+1 = φ i (X i ) =⇒ T 1 (X i+1 )= ∂V i∂X i(X i )[S i X i + B i φ i (X i )] .Consequently, equations (4.7) yield{Xi+1 ∈ R i+1 \{0} : T 2 (X i+1 )=0 } ⊆ { X i+1 ∈ R i+1 : T 1 (X i+1 ) < 0 } .The same implication holds for the homogeneous approximations <strong>of</strong> the two functionsat infinity and around the origin, i.e.,{Xi+1 ∈ R i+1 \{0} : T 2,0 (X i+1 )=0 } ⊆ { X i+1 ∈ R i+1 : T 1,0 (X i+1 ) < 0 } ,{Xi+1 ∈ R i+1 \{0} : T 2,∞ (X i+1 )=0 } ⊆ { X i+1 ∈ R i+1 : T 1,∞ (X i+1 ) < 0 } .Hence, <strong>by</strong> Lemma 2.13, there ex<strong>is</strong>ts k ∗ > 0 such that, for all k ≥ k ∗ , we have for allX i+1 ≠ 0,∂V i+1(X i+1 )[S i+1 X i+1 + B i+1 φ i+1 (X i+1 )] < 0 ,∂X i+1∂V i+1,0(X i+1 )[S i+1 X i+1 + B i+1 φ i+1,0 (X i+1 )] < 0 ,∂X i+1∂V i+1,∞(X i+1 )[S i+1 X i+1 + B i+1 φ i+1,∞ (X i+1 )] < 0 .∂X i+1Th<strong>is</strong> implies that the origin <strong>is</strong> a globally asymptotically stable equilibrium <strong>of</strong> thesystems (4.4).To construct the function φ n it <strong>is</strong> sufficient to iterate the construction in Theorem4.1 starting fromφ 1 (X 1) = ψ 1 (X 1) 1α 1 , ψ 1 (X 1) =−k 1∫ X 1with k 1 > 0.0()H |s| α1 r 0,2rr −1 α ∞,20,1, |s|1 r −1 ∞,1ds ,<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


1832 V. ANDRIEU, L. PRALY, AND A. ASTOLFIAt the end <strong>of</strong> the recursive procedure, we have that the origin <strong>is</strong> a globally asymptoticallystable equilibrium <strong>of</strong> the systems(4.9)X n = S n X n + B n φ n (X n ) ,X n = S n X n + B n φ n,0 (X n ) ,X n = S n X n + B n φ n,∞ (X n ) .Remark 4.2. Note that if d 0 ≥ 0 and d ∞ ≥ 0, then we can select α i = 1 for all1 ≤ i ≤ n, and if d 0 ≤ 0 and d ∞ ≥ d 0 , then we can select α i = r0,1r 0,i+1. Finally, ifd ∞ ≤ 0 and d 0 ≥ d ∞ , then we can select α i =r∞,1r ∞,i+1.Remark 4.3. As in the observer design, when d 0 ≤ d ∞ , we have r0,i+1+d0r 0,i+1≤for i =1,...,n and we can replace the function ψ i <strong>by</strong> the simpler functionr ∞,i+1+d ∞r ∞,i+1((4.10) ψ i+1 (X i+1 ) = −k|X αii+1 − φ i(X i ) αi | αi+1 d 0 +r 0,i+1α i r 0,i+1+|X αii+1 − φ i(X i ) αi | αi+1 d∞+r ∞,i+1)α i r ∞,i+1Finally, if 0 ≤ d 0 ≤ d ∞ , then <strong>by</strong> taking α i = 1 (see Remark 4.2) and φ(X i+1 ) =ψ i+1 (X i+1 ) as defined in (4.10), we recover the design in [1].Example 4.4. Consider a chain <strong>of</strong> integrators <strong>of</strong> dimension two with weights anddegrees(r 0 , d 0 ) =()(2 − q, 1), q− 1 , (r ∞ , d ∞ ) =()(2 − p, 1), p− 1 ,with 2 > p > q > 0. Given k 1 > 0, using the proposed backstepping procedure weobtain a positive real number k 2 such that the feedback∫ X 1−φ i(X 1)(4.11) φ 2 (X 1, X 2) =−k 2 H ( |s| q−1 , |s| p−1) ds ,0∫ Xwith φ 1 (X 1) =−k11 H(|s| q−1 p−12−q0 , |s|2−p ) ds, renders the origin a globally asymptoticallystable equilibrium <strong>of</strong> the closed-loop system. Furthermore, as a consequence <strong>of</strong>the robustness result in Corollary 2.22, there <strong>is</strong> a positive real number c G such that, ifthe positive real numbers |c 0 | and |c ∞ | associated with δ i in (1.2) are smaller than c G ,then the control law φ 2 globally asymptotically stabilizes the origin <strong>of</strong> system (1.1).5. Application to nonlinear output feedback design.5.1. Results on output feedback. The tools presented in the previous sectionscan be used to derive two new results on stabilization <strong>by</strong> output feedback for theorigin <strong>of</strong> nonlinear systems. The output feedback <strong>is</strong> designed for a simple chain <strong>of</strong>integrators,(5.1) ẋ = S n x + B n u, y = x 1 ,where x <strong>is</strong> in R n , y <strong>is</strong> the output in R, and u <strong>is</strong> the control input in R. It <strong>is</strong> thenshown to be adequate to solve the output feedback stabilization problem for the origin<strong>of</strong> systems for which <strong>th<strong>is</strong></strong> chain <strong>of</strong> integrators can be considered as the dominant part<strong>of</strong> the dynamics..<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


HOMOGENEOUS OBSERVER DESIGN 1833Such a domination approach has a long h<strong>is</strong>tory. It <strong>is</strong> the cornerstone <strong>of</strong> the resultsin [13] (see also [27] and [24]), where a linear controller was introduced to deal withnonlinear systems. Th<strong>is</strong> approach has also been followed with nonlinear controllers in[22] and more recently in combination with weighted homogeneity in [35, 26, 28] andthe references therein.In the context <strong>of</strong> homogeneity in the bi-limit, we use <strong>th<strong>is</strong></strong> approach exploiting theproposed backstepping and recursive observer designs. Following the idea introduced<strong>by</strong> Qian in [26] (see also [27]), the output feedback we proposed <strong>is</strong> given <strong>by</strong>(5.2)˙ˆX n = L()S n ˆXn + B n φ n (ˆX n )+K 1 (x 1 − ˆX 1) , u = L n φ n (ˆX n ) ,with ˆX n in R n and where φ n and K 1 are continuous functions and L <strong>is</strong> a positivereal number. Employing the recursive procedure given in sections 3 and 4, we get thefollowing theorem, whose pro<strong>of</strong> <strong>is</strong> in section 5.2.1Theorem 5.1. For all real numbers d 0 and d ∞ in (−1,n−1), there ex<strong>is</strong>ts ahomogeneous in the bi-limit function φ n : R n → R with associated triples (r 0 , 1+d 0 ,φ n,0 ) and (r ∞ , 1+d ∞ ,φ n,∞ ) and a homogeneous in the bi-limit vector field K 1 :R n → R n with associated triples (r 0 , d 0 ,K 1,0 ) and (r ∞ , d ∞ ,K 1,∞ ) such that for allreal numbers L>0 the origin <strong>is</strong> a globally asymptotically stable equilibrium <strong>of</strong> thesystems (5.1) and (5.2) and their homogeneous approximations.We can then apply Corollary 2.22 to get an output feedback result for nonlinearsystems described <strong>by</strong>(5.3) ẋ = S n x + B n u + δ(t), y = x 1 ,where δ : R + → R n <strong>is</strong> a continuous function related to the solutions as described inthe two corollaries below and proved in section 5.2. Depending on whether d 0 ≤ d ∞or d ∞ ≤ d 0 , we get an output feedback result for systems in feedback or feedforwardform.Corollary 5.2 (feedback form). If, in the design <strong>of</strong> φ n and K 1 , we selectd 0 ≤ d ∞ , then for all positive real numbers c 0 and c ∞ there ex<strong>is</strong>ts a real numberL ∗ > 0 such that for every L in [L ∗ , +∞), the following holds:• For every class K function γ z and class KL function β δ , we can find two classKL functions β x and βˆx such that, for each function t ∈ [0,T) ↦→ (x(t), ˆX n (t),δ(t),z(t)),T ≤ +∞, with (x, ˆX n ) C 1 and δ and z continuous, which sat<strong>is</strong>fies (5.3), (5.2), andfor i in {1,...,n} and 0 ≤ s ≤ t


