Population Dynamics of Bull Trout and Spring Chinook Salmon at ...

Population Dynamics of Bull Trout and Spring Chinook Salmon at ... Population Dynamics of Bull Trout and Spring Chinook Salmon at ...

13.07.2015 Views

Population Dynamics of Bull Trout and Spring ChinookSalmon at the Carmen-Smith Hydroelectric Project,Upper McKenzie River Basin, OregonFINAL REPORTPrepared forEugene Water & Electric BoardEugene, OregonPrepared byStillwater SciencesArcata, CaliforniaMarch 2006

<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong><strong>Salmon</strong> <strong>at</strong> the Carmen-Smith Hydroelectric Project,Upper McKenzie River Basin, OregonFINAL REPORTPrepared forEugene W<strong>at</strong>er & Electric BoardEugene, OregonPrepared byStillw<strong>at</strong>er SciencesArc<strong>at</strong>a, CaliforniaMarch 2006


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Report<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong><strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong><strong>at</strong> the Carmen-Smith Hydroelectric Project,Upper McKenzie River Basin, OregonExecutive SummaryIntroductionThe Carmen-Smith Hydroelectric Project (Project) (FERC No. 2242) is a 114.5-megaw<strong>at</strong>t facilityowned <strong>and</strong> oper<strong>at</strong>ed by the Eugene W<strong>at</strong>er & Electric Board (EWEB). The Project’s existinglicense, issued by the Federal Energy Regul<strong>at</strong>ory Commission (FERC), expires on 30 November2008. To obtain a new license for oper<strong>at</strong>ing the Project, EWEB prepared <strong>and</strong> distributed anInitial Consult<strong>at</strong>ion Package (ICP) (EWEB 2003). Following issuance <strong>of</strong> the ICP, publicmeetings <strong>and</strong> study planning sessions were held in Fall 2003 to discuss the Project’s oper<strong>at</strong>ions<strong>and</strong> potential environmental effects. An Aqu<strong>at</strong>ics Technical Subgroup (ATS) was formed <strong>and</strong>worked together to develop a study plan for the <strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong><strong>Chinook</strong> <strong>Salmon</strong> study (Stillw<strong>at</strong>er Sciences 2004a). Periodic Upd<strong>at</strong>es (communic<strong>at</strong>ion to ATSmembers regarding study progress <strong>and</strong> findings) <strong>and</strong> Decision Points (points <strong>at</strong> which a formalprocess is initi<strong>at</strong>ed to make decisions about changes to study implement<strong>at</strong>ion based on newinform<strong>at</strong>ion) were used to inform <strong>and</strong> collabor<strong>at</strong>e on decisions affecting the study. This reportdescribes the methods <strong>and</strong> results <strong>of</strong> the study. The purposes <strong>of</strong> this study are two-fold: (1) todevelop a better underst<strong>and</strong>ing <strong>of</strong> bull trout (Salvelinus confluentus) <strong>and</strong> spring <strong>Chinook</strong> salmon(Oncorhynchus tschawytscha) popul<strong>at</strong>ion dynamics in the Study Area, <strong>and</strong> (2) to cre<strong>at</strong>e a tool toaid in management decisions th<strong>at</strong> could improve spring <strong>Chinook</strong> salmon <strong>and</strong> bull troutpopul<strong>at</strong>ions affected by the Project. Outcomes <strong>of</strong> the technical studies th<strong>at</strong> pertain tomanagement decisions or actions will be addressed in the License Applic<strong>at</strong>ion, due to FERC inNovember 2006.MethodsConceptual models were developed th<strong>at</strong> provided a theoretical found<strong>at</strong>ion for quantit<strong>at</strong>ivemodels, by identifying factors th<strong>at</strong> limit life history stages <strong>and</strong> factors th<strong>at</strong> limit the overallproduction <strong>of</strong> the popul<strong>at</strong>ions. These factors were applied to the two quantit<strong>at</strong>ive popul<strong>at</strong>ionmodels developed for the Study Area: one for bull trout <strong>and</strong> one for spring <strong>Chinook</strong> salmon. Themodels were developed in spreadsheet form using Micros<strong>of</strong>t Excel 2003®. The models followthe stock-production approach to popul<strong>at</strong>ion modeling, which is supported by a large body <strong>of</strong>liter<strong>at</strong>ure spanning several decades (e.g., Paulik 1973, Moussalli <strong>and</strong> Hilborn 1986). The utility<strong>of</strong> these models, like all models, is a function <strong>of</strong> the quality <strong>of</strong> the d<strong>at</strong>a th<strong>at</strong> is used to popul<strong>at</strong>ethem, <strong>and</strong> in some cases models are best used to identify additional inform<strong>at</strong>ion needs. Thismodel however, serves as a useful <strong>and</strong> predictive tool because it is a compil<strong>at</strong>ion <strong>of</strong> all availabled<strong>at</strong>a from recent fieldwork <strong>and</strong> the published liter<strong>at</strong>ure, organized in a rigorous <strong>and</strong> transparentframework.The models were used to determine the factors affecting both bull trout <strong>and</strong> <strong>Chinook</strong> salmonpopul<strong>at</strong>ions. Project effects were considered, as were potential changes to Project facilities <strong>and</strong>oper<strong>at</strong>ions, habit<strong>at</strong> enhancements, <strong>and</strong> other management options th<strong>at</strong> would increase production<strong>of</strong> bull trout adults or spring <strong>Chinook</strong> salmon smolts. The intention <strong>of</strong> the models was not topredict the precise popul<strong>at</strong>ion size <strong>of</strong> any particular life-stage, but r<strong>at</strong>her identify critical life-28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Boardii


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Reportstages, <strong>and</strong> compare rel<strong>at</strong>ive changes in popul<strong>at</strong>ion size between altern<strong>at</strong>ive managementscenarios.Potential habit<strong>at</strong> enhancement <strong>and</strong> management options th<strong>at</strong> were modeled include:• Increased instream flows in the lower Carmen Bypass Reach <strong>and</strong> the Smith Bypass Reach(including a scenario with hypolimnetic releases from Smith Dam)• Large woody debris enhancements in the Carmen Bypass Reach, Smith Bypass Reach, <strong>and</strong>Sweetw<strong>at</strong>er Creek• Increased spawning gravel availability <strong>and</strong>/or quality in Carmen Bypass Reach <strong>and</strong> SmithBypass Reach• Habit<strong>at</strong> enhancements in Trail Bridge Reservoir, the Carmen-Smith Spawning Channel, orthe mainstem McKenzie River• Changes in the h<strong>at</strong>chery rainbow trout (Oncorhynchus mykiss) stocking program• Changes in angling regul<strong>at</strong>ions• Fish passage facilities <strong>at</strong> Trail Bridge Dam (including various entrainment mortalityscenarios)• Fish passage facilities <strong>at</strong> Smith DamThe Study Area included: (1) the mainstem McKenzie River downstream <strong>of</strong> Trail Bridge Dam<strong>and</strong> the Carmen-Smith Spawning Channel, (2) Trail Bridge Reservoir <strong>and</strong> the Carmen BypassReach upstream to Tamolitch Falls, including Kink <strong>and</strong> Sweetw<strong>at</strong>er Creeks; <strong>and</strong> (3) the SmithBypass Reach, Smith Reservoir, <strong>and</strong> tributaries above Smith Reservoir, upstream to n<strong>at</strong>ural fishpassage barriers.Results<strong>Bull</strong> troutBased on the conceptual <strong>and</strong> quantit<strong>at</strong>ive models, the bull trout popul<strong>at</strong>ion in the Study Area iscurrently limited by available habit<strong>at</strong> for subadults <strong>and</strong> adults. Available habit<strong>at</strong> is the limit<strong>at</strong>ionbecause so few juveniles are needed to replace mortality <strong>of</strong> subadults. Increasing the value <strong>of</strong>every other parameter in the model does not lead to an increase in the adult popul<strong>at</strong>ion until thecarrying capacity <strong>of</strong> the subadult/adult popul<strong>at</strong>ion is increased. The juvenile life-stage did notbegin to limit production until a subadult/adult popul<strong>at</strong>ion <strong>of</strong> 800 was reached.Management actions taken to increase spawning or rearing habit<strong>at</strong> in stream reaches or TrailBridge Reservoir are unlikely to increase the bull trout popul<strong>at</strong>ion. However, efforts to increasehabit<strong>at</strong> for subadults <strong>and</strong> adults in Trail Bridge Reservoir (e.g., increased habit<strong>at</strong> complexity)could increase carrying capacity, which would result in an increase <strong>of</strong> the adult popul<strong>at</strong>ion. Inaddition, if mortality <strong>of</strong> the adult popul<strong>at</strong>ion rel<strong>at</strong>ed to angling <strong>and</strong> poaching were reduced (e.g.,via increased law enforcement), the adult popul<strong>at</strong>ion would increase (<strong>and</strong> the popul<strong>at</strong>ion <strong>of</strong>subadults would decrease since they share the same habit<strong>at</strong>).Production <strong>of</strong> juvenile bull trout could be increased by large woody debris enhancements inCarmen Bypass Reach or Sweetw<strong>at</strong>er Creek. Lower w<strong>at</strong>er temper<strong>at</strong>ures in the Smith BypassReach (only possible from hypolimnetic releases from Smith Reservoir) could also increasejuvenile bull trout production. However, because subadult/adult habit<strong>at</strong> is currently limiting, noincrease in the adult popul<strong>at</strong>ion is predicted with this enhancement.If passage facilities were provided <strong>at</strong> Trail Bridge Dam, a portion <strong>of</strong> bull trout subadults <strong>and</strong>adults would likely pass downstream over the dam during the fall after spawning, <strong>and</strong> return inthe early summer. Access to the habit<strong>at</strong> in the mainstem McKenzie River downstream <strong>of</strong> Trail28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Boardiii


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportBridge Dam could increase the overall amount <strong>of</strong> adult habit<strong>at</strong> for the upstream popul<strong>at</strong>ion, <strong>and</strong>thus the popul<strong>at</strong>ion size could increase. If, however, habit<strong>at</strong> conditions for adults downstream <strong>of</strong>Trail Bridge Dam are not as suitable as those upstream <strong>of</strong> the dam (e.g., increased anglingpressure, less food availability) or are already occupied, the health <strong>of</strong> the popul<strong>at</strong>ion upstream <strong>of</strong>Trail Bridge Reservoir could decline (i.e., if the bull trout in Trail Bridge Reservoir are a sourcepopul<strong>at</strong>ion, <strong>and</strong> the popul<strong>at</strong>ion downstream <strong>of</strong> Trail Bridge Dam is stable or in decline).Although a self-sustaining popul<strong>at</strong>ion <strong>of</strong> bull trout could not be supported in Smith Reservoir,Smith Reservoir has the potential to provide subadult/adult bull trout habit<strong>at</strong>. If passage wereprovided <strong>and</strong> successful <strong>at</strong> Smith Dam, subadult <strong>and</strong>/or adult bull trout from Trail BridgeReservoir could migr<strong>at</strong>e to Smith Reservoir to feed winter–summer, returning downstream tospawn during fall in Carmen Bypass Reach or Sweetw<strong>at</strong>er Creek.<strong>Spring</strong> <strong>Chinook</strong> salmonBased on current popul<strong>at</strong>ion dynamics, spring <strong>Chinook</strong> salmon in the Study Area rear only brieflyin the Carmen Bypass Reach <strong>and</strong> Smith Bypass Reach before migr<strong>at</strong>ing downstream to TrailBridge Reservoir. Because the reservoir provides abundant rearing habit<strong>at</strong>, the modeling resultsindic<strong>at</strong>e th<strong>at</strong> the popul<strong>at</strong>ion is sensitive only to spawning habit<strong>at</strong> (which is not available inreservoir). As a result, the spring <strong>Chinook</strong> salmon popul<strong>at</strong>ion in the Study Area is most stronglyaffected by survival <strong>of</strong> fry, juveniles, <strong>and</strong> smolts in Trail Bridge Reservoir, <strong>and</strong> availablespawning habit<strong>at</strong>.Reducing mortality <strong>of</strong> all life-stages in Trail Bridge Reservoir would have the highest potential toincrease smolt production. In addition, increases in spawning habit<strong>at</strong> availability <strong>and</strong>/or habit<strong>at</strong>quality (e.g., through gravel augment<strong>at</strong>ion, large woody debris enhancements, or increasedinstream flow) in the bypass reaches, <strong>and</strong> Smith Bypass Reach in particular, would likely increase<strong>Chinook</strong> salmon smolt production.<strong>Spring</strong> <strong>Chinook</strong> salmon in the Carmen-Smith Spawning Channel rear only briefly there beforemigr<strong>at</strong>ing to the mainstem McKenzie River. The spawning channel provides abundant spawninghabit<strong>at</strong>, <strong>and</strong> currently produces hundreds <strong>of</strong> thous<strong>and</strong>s <strong>of</strong> emergent fry. Most <strong>of</strong> these fry rear inthe mainstem McKenzie River, such th<strong>at</strong> rearing habit<strong>at</strong> quality in the mainstem stronglyinfluences subsequent potential smolt production from the spawning channel. The availablespawning habit<strong>at</strong> in the spawning channel is not currently s<strong>at</strong>ur<strong>at</strong>ed by <strong>Chinook</strong> salmon, <strong>and</strong>additional spawning habit<strong>at</strong> is not predicted to increase production. However, overall smoltproduction could be increased by increasing habit<strong>at</strong> complexity within the spawning channel, oreven more so with by improving habit<strong>at</strong> within the mainstem McKenzie River.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Boardiv


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportTABLE OF CONTENTS1 INTRODUCTION ...................................................................................................................11.1 Background .................................................................................................................... 11.2 Purpose <strong>and</strong> Rel<strong>at</strong>ionship to Other Studies.................................................................... 21.3 Key Questions................................................................................................................ 21.4 Study Area ..................................................................................................................... 32 METHODS...............................................................................................................................42.1 Collabor<strong>at</strong>ion <strong>and</strong> Peer Review...................................................................................... 42.2 Conceptual Model.......................................................................................................... 62.3 Quantit<strong>at</strong>ive <strong>Popul<strong>at</strong>ion</strong> Models..................................................................................... 72.3.1 Model development............................................................................................... 82.3.2 Escape 5.1 superimposition sub-model............................................................... 122.3.3 Model execution.................................................................................................. 142.3.4 Evalu<strong>at</strong>ion <strong>of</strong> factors affecting popul<strong>at</strong>ions ........................................................ 142.3.5 Effects <strong>of</strong> changes in Project oper<strong>at</strong>ions on popul<strong>at</strong>ions..................................... 153 RESULTS...............................................................................................................................163.1 Conceptual Models ...................................................................................................... 163.1.1 <strong>Bull</strong> trout ............................................................................................................. 163.1.2 <strong>Spring</strong> <strong>Chinook</strong> salmon....................................................................................... 173.2 <strong>Popul<strong>at</strong>ion</strong> Models ....................................................................................................... 183.3 Factors Affecting <strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> ................................................ 193.3.1 Subadult/adult popul<strong>at</strong>ion estim<strong>at</strong>es ................................................................... 193.3.2 Sensitivity analysis.............................................................................................. 213.3.3 Juvenile-to-subadult recruitment......................................................................... 223.3.4 Early life-stages .................................................................................................. 243.3.5 Resiliency to disturbance .................................................................................... 253.4 Factors Affecting <strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> .......................... 263.4.1 Sensitivity analysis.............................................................................................. 273.4.2 Early life-stages .................................................................................................. 293.4.3 All life-stages in Trail Bridge Reservoir............................................................. 303.4.4 Resiliency to disturbance .................................................................................... 313.5 Effects <strong>of</strong> Changes in Project Oper<strong>at</strong>ions <strong>and</strong>/or Enhancements on <strong>Bull</strong> <strong>Trout</strong><strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong>................................................................................................... 313.5.1 Instream flows..................................................................................................... 323.5.2 Large woody debris additions............................................................................. 343.5.3 Spawning gravel augment<strong>at</strong>ion........................................................................... 343.5.4 Trail Bridge Reservoir habit<strong>at</strong> enhancements..................................................... 353.5.5 Fish Passage <strong>at</strong> Trail Bridge Dam....................................................................... 373.5.6 Fish passage <strong>at</strong> Smith Dam ................................................................................. 383.6 Effects <strong>of</strong> Changes in Project Oper<strong>at</strong>ions <strong>and</strong>/or Enhancements on <strong>Spring</strong> <strong>Chinook</strong><strong>Salmon</strong>......................................................................................................................... 383.6.1 Instream flows..................................................................................................... 393.6.2 Large woody debris additions............................................................................. 403.6.3 Spawning gravel augment<strong>at</strong>ion........................................................................... 4128 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Boardv


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Report3.6.4 Trail Bridge Reservoir habit<strong>at</strong> enhancements..................................................... 413.6.5 Fish passage <strong>at</strong> Trail Bridge Dam ....................................................................... 423.6.6 Fish passage <strong>at</strong> Smith Dam ................................................................................. 433.7 Carmen-Smith Spawning Channel............................................................................... 433.7.1 Sensitivity analysis.............................................................................................. 443.7.2 Management implic<strong>at</strong>ions................................................................................... 443.7.3 Passage <strong>at</strong> Trail Bridge Dam............................................................................... 453.8 Summary ...................................................................................................................... 453.8.1 Effects <strong>of</strong> management scenarios on popul<strong>at</strong>ion levels ...................................... 453.8.2 Key factors to protect popul<strong>at</strong>ions ...................................................................... 474 LITERATURE CITED .........................................................................................................49TablesTable 1-1. Key questions <strong>and</strong> report sections in which they are addressed. .................................. 3Table 2-1. Participants <strong>at</strong> 18–19 January 2005 popul<strong>at</strong>ion dynamics workshop. .......................... 5Table 2-2. Life-stages modeled for bull trout <strong>and</strong> spring <strong>Chinook</strong> salmon.................................... 8Table 2-3. Life-steps modeled for bull trout <strong>and</strong> spring <strong>Chinook</strong> salmon...................................... 9Table 3-1. <strong>Popul<strong>at</strong>ion</strong> estim<strong>at</strong>es for subadult/adult bull trout.. .................................................... 20Table 3-2. <strong>Bull</strong> trout subadult/adult (sexually m<strong>at</strong>ure <strong>and</strong>/or gre<strong>at</strong>er than 250 mm) popul<strong>at</strong>ionestim<strong>at</strong>es reported in the liter<strong>at</strong>ure, <strong>and</strong> the estim<strong>at</strong>ed popul<strong>at</strong>ion in Trail BridgeReservoir assuming the same densities were achieved. ............................................ 21Table 3-3. Summary <strong>of</strong> sensitivity analysis on bull trout popul<strong>at</strong>ion under current conditions(subadult/adult K=111).. ........................................................................................... 22Table 3-4. Summary <strong>of</strong> sensitivity analysis on bull trout popul<strong>at</strong>ion assuming an increase insubadult/adult carrying capacity (K=500)................................................................. 22Table 3-5. <strong>Popul<strong>at</strong>ion</strong> estim<strong>at</strong>es for juvenile bull trout.. .............................................................. 23Table 3-6. Resiliency <strong>of</strong> bull trout popul<strong>at</strong>ion to disturbance. ..................................................... 26Table 3-7. Summary <strong>of</strong> <strong>Chinook</strong> salmon model sensitivity analysis under current conditions.. . 28Table 3-8. <strong>Bull</strong> trout consumption <strong>of</strong> fish in Lake Billy <strong>Chinook</strong> (based on Beauchamp <strong>and</strong> VanTassell 2001) per individual <strong>and</strong> potential consumption <strong>of</strong> fish in Trail BridgeReservoir (based on Stillw<strong>at</strong>er Sciences 2006a). ...................................................... 36Table 3-9. Estim<strong>at</strong>ed changes in <strong>Chinook</strong> salmon smolt production with increasing instreamflows in the Carmen Bypass Reach........................................................................... 39Table 3-10. Estim<strong>at</strong>ed changes in <strong>Chinook</strong> salmon smolt production with increasing instreamflows in the Smith Bypass Reach.............................................................................. 40Table 3-11. Summary <strong>of</strong> <strong>Chinook</strong> salmon model sensitivity analysis under current conditions <strong>at</strong>the Carmen-Smith Spawning Channel.. .................................................................... 44Table 3-12. Summary <strong>of</strong> bull trout <strong>and</strong> <strong>Chinook</strong> salmon production in the Study Area undercurrent conditions <strong>and</strong> various management scenarios. ............................................ 46FiguresFigure 1-1. Rel<strong>at</strong>ionship <strong>of</strong> the <strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong>study to other Carmen-Smith Hydroelectric Project relicensing studies.Figure 1-2. Study Area.Figure 2-1. Egg region <strong>and</strong> defended region <strong>of</strong> a redd, as tre<strong>at</strong>ed in the redd superimpositionmodel (Escape 5.1).Figure 2-2. Example <strong>of</strong> the bull trout popul<strong>at</strong>ion model showing the step from “stock” (1) to“production” (2).28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Boardvi


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportFigure 3-1. <strong>Bull</strong> trout conceptual model upstream <strong>of</strong> Trail Bridge Dam, prior to Europeaninfluence.Figure 3-2. Conceptual model <strong>of</strong> bull trout habit<strong>at</strong> in the McKenzie River basin, prior toEuropean influence, 300 to 10,000 years before present.Figure 3-3. <strong>Bull</strong> trout conceptual model upstream <strong>of</strong> Trail Bridge Dam under current conditions.Figure 3-4. Current bull trout habit<strong>at</strong> in the McKenzie River basin.Figure 3-5. <strong>Spring</strong> <strong>Chinook</strong> salmon conceptual model in the McKenzie River, prior to Europeaninfluence.Figure 3-6. <strong>Spring</strong> <strong>Chinook</strong> salmon conceptual model in the McKenzie River under currentconditions.Figure 3-7. Schem<strong>at</strong>ic <strong>of</strong> bull trout popul<strong>at</strong>ion model results.Figure 3-8. Effects <strong>of</strong> superimposition on bull trout spawning in Carmen Bypass Reach, basedon suitable spawning habit<strong>at</strong> mapping <strong>at</strong> 160 cfs.Figure 3-9. Schem<strong>at</strong>ic <strong>of</strong> <strong>Chinook</strong> salmon popul<strong>at</strong>ion model results.Figure 3-10. Effects <strong>of</strong> increased escapement on <strong>Chinook</strong> salmon spawning in Carmen BypassReach, based on suitable spawning habit<strong>at</strong> mapping <strong>at</strong> 160 cfs.Figure 3-11. Optimal temper<strong>at</strong>ure for bull trout life-stages.AppendicesAppendix A: Glossary.Appendix B: Existing local inform<strong>at</strong>ion for bull trout popul<strong>at</strong>ion dynamics model.Appendix C: Existing local inform<strong>at</strong>ion for <strong>Chinook</strong> salmon popul<strong>at</strong>ion dynamics model.Appendix D: <strong>Bull</strong> trout popul<strong>at</strong>ion model parameters <strong>and</strong> values.Appendix E: <strong>Chinook</strong> salmon popul<strong>at</strong>ion model parameters <strong>and</strong> values.Appendix F: Sensitivity analysis for bull trout popul<strong>at</strong>ion dynamics model.Appendix G: Sensitivity analysis for spring <strong>Chinook</strong> salmon popul<strong>at</strong>ion dynamics model.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Boardvii


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Reportdiffer from n<strong>at</strong>urally produced <strong>Chinook</strong> salmon (should wild fish be re-introduced above TrailBridge Dam) in their behavior <strong>and</strong> spawning success. However, NMFS considers the behavior<strong>and</strong> success <strong>of</strong> the released h<strong>at</strong>chery fish to be an indic<strong>at</strong>ion <strong>of</strong> how n<strong>at</strong>urally-produced <strong>Chinook</strong>salmon would respond if they had access to the same habit<strong>at</strong> (i.e., via upstream fish passagefacilities).This report describes the methods <strong>and</strong> results <strong>of</strong> the <strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong><strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> study. Outcomes <strong>of</strong> the technical studies th<strong>at</strong> pertain to managementdecisions or actions will be addressed in the License Applic<strong>at</strong>ion, due to FERC in November2006.1.2 Purpose <strong>and</strong> Rel<strong>at</strong>ionship to Other StudiesThe purposes <strong>of</strong> this study were to work in collabor<strong>at</strong>ion with the ATS: (1) to develop a betterunderst<strong>and</strong>ing <strong>of</strong> bull trout <strong>and</strong> spring <strong>Chinook</strong> salmon popul<strong>at</strong>ion dynamics in the Study Area,<strong>and</strong> (2) to cre<strong>at</strong>e a tool to aid in management decisions th<strong>at</strong> could improve spring <strong>Chinook</strong> salmon<strong>and</strong> bull trout popul<strong>at</strong>ions affected by the Project.The popul<strong>at</strong>ion models were developed to assess the Project’s effects on the p<strong>at</strong>terns <strong>of</strong>popul<strong>at</strong>ion abundance <strong>and</strong> age structure <strong>of</strong> bull trout <strong>and</strong> spring <strong>Chinook</strong> salmon over time. Thestudy objectives included: (1) identifying factors most likely to affect the abundance <strong>of</strong> adults, thepopul<strong>at</strong>ion’s age <strong>and</strong> size structure, <strong>and</strong> the popul<strong>at</strong>ion’s resilience to disturbance; (2) identifyingpotential thre<strong>at</strong>s th<strong>at</strong> could lead to severe popul<strong>at</strong>ion decline or extirp<strong>at</strong>ion; <strong>and</strong> (3) evalu<strong>at</strong>ingProject effects <strong>and</strong> the effectiveness <strong>of</strong> management options designed to maintain or increase thehealth <strong>of</strong> the popul<strong>at</strong>ions by predicting rel<strong>at</strong>ive changes in popul<strong>at</strong>ion size between variousmanagement options.The results <strong>of</strong> several rel<strong>at</strong>ed studies (in addition to scientific liter<strong>at</strong>ure) were used toparameterize the popul<strong>at</strong>ion models developed in this study (Figure 1-1). The Fish <strong>Popul<strong>at</strong>ion</strong>Distribution <strong>and</strong> Abundance study (Stillw<strong>at</strong>er Sciences 2006a) deline<strong>at</strong>ed the areas <strong>and</strong> habit<strong>at</strong>s inwhich various life-stages <strong>of</strong> spring <strong>Chinook</strong> salmon <strong>and</strong> bull trout are found, <strong>and</strong> estim<strong>at</strong>ed thefish densities within those habit<strong>at</strong>s. The Aqu<strong>at</strong>ic Habit<strong>at</strong>s <strong>and</strong> Instream Flows study (Stillw<strong>at</strong>erSciences 2006b) provided estim<strong>at</strong>es <strong>of</strong> the amount <strong>of</strong> habit<strong>at</strong> for various life-stages <strong>and</strong> howhabit<strong>at</strong> changed with flow. The Fish Entrainment study provided estim<strong>at</strong>ed r<strong>at</strong>es <strong>of</strong> entrainmentmortality for bull trout <strong>and</strong> spring <strong>Chinook</strong> salmon th<strong>at</strong> exit the Trail Bridge Reservoir via theturbine intake <strong>and</strong> the spillway, <strong>and</strong> the W<strong>at</strong>er Quality study provided additional inform<strong>at</strong>ion onw<strong>at</strong>er temper<strong>at</strong>ures in the Study Area (Stillw<strong>at</strong>er Sciences 2006c <strong>and</strong> 2006d). The FlowFluctu<strong>at</strong>ions <strong>and</strong> Str<strong>and</strong>ing study (Stillw<strong>at</strong>er Sciences 2006e) provided an indic<strong>at</strong>ion <strong>of</strong> str<strong>and</strong>ingrisk, <strong>and</strong> was used to interpret model results. Management options modeled in this study werealso considered for the Aqu<strong>at</strong>ic Protection, Mitig<strong>at</strong>ion, <strong>and</strong> Enhancement Opportunities report(Stillw<strong>at</strong>er Sciences 2006f).1.3 Key QuestionsKey questions were identified by the ATS during the development <strong>of</strong> the <strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong><strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> study plan. The questions are answered throughout thisreport (Table 1-1).28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board2


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportTable Error! No text <strong>of</strong> specified style in document.-1. Key questions <strong>and</strong> report sections inwhich they are addressed.Key question1. Wh<strong>at</strong> factors affect the popul<strong>at</strong>ion dynamics <strong>of</strong> bull trout <strong>and</strong>spring <strong>Chinook</strong> salmon in the study area?2. How does the Project affect the popul<strong>at</strong>ion resilience (e.g.,ability to recover from a disturbance or popul<strong>at</strong>ion decline) <strong>of</strong>bull trout <strong>and</strong> spring <strong>Chinook</strong> salmon through alter<strong>at</strong>ions in theamount or quality <strong>of</strong> habit<strong>at</strong> (e.g., physical habit<strong>at</strong>, foodavailability) <strong>at</strong> critical life-stages?3. To wh<strong>at</strong> extent can the abundance or resilience <strong>of</strong> the bull trout<strong>and</strong> spring <strong>Chinook</strong> salmon popul<strong>at</strong>ions in the Study Area beincreased through habit<strong>at</strong> enhancement or changes inmanagement <strong>of</strong> the Project (e.g., passage <strong>at</strong> project dams,gravel augment<strong>at</strong>ion, changes in flow in potential spawninghabit<strong>at</strong>)?4. Are there any special habit<strong>at</strong> fe<strong>at</strong>ures th<strong>at</strong> must be protected toavoid popul<strong>at</strong>ion declines?Report section(s)<strong>Bull</strong> trout: Section 3.3<strong>Chinook</strong> salmon: Section 3.4<strong>Bull</strong> trout: Section 3.3.5<strong>Chinook</strong> salmon: Section 3.4.4<strong>Bull</strong> trout: Section 3.5<strong>Chinook</strong> salmon: Section 3.6<strong>Bull</strong> trout: Section 3.3<strong>Chinook</strong> salmon: Section 3.41.4 Study AreaThe Study Area (Figure 1-2) includes: (1) the mainstem McKenzie River downstream <strong>of</strong> TrailBridge Dam, <strong>and</strong> the Carmen-Smith Spawning Channel, (2) Trail Bridge Reservoir <strong>and</strong> theCarmen Bypass Reach upstream to Kink Creek, <strong>and</strong> including Sweetw<strong>at</strong>er creek; <strong>and</strong> (3) theSmith Bypass Reach, Smith Reservoir, <strong>and</strong> tributaries above Smith Reservoir, upstream to n<strong>at</strong>uralfish passage barriers. The limit to fish distribution in each reach was determined in the Aqu<strong>at</strong>icHabit<strong>at</strong>s <strong>and</strong> Instream Flows study, during the process <strong>of</strong> estim<strong>at</strong>ing available habit<strong>at</strong> for use inthis study (Stillw<strong>at</strong>er Sciences 2006b). Complete descriptions <strong>of</strong> the habit<strong>at</strong> in each <strong>of</strong> thesereaches are provided in the Aqu<strong>at</strong>ic Habit<strong>at</strong>s <strong>and</strong> Instream Flows report (Stillw<strong>at</strong>er Sciences2006b).For popul<strong>at</strong>ion dynamic modeling, the Study Area was modeled in subreaches, as follows.<strong>Bull</strong> trout popul<strong>at</strong>ion dynamics:• Trail Bridge Reservoir• Sweetw<strong>at</strong>er Creek• Lower Carmen Bypass Reach (upstream <strong>of</strong> Trail Bridge Reservoir to Kink Creek)• Smith Bypass Reach• Smith Reservoir• Smith River <strong>and</strong> tributaries upstream <strong>of</strong> Smith Reservoir<strong>Chinook</strong> salmon popul<strong>at</strong>ion dynamics:• Mainstem McKenzie River downstream <strong>of</strong> Trail Bridge Dam• Carmen-Smith Spawning Channel• Trail Bridge Reservoir• Lower Carmen Bypass Reach (upstream <strong>of</strong> Trail Bridge Reservoir to Kink Creek)• Smith Bypass Reach• Smith Reservoir• Smith River upstream <strong>of</strong> Smith Reservoir to confluence with Browder Creek28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board3


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Report2 METHODSThe implement<strong>at</strong>ion <strong>of</strong> this study was conducted in collabor<strong>at</strong>ion with the ATS. Pursuant to the<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> study plan (Stillw<strong>at</strong>er Sciences2004a). Periodic Upd<strong>at</strong>es (communic<strong>at</strong>ion to ATS members regarding study progress <strong>and</strong>findings) <strong>and</strong> Decision Points (points <strong>at</strong> which a formal process is initi<strong>at</strong>ed to make decisionsabout changes to study implement<strong>at</strong>ion based on new inform<strong>at</strong>ion) were used to inform <strong>and</strong>collabor<strong>at</strong>e on decisions affecting the study. Document<strong>at</strong>ion <strong>of</strong> issues addressed during thecourse <strong>of</strong> the study is available in the FERC record.The popul<strong>at</strong>ion dynamics models were developed in phases: (1) develop conceptual popul<strong>at</strong>ionmodels to describe bull trout <strong>and</strong> spring <strong>Chinook</strong> salmon popul<strong>at</strong>ion dynamics in the Study Area,(2) g<strong>at</strong>her d<strong>at</strong>a in relicensing <strong>and</strong> other applicable studies, (3) refine the popul<strong>at</strong>ion models basedon the g<strong>at</strong>hered d<strong>at</strong>a, (4) use the popul<strong>at</strong>ion models to evalu<strong>at</strong>e Project effects <strong>and</strong> potentialhabit<strong>at</strong> enhancement, fish passage facilities, <strong>and</strong> other management options on rel<strong>at</strong>ive changes inbull trout <strong>and</strong> spring <strong>Chinook</strong> salmon popul<strong>at</strong>ion size, <strong>and</strong> (5) identify key habit<strong>at</strong> fe<strong>at</strong>ures, <strong>and</strong>Project fe<strong>at</strong>ures <strong>and</strong> oper<strong>at</strong>ions, th<strong>at</strong> influence popul<strong>at</strong>ion dynamics.The conceptual models provided a narr<strong>at</strong>ive <strong>and</strong> graphical description <strong>of</strong> the potential densitydependent<strong>and</strong> density-independent factors affecting each life-stage <strong>of</strong> bull trout <strong>and</strong> spring<strong>Chinook</strong> salmon. <strong>Popul<strong>at</strong>ion</strong> responses to changing habit<strong>at</strong> conditions were explored for specificlife-stages, first in conceptual models, <strong>and</strong> then in quantit<strong>at</strong>ive assessments using multi-stagestock-production popul<strong>at</strong>ion models.Multi-stage stock-production popul<strong>at</strong>ion models are m<strong>at</strong>hem<strong>at</strong>ic represent<strong>at</strong>ions <strong>of</strong> the startingnumbers <strong>of</strong> a life-stage (stock) <strong>and</strong> how the numbers change as the cohort goes through itsvarious life-stages (multi-stage); the ending numbers represent the popul<strong>at</strong>ion estim<strong>at</strong>e <strong>of</strong> the lastlife-stage (production). Several life-stages were used to characterize the life-cycles <strong>of</strong> bull trout<strong>and</strong> spring <strong>Chinook</strong> salmon, <strong>and</strong> each life-stage was generally estim<strong>at</strong>ed by using two modelparameters. Parameters are descriptive variables th<strong>at</strong> regul<strong>at</strong>e popul<strong>at</strong>ion dynamics from one lifestageto the next, such as redd size, or density-independent survival <strong>of</strong> eggs-to-emergent-fry. Themodel parameter values were determined in collabor<strong>at</strong>ion with ATS, based on existing localinform<strong>at</strong>ion, field observ<strong>at</strong>ions, <strong>and</strong> the scientific liter<strong>at</strong>ure. Terms used in this report are definedin Appendix A.2.1 Collabor<strong>at</strong>ion <strong>and</strong> Peer ReviewIn collabor<strong>at</strong>ion with the ATS, initial conceptual models for bull trout <strong>and</strong> spring <strong>Chinook</strong> salmonwere developed in a workshop with agency <strong>and</strong> academic experts (Table 2-1) on 18–19 January2005. During a second collabor<strong>at</strong>ive workshop with the ATS on 4–5 October, participantsdiscussed the st<strong>at</strong>us <strong>of</strong> the quantit<strong>at</strong>ive popul<strong>at</strong>ion model parameters, values, <strong>and</strong> model structure(Table 2-1).28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board4


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportTable 2-1. Participants <strong>at</strong> 18–19 January <strong>and</strong> 4–5 October 2005 popul<strong>at</strong>ion dynamicsworkshops.Participant Affili<strong>at</strong>ion Qualific<strong>at</strong>ionsBaker, PeterBaxter, ColdenBell, EthanBelharz, MargaretBurchfield,StephanieDare, M<strong>at</strong>thewDowney, TimStillw<strong>at</strong>erSciencesIdaho St<strong>at</strong>eUniversityStillw<strong>at</strong>erSciencesUSDA ForestServiceNMFSBoise St<strong>at</strong>eUniversityEWEBM<strong>at</strong>hem<strong>at</strong>ical modelerEcologist <strong>and</strong> expert onbull trout <strong>and</strong> food-webdynamicsAttendanceJanuary OctoberAqu<strong>at</strong>ic ecologist √ √Geomorphologist √ √Fisheries biologist withexpertise on <strong>Chinook</strong>salmonEcologist <strong>and</strong> expert onbull trout ecology, <strong>and</strong>popul<strong>at</strong>ion dynamics <strong>of</strong>bull trout in reservoirs<strong>and</strong> tailracesFisheries biologist withlocal expertise on bulltrout <strong>and</strong> <strong>Chinook</strong>salmonGray, Ann USFWS Fisheries biologist √Green, Keri Facilit<strong>at</strong>or √Harris, David ODFWFisheries biologist withexpertise on <strong>Chinook</strong>salmon <strong>and</strong> trout√√Homolka, KenODFWFisheries biologist withexpertise on <strong>Chinook</strong>salmon <strong>and</strong> troutJundt, Melissa NMFS Hyraulic engineer √Stillw<strong>at</strong>er Aqu<strong>at</strong>ic ecologist <strong>and</strong>Kramer, Sharon√√Sciences fisheries biologistUSDA ForestKretzing, DaveGeologist √ √ServiceKruger, RickLigon, FrankODFWStillw<strong>at</strong>erSciencesFisheries biologist withexpertise on instreamflows <strong>and</strong> habit<strong>at</strong>Stream ecologist withexpertise on popul<strong>at</strong>iondynamicsNewcomb, Steve EWEB Geologist √Parton, MikeStillw<strong>at</strong>erSciencesFisheries biologist√P<strong>at</strong>terson, Craig Resident Local expertise √Pedersen, DirkStillw<strong>at</strong>erSciencesFisheries biologist√√√√√√√√√√√√√28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board5


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportParticipant Affili<strong>at</strong>ion Qualific<strong>at</strong>ionsRivera, RamonRaab, PhilSpalding, ShelleyUSDA ForestServiceUSDA ForestServiceUSFWSFisheries biologist withlocal expertise on bulltrout <strong>and</strong> <strong>Chinook</strong>salmonRecre<strong>at</strong>ion expert, withlocal expertiseFisheries biologist withexpertise on bull troutecologyAttendanceJanuary OctoberTalabare, Andrew EWEB Fisheries biologist √ √van Donkelaar,C<strong>at</strong>rinEWEB Civil engineer √ √Wade, MarkZiller, JeffODFWODFWFisheries biologist withlocal expertise on bulltrout <strong>and</strong> <strong>Chinook</strong>salmonFisheries biologist withlocal expertise on bulltrout <strong>and</strong> <strong>Chinook</strong>salmon√√√√√√√√In addition to input from the ATS, peer review was conducted on drafts <strong>of</strong> this report. Reviewerswere selected for their expertise on bull trout <strong>and</strong> salmonid ecology, <strong>and</strong> for their experience withpopul<strong>at</strong>ion dynamics models. Drafts were reviewed by Dr. M<strong>at</strong>thew Dare 1 , R2 ResourceConsultants 2 , <strong>and</strong> Thomas Nickelson 3 . Peer review included evalu<strong>at</strong>ion <strong>of</strong> the popul<strong>at</strong>iondynamics models, <strong>and</strong> the present<strong>at</strong>ion <strong>of</strong> the methods, analysis, <strong>and</strong> results described in thisreport. Peer review <strong>of</strong> this report will also be conducted by Dr. Paul McElhany 4 , <strong>and</strong> otheragency experts. Reviewers were asked to address the following questions:• Are the models structured appropri<strong>at</strong>ely for meeting study objectives? If not, why?• Are the parameters selected appropri<strong>at</strong>e? If not, why?• Do you think th<strong>at</strong> the model is useful for helping to inform management decisions? If not,why?• Are the conclusions <strong>of</strong> the report supported by the model st<strong>at</strong>ed too strongly, or notstrongly enough?The comments <strong>and</strong> suggestions <strong>of</strong> all reviewers were incorpor<strong>at</strong>ed into subsequent drafts <strong>of</strong> thereport, <strong>and</strong> the models <strong>and</strong> report will continue to be upd<strong>at</strong>ed based on new inform<strong>at</strong>ion, <strong>and</strong> theresponses <strong>of</strong> all reviewers (including the ATS).2.2 Conceptual ModelThe conceptual models provide a theoretical found<strong>at</strong>ion for the quantit<strong>at</strong>ive models by identifyingfactors th<strong>at</strong> limit life history stages, <strong>and</strong> factors th<strong>at</strong> limit the overall production <strong>of</strong> thepopul<strong>at</strong>ions. The first step in developing the conceptual models was to summarize available1 Research Assistant Pr<strong>of</strong>essor, Boise St<strong>at</strong>e University, bull trout ecology expert2 Priv<strong>at</strong>e consultants, expertise on bull trout ecology, <strong>and</strong> popul<strong>at</strong>ion dynamics modeling3 Retired ODFW researcher, expertise in salmonid ecology <strong>and</strong> popul<strong>at</strong>ion dynamics modeling4 NMFS, expertise in salmonid ecology <strong>and</strong> popul<strong>at</strong>ion dynamics modeling28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board6


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Reportinform<strong>at</strong>ion on bull trout <strong>and</strong> spring <strong>Chinook</strong> salmon life histories by life-stage, focusing oninform<strong>at</strong>ion from the Study Area but including inform<strong>at</strong>ion from comparable areas outside <strong>of</strong> theStudy Area. In particular, inform<strong>at</strong>ion on life-stage-specific habit<strong>at</strong> use, growth, <strong>and</strong> densityindependentfactors (e.g., fecundity, sex r<strong>at</strong>io, gravel quality) <strong>and</strong> density-dependent factors (e.g.,redd superimposition, fry carrying capacity) th<strong>at</strong> may limit the survival <strong>of</strong> each life-stage, wasalso obtained <strong>and</strong> reviewed. During the 18–19 January 2005 ATS workshop, participantsdeveloped conceptual models for bull trout <strong>and</strong> spring <strong>Chinook</strong> salmon based on a review <strong>of</strong> theavailable inform<strong>at</strong>ion, <strong>and</strong> local knowledge <strong>of</strong> the geomorphic, hydrologic, <strong>and</strong> biologicalcharacteristics <strong>of</strong> the Study Area. These conceptual models were developed with the ATS todescribe bull trout <strong>and</strong> spring <strong>Chinook</strong> salmon prior to European influences <strong>and</strong> under currentconditions, to evalu<strong>at</strong>e the potential impacts throughout the system on these species.2.3 Quantit<strong>at</strong>ive <strong>Popul<strong>at</strong>ion</strong> ModelsTwo quantit<strong>at</strong>ive popul<strong>at</strong>ion models were developed for the Study Area in spreadsheet form usingMicros<strong>of</strong>t Excel 2003®: one for bull trout <strong>and</strong> one for spring <strong>Chinook</strong> salmon. The models aremeant to provide a framework for investig<strong>at</strong>ing the rel<strong>at</strong>ive influences <strong>of</strong> various factors on eachlife-stage. The intention <strong>of</strong> the models was to identify critical life-stages, <strong>and</strong> compare rel<strong>at</strong>ivechanges in popul<strong>at</strong>ion size between altern<strong>at</strong>ive management scenarios. The utility <strong>of</strong> thesemodels, like all models, is a function <strong>of</strong> the quality <strong>of</strong> the d<strong>at</strong>a used to popul<strong>at</strong>e them, <strong>and</strong> in somecases models may be best used to identify additional inform<strong>at</strong>ion needs. This model however,serves as a useful <strong>and</strong> predictive tool because it is a compil<strong>at</strong>ion <strong>of</strong> all available d<strong>at</strong>a from recentfieldwork <strong>and</strong> the published liter<strong>at</strong>ure, organized in a rigorous <strong>and</strong> transparent framework.The models follow the stock-production approach to popul<strong>at</strong>ion modeling, supported by a largebody <strong>of</strong> liter<strong>at</strong>ure spanning several decades (e.g., Paulik 1973, Moussalli <strong>and</strong> Hilborn 1986,Sharma et al. 2005). Stock-production modeling is based on the idea <strong>of</strong> tre<strong>at</strong>ing the number <strong>of</strong>individuals (P) in a cohort <strong>at</strong> a particular developmental stage, as a function <strong>of</strong> the number <strong>of</strong>individuals (S) in th<strong>at</strong> cohort <strong>at</strong> an earlier developmental stage, in the function:P =f (S)Such a function f is called a stock-production rel<strong>at</strong>ionship. This approach is useful because theimportant properties <strong>of</strong> f can <strong>of</strong>ten be deduced from general biological consider<strong>at</strong>ions. Inparticular, the function can <strong>of</strong>ten be expressed in terms <strong>of</strong> parameters r <strong>and</strong> K, where r representsthe effect <strong>of</strong> births <strong>and</strong>/or de<strong>at</strong>hs independent <strong>of</strong> density consider<strong>at</strong>ions, <strong>and</strong> K is an upper limit onthe popul<strong>at</strong>ion size. A carrying capacity (K) is specified for all density-dependent stockproductionrel<strong>at</strong>ionships. Density-dependent rel<strong>at</strong>ionships occur whenever food or spacelimit<strong>at</strong>ions regul<strong>at</strong>e the number <strong>of</strong> individuals an area can support. Density-dependence appearsto be regul<strong>at</strong>ing popul<strong>at</strong>ion size when the densities <strong>of</strong> individuals’ decreases <strong>at</strong> the subsequentlife-stage beyond wh<strong>at</strong> is likely based on density-independent factors (r) alone (e.g. Grant <strong>and</strong>Kramer 1990). Low popul<strong>at</strong>ion levels do not exclude the potential to fully s<strong>at</strong>ur<strong>at</strong>e habit<strong>at</strong> <strong>at</strong> agiven life-stage , or to model small popul<strong>at</strong>ions (e.g., Oosterhout et al. 2005), indeed popul<strong>at</strong>ionmodels can be effective <strong>at</strong> indic<strong>at</strong>ing if certain habit<strong>at</strong> types are limiting the popul<strong>at</strong>ion <strong>and</strong>resulting in popul<strong>at</strong>ion declines (e.g., Nickelson <strong>and</strong> Lawson 1998). All terms used to describepopul<strong>at</strong>ion models are defined in Appendix A.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board7


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Report2.3.1 Model developmentThe quantit<strong>at</strong>ive models were developed using the stock-production framework. Life-stages wereselected based on the conceptual model <strong>and</strong> the n<strong>at</strong>ure <strong>of</strong> available d<strong>at</strong>a. Once the life-stagestructure was determined, the basic model structure was assembled in an Excel spreadsheet. AVisual Basic interface was provided for d<strong>at</strong>a entry <strong>and</strong> parameter changes, <strong>and</strong> it allowedgraphical represent<strong>at</strong>ion <strong>of</strong> individual stock-production rel<strong>at</strong>ionships. The basic life-stagestructure, the factors selected as parameters, <strong>and</strong> default values for parameters <strong>and</strong> stockproductionforms were determined from local inform<strong>at</strong>ion, liter<strong>at</strong>ure values, <strong>and</strong> the 18–19January 2005 collabor<strong>at</strong>ive popul<strong>at</strong>ion dynamics workshop.2.3.1.1 Model input parametersModel input parameters were selected by: (1) defining life-stages most appropri<strong>at</strong>e for modeling,(2) acquiring d<strong>at</strong>a, (3) selecting appropri<strong>at</strong>e stock-production models, <strong>and</strong> (4) selecting values forr <strong>and</strong> K.Life-stagesLife-stages for modeling were selected collabor<strong>at</strong>ively during the January 2005 workshop (Table2-2). The models were run based intervals <strong>of</strong> time between a stock life-stage, <strong>and</strong> the resultingproduction into the next life-stage, defined here as a life-step (e.g., juvenile to subadult) (Table 2-3). The life-stages <strong>of</strong> the model correspond to the beginning <strong>of</strong> these intervals <strong>of</strong> development.Life history timing in the Study Area is described in the Fish <strong>Popul<strong>at</strong>ion</strong> Distribution <strong>and</strong>Abundance report (Stillw<strong>at</strong>er Sciences 2006a). For bull trout, the model was run to estim<strong>at</strong>eproduction <strong>of</strong> adults, <strong>and</strong> for spring <strong>Chinook</strong> salmon, the model was run to estim<strong>at</strong>e production <strong>of</strong>smolts.Table 2-2. Life-stages modeled for bull trout <strong>and</strong> spring <strong>Chinook</strong> salmon.Life-stageSize (fork length [FL])Mmin<strong>Bull</strong> troutEggs NA NAEmergent fry ~25 ~1Early fry 26–45 1–1.8L<strong>at</strong>e fry 45–100 1.8–3.9Juvenile 100–250 3.9–9.8Subadult 250–400 9.8–15.8Adult > 400 > 15.8Female spawner > 400 > 15.8<strong>Spring</strong> <strong>Chinook</strong> salmonEggs NA NAEmergent fry ~35 ~1.4Fry 35–55 1.4–2.2Juvenile> 55 with no signs<strong>of</strong> smolting> 2.2Smolt> 55 with signs <strong>of</strong>smolting> 2.2Adult > 400 >15.8Female spawner > 400 >15.828 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board8


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportTable 2-3. Life-steps modeled for bull trout <strong>and</strong> spring <strong>Chinook</strong> salmon.Life step Approxim<strong>at</strong>e d<strong>at</strong>es Time interval<strong>Bull</strong> troutEmergent fry to early fry Mid-March to mid-April < 1 dayEarly fry to l<strong>at</strong>e fry Mid-March to mid-June 4 monthsL<strong>at</strong>e fry to age 1+ juvenile Mid-June to April 9 monthsAge 1+ juvenile to age 2+ juvenile All year 1 yearAge 2+ juvenile to subadult All year 1 yearSubadult to adult All year 1 yearAdult to female spawner All year > 1 yearFemale spawner to deposited eggs Mid-September to mid-October1 monthDeposited eggs to emergent fry Mid-September to Mid-March6 months<strong>Spring</strong> <strong>Chinook</strong> salmonEmergent fry to fry March through April < 1 dayFry to juvenile March through September 6 monthsJuvenile to smolt All year 11 monthsSmolt to female spawner All year 3 yearsFemale spawner to deposited eggsMid-September to Mid-October1 monthDeposited eggs to emergent fry Mid-September to March 7 monthsInput d<strong>at</strong>aThree basic types <strong>of</strong> d<strong>at</strong>a were needed to estim<strong>at</strong>e life-stage-specific survival: (1) carryingcapacity <strong>of</strong> habit<strong>at</strong> for each life-stage, (2) density-independent mortality prior to <strong>at</strong>tainingcarrying capacity, <strong>and</strong> (3) density-independent mortality occurring after <strong>at</strong>taining carryingcapacity. All existing local inform<strong>at</strong>ion was compiled (Appendices B <strong>and</strong> C), includinginform<strong>at</strong>ion obtained from local experts <strong>at</strong> the 18–19 January 2005 ATS workshop. Additionald<strong>at</strong>a were obtained during other relicensing studies (Appendix D <strong>and</strong> Appendix E), particularlythe Fish <strong>Popul<strong>at</strong>ion</strong> Distribution <strong>and</strong> Abundance study (Stillw<strong>at</strong>er Sciences 2006a) <strong>and</strong> theAqu<strong>at</strong>ic Habit<strong>at</strong>s <strong>and</strong> Instream Flows study (Stillw<strong>at</strong>er Sciences 2006b). Where no site-specificd<strong>at</strong>a were available, d<strong>at</strong>a from the scientific liter<strong>at</strong>ure were used; when liter<strong>at</strong>ure d<strong>at</strong>a wereapplied, studies conducted in regions with similar characteristics to the McKenzie River weregiven priority. Ultim<strong>at</strong>ely, decisions for input values were based on the best available science,<strong>and</strong> were discussed with the ATS <strong>and</strong> peer reviewers. All selected values <strong>and</strong> their sources aredocumented in Appendices D <strong>and</strong> E.Despite extensive d<strong>at</strong>a collection <strong>and</strong> liter<strong>at</strong>ure review, when g<strong>at</strong>hering biological input valuesthere is always a degree <strong>of</strong> uncertainty, <strong>and</strong> a potential for error. For example, many <strong>of</strong> the valuesfor the spring <strong>Chinook</strong> salmon model were based on monitoring the production <strong>and</strong> survival <strong>of</strong>adult h<strong>at</strong>chery <strong>Chinook</strong> salmon released into Trail Bridge Reservoir. N<strong>at</strong>urally produced salmonmay behave, <strong>and</strong> perform, differently than the h<strong>at</strong>chery fish. In selecting input values, there wasan effort to be conserv<strong>at</strong>ive for the resource to reduce the risk <strong>of</strong> concluding th<strong>at</strong> a Project impactis negligible. In addition, a sensitivity analysis (Section 2.3.4) was performed, which examinedmodel outputs as a function <strong>of</strong> input vari<strong>at</strong>ions. For example, if the habit<strong>at</strong> area d<strong>at</strong>a from theAqu<strong>at</strong>ic Habit<strong>at</strong>s <strong>and</strong> Instream Flows study (Stillw<strong>at</strong>er Sciences 2006b) underestim<strong>at</strong>ed availablehabit<strong>at</strong> by 25%, or even 50%, the sensitivity analysis would estim<strong>at</strong>e any effects on thepopul<strong>at</strong>ion.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board9


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportIn this modeling approach, habit<strong>at</strong> area <strong>and</strong> fish density inputs are used to explicitly representcarrying capacity (K). In addition, mortality is explicitly represented by input values dependenton the r<strong>at</strong>e <strong>of</strong> increase <strong>of</strong> the popul<strong>at</strong>ion (r). Factors such as food supply, growth r<strong>at</strong>es, <strong>and</strong>hybridiz<strong>at</strong>ion are implicitly included based on available d<strong>at</strong>a used to adjust the mortality values.For example, if food availability was low in Sweetw<strong>at</strong>er Creek, lower survival may result, <strong>and</strong>mortality would increase. Interactions between species are also implicitly incorpor<strong>at</strong>ed byassuming th<strong>at</strong> growth <strong>of</strong> bull trout (<strong>and</strong> thus survival) in Trail Bridge Reservoir is a function <strong>of</strong>prey (including production <strong>of</strong> <strong>Chinook</strong> salmon), <strong>and</strong> conversely, th<strong>at</strong> mortality for fry <strong>and</strong>juvenile <strong>Chinook</strong> salmon is a function <strong>of</strong> the magnitude <strong>of</strong> pred<strong>at</strong>ion by bull trout (<strong>and</strong> other troutspecies).AssumptionsTrail Bridge Dam currently blocks the upstream migr<strong>at</strong>ion <strong>of</strong> spring <strong>Chinook</strong> salmon. Modelingconducted for this report assumes upstream passage <strong>at</strong> Trail Bridge Dam, although currently theonly <strong>Chinook</strong> salmon present are from annual ODFW releases <strong>of</strong> h<strong>at</strong>chery adult spring <strong>Chinook</strong>salmon upstream <strong>of</strong> Trail Bridge Dam. The model also assumes th<strong>at</strong> if there were fish passageadditional <strong>Chinook</strong> salmon adults migr<strong>at</strong>e upstream, <strong>and</strong> there would be no decline in spawning<strong>at</strong> the Carmen-Smith Spawning Channel. Assumptions for all values used in the model aredescribed for each model scenario conducted in Appendices D <strong>and</strong> E.Stock-production modelsFour stock-production models were selected to “step” between selected life-stages in thepopul<strong>at</strong>ion dynamics models. The Beverton-Holt (1957) <strong>and</strong> “hockey stick” models (Barrowman<strong>and</strong> Myers 2000) were typically used for density-dependent interactions (e.g., the life-step froml<strong>at</strong>e fry to juvenile when habit<strong>at</strong> limits the popul<strong>at</strong>ion). The linear model was used to reflectdensity-independent mortality (e.g., the step from eggs to emergent fry, in which mortality is notaffected by density). The redd superimposition model was also used for the step from femalespawners to deposited eggs. Each <strong>of</strong> these models is described below.The Beverton-Holt model allows production to increase toward a limiting carrying capacity (K)for the production (P) <strong>of</strong> the stock (S). The Beverton-Holt model was used both in its originalform, <strong>and</strong> in another form <strong>of</strong> the model (Beverton-Holt 2) when production approached carryingcapacity <strong>at</strong> a faster r<strong>at</strong>e than assumed under the original form <strong>of</strong> the model. The equ<strong>at</strong>ions for theBeverton-Holt models are:Beverton-Holt: P = r ⋅ K ⋅ S /( K + r ⋅ S)22Beverton-Holt 2: P r ⋅ K ⋅ S /( K + ( r ⋅ S))= ,where for all equ<strong>at</strong>ions:P = production,r = density-independent effects,K = carrying capacity,S = stock valueThe “hockey stick” model was typically used as an altern<strong>at</strong>ive to Beverton-Holt 2; it allowsproduction to approach carrying capacity more rapidly than the Beverton-Holt 2 model. Thehockey stick model is a piecewise linear rel<strong>at</strong>ionship with a slope defined by r prior to reachingcarrying capacity, reflective <strong>of</strong> complete density-independence (Barrowman <strong>and</strong> Myers 2000).28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board10


