03.12.2012 Views

aisc research program - UIUC Newmark Structural Engineering ...

aisc research program - UIUC Newmark Structural Engineering ...

aisc research program - UIUC Newmark Structural Engineering ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

MUST-SIM<br />

AISC RESEARCH PROGRAM<br />

BEHAVIOR OF BOLTED STEEL SLIP<br />

CRITICAL CONNECTIONS WITH<br />

FILLERS<br />

Jerome F. Hajjar Mark Denavit<br />

Professor and Narbey Khachaturian Faculty Scholar Graduate Research<br />

Chair, Structures Faculty Assistant<br />

Department of Civil and Environmental <strong>Engineering</strong><br />

University of Illinois at Urbana-Champaign<br />

Urbana, Illinois<br />

University of Illinois at Urbana-Champaign<br />

December 5, 2007


Background: ASD 1989 on SC Connections with Fillers<br />

• ASD 1989 Section J3.8 on Slip Critical Connections<br />

� R n = F v A b N s<br />

� F v is from RCSC Specification for oversized: 29 ksi for<br />

A490 Class B surface<br />

• ASD 1989 Section J6 on Fillers<br />

� Exception on developing fillers for slip critical<br />

connections, but fills are developed for bearing<br />

connections<br />

MUST-SIM<br />

University of Illinois at Urbana-Champaign<br />

December 5, 2007


Background: AISC 2005 on SC Connections with Fillers<br />

• AISC 2005 Section J3.8 on Slip Critical Connections<br />

� R n = µD uh scT bN s<br />

� Connections with standard holes or slots transverse<br />

to the direction of the load shall be designed for slip<br />

as a serviceability limit state, Ω = 1.50<br />

� Connections with oversized holes or slots parallel to<br />

the direction of the load shall be designed to prevent<br />

slip at the required strength level, Ω = 1.76<br />

• AISC 2005 Section J5 on Fillers<br />

� For fillers with t ≥ ¼” or greater, one of the following<br />

shall apply:<br />

1. For fillers with t ≤ ¾”, R n for bolt shear should be reduced<br />

by [1-0.4(t-0.25)].<br />

2. Connection shall be extended and the filler developed<br />

3. Joint shall be extended to equivalent of #2<br />

4. Joint shall be designed to prevent slip at required strength<br />

MUST-SIM<br />

University of Illinois at Urbana-Champaign<br />

December 5, 2007


Fillers: Effect on Slip and Bolt Shear<br />

• W14x730<br />

� Standard holes and oversized holes<br />

• W14x455<br />

� Full (2 rows, with duplicate), half (1 row), and no<br />

development (0 rows)<br />

• W14x159<br />

� Full (4 rows), half (2 rows), and no development<br />

(0 rows, with duplicate)<br />

� Two ply filler, no development (duplicate)<br />

� TC bolts, half and no development<br />

� Welded filler, full and half development<br />

MUST-SIM<br />

University of Illinois at Urbana-Champaign<br />

December 5, 2007


Fillers: Effect on Slip and Bolt Shear<br />

• To develop the filler to be fully developed, e.g.,<br />

W14x159: 3.75”/(3.75”+1.19”)=76% of the slip critical<br />

strength of 24 splice plate bolts<br />

• W14x159<br />

� Actual number of rows needed to develop the filler:<br />

o 4.56 rows (fully developed) – we used 4 rows<br />

o 2.28 rows (half developed) – we used 2 rows<br />

• W14x455<br />

� Actual number of rows needed to develop the filler:<br />

o 2.01 rows (fully developed) – we used 2 rows<br />

o 1.00 rows (half developed) – we used 1 row<br />

MUST-SIM<br />

University of Illinois at Urbana-Champaign<br />

December 5, 2007


Scenarios<br />

• AISC 2005 strength with measured material properties and<br />

no φ or Ω factors should provide the best estimate of the<br />

test results<br />

• If expected slip value can be reached consistently for all<br />