1834 V. ANDRIEU, L. PRALY, AND A. ASTOLFICorollary 5.3 (feedforward form). If, in the design <strong>of</strong> φ n and K 1 , we selectd ∞ ≤ d 0 , then for all positive real numbers c 0 and c ∞ there ex<strong>is</strong>ts a real numberL ∗ > 0 such that for every L in (0,L ∗ ], the following holds:• For every class K function γ z and class KL function β δ , we can find two classKL functions β x and βˆx such that, for each function t ∈ [0,T) ↦→ (x(t), ˆX n (t),δ(t),z(t)), T ≤ +∞, with (x, ˆX n ) C 1 and δ and z continuous, which sat<strong>is</strong>fies (5.3), (5.2),and for i in {1,...,n} and 0 ≤ s ≤ t 0 such that for all L in [L ∗ , +∞), the output feedback(5.2) <strong>is</strong> globally asymptotically stabilizing. Compared to already publ<strong>is</strong>hed results (see[13] and [26], for instance), the novelty <strong>of</strong> <strong>th<strong>is</strong></strong> case <strong>is</strong> in the simultaneous presence <strong>of</strong>the terms |x j | 1−d 0 (n−i−1)1−d 0 (n−j)and |x j | 1−d∞(n−i−1)1−d∞(n−j).On the other hand, if there ex<strong>is</strong>t two real numbers d 0 and d ∞ sat<strong>is</strong>fying −1 0 such that for all L in (0,L ∗ ], the output feedback(5.2) <strong>is</strong> globally asymptotically stabilizing.⎞⎠ ,⎞⎠ ,<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


HOMOGENEOUS OBSERVER DESIGN 1835Example 5.5. Consider the illustrative system (1.1). The bound (5.6) gives thecondition(5.7) 0 < q < p < 2 .Th<strong>is</strong> <strong>is</strong> almost the least conservative condition we can obtain with the dominationapproach. Specifically, it <strong>is</strong> shown in [18] that, when p>2, there <strong>is</strong> no stabilizing outputfeedback. However, when p = 2, (5.6) <strong>is</strong> not sat<strong>is</strong>fied, although the stabilizationproblem <strong>is</strong> solvable (see [18]).By Corollary 2.24, when (5.7) holds, the output feedback⎧˙ˆX 1 = L ˆX 2 − Lq ⎪⎨1 (l 1 e 1 ) ,u = L 2 φ 2 (ˆX 1, ˆX 2), ˙ˆX 2 = u L − Lq 2(l 2 q 1 (l 1 e 1 )) ,⎪⎩e 1 = ˆX 1 − y,with l 1 , l 2 , φ 2 , q 1 , and q 2 defined in (3.13) and (4.11) and with picking d 0 in (−1,q−1]and d ∞ in [p − 1, 1), globally asymptotically stabilizes the origin <strong>of</strong> the system (1.1),with L chosen sufficiently large. Furthermore, if d 0 <strong>is</strong> chosen strictly negative and d ∞strictly positive, <strong>by</strong> Corollary 2.24, convergence to the origin occurs in finite time,uniformly in the initial conditions.Example 5.6. To illustrate the feedforward result consider the system 7ẋ 1 = x 2 + x 3 23 + z 3 , ẋ 2 = x 3 , ẋ 3 = u, ż = −z 4 + x 3 , y = x 1 .For any ε> 0, there ex<strong>is</strong>ts a class KL function β δ such that{}|z(t)| 3 ≤ max β δ (|z(s)|,t− s), (1 + ε) sups≤κ≤t|x 3 (κ)| 3 4 .Therefore <strong>by</strong> letting δ 1 = x 3 23 +z 3 we get, for all 0 ≤ s ≤ t


1836 V. ANDRIEU, L. PRALY, AND A. ASTOLFITh<strong>is</strong> yields(5.9)⎧⎪⎨⎪⎩ddτ ̂X n = S n ̂Xn + B n φ n (ˆX n )) + K 1 (e 1 ) ,ddτ E 1 = S n E 1 + K 1 (e 1 )with E 1 =(e 1 ,...,e n ), ̂X n =(ˆX 1,...,ˆX n). The right-hand side <strong>of</strong> (5.9) <strong>is</strong> a vectorfield which <strong>is</strong> homogeneous in the bi-limit with weights (r 0 ,r 0 ), (r ∞ ,r ∞ ).Given d U > max j {r 0,j ,r ∞,j }, <strong>by</strong> applying Theorem 2.20 twice, we get two C 1 ,proper, and positive definite functions V : R n → R + and W : R n → R + such thatfor each i in {1,...,n}, the functions ∂V∂x iand ∂W∂e iare homogeneous in the bi-limit,with weights r 0 and r ∞ , degrees d U −r 0,i and d U −r ∞,i , and approximating functions∂V 0∂ ˆX j , ∂V∞∂ ˆX j(5.10)and ∂W0∂e jand for all E 1 ≠ 0,(5.11), ∂W∞∂e j. Moreover, for all ̂X n ≠ 0,∂V∂ ̂X (̂X n )∂V 0∂ ̂X(̂X n )n∂V ∞∂ ̂X(̂X n )n[]S n ̂Xn + B n φ n (̂X n ) < 0 ,[S n ̂Xn + B n φ n,0 (̂X n )]< 0 ,[]S n ̂Xn + B n φ n,∞ (̂X n ) < 0 ,∂W(E 1 )(S n E 1 + K 1 (e 1 )) < 0 ,∂E 1∂W 0(E 1 )(S n E 1 + K 1,0 (e 1 )) < 0 ,∂E 1∂W ∞(E 1 )(S n E 1 + K 1,∞ (e 1 )) < 0 .∂E 1Consider now the Lyapunov function candidate(5.12) U(ˆX n ,E 1 ) = V (ˆX n )+c W (E 1 ) ,where c <strong>is</strong> a positive real number to be specified. Letη(ˆX n ,E 1 )= ∂V ()∂ ̂X(̂X n ) S n ˆXn + B n φ n (ˆX n )+K 1 (e 1 )nγ(E 1 )=− ∂W∂E 1(E 1 )(S n E 1 + K 1 (e 1 )) .These two functions are continuous and homogeneous in the bi-limit with associatedtriples ((r 0 ,r 0 ),d U + d 0 ,η 0 ), ((r ∞ ,r ∞ ),d U + d ∞ ,η ∞ ) and ((r 0 ,r 0 ),d U + d 0 ,γ 0 ),((r ∞ ,r ∞ ),d U + d ∞ ,γ ∞ ), where γ 0 , γ ∞ and η 0 , η ∞ are continuous functions. Furthermore,<strong>by</strong> (5.11), γ(E 1 ) <strong>is</strong> negative definite. Hence, <strong>by</strong> (5.10), we have{} {}(ˆX n ,E 1 ) ∈ R 2n \{0} : γ(E 1 )=0 ⊆ (ˆX n ,E 1 ) ∈ R 2n : η(ˆX n ,E 1 ) < 0 ,{} {}(ˆX n ,E 1 ) ∈ R 2n \{0} : γ 0 (E 1 )=0 ⊆{}(ˆX n ,E 1 ) ∈ R 2n \{0} : γ ∞ (E 1 )=0 ⊆(ˆX n ,E 1 ) ∈ R 2n : η 0 (ˆX n ,E 1 ) < 0 ,{}(ˆX n ,E 1 ) ∈ R 2n : η ∞ (ˆX n ,E 1 ) < 0 .,<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