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportOnce reaching K, however, the slope is zero, reflecting complete density-dependence. Thismodel was used to more clearly identify limiting factors. The equ<strong>at</strong>ion for the hockey stickmodel is:P = min( r ⋅ S,K),where “min” takes the minimum <strong>of</strong> the values in parentheses.The linear model was used to represent rel<strong>at</strong>ionships with no obviously relevant densitydependence(such as for deposited eggs to emergent fry), <strong>and</strong> to reflect density-independentmortality for fish during migr<strong>at</strong>ion (since habit<strong>at</strong> is not limiting during migr<strong>at</strong>ion). The equ<strong>at</strong>ionfor the linear model is:P = r ⋅ SThe redd superimposition model (separ<strong>at</strong>e from the Escape 5.1 model described in Section 2.2.2)was only used in the bull trout popul<strong>at</strong>ion dynamics model. This model represents a “fit” <strong>of</strong> thenumber <strong>of</strong> deposited eggs to the number <strong>of</strong> female bull trout spawners. The step from female bulltrout spawners to viable eggs in the model has r <strong>and</strong> K values determined by the superimpositionrel<strong>at</strong>ionship. The equ<strong>at</strong>ion for the superimposition model is:P = K ⋅−rS/ K( 1−e )For <strong>Chinook</strong> salmon, the hockey stick model was used instead <strong>of</strong> the superimposition model,because it provided a better fit to the Escape 5.1 results (discussed below) than thesuperimposition model did.Although the user can select any <strong>of</strong> the four models for any <strong>of</strong> the life-steps, model selectionshould consider density-dependence or density-independence. In this study, Beverton-Holt 2 <strong>and</strong>hockey stick models were used interchangeably for comparison. Although density-dependentrel<strong>at</strong>ionships are assumed to govern the transition from stock to production for many life-steps,the r<strong>at</strong>e <strong>at</strong> which carrying capacity is reached was not modeled. The hockey stick model gives thesimplest <strong>and</strong> most abrupt change from density-independence to density-dependence, <strong>and</strong> so hasthe least complex interpret<strong>at</strong>ion <strong>of</strong> all the models. Given the lack <strong>of</strong> evidence to the contrary, <strong>and</strong>due to its ease <strong>of</strong> interpret<strong>at</strong>ion, the hockey stick model was used for analysis. Use <strong>of</strong> theBeverton-Holt 2 model yields a similar result, but with a more gradual approach to carryingcapacity.r <strong>and</strong> K valuesThe “r” value is the effect <strong>of</strong> births <strong>and</strong>/or de<strong>at</strong>hs independent <strong>of</strong> density consider<strong>at</strong>ions, resultingfrom factors such as fecundity, or dependence <strong>of</strong> egg survival on spawning gravel quality.Depending on the life-stage <strong>of</strong> interest <strong>and</strong> the stock-production model selected, the inputparameter r represents the fraction <strong>of</strong> adults spawning, fecundity, or a density-independentsurvival r<strong>at</strong>e.The r values were typically based on estim<strong>at</strong>es <strong>of</strong> survival from the liter<strong>at</strong>ure <strong>and</strong>/or from theresults <strong>of</strong> other relicensing studies. For some <strong>of</strong> the life-steps, the r values were based on theliter<strong>at</strong>ure or pr<strong>of</strong>essional judgment, since survival is difficult to estim<strong>at</strong>e without individuallytagged animals, <strong>and</strong> life-stages younger than juveniles are typically difficult to tag. In addition,studies th<strong>at</strong> <strong>at</strong>tempt to estim<strong>at</strong>e survival are <strong>of</strong>ten unable to separ<strong>at</strong>e survival into density-28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board11


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Reportdependent <strong>and</strong> density-independent components. If the abundance <strong>of</strong> a particular life-stage (say,juveniles) is well below the carrying capacity in a given system, then an estim<strong>at</strong>e <strong>of</strong> survivalunder these conditions could be used to represent density-independent survival. For bull troutjuveniles, subadults, <strong>and</strong> adults, the estim<strong>at</strong>es <strong>of</strong> r were based on estim<strong>at</strong>ed survival r<strong>at</strong>es usingprogram MARK <strong>and</strong> PIT tag d<strong>at</strong>a (see the discussion <strong>of</strong> program MARK in the Fish <strong>Popul<strong>at</strong>ion</strong>Distribution <strong>and</strong> Abundance report, Stillw<strong>at</strong>er Sciences 2006a).The “K” value represents the carrying capacity or popul<strong>at</strong>ion size limit for the life-stage <strong>of</strong>interest. The K values were typically based on density estim<strong>at</strong>es using d<strong>at</strong>a from the Fish<strong>Popul<strong>at</strong>ion</strong> Distribution <strong>and</strong> Abundance study (Stillw<strong>at</strong>er Sciences 2006a) or the scientificliter<strong>at</strong>ure, <strong>and</strong> estim<strong>at</strong>es <strong>of</strong> suitable habit<strong>at</strong> area from the Aqu<strong>at</strong>ic Habit<strong>at</strong>s <strong>and</strong> Instream Flowsstudy (Stillw<strong>at</strong>er Sciences 2006b). Habit<strong>at</strong> areas used in the model were based on mapping“guilds” (species <strong>and</strong> life-stages th<strong>at</strong> have similar habit<strong>at</strong> requirements) <strong>of</strong> “good” habit<strong>at</strong> definedby criteria such as w<strong>at</strong>er depth, w<strong>at</strong>er velocity, distance to cover, <strong>and</strong> substr<strong>at</strong>e size, as describedin detail in the Aqu<strong>at</strong>ic Habit<strong>at</strong>s <strong>and</strong> Instream Flows report (Stillw<strong>at</strong>er Sciences 2006b).Stock valuesThe popul<strong>at</strong>ion dynamics models require a stock “starting point” for the life-stage considered tobe the first step; the popul<strong>at</strong>ion <strong>of</strong> th<strong>at</strong> life-stage must be known or estim<strong>at</strong>ed. For bull trout, thestock <strong>of</strong> subadults <strong>and</strong> adults was the starting point popul<strong>at</strong>ion estim<strong>at</strong>e. Based on analysis <strong>of</strong>marked <strong>and</strong> recaptured PIT-tagged bull trout (see Section 3.3.1 below), 111 subadults <strong>and</strong> adultswere used as the initial bull trout popul<strong>at</strong>ion size as the starting point for model runs. Althoughthe bull trout estim<strong>at</strong>es were based on only two years <strong>of</strong> d<strong>at</strong>a, the initial stock size th<strong>at</strong> wasentered into the model only reflects the starting point, <strong>and</strong> does not typically affect the resultswhen the model is run to equilibrium. However, initial stock size may affect the running <strong>of</strong> themodel through a single production cycle, especially if the starting number <strong>of</strong> adults cannotproduce enough eggs to reach the carrying capacity for deposited eggs.For the spring <strong>Chinook</strong> salmon model, the initial popul<strong>at</strong>ion size <strong>of</strong> 141 adults was used as astarting point for model runs, based on the known number <strong>of</strong> adults released into Trail BridgeReservoir in 2004. For the spawning channel spring <strong>Chinook</strong> salmon model, the initialpopul<strong>at</strong>ion size <strong>of</strong> 135 adults was used as a starting point, based on the peak live count from 2004snorkel surveys (Stillw<strong>at</strong>er Sciences 2006a).2.3.2 Escape 5.1 superimposition sub-modelLimited spawning gravels <strong>of</strong>ten result in redd superimposition, during which a l<strong>at</strong>er-arrivingfemale salmonid constructs a redd on top <strong>of</strong> an existing redd, causing mortality <strong>of</strong> eggs depositedearlier (Hayes 1987, McNeil 1964). The potential effects <strong>of</strong> spawning gravel availability on bulltrout <strong>and</strong> spring <strong>Chinook</strong> salmon egg production were modeled in separ<strong>at</strong>e sub-models toevalu<strong>at</strong>e whether current spawning gravel availability may limit the species’ popul<strong>at</strong>ions, <strong>and</strong>conversely, whether increasing spawning gravel availability could increase <strong>Chinook</strong> salmon orbull trout production. Results from the “Escape 5.1” sub-model were used to identify the r <strong>and</strong> Kparameters th<strong>at</strong> were used in the superimposition stock-production step between spawners <strong>and</strong>deposited eggs. The Escape 5.1 sub-model estim<strong>at</strong>es egg mortality caused by reddsuperimposition. Using inform<strong>at</strong>ion on the temporal distribution <strong>of</strong> spawning, the observedspecies’ preference for particular reaches, available spawning gravel area, <strong>and</strong> redd constructionbehavior, the model estim<strong>at</strong>es the number <strong>of</strong> viable eggs <strong>at</strong> the end <strong>of</strong> the spawning season.The model output reports "effective" egg production associ<strong>at</strong>ed with a given escapement (number<strong>of</strong> adults returning to spawn)—th<strong>at</strong> is, the total number <strong>of</strong> eggs avoiding superimposition. Model28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board12


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Reportresults therefore reflect the number <strong>of</strong> viable eggs <strong>at</strong> the spawning period’s end, not the number<strong>of</strong> emergent fry (because some eggs may die before emergence, for reasons unrel<strong>at</strong>ed tosuperimposition). By running the model for a range <strong>of</strong> escapements, the potential consequences<strong>of</strong> superimposition can be displayed in a stock-production form<strong>at</strong>. The model did not account forinter-specific superimposition between bull trout <strong>and</strong> spring <strong>Chinook</strong> salmon.2.3.2.1 Sp<strong>at</strong>ial structure <strong>of</strong> the Escape 5.1 sub-modelMeasurements <strong>of</strong> individual spawning gravel p<strong>at</strong>ches, based on the Instream Flow TechnicalCommittee (IFCT) habit<strong>at</strong> criteria (see Aqu<strong>at</strong>ic Habit<strong>at</strong>s <strong>and</strong> Instream Flows report, Stillw<strong>at</strong>erSciences 2006b), in the lower Carmen Bypass Reach were used in the Escape 5.1 sub-model toestim<strong>at</strong>e K <strong>at</strong> the base flow (~160 cfs). K was estim<strong>at</strong>ed for different flows <strong>and</strong> different reachesby calcul<strong>at</strong>ing the r<strong>at</strong>io <strong>of</strong> K based on Escape 5.1 to the K based on the total available gravel area<strong>and</strong> the mean redd size. Reach-specific redd sizes were based on field measurements <strong>and</strong> wereincorpor<strong>at</strong>ed into this calcul<strong>at</strong>ion where possible (e.g., Sweetw<strong>at</strong>er Creek).The Escape 5.1 model represents space in a discrete, r<strong>at</strong>her than a continuous, fashion (i.e., eachgravel p<strong>at</strong>ch <strong>and</strong> redd is modeled as a unique unit). Redds <strong>and</strong> gravel p<strong>at</strong>ches are represented asrectangles composed <strong>of</strong> cells within a grid. Based on redd measurement in the lower CarmenBypass Reach, the size <strong>of</strong> a typical <strong>Chinook</strong> salmon redd is 5.4 m 2 (58 ft 2 ) <strong>and</strong> a typical bull troutredd is 1.8 m 2 (19 ft 2 ) (Stillw<strong>at</strong>er Sciences 2006a). The model uses two distinct rectangles torepresent a redd—a defended region (which is four times the size <strong>of</strong> the redd) <strong>and</strong> an egg regioncomprising the redd proper (Figure 2-1). The typical redd described above represents the eggregion in which active digging, excav<strong>at</strong>ion, <strong>and</strong> egg deposition occurs. The defended regionrepresents the larger territory from which a female will actively exclude other spawners.2.3.2.2 Temporal structure <strong>of</strong> the Escape 5.1 sub-modelThe Escape 5.1 sub-model oper<strong>at</strong>es in discrete time steps, with each step representing one day.The sub-model is run for the length <strong>of</strong> a spawning season. The modeled movement <strong>of</strong> thespawners from their holding loc<strong>at</strong>ion to their spawning grounds over time was based on observedd<strong>at</strong>es <strong>of</strong> redd initi<strong>at</strong>ion in the subreaches.The probability th<strong>at</strong> a female will be assigned by the sub-model to any particular p<strong>at</strong>ch isproportional to the number <strong>of</strong> potential redd sites within the undefended area <strong>of</strong> the p<strong>at</strong>ch. Once afemale is assigned to a p<strong>at</strong>ch, the model r<strong>and</strong>omly places a redd within the undefended area <strong>of</strong>th<strong>at</strong> p<strong>at</strong>ch. As all the available p<strong>at</strong>ches in the reach become occupied, the total undefended areain the reach is too small to accommod<strong>at</strong>e all females arriving within a time step, <strong>and</strong> theremaining females are carried over to the next time step (<strong>and</strong> tre<strong>at</strong>ed as new arrivals). The redddefense time used in the model is defined by the period <strong>of</strong> time the female guards her redd, beforeshe dies (if she is a <strong>Chinook</strong> salmon) or migr<strong>at</strong>es (if she is a bull trout) <strong>and</strong> the gravel areabecomes available for additional spawning. Redd defense time used in the model was based onobserv<strong>at</strong>ions during spawning surveys in the Study Area <strong>of</strong> h<strong>at</strong>chery adult spring <strong>Chinook</strong> salmonreleased into Trail Bridge Reservoir (Stillw<strong>at</strong>er Sciences 2006a). The redd defense time might bedifferent (gre<strong>at</strong>er or less), for n<strong>at</strong>urally produced <strong>Chinook</strong> salmon spawning in the same habit<strong>at</strong>.Sensitivity analysis (Section 2.3.4) on the parameter for spawning habit<strong>at</strong> area addresses theuncertainties in redd defense time d<strong>at</strong>a.The st<strong>at</strong>us <strong>of</strong> each modeled redd or gravel p<strong>at</strong>ch cell—the number <strong>of</strong> eggs it contains, when theeggs were deposited, <strong>and</strong> whether or not the cell is currently being defended—is tracked <strong>and</strong>upd<strong>at</strong>ed daily. Modeled superimposition occurs when a new r<strong>and</strong>omly placed redd is placed on28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board13


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Reporttop <strong>of</strong> a cell th<strong>at</strong> already contains a redd. When superimposition occurs within a cell, theconserv<strong>at</strong>ive (worst case scenario) assumption is applied, in which the original eggs in th<strong>at</strong>particular cell experience 100 percent mortality <strong>and</strong> are replaced by the new eggs. Thisconserv<strong>at</strong>ive assumption may result in over-estim<strong>at</strong>ing the effects <strong>of</strong> superimposition, <strong>and</strong> thuspossibly identifying a spawning habit<strong>at</strong> limit<strong>at</strong>ion where none occurs. Sensitivity analysis(Section 2.3.4) on the parameter for spawning habit<strong>at</strong> area addresses this uncertainty. Thenumber <strong>of</strong> eggs remaining in all cells is then totaled <strong>at</strong> the end <strong>of</strong> the spawning period (36 daysfor bull trout <strong>and</strong> 27 days for <strong>Chinook</strong> salmon, based on field observ<strong>at</strong>ions) to provide an estim<strong>at</strong>e<strong>of</strong> viable eggs produced. Repetition <strong>of</strong> sub-model runs, in which the total numbers <strong>of</strong> femalespawners are varied, allows the construction <strong>of</strong> a model stock-production curve.2.3.3 Model executionTo run the bull trout or spring <strong>Chinook</strong> salmon popul<strong>at</strong>ion dynamics model, required input valuesare entered <strong>at</strong> the end <strong>of</strong> each row <strong>of</strong> the spreadsheet. The user enters appropri<strong>at</strong>e values forparameters such as habit<strong>at</strong> area <strong>and</strong> density-independent survival, or accepts the given defaultvalues. The initial number <strong>of</strong> adults <strong>and</strong> subadults are entered directly into the spreadsheet(yellow cells). After entering all <strong>of</strong> the required input values, the model “steps through” thecalcul<strong>at</strong>ions from “stock” to “production” for each life-step (Figure 2-2).2.3.4 Evalu<strong>at</strong>ion <strong>of</strong> factors affecting popul<strong>at</strong>ionsThe models were used to determine the factors affecting popul<strong>at</strong>ions <strong>of</strong> both species. OngoingProject effects were considered, as were potential changes to the Project or its oper<strong>at</strong>ions, habit<strong>at</strong>enhancements, or management options to increase production <strong>of</strong> bull trout adults or spring<strong>Chinook</strong> salmon smolts. Key Project effects were assumed to be those th<strong>at</strong> influenced theequilibrium adult bull trout popul<strong>at</strong>ion size, or annual production <strong>of</strong> <strong>Chinook</strong> salmon smolts.To determine the life-stages <strong>and</strong> parameters th<strong>at</strong> most affect the equilibrium popul<strong>at</strong>ion, asensitivity analysis was conducted <strong>of</strong> the parameters <strong>and</strong> values in the model. The sensitivityanalysis was performed by building a spreadsheet macro th<strong>at</strong> calcul<strong>at</strong>ed the equilibriumpopul<strong>at</strong>ion size <strong>of</strong> subadults <strong>and</strong> adults with the initial parameter values (Appendix D <strong>and</strong> E), <strong>and</strong>then by varying the parameter values as follows:• Decreasing initial value by 50%,• Decreasing initial value by 25%,• Increasing initial value by 33%, <strong>and</strong>• Increasing initial value by 100%.For each change in value, the model calcul<strong>at</strong>ed the equilibrium popul<strong>at</strong>ion size, holding all othervalues constant. If altering the value for a parameter resulted in a change to the popul<strong>at</strong>ion size, itwas considered a sensitive parameter. However, sensitivity analysis does not explore thepotential interactions <strong>of</strong> multiple input values th<strong>at</strong> are simultaneously increased or decreased. Forthe bull trout model, changes in values were so slight th<strong>at</strong> any change in the equilibriumpopul<strong>at</strong>ion was considered sensitive. For the <strong>Chinook</strong> salmon model, only changes in valuesgre<strong>at</strong>er than 10% were considered sensitive. For sensitive parameters, additional scrutiny wasfocused on the source <strong>of</strong> d<strong>at</strong>a, <strong>and</strong> the potential for the Project to influence those parameters.The popul<strong>at</strong>ion’s resilience to disturbance was evalu<strong>at</strong>ed by running the model to determine howmany years would be required for the popul<strong>at</strong>ion to recover to current levels following an acutedisturbance. Two c<strong>at</strong>astrophic disturbance scenarios were evalu<strong>at</strong>ed: (1) a complete fish killsimultaneously in Carmen Bypass Reach, Sweetw<strong>at</strong>er Creek, <strong>and</strong> Smith Bypass Reach (e.g.,28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board14


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Reportfloods), <strong>and</strong> (2) a complete fish kill in Trail Bridge Reservoir (e.g., toxic spill). These scenariosare unrealistically severe, but illustr<strong>at</strong>e the resiliency <strong>of</strong> the popul<strong>at</strong>ion under an extremesitu<strong>at</strong>ion. For each disturbance scenario, the model was run to equilibrium, mortality <strong>of</strong> theselected life-stage(s) was entered, <strong>and</strong> the number <strong>of</strong> years required to return to the equilibriumpopul<strong>at</strong>ion size was determined. No issues <strong>of</strong> genetic bottlenecks were addressed.2.3.5 Effects <strong>of</strong> changes in Project oper<strong>at</strong>ions on popul<strong>at</strong>ionsAlthough there are many potential scenarios th<strong>at</strong> could be modeled, the scope <strong>of</strong> this analysis waslimited to the following potential habit<strong>at</strong> enhancement <strong>and</strong> management options:• Increased instream flows in the lower Carmen Bypass Reach <strong>and</strong> the Smith Bypass Reach(including a scenario with hypolimnetic releases from Smith Dam)• Large woody debris enhancements in the Carmen Bypass Reach, Smith Bypass Reach, <strong>and</strong>Sweetw<strong>at</strong>er Creek• Increased spawning gravel availability <strong>and</strong>/or quality in the Carmen Bypass Reach <strong>and</strong>Smith Bypass Reach• Habit<strong>at</strong> enhancements in Trail Bridge Reservoir, the Carmen-Smith Spawning Channel, orthe mainstem McKenzie River• Changes in the h<strong>at</strong>chery rainbow trout stocking program in Trail Bridge Reservoir• Changes in angling regul<strong>at</strong>ions <strong>at</strong> Trail Bridge Reservoir• Fish passage facilities <strong>at</strong> Trail Bridge Dam (including various entrainment mortalityscenarios)• Fish passage facilities <strong>at</strong> Smith DamIn each modeled scenario, management options were modeled implicitly by adjusting theappropri<strong>at</strong>e values. For example, to evalu<strong>at</strong>e an increase in instream flows, the values foravailable habit<strong>at</strong> were adjusted by flow for each life-stage [based on the Aqu<strong>at</strong>ic Habit<strong>at</strong>s <strong>and</strong>Instream Flows study (Stillw<strong>at</strong>er Sciences 2006b)]. The model runs discussed in this report donot address the combined effects on fish production assuming multiple changes in Projectoper<strong>at</strong>ions, or enhancements. For example, increases in instream flows are modeled, as areincreases in spawning gravel, but a scenario with both an increase in instream flows <strong>and</strong> a gravelaugment<strong>at</strong>ion is not analyzed. Modeling <strong>of</strong> various scenarios will be conducted in support <strong>of</strong>measures proposed for the License Applic<strong>at</strong>ion.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board15


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Report3 RESULTS3.1 Conceptual ModelsDuring the 18–19 January 2005 ATS workshop, participants developed conceptual models forbull trout <strong>and</strong> spring <strong>Chinook</strong> salmon based on a review <strong>of</strong> the available inform<strong>at</strong>ion, <strong>and</strong> localknowledge <strong>of</strong> the geomorphic, hydrologic, <strong>and</strong> biological characteristics <strong>of</strong> the Study Area.3.1.1 <strong>Bull</strong> trout3.1.1.1 Pre-European influenceThe conceptual model describes bull trout th<strong>at</strong> prior to the closure <strong>of</strong> Trail Bridge Dam exhibiteda fluvial life history str<strong>at</strong>egy (migr<strong>at</strong>ing from large rivers to spawn in tributaries) (Figure 3-1). Afluvial life history str<strong>at</strong>egy is common for bull trout (Elle <strong>and</strong> Thurow 1994, Schill et al. 1994,both as cited in Fl<strong>at</strong>ter 2000), as is an adfluvial life history (migr<strong>at</strong>ing from lakes or reservoirs tospawn in tributaries) (Pr<strong>at</strong>t 1985). <strong>Bull</strong> trout inhabit areas where they are <strong>of</strong>ten the dominantpiscivore (Rawson 1942, as cited in Donald <strong>and</strong> Alger 1993). <strong>Bull</strong> trout capitalized on large prey,including mountain whitefish (Prosopium williamsoni) <strong>and</strong> resident trout, which are consistentlyavailable (Boag 1987, Beauchamp <strong>and</strong> Van Tassell 2001). <strong>Bull</strong> trout are a long-lived fish (up to20+ years) with low adult mortality (Hagen <strong>and</strong> Baxter 1992). Low adult mortality could beachieved by such adapt<strong>at</strong>ions as nocturnal feeding (Goetz 1994, as cited in Muhfeld 2003,Swanberg 1997), muted spawning colors to lower pred<strong>at</strong>ion risk, night spawning (Reiser 1997) orspawning near cover (James <strong>and</strong> Sexauer 1997), <strong>and</strong> secretive behavior (Muhlfeld et al. 2003).To achieve maximum long-term reproductive success, bull trout expend energy on growth <strong>and</strong>survival (to allow a long period <strong>of</strong> reproductive potential), <strong>and</strong> less on each reproductive event.This str<strong>at</strong>egy is manifested by flexible spawning frequency (annual, e.g. Baxter 1995, or altern<strong>at</strong>eyears, e.g. Fraley <strong>and</strong> Shepard 1989), small eggs (Budy et al. 2003), reduced redd defense (Boag<strong>and</strong> Hvenegaard 1997), low fecundity (Reiser et al. 1997, Budy et al. 2003), <strong>and</strong> delayedm<strong>at</strong>ur<strong>at</strong>ion (Fraley <strong>and</strong> Shepard 1989, Budy et al. 2003).<strong>Bull</strong> trout are adapted to cold clim<strong>at</strong>e conditions (Beauchamp <strong>and</strong> Van Tassell 2001), asevidenced by their recoloniz<strong>at</strong>ion <strong>of</strong> western North America after Wisconsonian glaci<strong>at</strong>ion (Haas<strong>and</strong> McPhail 2001). <strong>Bull</strong> trout are able to grow large in cold conditions in part by maximizinggrowth <strong>at</strong> lower temper<strong>at</strong>ures <strong>at</strong> r<strong>at</strong>es faster than other salmonids (Baxter <strong>and</strong> McPhail 1996),undergoing extensive migr<strong>at</strong>ions for feeding (Fraley <strong>and</strong> Shepard 1989, Muhlfeld et al. 2003),selecting low velocity habit<strong>at</strong> associ<strong>at</strong>ed with the stream bottom or cover (Baxter <strong>and</strong> McPhail1996), utilizing territorial behavior to ensure food availability (Gunckel et al. 2002), becomingpiscivorous <strong>at</strong> a rel<strong>at</strong>ively small size (Ben-James 2001, Beauchamp <strong>and</strong> Van Tassell 2001), <strong>and</strong>cannibalizing juveniles <strong>of</strong> their own species (Ben-James 2001, Beauchamp <strong>and</strong> Van Tassell2001). For salmonids, adult habit<strong>at</strong> is typically s<strong>at</strong>ur<strong>at</strong>ed if the species is long-lived <strong>and</strong> requireslow recruitment to maintain the popul<strong>at</strong>ion (Elliot <strong>and</strong> Hurley 1998, Morita <strong>and</strong> Yokota 2002).When food availability is adequ<strong>at</strong>e, space limit<strong>at</strong>ions for adult bull trout are manifested byagonistic behavior, resulting in high mortality or emigr<strong>at</strong>ion <strong>of</strong> subadults. Based on pr<strong>of</strong>essionaljudgment, productive adult bull trout habit<strong>at</strong> was available from the upper McKenzie Riverdownstream to, <strong>and</strong> including portions <strong>of</strong>, the Willamette River (Figure 3-2). Territorialism,piscivory, <strong>and</strong> cannibalism would result in very high mortality <strong>of</strong> fry <strong>and</strong> juveniles; however, this28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board16


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Reporthigh mortality would have a low impact on the overall popul<strong>at</strong>ion because adult habit<strong>at</strong> (food <strong>and</strong>space) would limit the size <strong>of</strong> the popul<strong>at</strong>ion (Morita <strong>and</strong> Yokota 2002).3.1.1.2 Current conditionsUnder current conditions, the bull trout popul<strong>at</strong>ion in the Study Area is affected by humanactivities, including effects rel<strong>at</strong>ed to the Project (Figure 3-3). In the McKenzie River basin,Cougar, Blue River, <strong>and</strong> Trail Bridge dams block access to spawning <strong>and</strong> rearing habit<strong>at</strong>, <strong>and</strong>reduce the transport <strong>of</strong> coarse sediment supply to spawning habit<strong>at</strong> downstream. Cougar Dam inthe South Fork McKenzie River is oper<strong>at</strong>ed as a flood control project, <strong>and</strong> has disrupted flowp<strong>at</strong>terns in the mainstem McKenzie River, resulting in channel confinement <strong>and</strong> lost access t<strong>of</strong>loodplains (Ligon et al. 1995). Channel incision <strong>and</strong> the removal <strong>of</strong> large woody debris havereduced rearing habit<strong>at</strong> quality in the mainstem, including the loss <strong>of</strong> access to floodplains <strong>and</strong><strong>of</strong>f-channel habit<strong>at</strong>. Trail Bridge Dam blocks volitional upstream passage <strong>and</strong> impactsdownstream passage. The occasional transport <strong>of</strong> adult <strong>and</strong> sub-adult bull trout from downstream<strong>of</strong> Trail Bridge Dam into Trail Bridge Reservoir, <strong>and</strong> the introduction <strong>of</strong> fry (6,384 total) fromAnderson Creek into Sweetw<strong>at</strong>er Creek from 1993 to 1999, has provided for some geneticexchange in the Upper McKenzie River basin. Aside from these occasional transfers <strong>of</strong> bull troutfrom downstream <strong>of</strong> Trail Bridge Dam into the reservoir, bull trout th<strong>at</strong> migr<strong>at</strong>e from thereservoir to the mainstem McKenzie River downstream <strong>of</strong> the dam are unable swim backupstream <strong>of</strong> the dam to spawn, <strong>and</strong> are essentially lost to the popul<strong>at</strong>ion upstream <strong>of</strong> Trail BridgeDam.Str<strong>at</strong>egies allowing growth to large sizes in cold streams <strong>and</strong> extensive migr<strong>at</strong>ions have beenimpacted by changes in the prey base resulting from the construction <strong>of</strong> Trail Bridge Dam (e.g.,fewer whitefish, introductions <strong>of</strong> h<strong>at</strong>chery rainbow trout <strong>and</strong> spring <strong>Chinook</strong> salmon), <strong>and</strong> lack <strong>of</strong>passage <strong>at</strong> Trail Bridge Dam. Currently, bull trout use less <strong>of</strong> the mainstem McKenzie River dueto habit<strong>at</strong> alter<strong>at</strong>ions, passage barriers, <strong>and</strong> increased stream temper<strong>at</strong>ures, compared withhistorical conditions (Figure 3-4). The cre<strong>at</strong>ion <strong>of</strong> Trail Bridge Reservoir has increased suitableadult habit<strong>at</strong> (deep, slow w<strong>at</strong>er with high food availability) in the area upstream <strong>of</strong> Trail BridgeDam compared with the prior riverine reach. However, mortality factors in Trail BridgeReservoir affecting adult survival have increased from angling <strong>and</strong> entrainment into the TrailBridge turbine <strong>and</strong> spillway. Trail Bridge Reservoir has also provided habit<strong>at</strong> for hybridbrook/bull trout, <strong>and</strong> receives annual stocking <strong>of</strong> h<strong>at</strong>chery rainbow trout, both <strong>of</strong> which haveincreased competition for reservoir habit<strong>at</strong>.3.1.2 <strong>Spring</strong> <strong>Chinook</strong> salmon3.1.2.1 Pre-European influence<strong>Spring</strong> <strong>Chinook</strong> salmon are an anadromous species, adapted to migr<strong>at</strong>e upstream during thespring, when snow-melt flows allow access to habit<strong>at</strong> not available during the fall (when otherraces <strong>of</strong> <strong>Chinook</strong> salmon migr<strong>at</strong>e) (Figure 3-5). Because spring <strong>Chinook</strong> salmon hold over thesummer prior to spawning in the fall, they require deep, cold pools. The conditions to supportadequ<strong>at</strong>e holding pools are typically found in large rivers <strong>at</strong> medium <strong>and</strong> high elev<strong>at</strong>ions,particularly in spring-fed systems such as the upper McKenzie River basin. However, in thehigh-gradient portions <strong>of</strong> these rivers, stream energy is <strong>of</strong>ten high <strong>and</strong> geological parent m<strong>at</strong>erialis not sufficiently we<strong>at</strong>hered; thus the stream channel substr<strong>at</strong>e is coarse <strong>and</strong> spawning gravelstend to be p<strong>at</strong>chy <strong>and</strong> sometimes limiting (Stillw<strong>at</strong>er Sciences 2006g).28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board17


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Report<strong>Spring</strong> <strong>Chinook</strong> salmon <strong>of</strong>ten hold in pools adjacent to spawning habit<strong>at</strong> <strong>and</strong> spawn early in thefall, with fry emerging early in the spring. The fry may rear up to one full year in the McKenzie,Willamette, <strong>and</strong> Columbia rivers before migr<strong>at</strong>ing as large smolts to the ocean.Large runs <strong>of</strong> spring <strong>Chinook</strong> salmon used abundant spawning habit<strong>at</strong> in the upper reaches <strong>of</strong> theSouth Fork <strong>and</strong> mainstem McKenzie rivers. Based on the very high production th<strong>at</strong> would beexpected from extensive spawning habit<strong>at</strong>, rearing juveniles would s<strong>at</strong>ur<strong>at</strong>e the highly complexmainstem habit<strong>at</strong>, <strong>and</strong> in particular the extensive floodplain habit<strong>at</strong> in the lower mainstem duringwinter. Based on this conceptual model, juvenile habit<strong>at</strong> was limiting. Fry th<strong>at</strong> could not loc<strong>at</strong>esuitable habit<strong>at</strong> were forced to emigr<strong>at</strong>e downstream to the Willamette River.3.1.2.2 Current conditionsUnder current conditions, Cougar, Blue River, <strong>and</strong> Trail Bridge dams block access to spawning<strong>and</strong> rearing habit<strong>at</strong>, <strong>and</strong> reduce the transport <strong>of</strong> course sediment supply to spawning habit<strong>at</strong>downstream (Figure 3-6). Cougar Dam in the South Fork McKenzie River is oper<strong>at</strong>ed as a floodcontrol project, <strong>and</strong> has disrupted flow p<strong>at</strong>terns in the mainstem McKenzie River, resulting inchannel confinement <strong>and</strong> lost access to floodplains (Ligon et al. 1995). Channel incision hasreduced available spawning habit<strong>at</strong> <strong>and</strong> gravel quality. Channel incision <strong>and</strong> the removal <strong>of</strong> largewoody debris have reduced rearing habit<strong>at</strong> quality in the mainstem, including the loss <strong>of</strong> access t<strong>of</strong>loodplains <strong>and</strong> <strong>of</strong>f-channel habit<strong>at</strong>.Since 1997, from 40 to 150 h<strong>at</strong>chery adult spring <strong>Chinook</strong> salmon have been released into TrailBridge Reservoir annually; spring <strong>Chinook</strong> salmon would otherwise not have access to habit<strong>at</strong>upstream <strong>of</strong> Trail Bridge Dam. <strong>Spring</strong> <strong>Chinook</strong> salmon spawn in available habit<strong>at</strong> in the CarmenBypass Reach <strong>and</strong> Smith Bypass Reach <strong>and</strong> fry emigr<strong>at</strong>e to Trail Bridge Reservoir, where rearinghabit<strong>at</strong> is abundant. Rearing habit<strong>at</strong> in Trail Bridge Reservoir far exceeds the potentialproduction from available spawning habit<strong>at</strong>, indic<strong>at</strong>ing th<strong>at</strong> spawning habit<strong>at</strong> is limitingproduction upstream <strong>of</strong> Trail Bridge Dam. However, daily reservoir fluctu<strong>at</strong>ions, pred<strong>at</strong>ion byn<strong>at</strong>ive bull trout, <strong>and</strong> competition with <strong>and</strong> pred<strong>at</strong>ion by annually stocked h<strong>at</strong>chery rainbow troutindic<strong>at</strong>e the potential for high mortality <strong>of</strong> fry <strong>and</strong> juveniles rearing in Trail Bridge Reservoir.With channel incision <strong>and</strong> the removal <strong>of</strong> large woody debris in the mainstem McKenzie River(Ligon et al. 1995), juvenile rearing habit<strong>at</strong> in the mainstem McKenzie River has decreased inamount <strong>and</strong> complexity, resulting in a potential for reduced production <strong>and</strong> size <strong>of</strong> smolts.Smaller size <strong>at</strong> smolting contributes to reduced survival during migr<strong>at</strong>ion into the Willamette <strong>and</strong>Columbia rivers <strong>and</strong> the marine environment, which have also been altered under currentconditions. Based on this conceptual model, in addition to spawning habit<strong>at</strong> limit<strong>at</strong>ions, fry <strong>and</strong>juvenile survival (pred<strong>at</strong>ion, entrainment, etc.) are also limiting adult escapement in the mainstemMcKenzie River, <strong>and</strong> upstream <strong>of</strong> Trail Bridge Dam.3.2 <strong>Popul<strong>at</strong>ion</strong> Models<strong>Popul<strong>at</strong>ion</strong> dynamics models were developed <strong>and</strong> used to quantit<strong>at</strong>ively assess the rel<strong>at</strong>iveinfluence <strong>of</strong> Project oper<strong>at</strong>ions (e.g., habit<strong>at</strong> conditions rel<strong>at</strong>ed to instream flows, <strong>and</strong> mortalityfactors rel<strong>at</strong>ed to entrainment) on bull trout <strong>and</strong> <strong>Chinook</strong> salmon popul<strong>at</strong>ions. Model resultsshould not be interpreted as precise estim<strong>at</strong>es <strong>of</strong> popul<strong>at</strong>ion size, but as predictions <strong>of</strong> rel<strong>at</strong>ivechanges in estim<strong>at</strong>ed popul<strong>at</strong>ion size. Both <strong>Chinook</strong> salmon models (Trail Bridge Reservoirmodel <strong>and</strong> Carmen-Smith Spawning Channel model) predict smolt production by assuming asmolt-to-adult survival r<strong>at</strong>e <strong>and</strong> running to equilibrium with returning adults. However, because28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board18


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Reportthe survival <strong>of</strong> smolt-to-adult survival was not measured in the Study Area, the primary means <strong>of</strong>evalu<strong>at</strong>ing altern<strong>at</strong>ive management actions were based on rel<strong>at</strong>ive differences in smoltproduction, r<strong>at</strong>her than the long-term equilibrium popul<strong>at</strong>ion <strong>of</strong> adults. Model input values <strong>and</strong>their sources, for the bull trout <strong>and</strong> <strong>Chinook</strong> salmon models, respectively, under currentconditions <strong>and</strong> under conditions <strong>of</strong> varying management scenarios, are provided in Appendices D<strong>and</strong> E.3.3 Factors Affecting <strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong>The conceptual model for bull trout hypothesizes th<strong>at</strong> adult carrying capacity limits the currentpopul<strong>at</strong>ion, which is also supported by model results (described in detail below). Increasing thevalue <strong>of</strong> every other parameter in the model does not lead to an increase in the adult popul<strong>at</strong>ionunless the carrying capacity <strong>of</strong> the subadult/adult popul<strong>at</strong>ion is increased. Following a cohortfrom Carmen Bypass Reach or Sweetw<strong>at</strong>er Creek (Figure 3-7, from left to right) illustr<strong>at</strong>es th<strong>at</strong>although many eggs are deposited, the carrying capacity for eggs is higher than the amount th<strong>at</strong> iscurrently being deposited. Early fry in both reaches s<strong>at</strong>ur<strong>at</strong>e the available habit<strong>at</strong>, <strong>and</strong> l<strong>at</strong>e fry <strong>and</strong>juveniles have sufficient habit<strong>at</strong> so th<strong>at</strong> carrying capacity is not currently reached. Mortalityduring each life-step (shown in Figure 3-7) results in popul<strong>at</strong>ion declines, such th<strong>at</strong> nearly 500juveniles survive to reach the “Trail Bridge Reservoir” box. In the final life-step on the far right<strong>of</strong> the diagram, subadults <strong>and</strong> adults s<strong>at</strong>ur<strong>at</strong>e the habit<strong>at</strong> available for a total <strong>of</strong> 111 individuals.The juvenile life-stage would not begin to limit production unless the subadult/adult popul<strong>at</strong>ionwas 800 or more. If adult mortality was decreased due to reductions in poaching or emigr<strong>at</strong>ion,even fewer juvenile recruits would be required to sustain the current, or larger, popul<strong>at</strong>ion. Ifsubadult/adult habit<strong>at</strong> were not limiting, a popul<strong>at</strong>ion <strong>of</strong> gre<strong>at</strong>er than 800 would be expected to bepresent. If the equilibrium or current popul<strong>at</strong>ion is less than 800, then this lesser popul<strong>at</strong>ionwould support the conclusion th<strong>at</strong> subadult/adult habit<strong>at</strong> is limiting. D<strong>at</strong>a discussed belowindic<strong>at</strong>e th<strong>at</strong> the popul<strong>at</strong>ion in Trail Bridge Reservoir in 2004 was estim<strong>at</strong>ed <strong>at</strong> 111 (29–307)subadults <strong>and</strong> adults combined.3.3.1 Subadult/adult popul<strong>at</strong>ion estim<strong>at</strong>esThe subadult/adult bull trout popul<strong>at</strong>ions in Trail Bridge Reservoir was estim<strong>at</strong>ed using threemethods (Stillw<strong>at</strong>er Sciences 2006a): (1) enumer<strong>at</strong>ing redds to back-calcul<strong>at</strong>e the number <strong>of</strong>spawning adults, (2) using a modified Petersen estim<strong>at</strong>or on recaptured fish, <strong>and</strong> (3) running acomputer program called “Program MARK” (White 2005). Program MARK was used toestim<strong>at</strong>e subadult, adult, <strong>and</strong> juvenile bull trout abundance for two years (2004 <strong>and</strong> 2005) usingthe history <strong>of</strong> PIT tag detections for individual fish tagged <strong>and</strong> re-sighted during angling <strong>and</strong>reservoir trapping efforts. Although the estim<strong>at</strong>es using the three approaches were similar (Table3-1), the popul<strong>at</strong>ion estim<strong>at</strong>e from the Program MARK analysis was used for the modeling effort,because it was estim<strong>at</strong>ed for two years, <strong>and</strong> included subadult/adult life-stages. The combinedestim<strong>at</strong>e <strong>of</strong> 111 subadults <strong>and</strong> adults is within the range <strong>of</strong> the other estim<strong>at</strong>es, with the exception<strong>of</strong> the Baited Video St<strong>at</strong>ion estim<strong>at</strong>e (Table 3-1). The value <strong>of</strong> 111 was selected as intermedi<strong>at</strong>ebetween the low estim<strong>at</strong>e <strong>of</strong> 70 spawning adults based on redd counts alone, <strong>and</strong> a high estim<strong>at</strong>e<strong>of</strong> 254 based on the Baited Video St<strong>at</strong>ion. The selection <strong>of</strong> 111 for the subadult/adult carryingcapacity did not influence model results. The model was not “fitted” to this estim<strong>at</strong>e, <strong>and</strong> whenthe carrying capacity for subadults <strong>and</strong> adults is varied within a reasonable range (as describedbelow), the model interpret<strong>at</strong>ion is the same (namely, th<strong>at</strong> subadult/adult habit<strong>at</strong> is limiting thepopul<strong>at</strong>ion). If the subadult/adult bull trout popul<strong>at</strong>ion in Trail Bridge Reservoir is actually largerthan 111, which seems possible, the interpret<strong>at</strong>ion <strong>of</strong> the results would not change unless thepopul<strong>at</strong>ion was gre<strong>at</strong>er than 800.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board19


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportTable 3-1. <strong>Popul<strong>at</strong>ion</strong> estim<strong>at</strong>es for subadult/adult bull trout. Confidence intervals inparentheses when available. Based on Stillw<strong>at</strong>er Sciences (2006a).Life-stage Year MethodAdults20042004Two adults for everyconfirmed bull trout redd,assumes annual spawningPetersen estim<strong>at</strong>or appliedto redd counts <strong>and</strong> PIT tagrecaptures <strong>of</strong> adultsEstim<strong>at</strong>ed popul<strong>at</strong>ion size± 95% C.I.70 a141 ± 412005 Program MARK 105 (30–280)Adults/subadults 2004 Program MARK 111 (29–307)combined2004Baited Video St<strong>at</strong>ionestim<strong>at</strong>e for bull trout > 254 (128–538)200 mm (7.9 in) FL ba This estim<strong>at</strong>e is conserv<strong>at</strong>ive, because a proportion <strong>of</strong> the popul<strong>at</strong>ion spawns bi-annually, <strong>and</strong> someproportion <strong>of</strong> the unknown redds were likely bull trout.b This estim<strong>at</strong>e is higher th<strong>at</strong> the other estim<strong>at</strong>es partly because it includes large juveniles in the calcul<strong>at</strong>ion.Subadult/adult habit<strong>at</strong> was mapped in the Study Area (Stillw<strong>at</strong>er Sciences 2006b) based on w<strong>at</strong>ervelocity <strong>and</strong> w<strong>at</strong>er depth habit<strong>at</strong> criteria developed by the IFCT. No subadult or adult habit<strong>at</strong> wasmapped in Carmen Bypass Reach <strong>at</strong> any flow, or in Sweetw<strong>at</strong>er Creek. PIT-tagged subadult oradult bull trout were rarely detected migr<strong>at</strong>ing into the Carmen Bypass Reach outside <strong>of</strong> thespawning season, <strong>and</strong> no subadult or adults were observed during snorkel surveys (Stillw<strong>at</strong>erSciences 2006a), which corrobor<strong>at</strong>es the habit<strong>at</strong> mapping results. Subadult/adult habit<strong>at</strong> wasmapped in Trail Bridge Reservoir, mostly along the margins <strong>of</strong> the reservoir to 15-m (50-ft) deep.The conceptual model for bull trout hypothesizes th<strong>at</strong> adult carrying capacity limits the currentpopul<strong>at</strong>ion, which is also supported by model results. Increasing the values <strong>of</strong> all otherparameters in the model does not lead to an increase in the adult popul<strong>at</strong>ion until the carryingcapacity <strong>of</strong> the adult popul<strong>at</strong>ion is increased. Subadult/adult bull trout habit<strong>at</strong> was modeled inTrail Bridge Reservoir using a combined carrying capacity, because both life-stages arepiscivorous <strong>and</strong> use the same habit<strong>at</strong>. If 111 subadults <strong>and</strong> adults are assumed to be in thereservoir (<strong>of</strong> which 85 are modeled to be m<strong>at</strong>ure adults based on estim<strong>at</strong>ed adult trout mortalityr<strong>at</strong>es), then to maintain the popul<strong>at</strong>ion, only 26 recruits from the juvenile life-stage are neededeach year (Figure 3-7), far fewer than estim<strong>at</strong>ed under current conditions (Section 3.3.3).Densities <strong>of</strong> subadult/adult bull trout in Trail Bridge Reservoir are high rel<strong>at</strong>ive to most systems(Table 3-2), with the exception <strong>of</strong> Lake Billy <strong>Chinook</strong> in the Deschutes River basin. Lake Billy<strong>Chinook</strong> appears to have the highest reported density <strong>of</strong> subadult/adult bull trout in systemswhere bull trout co-occur with other species (Table 3-2), with over 13,000 subadult/adult bulltrout estim<strong>at</strong>ed in 2004 (D. R<strong>at</strong>liff, pers. comm., 2005). In reservoirs with large popul<strong>at</strong>ions <strong>of</strong>bull trout, prey sources are <strong>of</strong>ten abundant, such as kokanee salmon (Oncorhynchus nerka) inLake Billy <strong>Chinook</strong>, <strong>and</strong> pygmy whitefish (Prosopium coulteri) in Lake Chester Morse.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board20


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportTable 3-2. <strong>Bull</strong> trout subadult/adult (sexually m<strong>at</strong>ure <strong>and</strong>/or gre<strong>at</strong>er than 250 mm) popul<strong>at</strong>ionestim<strong>at</strong>es reported in the liter<strong>at</strong>ure, <strong>and</strong> the estim<strong>at</strong>ed popul<strong>at</strong>ion in Trail Bridge Reservoirassuming the same densities were achieved.Loc<strong>at</strong>ionSizeArea (m 2 Shoreline)(m)TrailBridge 255,164 4,792Reservoir 1Subadult/adultpopul<strong>at</strong>ionestim<strong>at</strong>e(95% CI)111(29–307)fish/m 2Densityfish/mshorelineEstim<strong>at</strong>edpopul<strong>at</strong>ion in TrailBridge Reservoirassuming samedensities as otherw<strong>at</strong>erbodies basedon:fish/m 2 fish/mshoreline0.000435 0.0232 111 111Cit<strong>at</strong>ionStillw<strong>at</strong>erSciences(2006a)ArrowrockReservoir12,750,000 NA471(389–590)0.0000369 NA 9 NA Fl<strong>at</strong>ter (1999)Pinto Lake 1,245,000 NA 410 0.000329 NA 84 NA Herman (1997)LowerKananaskis 6,460,000 NA < 100 0.0000155 NA 4 NA Stelfox (1997)LakeLake BillyD. R<strong>at</strong>liff, pers.15,800,000 100,300 13,331 0.00084 0.133 214 637<strong>Chinook</strong>comm., 2005CougarM. Wade, pers.5,618,941 28,477 100 0.000018 0.00351 5 17Reservoircomm., 2005LakeUSFWSChester 6,798,718 18,700 1,500 0.00022 0.080 56 384(2004b)MorseNA= not available1 Based on average pool elev<strong>at</strong>ionIf the maximum density <strong>of</strong> subadult/adult bull trout in Lake Billy <strong>Chinook</strong> were to be achieved inTrail Bridge Reservoir, then the potential carrying capacity would be approxim<strong>at</strong>ely 640subadult/adult bull trout (Table 3-2). At this carrying capacity, an estim<strong>at</strong>ed 150 juvenile-tosubadultrecruits would be needed each year, which are fewer than the current juveniles in thelower Carmen Bypass Reach (Section 3.3.3). This is not to say th<strong>at</strong> the Study Area couldnecessarily support a popul<strong>at</strong>ion <strong>of</strong> 640 subadults <strong>and</strong> adults, but even if th<strong>at</strong> popul<strong>at</strong>ion wasachieved, adult habit<strong>at</strong> would still be limiting.3.3.2 Sensitivity analysisA sensitivity analysis was conducted on the bull trout model under current conditions (Table F-1).This sensitivity analysis indic<strong>at</strong>ed th<strong>at</strong> the current bull trout popul<strong>at</strong>ion in Trail Bridge Reservoiris most strongly influenced by the model parameters for subadult/adult habit<strong>at</strong>, <strong>and</strong> by the density<strong>of</strong> subadults <strong>and</strong> adults (Table 3-3). No other model parameters influenced model results, unlessa carrying capacity for subadults <strong>and</strong> adults <strong>of</strong> nearly 500 was assumed, <strong>at</strong> which point the modelwas slightly sensitive (< 1% change in adult popul<strong>at</strong>ion) to earlier life-stages (Table 3-4, Table F-2). The model scenarios with a K <strong>of</strong> 500 assume th<strong>at</strong> spawning habit<strong>at</strong> availability, <strong>and</strong> all otherparameters, remains unchanged (Table F-2). Spawning habit<strong>at</strong> is not predicted to be limitinguntil a popul<strong>at</strong>ion reaches 150 female bull trout, which is not predicted unless K for28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board21


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Reportsubadult/adult bull trout was to reach over 700, since only a portion are females th<strong>at</strong> spawn in agiven year, in either Carmen Bypass Reach or Sweetw<strong>at</strong>er Creek.Table 3-3. Summary <strong>of</strong> sensitivity analysis on bull trout popul<strong>at</strong>ion under current conditions(subadult/adult K=111). The model was not sensitive to any other parameters.Subadult/adult popul<strong>at</strong>ion estim<strong>at</strong>e based on varying inputModel parametervalue50% 25% Current 33% 100%decrease decrease value increase increaseSubadult/adult available habit<strong>at</strong> inTrail Bridge Reservoir56 83 111 148 223Subadult/adult density 56 83 111 148 223Table 3-4. Summary <strong>of</strong> sensitivity analysis on bull trout popul<strong>at</strong>ion assuming an increase insubadult/adult carrying capacity (K=500). The model was not sensitive to any other parameters.Subadult/adult popul<strong>at</strong>ion estim<strong>at</strong>e based on varying inputModel Parametervalue50% 25% Current 33% 100%decrease decrease value increase increaseEarly fry rearing habit<strong>at</strong> in CarmenBypass Reach498 500 500 500 500Early fry rearing density 498 500 500 500 500Age 1+ to age 2+ juvenile survival inCarmen Bypass Reach498 500 500 500 500Age 1+ to age 2+ juvenile survivalduring migr<strong>at</strong>ion from Carmen Bypass 498 500 500 500 500ReachEarly fry to l<strong>at</strong>e fry survival in CarmenBypass Reach498 500 500 500 500L<strong>at</strong>e fry to juvenile survival in CarmenBypass Reach498 500 500 500 500Subadult/adult available habit<strong>at</strong> inTrail Bridge Reservoir382 382 500 570 570Subadult/adult density in Trail BridgeReservoir382 382 500 570 570Age 1+ to age 2+ juvenile survival inTrail Bridge Reservoir476 500 500 500 500Age 4+ to > 5+ adult survival in TrailBridge Reservoir417 494 500 500 5003.3.3 Juvenile-to-subadult recruitmentUnder current conditions, juveniles would have to be reduced to a popul<strong>at</strong>ion <strong>of</strong> 26 beforejuvenile-to-subadult recruitment is limiting to the popul<strong>at</strong>ion. The model currently estim<strong>at</strong>es th<strong>at</strong>around 450 age 2+ juveniles are produced from the lower Carmen Bypass Reach <strong>and</strong> Sweetw<strong>at</strong>erCreek each year (including annual mortality while rearing, during migr<strong>at</strong>ion, <strong>and</strong> during reservoirresidency). Though juvenile bull trout numbers likely fluctu<strong>at</strong>e annually, popul<strong>at</strong>ion estim<strong>at</strong>es <strong>of</strong>juvenile bull trout in the Study Area (Table 3-5) are slightly lower than model predictions, but arewithin the 95% confidence intervals.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board22


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportTable 3-5. <strong>Popul<strong>at</strong>ion</strong> estim<strong>at</strong>es for juvenile bull trout. Confidence intervals in parentheseswhen available.Year20042005MethodTotal number observed in snorkel survey <strong>of</strong> allhabit<strong>at</strong> units. Not corrected for diver observ<strong>at</strong>ionprobability.Extrapol<strong>at</strong>ed snorkel survey results. Minimum isthe number observed during surveys. Notcorrected for diver observ<strong>at</strong>ion probability.Modified Petersen estim<strong>at</strong>or. Minimum is thenumber <strong>of</strong> PIT-tagged juvenile bull trout.Program MARK. Minimum is the number <strong>of</strong>PIT-tagged juvenile bull trout.Estim<strong>at</strong>ed popul<strong>at</strong>ion size ±95% C.I.14 in Sweetw<strong>at</strong>er Creek377 (168 minimum) in lowerCarmen Bypass Reach351 (121–604) in Trail BridgeReservoir264 (121–725) in Trail BridgeReservoirThe empirical <strong>and</strong> the modeled d<strong>at</strong>a indic<strong>at</strong>e th<strong>at</strong> subadult/adult habit<strong>at</strong> is the limiting parameter.If the subadult/adult popul<strong>at</strong>ion in Trail Bridge Reservoir were estim<strong>at</strong>ed <strong>at</strong> 307 (the upper limit<strong>of</strong> the 95% confidence interval from the MARK analysis) (Table 3-1), then only 72 juvenile-tosubadultrecruits would be needed annually to maintain the popul<strong>at</strong>ion. Even if the total number<strong>of</strong> captured <strong>and</strong> PIT-tagged juvenile bull trout (121) were the true juvenile popul<strong>at</strong>ion size (Table3-5), sufficient numbers <strong>of</strong> juvenile bull trout would be available to recruit to the subadult lifestageeach year. Estim<strong>at</strong>es <strong>of</strong> current recruitment <strong>of</strong> juvenile to subadults are higher than theavailable habit<strong>at</strong> for subadults <strong>and</strong> adults. Therefore, both the model <strong>and</strong> empirical d<strong>at</strong>a indic<strong>at</strong>eth<strong>at</strong> the limiting parameter is adult habit<strong>at</strong>.Although many fewer juveniles are required to maintain the popul<strong>at</strong>ion, the “excess” juveniles areimportant in ecological interactions not explicitly addressed by the model. Juveniles th<strong>at</strong> are notrecruited into the subadult popul<strong>at</strong>ion in Trail Bridge Reservoir are assumed either to migr<strong>at</strong>edownstream seeking available habit<strong>at</strong>, or to perish (e.g., from pred<strong>at</strong>ion) (Figure 3-7). Thisassumption is corrobor<strong>at</strong>ed by detections <strong>of</strong> PIT-tagged juvenile bull trout emigr<strong>at</strong>ing from TrailBridge Reservoir (Stillw<strong>at</strong>er Sciences 2006a). However, the bull trout model does not addresspopul<strong>at</strong>ion dynamics downstream <strong>of</strong> Trail Bridge Dam. The juvenile popul<strong>at</strong>ion migr<strong>at</strong>ingdownstream is assumed to suffer some level <strong>of</strong> mortality <strong>at</strong> Trail Bridge Dam, <strong>and</strong> juveniles th<strong>at</strong>survive rear in the mainstem McKenzie River. Their potential contribution to the downstreampopul<strong>at</strong>ion is dependent on the current carrying capacity for juveniles <strong>and</strong> subadults/adults in themainstem, <strong>and</strong> the number <strong>of</strong> bull trout currently produced from Anderson <strong>and</strong> Ollalie creeks,which were not modeled in this study.Production <strong>of</strong> juveniles is valuable to the overall popul<strong>at</strong>ion for several additional reasons, eventhough carrying capacity <strong>of</strong> subadult/adult bull trout ultim<strong>at</strong>ely limits the abundance <strong>of</strong> thepopul<strong>at</strong>ion. First, larger juvenile bull trout (age 1+ <strong>and</strong> 2+) provide a gre<strong>at</strong>er contribution to adultescapement than 0+ migrants in adfluvial popul<strong>at</strong>ions; therefore, providing <strong>and</strong> maintaining highquality rearing habit<strong>at</strong> is important for maintaining recruitment (Downs et al. in press). Second,the bull trout juvenile life-stage lasts for <strong>at</strong> least two years, so multiple cohorts are represented. Ifa major disturbance occurs, the juveniles in the popul<strong>at</strong>ion would likely buffer the popul<strong>at</strong>ionagainst substantial popul<strong>at</strong>ion loss (see Section 3.3.5); therefore “excess” juveniles th<strong>at</strong> areproduced in the Study Area may increase the stability <strong>and</strong> resilience <strong>of</strong> the popul<strong>at</strong>ion. Third,juvenile bull trout th<strong>at</strong> leave Trail Bridge Reservoir <strong>and</strong> rear in the McKenzie River downstream<strong>of</strong> Trail Bridge Dam may increase the bull trout popul<strong>at</strong>ion downstream <strong>of</strong> Trail Bridge Dam <strong>and</strong>28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board23