connections, we may be able to:<br />

� Verify ability to use different safety factors at “serviceability”<br />

and “required strength” level<br />

� Lower the Ω of 1.76 (raise the φ of 0.85) for connections in<br />

which prevention of slip is at required strength level (i.e.,<br />

oversized holes)<br />

� Verify that the filler need not be developed if you design at the<br />

required strength level (noting that we are not using standard<br />

holes)<br />

• If expected bolt shear value can be reached consistently for<br />

all connections, we may be able to:<br />

� Ensure that a new reduction formula is not needed for thick<br />

fillers even when designing at required strength level<br />

� Eliminate required reductions for bolt shear strength (noting<br />

that we are not using standard holes)<br />

MUST-SIM<br />

University of Illinois at Urbana-Champaign<br />

December 5, 2007


Scenarios<br />

• If expected slip value cannot be reached consistently for<br />

all connections, that may indicate:<br />

� The Ω of 1.76 is appropriate for oversized holes<br />

� The filler needs to be developed (we can try to<br />

determine if it is a function of filler thickness)<br />

• If expected bolt shear value cannot be reached<br />

consistently for all connections, that may indicate:<br />

� Recommend reductions for bolt shear strength<br />

for thick fillers or oversized holes to ensure<br />

safety<br />

• If some test values meet the expected values and some<br />

do not, it will be necessary to reduce the data carefully<br />

MUST-SIM<br />

University of Illinois at Urbana-Champaign<br />

December 5, 2007


AISC Test Specimen 159n-2ply1<br />

“Required Strength” = slip critical strength of 24 bolts in splice plate<br />

Comparison of ASD Codes (using design values)<br />

slip<br />

shear<br />

Specimen 11<br />

159n-2ply1<br />

MUST-SIM<br />

Pn<br />

(kips)<br />

AISC 2005 ASD 1989<br />

rank<br />

Pn/Ω<br />

(kips)<br />

rank<br />

Pallow<br />

(kips)<br />

between splice and filler 922 1 524 1 692 1<br />

between filler and top<br />

column<br />

between splice and bot.<br />

column<br />

University of Illinois at Urbana-Champaign<br />

December 5, 2007<br />

rank<br />

922 1 524 1 692 1<br />

2,459 5 1,397 1,845<br />

between splice and filler 1,789 3 895 3 954 3<br />

between filler and top<br />

column<br />

between splice and bot.<br />

column<br />

between splice and filler<br />

(overstrength)<br />

between filler and top<br />

column (overstrength)<br />

between splice and bot.<br />

column (overstrength)<br />

1,789 3 895 3 954 3<br />

4,771 2,386 2,545<br />

2,460 6 1,230 5 1,312 5<br />

2,460 6 1,230 5 1,312 5<br />

6,561 3,280 3,499<br />

splice plate 7,449 3,725 3,221<br />

bearing w shape 4,432 2,216 1,916


AISC Test Specimen 159n-2ply1<br />

“Required Strength” = slip critical strength of 24 bolts in splice plate<br />

MUST-SIM<br />

Comparison of Limit States<br />

(using measured values)<br />

Specimen 11<br />

159n-2ply1<br />

AISC 2005<br />

Pn<br />

(kips)<br />

rank<br />

Pn/Ω<br />

(kips)<br />

slip between splice and filler 1,173 1 666 1<br />

between filler and top column 1,173 1 666 1<br />

between splice and bot. column 3,128 1,777<br />

shear between splice and filler 2,429 3 1,214 3<br />

between filler and top column 2,429 3 1,214 3<br />

between splice and bot. column 6,476 3,238<br />

splice in compression 3,752 2,247<br />

W shape in compression 2,615 6 1,566 6<br />

fracture splice plate 4,551 2,276<br />

w shape 2,473 5 1,237 5<br />

bearing splice plate 9,397 4,699<br />