HOMOGENEOUS OBSERVER DESIGN 1837Consequently, <strong>by</strong> Lemma 2.13, there ex<strong>is</strong>ts a positive real number c ∗ such that, for allc > c ∗ and all (ˆX n ,E 1 ) ≠ (0, 0), the Lyapunov function U, defined in (5.12), sat<strong>is</strong>fies∂U()∂ ˆX(ˆX n ,E 1 ) S n ˆXn + B n φ n (ˆX n )+K 1 (e 1 )n+ ∂U∂E 1(ˆX n ,E 1 )(E 1 )(S n E 1 + K 1 (e 1 )) < 0and the same holds for the homogeneous approximations in the 0-limit and in the∞-limit; hence the claim.Pro<strong>of</strong> <strong>of</strong> Corollary 5.2. We write the dynamics <strong>of</strong> the system (5.3) in the coordinatesˆX n and E 1 and in the time τ given in (5.8). Th<strong>is</strong> yields(5.13)with⎧⎪⎨⎪⎩ddτ ̂X n = S n ̂Xn + B n φ n (ˆX n )) + K 1 (e 1 ),ddτ E 1 = S n E 1 + K 1 (e 1 )+D(L)(δ1D(L) =L ,..., δ )nL n .We denote the solution <strong>of</strong> <strong>th<strong>is</strong></strong> system, starting from (̂X n (0),E 1 (0)) in R 2n at time τ,<strong>by</strong> (̂X τ,n (τ),E τ,1 (τ)). We have(5.14) x i (t) = L i−1 (ˆX τ,i (Lt) − e τ,i (Lt)) .The right-hand side <strong>of</strong> (5.13) <strong>is</strong> a vector field which <strong>is</strong> homogeneous in the bi-limitwith weights (r 0 ,r 0 ), (r ∞ ,r ∞ ) for (̂X n ,E 1 ) and (r 0 , r ∞ ) for D(L), where r 0,i = r 0,i +d 0and r ∞,i = r ∞,i + d ∞ for each i in {1,...,n}.The time function τ ↦→ δ( τ L) <strong>is</strong> considered as an input, and when D(L) = 0,Theorem 5.1 implies global asymptotic stability <strong>of</strong> the origin <strong>of</strong> the system (5.13)and <strong>of</strong> its homogeneous approximations. To complete the pro<strong>of</strong> we show that thereex<strong>is</strong>ts L ∗ such that the “input” D(L) sat<strong>is</strong>fies the small-gain condition (2.11) <strong>of</strong> Corollary2.22 for all L>L ∗ . Using (5.8) and (5.14), assumption (5.4) becomes, for all0 ≤ σ ≤ τ < LT and all i in {1,...,n},∣ δi( τL)∣ ∣L i{ (1 ∣∣∣z ( σ)∣ )∣∣≤ maxL i β τ − σδ , ,L L{i∑L −i ∣sup σ≤κ≤τ ∣L (j−1) (ˆX τ,j(κ) − e τ,j (κ)) ∣c 0j=11−d 0 (n−i−1)1−d 0 (n−j)i∑∣(5.15) + c ∞ ∣L (j−1) (ˆX τ,j(κ) − e τ,j (κ)) ∣Note that when 1 ≤ j ≤ i ≤ n, the function s ↦→ 1−(n−i−1) s1−(n−j) s<strong>is</strong> strictly increas-n−i) in (n+1−j , ij−1 ). As d 0 ≤ d ∞ < 1n−1, we have for all1ing, mapping (−1,1 ≤ j ≤ i ≤ n,n−1j=11−d∞(n−i−1)1−d∞(n−j)}}1 − d 0 (n − i − 1)1 − d 0 (n − j)≤ 1 − d ∞(n − i − 1)1 − d ∞ (n − j)


1838 V. ANDRIEU, L. PRALY, AND A. ASTOLFIHence, selecting L ≥ 1, there ex<strong>is</strong>ts a real number ɛ> 0 such thatL −ɛTh<strong>is</strong> implies∣ ( {∣δ τ i ∣(L)∣1 ∣∣∣z ( σ)∣ ∣∣L i ≤ maxL i β τ − σδ ,L L{i∑L −ɛ sup σ≤κ≤τOn the other hand, the function(̂X n ,E 1 ) ↦→ c 01−d∞(n−i−1)(j−1)≥ L1−d∞(n−j) −i ≥ L (j−1) 1−d 0 (n−i−1)1−d 0 (n−j) −i .i∑j=1c 0j=1),|(ˆX τ,j(κ) − e τ,j (κ))| 1−d 0 (n−i−1)1−d 0 (n−j)+ c ∞i∑j=1|ˆX j − e j | 1−d 0 (n−i−1)1−d 0 (n−j)+ c ∞i∑|(ˆX τ,j(κ) − e τ,j (κ))| 1−d∞(n−i−1)1−d∞(n−j)j=1|ˆX j − e j | 1−d∞(n−i−1)1−d∞(n−j)}}<strong>is</strong> homogeneous in the bi-limit with weights (r 0 ,r 0 ) and (r ∞ ,r ∞ ) and degrees 1 −d 0 (n − i − 1) = r 0,i + d 0 and 1 − d ∞ (n − i − 1) = r ∞,i + d ∞ (see (3.2)). Hence, <strong>by</strong>Corollary 2.15, there ex<strong>is</strong>ts a positive real number c 1 such thati∑c 0j=1|ˆX j − e j | 1−d 0 (n−i−1)1−d 0 (n−j)+ c ∞i∑j=1(5.16) ≤ c 1 H|ˆX j − e j | 1−d∞(n−i−1)1−d∞(n−j)()|(̂X n ,E 1 )| d0+r0,i(r , |(̂X 0,r 0) n ,E 1 )| d∞+r∞,i(r ∞,r ∞).Hence, <strong>by</strong> Corollary 2.22 (applied in the τ time-scale), there ex<strong>is</strong>ts c G such that forany L ∗ large enough such that c 1 L ∗−ε ≤ c G , the conclusion holds.Pro<strong>of</strong> <strong>of</strong> Corollary 5.3. The pro<strong>of</strong> <strong>is</strong> similar to the previous one with the onlydifference being that, when i and j sat<strong>is</strong>fy 3 ≤ i +2 ≤ j ≤ n, the function s ↦→1−(n−i−1) s1−(n−j) s<strong>is</strong> strictly decreasing, mapping (−1,1n−1 ) in ( icondition −1 < d ∞ ≤ d 0 < 1n−11 − d ∞ (n − i − 1)1 − d ∞ (n − j)gives the inequalities≥ 1 − d 0(n − i − 1)1 − d 0 (n − j)j−1 ,>n−in+1−jij − 1 .). Moreover theHence (5.16) holds, and <strong>by</strong> selecting L


