13.07.2015 Views

Why is SUSY Breaking so Difficult?! - Institute for Particle Physics ...

Why is SUSY Breaking so Difficult?! - Institute for Particle Physics ...

Why is SUSY Breaking so Difficult?! - Institute for Particle Physics ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Outline1 Introduction and MotivationWhat <strong>is</strong> it?The Language of SupersymmetryProblems2 <strong>Breaking</strong> SupersymmetryThe MathsThe <strong>Physics</strong>The Tools3 SummaryBooks(I.P.P.P. — Durham University) <strong>SUSY</strong> <strong>Breaking</strong> Heidelberg 2 / 27


SupersymmetryThe IdeaSymmetry (with generator Q) which relates bo<strong>so</strong>nic states |B 〉 tofermionic states |F 〉:Q |B 〉 = |F 〉 , Q |F 〉 = |B 〉The generators sat<strong>is</strong>fy the following anticommutation relations:{ }Q α , Q ˙β= 2 σ µ α ˙β P µ ,[Q β, P µ]= 0 ,{Q α , Q β}= 0 ,[Q ˙α , P µ]= 0{ }Q ˙α , Q ˙β= 0(I.P.P.P. — Durham University) <strong>SUSY</strong> <strong>Breaking</strong> Heidelberg 3 / 27


<strong>Why</strong> Supersymmetry?It’s per<strong>so</strong>nalColeman-Mandula Theorem: Unique extension of Poincaré algebra.For non-trivial scattering in > 1 + 1 dimensions, can onlyenlarge the known spacetime symmetries by spinorialgenerators.Mathematically, the extra symmetry – both exact and broken – <strong>is</strong> veryuseful <strong>for</strong> taming the behaviour of quantum field theories. Th<strong>is</strong> leadsto many interesting results. . .(I.P.P.P. — Durham University) <strong>SUSY</strong> <strong>Breaking</strong> Heidelberg 5 / 27


The Language of <strong>SUSY</strong>SuperEverythingUseful notation: Introduce fermionic spacetime coordinates θ α , θ ˙αWrap up fields related by <strong>SUSY</strong> trans<strong>for</strong>mations into superfields —functions on the superspace (x µ , θ α , θ ˙α ):Chiral Superfield: Φ(x µ , θ α , θ ˙α ) = φ(y µ ) + √ 2 θ ψ(y µ ) + θ 2 F(y µ )where y µ = x µ − i θ σ µ θGauge Superfield: V a = θ σ µ θ A a µ + i θ 2 θλ a − i θ 2 θλ a + 1 2 θ2 θ 2 D a(in Wess-Zumino Gauge)Fermions ←→ sFermionsGauge bo<strong>so</strong>ns ←→ Gauginos(I.P.P.P. — Durham University) <strong>SUSY</strong> <strong>Breaking</strong> Heidelberg 6 / 27


The Language of <strong>SUSY</strong>LagrangiansKinetic terms <strong>for</strong> Chiral superfields, and derivative interactions followfrom a real-valued function – the Kähler potential, K (·, ·):∫ () ∫L ⊃ d 2 θd 2 θ K Φ † , e gT a V a Φ = d 2 θd 2 θ Φ † e gV ΦTo restrict attention to renormalizable interactions, it <strong>is</strong> sufficient toconsider the canonical Kähler potential.Non-derivative interactions follow from a holomorphic function calledthe Superpotential, W (·). Don’t confuse it with the gauge fieldkinetic term!L ⊃∫d 2 θ W (Φ) + 1 4∫d 2 θ W a α W a α + h.c.(I.P.P.P. — Durham University) <strong>SUSY</strong> <strong>Breaking</strong> Heidelberg 7 / 27