w shape 4,978 2,489<br />

rank<br />

University of Illinois at Urbana-Champaign<br />

December 5, 2007


AISC Test Specimen 730-over<br />

“Required Strength” = slip critical strength of 24 bolts in splice plate<br />

Comparison of ASD Codes (using design values)<br />

slip<br />

shear<br />

bearing<br />

MUST-SIM<br />

Specimen 02<br />

730-over<br />

Pn<br />

(kips)<br />

AISC 2005 ASD 1989<br />

rank<br />

Pn/Ω<br />

(kips)<br />

rank<br />

Pallow<br />

(kips)<br />

University of Illinois at Urbana-Champaign<br />

December 5, 2007<br />

rank<br />

between splice<br />

and top column<br />

922 1 524 1 692 1<br />

between splice<br />

and bot. column<br />

2,459 3 1,397 4 1,845 4<br />

between splice<br />

and top column<br />

1,789 2 895 2 954 2<br />

between splice<br />

and bot. column<br />

between splice<br />

4,771 5 2,386 5 2,545 5<br />

and top column<br />

(overstrength)<br />

between splice<br />

2,460 4 1,230 3 1,312 3<br />

and bot. column<br />

(overstrength)<br />

6,561 6 3,280 6 3,499<br />

splice plate 7,449 3,725 3,221 6<br />

w shape 18,287 9,144 7,907


AISC Test Specimen 730-over<br />

“Required Strength” = slip critical strength of 24 bolts in splice plate<br />

MUST-SIM<br />

Comparison of Limit States<br />

(using measured values)<br />

Specimen 02<br />

730-over<br />

Pn<br />

(kips)<br />

AISC 2005<br />

rank<br />

Pn/Ω<br />

(kips)<br />

University of Illinois at Urbana-Champaign<br />

December 5, 2007<br />

rank<br />

slip<br />

between splice and top<br />

column<br />

between splice and bot.<br />

1,173 1 666 1<br />

column<br />

between splice and top<br />

3,128 3 1,777 3<br />

shear<br />

column<br />

between splice and bot.<br />

2,429 2 1,214 2<br />

column 6,476 6 3,238 6<br />

splice in compression 3,752 4 2,247 4<br />

W shape in compression 13,330 7,982<br />

splice plate 4,551 5 2,276 5<br />

fracture w shape 13,335 6,668<br />

splice plate 9,397 4,699<br />

bearing w shape 23,633 11,816


59n-2ply1<br />

olts<br />

Measured Material Properties<br />

Material<br />

Top Column<br />

(W14x159)<br />

Bottom Column<br />

(W14x730)<br />

Filler Plates<br />

(3½″ thick)<br />

Filler Plates<br />

(¼″ thick)<br />

Splice Plates<br />

(2″ thick)<br />

730-over<br />

MUST-SIM<br />

Bolts<br />

Yield Stress<br />

F y (ksi)<br />

50<br />

Nominal Measured<br />

Ultimate Stress<br />

F u (ksi)<br />

65<br />

Yield Stress<br />

F y (ksi)<br />

62<br />

Ultimate Stress<br />

F u (ksi)<br />

50 65 56 73<br />

50 65 50 71<br />

50 65 53 75<br />

50 65 56 82<br />

Nominal Measured<br />

Material Yield Stress Ultimate Stress Yield Stress Ultimate Stress<br />

Top Column<br />

(W14x730)<br />

Fy (ksi)<br />

50<br />

Fu (ksi)<br />

65<br />

Fy (ksi)<br />

62<br />

Fu (ksi)<br />

84<br />

Bottom Column<br />

(W14x730)<br />

50 65 62 84<br />

Splice Plates<br />

(2″ thick)<br />

50 65 56 82<br />

Nominal Measured<br />

Length Pretension Shear Strength Pretension Shear Strength<br />

9″<br />

(all bolts)<br />

Tb (kips)<br />

80<br />

Fv (ksi)<br />

75<br />

Tb (kips)<br />

115<br />

Fv (ksi)<br />

102<br />

University of Illinois at Urbana-Champaign<br />

December 5, 2007<br />

84<br />

159n-2ply1


AISC Test Specimen 01<br />

MUST-SIM<br />

Load (kips)<br />

Design Strength<br />

(Nominal Values)<br />

Design Strength<br />

(Measured Values)<br />

Observed Strength<br />

Slip Shear<br />

1,085<br />

kips<br />

1,380<br />

kips<br />

1,697<br />

kips<br />

Load vs. Splice/Column Relative Displacement<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