HOMOGENEOUS OBSERVER DESIGN 1839From Corollary 2.22, the result holds for all L ∗ small enough to sat<strong>is</strong>fy c 1 L ∗ε ≤c G .6. Conclusion. We have presented two new tools that can be useful in nonlinearcontrol design. The first one <strong>is</strong> introduced to formalize the notion <strong>of</strong> homogeneousapproximation valid both at the origin and at infinity. With <strong>th<strong>is</strong></strong> formal<strong>is</strong>m we havegiven several novel results concerning asymptotic stability, robustness analys<strong>is</strong>, andalso finite time convergence (uniformly in the initial conditions). The second one <strong>is</strong>a new recursive design for an observer for a chain <strong>of</strong> integrators. The combination <strong>of</strong>these two tools allows us to obtain a new result on stabilization <strong>by</strong> output feedbackfor systems whose dominant homogeneous in the bi-limit part <strong>is</strong> a chain <strong>of</strong> integrators.Appendix A. Pro<strong>of</strong> <strong>of</strong> Proposition 2.10. We give the pro<strong>of</strong> only in the 0-limit case since the ∞-limit case <strong>is</strong> similar. Let C be an arbitrary compact subset <strong>of</strong>R n \{0} and ɛ any strictly positive real number. By the definition <strong>of</strong> homogeneity inthe 0-limit, there ex<strong>is</strong>ts λ 1 > 0 such that we have∣φ(λ r φ,0⋄ x)λ d φ,0− φ 0 (x)∣ ≤ 1 ∀ x ∈ C, ∀ λ ∈ (0,λ 1] .Hence, as φ 0 <strong>is</strong> a continuous function on R n , for all λ in (0,λ 1 ], the function x ↦→φ(λ r 0 ⋄ x)λ d φ,0takes its values in a compact set C φ = φ 0 (C) +B 1 , where B 1 <strong>is</strong> theunity ball.Now, as ζ 0 <strong>is</strong> continuous on the compact subset C φ , it <strong>is</strong> uniformly continuous;i.e., there ex<strong>is</strong>ts ν> 0 such that|z 1 − z 2 | < ν =⇒ |ζ 0 (z 1 ) − ζ 0 (z 2 )| < ɛ .Also there ex<strong>is</strong>ts µ ɛ > 0 sat<strong>is</strong>fyingζ(µ r ζ,0z)∣ µ d − ζζ,0 0 (z)∣ ≤ ɛ ∀ z ∈ C φ , ∀ µ ∈ (0,µ ɛ ] ,or equivalently, since d φ,0 > 0,ζ(λ d φ,0z)(− ζ∣0 (z)∣ ≤ ɛ ∀ z ∈ C φ , ∀ λ ∈ 0,µd φ,0 d ζ,0rλ ζ,0r ζ,0d φ,0ɛSimilarly, there ex<strong>is</strong>ts λ ν such thatφ(λ r φ,0⋄ x)∣ λ d − φφ,0 0 (x)∣ ≤ ν ∀ x ∈ C, ∀ λ ∈ (0,λ ν] .It follows that∣ ζ(φ(λ r φ,0⋄ x))∣∣∣∣ d∣ φ,0 d ζ,0− ζ 0 (φ 0 (x))rλ ζ,0∣ ≤ ζ(φ(λ r (φ,0⋄ x)) φ(λr φ,0) ∣ ⋄ x)∣∣∣d φ,0 d ζ,0− ζ 0rλ ζ,0λ d φ,0( +φ(λr∣ ζ φ,0)⋄ x)0λ d − ζφ,00 (φ 0 (x))∣{≤ 2 ɛ ∀ x ∈ C, ∀ λ ∈ min λ 1 ,λ ν ,µ].r ζ,0d φ,0ɛ}.Th<strong>is</strong> establ<strong>is</strong>hes homogeneity in the 0-limit <strong>of</strong> the function ζ ◦ φ.<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


1840 V. ANDRIEU, L. PRALY, AND A. ASTOLFIAppendix B. Pro<strong>of</strong> <strong>of</strong> Proposition 2.11. We give the pro<strong>of</strong> only in the 0-limit case since the ∞-limit case <strong>is</strong> similar. The function φ being a bijection, we canassume without loss <strong>of</strong> generality that it <strong>is</strong> a strictly increasing function (otherw<strong>is</strong>e wetake −φ). Th<strong>is</strong>, together with homogeneity in the 0-limit, implies that ϕ 0 <strong>is</strong> strictlypositive. Moreover, for each δ> 0, there ex<strong>is</strong>ts t 0 (δ) > 0 such that∣ φ(t) ∣∣∣∣ − ϕ 0 ≤ δ ∀ t ∈ (0,t 0 (δ)] .t d0By letting λ = φ(t), <strong>th<strong>is</strong></strong> givesϕ 0 − δ ≤λφ −1 (λ) d0 ≤ ϕ 0 + δ ∀ λ ∈ (0,φ(t 0 (δ))] , ∀ δ> 0 .Since for δ < ϕ 0 the term on the left <strong>is</strong> strictly positive, these inequalities give( 1) 1d 0ϕ 0 + δ≤ φ−1 (λ)λ 1d 01Then since the function δ ↦→ (ϕ ) 1d 00−δex<strong>is</strong>ts δ 1 (ɛ 1 ) > 0 sat<strong>is</strong>fying( 1ϕ 0) 1d 0− ɛ 1 ≤Th<strong>is</strong> yields(φ −1 (λ)∣λ 1d 0≤1ϕ 0 + δ 1 (ɛ 1 )( ) 11d 0∀ λ ∈ (0,φ −1 (t 0 (δ))], ∀ δ ∈ (0,ϕ 0 ) .ϕ 0 − δ) 1d 0<strong>is</strong> continuous at zero, for every ɛ 1 > 0 there≤(1ϕ 0 − δ 1 (ɛ 1 )) 1d 0( ) ∣11d 0 ∣∣∣∣− ≤ ɛ 1 ∀ λ ∈ (0,λ − (ɛ 1 )] ,ϕ 0with λ − (ɛ 1 )=φ(t 0 (δ 1 (ɛ 1 ))). With a similar argument, we getφ −1 ( ) ∣1(−λ) 1d 0 ∣∣∣∣ + ≤ ɛ 1 ∀ λ ∈ (0,λ + (ε 1 )]∣ d 0 ϕ 0λ 1for some λ + > 0. Let λ 0 = min{λ − ,λ + }.Now, for x ≠ 0 and λ> 0, we have∣φ −1 (λx)∣λ 1d 0( ) ∣1xd 0 ∣∣∣∣− = |x| 1d 0ϕ 0∣ ∣∣∣∣φ −1 (λx)(xλ) 1d 0≤( ) ∣11d 0 ∣∣∣∣− .ϕ 0Therefore, for any compact set C <strong>of</strong> R\{0} and any ɛ> 0, <strong>by</strong> letting ɛ 1 =we have|x| 1d 0 ɛ 1 ≤ ɛ, 0 < |λx| ≤ λ 0 (ɛ 1 ) ∀ λ ∈and thereforeφ −1 (λx)∣λ 1d 0( ) ∣1xd 0 ∣∣∣∣− ≤ ɛϕ 0∀ λ ∈(0,( 1ϕ 0) 1d 0+ ɛ 1 .ɛmax x∈C |x| 1d 0,]λ 0 (ɛ 1 ), ∀ x ∈ C,max x∈C |x|(]λ 0 (ɛ 1 )0,, ∀ x ∈ C.max x∈C |x|Th<strong>is</strong> establ<strong>is</strong>hes homogeneity in the 0-limit <strong>of</strong> the function φ −1 .<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


