13.07.2015 Views

Evolution of the Whitham zone in the Korteweg-de Vries theory

Evolution of the Whitham zone in the Korteweg-de Vries theory

Evolution of the Whitham zone in the Korteweg-de Vries theory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

EVOLUTION OF A WHITHAM ZONE INKORTEWEG–DE VRIES THEORYV. V. AVILOV AND ACADEMICIAN S. P. NOVIKOVWe consi<strong>de</strong>r <strong>the</strong> analogy <strong>of</strong> shock waves <strong>in</strong> KdV <strong>the</strong>ory. It is well known (see[1], pp. 261–263) that <strong>the</strong> analogy <strong>of</strong> a shock front, for <strong>in</strong>stance, <strong>in</strong> a collisionlessplasma <strong>de</strong>scribed by <strong>the</strong> KdV equation, has an oscillation <strong>zone</strong>. This <strong>zone</strong> is <strong>in</strong> <strong>the</strong>framework <strong>of</strong> <strong>the</strong> averag<strong>in</strong>g method <strong>de</strong>scribed by a set <strong>of</strong> <strong>Whitham</strong> equations [2] forthree slowly vary<strong>in</strong>g quantities which <strong>in</strong> a given cycle <strong>of</strong> problems were first usedby Gurevich and Pitaevskii [3]. These authors studied exact self-similar solutions<strong>of</strong> <strong>the</strong> <strong>Whitham</strong> equations on <strong>the</strong> basis <strong>of</strong> which <strong>the</strong>y reached conclusions about<strong>the</strong> asymptotic behavior <strong>of</strong> <strong>the</strong> oscillation <strong>zone</strong> as t → +∞.The aim <strong>of</strong> <strong>the</strong> present paper is a correct ma<strong>the</strong>matical statement <strong>of</strong> <strong>the</strong> problem<strong>of</strong> <strong>the</strong> evolution <strong>of</strong> <strong>the</strong> oscillation (<strong>Whitham</strong>) <strong>zone</strong> for arbitrary boundary conditions<strong>in</strong> <strong>the</strong> framework <strong>of</strong> <strong>the</strong> <strong>the</strong>ory <strong>of</strong> sets <strong>of</strong> first or<strong>de</strong>r equations. This allows us, <strong>in</strong>particular, to state and solve numerically <strong>the</strong> problem about <strong>the</strong> realizability <strong>of</strong> <strong>the</strong>self-similar regimes found <strong>in</strong> [3] as asymptotic regimes for a wi<strong>de</strong> class <strong>of</strong> <strong>in</strong>itialconditions as t → −∞.The KdV equation has <strong>the</strong> form u t + uu x + u xxx = 0. Averag<strong>in</strong>g it aga<strong>in</strong>st <strong>the</strong>background <strong>of</strong> a set <strong>of</strong> periodic cnoidal waves[ ( a) ]1/2(1) u(x, t) = 2as −2 dn 2 (x − V t), s6s 2 + γwith slowly vary<strong>in</strong>g parameters a, s, and γ leads to <strong>Whitham</strong> equations <strong>of</strong> <strong>the</strong> form(2) r αt = v α (a, s, γ)r αx , α = 1, 2, 3,where(3) a = r 2 − r 1 , s 2 = r 2 − r 1r 3 − r 1, γ = r 2 + r 1 − r 3 ;<strong>the</strong> equations for v α are given <strong>in</strong> [1], p. 264. Here v 3 v 2 v 1 , r 3 r 2 r 1 . Ifr 2 = r 3 , <strong>the</strong> solution (1) <strong>de</strong>scribes a soliton; if r 2 = r 1 , (1) is a constant.Accord<strong>in</strong>g to <strong>the</strong> physical representations worked out <strong>in</strong> [3], <strong>the</strong> oscillation <strong>zone</strong><strong>in</strong> <strong>the</strong> problems studied extend over <strong>the</strong> entire allowable range <strong>of</strong> variation <strong>of</strong> <strong>the</strong>parameters r α ; i.e., at any time t it is <strong>de</strong>term<strong>in</strong>ed <strong>in</strong> <strong>the</strong> region (4), which is notknown beforehand,(4) x − (t) x x + (t)where(5)r 1 → r 2 ,r 2 → r 3 ,x → x − (t),x → x + (t).Date: Submitted April 9, 1986.Dokl. Akad. Nauk SSSR 294, 325–329 (May 1987). Translated by D. ter Haar.1


2 V. V. AVILOV AND ACADEMICIAN S. P. NOVIKOVFigure 1. <strong>Evolution</strong> <strong>of</strong> <strong>the</strong> s<strong>in</strong>gle-valued function l(z, t) =t −1/2 r(z, t) (z = xt −3/2 ) <strong>of</strong> problem 2. The <strong>in</strong>itial condition (t = 1)<strong>in</strong> <strong>the</strong> oscillation <strong>zone</strong> corresponds to a perturbation <strong>of</strong> <strong>the</strong> selfsimilarsolution; at t = 2 this distortion is appreciably dim<strong>in</strong>ished.The self-similar solution is <strong>in</strong>dicated by dots.Outsi<strong>de</strong> <strong>the</strong> range (4) <strong>the</strong>re are no oscillations and <strong>the</strong> functions r α (x, t) are not<strong>de</strong>f<strong>in</strong>ed; at <strong>the</strong> boundary <strong>of</strong> (4) <strong>the</strong> solution <strong>of</strong> Eq. (2) must be jo<strong>in</strong>ed cont<strong>in</strong>uouslyto <strong>the</strong> solution <strong>of</strong> <strong>the</strong> Hopf equation u t + uu x = 0, obta<strong>in</strong>ed from <strong>the</strong> KdV bydropp<strong>in</strong>g <strong>the</strong> dispersion term, where u(x, t) is <strong>de</strong>term<strong>in</strong>ed outsi<strong>de</strong> <strong>the</strong> <strong>zone</strong> (4):(6)u(x − (t), t) = r 3 (x − (t), t),u(x + (t), t) = r 1 (x + (t), t).It follows from (5) and (6) that <strong>the</strong> solution on <strong>the</strong> whole x axis is <strong>de</strong>scribed by<strong>the</strong> cont<strong>in</strong>uous function r(x, t) which is three-valued <strong>in</strong> <strong>the</strong> oscillation region (4),r = (r 1 , r 2 , r 3 ), and s<strong>in</strong>gle-valued outsi<strong>de</strong> that region, r = u(x, t) (see Fig. 1).Problem. Give <strong>the</strong> ma<strong>the</strong>matically correct statement <strong>of</strong> <strong>the</strong> Cauchy problem formultiple-valued functions r(x, t) which allows us to study <strong>the</strong> temporal evolution<strong>of</strong> <strong>the</strong> oscillation <strong>zone</strong> (4).For a more complete and rigorous study <strong>the</strong> basis <strong>of</strong> such a statement must follow<strong>of</strong> course from <strong>the</strong> exact KdV <strong>the</strong>ory. We have, however, <strong>de</strong>liberately restricted <strong>the</strong>discussion to <strong>the</strong> <strong>the</strong>ory <strong>of</strong> first-or<strong>de</strong>r systems which may have a broa<strong>de</strong>r mean<strong>in</strong>gthan <strong>the</strong> KdV <strong>the</strong>ory.