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Reportincrease popul<strong>at</strong>ion stability <strong>and</strong> resilience to disturbance in th<strong>at</strong> popul<strong>at</strong>ion over time. Finally,juvenile bull trout may be an important part <strong>of</strong> the diet <strong>of</strong> adult <strong>and</strong> subadult bull trout in someyears (Beauchamp <strong>and</strong> Van Tassell 2001).3.3.4 Early life-stages3.3.4.1 Spawning/eggsModel results indic<strong>at</strong>e th<strong>at</strong> sufficient spawning habit<strong>at</strong> is available to incub<strong>at</strong>e more bull trouteggs than are laid in both the Carmen Bypass Reach <strong>and</strong> Sweetw<strong>at</strong>er Creek. Spawning surveys(Stillw<strong>at</strong>er Sciences 2006a) indic<strong>at</strong>ed th<strong>at</strong> although spawning occurred on most available gravelp<strong>at</strong>ches, many p<strong>at</strong>ches had additional gravel area th<strong>at</strong> was unused by spawning adults, suggestingth<strong>at</strong> more spawning habit<strong>at</strong> was available than was used (or th<strong>at</strong> it was unsuitable in some wayth<strong>at</strong> was not measured).The Escape 5.1 sub-model was used to estim<strong>at</strong>e the number <strong>of</strong> deposited eggs <strong>at</strong> varying levels <strong>of</strong>spawning escapement, considering redd superimposition for the spawner-to-deposited-eggs step.Results from the Escape 5.1 sub-model were used to quantify r <strong>and</strong> K parameters in thesuperimposition stock-production rel<strong>at</strong>ionship between spawners <strong>and</strong> deposited eggs. In CarmenBypass Reach a mean redd area <strong>of</strong> 1.82 m 2 (19.6 ft 2 ), <strong>and</strong> in Sweetw<strong>at</strong>er Creek 0.5 m 2 (5.4ft 2 ) wasused, based on total st<strong>at</strong>ion surveys <strong>of</strong> the dimensions <strong>of</strong> all constructed bull trout redds observedin the each reach in 2004 (Stillw<strong>at</strong>er Sciences 2006a). A defended area (four times the redd area)was also used in the calcul<strong>at</strong>ion. Values for each parameter, as well as their sources, are providedin Table D-2. At the current popul<strong>at</strong>ion level, low levels <strong>of</strong> superimposition were predicted forCarmen Bypass Reach, which was corrobor<strong>at</strong>ed during 2004 spawning surveys (Stillw<strong>at</strong>erSciences 2006a). In Sweetw<strong>at</strong>er Creek superimposition is not predicted to limit spawning habti<strong>at</strong>availability until a popul<strong>at</strong>ion <strong>of</strong> over 300 females is reached, even using the larger redd areavalues observed in Carmen Bypass Reach. The r<strong>at</strong>io <strong>of</strong> K as determined by the superimpositionmodel fitted to Escape 5.1 results, to the K based on gravel area <strong>and</strong> mean redd size, was high(0.84) in both reaches, which indic<strong>at</strong>es a rel<strong>at</strong>ively small change in carrying capacity due tosuperimposition. Based on these modeling results, spawning habit<strong>at</strong> is not currently limiting thebull trout popul<strong>at</strong>ion in the Study Area.Although the current level <strong>of</strong> bull trout spawning is not high enough to result in significantsuperimposition, if <strong>Chinook</strong> salmon escapement increased, the numbers <strong>of</strong> bull trout <strong>and</strong> <strong>Chinook</strong>salmon spawners combined could approach levels causing significant superimposition (~150females, Figure 3-8) based on current spawning gravel availability in the Carmen Bypass Reach.However, because bull trout typically spawn l<strong>at</strong>er in the season than <strong>Chinook</strong> salmon (Stillw<strong>at</strong>erSciences 2006a), bull trout redds are unlikely to be <strong>at</strong> risk from <strong>Chinook</strong> salmon superimposition.3.3.4.2 FryIncub<strong>at</strong>ion survival for bull trout eggs is expected to be moder<strong>at</strong>e in the Carmen Bypass Reach,<strong>and</strong> rel<strong>at</strong>ively low in Sweetw<strong>at</strong>er Creek, based on field measurements <strong>of</strong> gravel permeability(Stillw<strong>at</strong>er Sciences 2006d). Survival estim<strong>at</strong>es used in the model were based on a rel<strong>at</strong>ionshipbetween permeability (ability to deliver oxygen <strong>and</strong> remove metabolic waste products from eggs)<strong>and</strong> egg-to-emergence survival (Tagart 1976, McCuddin 1977) developed for <strong>Chinook</strong> <strong>and</strong> cohosalmon (no direct measurements <strong>of</strong> egg-to-emergence survival were conducted). Lower gravelpermeability in Sweetw<strong>at</strong>er Creek <strong>and</strong> the Carmen Bypass Reach are likely associ<strong>at</strong>ed with an<strong>at</strong>tenu<strong>at</strong>ed peak flow response in spring-domin<strong>at</strong>ed systems; the majority <strong>of</strong> high flow events in28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board24


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Reportthe Carmen Bypass Reach <strong>and</strong> Sweetw<strong>at</strong>er Creek likely result in partial bedload mobility wherefiner grains on the surface are transported but the channel bed is not scoured to depth.Additionally, the channel bed is strongly armored with coarse cobbles <strong>and</strong> boulders due to glacialinfluences <strong>and</strong> limited sediment supply associ<strong>at</strong>ed with the High Cascades terrain, which furtherlimits channel bed scouring. A suppressed frequency <strong>of</strong> scour <strong>and</strong> fill events may lead to higherfine sediment content in the subsurface m<strong>at</strong>erial <strong>and</strong> decreased permeability.Increasing egg-to-emergent fry survival (e.g., improved gravel quality) would increase thenumber <strong>of</strong> emergent fry, but since both early fry <strong>and</strong> subadult/adult life-stages are limiting,increasing emergent fry would not affect the adult popul<strong>at</strong>ion size. Mechanisms for improvinggravel quality could include gravel augment<strong>at</strong>ion, <strong>and</strong>/or limiting the delivery <strong>of</strong> fine sedimentfrom roads.The abundance <strong>of</strong> each cohort <strong>of</strong> bull trout is first constrained by the available habit<strong>at</strong> for earlyfry (Figure 3-7). Early fry rearing habit<strong>at</strong> was rare in the Study Area (Stillw<strong>at</strong>er Sciences 2006b)based on a set <strong>of</strong> restrictive criteria (e.g., very slow, shallow w<strong>at</strong>er, with abundant cover frominterstitial space or detritus) developed by the IFCT. In the model, all early fry th<strong>at</strong> do not findsuitable habit<strong>at</strong> migr<strong>at</strong>e to Trail Bridge Reservoir, with high mortality from pred<strong>at</strong>ion during theirmigr<strong>at</strong>ion. Although it is possible th<strong>at</strong> the criteria used to estim<strong>at</strong>e available early fry habit<strong>at</strong>were too restrictive, rotary screw traps in the Carmen Bypass Reach captured more early bulltrout fry than any other life-stage, supporting model results th<strong>at</strong> predict an early fry migr<strong>at</strong>ion dueto limited early fry habit<strong>at</strong>. In addition, direct bank-side observ<strong>at</strong>ion <strong>and</strong> snorkel surveys confirmrel<strong>at</strong>ively low abundance in both reaches (although fry are difficult to observe).An increase in early-fry habit<strong>at</strong> <strong>of</strong> over 120% would be required before the next life-stage (l<strong>at</strong>efry)would be limiting. The instream flows analysis (Stillw<strong>at</strong>er Sciences 2006b) indic<strong>at</strong>ed a peakin early fry habit<strong>at</strong> <strong>at</strong> 205 cfs in the Carmen Bypass Reach, which is the current base flow th<strong>at</strong>occurs during spring when fry emerge. Therefore, early fry habit<strong>at</strong> would not increase byincreasing instream flows over 205 cfs. Large woody debris enhancements in the Carmen BypassReach have likely increased available early fry habit<strong>at</strong>, as discussed in Section 3.5.2 below, buthabit<strong>at</strong> for juveniles is modeled to have increased as well, so early-fry habit<strong>at</strong> is still consideredlimiting.Habit<strong>at</strong> for l<strong>at</strong>e fry is abundant <strong>and</strong> not limiting, in both the Carmen Bypass Reach <strong>and</strong>Sweetw<strong>at</strong>er Creek, <strong>and</strong> losses during this life-stage are rel<strong>at</strong>ed to moder<strong>at</strong>e mortality r<strong>at</strong>es fromsources such as pred<strong>at</strong>ion <strong>and</strong> disease, r<strong>at</strong>her than competition for space. Very few l<strong>at</strong>e fry werecaptured <strong>at</strong> rotary screw traps in Carmen Bypass Reach, providing additional evidence th<strong>at</strong>habit<strong>at</strong> for l<strong>at</strong>e fry is not currently <strong>at</strong> carrying capacity in the Carmen Bypass Reach. Rotaryscrew trap captures in Sweetw<strong>at</strong>er Creek in 2005 were also consistent with model predictions <strong>of</strong> asmall pulse <strong>of</strong> early fry, no l<strong>at</strong>e fry, <strong>and</strong> the bulk <strong>of</strong> migr<strong>at</strong>ion occurring as age 1+ or 2+ juveniles.3.3.5 Resiliency to disturbanceThe bull trout popul<strong>at</strong>ion upstream <strong>of</strong> Trail Bridge Dam exhibited a high resiliency in recoveringfrom a modeled c<strong>at</strong>astrophic fish kill <strong>of</strong> all life-stages <strong>of</strong> bull trout in the Carmen Bypass Reach<strong>and</strong> Sweetw<strong>at</strong>er Creek (Table 3-6). In the years following the fish kill, the adult popul<strong>at</strong>ion inTrail Bridge Reservoir would be maintained by the abundance <strong>of</strong> age 2+ juveniles <strong>and</strong> subadultsrearing there. However, once the current popul<strong>at</strong>ion <strong>of</strong> age 2+ juveniles became subadults, thelack <strong>of</strong> recruitment <strong>of</strong> age 2+ juveniles from Carmen Bypass Reach <strong>and</strong> Sweetw<strong>at</strong>er Creek wouldlimit recruitment to the subadult life-stage; for the next two years, the adult popul<strong>at</strong>ion woulddecrease based on the estim<strong>at</strong>ed annual adult mortality <strong>of</strong> 20%. Three years following the28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board25


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Reportdisturbance, age 2+ recruits from Carmen Bypass Reach <strong>and</strong> Sweetw<strong>at</strong>er Creek would againbecome available to recruit to the subadult life-stage in Trail Bridge Reservoir, <strong>and</strong> 4 yearsfollowing the disturbance, the subadults would be available to recruit to the adult popul<strong>at</strong>ion. Theage structure <strong>of</strong> the adult popul<strong>at</strong>ion would be biased towards older (> age 5) individuals untilsubadult to adult recruitment resumed.Table 3-6. Resiliency <strong>of</strong> adult bull trout popul<strong>at</strong>ion to disturbance.Disturbance scenarioAdult popul<strong>at</strong>ion in years following fish kill 10 1 2 3 4Fish kill in Carmen Bypass Reach <strong>and</strong>Sweetw<strong>at</strong>er Creek85 85 68 54 85Fish kill in Trail Bridge Reservoir 0 0 0 85 851 Current popul<strong>at</strong>ion estim<strong>at</strong>ed <strong>at</strong> 85 adults.The bull trout popul<strong>at</strong>ion upstream <strong>of</strong> Trail Bridge Dam also showed a high resiliency inrecovering from a modeled c<strong>at</strong>astrophic fish kill <strong>of</strong> all life-stages <strong>of</strong> bull trout in Trail BridgeReservoir (Table 3-6). During the year <strong>of</strong> the fish kill, the subadult/adult popul<strong>at</strong>ion would beextirp<strong>at</strong>ed. By the first year following the disturbance, age 2+ juveniles would seed the reservoirfrom production in the Carmen Bypass Reach <strong>and</strong> Sweetw<strong>at</strong>er Creek, <strong>and</strong> by the second yearthese juveniles would recruit to the subadult life-stage, <strong>and</strong> to the adult life-stage within threeyears following the disturbance. The age structure <strong>of</strong> the adult popul<strong>at</strong>ion would be biasedtowards younger (all age 4) individuals in the third year following the disturbance, <strong>and</strong> theproportion <strong>of</strong> older adults would increase each year thereafter.Overall, short-term alter<strong>at</strong>ions in the amount or quality <strong>of</strong> habit<strong>at</strong> (e.g., physical habit<strong>at</strong>, foodavailability) <strong>at</strong> critical life-stages are not likely to cause long-term effects on the bull troutpopul<strong>at</strong>ion. The bull trout popul<strong>at</strong>ion is highly resilient to disturbance based on:• Age structure <strong>of</strong> adult popul<strong>at</strong>ion from age 4+ to age 7+ (Stillw<strong>at</strong>er Sciences 2006a),• High production <strong>of</strong> juveniles rel<strong>at</strong>ive to the adult popul<strong>at</strong>ion,• Spawning habit<strong>at</strong> in both the Carmen Bypass Reach <strong>and</strong> Sweetw<strong>at</strong>er Creek, <strong>and</strong>• Habit<strong>at</strong> supporting rearing to age 2+ juveniles in both the Carmen Bypass Reach <strong>and</strong>Sweetw<strong>at</strong>er Creek.The high production <strong>of</strong> juveniles rel<strong>at</strong>ive to the adult popul<strong>at</strong>ion is maintained in the Study Areain large part by extensive rearing opportunities for juveniles in Carmen Bypass Reach, whererearing to age 2+ is common (Stillw<strong>at</strong>er Sciences 2006a). Therefore, long-term reductions in therearing habit<strong>at</strong> amount or quality in the Carmen Bypass Reach could reduce the resiliency <strong>of</strong> thepopul<strong>at</strong>ion.The evalu<strong>at</strong>ion <strong>of</strong> resiliency does not consider the long-term effects <strong>of</strong> disturbances or popul<strong>at</strong>ionisol<strong>at</strong>ion on popul<strong>at</strong>ion genetic variability. The effects <strong>of</strong> the Project on bull trout genetics isdiscussed in the Aqu<strong>at</strong>ic Habit<strong>at</strong> Connectivity report (Stillw<strong>at</strong>er Sciences 2005j).3.4 Factors Affecting <strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong><strong>Popul<strong>at</strong>ion</strong> modeling <strong>of</strong> spring <strong>Chinook</strong> salmon was conducted assuming th<strong>at</strong> <strong>Chinook</strong> salmonadults gain access to habit<strong>at</strong> upstream <strong>of</strong> Trail Bridge Dam (volitional or by other means). <strong>Spring</strong><strong>Chinook</strong> salmon in the Study Area rear only briefly in the Carmen Bypass Reach <strong>and</strong> Smith28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board26


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportBypass Reach before migr<strong>at</strong>ing downstream to Trail Bridge Reservoir (Stillw<strong>at</strong>er Sciences2006a). The reservoir provides abundant rearing habit<strong>at</strong>, <strong>and</strong> the modeling results indic<strong>at</strong>e th<strong>at</strong>the popul<strong>at</strong>ion is not sensitive to available habit<strong>at</strong> in the bypass reaches, with the exception <strong>of</strong>spawning habit<strong>at</strong>. As a result, the spring <strong>Chinook</strong> salmon popul<strong>at</strong>ion in the Study Area is moststrongly affected by available spawning habit<strong>at</strong>, <strong>and</strong> survival <strong>of</strong> fry, juveniles, <strong>and</strong> smolts in TrailBridge Reservoir. Density-independent <strong>and</strong> density-dependent factors have varying influences onhow the popul<strong>at</strong>ion is regul<strong>at</strong>ed (Figure 3-9). For example, following a cohort from CarmenBypass Reach from left to right, one sees th<strong>at</strong> the deposition <strong>of</strong> eggs is <strong>at</strong> carrying capacity, <strong>and</strong>th<strong>at</strong> all fry produced are able to reach sufficient habit<strong>at</strong>, such th<strong>at</strong> fry carrying capacity is notcurrently reached. High mortality during each life-step (shown in Figure 3-9) results inreductions between subsequent life-stages, resulting in over 1,200 smolts produced from TrailBridge Reservoir.Although smolts are the primary life-stage for evalu<strong>at</strong>ing the spring <strong>Chinook</strong> salmon popul<strong>at</strong>ion,fry also have considerable ecological value. <strong>Chinook</strong> salmon fry are an important part <strong>of</strong> the foodbase for juvenile <strong>and</strong> older bull trout, as well as for cutthro<strong>at</strong> trout (Oncorhynchus clarki clarki)<strong>and</strong> stocked rainbow trout in Trail Bridge Reservoir <strong>and</strong> in the McKenzie River downstream <strong>of</strong>Trail Bridge Dam. <strong>Chinook</strong> salmon fry th<strong>at</strong> leave Trail Bridge Reservoir <strong>and</strong> the Carmen-SmithSpawning Channel may also rear in the mainstem McKenzie River <strong>and</strong> emigr<strong>at</strong>e as either age 0+or 1+ smolts. In summary, fry leaving the Study Area are not “losses,” <strong>and</strong> potentially survive tobecome sexually m<strong>at</strong>ure adults.3.4.1 Sensitivity analysisThe sensitivity analysis conducted on the <strong>Chinook</strong> salmon model under current conditionsindic<strong>at</strong>ed th<strong>at</strong> the <strong>Chinook</strong> salmon popul<strong>at</strong>ion is primarily influenced by the model parameter“Marine smolt-to-adult survival” (last row <strong>of</strong> Table 3-7, Table G-1). While this parameterstrongly affects model results, this study does not address downstream or marine smolt survival;the smolt survival parameter was only included to allow the popul<strong>at</strong>ion model to estim<strong>at</strong>eescapement <strong>and</strong> predict equilibrium conditions. However, the influence <strong>of</strong> this parameterindic<strong>at</strong>es the importance <strong>of</strong> smolt-to-returning-adult survival in the <strong>Chinook</strong> salmon life-cycle.The model is also sensitive (indic<strong>at</strong>ed by a gre<strong>at</strong>er than 10% change in adult escapement withvarying input value) to available spawning habit<strong>at</strong> in the Smith Bypass Reach, <strong>and</strong> is verysensitive to survival <strong>of</strong> early life-stages. The sensitivity <strong>of</strong> the model to these parametersindic<strong>at</strong>es th<strong>at</strong> spawning habit<strong>at</strong> availability <strong>and</strong> early life-stage survival are key elements in thepopul<strong>at</strong>ion dynamics <strong>of</strong> spring <strong>Chinook</strong> salmon. The potential uncertainty in the input values forthese parameters was addressed by running the model assuming the input value was either lower,or higher than the value selected (Table 3-7). Wh<strong>at</strong> is apparent is th<strong>at</strong> if the selected value forspawning habit<strong>at</strong> area in the Smith Bypass Reach, for example, was underestim<strong>at</strong>ed by 33% (e.g.,if superimposition effects were over-estim<strong>at</strong>ed), smolt production (<strong>and</strong> thus adult returns) wouldbe only slightly higher than predicted. Clearly the interpret<strong>at</strong>ion <strong>of</strong> the results, namely th<strong>at</strong>spawning habit<strong>at</strong> is limiting production in the Smith Bypass Reach, is not changed.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board27


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportTable 3-7. Summary <strong>of</strong> <strong>Chinook</strong> salmon model sensitivity analysis under current conditions.Only parameters having a > 10% change in adult escapement with an increase or decrease <strong>of</strong>the input value are shown.Adult popul<strong>at</strong>ion estim<strong>at</strong>e based on varying input valueModel parameter 50%decrease25%decreaseCurrentvalue33%increase100%increaseProportion <strong>of</strong> female spawners 42 85 100 100 100Pre-spawn adult female survival 42 85 100 100 100Proportion <strong>of</strong> spawners in CarmenBypass versus Smith Bypass Reach72 89 100 35 35 aCarmen Bypass Reach spawning habit<strong>at</strong> 76 88 100 116 116Carmen Bypass Reach redd area 116 116 100 88 76Carmen Bypass Reach fecundity 72 88 100 116 147Carmen Bypass Reach eggs-to-emergentfry survival72 88 100 116 148Carmen Bypass Reach emergent-fry-t<strong>of</strong>rysurvival72 88 100 112 112 aCarmen Bypass Reach migrantemergentfry-to-emergent-fry reservoir 79 91 100 113 138survivalCarmen Bypass Reach migrant fry-to-fryin reservoir survival93 97 100 105 114Smith Bypass Reach spawning habit<strong>at</strong> 81 92 100 111 127Smith Bypass Reach redd size 127 111 100 92 81Smith Bypass Reach fecundity 81 92 100 111 130Smith Bypass Reach eggs-to-emergentfrysurvival81 92 100 110 127Smith Bypass Reach migrant-fry-to-fryin reservoir survival82 92 100 110 131Smith Bypass Reach fry habit<strong>at</strong> 95 98 100 103 110Smith Bypass Reach fry density 95 98 100 103 110Smith Bypass Reach fry-to-juvenilesurvival81 92 100 108 108 aTrail Bridge Reservoir emergent-fry-t<strong>of</strong>rysurvival79 91 100 113 138Trail Bridge Reservoir fry-to-juvenilesurvival38 74 100 128 183Trail Bridge Reservoir juvenile overwintersurvival38 74 100 128 128 aTrail Bridge Reservoir juvenile-to-smoltsurvival21 64 100 111 111 aDownstream passage smolt survival <strong>at</strong>Trail Bridge Dam21 64 100 125 125 aMarine smolt-to-adult survival 21 64 100 133 200aThe 100% increase in value results in a survival input <strong>of</strong> gre<strong>at</strong>er than 100%, so no increase in popul<strong>at</strong>ion is estim<strong>at</strong>ed.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board28


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Report3.4.2 Early life-stages3.4.2.1 SpawningIn the Carmen Bypass Reach <strong>and</strong> Smith Bypass Reach, spawning habit<strong>at</strong> under current conditionslimits the production <strong>of</strong> emergent <strong>Chinook</strong> fry. In the Carmen Bypass Reach, use <strong>of</strong> spawninghabit<strong>at</strong> is close to the carrying capacity <strong>of</strong> available spawning habit<strong>at</strong>, <strong>and</strong> modeled increases inspawning habit<strong>at</strong> do not result in large increases in smolt production, unless escapementsimultaneously increases (e.g., smolt-to-adult survival increases). In contrast, very little suitablespawning habit<strong>at</strong> was mapped in the Smith Bypass Reach under current conditions, <strong>and</strong> spawninghabit<strong>at</strong> there appears to limit production <strong>of</strong> smolts from the Study Area. Few (< 5) redds aretypically observed in the Smith Bypass Reach each year. The exception was the 2004 spawningseason, during which 12 redds were observed. The beginning <strong>of</strong> the 2004 spawning season in theSmith Bypass Reach coincided with a spill event from Smith Dam, ranging from 18 to 80 cfs on22–23 September, which, based on the Aqu<strong>at</strong>ic Habit<strong>at</strong>s <strong>and</strong> Instream Flows study (Stillw<strong>at</strong>erSciences 2006b) likely increased available spawning habit<strong>at</strong>, or <strong>at</strong>traction to the Smith BypassReach. Redd size in the Smith Bypass Reach (0.9 m 2 [9.7 ft 2 ]) is rel<strong>at</strong>ively small compared withth<strong>at</strong> measured in Carmen Bypass Reach (5.4 m 2 [58.1 ft 2 ]), <strong>and</strong> compared with <strong>Chinook</strong> salmonredds in other loc<strong>at</strong>ions (Burner 1951). For modeling management actions, redd sizes in SmithBypass Reach were assumed to increase with increasing spawning habit<strong>at</strong>.At the current popul<strong>at</strong>ion level, a low level <strong>of</strong> superimposition was predicted by the Escape 5.1sub-model for Carmen Bypass Reach, <strong>and</strong> was observed during 2004 spawning surveys(Stillw<strong>at</strong>er Sciences 2006a). The r<strong>at</strong>io <strong>of</strong> K as determined by the Escape 5.1 sub-model results, tothe K based on observed gravel area <strong>and</strong> mean redd size, was low (0.30). This r<strong>at</strong>io reflects therel<strong>at</strong>ively short amount <strong>of</strong> time <strong>Chinook</strong> salmon are spawning in the reach in comparison with theredd defense time, r<strong>at</strong>her than any effect <strong>of</strong> superimposition. Once cre<strong>at</strong>ed, most redds weredefended until nearly the end <strong>of</strong> the run. Therefore, an individual p<strong>at</strong>ch <strong>of</strong> spawning habit<strong>at</strong> mayhave been much larger than the mean redd size, yet its use was dict<strong>at</strong>ed by the redd defense area(4 times the size <strong>of</strong> the redd).Although the current levels <strong>of</strong> <strong>Chinook</strong> salmon <strong>and</strong> bull trout spawning are not high enough toresult in significant inter-specific superimposition, if <strong>Chinook</strong> salmon escapement increased, thenumbers <strong>of</strong> bull trout <strong>and</strong> <strong>Chinook</strong> salmon spawners could approach levels th<strong>at</strong> would result insignificant redd superimposition in the Carmen Bypass Reach (~30 <strong>Chinook</strong> salmon females,Figure 3-10). Because bull trout typically spawn l<strong>at</strong>er in the season than <strong>Chinook</strong> salmon(Stillw<strong>at</strong>er Sciences 2006a), redd superimposition potentially could affect <strong>Chinook</strong> salmon morethan bull trout (Section 3.3.4.1). Since bull trout redds are typically smaller than <strong>Chinook</strong> salmonredds (Stillw<strong>at</strong>er Sciences 2006a), increases in the numbers <strong>of</strong> spawners could cause significantsuperimposition with as few as 30 <strong>Chinook</strong> salmon females, whereas superimposition is notpredicted to be significant for bull trout spawners until <strong>at</strong> least 150 female bull trout arespawning. However, bull trout egg burial depths range from 10 to 20 cm (4 to 8 in), <strong>and</strong> <strong>Chinook</strong>salmon egg burial depths are typically gre<strong>at</strong>er than 20 cm (8 in) (DeVries 1997), so inter-specificsuperimposition is not considered to be a high risk for <strong>Chinook</strong> salmon either.3.4.2.2 FryBased on field measurements <strong>of</strong> gravel permeability (Stillw<strong>at</strong>er Sciences 2006d) <strong>and</strong> applic<strong>at</strong>ion<strong>of</strong> a rel<strong>at</strong>ionship between permeability <strong>and</strong> egg-to-emergence survival (Tagart 1976, McCuddin1977), incub<strong>at</strong>ion survival for <strong>Chinook</strong> salmon eggs is expected to be rel<strong>at</strong>ively low in CarmenBypass Reach. Increasing egg-to-emergent fry survival (e.g., by improved gravel quality) would28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board29


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Reportincrease the number <strong>of</strong> emergent fry, which would subsequently migr<strong>at</strong>e to rear in the reservoir(since fry rearing habit<strong>at</strong> in the bypass reaches in limited). Overall, the model is sensitive toincub<strong>at</strong>ion mortality, <strong>and</strong> moder<strong>at</strong>e increases in egg-to-emergence survival could result inincreases in smolt production.Habit<strong>at</strong> limits the abundance <strong>of</strong> fry in the bypass reaches (Stillw<strong>at</strong>er Sciences 2006b). All earlyfry th<strong>at</strong> do not find suitable habit<strong>at</strong> in the bypass reaches are assumed to migr<strong>at</strong>e <strong>and</strong> rear in TrailBridge Reservoir. D<strong>at</strong>a from rotary screw trapping in the Carmen Bypass Reach corrobor<strong>at</strong>e anearly fry migr<strong>at</strong>ion <strong>of</strong> <strong>Chinook</strong> salmon, <strong>and</strong> direct observ<strong>at</strong>ion snorkel surveys confirm rel<strong>at</strong>ivelylow fry abundance in Lower Carmen <strong>and</strong> Smith bypass reaches (although fry are difficult toobserve [Stillw<strong>at</strong>er Sciences 2006a]). Therefore, fry survival during migr<strong>at</strong>ion to the reservoirstrongly affects smolt production.3.4.2.3 JuvenileThe carrying capacity <strong>of</strong> juveniles in the Carmen <strong>and</strong> Smith bypass reaches is a function <strong>of</strong> theamount <strong>of</strong> available habit<strong>at</strong> <strong>and</strong> the density <strong>of</strong> <strong>Chinook</strong> salmon th<strong>at</strong> can occupy th<strong>at</strong> space. Undercurrent conditions, habit<strong>at</strong> for juveniles is abundant in both bypass reaches. However, juvenile<strong>Chinook</strong> salmon rearing in these reaches must share suitable habit<strong>at</strong> with juvenile cutthro<strong>at</strong> trout,rainbow trout, <strong>and</strong> bull trout (only in the Carmen Bypass Reach). The juvenile trout <strong>and</strong> char inthis habit<strong>at</strong> occur in high densities (> 1 fish/m 2 [10.8 fish/ft 2 ]), <strong>and</strong> are large enough (> 150 mm[5.9 in]) to prey upon juvenile <strong>Chinook</strong> salmon (~60 mm [2 in]). Observ<strong>at</strong>ions during summer<strong>and</strong> winter snorkel surveys indic<strong>at</strong>ed th<strong>at</strong> juvenile <strong>Chinook</strong> salmon rear in low densities (< 0.1fish/m 2 [0.1 fish/10.8 ft 2 ]). Therefore, it appears th<strong>at</strong> despite the available habit<strong>at</strong>, most <strong>Chinook</strong>salmon emigr<strong>at</strong>e to Trail Bridge Reservoir to rear. Rotary screw trapping (in the Carmen BypassReach only) <strong>and</strong> snorkel survey results (in both reaches) indic<strong>at</strong>e large pulses <strong>of</strong> fry emigr<strong>at</strong>ing inthe spring <strong>and</strong> summer, very few juveniles overwintering in the bypass reaches, <strong>and</strong> minimalsmolt production in the bypass reaches (Stillw<strong>at</strong>er Sciences 2006a).3.4.3 All life-stages in Trail Bridge ReservoirTrail Bridge Reservoir provides abundant rearing habit<strong>at</strong> for all early life-stages <strong>of</strong> <strong>Chinook</strong>salmon produced in the bypass reaches. Survival in the reservoir strongly affects smoltproduction (Table 3-7), <strong>and</strong> is influenced by factors such as str<strong>and</strong>ing, entrainment, <strong>and</strong>pred<strong>at</strong>ion. A large number (> 10,000) <strong>of</strong> h<strong>at</strong>chery rainbow trout are released into Trail BridgeReservoir <strong>at</strong> sizes large enough to prey on <strong>Chinook</strong> salmon fry produced in the bypass reaches;h<strong>at</strong>chery rainbow trout have been observed preying on <strong>Chinook</strong> salmon fry in other lentic systems(e.g, Tabor et al. 2004), <strong>and</strong> in the McKenzie River (Firman et al. 2004).<strong>Chinook</strong> salmon fry are occasionally str<strong>and</strong>ed by reservoir fluctu<strong>at</strong>ions in Trail Bridge Reservoir.During 31 surveys conducted in 2005, 25 dead spring <strong>Chinook</strong> salmon fry (progeny <strong>of</strong> h<strong>at</strong>cheryadult releases) were observed (Stillw<strong>at</strong>er Sciences 2006e). The overall mortality r<strong>at</strong>e <strong>at</strong>tributableto str<strong>and</strong>ing in the reservoir is not known, but is assumed to be a component <strong>of</strong> the 50% mortalityr<strong>at</strong>e used for fry rearing life-stage in Trail Bridge Reservoir (in addition to pred<strong>at</strong>ion mortality).Field studies are planned for spring 2006 to estim<strong>at</strong>e total number <strong>of</strong> fish str<strong>and</strong>ed during theperiod <strong>of</strong> gre<strong>at</strong>est vulnerability (fry downstream migr<strong>at</strong>ion).Smolt production from Trail Bridge Reservoir is also affected by downstream passage survival <strong>at</strong>Trail Bridge Dam. Current values in the model assume a high mortality r<strong>at</strong>e (20%) rel<strong>at</strong>ive to theliter<strong>at</strong>ure (e.g., Bell 1981, Stillw<strong>at</strong>er Sciences 2006c). The modeled production <strong>of</strong> smolts from28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board30


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportTrail Bridge Reservoir (~1,500) could not be directly corrobor<strong>at</strong>ed by captures <strong>at</strong> the rotary screwtrap downstream <strong>of</strong> Trail Bridge Dam, since the trap was not oper<strong>at</strong>ional year-round.Although the model estim<strong>at</strong>es production <strong>of</strong> age 1+ smolts, rotary screw trap capturesdownstream <strong>of</strong> Trail Bridge Dam indic<strong>at</strong>e th<strong>at</strong> age 0+ fry also emigr<strong>at</strong>e in the spring, <strong>and</strong> age 0+smolts (~8 months post emergence) emigr<strong>at</strong>e in the fall. This is a genetic trait consistent withspring <strong>Chinook</strong> salmon life history in other basins (Healey 1991), <strong>and</strong> likely does not indic<strong>at</strong>ehabit<strong>at</strong> limit<strong>at</strong>ions in the reservoir. The age 0+ <strong>Chinook</strong> salmon fry th<strong>at</strong> emigr<strong>at</strong>e decrease theproduction <strong>of</strong> smolts from Trail Bridge Reservoir; however, emigr<strong>at</strong>ing fry likely contribute tothe popul<strong>at</strong>ion downstream <strong>of</strong> Trail Bridge Dam.3.4.4 Resiliency to disturbanceThe spring <strong>Chinook</strong> salmon popul<strong>at</strong>ion in the Study Area is believed to be rel<strong>at</strong>ively resilient todisturbance. However, the model was not successful in accur<strong>at</strong>ely estim<strong>at</strong>ing recovery fromdisturbance for spring <strong>Chinook</strong> salmon, because factors such as adult migrant straying <strong>and</strong> lifehistorydiversity (e.g., age <strong>at</strong> adult migr<strong>at</strong>ion) were not explicitly addressed. For example, if afish kill caused the complete failure <strong>of</strong> one year-class, model results indic<strong>at</strong>e th<strong>at</strong> up to 5gener<strong>at</strong>ions would be required for the impacted year-class to recover. However, strays from otherspawning reaches in the basin could quickly re-colonize the Study Area. In addition, sincem<strong>at</strong>ure adults can return from the ocean <strong>at</strong> a variety <strong>of</strong> ages, a spawning popul<strong>at</strong>ion could be reestablishedin the first gener<strong>at</strong>ion. Overall, short-term alter<strong>at</strong>ions in the amount or quality <strong>of</strong>habit<strong>at</strong> (e.g., physical habit<strong>at</strong>, food availability) <strong>at</strong> critical life-stages are not likely to cause longtermdamage to the <strong>Chinook</strong> salmon popul<strong>at</strong>ion. The <strong>Chinook</strong> salmon popul<strong>at</strong>ion is believed tobe resilient to disturbance in the Study Area based on:• Age structure <strong>of</strong> the returning adult popul<strong>at</strong>ion from age 3+ to age 6+,• Common for adults to stray,• High production <strong>of</strong> smolts rel<strong>at</strong>ive to the adult popul<strong>at</strong>ion,• Spawning habit<strong>at</strong> in both the Carmen Bypass Reach <strong>and</strong> Smith Bypass Reach, <strong>and</strong>• Habit<strong>at</strong> supporting rearing to age 1+ smolts in both Trail Bridge Reservoir <strong>and</strong>throughout the McKenzie River mainstem.3.5 Effects <strong>of</strong> Changes in Project Oper<strong>at</strong>ions <strong>and</strong>/or Enhancements on <strong>Bull</strong><strong>Trout</strong> <strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong>Based on current bull trout popul<strong>at</strong>ion dynamics, conceptual <strong>and</strong> quantit<strong>at</strong>ive model resultsindic<strong>at</strong>e th<strong>at</strong> management actions taken to increase spawning or rearing habit<strong>at</strong> <strong>of</strong> bull trout, instream reaches or Trail Bridge Reservoir, are unlikely to increase the bull trout popul<strong>at</strong>ion.However, efforts to increase habit<strong>at</strong> for subadults/adults in Trail Bridge Reservoir, or potentiallyby providing safe access to <strong>and</strong> from Smith Reservoir or habit<strong>at</strong> downstream <strong>of</strong> Trail BridgeDam, could increase carrying capacity, which would result in an increase <strong>of</strong> the adult popul<strong>at</strong>ion.If mortality <strong>of</strong> the adult popul<strong>at</strong>ion rel<strong>at</strong>ed to angling <strong>and</strong> poaching were reduced (e.g., viaincreased law enforcement), the adult popul<strong>at</strong>ion would increase. Reductions in adult mortalityby any means (e.g., reducing emigr<strong>at</strong>ion <strong>and</strong>/or poaching) would result in a larger adultpopul<strong>at</strong>ion, <strong>and</strong> a reduction in the subadult popul<strong>at</strong>ion (because <strong>of</strong> the shared habit<strong>at</strong>).Although the adult popul<strong>at</strong>ion would not be expected to increase, an increase in juvenile bull troutcould be obtained by large woody debris enhancements in Carmen Bypass Reach or Sweetw<strong>at</strong>erCreek, or lower w<strong>at</strong>er temper<strong>at</strong>ures in the Smith Bypass Reach (which could only be achievedwith hypolimnetic releases <strong>at</strong> Smith Dam).28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board31


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Report3.5.1 Instream flowsTo evalu<strong>at</strong>e the effect <strong>of</strong> increasing instream flows over current base flows in the Carmen BypassReach, suitable habit<strong>at</strong> areas estim<strong>at</strong>ed in the Aqu<strong>at</strong>ic Habit<strong>at</strong>s <strong>and</strong> Instream Flows study(Stillw<strong>at</strong>er Sciences 2006b) were used as values for the available habit<strong>at</strong> parameters in the model.The parameter values used for modeling are provided in Appendix D. (Note th<strong>at</strong> the flow/habit<strong>at</strong>rel<strong>at</strong>ionships are based on the flows tested during the Aqu<strong>at</strong>ic Habit<strong>at</strong>s <strong>and</strong> Instream Flows study,<strong>and</strong> may not represent the flows th<strong>at</strong> maximize habit<strong>at</strong> for any life-stage). The habit<strong>at</strong> criteriamapping method used in the Aqu<strong>at</strong>ic Habit<strong>at</strong>s <strong>and</strong> Instream Flows study had a measured error <strong>of</strong>about ±30%. The sensitivity analysis addressed this error by running scenarios where each valuewas increased or decreased. Although bull trout do not currently spawn or rear in the SmithBypass Reach, increased flows were considered in conjunction with a hypolimnetic release fromSmith Dam (the feasibility <strong>of</strong> which has not been explored) to decrease stream temper<strong>at</strong>ures <strong>and</strong>make habit<strong>at</strong> suitable for all life-stages <strong>of</strong> bull trout.3.5.1.1 Carmen Bypass ReachIf instream flows were increased to maximize available habit<strong>at</strong> for all life-stages in the CarmenBypass Reach (around 205 cfs based on the flows measured in the Aqu<strong>at</strong>ic Habit<strong>at</strong>s <strong>and</strong> InstreamFlows study), the carrying capacity would increase for most life-stages except subadults/adults.However, the overall popul<strong>at</strong>ion would not be expected to increase unless the carrying capacityfor subadult/adult bull trout in Trail Bridge Reservoir was also increased.Spawning habit<strong>at</strong> under current flows is adequ<strong>at</strong>e to “seed” the Carmen Bypass Reach with moreemergent fry than can be supported <strong>at</strong> subsequent life-stages. While increasing flows during thespawning season (fall) to 205 cfs would increase available spawning habit<strong>at</strong>, the number <strong>of</strong> fryproduced are currently limited by early fry habit<strong>at</strong>, r<strong>at</strong>her than spawning habit<strong>at</strong>. Based onmodeling results, early fry rearing habit<strong>at</strong> limits the production <strong>of</strong> juvenile bull trout from theCarmen Bypass Reach. However, early fry rearing habit<strong>at</strong> peaks <strong>at</strong> 205 cfs, which is the currentbase flow during the early fry rearing period (spring). Increasing flows in the Carmen BypassReach during spring would likely decrease the carrying capacity for early fry, resulting in fewerjuveniles from the Carmen Bypass Reach (Stillw<strong>at</strong>er Sciences 2006b).Habit<strong>at</strong> for l<strong>at</strong>e fry did not increase significantly with increased flow (Stillw<strong>at</strong>er Sciences 2006b),though slightly more habit<strong>at</strong> was observed <strong>at</strong> 205 cfs than <strong>at</strong> lower or higher flows. Habit<strong>at</strong> forl<strong>at</strong>e fry was far more abundant than habit<strong>at</strong> for early fry <strong>at</strong> all flows, <strong>and</strong> is unlikely to limitproduction <strong>of</strong> bull trout from the reach.Habit<strong>at</strong> for juvenile bull trout was not found to increase significantly with increased flow(Stillw<strong>at</strong>er Sciences 2006b), though slightly more habit<strong>at</strong> was observed <strong>at</strong> 205 cfs than <strong>at</strong> lower orhigher flows. The production <strong>of</strong> juveniles in the Carmen Bypass Reach is currently limited by theproduction <strong>of</strong> early fry, <strong>and</strong> until this “bottleneck” is addressed, increases in juvenile habit<strong>at</strong> willnot increase juvenile production (though overall, the popul<strong>at</strong>ion is limited by adult habit<strong>at</strong>).No subadult or adult habit<strong>at</strong> was mapped in the Carmen Bypass Reach <strong>at</strong> any flow, primarilybecause increased flows (up to 345 cfs) do not result in adequ<strong>at</strong>e increases in w<strong>at</strong>er depth(Stillw<strong>at</strong>er Sciences 2006b) based on the habit<strong>at</strong> criteria selected by the IFCT. This finding iscorrobor<strong>at</strong>ed by PIT tag analysis <strong>and</strong> snorkel surveys, both <strong>of</strong> which rarely detected subadults oradults in the Carmen Bypass Reach outside <strong>of</strong> the spawning season (Stillw<strong>at</strong>er Sciences 2006a).28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board32


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Report3.5.1.2 Smith Bypass ReachNo bull trout have been observed in the Smith Bypass Reach during snorkel or spawning surveys,although two bull trout were detected by the PIT tag antenna (an adult in l<strong>at</strong>e October, <strong>and</strong> ajuvenile bull trout in mid-summer 2004) (Stillw<strong>at</strong>er Sciences 2006a). The PIT tag antenna wasloc<strong>at</strong>ed <strong>at</strong> the downstream end <strong>of</strong> the Smith Bypass Reach, <strong>and</strong> the distance th<strong>at</strong> the bull troutmoved upstream is unknown. Maximum summer w<strong>at</strong>er temper<strong>at</strong>ures were regularly over 16°C(60°F) in the Smith Bypass Reach, as described in the W<strong>at</strong>er Quality report (Stillw<strong>at</strong>er Sciences2006d). The probability <strong>of</strong> juvenile bull trout occurrence is rel<strong>at</strong>ively low (less than 50%) instreams with maximum daily temper<strong>at</strong>ures above approxim<strong>at</strong>ely 14–16°C (57–60°F) (Dunham etal. 2003). Based on the conceptual model for bull trout, even if bull trout can persist in w<strong>at</strong>ertemper<strong>at</strong>ures over 16°C (60°F), they are likely <strong>at</strong> a competitive disadvantage with rainbow trout<strong>and</strong> cutthro<strong>at</strong> trout, both <strong>of</strong> which occur in the Smith Bypass Reach.Artificially cooling the w<strong>at</strong>er in the Smith Bypass Reach (e.g., hypolimnetic release, chillers,pumping ground w<strong>at</strong>er) would be required to maintain suitable w<strong>at</strong>er temper<strong>at</strong>ures for bull troutrearing. Smith Reservoir is temper<strong>at</strong>ure-str<strong>at</strong>ified during summer, <strong>and</strong> below about 3 m (10 ft)depth, temper<strong>at</strong>ures remain below 12°C (53°F), even during the summer. If hypolimneticreleases (gre<strong>at</strong>er than 18 m [60 ft] deep) were provided from Smith Reservoir into the SmithBypass Reach, cooler temper<strong>at</strong>ures could be maintained in the Smith Bypass Reach to supportbull trout. Based on w<strong>at</strong>er temper<strong>at</strong>ure modeling (Stillw<strong>at</strong>er Sciences 2006d), a hypolimneticrelease <strong>of</strong> 45 cfs between mid-June <strong>and</strong> mid-September would result in summer temper<strong>at</strong>ures inthe Smith Bypass Reach below 12°C (53°F) for the entire year.Prior to the construction <strong>of</strong> Smith Dam, the Smith River typically had summer flows less than 20cfs (Stillw<strong>at</strong>er Sciences 2006d), <strong>and</strong> w<strong>at</strong>er temper<strong>at</strong>ures were likely gre<strong>at</strong>er than 12°C (53°F)(Stillw<strong>at</strong>er Sciences 2006h). Surface w<strong>at</strong>ers in Smith Reservoir during summer are > 12°C(53°F), so only a hypolimnetic release from Smith Reservoir would be capable <strong>of</strong> decreasingw<strong>at</strong>er temper<strong>at</strong>ures in Smith Bypass Reach to temper<strong>at</strong>ures suitable for bull trout, which likelydid not occur historically during summer. W<strong>at</strong>er temper<strong>at</strong>ures during the fall spawning seasonare currently low enough to allow spawning <strong>and</strong> successful incub<strong>at</strong>ion. However, summer w<strong>at</strong>ertemper<strong>at</strong>ures appear to preclude the use <strong>of</strong> this reach by bull trout, as observed in other rivers(Dunham et al. 2003).Although the feasibility <strong>of</strong> a hypolimnetic release (or chillers, or pumping groundw<strong>at</strong>er) has notbeen explored for Smith Dam, the popul<strong>at</strong>ion model was run assuming a minimum flow in theSmith Bypass Reach <strong>of</strong> 50 cfs (current base flow plus hypolimnetic release to achieve suitablew<strong>at</strong>er temper<strong>at</strong>ures for bull trout rearing) between mid-June <strong>and</strong> mid-September, <strong>and</strong> regul<strong>at</strong>edbase flows under current oper<strong>at</strong>ions (i.e., no releases <strong>at</strong> Smith Dam) the remainder <strong>of</strong> the year.The model also assumed th<strong>at</strong> 8 females would spawn in the Smith Bypass Reach. The modelparameters th<strong>at</strong> were used, in addition to the default values used to model current conditions, areprovided in Table D-4.Increasing juvenile production from the Smith Bypass Reach would not increase the adultpopul<strong>at</strong>ion. Because production <strong>of</strong> juveniles from Carmen Bypass Reach <strong>and</strong> Sweetw<strong>at</strong>er Creekare not currently limited by the number <strong>of</strong> female spawners, juveniles are not predicted to declinein these reaches with increased spawning in Smith Bypass Reach. Assuming current base flowsin Smith Bypass Reach, spawning habit<strong>at</strong> is limited to the production <strong>of</strong> approxim<strong>at</strong>ely 8,000eggs. However, since subsequent life-stages (early fry <strong>and</strong> juveniles) are limiting, increasinginstream flows to increase available spawning habit<strong>at</strong> would have no effect on production.Production <strong>of</strong> juveniles from the Smith Bypass Reach is limited by available habit<strong>at</strong> for early fry,28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board33


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Report<strong>and</strong> then by available habit<strong>at</strong> for juveniles. Both <strong>of</strong> these life-stages show a peak in availablehabit<strong>at</strong> <strong>at</strong> 7 cfs, which is a lower flow than currently occurs during most <strong>of</strong> the early fry <strong>and</strong>juvenile rearing periods, <strong>and</strong> which is lower than the minimum flows required to reduce w<strong>at</strong>ertemper<strong>at</strong>ures to levels suitable temper<strong>at</strong>ures for bull trout. The model estim<strong>at</strong>es th<strong>at</strong> withhypolimnetic releases from Smith Dam, over 1,000 juveniles could be produced from this reach.Although the potential increase in juvenile production from Smith Bypass Reach wouldeffectively double potential juvenile-to-subadult recruits in the reservoir, no increase in the adultpopul<strong>at</strong>ion is expected, because adult habit<strong>at</strong> would still be limiting in Trail Bridge Reservoir.3.5.2 Large woody debris additionsLarge woody debris enhancements can increase the amount <strong>of</strong> available habit<strong>at</strong> <strong>and</strong> the density <strong>of</strong>bull trout th<strong>at</strong> can occupy th<strong>at</strong> space, by increasing habit<strong>at</strong> complexity (e.g., Gowan <strong>and</strong> Fausch1996, Dambacher <strong>and</strong> Jones 1997). During Summer 2005, as part <strong>of</strong> a collabor<strong>at</strong>ive effort withEWEB <strong>and</strong> other parties, the USDA Forest Service added wood to approxim<strong>at</strong>ely 80% <strong>of</strong> thelower Carmen Bypass Reach.The Aqu<strong>at</strong>ic Habit<strong>at</strong>s <strong>and</strong> Instream Flows study (Stillw<strong>at</strong>er Sciences 2006b) found th<strong>at</strong> existinglarge woody debris already in the reach increased habit<strong>at</strong> for all early life-stages <strong>of</strong> bull trout inthe Carmen Bypass Reach, <strong>at</strong> all flows assessed. In the vicinity <strong>of</strong> large woody debris, a 50 to100% increase in the amount <strong>of</strong> available habit<strong>at</strong> generally occurred, compared with areaswithout large woody debris. To determine the potential effect <strong>of</strong> the USDA Forest Service’slarge woody debris enhancement on current bull trout popul<strong>at</strong>ion dynamics, the input values foravailable habit<strong>at</strong> in the reach were increased based on the increase observed in the Aqu<strong>at</strong>icHabit<strong>at</strong>s <strong>and</strong> Instream Flows study (Stillw<strong>at</strong>er Sciences 2006b), <strong>and</strong> adjusted by the areaenhanced (Table D-6).Based on the popul<strong>at</strong>ion dynamics model, the USDA Forest Service’s 2005 large woody debrisenhancement project increased rearing habit<strong>at</strong> for early fry by more than 100%, <strong>and</strong> juvenileproduction from the Carmen Bypass Reach by more than an estim<strong>at</strong>ed 300 individuals. If largewoody debris were added to Sweetw<strong>at</strong>er Creek in amounts similar to those added to the CarmenBypass Reach, <strong>and</strong> if similar increases in available habit<strong>at</strong> resulted, then juvenile production fromboth reaches is estim<strong>at</strong>ed to increase by more than 500 juveniles for a total <strong>of</strong> nearly 1,000 age 2+juveniles.However, the overall number <strong>of</strong> adults in the Study Area is not expected to increase with largewoody debris enhancements, because the enhancements will not increase subadult/adult habit<strong>at</strong>.However, protecting high levels <strong>of</strong> production age 2+ juveniles are important to maintaining theresiliency <strong>of</strong> the current popul<strong>at</strong>ion (see Section 3.3.5).3.5.3 Spawning gravel augment<strong>at</strong>ionBecause subsequent life-stages (early fry) are limiting production from existing spawning areas inall three reaches in the Study Area, gravel augment<strong>at</strong>ion to increase available spawning habit<strong>at</strong>would not affect bull trout production. However, in the Smith Bypass Reach, where the amount<strong>of</strong> current spawning habit<strong>at</strong> is low, gravel augment<strong>at</strong>ion may increase the opportunities <strong>of</strong> femalestrying to loc<strong>at</strong>e suitable spawning habit<strong>at</strong> (which still would have no effect on overallpopul<strong>at</strong>ion), assuming th<strong>at</strong> w<strong>at</strong>er temper<strong>at</strong>ures were suitable.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board34


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Report3.5.4 Trail Bridge Reservoir habit<strong>at</strong> enhancementsBased on the conceptual <strong>and</strong> quantit<strong>at</strong>ive popul<strong>at</strong>ion modeling, the bull trout popul<strong>at</strong>ion in theStudy Area is currently limited by available habit<strong>at</strong> for subadults <strong>and</strong> adults. If habit<strong>at</strong> in TrailBridge Reservoir was enhanced to increase complexity (e.g., large woody debris, brush bundles,boulders), the density <strong>of</strong> subadults <strong>and</strong> adults might increase. Gowan <strong>and</strong> Fausch (1996) foundth<strong>at</strong> large woody debris enhancements in streams successfully increased the adult popul<strong>at</strong>ions <strong>of</strong>brook, brown, <strong>and</strong> rainbow trout, though no similar field d<strong>at</strong>a exists for lake or reservoir habit<strong>at</strong>or for bull trout specifically. For habit<strong>at</strong> complexity to increase density, food is also assumed tobe sufficient <strong>and</strong> not a limit to the adult popul<strong>at</strong>ion. Food availability in itself may also increasedensity <strong>of</strong> adult bull trout (<strong>and</strong> thus popul<strong>at</strong>ion size) if territory size decreases as prey abundanceincreases, as has been observed in other salmonids (Grant et al. 1998).The possibility th<strong>at</strong> bull trout are food-limited in Trail Bridge Reservoir was evalu<strong>at</strong>ed byexamining a bioenergetic analysis from Lake Billy <strong>Chinook</strong> (Beauchamp <strong>and</strong> Van Tassell 2001).The bull trout popul<strong>at</strong>ion in Lake Billy <strong>Chinook</strong> is assumed to be an appropri<strong>at</strong>e surrog<strong>at</strong>e for thebull trout popul<strong>at</strong>ion above Trail Bridge Dam, <strong>and</strong> th<strong>at</strong> although kokanee salmon occur in LakeBilly <strong>Chinook</strong> but not in the Study Area, <strong>Chinook</strong> salmon can be considered a surrog<strong>at</strong>e preyspecies.Under current conditions <strong>of</strong> <strong>Chinook</strong> salmon production in the Study Area, <strong>and</strong> with annualh<strong>at</strong>chery trout stocking, food does not appear to be limiting in Trail Bridge Reservoir for bulltrout subadult <strong>and</strong> adult life-stages (Table 3-8). Based on an assessment <strong>of</strong> fish prey consumptionconducted on bull trout in Lake Billy <strong>Chinook</strong> (Beauchamp <strong>and</strong> Van Tassell 2001), the per-capitanumber <strong>and</strong> size range <strong>of</strong> fish prey e<strong>at</strong>en by bull trout can be estim<strong>at</strong>ed (Table 3-8). The juvenilelife-stage <strong>of</strong> bull trout may require more food in the size c<strong>at</strong>egory <strong>of</strong> the <strong>Chinook</strong> salmon fry thanis available, <strong>and</strong> food availability could begin to limit growth <strong>at</strong> this life-stage, but theinteractions between food supply <strong>and</strong> h<strong>at</strong>chery trout in the Study Area are poorly understood.Based on the analysis <strong>of</strong> potential consumption by h<strong>at</strong>chery-stocked rainbow trout <strong>of</strong> <strong>Chinook</strong>salmon fry, their consumption alone could deplete the stock <strong>of</strong> <strong>Chinook</strong> salmon fry (see Section3.5.6), <strong>and</strong> thus rainbow trout would compete for food resources with juvenile <strong>and</strong> subadult bulltrout. However, the rainbow trout are likely also a potentially important food supply for adultbull trout, assuming adult bull trout will e<strong>at</strong> fish as large as half <strong>of</strong> their length. If adult bull troutpreferred to e<strong>at</strong> juvenile <strong>Chinook</strong> salmon over h<strong>at</strong>chery rainbow trout, food limit<strong>at</strong>ion would belikely. It is notable th<strong>at</strong> the maximum lengths <strong>of</strong> adult bull trout in Lake Billy <strong>Chinook</strong> aregre<strong>at</strong>er than adult bull trout in Trail Bridge Reservoir <strong>at</strong> the same age, also suggesting thepotential for food limit<strong>at</strong>ion in Trail Bridge Reservoir. In summary, although food does notappear limiting for subadults or adults, the interactions between h<strong>at</strong>chery fish, <strong>Chinook</strong> salmonfry, <strong>and</strong> bull trout juveniles are poorly understood, <strong>and</strong> thus food limit<strong>at</strong>ions may exist.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board35


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportTable 3-8. <strong>Bull</strong> trout consumption <strong>of</strong> fish in Lake Billy <strong>Chinook</strong> (based on Beauchamp <strong>and</strong> VanTassell 2001) per individual <strong>and</strong> potential consumption <strong>of</strong> fish in Trail Bridge Reservoir(based on Stillw<strong>at</strong>er Sciences 2006a).<strong>Bull</strong>trout size(mm)Number<strong>of</strong> bulltrout inTrailBridgeReservoirMeasured percapitaconsumption inLake Billy<strong>Chinook</strong>(fish/year)200–300 456 25 (< 100 mm)300–450 26 36 (< 150 mm)> 450 a 85 33 (< 350 mm)Estim<strong>at</strong>ed percapitaconsumption inTrail BridgeReservoir(fish/year)25 <strong>Chinook</strong>salmon fry36 <strong>Chinook</strong>salmon juveniles33 bull trout orrainbow troutEstim<strong>at</strong>ed totalconsumption inTrial BridgeReservoir(fish/year)11,400 <strong>Chinook</strong>salmon fry930 <strong>Chinook</strong>salmon juveniles2,800 h<strong>at</strong>cherytrout or bull troutCurrent foodavailability inTrail BridgeReservoir(total number<strong>of</strong> fish)> 20,000emergent<strong>Chinook</strong> salmonfry> 1,500<strong>Chinook</strong> salmonjuveniles> 10,000h<strong>at</strong>chery trout<strong>and</strong> bull trouta Assumed th<strong>at</strong> bull trout > 450 mm e<strong>at</strong> predominantly larger prey (e.g., bull trout juveniles <strong>and</strong> h<strong>at</strong>chery rainbow trout),although it is possible the smaller prey (e.g., <strong>Chinook</strong> salmon juveniles) are also consumed.Based on this simplistic analysis, food is not limiting the adult bull trout popul<strong>at</strong>ion in TrailBridge Reservoir under current conditions. If adult density were increased to 0.133 fish/mshoreline, which has been observed in some systems with abundant bull trout (Lake Billy<strong>Chinook</strong>), the adult popul<strong>at</strong>ion upstream <strong>of</strong> Trail Bridge Dam could theoretically increase tonearly 640 adults. Although it is not known if densities similar to those observed in Lake Billy<strong>Chinook</strong> could ever be achieved in Trail Bridge Reservoir, maintaining or increasing foodavailability <strong>and</strong> increasing habit<strong>at</strong> complexity for adults appear to be the actions most likely <strong>of</strong>increasing popul<strong>at</strong>ion size upstream <strong>of</strong> Trail Bridge Dam.3.5.4.1 Adult mortality<strong>Bull</strong> trout adult mortality in the Study Area was estim<strong>at</strong>ed to be about 20% annually (Stillw<strong>at</strong>erSciences 2006a), which includes losses from n<strong>at</strong>ural causes, poaching, emigr<strong>at</strong>ion, etc (the r<strong>at</strong>e <strong>of</strong>mortality from each source is unknown). The current adult popul<strong>at</strong>ion is composed <strong>of</strong> age 4+ toage 7+ individuals (Stillw<strong>at</strong>er Sciences 2006a), which is consistent with estim<strong>at</strong>es <strong>of</strong> high annualmortality or emigr<strong>at</strong>ion. Angler surveys <strong>and</strong> Oregon police reports indic<strong>at</strong>e th<strong>at</strong> angling pressure(e.g., use <strong>of</strong> bait) <strong>and</strong> poaching <strong>of</strong> bull trout occur in the Study Area (Stillw<strong>at</strong>er Sciences 2006i).If mortality <strong>of</strong> the adult popul<strong>at</strong>ion rel<strong>at</strong>ed to angling <strong>and</strong> poaching were reduced (e.g., viaincreased law enforcement), the adult popul<strong>at</strong>ion would increase. Reductions in adult mortalityby any means (e.g., reducing emigr<strong>at</strong>ion <strong>and</strong>/or poaching) would result in a larger adultpopul<strong>at</strong>ion, <strong>and</strong> a reduction in the subadult popul<strong>at</strong>ion (because <strong>of</strong> the shared habit<strong>at</strong>). In contrastto the Trail Bridge popul<strong>at</strong>ion, many bull trout popul<strong>at</strong>ions have long-lived individuals (>7 yearsold) (Hagen <strong>and</strong> Baxter 1992). A larger adult popul<strong>at</strong>ion would increase the resiliency <strong>of</strong> thepopul<strong>at</strong>ion by increasing the number <strong>of</strong> individuals <strong>of</strong> spawning age, as well as the number <strong>of</strong>individuals from separ<strong>at</strong>e cohorts.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board36