The Language of <strong>SUSY</strong>LagrangiansTo break <strong>SUSY</strong> in a Lorentz invariant way, we’re going to want to knowthe scalar potential:V (φ i ) = F †iF i+ ∂W∂φ iF i + 1 2 Da D a − g φ † i T a φ iD aEliminating the auxiliary fields with their equations of motion we find:∣ V (φ i ) =∂W ∣∣∣2∣ + 1 )( )∂φ} {{ i 2 g2( φ † i T a φ iφ † k T a φ k} } {{ }F −termsD−terms(I.P.P.P. — Durham University) <strong>SUSY</strong> <strong>Breaking</strong> Heidelberg 8 / 27


R-symmetryWhat <strong>is</strong> it?It’s a global U(1) symmetry which doesn’t commute with thesupercharges:[Q, R ] = Q , [Q, R ] = −QDifferent components of chiral superfields carry different R-charge:Φ = φ + ψ θ + F θ 2 =⇒ R[θ] = 1 , R[dθ] = −1s s s−1 s−2And hence <strong>so</strong> does the superpotential:[∫ ]R d 2 θ W (Φ) = 0 =⇒ R[W ] = 2(I.P.P.P. — Durham University) <strong>SUSY</strong> <strong>Breaking</strong> Heidelberg 9 / 27


The Minimal Supersymmetric Standard ModelGetting rid of seriously unwanted stuffProblem:[Q β, P µ]= 0 =⇒[Q β, P µ P µ]= 0So particles in the same supermultiplet will have the same mass.<strong>Why</strong> have we not seen a single superpartner?Scalar electron?Fermionic photon?To keep susy as a useful organ<strong>is</strong>ing principle <strong>for</strong> the high energydegrees of freedom, we need to carefully break it.(I.P.P.P. — Durham University) <strong>SUSY</strong> <strong>Breaking</strong> Heidelberg 12 / 27


<strong>Breaking</strong> SupersymmetryIt has to be doneFrom the susy algebra:Can find: H = P 0 = 1 4{ }Q α , Q ˙β= 2 σ µ α ˙β P µ)(Q 1 Q 1 + Q 1 Q 1 + Q 2 Q 2 + Q 2 Q 2So the vacuum energy: E = 〈 0 | H | 0 〉 0E > 0 ⇐⇒ Q α | 0 〉 ̸= 0As the scalar potential <strong>is</strong> al<strong>so</strong> positive definite:V (φ) = F †iF i+ 1 2 Da D a 0Q α | 0 〉 = 0 ⇐⇒ F i = 0 & D a = 0(I.P.P.P. — Durham University) <strong>SUSY</strong> <strong>Breaking</strong> Heidelberg 14 / 27


Dynamical <strong>SUSY</strong> <strong>Breaking</strong>Hierarchy?Question: Does the need to break susy re-introduce a hierarchy?Answer: Not necessarily.Non-perturbative effects can can generate natural hierarchy of scale:( ) Λ b ( )( )= exp −8π 2=⇒ Λ = mµg 2 (µ)X exp −8π 2b g 2 (m X )Same way no-body worries why Λ QCD ≪ M Pl .e.g.Gaugino condensation:〈λλ〉∼ Λ3(I.P.P.P. — Durham University) <strong>SUSY</strong> <strong>Breaking</strong> Heidelberg 15 / 27


Witten Index<strong>SUSY</strong> vacua are easy to findConsider W = Tr (−1) F = ∑ B〈B|B〉 − ∑ F〈F|F〉As H <strong>is</strong> positive definite: H|B〉 = 0 =⇒ Q|B〉 = 0whereas <strong>for</strong> H|B〉 ̸= 0 we are guaranteed a state |F〉 = Q|B〉with the same energy but opposite stat<strong>is</strong>tics.◮ W counts the number of zero energy states ◭If W <strong>is</strong> non-zero, there must ex<strong>is</strong>t a susy vacuum.Independent of couplings — “topological”Non-zero <strong>for</strong> vector-like theories ⇒ complicates models(I.P.P.P. — Durham University) <strong>SUSY</strong> <strong>Breaking</strong> Heidelberg 16 / 27