01t2s-1w<br />

01t2s-2w<br />

0<br />

-0.05 0 0.05 0.1 0.15 0.2<br />

Splice/Column Relative Displacement (in)<br />

University of Illinois at Urbana-Champaign<br />

December 5, 2007<br />

1,789<br />

kips<br />

2,429<br />

kips<br />

2,542<br />

kips


AISC Test Specimen 01<br />

Load (kips)<br />

Load (kips)<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

01top-1e<br />

01top-1w<br />

0<br />

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5<br />

MUST-SIM<br />

Load vs. Top Column Displacement<br />

Top Column Displacement (in)<br />

Load vs. Splice Plate (3 rows bolts) Strain<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

01spl-3n<br />

01spl-4n<br />

500<br />

01spl-3s<br />

01spl-4s<br />

0<br />

0 50 100 150 200 250 300 350 400 450 500<br />

Splice Plate (3 rows bolts) Strain (µmm/mm)<br />

Load (kips)<br />

Load (kips)<br />

2500<br />

2000<br />

1500<br />

University of Illinois at Urbana-Champaign<br />

December 5, 2007<br />

Load vs. Splice Plate (1 row bolts) Strain<br />

3000<br />

1000<br />

01spl-5n<br />

01spl-6n<br />

500<br />

01spl-5s<br />

01spl-6s<br />

0<br />

0 50 100 150 200 250 300 350 400<br />

2500<br />

2000<br />

1500<br />

Splice Plate (1 row bolts) Strain (µmm/mm)<br />

Load vs. Splice Plate (6 rows bolts) Strain<br />

3000<br />

1000<br />

01spl-1n<br />

01spl-2n<br />

500<br />

01spl-1s<br />

01spl-2s<br />

0<br />

0 100 200 300 400 500 600 700 800 900 1000<br />

Splice Plate (6 rows bolts) Strain (µmm/mm)


AISC Research Program<br />

Keeping Steel Competitive Through Research<br />

� Answer questions that arise in steel performance<br />

o Simplify the specification while retaining safe and reliable designs<br />

o Examples:<br />

� Allowing no continuity plates in high seismic zones<br />

� Enable steel to be the premier material for projects ranging from fast<br />

and simple construction to the most sophisticated building structures in<br />

the world<br />

o New building topologies demand new technologies<br />

o Steel is sustainable<br />

� Generate new ideas and new products<br />

o Examples:<br />

� New doubler plate details that lessen the amount of welding<br />

� Buckling restrained brace can rejuvenate steel braced frames in seismic zones<br />

� Direct analysis can lead the way internationally in stability design to enable<br />

diverse building configurations while simplifying calculations<br />

� Composite construction provisions are improving continuously<br />

� Stay current with evolving mill, fabrication, and construction practices<br />

o Other materials are innovating<br />

� Facilitate adaptation to or drive innovation in new information<br />

technology<br />

MUST-SIM<br />

University of Illinois at Urbana-Champaign<br />

December 5, 2007


New Doubler Plate Details<br />

Alternatives:<br />

MUST-SIM<br />

45° beveled<br />

doubler plate<br />

Heavy fillet<br />

welds<br />

Current<br />

practice:<br />

Heavy CJP<br />

weld<br />

Approx. 7/8" gap<br />

Heavy fillet<br />

welds<br />

University of Illinois at Urbana-Champaign<br />

December 5, 2007<br />

Potential fracture region<br />

Act as both<br />

doubler plate and<br />

continuity plate<br />

Approximately<br />

2/3 width of girder<br />

flange<br />

Full penetration welds<br />

Fillet I Fillet II Box


Typical Full-Scale Cruciform Test Specimen<br />

144"<br />

MUST-SIM<br />

144"<br />

W24x94<br />

Two 77-kip<br />

actuators<br />

72"<br />

85.5"<br />

85.5"<br />

Pin<br />

140"<br />

132"<br />

W24x94<br />

W14x176<br />

Pin<br />

University of Illinois at Urbana-Champaign<br />

December 5, 2007<br />

Two 77-kip<br />

actuators<br />

171"


Local Flange Bending and Local Web Yield Limit States<br />

Column flange<br />

Local flange<br />

bending (LFB)<br />

Column web<br />

MUST-SIM<br />

Pull hard<br />

Pull hard<br />

University of Illinois at Urbana-Champaign<br />

December 5, 2007<br />

Girder Flange<br />

Local web<br />

yielding (LWY)