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Report3.5.5 Fish Passage <strong>at</strong> Trail Bridge DamBased on PIT tag detections (Stillw<strong>at</strong>er Sciences 2006c), if passage facilities were provided <strong>at</strong>Trail Bridge Dam, a portion <strong>of</strong> bull trout subadults <strong>and</strong> adults would pass downstream over thedam during the fall after spawning, <strong>and</strong> return in the early summer. Regardless <strong>of</strong> the response <strong>of</strong>the popul<strong>at</strong>ion to accessing additional habit<strong>at</strong>, popul<strong>at</strong>ions upstream <strong>and</strong> downstream <strong>of</strong> TrailBridge Dam would be expected to benefit from genetic connectivity, the expression <strong>of</strong> multiplelife histories (e.g., fluvial or adfluvial), <strong>and</strong> the opportunity to migr<strong>at</strong>e downstream with preymigr<strong>at</strong>ions (e.g., <strong>Chinook</strong> smolts). These benefits are discussed in the Aqu<strong>at</strong>ic Habit<strong>at</strong>Connectivity report (Stillw<strong>at</strong>er Sciences 2005j) <strong>and</strong> were not modeled.Access to habit<strong>at</strong> in the mainstem McKenzie River downstream <strong>of</strong> Trail Bridge Dam couldincrease the overall amount <strong>of</strong> adult habit<strong>at</strong> for the upstream popul<strong>at</strong>ion, <strong>and</strong> thus the popul<strong>at</strong>ionsize could increase. If, however, habit<strong>at</strong> conditions for adults downstream <strong>of</strong> Trail Bridge Damare not as suitable as those upstream <strong>of</strong> the dam (e.g., increased angling pressure, less foodavailability) or if the habit<strong>at</strong> is already occupied, the health <strong>of</strong> the popul<strong>at</strong>ion upstream <strong>of</strong> TrailBridge Reservoir could be reduced (i.e., if the bull trout in Trail Bridge Reservoir are a sourcepopul<strong>at</strong>ion, <strong>and</strong> the popul<strong>at</strong>ion downstream <strong>of</strong> Trail Bridge Dam is stable or in decline). Twoscenarios were modeled: 1) subadult/adult habit<strong>at</strong> downstream <strong>of</strong> Trail Bridge Dam is unlimited,<strong>and</strong> 2) subadult/adult habit<strong>at</strong> downstream <strong>of</strong> Trail Bridge Dam is currently s<strong>at</strong>ur<strong>at</strong>ed by thespawning popul<strong>at</strong>ion from Ollalie <strong>and</strong> Anderson creeks. Both scenarios assumed th<strong>at</strong> there wasno mortality during downstream <strong>and</strong> upstream passage (e.g., screened turbine, bypass facility, <strong>and</strong>fish ladder).In the first scenario (no habit<strong>at</strong> limit<strong>at</strong>ions for subadult/adult bull trout), the model predicts anincrease <strong>of</strong> the subadult/adult popul<strong>at</strong>ion to nearly 800 individuals before habit<strong>at</strong> for early fry inthe Carmen Bypass Reach <strong>and</strong> Sweetw<strong>at</strong>er Creek would limit additional increases in thepopul<strong>at</strong>ion. Under this scenario, most <strong>of</strong> the fish (~700) would be assumed to migr<strong>at</strong>e from TrailBridge Reservoir after the juvenile rearing stage, returning only to spawn in Carmen BypassReach or Sweetw<strong>at</strong>er Creek. In the second scenario (habit<strong>at</strong> is limited for subadult/adult bulltrout), the model predicts no increase <strong>of</strong> the subadult/adult popul<strong>at</strong>ion, unless bull trout from TrailBridge Reservoir competitively displace bull trout produced from Ollalie <strong>and</strong> Anderson creeks.To assess the reasonability <strong>of</strong> the scenario th<strong>at</strong> habit<strong>at</strong> downstream <strong>of</strong> Trail Bridge Dam is notlimited, production from Anderson <strong>and</strong> Ollalie creeks was modeled. Based on averageproduction estim<strong>at</strong>es measured <strong>at</strong> a rotary screw trap oper<strong>at</strong>ed by the USDA Forest Service inAnderson Creek, an average <strong>of</strong> about 10,000 bull trout fry, <strong>and</strong> around 470 juveniles are producedeach year from Anderson Creek. Ignoring production from Ollalie Creek, <strong>and</strong> from the TrailBridge popul<strong>at</strong>ion, <strong>and</strong> assuming similar survival r<strong>at</strong>es used to model bull trout above TrailBridge, over 700 spawning adults would be predicted. In fact, the highest redd count forAnderson Creek <strong>and</strong> Ollalie Creek combined was 94 in 1997, indic<strong>at</strong>ing <strong>at</strong> least 188 adults (94females, 94 males) returned to spawn. Because the actual number <strong>of</strong> returning adults differs fromthe 700 predicted by the model, either adult habit<strong>at</strong> (food availability <strong>and</strong>/or space) is limitedbelow Trail Bridge Dam, or survival <strong>of</strong> adults is lower in the mainstem McKenzie River than wasestim<strong>at</strong>ed for the Trail Bridge popul<strong>at</strong>ion. For example, if mortality from angling <strong>and</strong> othersources in the mainstem were as high as 70% annually for adults, the number <strong>of</strong> returning adultswould be predicted to be around 250, which is consistent with peak redd counts.Of the 16 PIT-tagged juvenile, subadult, <strong>and</strong> adult bull trout th<strong>at</strong> migr<strong>at</strong>ed downstream in 2004<strong>and</strong> 2005, two adults were detected <strong>at</strong> the spawning channel, indic<strong>at</strong>ing th<strong>at</strong> there is some suitablehabit<strong>at</strong> downstream, or th<strong>at</strong> these individuals were able to out-compete adults already occupying28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board37


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Reportth<strong>at</strong> habit<strong>at</strong>. It appears th<strong>at</strong> neither scenario is completely accur<strong>at</strong>e; most likely additional adulthabit<strong>at</strong> is available, but not unlimited. It also appears th<strong>at</strong> with fish passage <strong>at</strong> Trail Bridge Damadditional environmental factors, such as adult mortality in the mainstem, could exhibit a stronginfluence on the bull trout popul<strong>at</strong>ion. With continued monitoring, there should be additionalopportunities to detect fish th<strong>at</strong> have found suitable habit<strong>at</strong> downstream.3.5.6 Fish passage <strong>at</strong> Smith DamIf upstream fish passage facilities were provided <strong>at</strong> Smith Dam, an adult bull trout popul<strong>at</strong>ionwould presumably <strong>at</strong>tempt to establish in Smith Reservoir (or it could be seeded with outplantedfry). <strong>Bull</strong> trout production from the upper Smith River (the Smith River upstream <strong>of</strong> SmithReservoir), <strong>and</strong> the potential adult popul<strong>at</strong>ion in Smith Reservoir, were modeled separ<strong>at</strong>ely fromthe Trail Bridge popul<strong>at</strong>ion, based on habit<strong>at</strong> in the Smith Reservoir <strong>and</strong> Smith River, <strong>and</strong>assuming a starting popul<strong>at</strong>ion <strong>of</strong> 100 subadult/adult bull trout (Table D-5).<strong>Bull</strong> trout require a narrow range <strong>of</strong> cold-w<strong>at</strong>er temper<strong>at</strong>ures for all <strong>of</strong> their life-stages (Buchananet al. 1997). W<strong>at</strong>er temper<strong>at</strong>ures in the upper Smith River are currently higher than the preferredrange for bull trout during their spawning, fry, <strong>and</strong> juvenile life-stages (Figure 3-11). To modelthe scenario with passage <strong>at</strong> Smith Dam, spawning was nonetheless assumed to occur in theSmith River upstream <strong>of</strong> Smith Reservoir, <strong>and</strong> all l<strong>at</strong>e fry were assumed to migr<strong>at</strong>e from upperSmith River in June, as temper<strong>at</strong>ures increase (Figure 3-11). No l<strong>at</strong>e fry or juvenile use <strong>of</strong> upperSmith River was modeled.Based on the analysis, Smith Reservoir <strong>and</strong> upper Smith River could not support a popul<strong>at</strong>ion <strong>of</strong>bull trout. Without rearing habit<strong>at</strong> in the upper Smith River, all rearing <strong>of</strong> l<strong>at</strong>e fry <strong>and</strong> juvenileswould occur in Smith Reservoir, where survival is estim<strong>at</strong>ed to be very low (as it is in TrailBridge Reservoir), based on potential pred<strong>at</strong>ion from releases <strong>of</strong> h<strong>at</strong>chery trout, <strong>and</strong> any adult bulltrout th<strong>at</strong> would be in the reservoir. A popul<strong>at</strong>ion <strong>of</strong> bull trout in Smith Reservoir would be verysensitive to, <strong>and</strong> limited by, survival <strong>of</strong> fry <strong>and</strong> juveniles. The only scenario th<strong>at</strong> maintained astable popul<strong>at</strong>ion required a value for fry survival in Smith Reservoir considered to beunrealistically high (> 20%); in th<strong>at</strong> scenario, 13 subadults <strong>and</strong> adults were supported in thereservoir based on fry <strong>and</strong> juvenile bull trout rearing in Smith Reservoir.Although a self-sustaining popul<strong>at</strong>ion <strong>of</strong> bull trout could not be supported in Smith Reservoirbased on habit<strong>at</strong> mapping (Stillw<strong>at</strong>er Sciences 2006b) the Smith Reservoir has the potential toprovide adult bull trout habit<strong>at</strong>. If passage facilities were provided <strong>at</strong> Smith Dam, subadult <strong>and</strong>adult bull trout from Trail Bridge Reservoir could migr<strong>at</strong>e to Smith Reservoir during the winter–summer period, returning downstream during fall to spawn in the Carmen Bypass Reach orSweetw<strong>at</strong>er Creek. Radio-tagged bull trout in other systems have been observed to migr<strong>at</strong>ethroughout a basin, even passing through warmer reaches, to access suitable habit<strong>at</strong> (Scholz et al.2005). If subadult <strong>and</strong> adult bull trout used Smith Reservoir seasonally as additional foraginghabit<strong>at</strong>, the overall subadult/adult popul<strong>at</strong>ion could increase by an estim<strong>at</strong>ed 108 individuals,effectively doubling the size <strong>of</strong> the current popul<strong>at</strong>ion upstream <strong>of</strong> Trail Bridge Dam.3.6 Effects <strong>of</strong> Changes in Project Oper<strong>at</strong>ions <strong>and</strong>/or Enhancements on<strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong>Based on current popul<strong>at</strong>ion dynamics, conceptual <strong>and</strong> quantit<strong>at</strong>ive model results indic<strong>at</strong>e th<strong>at</strong>,actions to increase spawning habit<strong>at</strong> <strong>and</strong>/or spawning habit<strong>at</strong> quality in the bypass reaches arelikely to increase <strong>Chinook</strong> salmon smolt production from the Study Area, particularly in the28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board38


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportSmith Bypass Reach. Actions to decrease mortality <strong>of</strong> all life-stages <strong>of</strong> <strong>Chinook</strong> salmon in TrailBridge Reservoir are also predicted to increase smolt production.3.6.1 Instream flowsTo evalu<strong>at</strong>e the impact <strong>of</strong> increasing instream flows over current base flows in the CarmenBypass Reach <strong>and</strong> Smith Bypass Reach, suitable habit<strong>at</strong> area estim<strong>at</strong>es from the Aqu<strong>at</strong>ic Habit<strong>at</strong>s<strong>and</strong> Instream Flows study (Stillw<strong>at</strong>er Sciences 2006b) were used as values for habit<strong>at</strong> areaparameters in the model. The habit<strong>at</strong> values used for modeling were based on maximizingavailable habit<strong>at</strong> for each life-stage (Table E-3), based on the flows measured in the Aqu<strong>at</strong>icHabit<strong>at</strong>s <strong>and</strong> Instream Flows study. Unlike other instream flows methods, by using the habit<strong>at</strong>criteria mapping method (see Aqu<strong>at</strong>ic Habit<strong>at</strong>s <strong>and</strong> Instream Flows study) it was possible toevalu<strong>at</strong>e measurement error (approxim<strong>at</strong>ely ±30%). The sensitivity analysis conducted on allparameters addressed this error by running scenarios where each value was increased ordecreased. Habit<strong>at</strong> areas for the life-stages th<strong>at</strong> highly influence the model (e.g. spawninghabit<strong>at</strong>) warrant additional consider<strong>at</strong>ion, in light <strong>of</strong> the associ<strong>at</strong>ed error with the original inputvalue used.3.6.1.1 Carmen Bypass ReachIn general, increasing habit<strong>at</strong> for fry or juveniles has little effect on the production <strong>of</strong> smolts.Based on the flows evalu<strong>at</strong>ed in the instream flow analysis (Stillw<strong>at</strong>er Sciences 2006b),maximum available habit<strong>at</strong> for all life-stages in the Carmen Bypass Reach occurs <strong>at</strong> about 205cfs. (Note th<strong>at</strong> the flow/habit<strong>at</strong> rel<strong>at</strong>ionships are based on the flows tested during the Aqu<strong>at</strong>icHabit<strong>at</strong>s <strong>and</strong> Instream Flows study). However, because <strong>of</strong> the abundant rearing habit<strong>at</strong> for<strong>Chinook</strong> salmon in Trail Bridge Reservoir, increasing habit<strong>at</strong> for fry or juveniles has little effecton the production <strong>of</strong> smolts (i.e., 23 additional smolts). The exception is spawning habit<strong>at</strong>;increasing available spawning habit<strong>at</strong> by increasing flows to 205 cfs results in more emergent fry<strong>and</strong>, whether they rear in Carmen Bypass Reach or in Trail Bridge Reservoir, smolt productionincreases (Table 3-9). However, smolt production <strong>and</strong> flow increases are not linear; flows gre<strong>at</strong>erthan 205 cfs result in a decrease in available spawning habit<strong>at</strong>, <strong>and</strong> thus a decrease in smoltproduction (Table 3-9).Table 3-9. Estim<strong>at</strong>ed changes in <strong>Chinook</strong> salmon smolt production with increasing instreamflows in the Carmen Bypass Reach.Estim<strong>at</strong>ed spawning habit<strong>at</strong> Total estim<strong>at</strong>ed smoltFlow (cfs)availability 1production from Trail Bridgem 2 ft 2 Reservoir160 212 2,282 1,252205 289 3,111 1,449320 237 2,551 1,322345 203 2,185 1,2261 Estim<strong>at</strong>ed for the <strong>Chinook</strong> salmon spawning guild; 145 m 2 were added to the estim<strong>at</strong>e for available habit<strong>at</strong> in CarmenBypass Reach (habit<strong>at</strong> unit #1), which was not included in the habit<strong>at</strong> mapping study.3.6.1.2 Smith Bypass ReachIn general, increasing habit<strong>at</strong> for fry or juveniles has little effect on the production <strong>of</strong> smolts. Ifinstream flows were increased to maximize available habit<strong>at</strong> for all life-stages <strong>of</strong> <strong>Chinook</strong> salmonin the Smith Bypass Reach (around 50 cfs during summer <strong>and</strong> winter), the carrying capacity28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board39


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Reportwould increase for most life-stages. However, because <strong>of</strong> the abundant rearing habit<strong>at</strong> for<strong>Chinook</strong> salmon in Trail Bridge Reservoir, increasing habit<strong>at</strong> for fry or juveniles has little effecton the production <strong>of</strong> smolts (i.e., 10 additional smolts). As in the Carmen Bypass Reach, theexception is spawning habit<strong>at</strong>. Increasing available spawning habit<strong>at</strong> results in more emergent fry<strong>and</strong>, whether they rear in the Smith Bypass Reach or Trail Bridge Reservoir, smolt productionincreases. Increases in spawning habit<strong>at</strong> were observed <strong>at</strong> 20 <strong>and</strong> 120 cfs, but not <strong>at</strong> 50 or 85 cfs(Table 3-10), apparently due to available spawning habit<strong>at</strong> shifting from the thalweg <strong>at</strong> the lowerflows to channel margins <strong>at</strong> the higher flows.Table 3-10. Estim<strong>at</strong>ed changes in <strong>Chinook</strong> salmon smolt production with increasing instream flowsin the Smith Bypass Reach.Estim<strong>at</strong>ed spawning habit<strong>at</strong> Total estim<strong>at</strong>ed smolt production from Trailavailability aBridge ReservoirFlow (cfs)m 2 ft 2 Assuming small Assuming normal sizeredds (0.9 m 2 ) b redds (5.4 m 2 ) c7 7 75 1,252 72120 29 312 2,157 1,12950 20 215 1,838 99185 20 215 1,838 991120 89 958 4,027 1,654a Estim<strong>at</strong>ed for <strong>Chinook</strong> salmon spawning guild; 7 m 2 were added to the estim<strong>at</strong>e for available habit<strong>at</strong> in Smith BypassReach (habit<strong>at</strong> units #1–4), which were not included in the habit<strong>at</strong> mapping study.bBased on total st<strong>at</strong>ion survey <strong>of</strong> redd dimensions in Smith Bypass Reach.cBased on total st<strong>at</strong>ion survey <strong>of</strong> redd dimensions in Carmen Bypass Reach.These estim<strong>at</strong>es were made under two assumptions: (1) th<strong>at</strong> returning spawners will use the SmithBypass Reach in increasing numbers rel<strong>at</strong>ive to the Carmen Bypass Reach, if spawning habit<strong>at</strong>increases in the Smith Bypass Reach, <strong>and</strong> (2) as spawning habit<strong>at</strong> increases, female <strong>Chinook</strong>salmon will continue to build the unusually small redds currently observed in Smith BypassReach (0.9 m 2 [9.7 ft 2 ]). However, as spawning habit<strong>at</strong> increases, female <strong>Chinook</strong> salmon wouldlikely construct redds th<strong>at</strong> are proportion<strong>at</strong>ely larger, approxim<strong>at</strong>ing the size currently observed inCarmen Bypass Reach (5.4 m 2 [58.1 ft 2 ]). In this case, spawning habit<strong>at</strong> would remain limiting,<strong>and</strong> production would not increase as dram<strong>at</strong>ically (Table 3-10).3.6.2 Large woody debris additionsAdding large woody debris is one approach to increasing available habit<strong>at</strong> in Carmen BypassReach <strong>and</strong> Smith Bypass Reach. Large woody debris additions increase habit<strong>at</strong> complexity,which is favorable for <strong>Chinook</strong> salmon fry <strong>and</strong> juveniles. During Summer 2005, in collabor<strong>at</strong>ionwith EWEB <strong>and</strong> other parties the USDA Forest Service added wood to approxim<strong>at</strong>ely 80% <strong>of</strong> thelower Carmen Bypass Reach.The Aqu<strong>at</strong>ic Habit<strong>at</strong>s <strong>and</strong> Instream Flows study (Stillw<strong>at</strong>er Sciences 2006b) found th<strong>at</strong> exisitinglarge woody debris already in the reach increased habit<strong>at</strong> for spawning, fry, <strong>and</strong> juvenile lifestages<strong>of</strong> <strong>Chinook</strong> salmon in the Carmen Bypass Reach, <strong>at</strong> all flows assessed. In the vicinity <strong>of</strong>large woody debris, a 50 to 100% increase in the amount <strong>of</strong> available habit<strong>at</strong> was estim<strong>at</strong>ed,compared with areas without large woody debris. To determine the potential effect <strong>of</strong> the USDAForest Service’s large woody debris enhancement on current <strong>Chinook</strong> salmon popul<strong>at</strong>iondynamics, the input values for available habit<strong>at</strong> in the reach were increased, based on the increase28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board40


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Reportobserved in the Aqu<strong>at</strong>ic Habit<strong>at</strong>s <strong>and</strong> Instream Flows study, as adjusted by the area enhanced(Table E-5).Based on model predictions, the USDA Forest Service’s 2005 large woody debris enhancementproject increased available habit<strong>at</strong> for spawning <strong>and</strong> rearing life-stages <strong>of</strong> <strong>Chinook</strong> salmon, <strong>and</strong>increased overall smolt production from Trail Bridge Reservoir by an estim<strong>at</strong>ed 300 smolts. Iflarge woody debris were added to Smith Bypass Reach in amounts similar to those in CarmenBypass Reach, <strong>and</strong> if similar increases in available habit<strong>at</strong> resulted, then modeled overall smoltproduction from Trail Bridge Reservoir increases by nearly 500 smolts. Most <strong>of</strong> the increase insmolt production would result from increased spawning habit<strong>at</strong> in both reaches.3.6.3 Spawning gravel augment<strong>at</strong>ionBased on current popul<strong>at</strong>ion dynamics, actions to increase spawning habit<strong>at</strong> areas <strong>and</strong>/or qualityin the bypass reaches are likely to increase <strong>Chinook</strong> salmon smolt production in the Study Area,particularly in the Smith Bypass Reach, as described above. Gravel augment<strong>at</strong>ion resulting inincreased spawning habit<strong>at</strong> in the Carmen Bypass Reach could increase smolt production slightly.However, if gravel additions resulted in higher quality spawning gravel <strong>and</strong> an increase in egg-toemergencesurvival, production <strong>of</strong> smolts could increase significantly. For example, adding 100m 2 (1,076 ft 2 ) <strong>of</strong> spawning habit<strong>at</strong> alone would result in an estim<strong>at</strong>ed increase <strong>of</strong> almost 200smolts, but if accompanied by a 20% increase in egg-to-emergence survival (based on betterspawning gravel quality), the estim<strong>at</strong>e increases to over 1,000 smolts.In the Smith Bypass Reach, spawning habit<strong>at</strong> is currently limiting production in th<strong>at</strong> reach.Increases in available spawning habit<strong>at</strong> in the Smith Bypass Reach are predicted to result in largeincreases in smolt production. Because rearing habit<strong>at</strong> for fry <strong>and</strong> juveniles in the Smith BypassReach is gre<strong>at</strong>er than in the Carmen Bypass Reach under current conditions, <strong>and</strong> because theSmith Bypass Reach currently has very little spawning habit<strong>at</strong>, increasing spawning habit<strong>at</strong> in theSmith Bypass Reach has a gre<strong>at</strong>er influence on the popul<strong>at</strong>ion than increases in the CarmenBypass Reach. For example, if available spawning habit<strong>at</strong> were increased in the Smith BypassReach by 100 m 2 (1,076 ft 2 ), smolt production from above Trail Bridge Dam would increase byover 500 smolts (assuming redd size increased), even without an accompanying increase in gravelquality.Increases in spawning habit<strong>at</strong> were observed <strong>at</strong> 20 <strong>and</strong> 120 cfs (Table 3-10), apparently due toavailable spawning habit<strong>at</strong> shifting from the thalweg <strong>at</strong> the lower flows to channel margins <strong>at</strong> thehigher flows. The placement <strong>of</strong> gravel could alter the rel<strong>at</strong>ionship between available spawninghabit<strong>at</strong> <strong>and</strong> instream flows. Any gravel augment<strong>at</strong>ion program should consider instream flows,<strong>and</strong> may benefit from enhancements th<strong>at</strong> are deliber<strong>at</strong>ely designed to target a specific range <strong>of</strong>flows.3.6.4 Trail Bridge Reservoir3.6.4.1 H<strong>at</strong>chery trout pred<strong>at</strong>ionH<strong>at</strong>chery trout are significant pred<strong>at</strong>ors on n<strong>at</strong>ive salmonids (Swartzman <strong>and</strong> Beauchamp 1990).Currently, ODFW annually stocks Trail Bridge Reservoir with over 14,000 rainbow trout th<strong>at</strong> areover 200 mm (8 in) FL. Each <strong>of</strong> these trout could potentially consume <strong>Chinook</strong> salmon fry orjuveniles. Currently, no d<strong>at</strong>a document the diet <strong>of</strong> h<strong>at</strong>chery trout stocked into Trail BridgeReservoir. However, h<strong>at</strong>chery trout stocked in the mainstem McKenzie River were found to28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board41


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Reportconsume <strong>Chinook</strong> salmon fry <strong>at</strong> Leaburg Dam, mostly between May <strong>and</strong> June (Firman et al.2004). Presumably, as fry grow into juveniles, they become less susceptible to pred<strong>at</strong>ion. Thenumber <strong>of</strong> fry found in trout stomachs varied from 0 to 5 fish (Firman et al. 2004). Firman et al.(2004) estim<strong>at</strong>ed th<strong>at</strong> between 48,580 <strong>and</strong> 161,933 <strong>Chinook</strong> salmon fry were consumed byh<strong>at</strong>chery trout in the mainstem McKenzie River in 2003, based on the equ<strong>at</strong>ion:The total number <strong>of</strong> <strong>Chinook</strong> salmon consumed = T*P*(24/G)*DWhereT = total number <strong>of</strong> h<strong>at</strong>chery trout present (including a 37% reduction from anglers, based oncreel surveys on the McKenzie River)P = percentage stomach content samples th<strong>at</strong> contained <strong>Chinook</strong> salmonG = gut residence time in hours (3–10 hours based on controlled experiments)D = total number <strong>of</strong> days th<strong>at</strong> trout fed on <strong>Chinook</strong> salmon (62)Following this approach for the number <strong>of</strong> h<strong>at</strong>chery fish stocked into Trail Bridge Reservoir, <strong>and</strong>using the same estim<strong>at</strong>es for variables P, G, <strong>and</strong> D, the number <strong>of</strong> <strong>Chinook</strong> salmon consumed byh<strong>at</strong>chery trout is between 12,000 <strong>and</strong> 40,000 each year in Trail Bridge Reservoir, assuming levels<strong>of</strong> pred<strong>at</strong>ion are similar. Even assuming th<strong>at</strong> pred<strong>at</strong>ion r<strong>at</strong>es in a reservoir will be far less than ina river (~12,000 each year), the potential for pred<strong>at</strong>ion mortality from h<strong>at</strong>chery fish appears to besignificant. Based on these estim<strong>at</strong>es, if mortality from h<strong>at</strong>chery trout were reduced by 30% (e.g.,less stocking, or stocking l<strong>at</strong>er in the season after <strong>Chinook</strong> salmon have grown), the number <strong>of</strong>smolts produced is estim<strong>at</strong>ed to increase dram<strong>at</strong>ically (5,500), even with the current estim<strong>at</strong>edmortality from bull trout pred<strong>at</strong>ion (Section 3.5.4).3.6.4.2 Entrainment <strong>and</strong> str<strong>and</strong>ingIncreases in habit<strong>at</strong> complexity or reducing entrainment mortality (see Section 3.6.5), are alsoapproaches to increasing <strong>Chinook</strong> salmon survival in Trail Bridge Reservoir, <strong>and</strong> are alsopredicted to increase smolt production. Although the current magnitude <strong>of</strong> str<strong>and</strong>ing in TrailBridge Reservoir is unknown, decreasing mortality from str<strong>and</strong>ing by any amount would alsoincrease smolt production.3.6.5 Fish passage <strong>at</strong> Trail Bridge DamThere are many altern<strong>at</strong>ives to provide both upstream <strong>and</strong> downstream fish passage <strong>at</strong> TrailBridge Dam. All modeling conducted for this report assumes volitional passage <strong>at</strong> Trail BridgeDam (e.g., fish ladder) with no associ<strong>at</strong>ed mortality or delay. Downstream passage was modeledbased on the current conditions; whereby downstream migr<strong>at</strong>ing fish pass through the TrailBridge Turbine or spillway (with an assumed mortality r<strong>at</strong>e <strong>of</strong> 20%). Downstream fish passagefacilities <strong>at</strong> Trail Bridge Dam could decrease mortality <strong>of</strong> fry, juvenile, <strong>and</strong> smolt <strong>Chinook</strong>salmon migr<strong>at</strong>ing from the reservoir. If entrainment mortality is reduced to approxim<strong>at</strong>ely 1% byuse <strong>of</strong> NMFS criteria screens <strong>at</strong> Trail Bridge Turbine, or guiding fish to an altern<strong>at</strong>e downstreampassage route, smolt production would increase from current numbers by an estim<strong>at</strong>ed 300smolts.Although <strong>Chinook</strong> salmon currently rear in Trail Bridge Reservoir for up to one year,downstream passage facilities could improve the ability <strong>of</strong> <strong>Chinook</strong> salmon to migr<strong>at</strong>e from TrailBridge Reservoir. If the number <strong>of</strong> fish leaving Trail Bridge Reservoir as fry increases, theoverall production <strong>of</strong> smolts from the reservoir would decrease, <strong>and</strong> similarly fewer juvenile<strong>Chinook</strong> salmon would be potential prey for bull trout (although more <strong>of</strong> the subadult <strong>and</strong> adult28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board42


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Reportbull trout could migr<strong>at</strong>e downstream as well, increasing pred<strong>at</strong>ion in the McKenzie River belowthe project). Presumably, a proportion <strong>of</strong> the <strong>Chinook</strong> salmon th<strong>at</strong> would migr<strong>at</strong>e as fry wouldrear successfully to smolts in the mainstem McKenzie River.3.6.6 Fish passage <strong>at</strong> Smith DamIf fish passage facilities were provided <strong>at</strong> Smith Dam (e.g., fish ladder), presumably adult<strong>Chinook</strong> salmon would migr<strong>at</strong>e to Smith Reservoir from the Smith Bypass Reach. Theproduction from the upper smith river (the Smith River upstream <strong>of</strong> Smith Reservoir), <strong>and</strong> thepotential adult popul<strong>at</strong>ion in Smith Reservoir, were modeled assuming th<strong>at</strong> 80% <strong>of</strong> the currentspawning popul<strong>at</strong>ion in the Smith Bypass Reach would migr<strong>at</strong>e upstream to the upper SmithRiver (Table E-6), with no assumed mortality or delay associ<strong>at</strong>ed with fish passage facilities.Spawning habit<strong>at</strong> in the upper Smith River is adequ<strong>at</strong>e to support a spawning popul<strong>at</strong>ion <strong>of</strong> nearly14 females. However, based on the survival <strong>of</strong> subsequent life-stages, a spawning popul<strong>at</strong>ion <strong>of</strong>fewer than 5 is predicted. Fry habit<strong>at</strong>, <strong>and</strong> then juvenile habit<strong>at</strong>, limits rearing potential in theupper Smith River, <strong>and</strong> most rearing would occur in the Smith Reservoir, where fry <strong>and</strong> juvenilesurvival strongly affect estim<strong>at</strong>ed production. Based on the values estim<strong>at</strong>ed for Trail BridgeReservoir, over 250 smolts would be produced from Smith Reservoir. Pred<strong>at</strong>ion from bull trout(assuming they had access along with <strong>Chinook</strong> salmon), introduced h<strong>at</strong>chery fish, <strong>and</strong> fromn<strong>at</strong>ive trout, would be expected to be high (Tabor et al. 2004). The ultim<strong>at</strong>e increase in smoltproduction with fish passage <strong>at</strong> Smith Dam is predicted to be slightly over 200 smolts, includingan assumed 10% mortality <strong>of</strong> fish migr<strong>at</strong>ing from Smith Reservoir (regardless <strong>of</strong> passage <strong>at</strong>spillway, or Smith intake). If downstream fish passage facilities were provided <strong>at</strong> Smith Damth<strong>at</strong> could decrease mortality to 1%, overall smolt production is predicted to increase byapproxim<strong>at</strong>ely 10 additional smolts.3.7 Carmen-Smith Spawning ChannelBased on popul<strong>at</strong>ion modeling, spring <strong>Chinook</strong> salmon rear briefly in the Carmen-SmithSpawning Channel before migr<strong>at</strong>ing to the mainstem McKenzie River. Under current conditions,the spawning channel has a capacity for over 175 spawning females, although currently, abouthalf th<strong>at</strong> many use it (Stillw<strong>at</strong>er Sciences 2006a). The spawning channel has abundant spawninghabit<strong>at</strong>, <strong>and</strong> currently is capable <strong>of</strong> producing over 250,000 emergent fry. The current productionis based on a gravel augment<strong>at</strong>ion th<strong>at</strong> occurred during July 2005. Presumably, habit<strong>at</strong> conditionswill decline over time, <strong>and</strong> the amount, <strong>and</strong> quality, <strong>of</strong> spawning habit<strong>at</strong> will be reduced.Although reductions in spawning habit<strong>at</strong> would not reduce smolt production, fry production ispredicted to be around 130,000, with a 50% decline in available habit<strong>at</strong>, <strong>and</strong> a 50% reduction insurvival to emergence. However, the carrying capacity for fry limits rearing in the spawningchannel, although available habit<strong>at</strong> for juveniles is more limiting than for fry rearing (Figure 3-9).The model estim<strong>at</strong>es smolt production (~65 smolts under current conditions), but the production<strong>of</strong> fry from the spawning channel (or from habit<strong>at</strong> upstream <strong>of</strong> Trail Bridge Dam) are also <strong>of</strong>value to the popul<strong>at</strong>ion.The production <strong>of</strong> smolts from fry emigr<strong>at</strong>ing from the spawning channel was not directlymodeled, because the habit<strong>at</strong> in the mainstem McKenzie River where smolts would rear isdownstream <strong>of</strong> the Study Area. Explicitly modeling smolt production from the migrant fry wouldrequire popul<strong>at</strong>ing the model with habit<strong>at</strong> <strong>and</strong> survival d<strong>at</strong>a from the mainstem McKenzie River,which are currently unavailable. However, assuming a lower estim<strong>at</strong>e <strong>of</strong> emergent-fry-to-smoltsurvival (1%) than was used in the Trail Bridge Reservoir model, <strong>and</strong> using the same survival28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board43


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Reportr<strong>at</strong>es for fry to smolt (7.2%) assumed for the <strong>Chinook</strong> salmon popul<strong>at</strong>ion in Trail BridgeReservoir (Table E-7), the production <strong>of</strong> fry from the spawning channel accounts for an estim<strong>at</strong>ed2,700 smolts in the mainstem McKenzie River.The bull trout modeling did not include the Carmen-Smith Spawning Channel, although bull trouthave been observed to spawn <strong>and</strong> rear there (Stillw<strong>at</strong>er Sciences 2006a). Based on ODFW <strong>and</strong>USFWS decisions, bull trout adults were removed from the spawning channel <strong>and</strong> transferredupstream <strong>of</strong> Trail Bridge Dam in Fall 2003 <strong>and</strong> 2004. However, it is not known if this practicewill be repe<strong>at</strong>ed.3.7.1 Sensitivity analysisThe results <strong>of</strong> the sensitivity analysis conducted on the <strong>Chinook</strong> salmon model <strong>at</strong> the Carmen-Smith Spawning Channel, under current conditions, indic<strong>at</strong>ed th<strong>at</strong> the <strong>Chinook</strong> salmon popul<strong>at</strong>ionis most strongly influenced by the model parameter “marine survival <strong>of</strong> smolts to adults” (Tables3-11 <strong>and</strong> G-2). While this parameter strongly affects model results, this study does not addressmarine conditions, <strong>and</strong> the smolt survival parameter is only included in the model to allow thepopul<strong>at</strong>ion model to estim<strong>at</strong>e escapement <strong>and</strong> predict equilibrium conditions. However, theinfluence <strong>of</strong> this parameter indic<strong>at</strong>es the primary importance <strong>of</strong> smolt-to-returning-adult survivalin the <strong>Chinook</strong> salmon life cycle. The model is also sensitive to available habit<strong>at</strong> (carryingcapacity) for juveniles, <strong>and</strong> the survival <strong>of</strong> age 1+ juveniles to smolts.Table 3-11. Summary <strong>of</strong> <strong>Chinook</strong> salmon model sensitivity analysis under current conditions <strong>at</strong>the Carmen-Smith Spawning Channel. Adult popul<strong>at</strong>ion estim<strong>at</strong>e is based only on smoltsproduced directly from spawning channel.Adult popul<strong>at</strong>ion estim<strong>at</strong>e based on varying input valueModel parameter 50%decrease25%decreaseCurrentvalue33%increase100%increaseJuvenile capacity (available habit<strong>at</strong><strong>and</strong> density)2 3 5 6 9Age 1+ juvenile to smolt survival 2 3 5 6 6 aMarine survival <strong>of</strong> smolts to adult 2 3 5 6 9a33% <strong>and</strong> 100% increase in value results in a survival input <strong>of</strong> gre<strong>at</strong>er than 100%, so no increase in popul<strong>at</strong>ion isestim<strong>at</strong>ed.3.7.2 Management implic<strong>at</strong>ionsThe Carmen-Smith Spawning Channel is currently producing less than 100 smolts directly fromthe spawning channel. However, the hundreds <strong>of</strong> thous<strong>and</strong>s <strong>of</strong> fry produced are estim<strong>at</strong>ed toaccount for over 2,500 smolts in the McKenzie River (assuming no habit<strong>at</strong> limit<strong>at</strong>ions in themainstem). Any improvements to rearing conditions in the mainstem McKenzie River th<strong>at</strong>increased survival for fry <strong>and</strong> smolts (e.g., <strong>of</strong>f-channel habit<strong>at</strong>, improvements to side channels, reconnection<strong>of</strong> floodplains) would gre<strong>at</strong>ly increase smolt production from the river. For example,increasing survival for migr<strong>at</strong>ing fry by 2% increases smolt production to over 8,000 smolts,because most <strong>of</strong> the fry produced in the spawning channel rear in the mainstem.The current production is based on a gravel augment<strong>at</strong>ion th<strong>at</strong> occurred during July 2005.Superimposition was limited to only a few incidences in Fall 2005, after the gravel augment<strong>at</strong>ion.Presumably, habit<strong>at</strong> conditions will decline over time, <strong>and</strong> the amount, <strong>and</strong> quality, <strong>of</strong> spawninghabit<strong>at</strong> will be reduced. Under current conditions the spawning channel could accommod<strong>at</strong>e28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board44


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Reportadditional <strong>Chinook</strong> salmon spawning based on estim<strong>at</strong>ed available habit<strong>at</strong>, therefore, additionalgravel augment<strong>at</strong>ions would not increase production <strong>at</strong> this time. However, habit<strong>at</strong> for fry <strong>and</strong>juveniles do limit rearing for early life-stages within the spawning channel. If production fromthe spawning channel is modeled assuming th<strong>at</strong> half <strong>of</strong> the total area were converted to suitablefry <strong>and</strong> juvenile habit<strong>at</strong> (e.g., large woody debris enhancements, <strong>of</strong>f channel habit<strong>at</strong>), smoltproduction is estim<strong>at</strong>ed to triple, even if spawning habit<strong>at</strong> is reduced by half. As described above,these moder<strong>at</strong>e increases may be dwarfed by the rearing potential <strong>of</strong> the mainstem McKenzieRiver, <strong>and</strong> may not be nearly as significant as the potential increases from improvements tohabit<strong>at</strong> conditions in the mainstem river.3.7.3 Passage <strong>at</strong> Trail Bridge DamIf fish passage facilities for <strong>Chinook</strong> salmon <strong>at</strong> Trail Bridge Dam were constructed, theproportion <strong>of</strong> fish th<strong>at</strong> would use the Carmen-Smith Spawning Channel, compared with thosemigr<strong>at</strong>ing upstream into Trail Bridge Reservoir, is unknown. If escapement increased <strong>and</strong><strong>Chinook</strong> salmon spawned in large numbers both upstream <strong>of</strong> Trail Bridge Dam <strong>and</strong> in thespawning channel, the net production would be similar to current conditions (with h<strong>at</strong>cheryreleases <strong>of</strong> adult <strong>Chinook</strong> salmon in Trail Bridge Reservoir), assuming all other conditionsremained the same (i.e., no instream flow or habit<strong>at</strong> enhancements).3.8 Summary3.8.1 Effects <strong>of</strong> management scenarios on popul<strong>at</strong>ion levelsBased on quantit<strong>at</strong>ive modeling efforts, the estim<strong>at</strong>ed production <strong>of</strong> bull trout <strong>and</strong> spring <strong>Chinook</strong>salmon under current conditions <strong>and</strong> various management scenarios is summarized below (Table3-12). Modeling efforts did not evalu<strong>at</strong>e the cumul<strong>at</strong>ive effects <strong>of</strong> enacting multiple scenariosconcurrently, though such consider<strong>at</strong>ions will be addressed in the Draft License Applic<strong>at</strong>ion, dueto FERC in May 2006. In addition, it is not recommended to rely solely on the model predictionspresented here, but instead carefully consider these results in the context <strong>of</strong> other d<strong>at</strong>a <strong>and</strong>inform<strong>at</strong>ion.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board45


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportTable 3-12. Summary <strong>of</strong> bull trout <strong>and</strong> <strong>Chinook</strong> salmon production in the Study Area undercurrent conditions <strong>and</strong> various management scenarios.Management ScenarioEstim<strong>at</strong>ed production(percent increase from current conditions in parenthesis)<strong>Chinook</strong> salmon smoltsJuvenile bulltroutSubadult/adultbull troutUpstream <strong>of</strong>Trail BridgeDamSpawningchannelCurrent conditions 470 110 1,250 2,700Increased instream flowsCarmen Bypass Reach 1 470 (0%) 110 (0%) 1,450 (15%) NMSmith Bypass Reach 1 470 (0%) 110 (0%) 1,620 a (30%) NMSmith Bypass Reach 2 1,500 (220%) 110 (0%) 1,260 (1%) NMLarge woody debris additions 3Carmen Bypass Reach 850 (80%) 110 (0%) 1,570 (25%) NMSweetw<strong>at</strong>er Creek 590 (25%) 110 (0%) NA NMSmith Bypass Reach NM NM 1,430 (15%) NMSpawning gravel augment<strong>at</strong>ionCarmen Bypass Reach 470 (0%) 110 (0%) 2,000 b (65%) NMSweetw<strong>at</strong>er Creek 470 (0%) 110 (0%) NA NMSmith Bypass Reach 470 (0%) 110 (0%) 1,760 c (40%) NMHabit<strong>at</strong> enhancements in TrailBridge Reservoir to increase fish 470 (0%) 640 (480%) NM NMdensityReduced h<strong>at</strong>chery trout planting inTrail Bridge Reservoir480 d (2%) 110 (0%) d 5,500 e (340%) NMFish passage <strong>at</strong> Smith Dam 470 (0%) 218 (98%) 1,450 (15%) NMDecrease in entrainment mortalityto 1% <strong>at</strong> Trail Bridge Dam 4 NM NM 1,550 (24%) NMFish passage facilities <strong>at</strong> TrailBridge Dam, assuming habit<strong>at</strong> 470 (0%) 800 (630%) 1,250 (0%) f NMdownstream is not limitingFish passage facilities <strong>at</strong> TrailBridge Dam, assuming habit<strong>at</strong> 470 (0%) 110 (0%) 1,250 (0%) f NMdownstream is limitingHabit<strong>at</strong> improvements resulting in2% reduction in fry mortality in the NM NM NM 8,000 (196%)mainstem McKenzie RiverHabit<strong>at</strong> enhancements in Carmen-Smith Spawning ChannelNM NM NM 2,900 (7%)NM not modeled1 Assumes flows increased to maximize habit<strong>at</strong> <strong>at</strong> all life-stages, <strong>and</strong> redd size increases with increasing habit<strong>at</strong>availability.2 Assumes flows increased to provide suitable flows for bull trout during summer.3 Based on 2005 large woody debris enhancements in Carmen Bypass Reach.4 Currently assumed to be 20% in model. Reduction to 1% assumed to occur with NMFS criteria screens, or by guidingfish to an altern<strong>at</strong>ive downstream passage route.a Assumes 120 cfs for spawning, <strong>and</strong> th<strong>at</strong> redd size increases with increasing habit<strong>at</strong> availability.b Assumes 100 m 2 <strong>of</strong> gravel, <strong>and</strong> 20% increase in survival from eggs-to-emergent fry.c Assumes 100 m 2 <strong>of</strong> gravel, <strong>and</strong> redd size increases with increasing habit<strong>at</strong> availability.d Assumes th<strong>at</strong> pred<strong>at</strong>ion on early life-stages decreases from fewer h<strong>at</strong>chery fish, or a l<strong>at</strong>er stocking d<strong>at</strong>e. Potentialincreases in food availability for early life-stages, or potential decreases in food availability for adults were notconsidered.e Assumes mortality in Trail Bridge Reservoir decreases by 30%.f Current model assumes <strong>Chinook</strong> salmon have passage <strong>at</strong> Trail Bridge Dam.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board46


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Report3.8.1.1 Interactions between bull trout <strong>and</strong> spring <strong>Chinook</strong> salmonInteractions between bull trout <strong>and</strong> <strong>Chinook</strong> salmon may be important consider<strong>at</strong>ions inmanagement decisions. Fish passage facilities <strong>at</strong> Trail Bridge Dam provide an opportunity to reintroducea n<strong>at</strong>ural run <strong>of</strong> adult spring <strong>Chinook</strong> salmon upstream <strong>of</strong> Trail Bridge Dam, where bulltrout have remained since the dam was built. Modeling <strong>and</strong> observ<strong>at</strong>ions <strong>of</strong> h<strong>at</strong>chery-releasedadult spring <strong>Chinook</strong> salmon (see Stillw<strong>at</strong>er Sciences 2006a) were used to evalu<strong>at</strong>e three potentialeffects <strong>of</strong> the interactions between these two species, if fish passage facilities allowed them tooccupy the same space: (1) competition for habit<strong>at</strong>, (2) competition for food, <strong>and</strong> (3) bull troutpred<strong>at</strong>ion <strong>of</strong> <strong>Chinook</strong> salmon.Based on superimposition modeling <strong>and</strong> observ<strong>at</strong>ions during spawning surveys, competition forspawning habit<strong>at</strong> would not have a deleterious effect on either species. Based on directobserv<strong>at</strong>ion snorkel surveys, n<strong>at</strong>ive trout are able to out-compete <strong>Chinook</strong> salmon fry for rearinghabit<strong>at</strong> in the Carmen Bypass Reach <strong>and</strong> Smith Bypass Reach. However, <strong>Chinook</strong> salmon fry<strong>and</strong> juveniles are able to use the abundant rearing habit<strong>at</strong> in Trail Bridge Reservoir. Because fry<strong>and</strong> juvenile stages <strong>of</strong> bull trout <strong>and</strong> <strong>Chinook</strong> salmon use different habit<strong>at</strong>s for rearing, they likelyrequire different food resources, <strong>and</strong> so they avoid detrimental effects associ<strong>at</strong>ed withcompetition for food resources. Although no diet analysis was conducted in the Study Area, bulltrout presumably prey on <strong>Chinook</strong> salmon fry <strong>and</strong> juveniles produced upstream <strong>of</strong> Trail BridgeDam. <strong>Bull</strong> trout bioenergetics could be affected by changes in how the juvenile <strong>Chinook</strong> salmonuse the reservoir, if passage facilities were provided. Mortality <strong>of</strong> fry <strong>and</strong> juveniles currentlylimits the <strong>Chinook</strong> salmon popul<strong>at</strong>ion (in addition to spawning habit<strong>at</strong> limit<strong>at</strong>ions), though theeffect <strong>of</strong> bull trout pred<strong>at</strong>ion rel<strong>at</strong>ive to pred<strong>at</strong>ion by h<strong>at</strong>chery fish is unknown. How mortalityr<strong>at</strong>es observed for <strong>Chinook</strong> salmon in Trail Bridge Reservoir compare with the mortality r<strong>at</strong>es inthe McKenzie River downstream <strong>of</strong> Trail Bridge Dam is also unknown.3.8.2 Key factors to protect popul<strong>at</strong>ionsUnder current conditions <strong>and</strong> assumptions, the carrying capacity for adult bull trout in TrailBridge Reservoir is limiting the popul<strong>at</strong>ion. Therefore, declines in the popul<strong>at</strong>ion would likelyoccur if survival conditions for adult bull trout declined. For example, increased angling pressureor poaching, or decreases in habit<strong>at</strong> complexity or food availability in Trail Bridge Reservoir,could increase mortality or emigr<strong>at</strong>ion. The Carmen Bypass Reach is currently the primaryrearing grounds for juvenile bull trout. Although a decline in the adult popul<strong>at</strong>ion would notnecessarily follow a disturbance in the Carmen Bypass Reach (i.e., production could still occur inSweetw<strong>at</strong>er Creek), it could thre<strong>at</strong>en the long-term stability <strong>of</strong> the popul<strong>at</strong>ion (popul<strong>at</strong>ion geneticissues are discussed in the Aqu<strong>at</strong>ic Habit<strong>at</strong> Connectivity report). Based on conceptual <strong>and</strong>quantit<strong>at</strong>ive modeling, key factors to protect the bull trout popul<strong>at</strong>ion in the Study Area include:• Existing rearing habit<strong>at</strong> in the Carmen Bypass Reach,• Subadult/adult survival from angling pressure,• Subadult/adult habit<strong>at</strong> in Trail Bridge Reservoir, <strong>and</strong>• Food availability (e.g., <strong>Chinook</strong> salmon) in Trail Bridge Reservoir.The Project currently blocks <strong>Chinook</strong> salmon access to historic habit<strong>at</strong> upstream <strong>of</strong> Trail BridgeDam. However, if <strong>Chinook</strong> salmon were to have access to the habit<strong>at</strong> upstream <strong>of</strong> Trail BridgeDam, declines in the potential production <strong>of</strong> the popul<strong>at</strong>ion would likely occur: (1) if spawninghabit<strong>at</strong> in Carmen Bypass Reach were disturbed (e.g., increased fine sediment in spawninggravel), <strong>and</strong>/or (2) if mortality were to increase in Trail Bridge Reservoir (e.g., increased stocking<strong>of</strong> h<strong>at</strong>chery fish, or increased abundance <strong>of</strong> adult bull trout). Similarly, disturbances to the28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board47


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportCarmen-Smith Spawning Channel, such as reduced access or use <strong>of</strong> the spawning channel, orfurther declines in habit<strong>at</strong> complexity in the mainstem McKenzie River downstream <strong>of</strong> TrailBridge Dam, could cause declines in the popul<strong>at</strong>ion. Based on conceptual <strong>and</strong> quantit<strong>at</strong>ivemodeling, key factors to protect the <strong>Chinook</strong> salmon popul<strong>at</strong>ion in the Study Area include:• Spawning habit<strong>at</strong> in the Carmen Bypass Reach <strong>and</strong> Carmen-Smith Spawning Channel,• Fry <strong>and</strong> juvenile survival in Trail Bridge Reservoir, <strong>and</strong>• Survival during downstream passage <strong>at</strong> Trail Bridge Dam.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board48


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Report4 LITERATURE CITEDAqu<strong>at</strong>ic Biology Associ<strong>at</strong>es, Inc. 1999. Benthic invertebr<strong>at</strong>e biomonitoring for the McKenzieRiver W<strong>at</strong>ershed Council, Oregon, September-October 1999. Prepared for Willamette N<strong>at</strong>ionalForest, Blue River <strong>and</strong> McKenzie River Ranger Districts, Blue River, Oregon by Aqu<strong>at</strong>ic BiologyAssoci<strong>at</strong>es, Inc., Corvallis, Oregon.Baxter, J. S. 1995. Chowade River bull trout studies 1995: habit<strong>at</strong> <strong>and</strong> popul<strong>at</strong>ion assessment.Prepared for British Columbia Ministry <strong>of</strong> Environment, L<strong>and</strong>s <strong>and</strong> Parks, Fisheries Branch, FortSt. John, British Columbia.Baxter, J. S., <strong>and</strong> J. D. McPhail. 1996. <strong>Bull</strong> trout spawning <strong>and</strong> rearing habit<strong>at</strong> requirements:summary <strong>of</strong> the liter<strong>at</strong>ure. Fisheries Technical Circular No. 98. Fisheries Branch, BritishColumbia Ministry <strong>of</strong> Environment, L<strong>and</strong>s, <strong>and</strong> Parks, Vancouver.Beauchamp, D. A., <strong>and</strong> J. J. Van Tassell. 2001. Modeling seasonal trophic interactions <strong>of</strong>adfluvial bull trout in Lake Billy <strong>Chinook</strong>, Oregon. Transactions <strong>of</strong> the American FisheriesSociety 130: 204-216.Ben-James, B. 2001. The feeding ecology <strong>of</strong> juvenile bull trout, Salvelinus confluentus, in aneastern Cascade stream. Pages 59 in M. K. Brewin, A. J. Paul <strong>and</strong> M. Monita, editor. <strong>Bull</strong> trout IIconference proceedings. <strong>Trout</strong> Unlimited Canada, Calgary, Alberta.Beverton, R. J. H., <strong>and</strong> S. J. Holt. 1957. On the dynamics <strong>of</strong> exploited fish popul<strong>at</strong>ions. MinistryAgirculture, Fisheries <strong>and</strong> Food, Fisheries Investig<strong>at</strong>ion Series 2, No. 19. London, Engl<strong>and</strong>.Bjornn, T. C. 1978. Survival, production, <strong>and</strong> yield <strong>of</strong> trout <strong>and</strong> <strong>Chinook</strong> salmon in the LemhiRiver, Idaho. <strong>Bull</strong>etin No. 27. Prepared by Idaho Cooper<strong>at</strong>ive Fishery Research Unit, College <strong>of</strong>Forestry, Wildlife <strong>and</strong> Range Sciences, University <strong>of</strong> Idaho, Moscow for Idaho Department <strong>of</strong>Fish <strong>and</strong> Game.Bjornn, T. C., <strong>and</strong> D. W. Reiser. 1991. Habit<strong>at</strong> requirements <strong>of</strong> salmonids in streams. Pages 83-138 in W. R. Meehan, editor. Influences <strong>of</strong> forest <strong>and</strong> rangel<strong>and</strong> management on salmonid fishes<strong>and</strong> their habit<strong>at</strong>s. Special Public<strong>at</strong>ion No. 19. American Fisheries Society, Bethesda, Maryl<strong>and</strong>.Boag, T. D. 1987. Food habits <strong>of</strong> bull char, Salvelinus confluentus, <strong>and</strong> rainbow trout, Salmogairdneri, coexisting in a foothills stream in northern Alberta. Canadian Field-N<strong>at</strong>uralist 101: 56-62.Boag, T. D., <strong>and</strong> P. J. Hvenegaard. 1997. Spawning movements <strong>and</strong> habit<strong>at</strong> selection <strong>of</strong> bull troutin a small Alberta foothills stream. Pages 317-323 in W. C. Mackay, M. K. Brewin <strong>and</strong> M.Monita, editor. Friends <strong>of</strong> the bull trout conference proceedings. <strong>Bull</strong> <strong>Trout</strong> Task Force (Alberta),<strong>Trout</strong> Unlimited Canada, Calgary, Alberta.Buchanan, D. V., <strong>and</strong> S. V. Gregory. 1997. Development <strong>of</strong> w<strong>at</strong>er temper<strong>at</strong>ure st<strong>and</strong>ards toprotect <strong>and</strong> restore habit<strong>at</strong> for bull trout <strong>and</strong> other cold w<strong>at</strong>er species in Oregon. Pages 119-126 inW. C. Mackay, M. K. Brewin <strong>and</strong> M. Monita, editor. Friends <strong>of</strong> the <strong>Bull</strong> <strong>Trout</strong> conferenceproceedings. <strong>Bull</strong> <strong>Trout</strong> Task Force (Alberta), <strong>and</strong> <strong>Trout</strong> Unlimited Canada, Calgary.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board49