EVOLUTION OF A WHITHAM ZONE IN KORTEWEG–DE VRIES THEORY 3Hydrodynamic systems without dissipation have <strong>the</strong> form(7) u α t = v α β (u)u β x,where u α (x, t) is a vector function, α = 1, 2, . . . , k. The form <strong>of</strong> (7) is conservedun<strong>de</strong>r nonl<strong>in</strong>ear substitution <strong>of</strong> u(w). If <strong>the</strong> matrix vβ α (u) is diagonal, <strong>the</strong> fieldsu α are called Riemann <strong>in</strong>variants. For <strong>in</strong>stance, for <strong>Whitham</strong>’s system (2), k = 3,<strong>the</strong> quantities u α = r α are <strong>the</strong> Riemann <strong>in</strong>variants <strong>of</strong> (2). Recently, a <strong>the</strong>ory <strong>of</strong>Hamiltonian systems <strong>of</strong> <strong>the</strong> form (7) and <strong>of</strong> <strong>the</strong> Poisson brackets connected with<strong>the</strong>m has been <strong>de</strong>veloped [4]. One <strong>of</strong> <strong>the</strong> authors <strong>of</strong> that paper hypo<strong>the</strong>sized thata system <strong>of</strong> <strong>the</strong> form (7) is <strong>in</strong>tegrate if, first, it is Hamiltonian and, secondly, ithas Riemann <strong>in</strong>variants. In some sense, this hypo<strong>the</strong>sis was proved <strong>in</strong> [5]. Theprocedure <strong>of</strong> [5] allows us to f<strong>in</strong>d some exact (“on average f<strong>in</strong>ite-<strong>zone</strong>d”) solutionswhich have as yet not been studied. The <strong>the</strong>orem follow<strong>in</strong>g from [5] about <strong>the</strong>complete <strong>in</strong>tegrability <strong>of</strong> <strong>Whitham</strong>’s system (2) is <strong>of</strong> a formal, local nature. Itsapplicability to a particular global class <strong>of</strong> functions r α (x, t) has not been studied.Even more questionable is <strong>the</strong> applicability <strong>of</strong> this statement to <strong>the</strong> physically<strong>in</strong>terest<strong>in</strong>g class <strong>de</strong>scribed above, where <strong>the</strong> <strong>Whitham</strong> equation acts only <strong>in</strong> <strong>the</strong>f<strong>in</strong>ite range (4) and is jo<strong>in</strong>ed on <strong>the</strong> boundary to <strong>the</strong> solution <strong>of</strong> <strong>the</strong> trivial Hopfequation; <strong>the</strong> range (4) changes here with time <strong>in</strong> a way not known as yet.The system (2) possesses self-similar solutions <strong>of</strong> <strong>the</strong> form (8) with arbitraryexponent γ:(8) r α (x, t) = t γ l α (xt −1−γ ) = t γ l α (z).An important role below is played by <strong>the</strong> solution for γ = 1/2 found <strong>in</strong> [3] (see [1],pp. 280–284). Let z = xt −3/2 . Outsi<strong>de</strong> <strong>the</strong> <strong>zone</strong> (4) we have u(x, t) = t 1/2 θ(z),where z = θ − θ 3 . At <strong>the</strong> edges <strong>of</strong> (4), where x = x ± (t), all l ± α can be expressed <strong>in</strong>terms <strong>of</strong> z ± from <strong>the</strong> conditions <strong>of</strong> cont<strong>in</strong>uity and constancy <strong>of</strong> <strong>the</strong> <strong>zone</strong> (4) <strong>in</strong> <strong>the</strong>self-similar variable z (see [1], p. 281).Such a solution exists and is unique, if l 3 > 0, l 1 < 0, and all l α are cont<strong>in</strong>uousalong with <strong>the</strong>ir first <strong>de</strong>rivatives <strong>in</strong> <strong>the</strong> region z − < z < z + . At <strong>the</strong> po<strong>in</strong>t z 0 , wherel 2 (z 0 ) = 0, <strong>the</strong> second <strong>de</strong>rivatives apparently are no longer cont<strong>in</strong>uous. Calculationsshow that(9) z − ≈ −1.141, z + ≈ 0.117, z 0 ≈ −1.11.We now turn to our problem. The class <strong>of</strong> multiple-valued cont<strong>in</strong>uous functionsr(x, t) must satisfy conditions (4)–(6). Moreover, <strong>the</strong>se functions must be smoothclass C 1 functions outsi<strong>de</strong> <strong>the</strong> po<strong>in</strong>ts x ± (t). They should be assumed to be smoo<strong>the</strong>routsi<strong>de</strong> <strong>zone</strong> (4). In <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong> <strong>the</strong> po<strong>in</strong>ts on <strong>the</strong> curves x ± (t), <strong>the</strong> hypo<strong>the</strong>sis<strong>of</strong> s<strong>in</strong>gle-valuedness and <strong>of</strong> smoothness <strong>of</strong> <strong>the</strong> <strong>in</strong>verse function must be satisfied.This means that for any fixed t 1 <strong>the</strong> behavior <strong>of</strong> <strong>the</strong> quantity r α as x → x ± (t)is <strong>de</strong>term<strong>in</strong>ed from Eqs. (10)–(13) at <strong>the</strong> given time t:(10)(11)Here we have(12)(13)x ′′ = (a + + b + (r − r + ))f(1 − s 2 ) + O(r − r + ) 3 ,x ′′ = x − x + 0, f(y) = y 2 [log(16/|y|) + 1/2];x ′ = a − (r − r − ) 2 + b − (r − r − ) 3 + o(r − r − ) 3 , x ′ = x − x − 0.dx + /dt = v + 2 = v+ 3 , dr+ /dt = −|r + 3 − r+ 1 |2 /(12a + ),dx − /dt = v − 1 = v− 2 , dr− /dt = −1/(2a − ).


4 V. V. AVILOV AND ACADEMICIAN S. P. NOVIKOVIf <strong>the</strong>se conditions are satisfied, we call a multiple-valued function admissible at <strong>the</strong>given time t.Assertion. The <strong>Whitham</strong> equation, toge<strong>the</strong>r with <strong>the</strong> Hopf equation, <strong>de</strong>term<strong>in</strong>esuniquely <strong>the</strong> temporal evolution <strong>of</strong> <strong>the</strong> admissible multiple-valued functions r(x, t).Although <strong>the</strong>re is no ma<strong>the</strong>matically rigorous pro<strong>of</strong> <strong>of</strong> this assertion, <strong>the</strong> presentauthors have constructed a numerical realization <strong>of</strong> this evolution applicable to tw<strong>of</strong>unctional classes (boundary conditions) correspond<strong>in</strong>g to two physical problems(see [1]).Problem 1. Decay <strong>of</strong> an <strong>in</strong>itial discont<strong>in</strong>uity for <strong>the</strong> KdV. Here we haver(x, t) → 1,r(x, t) → 0,x → −∞,x → +∞.Problem 2. Dispersive analog <strong>of</strong> a shock front. Here <strong>the</strong> boundary conditions arer(x, t) − u 0 (x, y) → 0, |x| → ∞, x = u 0 t − u 3 0.In each problem we assume that <strong>the</strong> rate at which <strong>the</strong> limit is reached as |x| → ∞is sufficiently fast (exponential).Us<strong>in</strong>g (2), we carry out <strong>the</strong> numerical calculation by <strong>the</strong> characteristics methodoutsi<strong>de</strong> small regions near <strong>the</strong> po<strong>in</strong>ts x ± (t). In <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong> <strong>the</strong>se po<strong>in</strong>ts <strong>the</strong>quantity r(x, t) was <strong>in</strong>terpolated by Eqs. (10)–(13), where a ± (t) and b ± (t) were<strong>de</strong>term<strong>in</strong>ed by jo<strong>in</strong><strong>in</strong>g up with <strong>the</strong> numerical solution. This enabled us to construct<strong>in</strong> each step <strong>in</strong> time <strong>the</strong> extension <strong>of</strong> <strong>the</strong> oscillation <strong>zone</strong> (4), s<strong>in</strong>ce <strong>the</strong> <strong>de</strong>rivativesẋ ± (t) and ṙ ± (t) are known. Along <strong>the</strong> l<strong>in</strong>e x − (t) <strong>the</strong> characteristics for r 1 and r 2are tangent and along x + (t) <strong>the</strong> characteristics for r 2 and r 3 are tangent. Theseare <strong>the</strong> s<strong>in</strong>gular l<strong>in</strong>es: <strong>the</strong> characteristic r 1 reaches <strong>the</strong> l<strong>in</strong>e x − (t), touches it, and<strong>the</strong>n leaves it as <strong>the</strong> characteristic r 2 . In exactly <strong>the</strong> same way, <strong>the</strong> characteristicr 3 arrives along x + (t), touches <strong>the</strong> l<strong>in</strong>e x + (t), and <strong>the</strong>n leaves as r 2 <strong>in</strong> <strong>the</strong> region<strong>of</strong> <strong>the</strong> (x, t)-plane <strong>in</strong>si<strong>de</strong> <strong>the</strong> curves [x + (t), x − (t)]. At each step <strong>in</strong> time around <strong>the</strong>boundaries <strong>the</strong>re is a transition <strong>of</strong> one characteristic <strong>in</strong>to ano<strong>the</strong>r. In <strong>the</strong> numericalcalculation <strong>the</strong> characteristics <strong>the</strong>mselves are not calculated <strong>in</strong> small regions around<strong>the</strong> curves x ± (t).As boundary conditions at t = 1 for problem 2 we <strong>in</strong>troduced various admissibleperturbations <strong>of</strong> <strong>the</strong> self-similar Gurevich–Pitaevskii regime (see above).The conclusions are <strong>the</strong> follow<strong>in</strong>g: any admissible <strong>in</strong>itial condition r(x, t), whichis sufficiently C 1 -close to <strong>the</strong> self-similar solution <strong>of</strong> problem 2 (see above), evolvesan <strong>in</strong>f<strong>in</strong>ite time without <strong>the</strong> appearance <strong>of</strong> any s<strong>in</strong>gularities (see Fig. 1) and ast → ∞ <strong>the</strong> functions l α (z, t) tend to <strong>the</strong> self-similar solution (8), where r α (x, t) =t 1/2 l α (z, t). There exists a f<strong>in</strong>ite threshold – <strong>the</strong> <strong>de</strong>gree <strong>of</strong> remoteness <strong>of</strong> <strong>the</strong> <strong>in</strong>itialperturbation from <strong>the</strong> self-similar solution – after which <strong>the</strong> evolution may be(and sometimes is) such that <strong>the</strong>re appears <strong>the</strong> usual hydrodynamic steepen<strong>in</strong>g andafterwards <strong>the</strong> <strong>in</strong>version <strong>of</strong> <strong>the</strong> front for r α . We do not know <strong>the</strong> numerical characteristics<strong>of</strong> this threshold. In or<strong>de</strong>r that <strong>the</strong> evolution <strong>of</strong> r(x, t) be exten<strong>de</strong>d over an<strong>in</strong>f<strong>in</strong>ite time as t → +∞, it is necessary (although not sufficient) that each s<strong>in</strong>glevaluedcont<strong>in</strong>uous branch <strong>of</strong> <strong>the</strong> function r(x, t) be a monotonic function <strong>of</strong> x attime t. This statement is correct <strong>in</strong> all problems consi<strong>de</strong>red by us, as <strong>the</strong> numericalexperiment shows. Un<strong>de</strong>r <strong>the</strong> same necessary condition <strong>in</strong> problem 1, a wi<strong>de</strong> class<strong>of</strong> admissible (although not all) <strong>in</strong>itial conditions <strong>in</strong> <strong>the</strong> evolution process tend to