AISC Research Program<br />

• Innovation in Steel Is Best Spearheaded by<br />

AISC-funded Research<br />

� NSF and other federal agencies typically do not fund<br />

<strong>research</strong> needed to aid directly a design specification<br />

or manual (however, they may partner on such<br />

projects)<br />

� AISC funds can be used to provide excellent leverage<br />

(order of magnitude or more) for funds from NSF,<br />

DOT, etc.<br />

o Typical NSF project: $300K-$750K for three years,<br />

$1.6M for four years, $2M for five years<br />

o Typical DOT project: $150K-$200K for two years<br />

� AISC has strong influence over outcome and use of<br />

<strong>research</strong><br />

MUST-SIM<br />

University of Illinois at Urbana-Champaign<br />

December 5, 2007


AISC Relations with Universities<br />

• Future employees for steel and consulting industries<br />

are typically hired from structural engineering<br />

<strong>program</strong>s at <strong>research</strong>-oriented universities<br />

� These universities are driven by <strong>research</strong><br />

� The faculty are expected to obtain <strong>research</strong> funds<br />

and projects and publish results<br />

� AISC is an outstanding and critical partner for faculty<br />

interested in steel structures nationwide<br />

MUST-SIM<br />

University of Illinois at Urbana-Champaign<br />

December 5, 2007


University of Illinois Structures Program<br />

• 52 Faculty, 15 in Structures<br />

• 60 MS and 60 PhD Full-Time Students<br />

• Graduate 40 MS and 10 PhD Students per year<br />

MUST-SIM<br />

Nathan M. <strong>Newmark</strong>, Head of CE, 1956-1976


University of Illinois Structures Program<br />

• Consistently Top Ranked CEE Department with many distinguished<br />

alumni who are contributing to the steel industry:<br />

– Jim Fisher<br />

– Stan Rolfe<br />

– Bruce Ellingwood<br />

– Shankar Nair<br />

– Jim Harris<br />

Emeritus Faculty:<br />

– Bill Munse<br />

– Jim Stallmyer<br />

– Doug Foutch<br />

– Bill Hall<br />

– Nathan <strong>Newmark</strong><br />

MUST-SIM


MUST-SIM<br />

NEES@Illinois: NEES@Illinois:<br />

MUST-SIM:<br />

MUST SIM:<br />

Multiaxial Full-Scale Full Scale Substructured<br />

Testing and Simulation Facility<br />

http://nees.uiuc.edu<br />

http:// nees.uiuc.edu


Network for Earthquake <strong>Engineering</strong> Simulation: Experimental Sites<br />