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportBuchanan, D. V., M. E. Hanson, <strong>and</strong> R. M. Hooton. 1997. St<strong>at</strong>us <strong>of</strong> Oregon's bull trout:distribution, life history, limiting factors, management consider<strong>at</strong>ions, <strong>and</strong> st<strong>at</strong>us. OregonDepartment <strong>of</strong> Fish <strong>and</strong> Wildlife, Portl<strong>and</strong>.Budy, P., R. Al-Chokhachy, <strong>and</strong> G. P. Thiede. 2003. <strong>Bull</strong> trout popul<strong>at</strong>ion assessment <strong>and</strong> lifehistorycharacteristics in associ<strong>at</strong>ion with habit<strong>at</strong> quality <strong>and</strong> l<strong>and</strong> use in the Walla Walla Riverbasin: a templ<strong>at</strong>e for recovery planning. Annual progress report for 2002. U. S. GeologicalSurvey, Utah Cooper<strong>at</strong>ive Fish <strong>and</strong> Wildlife Research Unit, Department <strong>of</strong> Aqu<strong>at</strong>ic, W<strong>at</strong>ershed,<strong>and</strong> Earth Resources, Utah St<strong>at</strong>e University, Logan.Burner, C. J. 1951. Characteristics <strong>of</strong> spawning nests <strong>of</strong> Columbia River salmon. U. S. Fish <strong>and</strong>Wildlife Service Fishery <strong>Bull</strong>etin 52: 97-110.Cameron, W. A., <strong>and</strong> G. Paquette. 1991. Fisheries evalu<strong>at</strong>ion <strong>of</strong> Sweetw<strong>at</strong>er Creek, July 1991.USDA Forest Service, Willamette N<strong>at</strong>ional Forest, Blue River Ranger District, Blue River,Oregon.Chilcote, M. W., S. A. Leider, <strong>and</strong> J. J. Loch. 1984. Kalam<strong>at</strong>h River salmonid studies. Report No.84-5. Washington St<strong>at</strong>e Game Department, Fisheries Management Division, Olympia.Cope, R. S. 2003. Wigwam River juvenile bull trout <strong>and</strong> fish habit<strong>at</strong> monitoring program: 2002d<strong>at</strong>a report. Technical Report 2002, BPA Report No. DOE/BP-00005672-5. Prepared byWestslope Fisheries, Cranbrook, British Columbia for B. C. Ministry <strong>of</strong> Environment, L<strong>and</strong>s <strong>and</strong>Parks, Fisheries Branch, Cranbrook, British Columbia.Cope, R. S. 2004. Middlefork White River <strong>and</strong> Blackfoot Creek juvenile bull trout <strong>and</strong> fishhabit<strong>at</strong> monitoring program: monitor <strong>and</strong> protect Wigwam River bull trout for KoocamusaReservoir. 2003 Technical Report, Project No. 200000400, BPA Report DOE/BP-00005672-9.Prepared for Bonneville Power Administr<strong>at</strong>ion, Portl<strong>and</strong>, Oregon.Cope, R. S., <strong>and</strong> K. J. Morris. 2001. Wigwam River juvenile bull trout <strong>and</strong> fish habit<strong>at</strong>monitoring program: 2000 d<strong>at</strong>a report. Prepared by Westslope Fisheries, Cranbrook, BritishColumbia for B. C. Ministry <strong>of</strong> Environment, L<strong>and</strong>s <strong>and</strong> Parks, Fisheries Branch, Cranbrook,British Columbia.Cope, R. S., K. J. Morris, <strong>and</strong> J. E. Bisset. 2002. Wigwam River juvenile bull trout <strong>and</strong> fishhabit<strong>at</strong> monitoring program: 2001 d<strong>at</strong>a report. Annual Report 2001, BPA Report No. DOE/BP-00005672-1. Prepared by Westslope Fisheries, Cranbrook, British Columbia for B. C. Ministry <strong>of</strong>Environment, L<strong>and</strong>s <strong>and</strong> Parks, Fisheries Branch, Cranbrook, British Columbia.Cramer, S. P., C. F. Willis, D. Cramer, M. Smith, T. Downey, <strong>and</strong> R. Montagne. 1996. St<strong>at</strong>us <strong>of</strong>Willamette River spring <strong>Chinook</strong> salmon in regards to the Federal Endangered Species Act. Part2: Determine the extent <strong>and</strong> causes <strong>of</strong> trends in abundance for each ESU <strong>and</strong> Assess the risks th<strong>at</strong>thre<strong>at</strong>en persistence <strong>of</strong> each ESU. Special Report. Submitted to N<strong>at</strong>ional Marine Fisheries Serviceon behalf <strong>of</strong> Portl<strong>and</strong> General Electric Company <strong>and</strong> Eugene W<strong>at</strong>er <strong>and</strong> Electric Board. S. P.Cramer <strong>and</strong> Associ<strong>at</strong>es, Inc., Gresham, Oregon.Dambacher, J. M., <strong>and</strong> K. K. Jones. 1997. Stream habit<strong>at</strong> <strong>of</strong> juvenile bull trout popul<strong>at</strong>ions inOregon <strong>and</strong> benchmarks for habit<strong>at</strong> quality. Pages 353-360 in W. C. Mackay, M. K. Brewin <strong>and</strong>M. Monita, editor. Friends <strong>of</strong> the bull trout conference proceedings. <strong>Bull</strong> <strong>Trout</strong> Task Force(Alberta), <strong>Trout</strong> Unlimited Canada, Calgary, Alberta.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board50


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportDeVries, P. 1997. Riverine salmonid egg burial depths: review <strong>of</strong> published d<strong>at</strong>a <strong>and</strong> implic<strong>at</strong>ionsfor scour studies. Canadian Journal <strong>of</strong> Fisheries <strong>and</strong> Aqu<strong>at</strong>ic Sciences 54: 1685-1698.Donald, D. B., <strong>and</strong> D. J. Alger. 1993. Geographic distribution, species displacement, <strong>and</strong> nicheoverlap for lake trout <strong>and</strong> bull trout in mountain lakes. Canadian Journal <strong>of</strong> Zoology 71: 238-247.Downey, T. W., <strong>and</strong> T. Murtagh. 2001. McKenzie River spring <strong>Chinook</strong> salmon aerial spawningground surveys. Electronic d<strong>at</strong>a submission to StreamNet library, Oregon Department <strong>of</strong> Fish <strong>and</strong>Wildlife. Eugene W<strong>at</strong>er & Electric Board, Eugene, Oregon.Downs, C. C., D. Horan, E. Morgan-Harris, <strong>and</strong> R. Jakubowski. 2005. Spawning demographics<strong>and</strong> juvenile dispersal <strong>of</strong> an adfluvial bull trout popul<strong>at</strong>ion in Trestle Creek, Idaho. Prepared byIdaho Department <strong>of</strong> Fish <strong>and</strong> Game, Clark Fork, Idaho, U. S. Forest Service, Rocky MountainResearch St<strong>at</strong>ion, Boise, Idaho, <strong>and</strong> Avista Corpor<strong>at</strong>ion, N<strong>at</strong>ural Resource Office, Noxon,Montana.EA Engineering (EA Engineering, Science, <strong>and</strong> Technology). 1991. Radio-tracking studies <strong>of</strong>adult spring <strong>Chinook</strong> salmon migr<strong>at</strong>ion behavior in the McKenzie River, Oregon. Prepared by EAEngineering, Lafayette, California for Eugene W<strong>at</strong>er & Electric Board, Eugene, Oregon.Elle, S., <strong>and</strong> R. Thurow. 1994. Rapid River bull trout movement <strong>and</strong> mortality studies. JobPerformance Report, Project F-73-R-16. Idaho Department <strong>of</strong> Fish <strong>and</strong> Game, Nampa, Idaho.Elliott, J. M., <strong>and</strong> M. A. Hurley. 1998. Predicting fluctu<strong>at</strong>ions in the size <strong>of</strong> newly emerged se<strong>at</strong>routfry in a Lake District stream. Journal <strong>of</strong> Fish Biology 53:EWEB (Eugene W<strong>at</strong>er & Electric Board). 2002. Biological assessment for the Eugene W<strong>at</strong>er &Electric Board Carmen-Smith Hydroelectric Project. Draft report. Prepared for Federal EnergyRegul<strong>at</strong>ory Commission, Washington, D. C.EWEB (Eugene W<strong>at</strong>er & Electric Board). 2003. Initial consult<strong>at</strong>ion package for relicensing theCarmen-Smith Hydroelectric Project (FERC No. 2242). Final report. Prepared by Stillw<strong>at</strong>erSciences, Arc<strong>at</strong>a, California for EWEB, Eugene, Oregon.Firman, J., R. Schroeder, R. Lindsay, K. Kenaston, <strong>and</strong> M. Horgansen. 2004. Work completed forcompliance with the biological opinion for h<strong>at</strong>chery programs in the Willamette Basin, USACEfunding: 2003. Task Order: NWP-OP-FH-02-01.Fl<strong>at</strong>ter, B. J. 2000. Life history <strong>and</strong> popul<strong>at</strong>ion st<strong>at</strong>us <strong>of</strong> migr<strong>at</strong>ory bull trout in ArrowrockReservoir, Idaho. Master's thesis. Boise St<strong>at</strong>e University, Boise, Idaho.Fraley, J. J., <strong>and</strong> B. B. Shepard. 1989. Life history, ecology <strong>and</strong> popul<strong>at</strong>ion st<strong>at</strong>us <strong>of</strong> migr<strong>at</strong>orybull trout (Salvelinus confluentus) in the Fl<strong>at</strong>head Lake <strong>and</strong> River system, Montana. NorthwestScience 63: 133-143.Goetz, F. 1989. Biology <strong>of</strong> the bull trout, Salvelinus confluentus, a liter<strong>at</strong>ure review. USDAForest Service, Willamette N<strong>at</strong>ional Forest, Eugene, Oregon.Goetz, F. 1994. Distribution <strong>and</strong> juvenile ecology <strong>of</strong> bull trout (Salvelinus confluentus) in theCascade Mountains. Master's thesis. Oregon St<strong>at</strong>e University, Corvallis.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board51


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportGowan, C., <strong>and</strong> K. D. Fausch. 1996. Long-term demographic responses <strong>of</strong> trout popul<strong>at</strong>ions tohabit<strong>at</strong> manipul<strong>at</strong>ion in six Colorado streams. Ecological Applic<strong>at</strong>ions 6: 931-946.Grant, J. W. A., <strong>and</strong> D. L. Kramer. 1990. Territory size as a predictor <strong>of</strong> the upper limit topopul<strong>at</strong>ion density <strong>of</strong> juvenile salmonids in streams. Canadian Journal <strong>of</strong> Fisheries <strong>and</strong> Aqu<strong>at</strong>icSciences 47: 1724-1737.Grant, J. W. A., S. O. Steingrimsson, E. R. Keeley, <strong>and</strong> R. A. Cunjak. 1998. Implic<strong>at</strong>ions <strong>of</strong>territory size for the measurement <strong>and</strong> prediction <strong>of</strong> salmonid abundance in streams. CanadianJournal <strong>of</strong> Fisheries <strong>and</strong> Aqu<strong>at</strong>ic Sciences 55 (Supplement 1): 181-190.Grimes, J. T., R. B. Lindsay, K. R. Kenaston, K. Homolka, <strong>and</strong> R. K. Schroeder. 1996.Willamette spring <strong>Chinook</strong> salmon. Annual Progress Report, Project No. F-163-R-00. OregonDepartment <strong>of</strong> Fish <strong>and</strong> Wildlife, Portl<strong>and</strong>, Oregon.Gunckel, S. L., A. R. Hemmingsen, <strong>and</strong> J. L. Li. 2002. Effect <strong>of</strong> bull trout <strong>and</strong> brook troutinteractions on foraging habit<strong>at</strong>, feeding behavior, <strong>and</strong> growth. Transactions <strong>of</strong> the AmericanFisheries Society 131: 1119-1130.Haas, G. R., <strong>and</strong> J. D. McPhail. 2001. The post-Wisconsinan glacial biogeography <strong>of</strong> bull trout(Salvelinus confluentus): a multivari<strong>at</strong>e morphometric approach for conserv<strong>at</strong>ion biology <strong>and</strong>management. Canadian Journal <strong>of</strong> Fisheries <strong>and</strong> Aqu<strong>at</strong>ic Sciences 58: 2189-2203.Hagen, J., <strong>and</strong> J. S. Baxter. 1992. <strong>Bull</strong> trout popul<strong>at</strong>ions <strong>of</strong> the north Thompson River basin,British Columbia: initial assessment <strong>of</strong> a biological wilderness. Prepared for British ColumbiaMinistry <strong>of</strong> Enviroment, L<strong>and</strong>s, <strong>and</strong> Parks, Fisheries Branch, Kamloops, British Columbia.Hagey, D. 1991. 1990 salmon run summary for the Carmen Smith Spawning Channel. Letter toG. Kunkel.Hagey, D. W. 1968. The oper<strong>at</strong>ion <strong>and</strong> evalu<strong>at</strong>ion <strong>of</strong> the Carmen-Smith spawning channel, 1960-67. Summary report. Oregon Fish Commission, Portl<strong>and</strong>.Hardin-Davis, Harza Northwest, <strong>and</strong> Clearw<strong>at</strong>er BioStudies,. 1991. A report on the development<strong>of</strong> habit<strong>at</strong> suitability criteria for salmonids <strong>of</strong> the McKenzie River. Prepared by Hardin-Davis,Inc., Harza Northwest, Inc., <strong>and</strong> Clearw<strong>at</strong>er BioStudies, Inc. for Eugene W<strong>at</strong>er & Electric Board,Eugene, Oregon.Hayes, J. W. 1987. Competition for spawning space between brown (Salmo trutta) <strong>and</strong> rainbowtrout (S. gairdneri) in a lake inlet tributary, New Zeal<strong>and</strong>. Canadian Journal <strong>of</strong> Fisheries <strong>and</strong>Aqu<strong>at</strong>ic Sciences 44: 40-47.Healey, M. C. 1991. Life history <strong>of</strong> <strong>Chinook</strong> salmon (Oncorhynchus tshawytscha). Pages 311-393 in C. Groot <strong>and</strong> L. Margolis, editor. Pacific salmon life histories. University <strong>of</strong> BritishColumbia Press, Vancouver, British Columbia.Herman, S. J. 1997. The unique bull trout spawning popul<strong>at</strong>ion <strong>of</strong> Pinto Lake, Alberta. Pages217-226 in W. C. Mackay, M. K. Brewin <strong>and</strong> M. Monita, editors. Friends <strong>of</strong> the bull troutconference proceedings. <strong>Bull</strong> <strong>Trout</strong> Task Force (Alberta), <strong>Trout</strong> Unlimited Canada, Calgary,Alberta28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board52


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportHomolka, K., <strong>and</strong> T. W. Downey. 1995. Assessment <strong>of</strong> thermal effects on salmon spawning <strong>and</strong>fry emergence, upper McKenzie River, 1992. Inform<strong>at</strong>ion Report 95-4. Oregon Department <strong>of</strong>Fish <strong>and</strong> Wildlife, Fish Research <strong>and</strong> Development Section, Corvallis.Howell, P., J. Hutchison, <strong>and</strong> R. Hooton. 1988. McKenzie subbasin fish management plan.Oregon Department <strong>of</strong> Fish <strong>and</strong> Wildlife, Portl<strong>and</strong>.Hutchison, J. M., <strong>and</strong> R. M. Hooton. 1990. McKenzie River creel survey, 1983. Inform<strong>at</strong>ionReports No. 90-1. Oregon Department <strong>of</strong> Fish <strong>and</strong> Wildlife, Fish Division, Portl<strong>and</strong>, Oregon.James, P. W., <strong>and</strong> H. M. Sexauer. 1997. Spawning behaviour, spawning habit<strong>at</strong> <strong>and</strong> altern<strong>at</strong>ivem<strong>at</strong>ing str<strong>at</strong>egies in an adfluvial popul<strong>at</strong>ion <strong>of</strong> bull trout. Pages 325-329 in W. C. Mackay, M. K.Brewin <strong>and</strong> M. Monita, editor. Friends <strong>of</strong> the bull trout conference proceedings. <strong>Bull</strong> <strong>Trout</strong> TaskForce (Alberta), <strong>Trout</strong> Unlimited Canada, Calgary, Alberta.LCOG (Lane Council <strong>of</strong> Governments). 1996. Technical report for w<strong>at</strong>er quality <strong>and</strong> fish <strong>and</strong>wildlife habit<strong>at</strong>. LCOG, McKenzie W<strong>at</strong>ershed Council, Eugene, Oregon.Levings, C. D., <strong>and</strong> R. B. Lauzier. 1991. Extensive use <strong>of</strong> the Fraser River basin as winter habit<strong>at</strong>by juvenile <strong>Chinook</strong> salmon (Oncorhynchus tshawytscha). Canadian Journal <strong>of</strong> Zoology 69:1759-1767.Ligon, F. K., W. E. Dietrich, <strong>and</strong> W. J. Trush. 1995. Downstream ecological effects <strong>of</strong> dams: ageomorphic perspective. BioScience 45: 183-192.Lindsay, R. B., K. R. Kenaston, R. K. Schroeder, J. T. Grimes, M. G. Wade, K. Homolka, <strong>and</strong> L.Borgerson. 1997. <strong>Spring</strong> <strong>Chinook</strong> salmon in the Willamette <strong>and</strong> S<strong>and</strong>y rivers. Annual ProgressReport, Project No. F-163-R-01. Oregon Department <strong>of</strong> Fish <strong>and</strong> Wildlife, Portl<strong>and</strong>, Oregon.M<strong>at</strong>tson, C. 1948. Spawning ground studies <strong>of</strong> Willamette River spring <strong>Chinook</strong> salmon. OregonFish Commission Research Briefs 1: 21-32.McCuddin, M. E. 1977. Survival <strong>of</strong> salmon <strong>and</strong> trout embryos <strong>and</strong> fry in gravel-s<strong>and</strong> mixtures.Master's thesis. University <strong>of</strong> Idaho, Moscow.McElhany, P., T. Backman, C. Busack, S. Heppell, S. Kolmes, A. Maule, J. Myers, D. Rawding,A. Steel, C. Steward, <strong>and</strong> T. Whitesel. 2003. Interim report on viability criteria for Willamette<strong>and</strong> lower Columbia basin Pacific salmonids. Prepared by Willamette/Lower Columbia TechnicalRecovery Team, NOAA Fisheries, Northwest Fisheries Science Center, Portl<strong>and</strong>, Oregon.McNeil, W. J. 1964. Redd superimposition <strong>and</strong> egg capacity <strong>of</strong> pink salmon spawning beds.Journal <strong>of</strong> the Fisheries Research Board <strong>of</strong> Canada 21: 1385-1396.Morita, K., <strong>and</strong> A. Yokota. 2002. <strong>Popul<strong>at</strong>ion</strong> viability <strong>of</strong> stream-resident salmonids after habit<strong>at</strong>fragment<strong>at</strong>ion: a case study with white-spotted charr (Salvelinus leucomaenis) by an individualbased model. Ecological Modelling 155: 85-94.Moussalli, E. <strong>and</strong> R. Hilborn. 1986. Optimal stock size <strong>and</strong> harvest r<strong>at</strong>e in multistage life historymodels. Canadian Journal <strong>of</strong> Fisheries <strong>and</strong> Aqu<strong>at</strong>ic Sciences. 43: 135-141.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board53


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportMuhlfeld, C. C., S. Glutting, R. Hunt, D. Daniels, <strong>and</strong> B. Marotz. 2003. Winter diel habit<strong>at</strong> use<strong>and</strong> movement by subadult bull trout in the upper Fl<strong>at</strong>head River, Montana. North AmericanJournal <strong>of</strong> Fisheries Management 23: 163-171.Myers, J., C. Busack, D. Rawding, <strong>and</strong> A. Marshall. 2003. Historical popul<strong>at</strong>ion structure <strong>of</strong>Willamette <strong>and</strong> Lower Columbia river basin Pacific salmonids. Prepared by N<strong>at</strong>ional MarineFisheries Service, Northwest Fisheries Science Center, Se<strong>at</strong>tle; Washington Department <strong>of</strong> Fish<strong>and</strong> Wildlife, Olympia <strong>and</strong> Vancouver, Washington.Nickelson, T. E., <strong>and</strong> P. W. Lawson. 1998. <strong>Popul<strong>at</strong>ion</strong> viability <strong>of</strong> coho salmon, Oncorhynchuskisutch, in Oregon coastal basins: applic<strong>at</strong>ion <strong>of</strong> a habit<strong>at</strong>-based life cycle model. CanadianJournal <strong>of</strong> Fisheries <strong>and</strong> Aqu<strong>at</strong>ic Sciences 55: 2383-2392.NMFS (N<strong>at</strong>ional Marine Fisheries Service). 2005a. Endangered <strong>and</strong> thre<strong>at</strong>ened species; finallisting determin<strong>at</strong>ions for 16 ESUs <strong>of</strong> West Coast salmon, <strong>and</strong> final 4(d) protective regul<strong>at</strong>ions forthre<strong>at</strong>ened salmonid ESUs. Federal Register 70: 37160-37204.NMFS (N<strong>at</strong>ional Marine Fisheries Service). 2005b. Endangered <strong>and</strong> thre<strong>at</strong>ened species;design<strong>at</strong>ion <strong>of</strong> critical habit<strong>at</strong> for 12 Evolutionarily Significant Units <strong>of</strong> west coast salmon <strong>and</strong>steelhead in Washington, Oregon, <strong>and</strong> Idaho. Federal Register 70: 52630-52858.NMFS <strong>and</strong> USFWS (N<strong>at</strong>ional Marine Fisheries Service <strong>and</strong> U. S. Fish <strong>and</strong> Wildlife Service).2000. Biological opinion on effects <strong>of</strong> Cougar Reservoir w<strong>at</strong>er temper<strong>at</strong>ure control project onupper Willamette River <strong>Chinook</strong> salmon, its critical habit<strong>at</strong>, bull trout, northern spotted owl, <strong>and</strong>its critical habit<strong>at</strong>. Endangered Species Act - Section 7 Consult<strong>at</strong>ion. Prepared for U. S. ArmyCorps <strong>of</strong> Engineers by NMFS, Northwest Region <strong>and</strong> USFWS, Pacific Region.NOAA Fisheries. 2003. Biological opinion <strong>and</strong> Magnuson-Stevens Fishery Conserv<strong>at</strong>ion <strong>and</strong>Management Act consult<strong>at</strong>ion on the effects <strong>of</strong> EWEB's Carmen-Smith Part 12 submittal toFERC for Trail Bridge Dam emergency spillway expansion, <strong>and</strong> continued oper<strong>at</strong>ion <strong>of</strong> theCarmen-Smith Hydroelectric Project in the McKenzie Subbasin, Oregon on Upper WillametteRiver <strong>Chinook</strong> salmon. Prepared for Federal Energy Regul<strong>at</strong>ory Commission, Washington, D. C.NOAA Fisheries. 2004. Biological opinion <strong>and</strong> Magnuson-Stevens Fishery Conserv<strong>at</strong>ion <strong>and</strong>Management Act consult<strong>at</strong>ion: Oper<strong>at</strong>ion <strong>of</strong> the Cowlitz River Hydroelectric Project (FERC No.2016) through 2038, Cowlitz River, HUC 17080005, Lewis County, Washington. EndangeredSpecies Act Section 7(a)(2) consult<strong>at</strong>ion. NOAA Fisheries, Northwest Region, HydropowerDivision, Se<strong>at</strong>tle, Washington.ODFW (Oregon Department <strong>of</strong> Fish <strong>and</strong> Wildlife). 1990. McKenzie River, Willamette Riversubbasin: salmon <strong>and</strong> steelhead production plan. Columbia Basin System Planning. ODFW,Portl<strong>and</strong>.ODFW (Oregon Department <strong>of</strong> Fish <strong>and</strong> Game). 1992a. Trap net results from Trail BridgeReservoir for 15 July <strong>and</strong> 18 September 1992 (“Trail Bridge Reservoir—1992—Trap net on eastshore on point 400 yards from dam”). Unpublished d<strong>at</strong>a.ODFW (Oregon Department <strong>of</strong> Fish <strong>and</strong> Game). 1999a. Trap net results from Trail BridgeReservoir for 1–2 April <strong>and</strong> 1–2 September 1999. Unpublished d<strong>at</strong>a.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board54


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportODFW (Oregon Department <strong>of</strong> Fish <strong>and</strong> Wildlife). 2001a. Cougar Dam Temper<strong>at</strong>ure ControlProject: bull trout monitoring. Quarterly reports for the following periods January 1 throughMarch 31, April 1 through June 30, July 1 through September 30, <strong>and</strong> October 1 throughDecember 31. ODFW, Portl<strong>and</strong>, Oregon.ODFW (Oregon Department <strong>of</strong> Fish <strong>and</strong> Wildlife). 2001b. Review <strong>of</strong> T & E, sensitive, <strong>and</strong> stocks<strong>of</strong> concern. Unpublished report. ODFW, South Willamette W<strong>at</strong>ershed District, <strong>Spring</strong>field,Oregon.ODFW (Oregon Department <strong>of</strong> Fish <strong>and</strong> Wildlife). 2001c. 2001 Willamette spring <strong>Chinook</strong>:Willamette River sport fishing c<strong>at</strong>ch <strong>and</strong> Willamette Falls fish passage counts. Unpublished d<strong>at</strong>aODFW (Oregon Department <strong>of</strong> Fish <strong>and</strong> Wildlife). 2001d. Fisheries Management <strong>and</strong> Evalu<strong>at</strong>ionPlan: Upper Willamette River spring <strong>Chinook</strong> in freshw<strong>at</strong>er fisheries <strong>of</strong> the Willamette Basin <strong>and</strong>Lower Columbia River mainstem. ODFW, Portl<strong>and</strong>.ODFW (Oregon Department <strong>of</strong> Fish <strong>and</strong> Wildlife). 2002a. Cougar Dam Temper<strong>at</strong>ure ControlProject: bull trout monitoring. Quarterly reports for the following periods January 1 throughMarch 31, April 1 through June 30, July 1 through September 30, <strong>and</strong> October 1 throughDecember 31. ODFW, Portl<strong>and</strong>, Oregon.ODFW (Oregon Department <strong>of</strong> Fish <strong>and</strong> Wildlife). 2002b. 2002 Willamette spring <strong>Chinook</strong>:Willamette River sport fishing c<strong>at</strong>ch <strong>and</strong> Willamette Falls fish passage counts. Unpublished d<strong>at</strong>a.ODFW (Oregon Department <strong>of</strong> Fish <strong>and</strong> Wildlife). 2002c. Stock st<strong>at</strong>us report for McKenzieRiver spring <strong>Chinook</strong> salmon. ODFW, South Willamette District, <strong>Spring</strong>field, Oregon.http://www.dfw.st<strong>at</strong>e.or.us/springfield/McKChs.html.ODFW (Oregon Department <strong>of</strong> Fish <strong>and</strong> Wildlife). 2003a. Stock st<strong>at</strong>us report: stock st<strong>at</strong>us <strong>of</strong> theMcKenzie bull trout. ODFW, South Willamette District, <strong>Spring</strong>field, Oregon.ODFW (Oregon Department <strong>of</strong> Fish <strong>and</strong> Wildlife). 2003b. Cougar Dam Temper<strong>at</strong>ure ControlProject: bull trout monitoring. Quarterly reports for the following periods January 1 throughMarch 31, April 1 through June 30, July 1 through September 30, <strong>and</strong> October 1 throughDecember 31. ODFW, Portl<strong>and</strong>, Oregon.ODFW (Oregon Department <strong>of</strong> Fish <strong>and</strong> Wildlife). 2004a. Cougar Dam Temper<strong>at</strong>ure ControlProject: bull trout monitoring. Quarterly reports for the following periods January 1 throughMarch 31, April 1 through June 30, <strong>and</strong> July 1 through September 30. ODFW, Portl<strong>and</strong>, Oregon.ODFW (Oregon Department <strong>of</strong> Fish <strong>and</strong> Wildlife). 2004b. Summary <strong>of</strong> pit-tag recoveries in 2003<strong>and</strong> 2004 from antennae <strong>at</strong> Sweetw<strong>at</strong>er Creek, Anderson Creek, <strong>and</strong> Olallie Creek. Fish weretagged <strong>at</strong> either Trail Bridge Reservoir or mainstem upper McKenzie River downstream <strong>of</strong> TrailBridge Dam. ODFW, <strong>Spring</strong>field. Unpublished d<strong>at</strong>a.ODFW (Oregon Department <strong>of</strong> Fish <strong>and</strong> Game). 2004c. Summary <strong>of</strong> Trail Bridge Reservoir Trapnet sampling, 15–16 November 2004. Unpublished d<strong>at</strong>a.ODFW (Oregon Department <strong>of</strong> Fish <strong>and</strong> Wildlife). 2004d. Fisheries management <strong>and</strong> evalu<strong>at</strong>ionfor 2003 Willamette River spring <strong>Chinook</strong>. ODFW, Roseburg.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board55


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportODFW (Oregon Department <strong>of</strong> Fish <strong>and</strong> Wildlife). 2004e. 2004 Willamette spring <strong>Chinook</strong>:Willamette River sport fishing c<strong>at</strong>ch <strong>and</strong> Willamette Falls fish passage counts. Unpublished d<strong>at</strong>a.ODFW <strong>and</strong> Stillw<strong>at</strong>er Sciences (Oregon Department <strong>of</strong> Fish <strong>and</strong> Wildlife <strong>and</strong> Stillw<strong>at</strong>erSciences). 2004. <strong>Chinook</strong> salmon sex st<strong>at</strong>us for h<strong>at</strong>chery fish released into Trail Bridge Reservoirin 2004. Unpublished d<strong>at</strong>a.Oosterhout, G. R., C. W. Huntington, T. E. Nickelson, <strong>and</strong> P. W. Lawson. 2005. Potentialbenefits <strong>of</strong> a conserv<strong>at</strong>ion h<strong>at</strong>chery program for supplementing Oregon coast coho salmon(Oncorhynchus kisutch) popul<strong>at</strong>ions: a stochastic model investig<strong>at</strong>ion. Canadian Journal <strong>of</strong>Fisheries <strong>and</strong> Aqu<strong>at</strong>ic Sciences 62: 1920-1935.Parkhurst, Z. E., F. G. Bryant, <strong>and</strong> R. S. Nielson. 1950. Survey <strong>of</strong> the Columbia River <strong>and</strong> itstributaries. Part 3. All tributaries entering the Columbia River on the Oregon side, from the mouthup to, but not including the Deschutes River. Special Scientific Report, Fisheries No. 36.USFWS.Paulik, G. J. 1973. Studies <strong>of</strong> the possible form <strong>of</strong> the stock-recruitment curve. Rapports etProces-Verbaux des Reunions, Conseil Intern<strong>at</strong>ional pour L'Explor<strong>at</strong>ion de la Mer 164: 302-315.Piaskowski, R. M., <strong>and</strong> R. A. Tabor. 2001. Nocturnal habit<strong>at</strong> use by juvenile <strong>Chinook</strong> salmon innearshore areas <strong>of</strong> Southern Lake Washington, a preliminary investig<strong>at</strong>ion, 2000. U. S. Fish <strong>and</strong>Wildlife Service, Western Washington Office, Division <strong>of</strong> Fisheries <strong>and</strong> W<strong>at</strong>ershed Assessment,Lacey, Washington.Piper, R. G., I. B. McElwain, L. E. Orme, J. P. McCraren, L. G. Fowler, <strong>and</strong> J. R. Leonard. 1982.Fish h<strong>at</strong>chery management. U. S. Fish <strong>and</strong> Wildlife Service.Pr<strong>at</strong>t, K. L. 1985. Pend Oreille trout <strong>and</strong> char life history study. Idaho Department <strong>of</strong> Fish <strong>and</strong>Game, Boise.Rawson, D. S. 1942. A comparsion <strong>of</strong> some large alpine lakes in western Canada. Ecology 23:143-161.Reiser, D.W., E. Connor, K. Binkley, K. Lynch, <strong>and</strong> D. Paige. 1997. Evalu<strong>at</strong>ion <strong>of</strong> spawninghabit<strong>at</strong> used by bull trout in the Cedar w<strong>at</strong>ershed, Washington. Pages 331-338 in Friends <strong>of</strong> the<strong>Bull</strong> <strong>Trout</strong> Conference Proceedings (Mackay, W.C., M.K. Brewin, <strong>and</strong> M. Monita, eds.). <strong>Bull</strong><strong>Trout</strong> Task Force (Alberta), c/o <strong>Trout</strong> Unlimited Canada, Calgary, ABRose, C., <strong>and</strong> C. Rose. 1997. <strong>Bull</strong> trout (Salvelinus confluentus) popul<strong>at</strong>ion <strong>and</strong> habit<strong>at</strong> surveys inthe McKenzie River system. Oregon Department <strong>of</strong> Fish <strong>and</strong> Wildlife, <strong>Spring</strong>field.Schill, D. J., R. Thurow, <strong>and</strong> P. Kline. 1994. Seasonal movement <strong>and</strong> spawning mortality <strong>of</strong>fluvial bull trout in Rapid River, Idaho. Job Performance Report, Project F-73-R-15. IdahoDepartment <strong>of</strong> Fish <strong>and</strong> Game.Scholz, A. T., H. J. McLellan, D. R. Geist, <strong>and</strong> R. S. Brown. 2005. Investig<strong>at</strong>ions <strong>of</strong> migr<strong>at</strong>orybull trout (Salvelinus confluentus) in rel<strong>at</strong>ion to fish passage <strong>at</strong> Albeni Falls Dam. Contract No.DACW68-02-D-001. Final report. Prepared by Eastern Washington University, Department <strong>of</strong>Biology, Fisheries Research Center, Cheney, Washington <strong>and</strong> B<strong>at</strong>telle Pacific Northwest28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board56


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportDivision, Richl<strong>and</strong>, Washington for United St<strong>at</strong>es Department <strong>of</strong> the Army Corps <strong>of</strong> Engineers,Se<strong>at</strong>tle District, Se<strong>at</strong>tle, Washington.Sedell, J. R., B. A. MacIntosh, <strong>and</strong> P. Minear. 1992. Evalu<strong>at</strong>ion <strong>of</strong> past <strong>and</strong> present stream habit<strong>at</strong>conditions for the Army Corps <strong>of</strong> Engineers McKenzie River temper<strong>at</strong>ure control feasibilitystudy. USDA Forest Service, Pacific Northwest Research St<strong>at</strong>ion, Corvallis, Oregon.Sharma, R., A. B. Cooper, <strong>and</strong> R. Hilborn. 2005. A quantit<strong>at</strong>ive framework for the analysis <strong>of</strong>habit<strong>at</strong> <strong>and</strong> h<strong>at</strong>chery practices on Pacific salmon. Ecological Modelling 183: 231-250.Shroeder, R. K., K. R. Kenaston, <strong>and</strong> R. B. Lindsay. 2003. <strong>Spring</strong> <strong>Chinook</strong> salmon in theWillamette <strong>and</strong> S<strong>and</strong>y rivers. Annual Progress Report, F-163-R-08. Oregon Department <strong>of</strong> Fish<strong>and</strong> Wildlife, Portl<strong>and</strong>, Oregon.Smith, E. M., B. A. Miller, J. D. Rodgers, <strong>and</strong> M. A. Buckman. 1985. Outplanting anadromoussalmonids: a liter<strong>at</strong>ure survey. Annual Report, Project No. 85-68. Prepared by OregonDepartment <strong>of</strong> Fish <strong>and</strong> Wildlife for Bonneville Power Administr<strong>at</strong>ion, Portl<strong>and</strong>, Oregon.Smith, M. 1993. A review <strong>of</strong> the Carmen-Smith spawning channel: historical review <strong>and</strong> d<strong>at</strong>aanalysis. Eugene W<strong>at</strong>er & Electric Board, Eugene, Oregon.Stelfox, J. D. 1997. Seasonal movements, growth, survival <strong>and</strong> popul<strong>at</strong>ion st<strong>at</strong>us <strong>of</strong> the adfluvialbull trout popul<strong>at</strong>ion in lower Kananaskis Lake, Alberta. Pages 309-316 in W. C. Mackay, M. K.Brewin <strong>and</strong> M. Monita, editors. Friends <strong>of</strong> the bull trout conference proceedings. <strong>Bull</strong> <strong>Trout</strong> TaskForce (Alberta), <strong>Trout</strong> Unlimited Canada, Calgary, Alberta.Stillw<strong>at</strong>er Sciences. 2004a. <strong>Popul<strong>at</strong>ion</strong> dynamics <strong>of</strong> bull trout <strong>and</strong> spring <strong>Chinook</strong> salmon. Finalstudy plan. Prepared by Stillw<strong>at</strong>er Sciences, Arc<strong>at</strong>a, California for Eugene W<strong>at</strong>er & ElectricBoard, Eugene, Oregon.Stillw<strong>at</strong>er Sciences. 2004b. Carmen Diversion Dam 2003 maintenance spill. TechnicalMemor<strong>and</strong>um. Prepared by Stillw<strong>at</strong>er Sciences, Arc<strong>at</strong>a, California for Eugene W<strong>at</strong>er & ElectricBoard, Eugene, Oregon.Stillw<strong>at</strong>er Sciences. 2006a. Fish popul<strong>at</strong>ion distribution <strong>and</strong> abundance in the Carmen-SmithHydroelectric Project, upper McKenzie River basin, Oregon. Final report. Prepared by Stillw<strong>at</strong>erSciences, Arc<strong>at</strong>a, California for Eugene W<strong>at</strong>er & Electric Board, Eugene, Oregon.Stillw<strong>at</strong>er Sciences. 2006b. Aqu<strong>at</strong>ic habit<strong>at</strong>s <strong>and</strong> instream flows in the Carmen-SmithHydroelectric Project, upper McKenzie River basin, Oregon. Final report. Prepared by Stillw<strong>at</strong>erSciences, Arc<strong>at</strong>a, California for Eugene W<strong>at</strong>er & Electric Board, Eugene, Oregon.Stillw<strong>at</strong>er Sciences. 2006c. Fish entrainment in the Carmen-Smith Hydroelectric Project, upperMcKenzie River basin, Oregon. Final report. Prepared by Stillw<strong>at</strong>er Sciences, Arc<strong>at</strong>a, Californiafor Eugene W<strong>at</strong>er & Electric Board, Eugene, Oregon.Stillw<strong>at</strong>er Sciences. 2006d. W<strong>at</strong>er quality in the Carmen-Smith Hydroelectric Project, upperMcKenzie River basin, Oregon. Final report. Prepared by Stillw<strong>at</strong>er Sciences, Arc<strong>at</strong>a, Californiafor Eugene W<strong>at</strong>er & Electric Board, Eugene, Oregon.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board57


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportStillw<strong>at</strong>er Sciences. 2006e. Flow fluctu<strong>at</strong>ions <strong>and</strong> str<strong>and</strong>ing in the Carmen-Smith HydroelectricProject, upper McKenzie River basin, Oregon. Final report. Prepared by Stillw<strong>at</strong>er Sciences,Arc<strong>at</strong>a, California for Eugene W<strong>at</strong>er & Electric Board, Eugene, Oregon.Stillw<strong>at</strong>er Sciences. 2006f. Aqu<strong>at</strong>ic protection, mitig<strong>at</strong>ion, <strong>and</strong> enhancement opportunities in theCarmen-Smith Hydroelectric Project, upper McKenzie River basin, Oregon. Final report.Prepared by Stillw<strong>at</strong>er Sciences, Arc<strong>at</strong>a, California for Eugene W<strong>at</strong>er & Electric Board, Eugene,Oregon.Stillw<strong>at</strong>er Sciences. 2006g. Fluvial geomorphic processes <strong>and</strong> channel morphology in theCarmen-Smith Hydroelectric Project area, upper McKenzie River basin, Oregon. Final report.Prepared by Stillw<strong>at</strong>er Sciences, Arc<strong>at</strong>a, California for Eugene W<strong>at</strong>er & Electric Board, Eugene,Oregon.Stillw<strong>at</strong>er Sciences. 2006h. Hydrologic regimes <strong>at</strong> the Carmen-Smith Hydroelectric Project,upper McKenzie River basin, Oregon. Final report. Prepared by Stillw<strong>at</strong>er Sciences, Arc<strong>at</strong>a,California for Eugene W<strong>at</strong>er & Electric Board, Eugene, Oregon.Stillw<strong>at</strong>er Sciences. 2005i. Recre<strong>at</strong>ion suitability in the Carmen-Smith Hydroelectric Project area,upper McKenzie River basin, Oregon. Final report. Prepared by Stillw<strong>at</strong>er Sciences, Arc<strong>at</strong>a,California for Eugene W<strong>at</strong>er & Electric Board, Eugene, Oregon.Stillw<strong>at</strong>er Sciences. 2006j. Aqu<strong>at</strong>ic habit<strong>at</strong> connectivity in the Carmen-Smith HydroelectricProject area, upper McKenzie River basin, Oregon. Final report. Prepared by Stillw<strong>at</strong>er Sciences,Arc<strong>at</strong>a, California for Eugene W<strong>at</strong>er & Electric Board, Eugene, Oregon.Swanberg, T. R. 1997. Movements <strong>of</strong> <strong>and</strong> habit<strong>at</strong> use by fluvial bull trout in the Blackfoot River,Montana. Transactions <strong>of</strong> the American Fisheries Society 126: 735-746.Swartzman, G. L., <strong>and</strong> D. A. Beauchamp. 1990. Simul<strong>at</strong>ion <strong>of</strong> the effect <strong>of</strong> rainbow troutintroduction in Lake Washington. Transactions <strong>of</strong> the American Fisheries Society 119: 122-134.Tabor, R. A., M. T. Celedonia, F. Mejia, R. M. Piaskowski, D. L. Low, B. Footen, <strong>and</strong> L. Park.2004. Pred<strong>at</strong>ion <strong>of</strong> juvenile <strong>Chinook</strong> salmon by pred<strong>at</strong>ory fishes in three areas <strong>of</strong> the LakeWashington Basin. Public<strong>at</strong>ions - 5, Food Habits/Pred<strong>at</strong>ion. U. S. Fish & Wildlife Service-Pacific Region, Fisheries Division. http://www.fws.gov/westwafwo/fisheries/wwfish_pub5.htm.Tagart, J. V. 1976. The survival from egg deposition to emergence <strong>of</strong> coho salmon in theClearw<strong>at</strong>er River, Jefferson County, Washington. Master's thesis. University <strong>of</strong> Washington,Se<strong>at</strong>tle.Taylor, G. A. 2000. Monitoring <strong>of</strong> downstream fish passage <strong>at</strong> Cougar Dam in the South ForkMcKenzie River, Oregon, 1998-2000. Oregon Department <strong>of</strong> Fish <strong>and</strong> Wildlife.Taylor, G. A. 2003. <strong>Bull</strong> trout (Salvelinus confluentus) popul<strong>at</strong>ion <strong>and</strong> habit<strong>at</strong> surveys in theMcKenzie <strong>and</strong> Middle Fork Willamette basins, 2001. Annual Report 2001 BPA Report DOE/BP-00004093-2. Bonneville Power Administr<strong>at</strong>ion, Portl<strong>and</strong>, Oregon.Taylor, G. A., <strong>and</strong> A. Reasoner. 1998. <strong>Bull</strong> trout (Salvelinus confluentus) popul<strong>at</strong>ions <strong>and</strong> habit<strong>at</strong>surveys in the McKenzie <strong>and</strong> Middle Fork Willamette basins, 1998. Oregon Department <strong>of</strong> Fish<strong>and</strong> Wildlife, <strong>Spring</strong>field.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board58


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportTaylor, G. A., <strong>and</strong> A. Reasoner. 2000. <strong>Bull</strong> trout (Salvelinus confluentus) popul<strong>at</strong>ion <strong>and</strong> habit<strong>at</strong>surveys in the McKenzie <strong>and</strong> Middle Fork Willamette basins. Annual Report 1999, DOE/BP-00000226-1. Bonneville Power Administr<strong>at</strong>ion, Portl<strong>and</strong>, Oregon.Taylor, G. A., <strong>and</strong> J. Ziller. 2000. <strong>Bull</strong> trout (Salvelinus confluentus) popul<strong>at</strong>ion <strong>and</strong> habit<strong>at</strong>surveys in the McKenzie <strong>and</strong> Middle Fork Willamette basins, 2000. Annual Report 2000 BPAReport DOE/BP-00004093-1. Bonneville Power Administr<strong>at</strong>ion, Portl<strong>and</strong>, Oregon.Torgersen, C. E., R. N. Faux, <strong>and</strong> B. A. McIntosh. 1999. Aerial survey <strong>of</strong> the upper McKenzieRiver: thermal infrared <strong>and</strong> color videography. Oregon St<strong>at</strong>e University, Corvallis.USDA Forest Service. 1990. Willamette N<strong>at</strong>ional Forest l<strong>and</strong> <strong>and</strong> resource management plan.Final environmental impact st<strong>at</strong>ement. USDA Forest Service, Northwest Region, Eugene,Oregon.USDA Forest Service. 1991a. Biological stream probes: Kink Creek, Ollalie Creek, Deer Creek,Budworm Creek, <strong>and</strong> Bunchgrass Creek. USDA Forest Service, Willamette N<strong>at</strong>ional Forest,McKenzie <strong>and</strong> Blue River Ranger Districts, Blue River, Oregon. Unpublished d<strong>at</strong>a.USDA Forest Service. 1991b. Biological probe: Boone Creek, 7-8 August 1991. USDA ForestService, Willamette N<strong>at</strong>ional Forest, McKenzie <strong>and</strong> Blue River Ranger Districts, Oregon.Unpublished d<strong>at</strong>a.USDA Forest Service. 1991c. Biological probe: Penny Creek, 8 August 1991. USDA ForestService, Willamette N<strong>at</strong>ional Forest, McKenzie <strong>and</strong> Blue River Ranger Districts, Oregon.Unpublished d<strong>at</strong>a.USDA Forest Service. 1991d. Biological probe: Rider Creek, 8 August 1991. USDA ForestService, Willamette N<strong>at</strong>ional Forest, McKenzie <strong>and</strong> Blue River Ranger Districts, Oregon.Unpublished d<strong>at</strong>a.USDA Forest Service. 1991e. Biological probe: Ridge Creek, 13 September 1991. USDA ForestService, Willamette N<strong>at</strong>ional Forest, McKenzie <strong>and</strong> Blue River Ranger Districts, Oregon.Unpublished d<strong>at</strong>a.USDA Forest Service. 1991f. Scuba surveys <strong>of</strong> Trail Bridge Reservoir, 4 May <strong>and</strong> 17 July 1991.Unpublished d<strong>at</strong>a.USDA Forest Service. 1992a. <strong>Bull</strong> trout redd counts from spawning surveys conducted byODFW <strong>and</strong> USDA Forest Service, 1989-1992. USDA Forest Service. Unpublished d<strong>at</strong>a.USDA Forest Service. 1992b. Biological probe: Boulder Creek, 6 June 1992. USDA ForestService, Willamette N<strong>at</strong>ional Forest, McKenzie <strong>and</strong> Blue River Ranger Districts, Oregon.Unpublished d<strong>at</strong>a.USDA Forest Service. 1992c. Biological probe: Boulder Creek, 7 June 1992. USDA ForestService, Willamette N<strong>at</strong>ional Forest, McKenzie <strong>and</strong> Blue River Ranger Districts, Oregon.Unpublished d<strong>at</strong>a.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board59


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportUSDA Forest Service. 1992d. Biological probe: Elk Creek, 28 July <strong>and</strong> 4 August 1992. USDAForest Service, Willamette N<strong>at</strong>ional Forest, McKenzie <strong>and</strong> Blue River Ranger Districts, Oregon.Unpublished d<strong>at</strong>a.USDA Forest Service. 1992e. Biological probe: Ikenick Creek, 28 April 1992. USDA ForestService, Willamette N<strong>at</strong>ional Forest, McKenzie <strong>and</strong> Blue River Ranger Districts, Oregon.Unpublished d<strong>at</strong>a.USDA Forest Service. 1992f. Biological probe: Lost Creek, 19 <strong>and</strong> 26 May 1992. USDA ForestService, Willamette N<strong>at</strong>ional Forest, McKenzie <strong>and</strong> Blue River Ranger Districts, Oregon.Unpublished d<strong>at</strong>a.USDA Forest Service. 1992g. Biological probe: Lost Creek, 10 December 1992. USDA ForestService, Willamette N<strong>at</strong>ional Forest, McKenzie <strong>and</strong> Blue River Ranger Districts, Oregon.Unpublished d<strong>at</strong>a.USDA Forest Service. 1992h. Biological probe: North Fork Olallie Creek, 12 May 1992. USDAForest Service, Willamette N<strong>at</strong>ional Forest, McKenzie <strong>and</strong> Blue River Ranger Districts, Oregon.Unpublished d<strong>at</strong>a.USDA Forest Service. 1992i. Biological probe: Roney Creek, 6 October 1992. USDA ForestService, Willamette N<strong>at</strong>ional Forest, McKenzie <strong>and</strong> Blue River Ranger Districts, Oregon.Unpublished d<strong>at</strong>a.USDA Forest Service. 1992j. Biological probe: Scott Creek, 21 July 1992. USDA ForestService, Willamette N<strong>at</strong>ional Forest, McKenzie <strong>and</strong> Blue River Ranger Districts, Oregon.Unpublished d<strong>at</strong>a.USDA Forest Service. 1992k. Biological probe: South Fork McKenzie River, 18 August 1992.USDA Forest Service, Willamette N<strong>at</strong>ional Forest, McKenzie <strong>and</strong> Blue River Ranger Districts,Oregon. Unpublished d<strong>at</strong>a.USDA Forest Service. 1992l. Scuba surveys <strong>of</strong> Trail Bridge Reservoir, 29 May <strong>and</strong> 6 November1992. Unpublished d<strong>at</strong>a.USDA Forest Service. 1992m. Lower Horse Creek side channel, 1992 enhancement monitoring,Blue River/McKenzie Ranger Districts. Unpublished d<strong>at</strong>a.USDA Forest Service. 1993a. Upper McKenzie River redd count, 15 <strong>and</strong> 19 October 1993.Unpublished d<strong>at</strong>a.USDA Forest Service. 1993b. Biological probe: Eugene <strong>and</strong> Horse Creek confluence, 26 August1993. USDA Forest Service, Willamette N<strong>at</strong>ional Forest, McKenzie <strong>and</strong> Blue River RangerDistricts, Oregon. Unpublished d<strong>at</strong>a.USDA Forest Service. 1993c. Scuba survey <strong>of</strong> Trail Bridge Reservoir, 18 June 1993.Unpublished d<strong>at</strong>a.USDA Forest Service. 1993d. Sweetw<strong>at</strong>er Creek snorkel, project effectiveness monitoring, 14October 1993. Unpublished d<strong>at</strong>a.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board60


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportUSDA Forest Service. 1993e. Anderson Creek study section: habit<strong>at</strong> manipul<strong>at</strong>ion monitoringreport. USDA Forest Service, Willamette N<strong>at</strong>ional Forest, McKenzie Ranger District, McKenzieBridge, Oregon.USDA Forest Service. 1994a. Biological probe: Capurso Creek, 24 February 1994. USDA ForestService, Willamette N<strong>at</strong>ional Forest, McKenzie <strong>and</strong> Blue River Ranger Districts, Oregon.Unpublished d<strong>at</strong>a.USDA Forest Service. 1994b. <strong>Bull</strong> trout probe: Harvey Creek, 7 September 1994. USDA ForestService, Willamette N<strong>at</strong>ional Forest, McKenzie <strong>and</strong> Blue River Ranger Districts, Oregon.Unpublished d<strong>at</strong>a.USDA Forest Service. 1994c. Biological probe: McBee Creek, 21 July 1994. USDA ForestService, Willamette N<strong>at</strong>ional Forest, McKenzie <strong>and</strong> Blue River Ranger Districts, Oregon.Unpublished d<strong>at</strong>a.USDA Forest Service. 1994d. Biological probe: Roaring River, 21 July 1994. USDA ForestService, Willamette N<strong>at</strong>ional Forest, McKenzie <strong>and</strong> Blue River Ranger Districts, Oregon.Unpublished d<strong>at</strong>a.USDA Forest Service. 1994e. Biological probe: Roaring River, 4 August 1994. USDA ForestService, Willamette N<strong>at</strong>ional Forest, McKenzie <strong>and</strong> Blue River Ranger Districts, Oregon.Unpublished d<strong>at</strong>a.USDA Forest Service. 1994f. Biological probe: Roaring River- upper section, 4 August 1994.USDA Forest Service, Willamette N<strong>at</strong>ional Forest, McKenzie <strong>and</strong> Blue River Ranger Districts,Oregon. Unpublished d<strong>at</strong>a.USDA Forest Service. 1994g. <strong>Bull</strong> trout probe: Separ<strong>at</strong>ion Creek, 6 September 1994. USDAForest Service, Willamette N<strong>at</strong>ional Forest, McKenzie <strong>and</strong> Blue River Ranger Districts, Oregon.Unpublished d<strong>at</strong>a.USDA Forest Service. 1994h. <strong>Bull</strong> trout probe: Separ<strong>at</strong>ion Creek, 7 September 1994. USDAForest Service, Willamette N<strong>at</strong>ional Forest, McKenzie <strong>and</strong> Blue River Ranger Districts, Oregon.Unpublished d<strong>at</strong>a.USDA Forest Service. 1994i. Biological probe: South Fork McKenzie River, 10 August 1994.USDA Forest Service, Willamette N<strong>at</strong>ional Forest, McKenzie <strong>and</strong> Blue River Ranger Districts,Oregon. Unpublished d<strong>at</strong>a.USDA Forest Service. 1994j. Deer Creek side channel, effectiveness monitoring, snorkeled 4 <strong>and</strong>18 April 1994. Unpublished d<strong>at</strong>a.USDA Forest Service. 1995a. McKenzie Ranger District bull trout redd count report: UpperMcKenzie River, Tamolitch to Trail Bridge, 2 November 1995. Unpublished d<strong>at</strong>a.USDA Forest Service. 1995b. Anderson Creek bull trout redd count. Unpublished d<strong>at</strong>a.USDA Forest Service. 1995c. Olallie redd count, 4 October 1995. Unpublished d<strong>at</strong>a.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board61


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportUSDA Forest Service. 1995d. South Fork McKenzie/Roaring River bull trout redd surveys,October 1995. Unpublished d<strong>at</strong>a.USDA Forest Service. 1995e. Paradise side channel aqu<strong>at</strong>ic ecosystem project, effectivenessmonitoring report, McKenzie Ranger District, 9 February 1995. Unpublished d<strong>at</strong>a.USDA Forest Service. 1995f. Sweetw<strong>at</strong>er Creek snorkel, project effectiveness monitoring, bulltrout survival <strong>and</strong> growth, 24 August 1995. Unpublished d<strong>at</strong>a.USDA Forest Service. 1995g. Upper McKenzie w<strong>at</strong>ershed analysis. USDA Forest Service,Willamette N<strong>at</strong>ional Forest, McKenzie Ranger District, McKenzie Bridge, Oregon.USDA Forest Service. 1996. Buck side channel aqu<strong>at</strong>ic ecosystem project, effectivenessmonitoring report, McKenzie Ranger District.USDA Forest Service. 1997a. Upper McKenzie final redd count, bull trout <strong>and</strong> <strong>Chinook</strong>, October15, 1997. Unpublished d<strong>at</strong>a. USDA Forest Service, McKenzie Ranger District, WillametteN<strong>at</strong>ional Forest, McKenzie Bridge, Oregon.USDA Forest Service. 1997b. <strong>Bull</strong> trout redd survey, Sweetw<strong>at</strong>er Creek, 16 October 1997.Unpublished d<strong>at</strong>a. USDA Forest Service, McKenzie Ranger District, Willamette N<strong>at</strong>ional Forest,McKenzie Bridge, Oregon.USDA Forest Service. 1997c. Smith River redd count, October 15 <strong>and</strong> 23, 1997. Unpublishedd<strong>at</strong>a. USDA Forest Service, McKenzie Ranger District, Willamette N<strong>at</strong>ional Forest, McKenzieBridge, Oregon.USDA Forest Service. 1997d. <strong>Bull</strong> trout probe: Kink Creek, 26 June 1997. USDA ForestService, Willamette N<strong>at</strong>ional Forest, McKenzie <strong>and</strong> Blue River Ranger Districts, Oregon.Unpublished d<strong>at</strong>a.USDA Forest Service. 1997e. <strong>Bull</strong> trout probe: upper Seper<strong>at</strong>ion Creek, 18 August 1997. USDAForest Service, Willamette N<strong>at</strong>ional Forest, McKenzie <strong>and</strong> Blue River Ranger Districts, Oregon.Unpublished d<strong>at</strong>a.USDA Forest Service. 1997f. Buck side channel, effectiveness monitoring results, 28 August1997. Unpublished d<strong>at</strong>a.USDA Forest Service. 1997g. Sweetw<strong>at</strong>er Creek snorkel, project effectiveness monitoring, bulltrout survival <strong>and</strong> growth, 31 July 1997. Unpublished d<strong>at</strong>a.USDA Forest Service. 1998a. <strong>Bull</strong> trout redd surveys, Upper McKenzie River (above TrailBridge Dam), September/October 1998. Unpublished d<strong>at</strong>a.USDA Forest Service. 1998b. <strong>Bull</strong> trout redd surveys, Anderson Creek, 21 October 1998.Unpublished d<strong>at</strong>a.USDA Forest Service. 1998c. <strong>Bull</strong> trout redd surveys: Upper South Fork McKenzie River, 8October 1998; Roaring River, 6 <strong>and</strong> 19 October 1998. Unpublished d<strong>at</strong>a.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board62


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportUSDA Forest Service. 1998d. <strong>Bull</strong> trout redd survey, Sweetw<strong>at</strong>er Creek, September/October1998. Unpublished d<strong>at</strong>a.USDA Forest Service. 1998e. <strong>Bull</strong> trout <strong>and</strong> enhancement monitoring survey, McKenzie RangerDistrict: Anderson Creek, 22 January 1998. Unpublished d<strong>at</strong>a.USDA Forest Service. 1998f. <strong>Bull</strong> trout surveys: McKenzie River, Mile Post 44 log jam, 6October 1998. USDA Forest Service, Willamette N<strong>at</strong>ional Forest, McKenzie <strong>and</strong> Blue RiverRanger Districts, Oregon. Unpublished d<strong>at</strong>a.USDA Forest Service. 1998g. <strong>Bull</strong> trout probe: Lost Creek, 16 September 1998. USDA ForestService, Willamette N<strong>at</strong>ional Forest, McKenzie <strong>and</strong> Blue River Ranger Districts, Oregon.Unpublished d<strong>at</strong>a.USDA Forest Service. 1999. <strong>Bull</strong> trout monitoring report, Blue River/McKenzie Ranger Districts,December 1999.USDA Forest Service. 2001a. Table 4-11: Occurrence <strong>of</strong> bull trout fry or juveniles in streamssurveyed by day or nighttime snorkeling, electr<strong>of</strong>ishing, or foot survey, 1991-2001. Unpublishedd<strong>at</strong>a.USDA Forest Service. 2001b. Sweetw<strong>at</strong>er Creek snorkel, project effectiveness monitoring, 12December 2001. Unpublished d<strong>at</strong>a.USDA Forest Service. 2002a. Upper McKenzie bull trout snorkel downstream <strong>of</strong> Trail BridgeDam, 11 October 2002. Unpublished d<strong>at</strong>a.USDA Forest Service. 2003a. RE: Annual report to the U. S. Fish <strong>and</strong> Wildlife Service asrequired by Section 10 permit TE001822-3. Letter to V. M. Finn, Chief--Endangered Species, U.S. Fish <strong>and</strong> Wildlife Service, Portl<strong>and</strong> Regional Office, Portl<strong>and</strong>, Oregon from USDA ForestService, Willamette N<strong>at</strong>ional Forest, Eugene, Oregon.USDA Forest Service. 2003b. Upper McKenzie redd count, bull trout <strong>and</strong> <strong>Chinook</strong>, 25 September2003. Unpublished d<strong>at</strong>a.USDA Forest Service. 2003c. Sweetw<strong>at</strong>er Creek redd count, 11 November 2003. Unpublishedd<strong>at</strong>a.USDA Forest Service. 2003d. Temper<strong>at</strong>ure d<strong>at</strong>a from Anderson Creek (1999–2003), Elk Creek(2000–2003), Olallie Creek (1999–2003), Roaring River (1999–2003), South Fork McKenzieRiver (2000–2003), Separ<strong>at</strong>ion Creek (2001–2002), Sweetw<strong>at</strong>er Creek (1999–2003), mainstemupper McKenzie River upstream <strong>of</strong> Trail Bridge Dam (1998–2003). Unpublished d<strong>at</strong>a.USDA Forest Service. 2003e. Upper McKenzie bull trout snorkel downstream <strong>of</strong> Trail BridgeDam, 29 July 2003. Unpublished d<strong>at</strong>a.USDA Forest Service. 2003f. Temper<strong>at</strong>ure d<strong>at</strong>a from the mainstem upper McKenzie Riverupstream <strong>of</strong> Trail Bridge Dam (1998–2003). Unpublished d<strong>at</strong>a.USDA Forest Service. 2004a. Table 1: <strong>Bull</strong> trout redd counts from spawning surveys conductedby ODFW, Stillw<strong>at</strong>er Sciences, <strong>and</strong> Forest Service, 1989–2004. Includes d<strong>at</strong>a for Anderson Creek28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board63