HOMOGENEOUS OBSERVER DESIGN 1841Appendix C. Pro<strong>of</strong> <strong>of</strong> Lemma 2.13. The pro<strong>of</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> lemma <strong>is</strong> divided intothree parts.1. We first show, <strong>by</strong> contradiction, that there ex<strong>is</strong>ts a real number c 0 sat<strong>is</strong>fyingη 0 (θ) − cγ 0 (θ) < 0 ∀ θ ∈ S r0 , ∀ c ≥ c 0 .Suppose there <strong>is</strong> no such c 0 . Th<strong>is</strong> means there <strong>is</strong> a sequence (θ i ) i∈N in S r0which sat<strong>is</strong>fiesη 0 (θ i ) − iγ 0 (θ i ) ≥ 0 ∀ i ∈ N .The sequence (θ i ) i∈N lives in a compact set. Thus we can extract a convergentsubsequence (θ il ) l∈N which converges to a point denoted θ ∞ .As the functions η 0 and γ 0 are bounded on S r0 and γ 0 takes nonnegativevalues, 8 γ 0 (θ il ) must go to 0 as i l goes to infinity. Since the functions η 0 andγ 0 are continuous, we get γ 0 (θ ∞ ) = 0 and η 0 (θ ∞ ) ≥ 0, which <strong>is</strong> impossible.Consequently, there ex<strong>is</strong>t c 0 and ε 0 > 0 such that(C.1) η 0 (θ) − cγ 0 (θ) ≤ −ε 0 < 0 ∀ θ ∈ S r0 , ∀ c ≥ c 0 .Moreover, since the functions η 0 and γ 0 are homogeneous in the standardsense (see Remark 2.6), we have the second inequality in (2.4).Following the same argument, we can find positive real numbers c ∞ and ε ∞such that(C.2) η ∞ (θ) − cγ ∞ (θ) < −ε ∞ ∀ θ ∈ S r∞ , ∀ c ≥ c ∞ ,and the third inequality in (2.4) holds.In the rest <strong>of</strong> the pro<strong>of</strong>, letc 1 = max{c 0 ,c ∞ }, ε 1 = min{ε 0 ,ε ∞ } .2. Since η and γ are homogeneous in the 0-limit, there ex<strong>is</strong>ts λ 0 such that, forall λ ∈ (0,λ 0 ] and all θ ∈ S r0 , we haveη(λ r0 ⋄ θ) ≤ λ d0 η 0 (θ) +λ d0 ε 14 , λd0 γ 0 (θ) − λ d0 ε 14c 1≤ γ(λ r0 ⋄ θ) ,which readily givesη(λ r0 ⋄ θ) − c 1 γ(λ r0 ⋄ θ) ≤ λ d0 η 0 (θ) +λ d0 ε 12 − c 1λ d0 γ 0 (θ) .Using (C.1), we getη(λ r0 ⋄ θ) − c 1 γ(λ r0 ⋄ θ) ≤ −λ d0 ε 12and therefore, since γ takes nonnegative values,∀ λ ∈ (0,λ 0 ] , ∀ θ ∈ S r0 ,η(λ r0 ⋄ θ) − cγ(λ r0 ⋄ θ) ≤−λ d0 ε 12∀ λ ∈ (0,λ 0 ] , ∀ θ ∈ S r0 , ∀ c ≥ c 1 .8 Indeed, if we had γ 0 (x) < 0 for some x in R n \{0}, <strong>by</strong> letting ɛ = − γ 0(x), the homogeneity in2the 0-limit <strong>of</strong> γ would give a real number λ> 0 sat<strong>is</strong>fying γ(λr 0 ⋄x)λ d ≤ γ0 0 (x) +ɛ = γ 0(x)< 0. Th<strong>is</strong>2contradicts the fact that γ takes nonnegative values only. Also <strong>by</strong> continuity we have γ 0 (0) ≥ 0.<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


1842 V. ANDRIEU, L. PRALY, AND A. ASTOLFISimilarly, there ex<strong>is</strong>ts λ ∞ sat<strong>is</strong>fyingη(λ r∞ ⋄θ)−cγ(λ r∞ ⋄θ) ≤−λ d∞ ε 12Consequently, for each c ≥ c 1 , the setif not empty, must be a subset <strong>of</strong>∀ λ ∈ [λ ∞ , +∞) , ∀ θ ∈ S r∞ , ∀ c ≥ c 1 .{x ∈ R n \{0} |η(x) − cγ(x) ≥ 0} ,C = {x ∈ R n : |x| r0 ≥ λ 0 } ⋃ {x ∈ R n : |x| r∞ ≤ λ ∞ } ,which <strong>is</strong> compact and does not contain the origin.3. Suppose now that for all c the first inequality in (2.4) <strong>is</strong> not true. Th<strong>is</strong> meansthat, for all integers c larger than c 1 , there ex<strong>is</strong>ts x c in R n sat<strong>is</strong>fyingη(x c ) − cγ(x c ) ≥ 0 ,and therefore x c <strong>is</strong> in C. Since C <strong>is</strong> a compact set, there <strong>is</strong> a convergentsubsequence (x cl ) l∈N which converges to a point denoted x ∗ different fromzero. Also as above, we must have γ(x ∗ ) = 0 and η(x ∗ ) ≥ 0. But <strong>th<strong>is</strong></strong>contradicts the assumption, namely,{ x ∈ R n \{0} , γ(x) =0} ⇒ η(x) < 0 .Appendix D. Pro<strong>of</strong> <strong>of</strong> Proposition 2.18. Because the vector field f <strong>is</strong> homogeneousin the ∞-limit, its approximating vector field f ∞ <strong>is</strong> homogeneous in thestandard sense (see Remark 2.6). Let d V∞ be a positive real number larger thanr ∞,i for all i in {1,...,n}. Following Rosier [29], there ex<strong>is</strong>ts a C 1 , positive definite,proper, and homogeneous function V ∞ : R n → R + , with weight r ∞ and degree d V∞ ,sat<strong>is</strong>fying(D.1)∂V ∞∂x (x)f ∞(x) < 0 ∀ x ≠ 0 .From P1 in section 2.2, we know that the function x ↦→ ∂V∞∂x(x)f(x) <strong>is</strong> homogeneousin the ∞-limit with associated triple ( r ∞ , d ∞ + d V∞ , ∂V∞∂x (x)f ∞(x) ) . Letɛ ∞ = − 1 2 maxθ ∈ S r∞{ ∂V∞∂x (θ)f ∞(θ)and note that, <strong>by</strong> inequality (D.1), ɛ ∞ <strong>is</strong> a strictly positive real number. By thedefinition <strong>of</strong> homogeneity in the ∞-limit, there ex<strong>is</strong>ts λ ∞ such that∂V ∞∂x(λ r∞ ⋄ θ)f(λ r∞ ⋄ θ)∣ λ d − ∂V ∞V∞ +d∞∂x (θ)f ∞(θ)∣ ≤ ɛ ∞ ∀ θ ∈ S r∞ , ∀ λ ≥ λ ∞ .Th<strong>is</strong> yields∂V ∞∂x (λr∞ ⋄ θ)f(λ r∞ ⋄ θ) ≤ λ d V∞ +d∞ ( ∂V∞∂x (θ)f ∞(θ) +ɛ ∞)≤−λ d V∞ +d∞ ɛ ∞ ∀ θ ∈ S r∞ , ∀ λ ≥ λ ∞ ,},<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


HOMOGENEOUS OBSERVER DESIGN 1843or in other words,(D.2)∂V ∞∂x (x) f(x) < 0 ∀ x : |x| r ∞≥ λ ∞ .Th<strong>is</strong> establ<strong>is</strong>hes global asymptotic stability <strong>of</strong> the compact setwhere v ∞ <strong>is</strong> given <strong>by</strong>C ∞ = {x : V ∞ (x) ≤ v ∞ } ,v ∞ = max|x| r∞ = λ ∞{V ∞ (x)} .Appendix E. Pro<strong>of</strong> <strong>of</strong> Theorem 2.20. The pro<strong>of</strong> <strong>is</strong> divided into three steps.First, we define three Lyapunov functions V 0 , V m , and V ∞ . Then we build anotherLyapunov function V from these three. Finally, we show that its derivative alongthe trajectories <strong>of</strong> the system (2.7) and its homogeneous approximations are negativedefinite.1. As establ<strong>is</strong>hed in the pro<strong>of</strong> <strong>of</strong> Proposition 2.18, there ex<strong>is</strong>t a positive realnumber λ ∞ and a C 1 positive definite, proper, and homogeneous functionV ∞ : R n → R + , with weight r ∞ and degree d V∞ sat<strong>is</strong>fying (D.2). Similarly,there ex<strong>is</strong>t a number λ 0 > 0 and a C 1 positive definite, proper, and homogeneousfunction V 0 : R n → R + , with weight r 0 and degree d V0 , sat<strong>is</strong>fying(E.1)∂V 0∂x (x) f(x) < 0 ∀ x : 0 < |x| r 0≤ λ 0 .Finally, the global asymptotic stability <strong>of</strong> the origin <strong>of</strong> the system ẋ = f(x)implies the ex<strong>is</strong>tence <strong>of</strong> a C 1 , positive definite, and proper function V m :R n → R + sat<strong>is</strong>fying(E.2)∂V m(x) f(x) < 0 ∀ x ≠0.∂x2. Now we build a function V from the functions V m , V ∞ , and V 0 . For <strong>th<strong>is</strong></strong>, wefollow a technique used <strong>by</strong> Mazenc in [17] (see also [15]). Let v ∞ and v 0 betwo strictly positive real numbers such that v 0