Oregon State University<br />

http://nees.orst.edu/<br />

University of Nevada, Reno<br />

http://nees.unr.edu/<br />

University of California, Davis<br />

http://nees.ucdavis.edu/<br />

University of California, Berkeley<br />

http://nees.berkeley.edu<br />

MUST-SIM<br />

Brigham Young University/<br />

University of California, Santa Barbara<br />

http://nees.ucsb.edu/<br />

University of California, San Diego<br />

University of California, Los Angeles http://nees.ucsd.edu/<br />

http://nees.ucla.edu/<br />

University of Minnesota<br />

http://nees.umn.edu<br />

University of Colorado, Boulder<br />

http://nees.colorado.edu/<br />

University of Texas at Austin<br />

http://nees.utexas.edu/<br />

High modular walls<br />

(16 segments total)<br />

0.9m segments,<br />

up to 7.2m<br />

3m<br />

1.2m 3m<br />

Embedded pipeline<br />

experiment<br />

University of Illinois at<br />

Urbana-Champaign<br />

http://nees.uiuc.edu/<br />

Rensselaer Polytechnic Institute<br />

http://nees.rpi.edu/<br />

Ductile highway support<br />

system experiment<br />

Low modular wall<br />

(13 segments total)<br />

1.2m<br />

1.8m<br />

1.8m<br />

Lehigh University<br />

http://www.nees.lehigh.edu/<br />

University at Buffalo, SUNY<br />

http://nees.buffalo.edu/<br />

Cornell University<br />

http://nees.cornell.edu/


Composite Columns<br />

• Steel reinforced concrete<br />

(SRCs, Encased<br />

Composite Columns)<br />

MUST-SIM<br />

From R. T. Leon,<br />

Georgia Institute of Technology<br />

University of Illinois at Urbana-Champaign<br />

December 5, 2007<br />

• Concrete-filled tubes<br />

(CFTs, Filled Composite<br />

Columns)<br />

From R. Kanno,<br />

Nippon Steel Corporation


MAST Facility<br />

MUST-SIM<br />

From NEES@Minnesota<br />

• The MAST facility permits the<br />

comprehensive testing of a wide<br />

range of composite beamcolumns<br />

subjected to three<br />

dimensional loading at a realistic<br />

scale.<br />

Degree of<br />

Freedom<br />

University of Illinois at Urbana-Champaign<br />

December 5, 2007<br />

Maximum non-concurrent<br />

capacities of MAST DOFs<br />

Load Stroke/<br />

Rotation<br />

X-Translation ±880 kips ±16 in<br />

X-Rotation ±8,910 kip-ft ±7°<br />

Y-Translation ±880 kips ±16 in<br />

Y-Rotation ±8,910 kip-ft ±7°<br />

Z-Translation ±1,320 kips ±20 in<br />

Z-Rotation ±13,200 kip-ft ±10°


Database Development<br />

• Work of previous <strong>research</strong>ers<br />

(Aho, Kim, Goode) combined<br />

to create a comprehensive<br />

worldwide database<br />

• Database will be used to<br />

identify gaps in test data and<br />

calibrate computational model<br />

λ<br />

MUST-SIM<br />

M/M d<br />

RCFT CCFT SRC<br />

P/P o<br />

λ<br />

M/M d<br />

P/P o<br />

University of Illinois at Urbana-Champaign<br />

December 5, 2007<br />

λ<br />

CCFT RCFT SRC<br />

Columns 762 455 119<br />

Beam-<br />

Columns<br />

Number of Tests<br />

395 189 120<br />

M/M d<br />

P/P o


Preliminary Test Matrix<br />

MUST-SIM<br />

University of Illinois at Urbana-Champaign<br />

December 5, 2007


Controlled Rocking of Steel Frame Structures<br />

MUST-SIM<br />

• Corner of frame is<br />

allowed to uplift.<br />

• Fuses absorb seismic<br />

energy<br />

• Post-tensioning brings<br />

the structure back to<br />

center.<br />

Result is a building<br />

where the structural<br />

damage is<br />

concentrated in<br />

replaceable fuses with<br />

little or no residual drift


MUST-SIM<br />

Post-<br />

Tensiong<br />

Strands<br />

<strong>UIUC</strong> Half Scale Tests<br />

Loading and Boundary<br />

Condition Box (LBCB)<br />

Stiff Braced<br />

Frame<br />

Fuse<br />

Bumpers<br />

Strong Wall


MUST-SIM<br />

E-Defense Testbed Structure<br />

shaking<br />

direction<br />

Plan View<br />

Section<br />

E-Defense


AISC TC 5: Composite Construction<br />

�Thinking of composite structural members (SRC beam-columns,<br />

Composite Walls, Composite Base Conditions; note that CFTs covered<br />

commonly by AISC rarely have shear connectors)...<br />

Beam-columns Infill Walls<br />

University of Illinois at Urbana-Champaign<br />

13 November 2007<br />

Composite Base


Shear Connector Provisions: Monotonic<br />

Steel Failure:<br />

-Tension:<br />

-Shear:<br />

φ ⋅Vs = φV<br />

⋅CV<br />

⋅ As<br />

⋅ Fu<br />

⋅ n<br />

φ ⋅ N s = φt<br />

⋅Ct<br />

⋅ As<br />

⋅ Fu<br />

⋅n<br />

University of Illinois at Urbana-Champaign<br />

13 November 2007<br />

n: number of studs<br />

A s : cross sectional area of stud<br />

F u : ultimate strength of stud<br />

φv Cv φv ·Cv φt Ct AISC 1.00* 1.00 1.00 - - -<br />

PCI 4th 1.00 0.75 0.75 1.00 0.90 0.90<br />

PCI 6th 0.65 1.00 0.65 0.75 1.00 0.75<br />

ACI 318-05<br />

ACI 318-08<br />

Ductile steel<br />

φ t ·C t<br />

element 0.75 1.00 0.75 0.80 1.00 0.80<br />

Brittle steel<br />

element 0.65 1.00 0.65 0.70 1.00 0.70<br />

EC-4 0.80 0.80 0.64 - - -<br />

- * The reduction factor is grouped with the flexural phi factor, φ b , which is 0.85 for plastic redistribution of stress or<br />