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Report(above <strong>and</strong> below culvert), mainstem upper McKenzie River (upstream <strong>and</strong> downstream <strong>of</strong> TrailBridge Dam, Olallie Creek (above <strong>and</strong> below culvert), Sweetw<strong>at</strong>er Creek, <strong>and</strong> Roaring River(South Fork McKenzie River basin). Unpublished d<strong>at</strong>a.USDA Forest Service. 2004b. Olallie Creek Vaki RiverW<strong>at</strong>cher upstream migrant counts <strong>at</strong>Highway 126 for years 2003 <strong>and</strong> 2004. Unpublished d<strong>at</strong>a.USDA Forest Service. 2004c. Olallie Creek redd count, 5 October 2004. Unpublished d<strong>at</strong>a.USDA Forest Service. 2004d. Anderson Creek migrant trapping results for years 1993–2004,Julian weeks 6–22 [spreadsheet]. Unpublished d<strong>at</strong>a.USDA Forest Service. 2004e. Anderson Creek previous year redd count above trap vs. totalestim<strong>at</strong>ed fry migr<strong>at</strong>ion based on migrant trapping results. Unpublished d<strong>at</strong>a.USDA Forest Service. 2004f. Maximum, average, <strong>and</strong> minimum sizes <strong>of</strong> bull trout fry in 2003(June through mid-August) <strong>and</strong> 2004 (March through mid-August) in Anderson Creek based onmigrant trapping studies. Unpublished d<strong>at</strong>a.USFWS (U. S. Fish <strong>and</strong> Wildlife Service). 2002. Willamette River Recovery Unit, Oregon.Chapter 5 in <strong>Bull</strong> trout (Salvelinus confluentus) draft recovery plan. USFWS, Region 1, Portl<strong>and</strong>,Oregon.USFWS (U. S. Fish <strong>and</strong> Wildlife Service). 2003. Biological/conference opinion on the effects <strong>of</strong>EWEB's Carmen-Smith Part 12 submittal to FERC for Trail Bridge spillway expansion, <strong>and</strong>interim oper<strong>at</strong>ion <strong>of</strong> the Carmen-Smith Hydroelectric Project in the McKenzie Subbasin, Oregonon bull trout, bald eagle, <strong>and</strong> northern spotted owl. Endangered Species Act - Section 7 (a)(2)Consult<strong>at</strong>ion; USFWS Log No. 1-7-03-F-455. Prepared for Federal Energy Regul<strong>at</strong>oryCommission by USFWS, Oregon Fish <strong>and</strong> Wildlife Office.USFWS (U. S. Fish <strong>and</strong> Wildlife Service). 1998. Endangered <strong>and</strong> thre<strong>at</strong>ened wildlife <strong>and</strong> plants;determin<strong>at</strong>ion <strong>of</strong> thre<strong>at</strong>ened st<strong>at</strong>us for the Klam<strong>at</strong>h River <strong>and</strong> Columbia River distinct popul<strong>at</strong>ionsegments <strong>of</strong> bull trout. Federal Register 63: 31647-31674.USFWS (U. S. Fish <strong>and</strong> Wildlife Service). 2004a. Endangered <strong>and</strong> thre<strong>at</strong>ened wildlife <strong>and</strong> plants;design<strong>at</strong>ion <strong>of</strong> critical habit<strong>at</strong> for the Klam<strong>at</strong>h River <strong>and</strong> Columbia River popul<strong>at</strong>ions <strong>of</strong> bulltrout; final rule. Federal Register 69: 59996-60075.USFWS (U. S. Fish <strong>and</strong> Wildlife Service). 2004b. Draft recovery plan for the Coastal-PugetSound Distinct <strong>Popul<strong>at</strong>ion</strong> Segment <strong>of</strong> bull trout (Salvelinus confluentus). Volume I: Puget SoundManagement Unit. USFWS, Region 1, Portl<strong>and</strong>, Oregon.USGS. 2004. Unpublished stream gage d<strong>at</strong>a: McKenzie River <strong>at</strong> outlet <strong>of</strong> Clear Lake (No.14158500) (1913–1915 <strong>and</strong> 1948–2004), McKenzie River below Trail Bridge Dam (No.14158850) (1961–2004), McKenzie River near Vida (No. 14162500) (1925 to present),McKenzie River <strong>at</strong> McKenzie Bridge (No. 14159000) (1910–1994), <strong>and</strong> Smith River aboveSmith River Reservoir (No. 14158790Wetherall, J. A. 1971. Estim<strong>at</strong>ion <strong>of</strong> survival r<strong>at</strong>es for <strong>Chinook</strong> salmon during their downstreammigr<strong>at</strong>ion in the Green River, Washington. Doctoral dissert<strong>at</strong>ion. College <strong>of</strong> Fisheries, University<strong>of</strong> Washington.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board64


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportWillis, C. F., S. P. Cramer, M. Smith, D. Cramer, T. Downey, <strong>and</strong> R. Montagne. 1995. St<strong>at</strong>us <strong>of</strong>Willamette River spring <strong>Chinook</strong> salmon in regards to the Federal Endangered Species Act. Part1: Determine which spring <strong>Chinook</strong> popul<strong>at</strong>ion groupings within the Willamette Basin qualify asEvolutionarily Significant Units (ESUs). Special Report. Submitted to N<strong>at</strong>ional Marine FisheriesService on behalf <strong>of</strong> Portl<strong>and</strong> General Electric Company <strong>and</strong> Eugene W<strong>at</strong>er <strong>and</strong> Electric Board.S. P. Cramer <strong>and</strong> Associ<strong>at</strong>es, Inc., Gresham, Oregon.Zakel, J. C., <strong>and</strong> D. W. Reed. 1984. Downstream migr<strong>at</strong>ion <strong>of</strong> fish <strong>at</strong> Leaburg Dam, McKenzieRiver, Oregon: 1980-1983. Inform<strong>at</strong>ion Report No. 84-13. Oregon Department <strong>of</strong> Fish <strong>and</strong>Wildlife, Research <strong>and</strong> Development Section, Corvallis <strong>and</strong> Eugene W<strong>at</strong>er <strong>and</strong> Electric Board,Eugene, Oregon.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board65


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportFiguresCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board - the following Figures to the <strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong><strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Report


HydrologicRegimesRIVER CHANNEL DYNAMICSSedimentBudgetLarge WoodyDebris<strong>Dynamics</strong>AQUATIC HABITAT CONDITIONSW<strong>at</strong>er QualityFluvial GeomorphicProcesses <strong>and</strong>Channel MorphologyAqu<strong>at</strong>ic Habit<strong>at</strong>s<strong>and</strong> Instream FlowsAqu<strong>at</strong>ic Habit<strong>at</strong>ConnectivityFISHERIESBOTANY AND WILDLIFESOCIAL SCIENCESFish <strong>Popul<strong>at</strong>ion</strong> Distribution<strong>and</strong> AbundanceVeget<strong>at</strong>ion <strong>and</strong> Wetl<strong>and</strong>Mapping <strong>and</strong>Characteriz<strong>at</strong>ionHistorical <strong>and</strong>Archaeological ResourcesEntrainmentBotanical Field SurveysExisting Recre<strong>at</strong>ional UseFlow Fluctu<strong>at</strong>ions <strong>and</strong>Str<strong>and</strong>ingWildlifeDistributionRecre<strong>at</strong>ion Suitability<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong><strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong><strong>Chinook</strong> <strong>Salmon</strong>Wildlife AnalysesWhitew<strong>at</strong>er Bo<strong>at</strong>ingFeasibilityFish Passage FeasibilityAesthetic ResourcesAqu<strong>at</strong>ic Protection,Mitig<strong>at</strong>ion, <strong>and</strong>Enhancement OpportunitiesLicense Applic<strong>at</strong>ionL<strong>and</strong> Use <strong>and</strong> ManagementFigure 1-1. Rel<strong>at</strong>ionship <strong>of</strong> the <strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> study to other Carmen-SmithHydroelectric Project relicensing studies.


Figure 1-2. Study Area <strong>and</strong> modeled subreaches <strong>and</strong> reservoirs.


Egg regionDefended regionGravel p<strong>at</strong>chFigure 2-1. Egg region <strong>and</strong> defended region <strong>of</strong> a redd, as tre<strong>at</strong>ed in the redd superimposition model (Escape 5.1).


1 2Figure 2-2. Example <strong>of</strong> the bull trout popul<strong>at</strong>ion model showing the step from “stock” (1) to “production” (2).


Fluvial <strong>and</strong> adfluvial life history str<strong>at</strong>egy: large top pred<strong>at</strong>orLarge size, feeds on salmon smolts <strong>and</strong> larger resident fish –Avoids the need to feed on small invertebr<strong>at</strong>esLong-livedLow recruitmentneeded to maintainpopul<strong>at</strong>ionSpawning str<strong>at</strong>egy: moreenergy to growth <strong>and</strong> survival,less to reproductionMust be able to grow large duringcold clim<strong>at</strong>es, e.g. PleistoceneLow adult mortalityMutedspawningcolorsReduced orabsent redddefenseSmall eggsFlexiblespawningfrequencyDelayedm<strong>at</strong>ur<strong>at</strong>ionLowfecundity• Maximum growth <strong>at</strong>lower temper<strong>at</strong>uresthan other salmonids• Higher growth r<strong>at</strong>es <strong>at</strong>lower suboptimaltemper<strong>at</strong>ures thanother salmonidsEarlypiscivoryExtensivemigr<strong>at</strong>ionfor feedingStalkingpred<strong>at</strong>ionSecretivebehaviorOnly competitive incold streamsReducedforagecostsHighcannibalismNightspawningAdult habit<strong>at</strong>s<strong>at</strong>ur<strong>at</strong>ed becauselimited rel<strong>at</strong>ive tojuvenile recruitmentLimited fry <strong>and</strong> juvenilerearing habit<strong>at</strong>Territorialityensures foodfor growthHigh mortalityOf subadultsHigh mortality<strong>of</strong> fry <strong>and</strong> juvenilesFry <strong>and</strong> juveniles:benthic orient<strong>at</strong>ion<strong>and</strong> feedingPiscivores:ambushpred<strong>at</strong>orsSecretivefry <strong>and</strong>juvenilesFigure 3-1. <strong>Bull</strong> trout conceptual model upstream <strong>of</strong> Trail Bridge Dam, prior to European influence.


Figure 3-2. Conceptual model <strong>of</strong> bull trout habit<strong>at</strong> in the McKenzie River basin prior to European influence, 300 to 10,000 years before present.


FISHINGPRESSURELong-livedLow adult mortalityMutedspawningcolorsStalkingpred<strong>at</strong>ionNightspawningReduced orabsent redddefenseSecretivebehaviorFluvial <strong>and</strong> adfluvial life history str<strong>at</strong>egy: large top pred<strong>at</strong>orLarge size, feeds on salmon smolts <strong>and</strong> larger resident fish –Avoids the need to feed on small invertebr<strong>at</strong>esLow recruitmentneeded to maintainpopul<strong>at</strong>ionSmall eggsCHANGES INAMOUNTSAND TYPESOF HABITATSAdult habit<strong>at</strong>s<strong>at</strong>ur<strong>at</strong>ed becauselimited rel<strong>at</strong>ive tojuvenile recruitmentSpawning str<strong>at</strong>egy: moreenergy to growth <strong>and</strong> survival,less to reproductionFlexiblespawningfrequencyENTRAINMENTMORTALITYHYBRIDIZATIONLowfecundityDelayedm<strong>at</strong>ur<strong>at</strong>ion• Maximum growth <strong>at</strong>lower temper<strong>at</strong>uresthan other salmonids• Higher growth r<strong>at</strong>es <strong>at</strong>lower suboptimaltemper<strong>at</strong>ures thanother salmonidsOnly competitive incold streamsLimited fry <strong>and</strong> juvenilerearing habit<strong>at</strong>Must be able to grow large duringcold clim<strong>at</strong>es, e.g. PleistoceneTerritorialityensures foodfor growthCHANGESIN FORAGEBASEReducedforagecostsLACK OFPASSAGEExtensivemigr<strong>at</strong>ionfor feedingEarlypiscivoryHighcannibalism= impactHigh mortalityOf subadultsHigh mortality<strong>of</strong> fry <strong>and</strong> juvenilesFry <strong>and</strong> juveniles:benthic orient<strong>at</strong>ion<strong>and</strong> feedingPiscivores:ambushpred<strong>at</strong>orsSecretivefry <strong>and</strong>juvenilesFigure 3-3. <strong>Bull</strong> trout conceptual model upstream <strong>of</strong> Trail Bridge Dam, under current conditions.


Figure 3-4. Current bull trout habit<strong>at</strong> in the McKenzie River basin.


Stream rearing anadromous life history str<strong>at</strong>egy:large adults, large smoltsAdults migr<strong>at</strong>e in spring<strong>and</strong> hold in summerRequire deep-coldpools for holdingEarly spawning<strong>and</strong> thus earlyemergenceFry rear in upstreamspawning areasFry migr<strong>at</strong>edownstreamLarge riversHigh elev<strong>at</strong>ion<strong>Spring</strong>-fedIf If habit<strong>at</strong> is is not available,fry don’t contributeto popul<strong>at</strong>ionSteepergradientCool, suitable summer rearing habit<strong>at</strong>in upstream spawning areas usuallyeasily s<strong>at</strong>ur<strong>at</strong>ed by emergent fry• Food• SpaceIf If habit<strong>at</strong> is is available,fry have growthadvantage over fallrun<strong>Chinook</strong> salmonHigh stream power – coarse bed,small amount <strong>of</strong> large gravels1+ smoltscommon0+ <strong>and</strong> 1+smolts commonSpawning habit<strong>at</strong>limitingRearing habit<strong>at</strong>limitingFigure 3-5. <strong>Spring</strong> <strong>Chinook</strong> salmon conceptual model in the McKenzie River, prior to European influence.


Large riversRequire deep-coldpools for holdingCHANGES IN AMOUNTSAND TYPES OFHABITATSHigh elev<strong>at</strong>ionSteepergradientHigh stream power – coarse bed,small amount <strong>of</strong> large gravelsSEDIMENT TRANSPORTDISRUPTEDFISHINGPRESSUREStream rearing anadromous life history str<strong>at</strong>egy:large adults, large smolts<strong>Spring</strong>-fedSpawning habit<strong>at</strong>limitingAdults migr<strong>at</strong>e in spring<strong>and</strong> hold in summerFry rear in upstreamspawning areasCool, suitable summer rearing habit<strong>at</strong>in upstream spawning areas usuallyeasily s<strong>at</strong>ur<strong>at</strong>ed by emergent fry• Food• SpaceCHANGES INAMOUNTS ANDTYPES OF HABITATSRearing habit<strong>at</strong>limitingLACK OFPASSAGEEarly spawning<strong>and</strong> thus earlyemergenceCHANGES INAMOUNTS ANDTYPES OFHABITATSIf If habit<strong>at</strong> is is not available,fry don’t contributeto popul<strong>at</strong>ion1+ smoltscommonPREDATION BYINTRODUCEDFISH SPECIESENTRAINMENTMORTALITY= impactFry migr<strong>at</strong>edownstreamIf If habit<strong>at</strong> is is available,fry have growthadvantage over fallrun<strong>Chinook</strong> salmon0+ <strong>and</strong> 1+smolts commonFigure 3-6. <strong>Spring</strong> <strong>Chinook</strong> salmon conceptual model in the McKenzie River under current conditions.


Figure 3-7. Schem<strong>at</strong>ic <strong>of</strong> bull trout popul<strong>at</strong>ion model results. The stock <strong>and</strong> production <strong>of</strong> each life-step is shown for one cohort, fromspawning (far left) in either Sweetw<strong>at</strong>er Creek or Carmen Bypass Reach, through each life-stage, to adults in Trail Bridge Reservoir (farright). Carrying capacity for each life-stage is shown by the gray box, <strong>and</strong> popul<strong>at</strong>ion size for each life-stage is shown in yellow. Bothcarrying capacity <strong>and</strong> popul<strong>at</strong>ion size are shown in proportion between life-stages; the broken line for eggs <strong>and</strong> emergent fry indic<strong>at</strong>esth<strong>at</strong> these life-stages are not shown in proportion. Mortality r<strong>at</strong>e is shown, <strong>and</strong> explains the popul<strong>at</strong>ion decline within each life-step.


500450400Baseflow conditions - 160 cfsWithout superimpositionEffective bull trout females3503002502001501005000 50 100 150 200 250 300 350 400 450 500Actual bull trout femalesFigure 3-8. Effects <strong>of</strong> superimposition on bull trout spawning in Carmen Bypass Reach, based on suitable spawninghabit<strong>at</strong> mapping <strong>at</strong> 160 cfs.


Figure 3-9. Schem<strong>at</strong>ic <strong>of</strong> <strong>Chinook</strong> salmon popul<strong>at</strong>ion model results. The stock <strong>and</strong> production <strong>of</strong> each life-step is shown for one cohort,from spawning (far left), through each life-stage, to smolts (far right). Carrying capacity for each life-stage is shown by the gray box, <strong>and</strong>popul<strong>at</strong>ion size for each life-stage is shown in yellow. Both Carrying capacity <strong>and</strong> popul<strong>at</strong>ion size are shown in proportion between lifestages;the broken line for eggs <strong>and</strong> emergent fry indic<strong>at</strong>es th<strong>at</strong> these life stages are not shown in proportion. Mortality r<strong>at</strong>e is shown,<strong>and</strong> explains the popul<strong>at</strong>ion decline within each life-step.


50454035Effective females <strong>at</strong>baseflow conditions -160 cfsAdditional females prevented fromspawning due to redd defense.Effective females3025201510500 5 10 15 20 25 30 35 40 45 50Actual femalesFigure 3-10. Effects <strong>of</strong> increased escapement on <strong>Chinook</strong> salmon spawning in Carmen Bypass Reach, based on suitablespawning habit<strong>at</strong> mapping <strong>at</strong> 160 cfs.


2520Minimum temper<strong>at</strong>ure65Mean temper<strong>at</strong>ure60Maximum temper<strong>at</strong>ure55Juvenile rearing(4-10 o C)8075757065151560o C1010Spawning(4-10 o C)5550o FL<strong>at</strong>e fry rearing(4-10 o C)455500May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul5/1/046/1/047/1/048/1/049/1/04Eggincub<strong>at</strong>ion(1-6 o C)10/1/0411/1/0412/1/041/1/052/1/053/1/054/1/055/1/056/1/05Early fry rearing(4-4.5 o C)7/1/05Aug Sep Oct04 04 04 05 05 05 05 05 05 05 05 05 05 05 05 05 05 058/1/059/1/054035353030Figure 3-11. Optimal temper<strong>at</strong>ure for bull trout life stages. <strong>Bull</strong> trout temper<strong>at</strong>ure requirements based on Buchanan <strong>and</strong> Gregory(1997). Periodicity <strong>of</strong> bull trout based on Fish <strong>Popul<strong>at</strong>ion</strong> Distribution <strong>and</strong> Abundance study (Stillw<strong>at</strong>er Sciences 2005a). W<strong>at</strong>er temper<strong>at</strong>ured<strong>at</strong>a recorded on Smith River, above Smith Reservoir (Stillw<strong>at</strong>er Sciences 2005d).


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportAppendicesCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board - the following Appendices to the <strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong><strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Report


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportAppendix AGlossaryCopyright © 2006 Eugene W<strong>at</strong>er & Electric Board - the following Appendix A to the <strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong><strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Report:Appendix AGlossary


FINAL REPORT Carmen-Smith Hydroelectric Project FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportTermsBeverton-Holt modelCarrying capacity, KCohortDensity-dependentDensity-independentEffective reddsEscape 5.1 sub-modelHockey stick modelDefinitionsStock-production model th<strong>at</strong> the user may select within the popul<strong>at</strong>iondynamics models. It is a model commonly used in management <strong>of</strong> Pacificsalmon, based on Beverton <strong>and</strong> Holt (1957). This model allows productionto increase until reaching a certain stock level; above this stock level,production remains constant, <strong>at</strong> the limit defined by the carrying capacity, K.The popul<strong>at</strong>ion dynamics models allow the user to choose between twoversions: Version 1 is the “original” form; Version 2 is a form th<strong>at</strong> allowsproduction to approach carrying capacity <strong>at</strong> a faster r<strong>at</strong>e (i.e., it allows asteeper curve).A density-dependent term used in stock-production models th<strong>at</strong> representsthe popul<strong>at</strong>ion size limit for a given life-stage. This term represents densitydependentfactors such as spawning gravel area, or abundance <strong>of</strong> overwinteringrefugia.Members <strong>of</strong> a life-stage th<strong>at</strong> were spawned in the same year.Factors affecting the popul<strong>at</strong>ion th<strong>at</strong> are dependent on the popul<strong>at</strong>ion size,such as habit<strong>at</strong> area.Factors affecting the popul<strong>at</strong>ion regardless <strong>of</strong> popul<strong>at</strong>ion size, such astemper<strong>at</strong>ure, disease, or str<strong>and</strong>ing.Completed redds th<strong>at</strong> have survived the effects <strong>of</strong> superimposition.Model th<strong>at</strong> was used to estim<strong>at</strong>e values to the popul<strong>at</strong>ion dynamics models.The Escape sub-model can provide the number <strong>of</strong> effective redds <strong>and</strong>deposited eggs, given redd characteristics, gravel p<strong>at</strong>ch d<strong>at</strong>a, <strong>and</strong> spawntiming d<strong>at</strong>a.A stock-production model th<strong>at</strong> is a piece-wise linear function with a slope <strong>of</strong>r for the density-independent phase, <strong>and</strong> with a slope <strong>of</strong> zero for the densitydependentphase (once reaching carrying capacity) (Barrowman <strong>and</strong> Myers2000).R<strong>at</strong>e <strong>of</strong> popul<strong>at</strong>ion increase, r An input parameter needed in stock-production models. It is a densityindependentterm th<strong>at</strong> represents the net effect <strong>of</strong> births <strong>and</strong>/or de<strong>at</strong>hs,resulting from factors such as fecundity, or dependence <strong>of</strong> egg survival onspawning gravel quality. Depending on the life-stage <strong>of</strong> interest <strong>and</strong> thestock-production model selected, the input parameter r represents the fraction<strong>of</strong> adults spawning, fecundity, or density-independent survival r<strong>at</strong>e.Linear modelA stock-production model th<strong>at</strong> the user may select within the popul<strong>at</strong>iondynamics models. This stock-production model assumes a linear rel<strong>at</strong>ionshipbetween two life-stages, where r is the slope <strong>of</strong> the line.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardA-1


FINAL REPORT Carmen-Smith Hydroelectric Project FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportLife-stageTemporal stages (or intervals) <strong>of</strong> a fish’s life th<strong>at</strong> have distinct an<strong>at</strong>omical,physiological, <strong>and</strong>/or functional characteristics th<strong>at</strong> contribute to potentialdifferences in use <strong>of</strong> the environment.Life-stepProductionStockStock-production modelSuperimposition modelInterval between a production <strong>and</strong> stock life-stage (i.e., adult to femalespawner)Output from a stock-production model <strong>at</strong> a particular life-step.Input value required by the stock-production models. It is the first requiredvalue entered into the popul<strong>at</strong>ion dynamics model spreadsheets; for example,stock would be the number <strong>of</strong> fry, for a fry-to-juvenile step.Rel<strong>at</strong>es the number <strong>of</strong> individuals P in some cohort <strong>at</strong> one developmentstage, as a function ( F ) <strong>of</strong> the number <strong>of</strong> individuals S in th<strong>at</strong> cohort <strong>at</strong> anearlier development stage:P = F(S). The popul<strong>at</strong>ion dynamics modelsallow the user to choose from the following four stock-production models:(1) Linear (2) Hockey stick, (3) Beverton-Holt 1 (Beverton <strong>and</strong> Holt 1957),4) Beverton-Holt 2, <strong>and</strong> (5) Superimposition.A stock-production model th<strong>at</strong> the user may select within the popul<strong>at</strong>iondynamics models. The values for this model are based on results from theEscape sub-model, for varying levels <strong>of</strong> spawning escapement. This modelis used to estim<strong>at</strong>e the number <strong>of</strong> deposited eggs based on the number <strong>of</strong>female spawners.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardA-2


FINAL REPORT Carmen-Smith Hydroelectric Project FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportAppendix BExisting local inform<strong>at</strong>ion for bull trout popul<strong>at</strong>ion dynamicsmodelTablesTable B-1. Potential bull trout popul<strong>at</strong>ion dynamics model parameters <strong>and</strong> relevant available inform<strong>at</strong>ionor inform<strong>at</strong>ion anticip<strong>at</strong>ed to be collected in the Relicensing studies. .................................. B-1Copyright © 2006 Eugene W<strong>at</strong>er & Electric Board - the following Appendix B to the <strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong><strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Report:Appendix BExisting local inform<strong>at</strong>ion for bull trout popul<strong>at</strong>ion dynamicsmodel


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportTable B-1. Potential bull trout popul<strong>at</strong>ion dynamics model parameters <strong>and</strong> relevant available inform<strong>at</strong>ion or inform<strong>at</strong>ion anticip<strong>at</strong>ed to becollected in the Relicensing studies.Potential modelinputExamples <strong>of</strong> potentially usefultypes <strong>of</strong> d<strong>at</strong>aAvailable local inform<strong>at</strong>ion(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)Life-stage: Spawning. The goal <strong>of</strong> this section <strong>of</strong> the model is to predict the number <strong>of</strong> eggs th<strong>at</strong> are successfully deposited in the gravel for differentnumbers <strong>of</strong> spawners, i.e., a spawner-to-egg stock-production curve. To do this we need an estim<strong>at</strong>e <strong>of</strong> fecundity, <strong>and</strong> mortality due to redd superimposition.Number <strong>of</strong>spawnersKnown number <strong>of</strong> spawnersThis type <strong>of</strong> d<strong>at</strong>a can be used totest model predictions <strong>and</strong> allowsassessment <strong>of</strong> year-to-yearvariability.Types <strong>of</strong> d<strong>at</strong>a:• estim<strong>at</strong>es <strong>of</strong> spawningescapement [best]• spawning surveys/redd counts[good]Existing local inform<strong>at</strong>ion• Estim<strong>at</strong>e <strong>of</strong> the number <strong>of</strong> m<strong>at</strong>ure adults from Anderson Creek in 1999, <strong>and</strong> from RoaringRiver in 1999 (J. Ziller, ODFW, pers. comm., 1999; as cited in NMFS <strong>and</strong> USFWS 2000)• Potential number <strong>of</strong> spawning adults above Trail Bridge Dam, in Anderson Creek, <strong>and</strong> for theCougar Reservoir/Roaring River subpopul<strong>at</strong>ion (ODFW 2003a)• USDA Forest Service <strong>and</strong> ODFW redd counts in Anderson Creek from 1989-2004, OlallieCreek from 1994-2004, Sweetw<strong>at</strong>er Creek from 1994-2004, mainstem McKenzie Riverabove Trail Bridge from 1994-2004, <strong>and</strong> Roaring River from 1993-2004 (USDA ForestService 2004a, unpublished d<strong>at</strong>a)• Spawning survey observ<strong>at</strong>ions, USDA Forest Service <strong>and</strong> ODFW, from the Upper McKenzieRiver above Trail Bridge in 1993, 1995, 1997, 1998, <strong>and</strong> 2003 (USDA Forest Service 1993a,1995a, 1997a, 1998a, <strong>and</strong> 2003b; unpublished d<strong>at</strong>a), <strong>and</strong> Anderson Creek in 1995 <strong>and</strong> 1998(USDA Forest Service 1995b <strong>and</strong> 1998b, unpublished d<strong>at</strong>a), Olallie Creek in 1995 (USDAForest Service 1995c, unpublished d<strong>at</strong>a), Upper South Fork McKenzie/Roaring River in 1995<strong>and</strong> 1998 (USDA Forest Service 1995d <strong>and</strong> 1998c, unpublished d<strong>at</strong>a), <strong>and</strong> Sweetw<strong>at</strong>er Creekin 1997, 1998 <strong>and</strong> 2003 (USDA Forest Service 1997b, 1998d, <strong>and</strong> 2003c; unpublished d<strong>at</strong>a),<strong>and</strong> lower Smith River in 1997 (USDA Forest Service 1997c, unpublished d<strong>at</strong>a), includescounts from individual surveys <strong>and</strong> estim<strong>at</strong>ed number <strong>of</strong> adults for Olallie Creek in 1995(USDA Forest Service 1995c, unpublished d<strong>at</strong>a)• Vaki RiverW<strong>at</strong>cher d<strong>at</strong>a from 1999-2001 for Anderson Creek <strong>and</strong> Roaring River (Taylor <strong>and</strong>Reasoner 2000, Taylor <strong>and</strong> Ziller 2000, <strong>and</strong> Taylor 2003)• Video footage from Sweetw<strong>at</strong>er Creek in 2002, <strong>and</strong> Vaki RiverW<strong>at</strong>cher d<strong>at</strong>a from 2002 forAnderson <strong>and</strong> Ollalie creeks <strong>and</strong> Roaring River (USDA Forest Service 2003a)• Vaki RiverW<strong>at</strong>cher d<strong>at</strong>a from Olallie Creek in 2003-2004 (USDA Forest Service 2004b,unpublished d<strong>at</strong>a)• Vaki RiverW<strong>at</strong>cher d<strong>at</strong>a from South Fork McKenzie <strong>and</strong> Cougar Reservoir from 2001-2004(ODFW 2001a, 2002b, 2003b, <strong>and</strong> 2004a; unpublished d<strong>at</strong>a)28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardB-1


FINAL REPORT Carmen-Smith Hydroelectric Project FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportPotential modelinputExamples <strong>of</strong> potentially usefultypes <strong>of</strong> d<strong>at</strong>aFrequency <strong>of</strong> spawning. Wh<strong>at</strong> isthe frequency <strong>of</strong> spawning (e.g.annually, bi-annually?)The frequency <strong>of</strong> spawning is usedin conjunction with the modelednumber <strong>of</strong> adult females toestim<strong>at</strong>e number <strong>of</strong> spawners in agiven year.Types <strong>of</strong> d<strong>at</strong>a:• multi-year PIT-tag or otherindividual ID tag d<strong>at</strong>a fromknown spawning areas (foridentified females) [best]• trends in female spawnerabundance over time [ok]• sex r<strong>at</strong>io <strong>of</strong> adult popul<strong>at</strong>ionversus spawners [ok]Temporal distribution <strong>of</strong>spawning run. D<strong>at</strong>es <strong>and</strong>temporal p<strong>at</strong>tern <strong>of</strong> spawning. Isthe temporal distribution normal orskewed?Knowing this inform<strong>at</strong>ion willhelp us determine how manypotential spawners are able tosuccessfully spawn <strong>and</strong> hasimplic<strong>at</strong>ions for reddsuperimposition. A short window<strong>of</strong> redd construction could meanthere is more likely to be an evendistribution <strong>of</strong> spawners; a longerAvailable local inform<strong>at</strong>ion(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)D<strong>at</strong>a from relicensing studies• Spawning surveysExisting local inform<strong>at</strong>ion• ODFW PIT tag d<strong>at</strong>a from Trail Bridge Reservoir, Sweetw<strong>at</strong>er Creek, <strong>and</strong> Trail Bridgetailrace from 2003-2004 (ODFW 2004b, unpublished d<strong>at</strong>a)• ODFW PIT tag d<strong>at</strong>a from South Fork McKenzie <strong>and</strong> Cougar Reservoir from 2001-2004(ODFW 2001a, 2002b, 2003b, <strong>and</strong> 2004a; unpublished d<strong>at</strong>a)• Spawning frequency in Cougar Reservoir/Roaring River subpopul<strong>at</strong>ion (M. Wade, ODFW,pers. comm., 3 November, 2004)• Spawning frequency in lower McKenzie River popul<strong>at</strong>ion based on radio tracking d<strong>at</strong>a from3 fish (Rose <strong>and</strong> Rose 1997)• Sex r<strong>at</strong>ios during spawning, Willamette Basin (ODFW 2001b, as cited in USFWS 2002)Local sources needed• ODFW. 2001b. Review <strong>of</strong> T&E, sensitive, <strong>and</strong> stocks <strong>of</strong> concern. ODFW, South WillametteW<strong>at</strong>ershed District, <strong>Spring</strong>field. [as cited in USFWS 2002]D<strong>at</strong>a from relicensing studies• PIT tag analysisExisting local inform<strong>at</strong>ion• McKenzie River spawning timing (Taylor <strong>and</strong> Reasoner 1998, Taylor <strong>and</strong> Reasoner 2000,Taylor 2003)• ODFW PIT tag d<strong>at</strong>a from Trail Bridge Reservoir, Sweetw<strong>at</strong>er Creek, <strong>and</strong> Trail Bridgetailrace from 2003-2004 (ODFW 2004b, unpublished d<strong>at</strong>a)• ODFW PIT tag d<strong>at</strong>a from South Fork McKenzie <strong>and</strong> Cougar Reservoir from 2001-2004(ODFW 2001a, 2002b, 2003b, <strong>and</strong> 2004a; unpublished d<strong>at</strong>a)• D<strong>at</strong>es <strong>of</strong> beginning, end, <strong>and</strong> peak <strong>of</strong> upstream migr<strong>at</strong>ion, <strong>and</strong> redd counts; see above forexisting local inform<strong>at</strong>ion re: the known number <strong>of</strong> spawners, particularly redd count <strong>and</strong>Vaki RiverW<strong>at</strong>cher d<strong>at</strong>aD<strong>at</strong>a from relicensing studies• spawning surveys28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardB-2


FINAL REPORT Carmen-Smith Hydroelectric Project FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportPotential modelinputExamples <strong>of</strong> potentially usefultypes <strong>of</strong> d<strong>at</strong>awindow <strong>of</strong> redd constructionallows for a gre<strong>at</strong>er opportunity forredd-superimposition. In addition,we would like to compare thetemporal distribution <strong>of</strong> <strong>Chinook</strong>salmon with bull trout to evalu<strong>at</strong>ethe potential for intra-specific reddsuperimposition.Types <strong>of</strong> d<strong>at</strong>a:• spawning timing curves [best]• spawning surveys/redd counts[good]• d<strong>at</strong>es <strong>of</strong> beginning, end, <strong>and</strong>peak <strong>of</strong> upstream migr<strong>at</strong>ion orspawning [ok]The best d<strong>at</strong>a for describingtemporal distribution would beactual curves <strong>of</strong> numbers <strong>of</strong>spawning fish over time; lessvaluable, but still useful d<strong>at</strong>a couldinclude beginning, peak, <strong>and</strong> endtimes for the run.Age/size structure <strong>of</strong> popul<strong>at</strong>ion.This inform<strong>at</strong>ion will be used toestim<strong>at</strong>e the number <strong>of</strong> m<strong>at</strong>urefemales in the adult popul<strong>at</strong>ion.Types <strong>of</strong> d<strong>at</strong>a:• age/size-specific probabilities <strong>of</strong>spawning [best]• d<strong>at</strong>a on sizes <strong>of</strong> spawning adults(preferably <strong>at</strong> known ages)Available local inform<strong>at</strong>ion(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)• Vaki RiverW<strong>at</strong>cher detections• PIT tag analysisExisting local inform<strong>at</strong>ion• Sizes <strong>of</strong> spawning adults, ODFW PIT tag d<strong>at</strong>a from Trail Bridge Reservoir, Sweetw<strong>at</strong>erCreek, <strong>and</strong> Trail Bridge tailrace from 2003-2004 (ODFW 2004b, unpublished d<strong>at</strong>a)• Sizes <strong>of</strong> spawning adults, ODFW PIT tag d<strong>at</strong>a from South Fork McKenzie <strong>and</strong> CougarReservoir (ODFW 2001a, 2002b, 2003b, <strong>and</strong> 2004a; unpublished d<strong>at</strong>a)• Estim<strong>at</strong>ed sizes <strong>of</strong> spawning adults, based on Vaki RiverW<strong>at</strong>cher d<strong>at</strong>a, see above for existinglocal inform<strong>at</strong>ion re: the known number <strong>of</strong> spawners, Vaki RiverW<strong>at</strong>cher inform<strong>at</strong>ion only• Size <strong>of</strong> one sexually m<strong>at</strong>ure female, based on illegal angling c<strong>at</strong>ch in Trail Bridge Reservoirin 1992 (USDA Forest Service 1992a, unpublished d<strong>at</strong>a)• Sizes <strong>of</strong> adults, ODFW angling d<strong>at</strong>a from Trail Bridge Reservoir <strong>and</strong> T.B. tailrace in 2003,28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardB-3


FINAL REPORT Carmen-Smith Hydroelectric Project FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportPotential modelinputFecundityExamples <strong>of</strong> potentially usefultypes <strong>of</strong> d<strong>at</strong>a[good]• age/size structure <strong>of</strong> the adultpopul<strong>at</strong>ion [good]• age/size <strong>at</strong> first spawning [good]• inform<strong>at</strong>ion on age/sizerel<strong>at</strong>ionships from liter<strong>at</strong>ure [ok]Size/age <strong>at</strong> sexual m<strong>at</strong>uritySize/age d<strong>at</strong>a can be used topredict the number <strong>of</strong> eggsdeposited for spawning females,assuming th<strong>at</strong> size/fecundityrel<strong>at</strong>ionships are established (seebelow)Types <strong>of</strong> d<strong>at</strong>a:• size distribution <strong>of</strong> adult females[best]• distribution <strong>of</strong> sizes <strong>at</strong> given agesor average size <strong>at</strong> age [ok]Available local inform<strong>at</strong>ion(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)<strong>and</strong> trapping d<strong>at</strong>a from Trail Bridge Reservoir in 1992, 1999, <strong>and</strong> 2004 (ODFW 1992a,1999a, <strong>and</strong> 2004b; unpublished d<strong>at</strong>a).Sizes <strong>of</strong> adults, angling <strong>and</strong> trapping d<strong>at</strong>a, 2001-2004, Cougar Reservoir, South ForkMcKenzie <strong>and</strong> Cougar Reservoir (ODFW 2001a, 2002b, 2003b, <strong>and</strong> 2004a; unpublished d<strong>at</strong>a)• Numbers <strong>of</strong> fish observed during individual spawning surveys conducted by USDA ForestService <strong>and</strong> ODFW, from the Upper McKenzie River above Trail Bridge in 1998 <strong>and</strong> 2003(USDA Forest Service 1998a <strong>and</strong> 2003b, unpublished d<strong>at</strong>a)D<strong>at</strong>a from relicensing studies• spawning surveys• scale analysis• Vaki RiverW<strong>at</strong>cher• angling d<strong>at</strong>aExisting local inform<strong>at</strong>ion• Approxim<strong>at</strong>e sizes <strong>of</strong> probable spawning bull trout, from Vaki RiverW<strong>at</strong>cher d<strong>at</strong>a; see aboveexisting local inform<strong>at</strong>ion re: the known number <strong>of</strong> spawnersD<strong>at</strong>a from Relicensing Studies• Scale analysis• PIT tag analysis28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardB-4


FINAL REPORT Carmen-Smith Hydroelectric Project FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportPotential modelinputHabit<strong>at</strong> quantityExamples <strong>of</strong> potentially usefultypes <strong>of</strong> d<strong>at</strong>aSize/fecundity rel<strong>at</strong>ionships Thisinform<strong>at</strong>ion will be used toestim<strong>at</strong>e the number <strong>of</strong> eggs for afemale spawning popul<strong>at</strong>ion <strong>of</strong> agiven size distribution or averagesize.Types <strong>of</strong> d<strong>at</strong>a:h<strong>at</strong>chery or any other records <strong>of</strong>fecundity (size-specific best)Area <strong>of</strong> available spawninghabit<strong>at</strong>• Direct input into the popul<strong>at</strong>iondynamics model, will helpdetermine the maximum number<strong>of</strong> spawners possible undercurrent habit<strong>at</strong> conditions.Types <strong>of</strong> d<strong>at</strong>a:• number <strong>and</strong> areas <strong>of</strong> individualgravel p<strong>at</strong>ches [best]• rel<strong>at</strong>ionships between usablespawning habit<strong>at</strong> area <strong>and</strong>discharge [best]• observed loc<strong>at</strong>ions <strong>of</strong> spawning[good]Available local inform<strong>at</strong>ion(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)Existing Local Inform<strong>at</strong>ion•D<strong>at</strong>a from Relicensing Studies•Existing local inform<strong>at</strong>ion• General observed spawning loc<strong>at</strong>ions (i.e., creek name, <strong>and</strong> above/below culverts); seeexisting local inform<strong>at</strong>ion re: known number <strong>of</strong> spawners above• Quantified areas <strong>of</strong> potential spawning gravels for 6-12 in trout <strong>and</strong> >12 in trout, Sweetw<strong>at</strong>erCreek, 1991 (Cameron <strong>and</strong> Paquette 1991)• Specific observed spawning loc<strong>at</strong>ions from the upper McKenzie River (Kink Creek to T.B.Reservoir), Sweetw<strong>at</strong>er Creek, <strong>and</strong> Smith River, 1997 (USDA Forest Service 1997a, 1997b<strong>and</strong> 1997c; unpublished d<strong>at</strong>a)• Specific observed spawning loc<strong>at</strong>ions; spawning survey observ<strong>at</strong>ions, USDA Forest Service<strong>and</strong> ODFW, from the Upper McKenzie River above Trail Bridge in 1993, 1995, <strong>and</strong> 1998(USDA Forest Service 1993a, 1995a, <strong>and</strong> 1998a; unpublished d<strong>at</strong>a), Anderson Creek in 1995<strong>and</strong> 1998 (USDA Forest Service 1995b <strong>and</strong> 1998b, unpublished d<strong>at</strong>a), Upper South ForkMcKenzie/Roaring River in 1995 <strong>and</strong> 1998 (USDA Forest Service 1995d <strong>and</strong> 1998c,unpublished d<strong>at</strong>a)• Number <strong>and</strong> size <strong>of</strong> p<strong>at</strong>ch areas in Carmen Bypass reach during existing flows <strong>and</strong> spill flowsin 2003 (Stillw<strong>at</strong>er Sciences 2004b)D<strong>at</strong>a from relicensing studies• Aqu<strong>at</strong>ic Habit<strong>at</strong>s <strong>and</strong> Instream Flows study• Spawning surveys• Fluvial Geomorphic Process <strong>and</strong> Channel Morphology study28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardB-5


FINAL REPORT Carmen-Smith Hydroelectric Project FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportPotential modelinputReddarea/dimensionsRedd defense timeExamples <strong>of</strong> potentially usefultypes <strong>of</strong> d<strong>at</strong>aWould be an input into the Escape5.1 sub-model to help determinethe maximum density <strong>of</strong> spawners.Types <strong>of</strong> d<strong>at</strong>a:• approxim<strong>at</strong>e redd areas <strong>and</strong>/ordimensions based on spawningsurveys [best]Based on current inform<strong>at</strong>ion wedon’t believe bull trout femalescommonly defend constructedredds, but are interested in anyd<strong>at</strong>a th<strong>at</strong> pertains to this.Types <strong>of</strong> d<strong>at</strong>a:average time or distribution <strong>of</strong>times th<strong>at</strong> a female defends herredd [best]Life-stage: Eggs-to-emergent fry.Survival r<strong>at</strong>e Redd permeabilityPermeability is a measure <strong>of</strong>intragravel flow, <strong>and</strong> thusspawning gravel quality. Will beused to help predict survival toemergence.Types <strong>of</strong> d<strong>at</strong>a:• redd permeability measurements<strong>at</strong> known redds (in conjunctionwith survival r<strong>at</strong>es, if possible)[best]• redd permeability measurements<strong>at</strong> potential spawning sitesAvailable local inform<strong>at</strong>ion(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)Existing local inform<strong>at</strong>ionD<strong>at</strong>a from Relicensing Studies• Spawning surveys; including measurements <strong>of</strong> reddsExisting local inform<strong>at</strong>ion• ODFW PIT tag d<strong>at</strong>a from Trail Bridge Reservoir, Sweetw<strong>at</strong>er Creek, <strong>and</strong> Trail Bridgetailrace, 2003-2004 (ODFW 2004d, unpublished d<strong>at</strong>a)• ODFW PIT tag d<strong>at</strong>a from South Fork McKenzie <strong>and</strong> Cougar Reservoir (ODFW 2001a,2002b, 2003b, <strong>and</strong> 2004a; unpublished d<strong>at</strong>a)• Fish behavior observ<strong>at</strong>ions: USDA Forest Service spawning survey observ<strong>at</strong>ions in OlallieCreek (USDA Forest Service 2004c, unpublished d<strong>at</strong>a)D<strong>at</strong>a from relicensing studies• Spawning surveys• PIT tag d<strong>at</strong>aExisting local inform<strong>at</strong>ion• Estim<strong>at</strong>ed D 50 for spawning p<strong>at</strong>ches, in Carmen Bypass reach during existing flows <strong>and</strong> spillflows in 2003 (Stillw<strong>at</strong>er Sciences 2004b)D<strong>at</strong>a from relicensing studies• Spawning surveys• Instream Flows <strong>and</strong> Habit<strong>at</strong> Availability Study28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardB-6


FINAL REPORT Carmen-Smith Hydroelectric Project FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportPotential modelinputExamples <strong>of</strong> potentially usefultypes <strong>of</strong> d<strong>at</strong>a[good]• if no permeability measurements,d<strong>at</strong>a on substr<strong>at</strong>e size distributionwithin redds [good]• d<strong>at</strong>a on substr<strong>at</strong>e size distributionwithin potential spawninggravels [ok]EmergenceThis d<strong>at</strong>a could help us to establisha more direct link betweennumbers <strong>of</strong> eggs <strong>and</strong> number <strong>of</strong> fryproduced under current conditions.Available local inform<strong>at</strong>ion(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)Existing Local Inform<strong>at</strong>ion•D<strong>at</strong>a from Relicensing Studies•Types <strong>of</strong> d<strong>at</strong>a:• fry emergence trapping d<strong>at</strong>a (inassoci<strong>at</strong>ion with some measure<strong>of</strong> substr<strong>at</strong>e gravel quality, ifpossible) [best]• d<strong>at</strong>a on s<strong>and</strong> deposition in redds(i.e., s<strong>and</strong> layers forming whichcould prevent emergence) afterfreshets occur [best]• frequency, dur<strong>at</strong>ion, <strong>and</strong>magnitude <strong>of</strong> s<strong>and</strong>-transportingevents th<strong>at</strong> occur post-reddconstruction[best]• percent fines or s<strong>and</strong> in redds[good]• percent fines or s<strong>and</strong> in potentialspawning gravels [ok]28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardB-7


FINAL REPORT Carmen-Smith Hydroelectric Project FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportPotential modelinputExamples <strong>of</strong> potentially usefultypes <strong>of</strong> d<strong>at</strong>aEgg deposition-to-emergencetimingEgg-to-emergence timing isimportant because it willdetermine how long eggs or alevinare vulnerable to entombing eventsor redd superimposition.Types <strong>of</strong> d<strong>at</strong>a:• egg-to-emergence timingmeasured as a function <strong>of</strong>temper<strong>at</strong>ure [best]• temper<strong>at</strong>ure time-series recordedduring spawning season [best]Redd scouring potentialWill help determine the amount <strong>of</strong>egg or alevin loss expected <strong>at</strong>moder<strong>at</strong>e to high flows.Types <strong>of</strong> d<strong>at</strong>a:• discharges <strong>at</strong> which scour wouldbe expected <strong>and</strong> correspondingloc<strong>at</strong>ion-specific depths <strong>of</strong> scour[best]• p<strong>at</strong>ches or areas susceptible toscour <strong>at</strong> given discharges [best]• discharge records [good]Available local inform<strong>at</strong>ion(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)Existing local inform<strong>at</strong>ion• General temper<strong>at</strong>ure requirements for h<strong>at</strong>ching (Goetz 1989, as cited in EWEB 2002)• W<strong>at</strong>er temper<strong>at</strong>ures in Sweetw<strong>at</strong>er Creek, near Hwy. 126 from 1999-2003, <strong>and</strong> in the upperMcKenzie River (300 ft downstream <strong>of</strong> Kink Creek confluence) from 1998-2003 (USDAForest Service 2003d, unpublished d<strong>at</strong>a)• W<strong>at</strong>er temper<strong>at</strong>ures in the McKenzie River sub basin from FLIR imagery <strong>and</strong> groundtruthing(Torgersen et al. 1999)Local Sources Needed• Goetz, F. A. 1989. Biology <strong>of</strong> the bull trout, Salvelinus confluentus: a liter<strong>at</strong>ure review.USDA Forest Service, Willamette N<strong>at</strong>ional Forest, Eugene, Oregon. [as cited in EWEB 2002(as Willamette N<strong>at</strong>ional Forest 1989)]D<strong>at</strong>a from Relicensing Studies• Temper<strong>at</strong>ure d<strong>at</strong>a in streamsExisting local inform<strong>at</strong>ion• USGS gage d<strong>at</strong>a, McKenzie River: <strong>at</strong> outlet <strong>of</strong> Clear Lake from 1913-1915 <strong>and</strong> 1948-present,below Trail Bridge dam from 1961-present, near Vida from 1925-present, <strong>at</strong> McKenzieBridge from 1910-1994, <strong>and</strong> Smith River above Smith River Reservoir from 1961-present(USGS 2004, unpublished d<strong>at</strong>a)D<strong>at</strong>a from relicensing studies• Flow monitoring in bypass reaches• Potential bed mobility study in rel<strong>at</strong>ion to redd scour potential (as decided by a DecisionPoint)• Habit<strong>at</strong> availability study; identific<strong>at</strong>ion <strong>of</strong> suitable spawning p<strong>at</strong>ches28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardB-8


FINAL REPORT Carmen-Smith Hydroelectric Project FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportPotential modelinputExamples <strong>of</strong> potentially usefultypes <strong>of</strong> d<strong>at</strong>aRedd dew<strong>at</strong>ering potentialWill help determine the amount <strong>of</strong>egg or alevin loss due to flowfluctu<strong>at</strong>ions.Types <strong>of</strong> d<strong>at</strong>a:• observ<strong>at</strong>ions <strong>of</strong> redd dew<strong>at</strong>ering[best]• discharge records th<strong>at</strong>correspond with timing <strong>and</strong>loc<strong>at</strong>ion <strong>of</strong> dew<strong>at</strong>ering events[best]• observ<strong>at</strong>ions regardingdew<strong>at</strong>ering <strong>of</strong> potential spawningsites <strong>and</strong> correspondingdischarge changes [good]Temper<strong>at</strong>ures during incub<strong>at</strong>ion<strong>and</strong> alevin developmentNecessary to assess whether thereis evidence for alevin mortality orreduced condition due to highw<strong>at</strong>er temper<strong>at</strong>uresTypes <strong>of</strong> d<strong>at</strong>a:• rel<strong>at</strong>ionships <strong>of</strong> alevin size <strong>and</strong>survival to temper<strong>at</strong>ure [best]• temper<strong>at</strong>ure d<strong>at</strong>a recorded duringincub<strong>at</strong>ion [good]Available local inform<strong>at</strong>ion(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)Existing local inform<strong>at</strong>ion• USGS gage d<strong>at</strong>a, McKenzie River: <strong>at</strong> outlet <strong>of</strong> Clear Lake from 1913-1915 <strong>and</strong> 1948-present,below Trail Bridge dam from 1961-present, near Vida from 1925-present, <strong>at</strong> McKenzieBridge from 1910-1994, <strong>and</strong> Smith River above Smith River Reservoir from 1961-present(USGS 2004, unpublished d<strong>at</strong>a)• Observ<strong>at</strong>ions <strong>of</strong> redd dew<strong>at</strong>ering in fall 2003 <strong>and</strong> 2004: Stillw<strong>at</strong>er Sciences 2004b, <strong>and</strong> R.Rivera, pers. comm., 2004).D<strong>at</strong>a from relicensing studies• Spawning surveys• Hydraulic Regimes study• Habit<strong>at</strong> availability <strong>and</strong> Instream Flows studyExisting Local Inform<strong>at</strong>ion• Optimal incub<strong>at</strong>ion temper<strong>at</strong>ures (Goetz 1989, as cited in EWEB 2002)• W<strong>at</strong>er temper<strong>at</strong>ures in Sweetw<strong>at</strong>er Creek, near Hwy. 126 from 1999-2003, <strong>and</strong> in the upperMcKenzie River (300 ft downstream <strong>of</strong> Kink Creek confluence) from 1998-2003 (USDAForest Service 2003d, unpublished d<strong>at</strong>a)D<strong>at</strong>a from Relicensing Studies• Temper<strong>at</strong>ure d<strong>at</strong>a in streams28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardB-9


FINAL REPORT Carmen-Smith Hydroelectric Project FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportPotential model Examples <strong>of</strong> potentially usefulAvailable local inform<strong>at</strong>ioninputtypes <strong>of</strong> d<strong>at</strong>a(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)Life-stages: Emergent fry to adults. There are 3 basic types <strong>of</strong> d<strong>at</strong>a needed to estim<strong>at</strong>e life-stage specific survival: (1) d<strong>at</strong>a rel<strong>at</strong>ed to carrying capacity, (2)density-independent mortality after a carrying capacity bottleneck, <strong>and</strong> (3) pred<strong>at</strong>ion mortality occurring after a carrying capacity bottleneck. For example ina hypothetical stream a large number <strong>of</strong> fry may emerge from the gravels, but the carrying capacity <strong>of</strong> fry may be 10% <strong>of</strong> the number th<strong>at</strong> emerged. Theremaining 90% either emigr<strong>at</strong>e to available habit<strong>at</strong> elsewhere or more likely die. Mortality th<strong>at</strong> occurs after the carrying capacity bottleneck can either bedensity-independent (e.g., as a result <strong>of</strong> high summer w<strong>at</strong>er temper<strong>at</strong>ures) or density-dependent (e.g., as result <strong>of</strong> pred<strong>at</strong>ion). Below is a list <strong>of</strong> the type <strong>of</strong>d<strong>at</strong>a th<strong>at</strong> could be used to estim<strong>at</strong>e mortality. Although the model considers each life-stage separ<strong>at</strong>ely, we have listed all the types <strong>of</strong> d<strong>at</strong>a th<strong>at</strong> would beuseful in one list to avoid repetition.Life-stage-Specificcarrying capacity(density-dependentmortality)Observed densities instream <strong>and</strong>in the reservoirTypes <strong>of</strong> d<strong>at</strong>a:• observed densities by habit<strong>at</strong>type <strong>and</strong> loc<strong>at</strong>ion [best]• electr<strong>of</strong>ishing or snorkel surveyd<strong>at</strong>a [good]Existing local inform<strong>at</strong>ion• Peak numbers <strong>of</strong> bull trout observed during snorkel surveys <strong>of</strong> pools in the mainstemMcKenzie R. (Olallie l<strong>and</strong>ing to Paradise campground) from 1994-1998, <strong>and</strong> in the SouthFork McKenzie R. (Roaring River to 1.6 km upstream <strong>of</strong> Cougar crossing) from 1995-1998(Taylor <strong>and</strong> Reasoner 1998)• Juvenile area densities <strong>and</strong> numbers (by fast, slow, <strong>and</strong> pocket type habit<strong>at</strong>s) based onsnorkeling in Anderson Creek in 1999; estim<strong>at</strong>ed number <strong>and</strong> size <strong>of</strong> juveniles observed <strong>at</strong>Iko <strong>Spring</strong>s based on snorkeling in the Middle Fork Willamette River in 1999; <strong>and</strong> peaknumbers <strong>of</strong> bull trout observed during snorkel surveys <strong>of</strong> pools in the mainstem McKenzie R.(Olallie l<strong>and</strong>ing to Paradise campground) from 1994-1999, <strong>and</strong> in the South Fork McKenzieR. (Roaring River to 1.6 km upstream <strong>of</strong> Cougar crossing) from 1995-1999 (Taylor <strong>and</strong>Reasoner 2000)• Juvenile area densities in pocket habit<strong>at</strong> for Anderson Creek in 1999 <strong>and</strong> 2000, <strong>and</strong> OlallieCreek in 2000, based on snorkeling; number <strong>of</strong> juvenile bull trout observed in mainstemMcKenzie River in 2000; number <strong>and</strong> density <strong>of</strong> bull trout observed in the Middle ForkWillamette River <strong>at</strong> Iko <strong>Spring</strong>s based on snorkeling in 2000; <strong>and</strong> peak number <strong>of</strong> bull troutobserved during snorkel surveys in the South Fork McKenzie R. (Roaring River to 1.6 kmupstream <strong>of</strong> Cougar crossing) from 1995-2000 (Taylor <strong>and</strong> Ziller 2000)• Number <strong>of</strong> juvenile bull trout observed in mainstem McKenzie River in 2001, <strong>and</strong> number<strong>and</strong> size range <strong>of</strong> bull trout observed in the Middle Fork Willamette River in 2001, based onsnorkeling (Taylor 2003)• Snorkel d<strong>at</strong>a from Middle Fork Willamette, maximum size <strong>of</strong> fish observed in 2002, <strong>and</strong> sizerange <strong>and</strong> number <strong>of</strong> fish observed in 2001 (USDA Forest Service 2003a)• Snorkel d<strong>at</strong>a from surveys on Anderson Creek in winter, 1998, age class <strong>and</strong> count; UpperMcKenzie River pool below Trail Bridge dam in 2002 <strong>and</strong> 2003, approxim<strong>at</strong>e sizes <strong>and</strong>count; McKenzie River mainstem <strong>at</strong> MP 44 (near Anderson Creek) in 1998, sizes <strong>and</strong> count(USDA Forest Service 1998e, 2002a, <strong>and</strong> 2003e, unpublished d<strong>at</strong>a)28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardB-10