Nel<strong>so</strong>n & SeibergR-symmetry causing problemsThe argument of Nel<strong>so</strong>n & SeibergDynamical <strong>SUSY</strong> breaking in a generic, calculable model requires aspontaneously broken R-symmetry.To find a <strong>SUSY</strong> vacuum we want to <strong>so</strong>lve: ∂ i W eff (φ j ) = 0No symmetries: n equations in n unknowns — <strong>so</strong>luble.Global U(1) non-R symmetry: W eff carries no charge, <strong>so</strong> mustbe a holomorphic function of the n − 1 variables:X a =φ a 〈φ n〉 q a/qn(a = 1, . . . , n − 1) (if 〈 φ n〉≠ 0)One vacuum equation trivially sat<strong>is</strong>fied.n − 1 equations in n − 1 unknowns — <strong>so</strong>luble.(I.P.P.P. — Durham University) <strong>SUSY</strong> <strong>Breaking</strong> Heidelberg 17 / 27


Nel<strong>so</strong>n & SeibergR-symmetry causing problemsThe argument of Nel<strong>so</strong>n & SeibergDynamical <strong>SUSY</strong> breaking in a generic, calculable model requires aspontaneously broken R-symmetry.Global U(1) R symmetry: W eff carries charge 2, <strong>so</strong> it must be possibleto write it in terms of a new holomorphic function:W eff= φ 2/qnn f (X a )Vacuum equations: ∂ a f (X b ) = 0f (X b ) = 0 (if 〈 φ n〉≠ 0)n equations in n − 1 unknowns — in<strong>so</strong>luble.(I.P.P.P. — Durham University) <strong>SUSY</strong> <strong>Breaking</strong> Heidelberg 17 / 27


Mediating <strong>SUSY</strong> <strong>Breaking</strong><strong>Breaking</strong> the MSSMCan’t engineer tree-level spontaneous breaking like the Electroweaksector of the Standard Model:Each supermultiplet still obeys Sum Rules:m 2 e d+ m 2 es + m 2 e b= 2. ( md 2 + m s 2 + mb2 )Right-hand side ≈ 2. (5 GeV ) 2 =⇒ All sQuarks lighter than7 GeV . RULED OUT.(I.P.P.P. — Durham University) <strong>SUSY</strong> <strong>Breaking</strong> Heidelberg 18 / 27


Mediating <strong>SUSY</strong> <strong>Breaking</strong><strong>Breaking</strong> the MSSMSeparate out the supersymmetry breaking sector from the MSSMsector, and couple them with messenger fields:The phenomenology, i.e. the pattern of <strong>so</strong>ft terms, depends quitehighly on the <strong>for</strong>m of these messengers.(I.P.P.P. — Durham University) <strong>SUSY</strong> <strong>Breaking</strong> Heidelberg 19 / 27


Mediating <strong>SUSY</strong> <strong>Breaking</strong>Common Messenger SectorsGravity mediation — Planck suppressed operators◮ FCNC◮ Universality assumptions ⇒ mSUGRAGauge mediation — charged under SM gauge fields◮ flavour blind◮ µ problemAnomaly mediation — supergravityGaugino mediation — extra dimensions. . .(I.P.P.P. — Durham University) <strong>SUSY</strong> <strong>Breaking</strong> Heidelberg 20 / 27


Radiative Electroweak Symmetry <strong>Breaking</strong>Another nice featureSoft susy breaking terms are generated at the mediation scale M X .Although mH 2 u> 0 at th<strong>is</strong> scale, RG flow tolower energies drives mH 2 unegative.〈 〉=⇒ Hu ≠ 0=⇒ Electroweak symmetry breakingWriting tan β = 〈 H u〉/〈Hd〉, the Higgs vacuum conditions become:µ 2 = m 2 H d+(tan 2 β − 1)m 2 Hu1 − tan 2 β− 1 2 m 2 ZBµ =sin 2β2(m 2 H u+ m 2 H d+ 2µ 2 )Usually used to constrain the parameters of ✘✘ ✘ <strong>SUSY</strong> models.(I.P.P.P. — Durham University) <strong>SUSY</strong> <strong>Breaking</strong> Heidelberg 21 / 27