0.90 for an elastic stress distribution on the section<br />

- Canadian Standard and CEB are similar to ACI 318-05


Shear Connector Provisions: Cyclic<br />

Reduction factor by cyclic loading (ξ):<br />

AISC 341-05 0.75<br />

ACI 318-05<br />

ACI 318-08 0.30<br />

NEHRP (2003) 0.75<br />

Klingner et al. (1982) 0.50*,**<br />

Hawkins and Mitchell (1984)<br />

ξ<br />

0.75<br />

0.83*<br />

0.71**<br />

Makino (1985) 0.50<br />

Gattesco and Giuriani (1996) 0.90*<br />

-*: faliure of the stud<br />

-**: failure of the concrete<br />

φ ⋅ R = ξ ⋅φ<br />

⋅ R<br />

University of Illinois at Urbana-Champaign<br />

13 November 2007<br />

c<br />

Civjan and Singh (2003)<br />

m<br />

R c : cyclic resistance<br />

R m : monotonic resistance<br />

Bursi and Gramola (1999) 0.68 *,**<br />

Zandonini<br />

EC-4 0.75*,**<br />

and Bursi (2002) AISC 0.55*,**<br />

-*: faliure of the stud<br />

-**: failure of the concrete<br />

ξ<br />

0.60 *, **


Vs(test)/Vs(predicted)<br />

Shear Connector Strength<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

0.00<br />

AISC<br />

AISC Stud Strength<br />

Steel Failure in Test<br />

0 50 100 150<br />

Test Number<br />

Vs(test)/Vs(predicted)<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

0.00<br />

Proposal: φ, 0.9 ·C v<br />

AISC Stud Strength (Steel Only)<br />

Steel Failure in Test<br />

0 50 100 150<br />

Test Number<br />

136 Shear Tests AISC (φ, Cv) AISC (φ, 0.9·Cv) AISC (φ, 0.8·Cv)<br />

Average 1.009<br />

Stand. Dev. 0.122<br />

1.052<br />

0.135<br />

University of Illinois at Urbana-Champaign<br />

13 November 2007<br />

Vs(test)/Vs(predicted)<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

0.00<br />

Proposal: φ, 0.8 ·C v<br />

AISC Stud Strength (Steel Only)<br />

Steel Failure in Test<br />

0 50 100 150<br />

Test Number<br />

1.184<br />

0.151


Mid-America Earthquake Center:<br />

Consequence-Based Risk Management (CRM)<br />

• The Component (<strong>Engineering</strong>) Solution<br />

– Addresses the vulnerability of a component<br />

– Judges its adequacy on its own merit<br />

• The Network (Single System) Solution<br />

– Addresses the vulnerability of one system<br />

– Judges its adequacy on its own merit<br />

• The CRM (Integrated) Solution<br />

– Addresses the vulnerability of all systems<br />

– Judges adequacy on their<br />

integrated performance<br />

Mid-America Earthquake Center<br />

outh ^_ Dakota<br />

Nebraska<br />

Kansas<br />

Okl h<br />

^_<br />

Lincoln<br />

^_<br />

Topeka<br />

^_<br />

Iowa<br />

^_<br />

Des Moines<br />

Wisconsin<br />

Madison Michigan<br />

^_ Lansing<br />

^_<br />

36<br />

Ohio<br />

^_ Columbus<br />

Illinois Indiana<br />

^_<br />

^_<br />

Springfield Indianapolis<br />

West Virginia<br />

Jefferson City<br />

Frankfort ^_ Charleston<br />

^_<br />

^_<br />

Missouri<br />

Vir<br />

Kentucky<br />

Nashville-Davidson<br />

^_<br />

Tennessee<br />

Penns<br />

North C


Memphis Test Bed: Scenario Event Prediction<br />

Mid-America Earthquake Center<br />

Damage to critical facilities<br />

MAEviz<br />

Study Region:<br />

Shelby County, TN<br />

Damage Assessment of Buildings<br />