1844 V. ANDRIEU, L. PRALY, AND A. ASTOLFILetV (x) = ω ∞ ϕ ∞ (V m (x))V ∞ (x)+ [1 − ϕ ∞ (V m (x))] ϕ 0 (V m (x)) V m (x)+ω 0 [1 − ϕ 0 (V m (x))] V 0 (x) ,where ϕ 0 and ϕ ∞ are C 1 nondecreasing functions sat<strong>is</strong>fying(E.3)(E.4)ϕ 0 (s) = 0 ∀ s ≤ 1 2 v 0, ϕ 0 (s) = 1 ∀ s ≥ v 0 ,ϕ ∞ (s) = 0 ∀ s ≤ v ∞ , ϕ ∞ (s) = 1 ∀ s ≥ 2v ∞ .Then V <strong>is</strong> C 1 , positive definite, and proper. Moreover, <strong>by</strong> construction,⎧ω 0 V 0 (x) ∀ x : V m (x) ≤ 1 2 v 0 ,⎪⎨V (x) =⎪⎩ϕ 0 (V m (x)) V m (x)+ω 0 [1 − ϕ 0 (V m (x))] V 0 (x)∀ x :12 v 0 ≤ V m (x) ≤ v 0 ,V m (x) ∀ x : v 0 ≤ V m (x) ≤ v ∞ ,ω ∞ ϕ ∞ (V m (x))V ∞ (x) + [1 − ϕ ∞ (V m (x))] V m (x)∀ x : v ∞ ≤ V m (x) ≤ 2 v ∞ ,ω ∞ V ∞ (x) ∀ x : V m (x) ≥ 2 v ∞ .Thus for each i in {1,...,n},(E.5)and(E.6)∂V∂x i(x) = ω ∞∂V ∞∂x i(x)∀ x : V m (x) > 2 v ∞∂V∂x i(x) = ω 0∂V 0∂x i(x) ∀ x : V m (x) < 1 2 v 0 .Since ∂V∞∂x iand ∂V0∂x iare homogeneous in the standard sense, <strong>th<strong>is</strong></strong> proves that∂Vfor each i in {1,...,n},∂x i<strong>is</strong> homogeneous in the bi-limit, with weights r 0and r ∞ and degrees d V0 − r 0,i and d V∞ − r ∞,i .3. It remains to show that the Lie derivative <strong>of</strong> V along f <strong>is</strong> negative definite.To <strong>th<strong>is</strong></strong> end note that, for all x such that 1 2 v 0 ≤ V m (x) ≤ v 0 ,∂V∂x (x)f(x) = ϕ′ 0(V m (x)) [V m (x) − ω 0 V 0 (x)] ∂V m∂x (x)f(x)+ ω 0 [1 − ϕ 0 (V m (x))] ∂V 0∂x (x)f(x)+ϕ 0(V m (x)) ∂V m∂x (x)f(x)and, for all x such that v ∞ ≤ V m (x) ≤ 2 v ∞ ,∂V∂x (x)f(x) = ϕ′ ∞(V m (x)) [ω ∞ V ∞ (x) − V m (x)] ∂V m∂x (x)f(x)+ ω ∞ ϕ ∞ (V m (x)) ∂V ∞∂x (x)f(x) + [1 − ϕ ∞(V m (x))] ∂V m∂x (x)f(x) .By (D.2), (E.1), (E.2), (E.3), and (E.4), these inequalities imply∂V(x) f(x) < 0 ∀ x ≠ 0 ,∂xwhich proves the claim.<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


HOMOGENEOUS OBSERVER DESIGN 1845Appendix F. Pro<strong>of</strong> <strong>of</strong> Corollary 2.21. Recall (1.6) and consider the functionsη 1 : R n × R m → R and γ 1 : R n × R m → R + defined asη 1 (x, δ) = ∂V∂x (x) [f(x, δ) − 1 2 f(x, 0) ], γ 1 (x, δ) =m∑j=1(d V0 +d 0 d V∞)+d∞rH |δ j | 0,j r, |δ j | ∞,j.These functions are homogeneous in the bi-limit with weights r 0 and r ∞ for x and r 0and r ∞ for δ and degrees d V0 +d 0 and d V∞ +d ∞ . Since the function x ↦→ ∂V∂x(x) f(x, 0)<strong>is</strong> negative definite, then{(x, δ) ∈ R n+m \{0} : γ 1 (x, δ) = 0} ⊆{ (x, δ) ∈ R n+m : η 1 (x, δ) < 0} .Moreover, since the homogeneous approximations <strong>of</strong> η are negative definite, we get{(x, δ) ∈ R n+m \{0} : γ 1,0 (x, δ) = 0} ⊆{ (x, δ) ∈ R n+m : η 1,0 (x, δ) < 0} ,{(x, δ) ∈ R n+m \{0} : γ 1,∞ (x, δ) = 0} ⊆{ (x, δ) ∈ R n+m : η 1,∞ (x, δ) < 0} .Hence, <strong>by</strong> Lemma 2.13, there ex<strong>is</strong>ts a positive real number c δ such that(F.1)[∂V∂x (x) f(x, δ) − 1 ]2 f(x, 0)≤ c δm∑j=1(d V0 +d 0 d V∞)+d∞rH |δ j | 0,j r, |δ j | ∞,jConsider now the functions η 2 : R n → R + and γ 2 : R n → R + defined as(d V0 +d 0d V∞)+d∞dη 2 (x) =H V (x) V0d,V(x) V∞, γ 2 (x) =− 1 ∂V(x) f(x, 0) .2 ∂xThey are homogeneous in the bi-limit with weights r 0 and r ∞ and degrees d V0 + d 0and d V∞ + d ∞ . Since γ 2 and its homogeneous approximations are positive definite,<strong>by</strong> Corollary 2.15 there ex<strong>is</strong>ts a positive real number c V such that(d1 ∂VV0 +d 0d(F.2)2 ∂x (x) f(x, 0) ≤ −c V∞)+d∞dV H V (x) V0d,V(x) V∞.The two inequalities (F.1) and (F.2) yield the claim.Appendix G. Pro<strong>of</strong> <strong>of</strong> Corollary 2.22. Let d V0 and d V∞ be such that theassumption <strong>of</strong> Theorem 2.20 holds. For each i in {1,...,m}, let µ i : R + → R + bethe strictly increasing function defined as (see (1.6))(G.1) µ i (s) = H (s qi ,s pi ) ,wherep i = d ∞ + d V∞r ∞,i, q i = d 0 + d V0r 0,i.We first prove that the inequality given <strong>by</strong> Corollary 2.21 implies that the system(2.8), with δ as input and x as output, <strong>is</strong> ISS with a linear gain between ∑ mi=1 µ i(|δ i |)and H(|x| d0+d V 0r 0, |x| d∞+d V∞r ∞α(s) = H). To do so we introduce the function α : R + → R + as(d 0 +d V0 d∞+d V∞)ds V0 d,s V∞, s ≥ 0 ..<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