EVOLUTION OF A WHITHAM ZONE IN KORTEWEG–DE VRIES THEORY 5Figure 2. <strong>Evolution</strong> <strong>of</strong> <strong>the</strong> s<strong>in</strong>gle-valued function r(z, t) (z =xt −1 ) <strong>of</strong> problem 1. The <strong>in</strong>itial condition (t = 1) <strong>in</strong>si<strong>de</strong> <strong>the</strong> oscillation<strong>zone</strong> corresponds to <strong>the</strong> self-similar solution <strong>of</strong> problem 2and outsi<strong>de</strong> this <strong>zone</strong> tends to a constant.a regime which is self-similar with exponent γ = 0, where z = xt −1 , r 1 → const,r 3 → const, and v 2 → z. This limit<strong>in</strong>g regime is <strong>de</strong>scribed <strong>in</strong> [1], pp. 268–270. Byitself it is not conta<strong>in</strong>ed among <strong>the</strong> admissible functions, but is found to be a limit(see Fig. 2).From a methodological po<strong>in</strong>t <strong>of</strong> view, it is useful also to consi<strong>de</strong>r <strong>the</strong> case (problem3) when x + = +∞, x − = −∞, and r α (x, t) → r α ± as x → ±∞, wherer1 − = r− 2 < r− 3 , r+ 2 = r+ 3 > r+ 1 (<strong>in</strong>f<strong>in</strong>ite oscillation <strong>zone</strong>).Numerical calculations show that <strong>in</strong> or<strong>de</strong>r that <strong>the</strong> evolution does not for allt → +∞ lead to <strong>the</strong> usual hydrodynamic <strong>in</strong>version <strong>of</strong> <strong>the</strong> front (i.e., <strong>in</strong> or<strong>de</strong>r that|r αx | be f<strong>in</strong>ite for all α), it is necessary and sufficient that at <strong>the</strong> <strong>in</strong>itial time t = 1<strong>the</strong> condition for a monotonic <strong>in</strong>crease <strong>of</strong> r α (x, t) is satisfied:(14) r αx 0, −∞ < x < +∞.If r 1 + < r− 3 <strong>the</strong>re is a f<strong>in</strong>ite range <strong>of</strong> <strong>the</strong> self-similar z = xt−1 , where <strong>the</strong> solutiontends, as t → ∞, to <strong>the</strong> self-similar solution <strong>of</strong> problem 1: r 3 = r3 − , r 1 = r 1 + , v 2 = z(see Fig. 3). Hence it follows that <strong>the</strong> condition that <strong>the</strong>re be no s<strong>in</strong>gularities <strong>in</strong><strong>the</strong> evolution process can <strong>in</strong> pr<strong>in</strong>ciple be formulated only <strong>in</strong> terms <strong>of</strong> <strong>the</strong> Riemann<strong>in</strong>variants r α . It cannot be expressed <strong>in</strong> terms <strong>of</strong> <strong>the</strong> physical characteristics <strong>of</strong><strong>the</strong> <strong>in</strong>itial condition – such as <strong>the</strong> average velocity ū, <strong>the</strong> quantities u m<strong>in</strong> and u max(see [1], p. 264), <strong>the</strong> average momentum <strong>de</strong>nsity ¯p = u 2 , and <strong>the</strong> average energy ¯ε,


6 V. V. AVILOV AND ACADEMICIAN S. P. NOVIKOVFigure 3. <strong>Evolution</strong> <strong>of</strong> <strong>the</strong> <strong>in</strong>f<strong>in</strong>ite oscillation <strong>zone</strong> <strong>of</strong> problem 3.The functions r α (z, t) (z = xt −1 ), α = 1, 2, 3, at <strong>the</strong> <strong>in</strong>itial timet = 1 are shown by dots, <strong>the</strong> full drawn l<strong>in</strong>es correspond to t = 11.whose graphs may appear to be physically mean<strong>in</strong>gful both when (14) is satisfiedand when it is violated.References[1] S. P. Novikov (ed.), Theory <strong>of</strong> Solitons, Consultants Bureau, New York.[2] G. B. <strong>Whitham</strong>, Proc. R. Soc. A283, 238 (1965).[3] A. V. Gurevich and L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 65, 590 (1973) [Sov. Phys. JETP38, 291 (1974)].[4] B. A. Dubrov<strong>in</strong> and S. P. Novikov. Dokl. Akad. Nauk SSSR 270, 781 (1984).[5] S. P. Tsarev, Dokl. Akad. Nauk SSSR 282, 280 (1985).L.D. Landau Institute <strong>of</strong> Theoretical Physics, Aca<strong>de</strong>my <strong>of</strong> Sciences <strong>of</strong> <strong>the</strong> USSR,Moscow

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!