FINAL REPORT Carmen-Smith Hydroelectric Project FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportPotential modelinputExamples <strong>of</strong> potentially usefultypes <strong>of</strong> d<strong>at</strong>aAvailable local inform<strong>at</strong>ion(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)• Presence/absence d<strong>at</strong>a, <strong>and</strong> fish sizes, based on snorkel d<strong>at</strong>a from biological stream probes onnumerous creeks in the McKenzie <strong>and</strong> Blue River Ranger districts (USDA Forest Service1991a-e, 1992b-k, 1993b, 1994a-i, 1997d-e, <strong>and</strong> 1998f-g; unpublished d<strong>at</strong>a)• Presence/absence, <strong>and</strong> sizes based on occurrences <strong>of</strong> bull trout, summaries <strong>of</strong> findings fromsnorkel, electr<strong>of</strong>ishing, <strong>and</strong> foot surveys from 1991-2001, numerous streams (USDA ForestService 2001a, unpublished d<strong>at</strong>a)• Numbers <strong>and</strong> sizes, based on angling (released <strong>and</strong> illegal c<strong>at</strong>ch), <strong>and</strong> biological surveys inTrail Bridge Reservoir, Horse Creek, McKenzie River below Trail Bridge, <strong>and</strong> Olallie Creekin 1991<strong>and</strong> 1992; <strong>and</strong> from South Fork McKenzie River, mainstem McKenzie River (near S.Fork), <strong>and</strong> Cougar Reservoir in 1989, 1991, <strong>and</strong> 1992 (USDA Forest Service 1992a,unpublished d<strong>at</strong>a)• Scuba d<strong>at</strong>a from surveys on Trail Bridge Reservoir from 1991-1993 <strong>and</strong> Carmen Reservoir in1992; counts, sizes, <strong>and</strong> loc<strong>at</strong>ions (USDA Forest Service 1991f, 1992l, <strong>and</strong> 1993c;unpublished d<strong>at</strong>a)• Snorkel d<strong>at</strong>a, with numbers <strong>and</strong> estim<strong>at</strong>ed sizes from effectiveness monitoring <strong>of</strong> sidechannels in Deer Creek in 1991 (USDA Forest Service 1994j, unpublished d<strong>at</strong>a), Buck Creekfrom 1993-1997 (USDA Forest Service 1996a <strong>and</strong> 1997f, unpublished d<strong>at</strong>a), Horse Creek in1992 (USDA Forest Service 1992m, unpublished d<strong>at</strong>a), Paradise Creek in 1995 (USDAForest Service 1995e, unpublished d<strong>at</strong>a), from passage in Olallie Creek in 1997 (USDAForest Service 1997e, unpublished d<strong>at</strong>a), <strong>and</strong> transplants in Sweetw<strong>at</strong>er Creek in 1993, 1995,1997, <strong>and</strong> 2001 (USDA Forest Service 1993d, 1995f, 1997g <strong>and</strong> 2001b; unpublished d<strong>at</strong>a)• Juvenile area densities in Anderson Creek in 1991 <strong>and</strong> 1992, based on snorkeling (USDAForest Service 1993e)• Adult fish movement d<strong>at</strong>a from 1998-2000, based on radio tracking in the mainstemMcKenzie River below Trail Bridge, <strong>and</strong> Cougar Reservoir/S. Fork McKenzie from 1998-2000 (Taylor <strong>and</strong> Reasoner 1998, Taylor <strong>and</strong> Reasoner 2000 <strong>and</strong> Taylor <strong>and</strong> Ziller 2000)• Adult fish movement d<strong>at</strong>a from 2001-2004, based on radio tracking in Cougar Reservoir/S.Fork McKenzie (ODFW 2001a, 2002b, 2003b, <strong>and</strong> 2004a; unpublished d<strong>at</strong>a)D<strong>at</strong>a from relicensing studies• Snorkel surveys• <strong>Popul<strong>at</strong>ion</strong> estim<strong>at</strong>es based on mark-recapture <strong>of</strong> PIT-tagged fish28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardB-11


FINAL REPORT Carmen-Smith Hydroelectric Project FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportPotential modelinputLife-stage-specificdensityindependentmortalityExamples <strong>of</strong> potentially usefultypes <strong>of</strong> d<strong>at</strong>aSuitable habit<strong>at</strong> quantityinstream <strong>and</strong> in the reservoirThis measure, in combin<strong>at</strong>ion withmaximum densities for suitablehabit<strong>at</strong>, will help determinecarrying capacity.Types <strong>of</strong> d<strong>at</strong>a:• quantity <strong>of</strong> available summerrearing habit<strong>at</strong> <strong>at</strong> variousdischarges• substr<strong>at</strong>e embeddedness [best]• LWD <strong>and</strong> other refuge habit<strong>at</strong>[best]• substr<strong>at</strong>e sizes [ok]Mortality r<strong>at</strong>eDensity-independent mortality r<strong>at</strong>e<strong>of</strong> emergent fry, l<strong>at</strong>e fry, juveniles,<strong>and</strong> sub adult/adult life-stages.Types <strong>of</strong> d<strong>at</strong>a:• electr<strong>of</strong>ishing or snorkel surveyd<strong>at</strong>a comparing spring or earlysummer numbers <strong>of</strong> fry orjuveniles to l<strong>at</strong>e-summernumbers [good]• evidence <strong>of</strong> mortality due to highw<strong>at</strong>er temper<strong>at</strong>ures [good]• entrainment r<strong>at</strong>es <strong>and</strong> mortalityr<strong>at</strong>es due to entrainment [good]• mortality due to str<strong>and</strong>ing [good]• fishing mortality [creel survey,<strong>and</strong> hook-<strong>and</strong>-line mortality d<strong>at</strong>aare best] [best]Available local inform<strong>at</strong>ion(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)D<strong>at</strong>a from relicensing studies• Aqu<strong>at</strong>ic Habit<strong>at</strong>s <strong>and</strong> Instream Flows study• Large Woody Debris <strong>Dynamics</strong> studyExisting local inform<strong>at</strong>ion• Snorkel survey d<strong>at</strong>a comparing spring or early summer numbers to l<strong>at</strong>e-summer numbers;numbers <strong>of</strong> fish observed during snorkel surveys from January to October, 1999, from Iko<strong>Spring</strong>s on the Middle Fork Willamette River (Taylor <strong>and</strong> Reasoner 2000)• Estim<strong>at</strong>ed entrainment mortality in Cougar Reservoir (Taylor 2000)• Document<strong>at</strong>ion <strong>of</strong> mortality <strong>and</strong> sizes <strong>of</strong> fish due to illegal angling c<strong>at</strong>ch, Trail BridgeReservoir in 1991 <strong>and</strong> 1992 (USDA Forest Service 1992a, unpublished d<strong>at</strong>a)D<strong>at</strong>a from Relicensing Studies• Flow Fluctu<strong>at</strong>ions <strong>and</strong> Str<strong>and</strong>ing study• Entrainment study• Snorkel surveys28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardB-12


FINAL REPORT Carmen-Smith Hydroelectric Project FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportPotential modelinputPred<strong>at</strong>ionmortality (densitydependent)BioenergeticsExamples <strong>of</strong> potentially usefultypes <strong>of</strong> d<strong>at</strong>a• evidence <strong>of</strong> mortality due todisease• any inform<strong>at</strong>ion on mortality dueto fishing would be important forsubadult/adult life-stagesMortality r<strong>at</strong>eDensity-dependent pred<strong>at</strong>ionmortality r<strong>at</strong>e <strong>of</strong> emergent fry, l<strong>at</strong>efry, juveniles, <strong>and</strong> sub adult/adultlife-stages.• estim<strong>at</strong>ed pred<strong>at</strong>ion r<strong>at</strong>es [best]• stomach sampling d<strong>at</strong>a [best]• timing <strong>of</strong> emigr<strong>at</strong>ion to thereservoir [best]• size <strong>at</strong> emigr<strong>at</strong>ion to thereservoir [best]• size-specific pred<strong>at</strong>ion r<strong>at</strong>es inthe reservoir [best]Timing <strong>of</strong> <strong>and</strong> size <strong>at</strong> emigr<strong>at</strong>ionwill help determine the effect <strong>of</strong>pred<strong>at</strong>ion on juveniles. Directinform<strong>at</strong>ion on pred<strong>at</strong>ion is best, asare any other d<strong>at</strong>a directlyinforming mortality r<strong>at</strong>e.Food availability <strong>and</strong> feedingbehavior instream <strong>and</strong> in thereservoirTypes <strong>of</strong> d<strong>at</strong>a:• food availability d<strong>at</strong>a:inform<strong>at</strong>ion on instreamAvailable local inform<strong>at</strong>ion(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)Existing local inform<strong>at</strong>ion• Age class (fry/YOY, 1+ <strong>and</strong> 2+) <strong>and</strong> timing <strong>of</strong> emigr<strong>at</strong>ion, 1993 to 2004; average, minimum,<strong>and</strong> maximum sizes <strong>of</strong> fry in 2003 <strong>and</strong> 2004, all based on RST trapping <strong>at</strong> Anderson Creekfrom 1993-2004 (USDA Forest Service 2004d-f, unpublished d<strong>at</strong>a)• Size (mean <strong>and</strong> range) <strong>at</strong> <strong>and</strong> timing <strong>of</strong> emigr<strong>at</strong>ion to the South Fork McKenzie/CougarReservoir; RST <strong>at</strong> Roaring River (ODFW 2001a, 2002b, 2003b, <strong>and</strong> 2004a; unpublishedd<strong>at</strong>a)D<strong>at</strong>a from Relicensing Studies• Migrant trapping d<strong>at</strong>a• Reservoir sampling (proposed in 2005)Existing local inform<strong>at</strong>ion• Macroinvertebr<strong>at</strong>e inform<strong>at</strong>ion (Aqu<strong>at</strong>ic Biology Associ<strong>at</strong>es 1999)• Juvenile fish numbers <strong>and</strong> sizes (potential prey), based on trap net d<strong>at</strong>a from Trail BridgeReservoir in 1992, 1999, <strong>and</strong> 2004 (ODFW 1992a, 1999a, 2004c; unpublished d<strong>at</strong>a)• Juvenile fish numbers <strong>and</strong> sizes (potential prey), based on Scuba d<strong>at</strong>a from surveys on TrailBridge Reservoir from 1991-1993 (USDA Forest Service 1991f, 1992l, <strong>and</strong> 1993c;unpublished d<strong>at</strong>a)28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardB-13


FINAL REPORT Carmen-Smith Hydroelectric Project FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportPotential modelinputExamples <strong>of</strong> potentially usefultypes <strong>of</strong> d<strong>at</strong>amacroinvertebr<strong>at</strong>e st<strong>and</strong>ing crops<strong>and</strong> production [best]• stomach sampling d<strong>at</strong>a [best]• inform<strong>at</strong>ion on st<strong>and</strong>ing crops<strong>and</strong> production <strong>of</strong> prey species inTrail Bridge Reservoir (e.g.,zooplankton, fish larvae,macroinvertebr<strong>at</strong>es) [best]• size-specific food habitsinform<strong>at</strong>ion (i.e., <strong>at</strong> wh<strong>at</strong> size dobull trout become piscivorous?)[best]Size-specific food habitsinform<strong>at</strong>ion is essential indetermining whether foodavailability may be more limitingthan space.Fish growth r<strong>at</strong>es instream <strong>and</strong>in the reservoirTypes <strong>of</strong> d<strong>at</strong>a:• size-specific growth r<strong>at</strong>einform<strong>at</strong>ion based on observedchanges in size <strong>of</strong> individualsover time or size <strong>at</strong> age (inconjunction with fish densityd<strong>at</strong>a best) [best]• densities based on electr<strong>of</strong>ishingor snorkel surveys, inconjunction with PIT taginform<strong>at</strong>ion [good]• electr<strong>of</strong>ishing d<strong>at</strong>a comparingspring or early summer sizes toAvailable local inform<strong>at</strong>ion(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)D<strong>at</strong>a from relicensing studies• W<strong>at</strong>er Quality-macroinvertebr<strong>at</strong>e samples• Reservoir sampling (proposed for 2005)Existing local inform<strong>at</strong>ion• Size-specific growth r<strong>at</strong>es <strong>of</strong> PIT-tagged fish from S Fork McKenzie/Cougar Reservoir from2001-2004 (ODFW 2001a, 2002b, 2003b, <strong>and</strong> 2004a; unpublished d<strong>at</strong>a)• ODFW PIT tag d<strong>at</strong>a from Trail Bridge Reservoir, Sweetw<strong>at</strong>er Creek, <strong>and</strong> Trail Bridgetailrace from 2003-2004 (ODFW 2004b, unpublished d<strong>at</strong>a) <strong>and</strong> (M. Wade, ODFW, pers.comm., 2004)D<strong>at</strong>a from relicensing studies• PIT-tag recapture d<strong>at</strong>a• Snorkel surveys28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardB-14


FINAL REPORT Carmen-Smith Hydroelectric Project FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportPotential modelinputExamples <strong>of</strong> potentially usefultypes <strong>of</strong> d<strong>at</strong>al<strong>at</strong>e-summer sizes [good]The best d<strong>at</strong>a would be forindividual growth r<strong>at</strong>es. If densityd<strong>at</strong>a are available for areas withknown tagged individuals, thiscould help assess the rel<strong>at</strong>ionshipbetween growth r<strong>at</strong>e <strong>and</strong> density,<strong>and</strong>/or if growth is densitydependentin any way.Available local inform<strong>at</strong>ion(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardB-15


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportAppendix CExisting local inform<strong>at</strong>ion for <strong>Chinook</strong> salmon popul<strong>at</strong>iondynamics modelTablesTable C-1. Potential spring <strong>Chinook</strong> salmon model parameters <strong>and</strong> relevant available inform<strong>at</strong>ion orinform<strong>at</strong>ion anticip<strong>at</strong>ed to be collected in the Relicensing studies. ...................................... C-1Copyright © 2006 Eugene W<strong>at</strong>er & Electric Board - the following Appendix C to the <strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong><strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Report:Appendix CExisting local inform<strong>at</strong>ion for <strong>Chinook</strong> salmon popul<strong>at</strong>iondynamics model


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportTable C-1. Potential spring <strong>Chinook</strong> salmon model parameters <strong>and</strong> relevant available inform<strong>at</strong>ion or inform<strong>at</strong>ion anticip<strong>at</strong>ed to be collected inthe Relicensing studies.Potentialmodel inputExamples <strong>of</strong> potentially usefultypes <strong>of</strong> d<strong>at</strong>aAvailable local inform<strong>at</strong>ion(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)Life-stage: Spawning. The goal <strong>of</strong> this section <strong>of</strong> the model is to predict the number <strong>of</strong> eggs th<strong>at</strong> are successfully deposited in the gravel for differentnumbers <strong>of</strong> spawners, i.e., a spawner-to-egg stock-production curve. To do this we need an estim<strong>at</strong>e <strong>of</strong> fecundity, <strong>and</strong> mortality due to redd superimposition.Number <strong>of</strong>spawnersKnown number <strong>of</strong> spawnersThis type <strong>of</strong> d<strong>at</strong>a can be used totest model predictions <strong>and</strong>allows assessment <strong>of</strong> year-toyearvariability.Types <strong>of</strong> d<strong>at</strong>a:• Estim<strong>at</strong>es <strong>of</strong> spawningescapement [best]• Spawning surveys/redd counts[good]• Sex r<strong>at</strong>io <strong>of</strong> spawners [good]Existing local Inform<strong>at</strong>ion• Daily adult <strong>and</strong> jack passage counts <strong>of</strong> from Willamette Falls Fishway from 2001–2002 <strong>and</strong> 2004(ODFW 2001b, 2002b, 2004d,; unpublished d<strong>at</strong>a)• USDA Forest Service <strong>and</strong> ODFW redd counts from the Upper McKenzie River above TrailBridge in 1997–1998 <strong>and</strong> in the Smith River bypass reach in 1997 (USDA Forest Service 1997a<strong>and</strong> 1998a, unpublished d<strong>at</strong>a)• Snorkel d<strong>at</strong>a from surveys on Upper McKenzie River pool below Trail Bridge dam in 2002 <strong>and</strong>2003 (USDA Forest Service 2002a <strong>and</strong> 2003e, unpublished d<strong>at</strong>a)• Estim<strong>at</strong>ed run size for the McKenzie River from 1946–1986 (Howell et al. 1988)• Estim<strong>at</strong>ed run size for the McKenzie River for 1947 (M<strong>at</strong>tson 1948)• Sex r<strong>at</strong>io for fish processed in the McKenzie River H<strong>at</strong>chery for 1947 (M<strong>at</strong>tson 1948)• Escapement over Leaburg Dam from 1986–1990 (Hagey 1991)• Number <strong>and</strong> distribution <strong>of</strong> spawning observ<strong>at</strong>ions for the McKenzie River for 1989 (Hardin-Davis et al. 1991)• Redd counts, including number <strong>and</strong> distribution, above the Carmen-Smith Spawning Channelmigrant trap, from 1961–1993 (Smith 1993)• Number <strong>and</strong> sex r<strong>at</strong>io <strong>of</strong> adults entering the Carmen-Smith Spawning Channel from 1961–1993(Smith 1993)• Redd counts for the McKenzie River sub-basin from 1958–1993 (Smith 1993)• Redd counts in Lost Creek for 1958, 1965, 1969, from 1971–1972, 1988, <strong>and</strong> from 1992–1993(Smith 1993)• Aerial redd count surveys for the McKenzie River below the Walterville intake <strong>and</strong> upstream <strong>and</strong>downstream <strong>of</strong> Leaburg Dam, including percentage <strong>of</strong> count below Hayden Bridge, from 1966–1993 (Smith 1993)• Carcass survey d<strong>at</strong>a for the lower McKenzie River from 1969–1977 (Smith 1993)• Escapement over Leaburg Dam for 1994 <strong>and</strong> 1995 (M Wade, ODFW, pers. comm., as cited inWillis et al. 1995)• Aerial <strong>and</strong> ground survey redd counts, including d<strong>at</strong>e <strong>and</strong> loc<strong>at</strong>ion, for the McKenzie River subbasinfor 1996 (Grimes et al. 1996)• Spawning survey d<strong>at</strong>a by loc<strong>at</strong>ion, including counts <strong>of</strong> live fish, carcasses, <strong>and</strong> redds in theMcKenzie River sub-basin for 1996 (Grimes et al. 1996)28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardC-1


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportPotentialmodel inputExamples <strong>of</strong> potentially usefultypes <strong>of</strong> d<strong>at</strong>aTemporal distribution <strong>of</strong>spawning runD<strong>at</strong>es <strong>and</strong> temporal p<strong>at</strong>tern <strong>of</strong>spawning. Is the temporaldistribution normal or skewed?Knowing this inform<strong>at</strong>ion willhelp us determine how manypotential spawners are able tosuccessfully spawn <strong>and</strong> hasimplic<strong>at</strong>ions for reddsuperimposition. A shortwindow <strong>of</strong> redd constructioncould mean there is more likelyto be an even distribution <strong>of</strong>spawners; a longer window <strong>of</strong>redd construction allows for agre<strong>at</strong>er opportunity for reddsuperimposition.In addition, wewould like to compare theAvailable local inform<strong>at</strong>ion(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)• Sex r<strong>at</strong>io, loc<strong>at</strong>ion, <strong>and</strong> d<strong>at</strong>e <strong>of</strong> carcasses sampled during spawning surveys in the McKenzieRiver sub basin for 1996 (Grimes et al. 1996)• Estim<strong>at</strong>ed run size, including Leaburg Dam counts, redd counts, h<strong>at</strong>chery returns, <strong>and</strong> sportc<strong>at</strong>ch, for the McKenzie River from 1970–2003 (ODFW 2004d)• Aerial spawning survey, including counts <strong>of</strong> live fish, redds, <strong>and</strong> carcasses, below Leaburg Damfor 2001 (Downey <strong>and</strong> Murtagh 2001)• Redd counts, including density/mi, for the McKenzie River above Leaburg Dam from 1968–1997(EWEB 2002)• Redd counts for the Carmen-Smith Spawning Channel from 1968–2002 (EWEB 2002)• Escapement over Leaburg Dam <strong>and</strong> McKenzie River h<strong>at</strong>chery returns from 1970–2001 (EWEB2002)• Redd count d<strong>at</strong>a above <strong>and</strong> below Leaburg Dam for 1970–1999 (EWEB 2002)• Distribution <strong>of</strong> redds <strong>and</strong> carcasses in the McKenzie River sub basin from 1996–1998 <strong>and</strong> 2000–2002 (Shroeder et al. 2003)D<strong>at</strong>a from relicensing studies• Spawning SurveysExisting local inform<strong>at</strong>ion• Daily adult <strong>and</strong> jack passage counts <strong>of</strong> from Willamette Falls Fishway from 2001–2002 <strong>and</strong> 2004(ODFW 2001b, 2002b, 2004d; unpublished d<strong>at</strong>a)• Average monthly percentage <strong>of</strong> the adult annual run passing Leaburg Dam from 1970–1986(Howell et al. 1988)• Comparison <strong>of</strong> egg take timing in the McKenzie River from 1902–1907 <strong>and</strong> 1984–1985 (Howellet al. 1988)• D<strong>at</strong>e <strong>of</strong> entry into the Carmen-Smith Spawning Channel for 1961 (Smith 1993)• General inform<strong>at</strong>ion for timing <strong>of</strong> adult migr<strong>at</strong>ion <strong>and</strong> spawning in the McKenzie River (NOAAFisheries 2003)D<strong>at</strong>a from relicensing studies• spawning surveys• Vaki RiverW<strong>at</strong>cher detections• PIT tag analysis28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardC-2


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportPotentialmodel inputExamples <strong>of</strong> potentially usefultypes <strong>of</strong> d<strong>at</strong><strong>at</strong>emporal distribution <strong>of</strong> <strong>Chinook</strong>salmon with bull trout toevalu<strong>at</strong>e the potential for intraspecificredd superimposition.Types <strong>of</strong> d<strong>at</strong>a:• Spawning timing curves [best]• Spawning surveys/redd counts[good]• D<strong>at</strong>es <strong>of</strong> beginning, end, <strong>and</strong>peak <strong>of</strong> upstream migr<strong>at</strong>ion orspawning [ok]The best d<strong>at</strong>a for describingtemporal distribution would beactual curves <strong>of</strong> numbers <strong>of</strong>spawning fish over time; lessvaluable, but still useful d<strong>at</strong>acould include beginning, peak,<strong>and</strong> end times for the run.Age/size structure <strong>of</strong>popul<strong>at</strong>ion. This inform<strong>at</strong>ionwill be used to estim<strong>at</strong>e thenumber <strong>of</strong> m<strong>at</strong>ure females in theadult popul<strong>at</strong>ion.Types <strong>of</strong> d<strong>at</strong>a:• Age/size-specific probabilities<strong>of</strong> spawning [best]• D<strong>at</strong>a on sizes <strong>of</strong> spawningadults (preferably <strong>at</strong> knownages) [good]• Age/size structure <strong>of</strong> the adultpopul<strong>at</strong>ion [good]• Age/size <strong>at</strong> first spawning[good]Available local inform<strong>at</strong>ion(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)Existing local inform<strong>at</strong>ion• Male m<strong>at</strong>urity r<strong>at</strong>es <strong>at</strong> age 3,4, <strong>and</strong> 5 <strong>and</strong> female m<strong>at</strong>urity r<strong>at</strong>es <strong>at</strong> age 5 <strong>and</strong> 6 for experimentalreleases <strong>of</strong> varying fish size from the McKenzie <strong>and</strong> Dexter/Oakridge h<strong>at</strong>cheries for 1975–1989brood years (Cramer et al. 1996)• Age structure for McKenzie River spring <strong>Chinook</strong> salmon returns from 1996–1997 (Lindsay etal. 1997 as cited in Myers et al. 2003)• General inform<strong>at</strong>ion regarding age structure for returning adults to the McKenzie River sub basin(Smith 1993)D<strong>at</strong>a from relicensing studies28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardC-3


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportPotentialmodel inputFecundityHabit<strong>at</strong> quantityExamples <strong>of</strong> potentially usefultypes <strong>of</strong> d<strong>at</strong>a• Inform<strong>at</strong>ion on age/sizerel<strong>at</strong>ionships from liter<strong>at</strong>ure[ok]Size/age <strong>at</strong> sexual m<strong>at</strong>uritySize/age d<strong>at</strong>a can be used topredict the number <strong>of</strong> eggsdeposited for spawning females,assuming th<strong>at</strong> size/fecundityrel<strong>at</strong>ionships are established (seebelow)Types <strong>of</strong> d<strong>at</strong>a:• Size distribution <strong>of</strong> adultfemales [best]• Distribution <strong>of</strong> sizes <strong>at</strong> givenages or average size <strong>at</strong> age[ok]Size/fecundity rel<strong>at</strong>ionshipsThis inform<strong>at</strong>ion will be used toestim<strong>at</strong>e the number <strong>of</strong> eggs fora female spawning popul<strong>at</strong>ion <strong>of</strong>a given size distribution oraverage size.Types <strong>of</strong> d<strong>at</strong>a:• H<strong>at</strong>chery Or Any OtherRecords Of Fecundity (Size-Specific Best)Area <strong>of</strong> available spawninghabit<strong>at</strong>Direct input into the popul<strong>at</strong>iondynamics model, will helpdetermine the maximum number<strong>of</strong> spawners possible undercurrent habit<strong>at</strong> conditions.Available local inform<strong>at</strong>ion(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)Existing local inform<strong>at</strong>ion• Male m<strong>at</strong>urity r<strong>at</strong>es <strong>at</strong> age 3,4, <strong>and</strong> 5 <strong>and</strong> female m<strong>at</strong>urity r<strong>at</strong>es <strong>at</strong> age 5 <strong>and</strong> 6 for experimentalreleases <strong>of</strong> varying fish size from the McKenzie <strong>and</strong> Dexter/Oakridge h<strong>at</strong>cheries for 1975–1989brood years (Cramer et al. 1996)• Age structure for McKenzie River spring <strong>Chinook</strong> salmon returns from 1996–1997 (Lindsay etal. 1997 as cited in Myers et al. 2003)• General inform<strong>at</strong>ion regarding age structure for returning adults to the McKenzie River sub basin(Smith 1993)D<strong>at</strong>a from relicensing studiesExisting local inform<strong>at</strong>ion• Average female size <strong>and</strong> estim<strong>at</strong>ed fecundity (based on length-fecundity rel<strong>at</strong>ionship) for spring<strong>Chinook</strong> salmon in the Carmen-Smith Spawning Channel for 1961–1967 (Hagey 1968)• Average female size <strong>and</strong> estim<strong>at</strong>ed fecundity for spring <strong>Chinook</strong> salmon in the Carmen-SmithSpawning Channel for 1961–1980 (Smith 1993)• McKenzie River spawning ground surveys indic<strong>at</strong>ing mean female carcass size in 1996 (Grimeset. al 1996)D<strong>at</strong>a from relicensing studiesExisting local inform<strong>at</strong>ion• Number <strong>and</strong> size <strong>of</strong> p<strong>at</strong>ch areas in Carmen Bypass reach during existing flows <strong>and</strong> spill flows in2003 (Stillw<strong>at</strong>er Sciences 2004b)• USFWS habit<strong>at</strong> surveys conducted throughout the McKenzie River sub basin including estim<strong>at</strong>es<strong>of</strong> spawning carrying capacity based on available habit<strong>at</strong> discharge d<strong>at</strong>a, barrier inform<strong>at</strong>ion,w<strong>at</strong>er temper<strong>at</strong>ure, gradient, <strong>and</strong> general habit<strong>at</strong> quality d<strong>at</strong>a such as bed composition, LWDavailability, <strong>and</strong> pool frequency (Parkhurst et al. 1950)• Total number <strong>and</strong> percentage <strong>of</strong> redds by reach for the Carmen-Smith Spawning Channel from28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardC-4


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportPotentialmodel inputReddarea/dimensionsExamples <strong>of</strong> potentially usefultypes <strong>of</strong> d<strong>at</strong>aTypes <strong>of</strong> d<strong>at</strong>a:• Number <strong>and</strong> areas <strong>of</strong>individual gravel p<strong>at</strong>ches [best]• Rel<strong>at</strong>ionships between usablespawning habit<strong>at</strong> area <strong>and</strong>discharge [best]• Observed loc<strong>at</strong>ions <strong>of</strong>spawning [good]Would be an input into theEscape 5.1 submodel to helpdetermine the maximum density<strong>of</strong> spawners.Available local inform<strong>at</strong>ion(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)1961–1977, 1987–1991, <strong>and</strong> 1993 (Smith 1993)• Accessible <strong>and</strong> inaccessible prime spawning river kilometers loc<strong>at</strong>ed within the McKenzie subbasin (McElhany et al. 2003)• Available spawning area for the McKenzie River from Hendricks Bridge to the Smith RiverBridge based on substr<strong>at</strong>e size classes comparing d<strong>at</strong>a from 1938 to 1991 (Sedell et al. 1992)• USDA Forest Service <strong>and</strong> ODFW redd counts, including specific loc<strong>at</strong>ions, from the UpperMcKenzie River above Trail Bridge in 1997–1998 (USDA Forest Service 1997a <strong>and</strong> 1998a,unpublished d<strong>at</strong>a) <strong>and</strong> in the Smith River bypass reach in 1997 (USDA Forest Service 1997c)D<strong>at</strong>a from relicensing studies• Aqu<strong>at</strong>ic Habit<strong>at</strong>s <strong>and</strong> Instream Flows study• Spawning surveys• Fluvial Geomorphic Process <strong>and</strong> Channel Morphology studyExisting local inform<strong>at</strong>ionD<strong>at</strong>a from relicensing studies• Spawning surveys; including measurements <strong>of</strong> reddsTypes <strong>of</strong> d<strong>at</strong>a:• Approxim<strong>at</strong>e redd areas <strong>and</strong>/ordimensions based on spawningsurveys [best]Redd defense time Types <strong>of</strong> d<strong>at</strong>a:• Average time or distribution <strong>of</strong>times th<strong>at</strong> a female defends herredd [best]Existing local inform<strong>at</strong>ionD<strong>at</strong>a from relicensing studies• Spawning surveys• PIT tag d<strong>at</strong>a28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardC-5


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportPotential Examples <strong>of</strong> potentially usefulmodel inputtypes <strong>of</strong> d<strong>at</strong>aLife-stage: Eggs-to-emergent fry.Survival r<strong>at</strong>e Redd permeabilityPermeability is a measure <strong>of</strong>intragravel flow, <strong>and</strong> thusspawning gravel quality. Willbe used to help predict survivalto emergence.Types <strong>of</strong> d<strong>at</strong>a:• Redd permeabilitymeasurements <strong>at</strong> known redds(in conjunction with survivalr<strong>at</strong>es, if possible) [best]• Redd permeabilitymeasurements <strong>at</strong> potentialspawning sites [good]• If no permeabilitymeasurements, d<strong>at</strong>a onsubstr<strong>at</strong>e size distributionwithin redds [good]• D<strong>at</strong>a on substr<strong>at</strong>e sizedistribution within potentialspawning gravels [ok]EmergenceThis d<strong>at</strong>a could help us toestablish a more direct linkbetween numbers <strong>of</strong> eggs <strong>and</strong>number <strong>of</strong> fry produced undercurrent conditions.Types <strong>of</strong> d<strong>at</strong>a:• Fry emergence trapping d<strong>at</strong>a(in associ<strong>at</strong>ion with somemeasure <strong>of</strong> substr<strong>at</strong>e gravelquality, if possible) [best]• D<strong>at</strong>a on s<strong>and</strong> deposition inredds (i.e., s<strong>and</strong> layers formingAvailable local inform<strong>at</strong>ion(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)Existing local inform<strong>at</strong>ion• Estim<strong>at</strong>ed D 50 for spawning p<strong>at</strong>ches, in Carmen Bypass reach during existing flows <strong>and</strong> spillflows in 2003 (Stillw<strong>at</strong>er Sciences 2004b)• Seasonal mean permeability d<strong>at</strong>a in the Carmen-Smith Spawning Channel for 1961–1967 (Hagey1968)D<strong>at</strong>a from relicensing studies• Spawning surveys• Instream Flows <strong>and</strong> Habit<strong>at</strong> Availability StudyExisting local inform<strong>at</strong>ion• Total <strong>and</strong> percent survival <strong>of</strong> egg to emigr<strong>at</strong>ing fry from trap d<strong>at</strong>a in the Carmen-Smith SpawningChannel for 1961–1967 (Hagey 1968)• Total <strong>and</strong> percent survival <strong>of</strong> egg to emigr<strong>at</strong>ing fry from trap d<strong>at</strong>a in the Carmen-Smith SpawningChannel for 1961–1973 (Smith 1993)D<strong>at</strong>a from relicensing studies28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardC-6


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportPotentialmodel inputExamples <strong>of</strong> potentially usefultypes <strong>of</strong> d<strong>at</strong>awhich could preventemergence) after freshets occur[best]• Frequency, dur<strong>at</strong>ion, <strong>and</strong>magnitude <strong>of</strong> s<strong>and</strong>-transportingevents th<strong>at</strong> occur post-reddconstruction[best]• Percent fines or s<strong>and</strong> in redds[good]• Percent fines or s<strong>and</strong> inpotential spawning gravels[ok]Egg deposition-to-emergencetimingEgg-to-emergence timing isimportant because it willdetermine how long eggs oralevin are vulnerable toentombing events or reddsuperimposition.Types <strong>of</strong> d<strong>at</strong>a:• Egg-to-emergence timingmeasured as a function <strong>of</strong>temper<strong>at</strong>ure [best]• Temper<strong>at</strong>ure time-seriesrecorded during spawningseason [best]Available local inform<strong>at</strong>ion(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)Existing local inform<strong>at</strong>ion• Emergence timing in the South Fork McKenzie River in rel<strong>at</strong>ion to USGS temper<strong>at</strong>ure d<strong>at</strong>a for1992 (Homolka <strong>and</strong> Downey 1995 as cited in NOAA Fisheries 2003)• W<strong>at</strong>er temper<strong>at</strong>ures in the McKenzie River sub basin from FLIR imagery <strong>and</strong> ground-truthing(Torgersen et al.1999)• W<strong>at</strong>er temper<strong>at</strong>ures in the upper McKenzie River (300 ft downstream <strong>of</strong> Kink Creek confluence)from 1998-2003 (USDA Forest Service 2003f, unpublished d<strong>at</strong>a)• Acceler<strong>at</strong>ion <strong>of</strong> emergence based on alter<strong>at</strong>ion <strong>of</strong> temper<strong>at</strong>ures by local dams (USDA ForestService 1995f, as cited in NMFS <strong>and</strong> USDA Forest Service 2002)• General temper<strong>at</strong>ure requirements for <strong>Chinook</strong> salmon incub<strong>at</strong>ion (Piper et al. 1982 as cited inEWEB 2002• W<strong>at</strong>er temper<strong>at</strong>ures in various mainstem McKenzie River <strong>and</strong> tributary loc<strong>at</strong>ions for 1937–1938(Sedell et al. 1992)Local sources needed• Homolka, K., <strong>and</strong> T. W. Downey. 1995. Assessment <strong>of</strong> thermal effects on salmon spawning <strong>and</strong>fry emergence, upper McKenzie River, 1992. Inform<strong>at</strong>ion Report 95-4. Oregon Department <strong>of</strong>Fish <strong>and</strong> Wildlife, Fish Research <strong>and</strong> Development Section, Corvallis. [as cited in NOAAFisheries 2003]D<strong>at</strong>a from relicensing studies• Migrant trapping• Temper<strong>at</strong>ure d<strong>at</strong>a in streams28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardC-7


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportPotentialmodel inputExamples <strong>of</strong> potentially usefultypes <strong>of</strong> d<strong>at</strong>aRedd scouring potentialWill help determine the amount<strong>of</strong> egg or alevin loss expected <strong>at</strong>moder<strong>at</strong>e to high flows.Types <strong>of</strong> d<strong>at</strong>a:• Discharges <strong>at</strong> which scourwould be expected <strong>and</strong>corresponding loc<strong>at</strong>ionspecificdepths <strong>of</strong> scour [best]• P<strong>at</strong>ches or areas susceptible toscour <strong>at</strong> given discharges[best]• Discharge records [good]Redd dew<strong>at</strong>ering potentialWill help determine the amount<strong>of</strong> egg or alevin loss due to flowfluctu<strong>at</strong>ions.Types <strong>of</strong> d<strong>at</strong>a:• Observ<strong>at</strong>ions <strong>of</strong> redddew<strong>at</strong>ering [best]• Discharge records th<strong>at</strong>correspond with timing <strong>and</strong>loc<strong>at</strong>ion <strong>of</strong> dew<strong>at</strong>ering events[best]• Observ<strong>at</strong>ions regardingdew<strong>at</strong>ering <strong>of</strong> potentialspawning sites <strong>and</strong>corresponding dischargechanges [good]Available local inform<strong>at</strong>ion(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)Existing local inform<strong>at</strong>ion• USGS gage d<strong>at</strong>a, McKenzie River: <strong>at</strong> outlet <strong>of</strong> Clear Lake from 1913-1915 <strong>and</strong> 1948-present,below Trail Bridge dam from 1961-present, near Vida from 1925-present, <strong>at</strong> McKenzie Bridgefrom 1910-1994, <strong>and</strong> Smith River above Smith River Reservoir from 1961-present (USGS 2004,unpublished d<strong>at</strong>a)D<strong>at</strong>a from relicensing studies• Flow monitoring in bypass reaches• Potential bed mobility study in rel<strong>at</strong>ion to redd scour potential (as decided by a Decision Point)• Habit<strong>at</strong> availability studies; identific<strong>at</strong>ion <strong>of</strong> suitable spawning p<strong>at</strong>chesExisting local inform<strong>at</strong>ion• USGS gage d<strong>at</strong>a, McKenzie River: <strong>at</strong> outlet <strong>of</strong> Clear Lake from 1913-1915 <strong>and</strong> 1948-present,below Trail Bridge dam from 1961-present, near Vida from 1925-present, <strong>at</strong> McKenzie Bridgefrom 1910-1994, <strong>and</strong> Smith River above Smith River Reservoir from 1961-present (USGS 2004,unpublished d<strong>at</strong>a)• Observ<strong>at</strong>ions <strong>of</strong> redd dew<strong>at</strong>ering in fall 2003 <strong>and</strong> 2004: Stillw<strong>at</strong>er Sciences 2004b, <strong>and</strong> R. Riverapers. comm., 2004).D<strong>at</strong>a from relicensing studies• Spawning surveys• Hydraulic Regimes study• Instream Flows <strong>and</strong> Aqu<strong>at</strong>ic Habit<strong>at</strong>s study28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardC-8


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportPotentialmodel inputExamples <strong>of</strong> potentially usefultypes <strong>of</strong> d<strong>at</strong>aTemper<strong>at</strong>ures duringincub<strong>at</strong>ion <strong>and</strong> alevindevelopmentNecessary to assess whetherthere is evidence for alevinmortality or reduced conditiondue to high w<strong>at</strong>er temper<strong>at</strong>uresTypes <strong>of</strong> d<strong>at</strong>a:• Rel<strong>at</strong>ionships <strong>of</strong> alevin size<strong>and</strong> survival to temper<strong>at</strong>ure[best]• Temper<strong>at</strong>ure d<strong>at</strong>a recordedduring incub<strong>at</strong>ion [good]Available local inform<strong>at</strong>ion(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)Existing local inform<strong>at</strong>ion• W<strong>at</strong>er temper<strong>at</strong>ures in the McKenzie River sub basin from FLIR imagery <strong>and</strong> ground-truthing(Torgersen et al. 1999)• W<strong>at</strong>er temper<strong>at</strong>ures in the upper McKenzie River (300 ft downstream <strong>of</strong> Kink Creek confluence)from 1998-2003 (USDA Forest Service 2003f, unpublished d<strong>at</strong>a)• Seven-day average maximum w<strong>at</strong>er temper<strong>at</strong>ures in the McKenzie River below Trail BridgeReservoir <strong>and</strong> <strong>at</strong> McKenzie Bridge from 1993–1994 (USDA Forest Service 1995g)Local sources needed• Temper<strong>at</strong>ure records for incub<strong>at</strong>ion periods used to determine time <strong>of</strong> fry emergence from thegravel in the Carmen-Smith Spawning Channel for 1962–1967 [referenced in Hagey 1968]D<strong>at</strong>a from relicensing studies• Temper<strong>at</strong>ure d<strong>at</strong>a in streams28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardC-9


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportPotential Examples <strong>of</strong> potentially usefulAvailable local inform<strong>at</strong>ionmodel inputtypes <strong>of</strong> d<strong>at</strong>a(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)Life-stages: Emergent fry to smolts. There are 3 basic types <strong>of</strong> d<strong>at</strong>a needed to estim<strong>at</strong>e life-stage specific survival: (1) d<strong>at</strong>a rel<strong>at</strong>ed to carrying capacity, (2)density-independent mortality after a carrying capacity bottleneck, <strong>and</strong> (3) pred<strong>at</strong>ion mortality occurring after a carrying capacity bottleneck. For example ina hypothetical stream a large number <strong>of</strong> fry may emerge from the gravels, but the carrying capacity <strong>of</strong> fry may be 10% <strong>of</strong> the number th<strong>at</strong> emerged. Theremaining 90% either emigr<strong>at</strong>e to available habit<strong>at</strong> elsewhere or more likely die. Mortality th<strong>at</strong> occurs after the carrying capacity bottleneck can either bedensity-independent (e.g., as a result <strong>of</strong> high summer w<strong>at</strong>er temper<strong>at</strong>ures) or density-dependent (e.g., as result <strong>of</strong> pred<strong>at</strong>ion). Below is a list <strong>of</strong> the type <strong>of</strong>d<strong>at</strong>a th<strong>at</strong> could be used to estim<strong>at</strong>e mortality.Life-stage <strong>and</strong>season-specificcarrying capacity(densitydependentmortality)Life-stages includefry, pre-smoltjuveniles, <strong>and</strong>residuals/precocialsObserved densities instream<strong>and</strong> in the reservoirTypes <strong>of</strong> d<strong>at</strong>a:• Observed densities by habit<strong>at</strong>type <strong>and</strong> loc<strong>at</strong>ion <strong>and</strong> season[best]• Electr<strong>of</strong>ishing or snorkelsurvey d<strong>at</strong>a [good]Existing local inform<strong>at</strong>ion• Snorkel d<strong>at</strong>a, with numbers <strong>and</strong> estim<strong>at</strong>ed age classes from effectiveness monitoring <strong>of</strong> sidechannels in Buck Creek from 1993–1997 (USDA Forest Service 1996a <strong>and</strong> 1997f, unpublishedd<strong>at</strong>a), Horse Creek in 1992 (USDA Forest Service 1992m, unpublished d<strong>at</strong>a), Paradise Creek in1995 (USDA Forest Service 1995e, unpublished d<strong>at</strong>a), <strong>and</strong> Lost Creek in 1992 <strong>and</strong> 1998 (USDAForest Service 1992f-g <strong>and</strong> 1998g; unpublished d<strong>at</strong>a)• Juvenile releases into the McKenzie River from all sources for 1960–1984 broods (Howell et al.1988)• Average monthly c<strong>at</strong>ch <strong>of</strong> fry (2 in) <strong>at</strong> Leaburg Canal (1948), South Fork McKenzie River (1959–1960),<strong>and</strong> Leaburg trap (1980–1983) (Howell et al. 1988)• Snorkel d<strong>at</strong>a, with numbers/ft 2 by habit<strong>at</strong> type for diverted <strong>and</strong> undiverted segments <strong>of</strong> theMcKenzie River in the vicinity <strong>of</strong> the Leaburg Walterville Project (Hardin-Davis et al. 1991)• Fry <strong>and</strong> smolt production from the Carmen-Smith Spawning Channel for 1962–1965 broods(Smith 1993)• Migrant trap d<strong>at</strong>a, with numbers <strong>and</strong> timing for fry (


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportPotentialmodel inputLife-stage-specificdensityindependentmortalityExamples <strong>of</strong> potentially usefultypes <strong>of</strong> d<strong>at</strong>aSuitable habit<strong>at</strong> quantityinstream <strong>and</strong> in the reservoirThis measure, in combin<strong>at</strong>ionwith maximum densities forsuitable habit<strong>at</strong>, will helpdetermine carrying capacity.Types <strong>of</strong> d<strong>at</strong>a:• Quantity <strong>of</strong> available summerrearing habit<strong>at</strong> <strong>at</strong> variousdischarges• Substr<strong>at</strong>e embeddedness [best]• LWD <strong>and</strong> other refuge habit<strong>at</strong>[best]• Substr<strong>at</strong>e sizes [ok]Mortality r<strong>at</strong>eDensity-independent mortalityr<strong>at</strong>e <strong>of</strong> emergent fry, juveniles,<strong>and</strong> smolts.Types <strong>of</strong> d<strong>at</strong>a:• Electr<strong>of</strong>ishing or snorkelsurvey d<strong>at</strong>a comparing springor early summer numbers <strong>of</strong>fry or juveniles to l<strong>at</strong>e-summernumbers [good]• Evidence <strong>of</strong> mortality due tohigh w<strong>at</strong>er temper<strong>at</strong>ures [good]• Entrainment r<strong>at</strong>es <strong>and</strong>mortality r<strong>at</strong>es due toentrainment [good]• Mortality due to str<strong>and</strong>ingAvailable local inform<strong>at</strong>ion(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)D<strong>at</strong>a from relicensing studies• Snorkel surveys• <strong>Popul<strong>at</strong>ion</strong> estim<strong>at</strong>es based on mark-recapture <strong>of</strong> PIT-tagged fishExisting local inform<strong>at</strong>ion• General rearing habit<strong>at</strong> condition inform<strong>at</strong>ion for <strong>Chinook</strong> salmon in the McKenzie River subbasin (LCOG 1996)D<strong>at</strong>a from relicensing studies• Aqu<strong>at</strong>ic Habit<strong>at</strong>s <strong>and</strong> Instream Flows study• Large Woody Debris <strong>Dynamics</strong> studyExisting local inform<strong>at</strong>ion• Estim<strong>at</strong>ed entrainment mortality in Cougar Reservoir (Taylor 2000)D<strong>at</strong>a from relicensing studies• Flow Fluctu<strong>at</strong>ions <strong>and</strong> Str<strong>and</strong>ing study• Entrainment study• Snorkel surveys28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardC-11


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportPotentialmodel inputPred<strong>at</strong>ionmortality(densitydependent)Examples <strong>of</strong> potentially usefultypes <strong>of</strong> d<strong>at</strong>a[good]• Fishing mortality [creelsurvey, <strong>and</strong> hook-<strong>and</strong>-linemortality d<strong>at</strong>a are best] [best]• Evidence <strong>of</strong> mortality due todiseaseMortality r<strong>at</strong>eDensity-dependent pred<strong>at</strong>ionmortality r<strong>at</strong>e <strong>of</strong> emergent fry,juveniles, <strong>and</strong> smolts.• Estim<strong>at</strong>ed pred<strong>at</strong>ion r<strong>at</strong>es[best]• Stomach sampling d<strong>at</strong>a [best]• Timing <strong>of</strong> emigr<strong>at</strong>ion to thereservoir [best]• Size <strong>at</strong> emigr<strong>at</strong>ion to thereservoir [best]• Size-specific pred<strong>at</strong>ion r<strong>at</strong>es inthe reservoir [best]Timing <strong>of</strong> <strong>and</strong> size <strong>at</strong> emigr<strong>at</strong>ionwill help determine the effect <strong>of</strong>pred<strong>at</strong>ion on juveniles. Directinform<strong>at</strong>ion on pred<strong>at</strong>ion is best,as are any other d<strong>at</strong>a directlyinforming mortality r<strong>at</strong>e.Existing local inform<strong>at</strong>ionAvailable local inform<strong>at</strong>ion(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)D<strong>at</strong>a from relicensing studies28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardC-12


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportPotentialmodel inputBioenergeticsExamples <strong>of</strong> potentially usefultypes <strong>of</strong> d<strong>at</strong>aFood availability <strong>and</strong> feedingbehavior instream <strong>and</strong> in thereservoirTypes <strong>of</strong> d<strong>at</strong>a:• Food availability d<strong>at</strong>a:inform<strong>at</strong>ion on instreammacroinvertebr<strong>at</strong>e st<strong>and</strong>ingcrops <strong>and</strong> production [best]• Stomach sampling d<strong>at</strong>a [best]• Inform<strong>at</strong>ion on st<strong>and</strong>ing crops<strong>and</strong> production <strong>of</strong> prey speciesin trail bridge reservoir (e.g.,zooplankton, fish larvae,macroinvertebr<strong>at</strong>es) [best]• Size-specific food habitsinform<strong>at</strong>ion [best]Size-specific food habitsinform<strong>at</strong>ion is essential indetermining whether foodavailability may be morelimiting than space.Available local inform<strong>at</strong>ion(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)Existing local inform<strong>at</strong>ionD<strong>at</strong>a from relicensing studies28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardC-13


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportPotentialmodel inputExamples <strong>of</strong> potentially usefultypes <strong>of</strong> d<strong>at</strong>aFish growth r<strong>at</strong>es instream<strong>and</strong> in the reservoirTypes <strong>of</strong> d<strong>at</strong>a:• Size-specific growth r<strong>at</strong>einform<strong>at</strong>ion based on observedchanges in size <strong>of</strong> individualsover time or size <strong>at</strong> age (inconjunction with fish densityd<strong>at</strong>a best) [best]• Densities based onelectr<strong>of</strong>ishing or snorkelsurveys, in conjunction withpit tag inform<strong>at</strong>ion [good]• Electr<strong>of</strong>ishing d<strong>at</strong>a comparingspring or early summer sizes tol<strong>at</strong>e-summer sizes [good]Available local inform<strong>at</strong>ion(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)Existing local inform<strong>at</strong>ion• Mean fork length <strong>of</strong> juvenile spring <strong>Chinook</strong> salmon seined in the McKenzie River in spring <strong>and</strong>summer from 2000–2003 (Shroeder et al. 2003)D<strong>at</strong>a from relicensing studiesThe best d<strong>at</strong>a would be forindividual growth r<strong>at</strong>es. Ifdensity d<strong>at</strong>a are available forareas with known taggedindividuals, this could helpassess the rel<strong>at</strong>ionship betweengrowth r<strong>at</strong>e <strong>and</strong> density, <strong>and</strong>/orif growth is density-dependent inany way.Life-stages: Smolts to returning adults.Life-stage <strong>and</strong>season-specificcarrying capacity(densitydependentmortality)Observed densities <strong>of</strong>migr<strong>at</strong>ing smolts <strong>and</strong>migr<strong>at</strong>ing adultsTypes <strong>of</strong> d<strong>at</strong>a:• Observed densities by habit<strong>at</strong>type <strong>and</strong> loc<strong>at</strong>ion [best]• Electr<strong>of</strong>ishing or snorkelsurvey d<strong>at</strong>a [good]Existing local inform<strong>at</strong>ion• Estim<strong>at</strong>ed carrying capacity for spawners based on USFWS habit<strong>at</strong> surveys in the McKenzieRiver sub basin from 1937–1938 (Parkhurst et al. 1950)• Comparison <strong>of</strong> large pool frequencies in Horse Creek <strong>and</strong> the South Fork McKenzie River for1941 <strong>and</strong> 1990 (Cramer et al. 1996)• Comparison <strong>of</strong> large pool frequencies for the McKenzie River <strong>and</strong> selected tributaries from1937–1938 <strong>and</strong> 1991 (Sedell et al. 1992)• Number <strong>and</strong> frequency/mi <strong>of</strong> resting pools for various reaches <strong>of</strong> the McKenzie River (Sedell et28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardC-14


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportPotentialmodel inputExamples <strong>of</strong> potentially usefulAvailable local inform<strong>at</strong>iontypes <strong>of</strong> d<strong>at</strong>a(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)• Adult holding habit<strong>at</strong> [good] al. 1992)• General adult holding inform<strong>at</strong>ion for the Lower McKenzie River (ODFW 1990)• Annual production <strong>of</strong> smolts for release into the McKenzie River for 1984–1993 brood years (J.Leppink, ODFW, pers. comm., as cited in Willis et al 1995)• Leaburg Dam smolt (>60 mm average) c<strong>at</strong>ch d<strong>at</strong>a, including numbers <strong>and</strong> timing from 1986–1992 (Willis et al. 1995)• Migrant trap d<strong>at</strong>a, with numbers <strong>and</strong> timing for juveniles <strong>at</strong> Leaburg Dam from 1980–1983(Zakel <strong>and</strong> Reed 1984)• Smolt migr<strong>at</strong>ion timing <strong>at</strong> Leaburg Dam averaged from d<strong>at</strong>a for 1981, 1982, 1987, <strong>and</strong> 1999(EWEB 2002 based on d<strong>at</strong>a from Zakel <strong>and</strong> Reed 1984 <strong>and</strong> Homolka 1990)Life-stage-specificdensityindependentmortalityMortality r<strong>at</strong>eDensity-independent mortalityr<strong>at</strong>e <strong>of</strong> smolts <strong>and</strong> adults.Types <strong>of</strong> d<strong>at</strong>a:• Evidence <strong>of</strong> mortality due tohigh w<strong>at</strong>er temper<strong>at</strong>ures [good]• Entrainment r<strong>at</strong>es <strong>and</strong>mortality r<strong>at</strong>es due toentrainment [good]• Mortality due to str<strong>and</strong>ing[good]• Fishing mortality [creelsurvey, <strong>and</strong> hook-<strong>and</strong>-linemortality d<strong>at</strong>a are best] [best]• Ocean harvest r<strong>at</strong>es [good]• Evidence <strong>of</strong> mortality due todisease [good]• Size <strong>of</strong> smolts [good]Any inform<strong>at</strong>ion on mortalitydue to fishing would beD<strong>at</strong>a from relicensing studies• Snorkel surveys• <strong>Popul<strong>at</strong>ion</strong> estim<strong>at</strong>es based on mark-recapture <strong>of</strong> PIT-tagged fishExisting local inform<strong>at</strong>ion• Estim<strong>at</strong>ed angler effort <strong>and</strong> c<strong>at</strong>ch <strong>of</strong> smolts <strong>and</strong> adults in the McKenzie River for 1983(Hutchinson <strong>and</strong> Hooton 1990)• C<strong>at</strong>ch records, including creel survey estim<strong>at</strong>es for 1974 <strong>and</strong> 1983, tag return d<strong>at</strong>a for 1963–1984,<strong>and</strong> punch card d<strong>at</strong>a from 1970–1986 for the McKenzie River (Howell et al. 1988)• C<strong>at</strong>ch records above <strong>and</strong> below Leaburg Dam from 1970–2001 (ODFW 2002c)• Estim<strong>at</strong>ed run size, sport c<strong>at</strong>ch r<strong>at</strong>e, <strong>and</strong> harvest r<strong>at</strong>e in the McKenzie River from 1983–2001(ODFW 2001b, unpublished d<strong>at</strong>a)• Estim<strong>at</strong>es <strong>of</strong> run size <strong>and</strong> sport c<strong>at</strong>ch r<strong>at</strong>e in the McKenzie River from 1974–1994 (Cramer et al.1996)• Harvest r<strong>at</strong>e estim<strong>at</strong>es for adult escapement to the McKenzie River form 1974–1995) (Cramer etal. 1996)• General estim<strong>at</strong>es <strong>of</strong> pre-spawning mortality for adults holding in freshw<strong>at</strong>er over the summer(Cramer et al. 1996)• Pre-spawning mortality r<strong>at</strong>es <strong>at</strong> the McKenzie holding rack <strong>and</strong> the Walterville Canal rack from1946 <strong>and</strong> 1947 (M<strong>at</strong>tson 1948)• Pre-spawning mortality r<strong>at</strong>es for the Carmen–Smith Spawning Channel from 1961–1987 (Smith1993)• Pre-spawning mortality r<strong>at</strong>es for the McKenzie River from 2001–2003 (Schroeder et al. 2003)• Projected sport fishery harvest r<strong>at</strong>es for the McKenzie River based on d<strong>at</strong>a from 1985–1994(ODFW 2001b, unpublished d<strong>at</strong>a)28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardC-15


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportPotentialmodel inputPred<strong>at</strong>ionmortality(densitydependent)Examples <strong>of</strong> potentially usefultypes <strong>of</strong> d<strong>at</strong>aimportant for smolt <strong>and</strong> adultlife-stages.Mortality r<strong>at</strong>eDensity-dependent pred<strong>at</strong>ionmortality r<strong>at</strong>e <strong>of</strong> smolts <strong>and</strong>adults.• Estim<strong>at</strong>ed pred<strong>at</strong>ion r<strong>at</strong>es[best]• Stomach sampling d<strong>at</strong>a [best]• Timing <strong>of</strong> emigr<strong>at</strong>ion from thereservoir [best]• Size <strong>at</strong> emigr<strong>at</strong>ion from thereservoir [best]• Size-specific pred<strong>at</strong>ion r<strong>at</strong>es inthe mainstem duringemigr<strong>at</strong>ion, in the ocean, <strong>and</strong>during spawning migr<strong>at</strong>ions[best]• Pred<strong>at</strong>ion r<strong>at</strong>es on adults bymammals in the estuary;pred<strong>at</strong>or densities in theestuary [good]• Ocean pred<strong>at</strong>ion r<strong>at</strong>es (sizespecific)[good]Timing <strong>of</strong> <strong>and</strong> size <strong>at</strong> emigr<strong>at</strong>ionwill help determine the effect <strong>of</strong>pred<strong>at</strong>ion on smolts. Directinform<strong>at</strong>ion on pred<strong>at</strong>ion is best,as are any other d<strong>at</strong>a directlyinforming mortality r<strong>at</strong>e.Available local inform<strong>at</strong>ion(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)D<strong>at</strong>a from relicensing studies• Flow Fluctu<strong>at</strong>ions <strong>and</strong> Str<strong>and</strong>ing study• Entrainment study• Snorkel surveysExisting local inform<strong>at</strong>ionD<strong>at</strong>a from relicensing studies• Migrant trapping d<strong>at</strong>a• Reservoir sampling (proposed in 2005)28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardC-16