1846 V. ANDRIEU, L. PRALY, AND A. ASTOLFITh<strong>is</strong> function <strong>is</strong> a bijection, strictly increasing, and homogeneous in the bi-limit withd V0 +d 0d V0d V∞ +d∞dapproximating functions s and s V∞. Moreover, from Proposition 2.10,the function x ↦→ α(V (x)) <strong>is</strong> positive definite and homogeneous in the bi-limit withassociated weights r 0 and r ∞ and degrees d 0 + d V0 and d ∞ + d V∞ . Moreover, itsd V0 +d 0d V0d V∞ +d∞d V∞approximating homogeneous functions V 0 (x) and V ∞ (x) are positivedefinite as well. Hence, we get from Corollary 2.15 the ex<strong>is</strong>tence <strong>of</strong> a positive realnumber c 1 sat<strong>is</strong>fying()(G.2) H |x| d0+d V 0r 0, |x| d∞+d V∞r ∞≤ c 1 α(V (x)) ∀ x ∈ R n .On the other hand, from inequality (2.9) in Corollary 2.21, we have the property{}(x, δ) ∈ R n × R m(G.3): α(V (x)) ≥ 2 c δc Vm∑µ i (|δ i |){i=1⊆ (x, δ) ∈ R n × R m :∂V∂x (x) f(x, δ) ≤ −c V2 α(V (x)) }In the following, let t ∈ [0,T) ↦→ (x(t),δ(t),z(t)) be any function which sat<strong>is</strong>fies (2.8)on [0,T) and (2.10) and (2.11) for all 0 ≤ s ≤ t ≤ T . From [32], we know the inclusion(G.3) implies the ex<strong>is</strong>tence <strong>of</strong> a class KL function β V such that, for all 0 ≤ s ≤ t ≤ T ,(G.4)⎧⎨V (x(t)) ≤ max⎩ β V (V (x(s)),t− s) ,sups≤κ≤t⎧ ⎛⎨⎩ α−1 ⎝ 2c δc Vm∑j=1⎞⎫⎫⎬⎬µ j (|δ j (κ)|) ⎠⎭⎭ .With α acting on both sides <strong>of</strong> inequality (G.4), (G.2) gives, for all 0 ≤ s ≤ t ≤ T ,()H |x(t)| d0+d V 0r 0, |x(t)| d∞+d V∞r ∞⎧⎧⎫⎫⎨(G.5) ≤ max⎩ c 1 α ◦ β V (V (x(s)),t− s) , 2c ⎨1c δm∑ ⎬⎬sup µc V ⎩ j (|δ j (κ)|)⎭⎭ .s≤κ≤tTh<strong>is</strong> <strong>is</strong> the linear gain property required. To conclude the pro<strong>of</strong> it remains to showthe ex<strong>is</strong>tence <strong>of</strong> c G such that a small gain property <strong>is</strong> sat<strong>is</strong>fied.First, note that the function x ↦→ H(|x| d0+d V 0r 0, |x| d∞+d V∞r ∞) <strong>is</strong> positive definiteand homogeneous in the bi-limit with weights r 0 and r ∞ and degrees d 0 + d V0 andd ∞ + d V∞( . ( By Proposition 2.10, for i in {1,...,m} the same holds with the functionrx ↦→ µ i H |x|0,i))r 0, |x| r∞,ir ∞ . Hence, <strong>by</strong> Corollary 2.15, there ex<strong>is</strong>ts a positive realnumber c 2 sat<strong>is</strong>fying( ((G.6) µ i H |x|r 0,i)) ()r 0, |x| r∞,ir ∞ ≤ c2 H |x| d0+d V 0r 0, |x| d∞+d V∞r ∞∀ x ∈ R n .Let C i for i in {1,...,m} be the class K ∞ functions defined asC i (c) = max{c qi ,c pi } + c p i q iq i +p i + c pi+qi .From (G.1), we get, for each s>0 and c>0,µ i (cs)µ i (s)= c (1 + [ qi sqi )(1 + c pi s pi ) 1+cp(1 + s pi )(1 + c qi s qi ) ≤ i]s pi+qicqi1+c qi s + s qipi+qi 1+c qi s + s cpi piqi+pi 1+s pij=1.,<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


HOMOGENEOUS OBSERVER DESIGN 1847wherec qi 1+cpi s pi+qi1+c qi s pi+qi ≤ max{cqi ,c pi } ,Hence, <strong>by</strong> continuity at 0, we havec qi s qi1+c qi s qi+pi ≤ c p i q iq i +p i ,c qi c pi s pi1+s pi ≤ c pi+qi .(G.7) µ i (cs) ≤ C i (c) µ i (s) ∀ (c, s) ∈ R 2 + .Consider the positive real numbers c 1 , c 2 , c δ , and c V previously introduced, and selectc G in R + sat<strong>is</strong>fying( )c V(G.8) c G < min1≤i≤m C−1 i.2 mc 1 c 2 c δTo show that such a selection for c G <strong>is</strong> appropriate, observe that <strong>by</strong> (G.6) and (G.7)and µ i acting on both sides <strong>of</strong> the inequality (2.11), we get for each i in {1,...,m}and all 0 ≤ s ≤ t ≤ T ,µ i (|δ i (t)|) ≤ max{µ i ◦ β δ (|z(s)|,t− s) ,C i (c G ) c 2{ (sup Hs≤κ≤tConsequentlym∑{µ i (|δ i (t)|) ≤ max m max {µ i ◦ β δ (|z(s)|,t− s)} ,1≤i≤mi=1{ ((G.9) (m max 1≤i≤m C i (c G ) c 2 ) sup s≤κ≤t HSince (G.8) yields2c 1 c δc V|x(κ)| d0+d V 0r 0|x(κ)| d0+d V 0r 0m max1≤i≤m C i(c G ) c 2 < 1 ,)} }, |x(κ)| d∞+d V∞r ∞.)} }, |x(κ)| d∞+d V∞r ∞.the ex<strong>is</strong>tence <strong>of</strong> the function β x follows from (2.10), (G.5), (G.9), and the (pro<strong>of</strong> <strong>of</strong>the) small-gain theorem [11].Appendix H. Pro<strong>of</strong> <strong>of</strong> Corollary 2.24. First, observe that the continuity <strong>of</strong>f 0 , at least, on R n \{0} implies|d 0 | = −d 0 ≤ min1≤i≤n r 0,i ≤ max1≤i≤n r 0,i < d V0 .Then, let V be the function given in Theorem 2.20 and, since d 0 < 0 < d ∞ , the functionφ(x) =V (x)d V0 +d 0d V0+ V (x)d V∞ +d∞d V∞<strong>is</strong> homogeneous in the bi-limit with weightsr 0 and r ∞ , degrees d V0 + d 0 and d V∞ + d ∞ , and approximating functions V (x)d V∞ +d∞d V∞d V0 +d 0d V0and V (x) . Moreover, the function ζ(x) = − ∂V∂x(x) f(x) <strong>is</strong> homogeneous inthe bi-limit with the same weights and degrees as φ. Furthermore, since the functionζ and its homogeneous approximations are positive definite, Corollary 2.15 yields astrictly positive real number c such that(H.1)(d∂VV0 +d 0∂x (x) f(x) ≤ −c dV (x) V0d V∞)+d∞d+ V (x) V∞∀ x ∈ R n .<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


1848 V. ANDRIEU, L. PRALY, AND A. ASTOLFILet x ic in R n \{0} be the initial condition <strong>of</strong> a solution <strong>of</strong> the system ẋ = f(x), andlet V xic : R + → R + be the function <strong>of</strong> time given <strong>by</strong> the evaluation <strong>of</strong> V along <strong>th<strong>is</strong></strong>solution. Thenfrom which we get{ ˙ {d V∞ +d∞dV xic (t) ≤ −cV xic (t) V∞∀ t ≥ 0 ,V xic (t) ≤(d ∞d V∞1) dct + V (x ic ) − d∞ V∞d∞d V∞≤(d ∞d V∞1ct) d V∞d∞∀ t>0 .Therefore, setting T 1= d V∞cd ∞, we haveV xic (t) ≤ 1 ∀ t ≥ T 1 , ∀ x ic ∈ R nandd{ ˙ {V0 −|d 0 |dV xic (t) ≤ −cV xic (t) V0∀ t ≥ 0 .As a result, we get⎧⎨(V xic (t) ≤ max − |d |d0|0 |c(t − T⎩1 )+V xic (T 1 )d V0⎧⎫⎨(≤ max 1 − |d ) d V 0|d0|0 | ⎬c(t − T 1 ) , 0⎩ d V0 ⎭d V0) d V 0|d 0 |, 0⎫⎬⎭ ,∀ t ≥ T 1 .Therefore, setting T 2 = d V 0c|d 0| yieldsV xic (t) = 0hence the claim.∀ t ≥ T 1 + T 2 = 1 c(dV∞+ d )V 0, ∀ x ic ∈ R n ,d ∞ |d 0 |Acknowledgments. The second author <strong>is</strong> extremely grateful to Wilfrid Perruquettiand Emmanuel Moulay for the many d<strong>is</strong>cussions about the notion <strong>of</strong> homogeneityin the bi-limit. Also, all the authors would like to thank the anonymousreviewers for their comments, which were extremely helpful in improving the quality<strong>of</strong> the paper.REFERENCES[1] V. Andrieu, L. Praly, and A. Astolfi, Nonlinear output feedback design via domination andgeneralized weighted homogeneity, in Proceedings <strong>of</strong> the 45th IEEE Conference on Dec<strong>is</strong>ionand Control, San Diego, 2006, pp. 6391–6396.[2] A. Bacciotti and L. Rosier, Liapunov Functions and Stability in Control Theory, LectureNotes in Control and Inform. Sci. 267, Springer, Berlin, 2001.[3] S. P. Bhat and D. S. Bernstein, Geometric homogeneity with applications to finite-timestability, Math. Control Signals Systems, 17 (2005), pp. 101–127.<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