HAZARD MODEL (earthquake intensity<br />

contours are shown):<br />

Deterministic<br />

New Madrid Seismic Zone<br />

Moment Magnitude 7.7<br />

LEGEND FOR BUILDING TYPE<br />

Red crosses: hospitals<br />

Purple squares: schools<br />

Orange squares: fire stations<br />

Blue diamonds: police stations<br />

White circles: bridges<br />

Yellow triangle: airport<br />

LEGEND FOR DAMAGE BARS<br />

Red: % extensive damage<br />

Yellow: % moderate damage<br />

Blue: % light damage<br />

37


<strong>Structural</strong> Integrity Modeling and Laser-Based Verification<br />

Discrete Element Modeling of<br />

Severely Damaged Structures<br />

• Prediction of structural integrity<br />

• New modeling approaches for<br />

extreme loadings<br />

• Determine minimum requirements<br />

for steel structures<br />

Laser-Based<br />

Verification of Severely<br />

Damaged Structures<br />

• High-speed accurate lasers<br />

• Capture dynamic collapse<br />

and verify against models<br />

MUST-SIM<br />

Examples of Models:<br />

Collapse modeling of an office structure (ASI)<br />

Collapse modeling<br />

vs. the real<br />

demolition of a<br />

building (ASI)<br />

Collapse modeling vs. the real<br />

demolition of a stadium (ASI)


Modeling of Moulin Formation in Ice Shelves<br />

MUST-SIM


Steel Construction within a Global Context<br />

www.iris.edu<br />

Google<br />

earth<br />

MAE Center<br />

French,<br />

Sritharan<br />

et al.<br />

2006<br />

Microstrain<br />

8000<br />

6000<br />

4000<br />

2000<br />

0<br />

-2000<br />

SBBSBG1-a<br />

SBBSBG1-b<br />

Cycle G4-3-A<br />

Cycle G4-3-A<br />

-4000<br />

0 3000 6000 9000 12000 15000<br />

Time (seconds)<br />

Collaborative<br />

Augmented Reality and<br />

Analysis


Acknowledgments: <strong>UIUC</strong>, NEES and MAEC Projects<br />

MUST-SIM and MAEC Co-Investigators: Amr Elnashai, Bill Spencer, Dan Kuchma<br />

MUST-SIM<br />

Composite Column Co-Investigators (CC): Roberto Leon<br />

Controlled Rocking Co-Investigators (CR): Gregory Deierlein, Sarah Billington, Helmut<br />

Krawinkler<br />

Research Engineers: Hussam Mahmoud, Michael Bletzinger,<br />

Greg Banas, shop personnel<br />

Graduate Students: Comp Col: Mark Denavit (<strong>UIUC</strong>), Tiziano Perea (GIT)<br />

Rocking: Matthew Eatherton (<strong>UIUC</strong>), Noel Vivar (<strong>UIUC</strong>)<br />

Xiang Ma and Alex Pena (Stanford)<br />

Comp Conn: Luis Palleres (post-doctoral associate)<br />

MAEC CRM: Josh Steelman<br />

Integrity: Sara Walsh, Lily Rong<br />

Ice Shelves: Maribel Gonzalez<br />

Undergraduate Students: Mark Bingham, Michael Kehoe, Matthew Parkolap,<br />

Brent Mattis, Lina Rong, Angelia Tanamal<br />

Sponsors: National Science Foundation<br />

American Institute of Steel Construction<br />

University of Illinois at Urbana-Champaign<br />

Georgia Institute of Technology (CC)<br />

Stanford University (CR)<br />

In-Kind Funding: W&W Steel<br />

University of Cincinnati<br />

LeJeune Steel Company (CC)<br />

Tefft Bridge & Iron (CR)<br />

Infra-Metals (CR)


MUST-SIM<br />

THANK YOU<br />

Chicago, Illinois<br />

Urbana-<br />

Champaign,<br />

Illinois

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!