SoftSusy2.0A useful toolTo calculate the particle spectrum of a model, cons<strong>is</strong>tent with EWSB:Run Standard Model to M ZM Z — Radiative corrections to g i and Y jM X — Impose <strong>so</strong>ft susy breaking boundary conditions(not µ or Bµ)√Q <strong>SUSY</strong> ≡ m e tm1e t— Use EWSB conditions to2iteratively determine µ and BµM Z — Repeat until results convergeCalculate the Higgs and sparticle masses.(I.P.P.P. — Durham University) <strong>SUSY</strong> <strong>Breaking</strong> Heidelberg 22 / 27


Other Useful ToolsThe Model-building ToolkitSpectrum calculators:SoftSusy — C++SPheno — F90SuSpect — FORTRANISAJET — F77Monte Carlo Event Generators:HERWIG++SherpaPYTHIAOther stuff:CPsuperH — MSSM Higgs Pheno with CP violationmicrOMEGAs — <strong>SUSY</strong> DM Relic Density calculatorFor a comprehensive l<strong>is</strong>t, see:www.ippp.dur.ac.uk/montecarlo/bsm(I.P.P.P. — Durham University) <strong>SUSY</strong> <strong>Breaking</strong> Heidelberg 23 / 27


Summary<strong>Why</strong> Supersymmetric Model Building <strong>is</strong> <strong>Difficult</strong>In general <strong>SUSY</strong> doesn’t like being broken◮ Witten Index◮ Nel<strong>so</strong>n–Seiberg ArgumentMSSM breaking has 105 new parameters!Very little <strong>is</strong> actually known about the relation between <strong>SUSY</strong> andthe real world (same <strong>for</strong> all BSM physics). Hopefully th<strong>is</strong> willchange <strong>so</strong>on!There are tools to help make th<strong>is</strong> connection(I.P.P.P. — Durham University) <strong>SUSY</strong> <strong>Breaking</strong> Heidelberg 24 / 27


Suggested ReadingNiceModern Supersymmetry — J. TerningThe Quantum Theory of Fields, Vol III — S. WeinbergA Supersymmetry Primer — S. P. Martin◮ hep-ph/9709356Supersymmetry in Elementary <strong>Particle</strong> <strong>Physics</strong> — M. E. Peskin◮ arXiv:0801.1928Lectures on Global Supersymmetry — P. Argyres◮ www.physics.uc.edu/%7Eargyres/661/index.html(I.P.P.P. — Durham University) <strong>SUSY</strong> <strong>Breaking</strong> Heidelberg 25 / 27


Rea<strong>so</strong>ns to like <strong>SUSY</strong>It makes life easierThe extra structure imposed by supersymmetry gives us more controlover non-perturbative aspects of field theory. Many of the followingresults can be traced back to the holomorphy of the superpotential:Perturbative Non-renormal<strong>is</strong>ation Theorem◮ Superpotential <strong>is</strong> tree-level exact◮ Gauge kinetic function only runs at 1-loopExact beta functionAffleck–Dine–Seiberg SuperpotentialGaugino CondensationSeiberg Duality(I.P.P.P. — Durham University) <strong>SUSY</strong> <strong>Breaking</strong> Heidelberg 26 / 27


Other NicetiesWhat has <strong>SUSY</strong> ever done <strong>for</strong> us?Q α & Q ˙α ←→ N = 1 <strong>SUSY</strong>Q K α & Q K˙α ←→ Extended <strong>SUSY</strong>: N = 2, 4 (8)K = 1, . . . , NSeiberg–WittenAmplitude calculationsIntegrabilityAdS/CFT Correspondence(I.P.P.P. — Durham University) <strong>SUSY</strong> <strong>Breaking</strong> Heidelberg 27 / 27

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!