HOMOGENEOUS OBSERVER DESIGN 1849[4] S. P. Bhat and D. S. Bernstein, Finite-time stability <strong>of</strong> continuous autonomous systems,<strong>SIAM</strong> J. Control Optim., 38 (2000), pp. 751–766.[5] J.-M. Coron and L. Praly, Adding an integrator for the stabilization problem, Systems ControlLett., 17 (1991), pp. 89–104.[6] J.-M. Coron and L. Rosier, A relation between continuous time-varying and d<strong>is</strong>continuousfeedback stabilization, J. Math. Systems Estim. Control, 4 (1994), pp. 67–84.[7] J. P. Gauthier and I. Kupka, Determin<strong>is</strong>tic Observation Theory And Applications, CambridgeUniversity Press, Cambridge, UK, 2001.[8] W. Hahn, Stability <strong>of</strong> Motion, Springer-Verlag, Berlin, 1967.[9] H. Hermes, Homogeneous coordinates and continuous asymptotically stabilizing feedback controls,in Differential Equations: Stability and Control, Lecture Notes in Pure Appl.Math. 109, S. Elaydi, ed., Marcel Dekker, New York, 1991, pp. 249–260.[10] Y. Hong, Finite-time stabilization and stabilizability <strong>of</strong> a class <strong>of</strong> controllable systems, SystemsControl Lett., 46 (2002), pp. 231–236.[11] Z.-P. Jiang, A. Teel, and L. Praly, Small-gain theorem for ISS systems and applications,Math. Control Signals Systems, 7 (1994), pp. 95–120.[12] M. Kawski, Stabilization <strong>of</strong> nonlinear systems in the plane, Systems Control Lett., 12 (1989),pp. 169–175.[13] H. Khalil and A. Saberi, Adaptive stabilization <strong>of</strong> a class <strong>of</strong> nonlinear systems using highgainfeedback, IEEE Trans. Automat. Control, 32 (1987), pp. 1031–1035.[14] S. Lefschetz, Differential Equations: Geometric Theory, 2nd ed., Dover, New York, 1977.[15] W. Liu, Y. Chitour, and E. Sontag, On finite-gain stabilizability <strong>of</strong> linear systems subjectto input saturation, <strong>SIAM</strong> J. Control Optim., 34 (1996), pp. 1190–1219.[16] J. L. Massera, Contributions to stability theory, Ann. <strong>of</strong> Math., 64 (1956), pp. 182–206.[17] F. Mazenc, Stabil<strong>is</strong>ation de trajectoires, ajout d’intégration, commandes saturées, Mémoirede thèse en Mathématiques et Automatique de l’École Nationale Supérieure des Mines dePar<strong>is</strong>, Avril 1996.[18] F. Mazenc, L. Praly, and W. P. Dayawansa, Global stabilization <strong>by</strong> output feedback: Examplesand counter-examples, Systems Control Lett., 23 (1994), pp. 119–125.[19] P. Morin and C. Samson, Application <strong>of</strong> backstepping techniques to the time-varying exponentialstabil<strong>is</strong>ation <strong>of</strong> chained form systems, European J. Control, 3 (1997), pp. 15–36.[20] R. Orsi, L. Praly, and I. Mareels, Sufficient conditions for the ex<strong>is</strong>tence <strong>of</strong> an unboundedsolution, Automatica, 37 (2001), pp. 1609–1617.[21] L. Praly, B. d’Andréa-Novel, and J.-M. Coron, Lyapunov design <strong>of</strong> stabilizing controllersfor cascaded systems, IEEE Trans. Automat. Control, 36 (1991), pp. 1177–1181.[22] L. Praly and Z.-P. Jiang, Stabilization <strong>by</strong> output feedback for systems with ISS inversedynamics, Systems Control Lett., 21 (1993), pp. 19–33.[23] L. Praly and Z.-P. Jiang, Further results on robust semiglobal stabilization with dynamicinput uncertainties, in Proceedings <strong>of</strong> the 37th Annual IEEE Conference on Dec<strong>is</strong>ion andControl, Tampa, 1998, pp. 891–896.[24] L. Praly and Z.-P. Jiang, Linear output feedback with dynamic high gain for nonlinearsystems, Systems Control Lett., 53 (2004), pp. 107–116.[25] L. Praly and F. Mazenc, Design <strong>of</strong> Homogeneous Feedbacks for a Chain <strong>of</strong> Integrators andApplications, Internal report E 173, CAS, Ecole des Mines de Par<strong>is</strong>, Par<strong>is</strong>, December 11,1995; rev<strong>is</strong>ed April 15, 1996.[26] C. Qian, A homogeneous domination approach for global output feedback stabilization <strong>of</strong> a class<strong>of</strong> nonlinear systems, in Proceedings <strong>of</strong> the IEEE American Control Conference, Portland,2005, pp. 4708–4715.[27] C. Qian and W. Lin, Output feedback control <strong>of</strong> a class <strong>of</strong> nonlinear systems: A nonseparationprinciple paradigm, IEEE Trans. Automat. Control, 47 (2002), pp. 1710–1715.[28] C. Qian and W. Lin, Recursive observer design, homogeneous approximation, and nonsmoothoutput feedback stabilization <strong>of</strong> nonlinear systems, IEEE Trans. Automat. Control, 51(2006), pp. 1457–1471.[29] L. Rosier, Homogeneous Lyapunov function for homogeneous continuous vector field, SystemsControl Lett., 19 (1992), pp. 467–473.[30] H. Shim and J. Seo, Recursive nonlinear observer design: Beyond the uniform observability,IEEE Trans. Automat. Control, 48 (2003), pp. 294–298.[31] E. D. Sontag, Input to state stability: Basic concepts and results, in Nonlinear and OptimalControl Theory, P. N<strong>is</strong>tri and G. Stefani, eds., Springer-Verlag, Berlin, 2006, pp. 163–220.[32] E. Sontag and Y. Wang, Lyapunov characterizations <strong>of</strong> input to output stability, <strong>SIAM</strong> J.Control Optim., 39 (2000), pp. 226–249.<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.


1850 V. ANDRIEU, L. PRALY, AND A. ASTOLFI[33] M. Tzamtzi and J. Tsinias, Explicit formulas <strong>of</strong> feedback stabilizers for a class <strong>of</strong> triangularsystems with uncontrollable linearization, Systems Control Lett., 38 (1999), pp. 115–126.[34] F. W. Wilson, Jr., Smoothing derivatives <strong>of</strong> functions and applications, Trans. Amer. Math.Soc., 139 (1969), pp. 413–428.[35] B. Yang and W. Lin, Homogeneous observers, iterative design, and global stabilization <strong>of</strong>high-order nonlinear systems <strong>by</strong> smooth output feedback, IEEE Trans. Automat. Control,49 (2004), pp. 1069–1080.<strong>Copyright</strong> © <strong>by</strong> <strong>SIAM</strong>. <strong>Unauthorized</strong> <strong>reproduction</strong> <strong>of</strong> <strong>th<strong>is</strong></strong> <strong>article</strong> <strong>is</strong> prohibited.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!