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportPotentialmodel inputAge-specificm<strong>at</strong>ur<strong>at</strong>ionProportion <strong>of</strong> fishby sub basinExamples <strong>of</strong> potentially usefultypes <strong>of</strong> d<strong>at</strong>aAge/size structure <strong>of</strong>popul<strong>at</strong>ion. This inform<strong>at</strong>ionwill be used to estim<strong>at</strong>e the age<strong>and</strong> number <strong>of</strong> migr<strong>at</strong>ing smolts<strong>and</strong> returning adults in thepopul<strong>at</strong>ion.Types <strong>of</strong> d<strong>at</strong>a:• Age <strong>and</strong> size distribution <strong>of</strong>smolts [best]• Age/size structure <strong>of</strong> the adultpopul<strong>at</strong>ion [best]• Estim<strong>at</strong>ed age-specificm<strong>at</strong>ur<strong>at</strong>ion probabilities or agestructure <strong>of</strong> adult returns [best]• Inform<strong>at</strong>ion on age/sizerel<strong>at</strong>ionships from liter<strong>at</strong>ure[ok]Types <strong>of</strong> d<strong>at</strong>a:• Number <strong>of</strong> returning adults bysub-basin [best]Available local inform<strong>at</strong>ion(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)Existing local inform<strong>at</strong>ion• Male m<strong>at</strong>urity r<strong>at</strong>es <strong>at</strong> age 3,4, <strong>and</strong> 5 <strong>and</strong> female m<strong>at</strong>urity r<strong>at</strong>es <strong>at</strong> age 5 <strong>and</strong> 6 for experimentalreleases <strong>of</strong> varying fish size from the McKenzie <strong>and</strong> Dexter/Oakridge h<strong>at</strong>cheries for 1975–1989brood years (Cramer et al. 1996)• Age structure for McKenzie River spring <strong>Chinook</strong> salmon returns from 1996–1997 (Lindsay etal. 1997 as cited in Myers et al. 2003)• General inform<strong>at</strong>ion regarding age structure for returning adults to the McKenzie River sub basin(Smith 1993)D<strong>at</strong>a from relicensing studiesExisting local inform<strong>at</strong>ion• Distribution <strong>and</strong> run size estim<strong>at</strong>es for the Willamette River Basin comparing d<strong>at</strong>a from 1947 tod<strong>at</strong>a from 1980–1989 (Willis et al. 1995)• Distribution <strong>of</strong> spawners recovered from South Santiam spring <strong>Chinook</strong> salmon released belowWillamette Falls for 1975–1978 brood years (Cramer et al. 1996)• Estim<strong>at</strong>ed returns to the McKenzie River for escapement over Willamette Falls from 1970–1994(Cramer et al. 1996)• Estim<strong>at</strong>ed returns to Willamette River sub basins for 1947 (M<strong>at</strong>tson 1948)• Distribution <strong>of</strong> redds <strong>and</strong> carcasses in the McKenzie River sub basin from 1996–1998 <strong>and</strong> 2000–2002 (Schroeder et al. 2003)• Spawning surveys , including distribution <strong>and</strong> counts <strong>of</strong> live fish, carcasses, <strong>and</strong> redds within theMcKenzie River sub basin for 1996 (Grimes et al. 1996)D<strong>at</strong>a from relicensing studies28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardC-17


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportPotentialmodel inputIntrabasinstraying r<strong>at</strong>esExamples <strong>of</strong> potentially usefultypes <strong>of</strong> d<strong>at</strong>aTypes <strong>of</strong> d<strong>at</strong>a:• Straying r<strong>at</strong>es among subbasins[best]• H<strong>at</strong>chery records indic<strong>at</strong>ingorigin <strong>of</strong> returning adults[good]Available local inform<strong>at</strong>ion(including inform<strong>at</strong>ion th<strong>at</strong> may result from relicensing studies)Existing local inform<strong>at</strong>ion• Numbers <strong>and</strong> percentages <strong>of</strong> strays recovered in the McKenzie River from 1978–1985 (Howell etal. 1988)• Percent <strong>of</strong> strays from escapement d<strong>at</strong>a <strong>at</strong> the Leaburg Dam from 1997–2000 (ODFW 2002c)• Migr<strong>at</strong>ion p<strong>at</strong>terns from radio tracking d<strong>at</strong>a in the McKenzie River for 1990 (EA Engineering1991)• Adult returns <strong>of</strong> marked fry <strong>and</strong> smolts to the Carmen-Smith Spawning Channel for 1964–1967brood years (Smith 1993)• Straying r<strong>at</strong>es <strong>and</strong> recovery sites for marked juveniles from Willamette Basin H<strong>at</strong>cheries releasedbelow Willamette Falls for 1975–1989 brood years (Cramer et al. 1996)• Estim<strong>at</strong>es <strong>of</strong> in-basin straying r<strong>at</strong>es in the McKenzie River for 1990 <strong>and</strong> 1994–1995 (Willis et al.1995 citing M. Wade, pers. comm., ODFW)• Release <strong>and</strong> recovery site inform<strong>at</strong>ion for marked spring <strong>Chinook</strong> salmon for brood years 1991–1992 (Grimes et al. 1996)• Recovery site inform<strong>at</strong>ion for marked smolts released into the lower Willamette basin for broodyear 1996 (Schroeder et al 2003)D<strong>at</strong>a from relicensing studies28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardC-18


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportAppendix D<strong>Bull</strong> trout popul<strong>at</strong>ion model parameters <strong>and</strong> valuesTablesTable D-1. <strong>Bull</strong> trout popul<strong>at</strong>ion dynamics model parameters <strong>and</strong> values under currentconditions............................................................................................................... D-1Table D-2. Escape 5.1 sub-model parameters for bull trout in the Study Area.......................... D-8Table D-3. <strong>Bull</strong> trout popul<strong>at</strong>ion dynamics model parameters <strong>and</strong> values assuming flowconditions th<strong>at</strong> resulted in the highest estim<strong>at</strong>ed habit<strong>at</strong> availability in the CarmenBypass Reach....................................................................................................... D-10Table D-4. <strong>Bull</strong> trout popul<strong>at</strong>ion dynamics model parameters <strong>and</strong> values assuming hypolimneticreleases in Smith Bypass Reach result in lower summer w<strong>at</strong>er temper<strong>at</strong>ures.. ... D-11Table D-5. <strong>Bull</strong> trout popul<strong>at</strong>ion dynamics model parameters <strong>and</strong> values assuming fish passage<strong>at</strong> Smith Dam.. ..................................................................................................... D-12Table D-6. <strong>Bull</strong> trout popul<strong>at</strong>ion dynamics model parameters <strong>and</strong> values assuming large woodydebris enhancements in Carmen Bypass Reach <strong>and</strong> Sweetw<strong>at</strong>er Creek. ............. D-16Copyright © 2006 Eugene W<strong>at</strong>er & Electric Board - the following Appendix D to the <strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong><strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Report:Appendix D<strong>Bull</strong> trout popul<strong>at</strong>ion model parameters <strong>and</strong> values


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportTable D-1. <strong>Bull</strong> trout popul<strong>at</strong>ion dynamics model parameters <strong>and</strong> values under current conditions.Sub Reach Life-stage Parameter Value Source CommentsInitialODFW 2004a (Julypopul<strong>at</strong>ionsizeSept.) quarterlyreport for CougarReservoirCarmenBypass ReachsubreachAdults (> 400 mmFL)to female spawnersFemale spawnerto deposited eggsSex r<strong>at</strong>io <strong>of</strong>spawners (female tomale)Frequency <strong>of</strong>SpawningProportion <strong>of</strong> femalespawners inSweetw<strong>at</strong>er CreekProportion <strong>of</strong> femalespawners in CarmenBypass ReachProportion <strong>of</strong> femalespawners in SmithBypass ReachProportion <strong>of</strong> femalespawners in SmithRiver above SmithReservoirSuitable spawninggravel area1:10.80.30.70.00.0Mark Wade(September reportfor CougarReservoir, 2005)PIT tag d<strong>at</strong>a fromCougar Reservoir(M. Wade, pers.comm., 3 Nov 2004,ODFW)2003 to 2005 PIT tagd<strong>at</strong>a in Study Area(Stillw<strong>at</strong>er Sciences2006a)2004 spawningsurveys (Stillw<strong>at</strong>erSciences 2006a)216 m 2 Habit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciences2006b) <strong>at</strong> 160 cfs.Mean redd area 1.8 m 2 <strong>of</strong> redd dimensions(Stillw<strong>at</strong>er SciencesTotal st<strong>at</strong>ion surveys2006a)Range <strong>of</strong> 1:1 to 1.4:1Sex r<strong>at</strong>io <strong>of</strong> adult popul<strong>at</strong>ion is not known. A r<strong>at</strong>io <strong>of</strong> 1:1 is areasonable estim<strong>at</strong>e, based on lack <strong>of</strong> any convincing evidence tothe contrary. A r<strong>at</strong>io <strong>of</strong> 1.4:1 has been estim<strong>at</strong>ed in the SouthFork McKenzie River (ODFW 2004a). In Roaring River, theyfound 23 females/15 males in 2004 <strong>and</strong> in the SF McKenzie 23females/25 males in 2005 so far .Cougar d<strong>at</strong>a indic<strong>at</strong>es annual spawning. PIT tag d<strong>at</strong>a in StudyArea indic<strong>at</strong>es proportion <strong>of</strong> the popul<strong>at</strong>ion annual, <strong>and</strong> proportionbi-annual. Thus far it appears th<strong>at</strong> about half the Trail Bridgepopul<strong>at</strong>ion is biennial, <strong>and</strong> half is annual.Assumes one female per redd, <strong>and</strong> th<strong>at</strong> half <strong>of</strong> unknown redds inCarmen Bypass Reach are bull trout.Estim<strong>at</strong>ed using bull trout spawning guild. 145 m 2 added toestim<strong>at</strong>e for available habit<strong>at</strong> in Carmen Bypass Reach in habit<strong>at</strong>unit #1,which was not included in habit<strong>at</strong> mapping study.Total st<strong>at</strong>ion surveys conducted in Carmen Bypass Reach.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardD-1


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportSub Reach Life-stage Parameter Value Source CommentsDensity-independentEscape 5.12768r<strong>at</strong>e <strong>of</strong> increase (r)submodel- this studyPermeability Range from 0 to 0.61.analysis (Stillw<strong>at</strong>erSciences 2006c)Deposited eggs-toemergentfryEmergent fry toresident early fry (


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportSub Reach Life-stage Parameter Value Source CommentsSweetw<strong>at</strong>erCreeksubreachResident l<strong>at</strong>e fry (45–100 mm FL) to age1+ <strong>and</strong> age 2+juveniles (100–250mm FL)Age 1+ <strong>and</strong> age 2+juveniles (100–250mm FL) to Subadults(250–400 mmFL)Previous subadults(250–400 mm FL) tonew adults (1st year> 400 mm FL)Female spawnerto deposited eggsMaximum densityfor juvenilesSuitable habit<strong>at</strong>Density-independentsurvival r<strong>at</strong>eSuitable habit<strong>at</strong> 0Suitable habit<strong>at</strong> area 0Suitable spawninggravel areaDirect observ<strong>at</strong>ion45 fish/100m 2 snorkel surveys(Stillw<strong>at</strong>er Sciences2006b)4,054 m 2 Habit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciences2006b) <strong>at</strong> 160 cfs0.8 AssumptionHabit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciences2006b)Habit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciences2006b)162 m 2 Habit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciences2006b)Mean redd area 0.5 m 2 <strong>of</strong> redd dimensions(Stillw<strong>at</strong>er SciencesTotal st<strong>at</strong>ion surveys2006a)Density-independentr<strong>at</strong>e <strong>of</strong> increase (r)2768Escape 5.1submodel- this studyMaximum density <strong>of</strong> juvenile bull trout occupying habit<strong>at</strong> mappedas salmonid juvenile rearing guild, based on snorkel valid<strong>at</strong>ionsurveys in Carmen Bypass Reach. Highest two densities observedwere 45 <strong>and</strong> 88 fish/100m 2 . The density for all juvenile salmonids<strong>and</strong> char (mostly rainbow trout, cutthro<strong>at</strong> trout, <strong>and</strong> bull trout) was132 fish/100m 2. The second highest density <strong>of</strong> bull trout observed(45 fish/100m 2 ) was selected as a value to reflect the ecologicalinteraction between bull trout <strong>and</strong> other juvenile salmonids. Thedensity <strong>of</strong> 45 fish/100m 2 was observed where bull trout were inassoci<strong>at</strong>ion with rainbow trout <strong>and</strong> cutthro<strong>at</strong> trout.Based on salmonid juvenile rearing guildPred<strong>at</strong>ion <strong>and</strong> other sources <strong>of</strong> mortality during rearing.Based on bull trout adult rearing guild. Not modeled for thissubreach.Based on bull trout adult rearing guild. Not modeled for thissubreach.Estim<strong>at</strong>ed using bull trout spawning guild.Total st<strong>at</strong>ion surveys conducted in Sweetw<strong>at</strong>er Creek. Model wasalso run using redd area <strong>of</strong> 1.82 m 2 , based on redd area measuredin Carmen Bypass Reach.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardD-3


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportSub Reach Life-stage Parameter Value Source CommentsPermeability Range from 0 to 0.29.analysis (Stillw<strong>at</strong>erSciences 2006c)Deposited eggs toemergent fryEmergent fry toresident early fry (


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportSub Reach Life-stage Parameter Value Source CommentsTrail BridgeReservoirResident l<strong>at</strong>e fry (45–100 mm FL) to age1+ <strong>and</strong> age 2+juveniles (100–250mm FL)Age 1+ <strong>and</strong> age 2+juveniles (100–250mm FL) to Subadults(250–400 mmFL)Previous subadults(250–400 mm FL) tonew adults (1st year> 400 mm FL)Migrant emergentfry (< 45 mm)Migrant emergentfry to early fry (< 45mm FL)Maximum densityfor juvenilesDirect observ<strong>at</strong>ion45 fish/100m 2 snorkel surveys(Stillw<strong>at</strong>er Sciences2006b)Suitable habit<strong>at</strong> 2637 m 2 Habit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciences2006b)Density-independentsurvival r<strong>at</strong>eSuitable habit<strong>at</strong> 0Suitable habit<strong>at</strong> area 0Density-independentsurvival r<strong>at</strong>e (duringmigr<strong>at</strong>ion to TrailBridge or Smithreservoirs)Maximum densityfor early fryMaximum density <strong>of</strong> juvenile bull trout occupying habit<strong>at</strong> mappedas salmonid juvenile rearing guild, based on snorkel valid<strong>at</strong>ionsurveys in Carmen Bypass Reach. Highest two densities observedwere 45 <strong>and</strong> 88 fish/100m 2 . The density for all juvenile salmonids<strong>and</strong> char (mostly rainbow trout, cutthro<strong>at</strong> trout, <strong>and</strong> bull trout) was132 fish/100m 2. The second highest density <strong>of</strong> bull trout observed(45 fish/100m 2 ) was selected as a value to reflect the ecologicalinteraction between bull trout <strong>and</strong> other juvenile salmonids. Thedensity <strong>of</strong> 45 fish/100m 2 was observed where bull trout were inassoci<strong>at</strong>ion with rainbow trout <strong>and</strong> cutthro<strong>at</strong> trout.Based on salmonid juvenile rearing guild0.8 Assumption Pred<strong>at</strong>ion <strong>and</strong> other sources <strong>of</strong> mortality during rearing.0.05Habit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciences2006b)Habit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciences2006b)Percentage <strong>of</strong> earlyfry migr<strong>at</strong>ing fromCarmen BypassReach <strong>and</strong> captured<strong>at</strong> rotary screw trapthisstudyElectr<strong>of</strong>ishing (Cope<strong>and</strong> Morris 2001,Cope et al. 2002,84 fish/100 m 2 Cope 2003, Cope2004)Snorkeling (Goetz1994)Based on bull trout adult rearing guild. Not modeled for thissubreach.Based on bull trout adult reservoir rearing guild. Not modeled forthis subreach.Assumes these fry have reached early fry size before leaving.Includes pred<strong>at</strong>ion. Estim<strong>at</strong>e based on the fraction <strong>of</strong> migrantcaptured <strong>at</strong> rotary screw trap in lower Carmen Bypass Reach, <strong>and</strong>resident fry (assumed <strong>at</strong> carrying capacity, with density <strong>of</strong> 84fish/100 m 2 , suitable habit<strong>at</strong> area <strong>at</strong> 205 cfs) in comparison withthe expected number <strong>of</strong> emergent fry (given 35 bull trout reddsobserved in 2004, fecundity 2,839 eggs/female), <strong>and</strong> survival fromegg to emergence (0.32, based on permeability results notedabove).Maximum density was selected. Four highest density valuesreported were 38, 51, 82, <strong>and</strong> 84 fish/100 m 2 .28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardD-5


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportSub Reach Life-stage Parameter Value Source CommentsSuitable habit<strong>at</strong> area 10,489 m 2 Habit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciences Based on bull trout fry reservoir rearing guild.2006b)Migrant early fryMigrant early fry (


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportSub Reach Life-stage Parameter Value Source CommentsSuitable habit<strong>at</strong> area 121,181 m 2 Habit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciences2006b)Age 1+ <strong>and</strong> age 2+juveniles (100–250mm FL) to Subadults(250–400 mm FL)Previous subadults(250–400 mm FL) tonew adults (1st year> 400 mm FL)New adults (> 400mm FL) to old adults(2 nd year or more >400 mm FL)Density-independentsurvival r<strong>at</strong>eMaximum densityfor subadults <strong>and</strong>adults0.01 Assumption0.000633 fish/m 2This study0.00084 fish/m 2 D.R<strong>at</strong>liff, PGE,pers.comm, 2005Suitable habit<strong>at</strong> area 175,409 m 2 (Stillw<strong>at</strong>er SciencesHabit<strong>at</strong> mapping2006b)Density-independentsurvival r<strong>at</strong>e (annual)Density-independentsurvival r<strong>at</strong>e(subadults)Density-independentsurvival r<strong>at</strong>e (adults)0.40.660.84Program MARK PITtag mark-recaptured<strong>at</strong>a (Stillw<strong>at</strong>erSciences 2006a)Program MARK PITtag mark-recaptured<strong>at</strong>a (Stillw<strong>at</strong>erSciences 2006a) inTrail BridgeReservoir.Program MARK PITtag mark-recaptured<strong>at</strong>a (Stillw<strong>at</strong>erSciences 2006a) inTrail BridgeReservoir.Based on bull trout juvenile reservoir rearing guild.Assumption th<strong>at</strong> survival is low for fry based on extensive surveysth<strong>at</strong> resulted in no observed fry in Trail Bridge Reservoir.Includes mortality from str<strong>and</strong>ing, entrainment, <strong>and</strong> pred<strong>at</strong>ion.Downs et al. (2005) also found migrant fry did not contribute toadult popul<strong>at</strong>ion.Shared carrying capacity between adults <strong>and</strong> subadults;TB densities = 0.000443 based on 114 fish/255,164 m2 (entirereservoir area), <strong>and</strong> 0.000633 fish/ m 2 in suitable habit<strong>at</strong>.Lake Billy <strong>Chinook</strong> salmon densities = based on 13,331fish/15,800,000 m 2Based on bull trout adult reservoir rearing guild.Includes mortality from pred<strong>at</strong>ion, str<strong>and</strong>ing, entrainment, nonmortalitylosses (e.g., emigr<strong>at</strong>ion). Based on estim<strong>at</strong>es <strong>of</strong> threeperiods.Includes mortality from pred<strong>at</strong>ion, angling, str<strong>and</strong>ing,entrainment, non-mortality losses (e.g., emigr<strong>at</strong>ion). 0.66 (CI <strong>of</strong>0.46 to 0.89) when fitted to subadults only.When subadults <strong>and</strong> adults combined: 2004: 0.70 CI <strong>of</strong> 0.55 to0.82) 2005: 0.94 (CI <strong>of</strong> 0.73 to 0.99)Includes mortality from pred<strong>at</strong>ion, angling, str<strong>and</strong>ing,entrainment, non-mortality losses (e.g., emigr<strong>at</strong>ion).2004: 0.75 (CI <strong>of</strong> 0.52 to 0.89)2005: 0.84 (CI <strong>of</strong> 0.66 to 0.94)28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardD-7


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportTable D-2. Escape 5.1 sub-model parameters for bull trout in the Study Area.Life-stage Parameter Value SourceNotes on model sensitivity,confidence, <strong>and</strong> certaintyFemaleSpawners toDeposited Eggs(Escape input)Individual Gravel P<strong>at</strong>ch AreasAverage redd area[egg_region=disturbed_region=averageredd area]Redd defense area versus redd area[defended_region=4*disturbed_region]Redd defense timeTemporal distribution <strong>of</strong> spawning run[spawning_time=6*SD]Egg development timeSum <strong>of</strong> individual p<strong>at</strong>chareas=457 m 22004 spawning surveys(Stillw<strong>at</strong>er Sciences 2006a)1.82 m 2 2004 spawning surveys(Stillw<strong>at</strong>er Sciences 2006a)4X the redd area Burner 19513.5 dSt<strong>and</strong>ard devi<strong>at</strong>ion = 7 d(spawning_time=42 d)160 d2004 spawning surveys(Stillw<strong>at</strong>er Sciences 2006a)2004 spawning surveys(Stillw<strong>at</strong>er Sciences 2006a)2004 spawning surveys(Stillw<strong>at</strong>er Sciences 2006a)Rotary screw trapping resultsfrom Stillw<strong>at</strong>er Sciences 2006bBased on Lower Carmen Bypass survey. D<strong>at</strong>a inputinto Escape 5.1 is the amount <strong>of</strong> area for eachindividual p<strong>at</strong>ch.Observed redd dimensions in Carmen Bypass ReachDefended region is equal to 4 times the disturbedregion (redd size).Based on d<strong>at</strong>a from Lower Carmen Bypass Reach;assumes th<strong>at</strong> half the time it takes to construct theredd is spent in redd defense.Based on Lower Carmen Bypass d<strong>at</strong>a;7 September to 7 October, peak during the thirdweek in September.Based on a trunc<strong>at</strong>ed normal distribution using thest<strong>and</strong>ard devi<strong>at</strong>ion <strong>and</strong> mean <strong>of</strong> the d<strong>at</strong>es when reddswere cre<strong>at</strong>ed. Can assume same timing in SpawningChannel.Based on Lower Carmen Bypass Reach d<strong>at</strong>a;Number <strong>of</strong> days from fertiliz<strong>at</strong>ion to emergence.Estim<strong>at</strong>ed <strong>at</strong> least 165 d based on first spawningobserved l<strong>at</strong>e September 2004, first fry observed in2005 in early March.Rotary screw trapping fromUSFS 2005Estim<strong>at</strong>ed 210 d based on first spawning observed inearly October <strong>and</strong> first fry observed in mid May2005.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardD-8


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportLife-stage Parameter Value SourceNotes on model sensitivity,confidence, <strong>and</strong> certaintySize/fecundity rel<strong>at</strong>ionshipslog(fecundity)=-9.1933+2.7274log(FL),FecundityMean fecundity:2839 eggs/femaleMcPhail <strong>and</strong> Baxter (1996) <strong>and</strong>mean size <strong>and</strong> fecundity fromMacDonald (1985)), <strong>and</strong> meanspawner size (from study areasampled fish)where FL is the fork length (mm)Regression based on raw d<strong>at</strong>a from the originalliter<strong>at</strong>ure sources would be much better, if possible,although preliminary analyses did reveal a rel<strong>at</strong>ivelystrong log-log rel<strong>at</strong>ionship (r 2 =0.946).Mean fecundity is based on mean FL <strong>of</strong> 537 mm.Size/age <strong>at</strong> sexual m<strong>at</strong>urity=537 mm; includes bothmales <strong>and</strong> females, may be underestim<strong>at</strong>ing size <strong>of</strong>females, since smaller fish likely to be males.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardD-9


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportTable D-3. <strong>Bull</strong> trout popul<strong>at</strong>ion dynamics model parameters <strong>and</strong> values assuming flow conditions th<strong>at</strong> resulted in the highest estim<strong>at</strong>edhabit<strong>at</strong> availability in the Carmen Bypass Reach. Values are shown for parameters th<strong>at</strong> vary from those used for current conditions, all othervalues are assumed to be the same (shown in Table D-1).Sub Reach Life-stage Parameter Value Source CommentsCarmen BypasssubreachFemale spawner to deposited eggsSuitable spawninggravel areaby flow (cfs)205: 305 m 2 Habit<strong>at</strong> mapping (Stillw<strong>at</strong>er320: 253 m 2 Sciences 2006b)Estim<strong>at</strong>ed using bull troutspawning guild.Emergent fry to resident early fry (< 45 mmFL)Suitable habit<strong>at</strong> 931 m 2 Habit<strong>at</strong> mapping (Stillw<strong>at</strong>erSciences 2006b) <strong>at</strong> 205 cfsBased on trout fry rearingguild.Resident early fry (< 45 mm FL) to resident l<strong>at</strong>efry (45–100 mm FL) (June/July)Suitable habit<strong>at</strong> 2,397 m 2 Habit<strong>at</strong> mapping (Stillw<strong>at</strong>erSciences 2006b) <strong>at</strong> 205 cfsBased on <strong>Chinook</strong> salmonfry rearing guild.Resident l<strong>at</strong>e fry (45–100 mm FL) to age 1+ <strong>and</strong>age 2+ juveniles (100–250 mm FL)Suitable habit<strong>at</strong> 4780 m 2 Habit<strong>at</strong> mapping (Stillw<strong>at</strong>erSciences 2006b) <strong>at</strong> 205 cfsBased on salmonid juvenilerearing guild28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardD-10


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportTable D-4. <strong>Bull</strong> trout popul<strong>at</strong>ion dynamics model parameters <strong>and</strong> values assuming hypolimnetic releases in Smith Bypass Reach result in lowersummer w<strong>at</strong>er temper<strong>at</strong>ures. Values are shown for parameters th<strong>at</strong> vary from those used for current conditions, all other values are assumedto be the same (shown in Table D-1).Sub Reach Life-stage Parameter Value Source CommentsInitialpopul<strong>at</strong>ion sizeSmithBypasssubreachAdults (> 400 mm FL)to female spawnersFemale spawner to depositedeggsProportion <strong>of</strong> femalespawners inSweetw<strong>at</strong>er CreekProportion <strong>of</strong> femalespawners in CarmenBypass ReachProportion <strong>of</strong> femalespawners in SmithBypass ReachSuitable spawninggravel area0.250.250.5Assumption22 m 2 Habit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciences2006b) <strong>at</strong> 20 cfsCurrently 70% <strong>of</strong> females spawn in Carmen BypassReach. Assumes th<strong>at</strong> half will still spawn in CarmenBypass Reach, <strong>and</strong> 25% in each <strong>of</strong> the other twotributaries.Estim<strong>at</strong>ed using bull trout spawning guild, assuming 20cfs base flow as part <strong>of</strong> a minimum flow to decreasesummer w<strong>at</strong>er temper<strong>at</strong>uresEmergent fry to resident earlyfry (< 45 mm FL)Resident early fry (< 45 mm FL)to resident l<strong>at</strong>e fry (45–100 mmFL) (June/July)Resident l<strong>at</strong>e fry (45–100 mmFL) to age 1+ <strong>and</strong> age 2+juveniles (100–250 mm FL)Suitable habit<strong>at</strong> 2,753 m 2 (Stillw<strong>at</strong>er Sciences2006b) <strong>at</strong> 20 cfsHabit<strong>at</strong> mappingSuitable habit<strong>at</strong> 4,829 m 2 2006b) <strong>at</strong> 50 cfsHabit<strong>at</strong> mapping(Stillw<strong>at</strong>er SciencesSuitable habit<strong>at</strong> 7,587 m 2 (Stillw<strong>at</strong>er SciencesHabit<strong>at</strong> mapping2006b)Based on trout fry rearing guild. Current base flowsduring spring (early fry rearing period) are 20 cfs.Based on <strong>Chinook</strong> salmon fry rearing guild. Assumes anincrease <strong>of</strong> summer base flows to 50 cfs with 45 cfs <strong>of</strong>hypolimnetic release.Based on salmonid juvenile rearing guild. Assumes anincrease <strong>of</strong> summer base flows to 50 cfs with 45 cfs <strong>of</strong>hypolimnetic release.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardD-11


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportInitialpopul<strong>at</strong>ion sizeTable D-5. <strong>Bull</strong> trout popul<strong>at</strong>ion dynamics model parameters <strong>and</strong> values assuming fish passage <strong>at</strong> Smith Dam. Values are shown forparameters th<strong>at</strong> vary from those used for current conditions, all other values are assumed to be the same (shown in Table D-1).Sub Reach Life-stage Parameter Value Source CommentsProportion <strong>of</strong>Adults (> 400 mmfemale spawners inFL)1.0 AssumptionSmith River aboveto female spawnersSmith ReservoirSmith Riverupstream <strong>of</strong>SmithReservoirFemale spawnerto deposited eggsDeposited eggs-toemergentfryEmergent fry toresident early fry (


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportSub Reach Life-stage Parameter Value Source CommentsElectr<strong>of</strong>ishing (Cope <strong>and</strong>Morris 2001, Cope et al.Maximum density 84 fish/100for l<strong>at</strong>e frym 2 2002, Cope 2003, Cope2004)Assumed to be the same as early frySnorkeling (Goetz 1994)Resident early fry ( 400 mm FL)Suitable habit<strong>at</strong> 0 m 2 (Stillw<strong>at</strong>er SciencesHabit<strong>at</strong> mapping2006b)Densityindependentsurvival r<strong>at</strong>eMaximum densityfor juveniles1,282 was mapped based on <strong>Chinook</strong> salmon fry rearing guild.Assumes th<strong>at</strong> although physical habit<strong>at</strong> is available, w<strong>at</strong>ertemper<strong>at</strong>ures preclude it’s use.0.80 Assumption Pred<strong>at</strong>ion <strong>and</strong> other sources <strong>of</strong> mortality45fish/100m 2Direct observ<strong>at</strong>ion snorkelsurveys (Stillw<strong>at</strong>erSciences 2006b)Suitable habit<strong>at</strong> 3,137m 2 Habit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciences2006b)Temper<strong>at</strong>ure analysis(Stillw<strong>at</strong>er Sciences2006b)Densityindependent0.8 Assumptionsurvival r<strong>at</strong>eSuitable habit<strong>at</strong> 0Suitable habit<strong>at</strong>area0Habit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciences2006b)Habit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciences2006b)Maximum density <strong>of</strong> juvenile bull trout occupying habit<strong>at</strong> mappedas salmonid juvenile rearing guild, based on snorkel valid<strong>at</strong>ionsurveys in Carmen Bypass Reach. Highest two densities observedwere 45 <strong>and</strong> 88 fish/100m 2 . The density for all juvenile salmonids<strong>and</strong> char (mostly rainbow trout, cutthro<strong>at</strong> trout, <strong>and</strong> bull trout) was132 fish/100m 2. The second highest density <strong>of</strong> bull trout observed(45 fish/100m 2 ) was selected as a value to reflect the ecologicalinteraction between bull trout <strong>and</strong> other juvenile salmonids. Thedensity <strong>of</strong> 45 fish/100m 2 was observed where bull trout were inassoci<strong>at</strong>ion with rainbow trout <strong>and</strong> cutthro<strong>at</strong> trout.3,137 m 2 mapped based on salmonid juvenile rearing guild.Temper<strong>at</strong>ure does not preclude habit<strong>at</strong> use.Pred<strong>at</strong>ion <strong>and</strong> other sources <strong>of</strong> mortalityBased on bull trout adult rearing guild. Not modeled for thissubreach.Based on bull trout adult reservoir rearing guild. Not modeled forthis subreach.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardD-13


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportSub Reach Life-stage Parameter Value Source CommentsSmith ReservoirDensityindependentPercentage <strong>of</strong> early frymigr<strong>at</strong>ing from CarmenMigrant emergentsurvival r<strong>at</strong>e0.05 Bypass Reach <strong>and</strong>fry (< 45 mm)(during migr<strong>at</strong>ioncaptured <strong>at</strong> rotary screwto Smith reservoir)trap- this studyMigrant emergentfry to early fry (< 45mm FL)Migrant early fryMigrant early fry (


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportSub Reach Life-stage Parameter Value Source CommentsMigrant l<strong>at</strong>e fry (45–100 mm FL) tojuveniles (100–250mm FL)Age 1+ <strong>and</strong> age 2+juveniles (100–250mm FL) to Subadults(250–400 mmFL)Previous subadults(250–400 mm FL) tonew adults (1st year> 400 mm FL)Previous subadults(250–400 mm FL) tonew adults (1st year> 400 mm FL)Maximum densityfor juvenilesSuitable habit<strong>at</strong>areaDensityindependentsurvival r<strong>at</strong>eMaximum densityfor subadults <strong>and</strong>adultsSuitable habit<strong>at</strong>areaDensityindependentsurvival r<strong>at</strong>e(annual)Densityindependentsurvival r<strong>at</strong>e(subadults)Densityindependentsurvival r<strong>at</strong>e(adults)45fish/100m 2Direct observ<strong>at</strong>ion snorkelsurveys (Stillw<strong>at</strong>erSciences 2006b)120,791 m 2 Habit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciences2006b)0.01 Assumption0.000633fish/ m 2This studyHabit<strong>at</strong> mapping240,597m 2 (Stillw<strong>at</strong>er Sciences2006b)Program MARK PIT tagmark-recapture d<strong>at</strong>a0.4(Stillw<strong>at</strong>er Sciences2006a)0.660.84Program MARK PIT tagmark-recapture d<strong>at</strong>a(Stillw<strong>at</strong>er Sciences2006a) in Trail BridgeReservoir.Program MARK PIT tagmark-recapture d<strong>at</strong>a(Stillw<strong>at</strong>er Sciences2006a) in Trail BridgeReservoir.Maximum density <strong>of</strong> juvenile bull trout occupying habit<strong>at</strong> mappedas salmonid juvenile rearing guild, based on snorkel valid<strong>at</strong>ionsurveys in Carmen Bypass Reach. Highest two densities observedwere 45 <strong>and</strong> 88 fish/100m 2 . The density for all juvenile salmonids<strong>and</strong> char (mostly rainbow trout, cutthro<strong>at</strong> trout, <strong>and</strong> bull trout) was132 fish/100m 2. The second highest density <strong>of</strong> bull trout observed(45 fish/100m 2 ) was selected as a value to reflect the ecologicalinteraction between bull trout <strong>and</strong> other juvenile salmonids. Thedensity <strong>of</strong> 45 fish/100m 2 was observed where bull trout were inassoci<strong>at</strong>ion with rainbow trout <strong>and</strong> cutthro<strong>at</strong> trout.Based on bull trout juvenile reservoir rearing guild.Shared carrying capacity between adults <strong>and</strong> subadults; based ondensity observed in Trail Bridge ReservoirBased on bull trout adult reservoir rearing guild.Includes mortality from pred<strong>at</strong>ion, str<strong>and</strong>ing, entrainment, nonmortalitylosses (e.g., emigr<strong>at</strong>ion). Based on estim<strong>at</strong>es <strong>of</strong> threeperiods.Includes mortality from pred<strong>at</strong>ion, angling, str<strong>and</strong>ing, entrainment,non-mortality losses (e.g., emigr<strong>at</strong>ion). 0.66 (CI <strong>of</strong> 0.46 to 0.89)when fitted to subadults only.When subadults <strong>and</strong> adults combined: 2004: 0.70 CI <strong>of</strong> 0.55 to0.82) 2005: 0.94 (CI <strong>of</strong> 0.73 to 0.99)Includes mortality from pred<strong>at</strong>ion, angling, str<strong>and</strong>ing, entrainment,non-mortality losses (e.g., emigr<strong>at</strong>ion).2004: 0.75 (CI <strong>of</strong> 0.52 to 0.89)2005: 0.84 (CI <strong>of</strong> 0.66 to 0.94)28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardD-15


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportTable D-6. <strong>Bull</strong> trout popul<strong>at</strong>ion dynamics model parameters <strong>and</strong> values assuming large woody debris enhancements in Carmen Bypass Reach<strong>and</strong> Sweetw<strong>at</strong>er Creek.Sub Reach Life-stage Parameter Value Source CommentsInitialpopul<strong>at</strong>ion sizeCarmenBypassReachsubreachAdults (> 400 mm FL)to female spawnersFemale spawner todeposited eggsEmergent fry to residentearly fry (< 45 mm FL)Resident early fry (< 45mm FL) to resident l<strong>at</strong>efry (45–100 mm FL)(June/July)Resident l<strong>at</strong>e fry (45–100mm FL) to age 1+ <strong>and</strong> age2+ juveniles (100–250 mmFL)Proportion <strong>of</strong>female spawners inSweetw<strong>at</strong>er CreekProportion <strong>of</strong>female spawners inCarmen BypassReachProportion <strong>of</strong>female spawners inSmith BypassReachSuitable spawninggravel areaSuitable habit<strong>at</strong>0.250.50.252004 spawning surveys(Stillw<strong>at</strong>er Sciences 2006a)297 m 2 Habit<strong>at</strong> mapping (Stillw<strong>at</strong>erSciences 2006b) <strong>at</strong> 160 cfs1,911 m 2 Habit<strong>at</strong> mapping (Stillw<strong>at</strong>erSciences 2006b) <strong>at</strong> 205 cfs.Habit<strong>at</strong> mapping (Stillw<strong>at</strong>erSciences 2006b) <strong>at</strong> 160 cfsSuitable habit<strong>at</strong> 3,641 m 2Suitable habit<strong>at</strong>6,346 m 2 Habit<strong>at</strong> mapping (Stillw<strong>at</strong>erSciences 2006b) <strong>at</strong> 160 cfsAssumes one female per redd, <strong>and</strong>th<strong>at</strong> half <strong>of</strong> unknown redds in CarmenBypass Reach are bull trout.Estim<strong>at</strong>ed using bull trout spawningguild. 145 m 2 added to estim<strong>at</strong>e foravailable habit<strong>at</strong> in Carmen BypassReach in habit<strong>at</strong> unit #1, which wasnot included in habit<strong>at</strong> mappingstudy. Also increased by a factor <strong>of</strong>1.5 over 80% <strong>of</strong> the reach based onlarge woody debris enhancements insummer 2005.Based on trout fry rearing guildincreased by a factor <strong>of</strong> 2.3 over 80%<strong>of</strong> the reach based on large woodydebris enhancements in summer 2005.Based on <strong>Chinook</strong> salmon fry rearingguild increased by a factor <strong>of</strong> 1.9 over80% <strong>of</strong> the reach based on largewoody debris enhancements insummer 2005.Based on salmonid juvenile rearingguild increased by a factor <strong>of</strong> 1.7 over80% <strong>of</strong> the reach based on largewoody debris enhancements insummer 2005.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardD-16


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportSub Reach Life-stage Parameter Value Source Comments223 m 2 Habit<strong>at</strong> mapping (Stillw<strong>at</strong>erSciences 2006b)Sweetw<strong>at</strong>erCreekFemale spawner todeposited eggsEmergent fry toresident early fry (< 45mm FL)Resident early fry (< 45mm FL) to resident l<strong>at</strong>efry (45–100 mm FL)(June/July)Resident l<strong>at</strong>e fry (45–100mm FL) to age 1+ <strong>and</strong> age2+ juveniles (100–250 mmFL)Suitable spawninggravel areaHabit<strong>at</strong> mapping (Stillw<strong>at</strong>erSciences 2006b)Suitable habit<strong>at</strong> 577 m 2Habit<strong>at</strong> mapping (Stillw<strong>at</strong>erSciences 2006b)Suitable habit<strong>at</strong> 1,542 m 2Suitable habit<strong>at</strong> 4,128 m 2 Habit<strong>at</strong> mapping (Stillw<strong>at</strong>erSciences 2006b)Based on bull trout spawning guild.Assumes large woody debrisenhancement results are similar to theincreases estim<strong>at</strong>ed for the CarmenBypass Reach (factor <strong>of</strong> 1.5).Based on trout fry rearing guild.Assumes large woody debrisenhancement results are similar to theincreases estim<strong>at</strong>ed for the CarmenBypass Reach (factor <strong>of</strong> 2.3).Based on <strong>Chinook</strong> salmon fry rearingguild. Assumes large woody debrisenhancement results are similar to theincreases estim<strong>at</strong>ed for the CarmenBypass Reach (factor <strong>of</strong> 1.9).Based on salmonid juvenile rearingguild. Assumes large woody debrisenhancement results are similar to theincreases estim<strong>at</strong>ed for the CarmenBypass Reach (factor <strong>of</strong> 1.7).28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardD-17


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportAppendix E<strong>Chinook</strong> salmon popul<strong>at</strong>ion model parameters <strong>and</strong> valuesTablesTable E-1. <strong>Spring</strong> <strong>Chinook</strong> salmon popul<strong>at</strong>ion dynamics model parameters <strong>and</strong> values undercurrent conditions in the Study Area.........................................................................E-1Table E-2. Escape 5.1 sub-model parameters for spring <strong>Chinook</strong> salmon in the Study Area.....E-6Table E-3. <strong>Spring</strong> <strong>Chinook</strong> salmon popul<strong>at</strong>ion dynamics model parameters <strong>and</strong> values assumingflow conditions th<strong>at</strong> resulted in the highest estim<strong>at</strong>ed habit<strong>at</strong> availability in theCarmen Bypass Reach...............................................................................................E-7Table E-4. <strong>Spring</strong> <strong>Chinook</strong> salmon popul<strong>at</strong>ion dynamics model parameters <strong>and</strong> values assumingflow conditions th<strong>at</strong> resulted in the highest estim<strong>at</strong>ed habit<strong>at</strong> availability in SmithBypass Reach. ...........................................................................................................E-7Table E-5. <strong>Chinook</strong> salmon popul<strong>at</strong>ion dynamics model parameters <strong>and</strong> values assuming largewoody debris enhancements in Carmen Bypass Reach, <strong>and</strong> Smith Bypass Reach...E-8Table E-6. <strong>Spring</strong> <strong>Chinook</strong> salmon popul<strong>at</strong>ion dynamics model parameters <strong>and</strong> values assumingpassage <strong>at</strong> Smith Dam. ..............................................................................................E-9Table E-7. <strong>Spring</strong> <strong>Chinook</strong> salmon popul<strong>at</strong>ion dynamics model parameters <strong>and</strong> values undercurrent conditions in the Carmen-Smith Spawning Channel. .................................E-12Copyright © 2006 Eugene W<strong>at</strong>er & Electric Board - the following Appendix E to the <strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong><strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Report:Appendix E<strong>Chinook</strong> salmon popul<strong>at</strong>ion model parameters <strong>and</strong> values


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportTable E-1. <strong>Spring</strong> <strong>Chinook</strong> salmon popul<strong>at</strong>ion dynamics model parameters <strong>and</strong> values under current conditions in the Study Area.Sub Reach Life-stage Parameter Value Source CommentsInitial Returning adults to<strong>Popul<strong>at</strong>ion</strong> TB dam to adults Upstream passageSize passed above TB efficiency1.0damSmithBypassReachAdults (> 500 mm)passed to femalespawnersFemale spawnerto deposited eggsSex r<strong>at</strong>io (femalesto males) SpawningChannelSex r<strong>at</strong>io (femalesto males). Allloc<strong>at</strong>ions other thanSpawning ChannelPre-spawningmortality SpawningChannelPre-spawningmortality. Allloc<strong>at</strong>ions other thanSpawning ChannelProportion <strong>of</strong>female spawners toCarmen BypassProportion <strong>of</strong>female spawners toSmith BypassSuitable spawninggravel areaValue is 1.0 due to fish being trucked upstream <strong>of</strong> Trail BridgeDam.1:1.66 Smith 1993 Estim<strong>at</strong>ed in the Spawning Channel1:1Sex determin<strong>at</strong>ion <strong>of</strong> alladults placed into TrailBridge (ODFW <strong>and</strong>Stillw<strong>at</strong>er Sciences 2006a)0.5 Assumption0.50.80.2PIT tag mark-resight d<strong>at</strong>a(Stillw<strong>at</strong>er Sciences2006a)Spawning surveys(Stillw<strong>at</strong>er Sciences2006a)7 m 2 Habit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciences2006c) <strong>at</strong> 7 cfs.Mean redd area 0.9 m 2 redd dimensions(Stillw<strong>at</strong>er SciencesTotal st<strong>at</strong>ion surveys <strong>of</strong>2006a)Density-independentr<strong>at</strong>e <strong>of</strong> increase4,936Escape 5.1 submodel thisstudyUse 1:1 for current conditions.Use 1:1.66 for passage scenarios.Assumed to be similar to pre-spawning mortality above TrailBridge Dam.Based on number <strong>of</strong> unique tags detected in spawning tributariesabove Trail Bridge Dam as compared with the number <strong>of</strong> fishreleased into Trail Bridge Reservoir.Assumes one female per redd, <strong>and</strong> th<strong>at</strong> half <strong>of</strong> unknown redds inCarmen Bypass Reach are <strong>Chinook</strong> salmon.Estim<strong>at</strong>ed using <strong>Chinook</strong> salmon spawning guild. 7 m 2 added toestim<strong>at</strong>e for available habit<strong>at</strong> in Smith Bypass Reach in habit<strong>at</strong> units#1-4, which were not included in habit<strong>at</strong> mapping study.Based on <strong>Chinook</strong> salmon fecundity <strong>and</strong> Escape 5.1 submodelresults.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardE-1


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportSub Reach Life-stage Parameter Value Source CommentsPermeability analysis(Stillw<strong>at</strong>er Sciences2006d)CarmenBypassReachDeposited eggs-toemergentfryEmergent fry toresident fry (< 55mm)Resident fry toage 0+ juveniles(> 55 mm with nosigns <strong>of</strong> smolting)Age 0+ juvenile toage 1+ juvenileFemale spawnerto deposited eggsSurvival r<strong>at</strong>e 0.5Maximum frydensityRel<strong>at</strong>ionship betweenpermeability <strong>and</strong> survivalbased on <strong>Chinook</strong> <strong>and</strong>coho salmon (Tagart 1976,McCuddin 1977)208fish/100 m 2 Bjorn (1978)Suitable habit<strong>at</strong> area 8,135 m 2 Habit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciences2006b) <strong>at</strong> 7 cfs.Density-independentsurvival r<strong>at</strong>eMaximum juveniledensityRange from 0.36 to 0.63.Big <strong>Spring</strong>s Creek, Idaho (as cited in Smith et al. 1985). Densities<strong>of</strong> 129 <strong>and</strong> 135 fish/ m 2 also reported in Bjornn 1978 <strong>and</strong> Bjornn<strong>and</strong> Reiser 1991, respectively.Estim<strong>at</strong>ed using <strong>Chinook</strong> salmon fry rearing guild. 7 cfs is currentsummer base flow.0.8 Assumption Mortality due to pred<strong>at</strong>ion <strong>and</strong> other sources.4.2fish/100 m 2Snorkel surveyobserv<strong>at</strong>ions (Stillw<strong>at</strong>erSciences 2006a)7,000 m 2 Habit<strong>at</strong> mappingSuitable habit<strong>at</strong> area(Stillw<strong>at</strong>er Sciences2006b) <strong>at</strong> 7 cfs.Density-independentsurvival r<strong>at</strong>eDensity-independentsurvival r<strong>at</strong>eSuitable spawning 212 m 2 Habit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciencesgravel area2006b) <strong>at</strong> 160 cfs.Mean redd area 5.4 m 2 (Stillw<strong>at</strong>er SciencesDensity-independentr<strong>at</strong>e <strong>of</strong> increaseMaximum density <strong>of</strong> <strong>Chinook</strong> salmon juveniles occupying habit<strong>at</strong>mapped as salmonid juvenile rearing guild, based on snorkelvalid<strong>at</strong>ion surveys in Smith Bypass Reach. Highest two densitiesobserved were 4.2 <strong>and</strong> 8.3 fish/100m 2 . The density for all juvenilesalmonids <strong>and</strong> char (mostly rainbow trout, cutthro<strong>at</strong> trout, <strong>and</strong> bulltrout) was 132 fish/100m 2 in the Carmen Bypass Reach. Thesecond highest density <strong>of</strong> <strong>Chinook</strong> salmon observed (4.2fish/100m 2 ) was selected as a value to reflect the ecologicalinteraction between <strong>Chinook</strong> salmon <strong>and</strong> other juvenile salmonids.River reaches estim<strong>at</strong>ed using <strong>Chinook</strong> salmon juvenile rearingguild <strong>at</strong> current summer base flow.0.8 Mortality due to pred<strong>at</strong>ion <strong>and</strong> other sources.0.75 Lestelle et al. 1996 Over winter survival2006a)4,813 Escape 5.1 submodel thisstudyEstim<strong>at</strong>ed using <strong>Chinook</strong> salmon spawning guild. 145 m 2 added toestim<strong>at</strong>e for available habit<strong>at</strong> in Carmen Bypass Reach in habit<strong>at</strong>unit #1, which was not included in habit<strong>at</strong> mapping study.Total st<strong>at</strong>ion surveys <strong>of</strong> redd dimensionsBased on bull trout parameters (r=0.97), <strong>and</strong> <strong>Chinook</strong> salmonfecundity. Will be upd<strong>at</strong>ed.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardE-2


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportSub Reach Life-stage Parameter Value Source CommentsPermeability analysis(Stillw<strong>at</strong>er Sciences2006d)Trail BridgeReservoirDeposited eggs-toemergentfryEmergent fry toresident fry (< 55mm)Resident fry to age0+ juveniles (> 55mm with no signs <strong>of</strong>smolting)Age 0+ juvenile toage 1+ juvenileMigrant emergentfry leaving Carmenor Smith bypassEmergent fry toresident fry (< 55mm)Survival r<strong>at</strong>e 0.3Maximum frydensityRel<strong>at</strong>ionship betweenpermeability <strong>and</strong> survivalbased on <strong>Chinook</strong> <strong>and</strong>coho salmon (Tagart 1976,McCuddin 1977)208fish/100m 2 Bjorn (1978)Suitable habit<strong>at</strong> area 2,081 m 2 Habit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciences2006b) <strong>at</strong> 160 cfs.Density-independentsurvival r<strong>at</strong>eMaximum juveniledensityRange from 0 to 0.61.Big <strong>Spring</strong>s Creek, Idaho (as cited in Smith et al. 1985). Densities<strong>of</strong> 129 <strong>and</strong> 135 fish/ m 2 also reported in Bjornn 1978 <strong>and</strong> Bjornn<strong>and</strong> Reiser 1991, respectively.Estim<strong>at</strong>ed using <strong>Chinook</strong> salmon fry rearing guild.0.8 Mortality due to pred<strong>at</strong>ion <strong>and</strong> other sources.4.2fish/100 m 2Snorkel surveyobserv<strong>at</strong>ions (Stillw<strong>at</strong>erSciences 2006a)Suitable habit<strong>at</strong> area 4,054 m 2 Habit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciences2006b) <strong>at</strong> 160 cfsDensity-independentsurvival r<strong>at</strong>eDensity-independentsurvival r<strong>at</strong>eDensity-independentsurvival r<strong>at</strong>e (duringmigr<strong>at</strong>ion to TrailBridge Reservoir)Maximum frydensityMaximum density <strong>of</strong> <strong>Chinook</strong> salmon juveniles occupying habit<strong>at</strong>mapped as salmonid juvenile rearing guild, based on snorkelvalid<strong>at</strong>ion surveys in Smith Bypass Reach. Highest two densitiesobserved were 4.2 <strong>and</strong> 8.3 fish/100m 2 . The density for all juvenilesalmonids <strong>and</strong> char (mostly rainbow trout, cutthro<strong>at</strong> trout, <strong>and</strong> bulltrout) was 132 fish/100m 2. The second highest density <strong>of</strong> <strong>Chinook</strong>salmon observed (4.2 fish/100m 2 ) was selected as a value to reflectthe ecological interaction between <strong>Chinook</strong> salmon <strong>and</strong> otherjuvenile salmonids.River reaches estim<strong>at</strong>ed using <strong>Chinook</strong> salmon juvenile rearingguild. Reservoir areas based on <strong>Chinook</strong> salmon fry reservoirrearing guild.0.8 Assumption Mortality due to pred<strong>at</strong>ion <strong>and</strong> other sources.0.75 Lestelle et al. 1996 Over winter survival0.2511fish/100 m 2Percentage <strong>of</strong> early frymigr<strong>at</strong>ing from CarmenBypass Reach- this studyFry seining d<strong>at</strong>a (Stillw<strong>at</strong>erSciences 2006a)Includes pred<strong>at</strong>ion. Estim<strong>at</strong>e based on the fraction <strong>of</strong> migrants <strong>and</strong>resident fry (assumed <strong>at</strong> carrying capacity, with density <strong>of</strong> 208fish/100 m 2 , suitable habit<strong>at</strong> area <strong>at</strong> 205 cfs) in comparison to theexpected number <strong>of</strong> emergent fry (given 34 <strong>Chinook</strong> salmon reddsobserved in 2004, fecundity (4,936 eggs/female), <strong>and</strong> survival fromegg to emergence (0.32, based on permeability results noted above).Calcul<strong>at</strong>ed densities based on shoreline beach seining in TrailBridge Reservoir. The three highest values were 13, 126, <strong>and</strong> 511fish/100m 2 .28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardE-3


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportSub Reach Life-stage Parameter Value Source CommentsSuitable habit<strong>at</strong> area 10,489 m 2 (Stillw<strong>at</strong>er Sciences Estim<strong>at</strong>ed using <strong>Chinook</strong> salmon fry rearing guild.Habit<strong>at</strong> mapping2006b)Density-independentAssume th<strong>at</strong> survival <strong>of</strong> emergent fry is low in the reservoir, but th<strong>at</strong>0.8 Assumptionsurvival r<strong>at</strong>ethe dur<strong>at</strong>ion <strong>of</strong> time from emergent fry to resident fry is short.Migrant fry leavingCarmen or Smithbypass0.2 Assumption Conserv<strong>at</strong>ive value for survival, based on estim<strong>at</strong>es <strong>of</strong> fry survival.Fry to age 0+juveniles (> 55 mmwith no signs <strong>of</strong>smolting)Age O+ juvenile toage 1+ juvenileAge 1+ juvenile tosmolt (55–>100 mm)Density-independentsurvival r<strong>at</strong>e (duringmigr<strong>at</strong>ion to TrailBridge Reservoir)Maximum juveniledensity220fish/100 m 2Piaskowski <strong>and</strong> Tabor2001Suitable habit<strong>at</strong> area 10,489 m 2 (Stillw<strong>at</strong>er SciencesHabit<strong>at</strong> mapping2006c)Density-independentsurvival r<strong>at</strong>eDensity-independentsurvival r<strong>at</strong>eMaximum densityfor smolts0.52004-05 rotary screwtrapping (Stillw<strong>at</strong>erSciences 2006a)0.75 Lestelle et al. 1996 Over winter survivalBradford (Dept. <strong>of</strong> Fish130 fish /100 m 2 <strong>and</strong> Oceans, W.VancouverLabor<strong>at</strong>ory, pers. comm.)Suitable habit<strong>at</strong> area 10,489 m 2 (Stillw<strong>at</strong>er SciencesHabit<strong>at</strong> mapping2006b)Density-independentsurvival r<strong>at</strong>e0.52004-05 rotary screwtrapping (Stillw<strong>at</strong>erSciences 2006a)Based on snorkel surveys in nearshore habit<strong>at</strong> <strong>of</strong> southern LakeWashington. Maximum density was observed in March, otherdensities reported by the authors include 80, 160, <strong>and</strong> 15 fish/100m 2 during April, May, <strong>and</strong> June, respectively.Estim<strong>at</strong>ed using <strong>Chinook</strong> salmon fry rearing guild.20% survival was estim<strong>at</strong>ed for fry to smolts, based on estim<strong>at</strong>e <strong>of</strong>fry out-migr<strong>at</strong>ing in 2004 vs. estim<strong>at</strong>e <strong>of</strong> juveniles captured <strong>at</strong> TrailBridge tailrace. Assumes all juveniles captured <strong>at</strong> Trail BridgeTailrace rotary trap are migrants from Trail Bridge Reservoir.Includes mortality from str<strong>and</strong>ing, entrainment, <strong>and</strong> pred<strong>at</strong>ion. Theestim<strong>at</strong>e <strong>of</strong> 20% survival was partioned for the model parametersinto survival from fry to juveniles (50%), juveniles to smolts (50%),<strong>and</strong> survival during passage <strong>at</strong> Trail Bridge Dam (80%).Assumed to be the same as for juveniles. Assumes no smoltsrearing in river reaches.Assumed to be the same as for juveniles. Assumes no smoltsrearing in river reaches.20% survival was estim<strong>at</strong>ed for fry to smolts, based on estim<strong>at</strong>e <strong>of</strong>fry out-migr<strong>at</strong>ing in 2004 vs. estim<strong>at</strong>e <strong>of</strong> juveniles captured <strong>at</strong> TrailBridge tailrace. Assumes all juveniles captured <strong>at</strong> Trail BridgeTailrace rotary trap are migrants from Trail Bridge Reservoir.Includes mortality from str<strong>and</strong>ing, entrainment, <strong>and</strong> pred<strong>at</strong>ion. Theestim<strong>at</strong>e <strong>of</strong> 20% survival was partioned for the model parametersinto survival from fry to juveniles (50%), juveniles to smolts (50%),<strong>and</strong> survival during passage <strong>at</strong> Trail Bridge Dam (80%).28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardE-4


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportSub Reach Life-stage Parameter Value Source CommentsBelow Trail Fry from TrailBridge Dam Bridge Reservoir topassed fry entering0.8mainstemJuveniles from TrailBridge Reservoir tojuveniles enteringmainstemTotal smolts fromTrail BridgeReservoir to passedsmolts enteringmainstemPassed smoltsentering mainstem toreturning adults toTrail BridgeReservoirPassage survival <strong>at</strong>spillway or turbineDensity-independentsurvival r<strong>at</strong>e0.80.8Bell (1981)0.05 Assumption20% survival was estim<strong>at</strong>ed for fry to smolts, based on estim<strong>at</strong>e <strong>of</strong>fry out-migr<strong>at</strong>ing in 2004 vs. estim<strong>at</strong>e <strong>of</strong> juveniles captured <strong>at</strong> TrailBridge tailrace. Assumes all juveniles captured <strong>at</strong> Trail BridgeTailrace rotary trap are migrants from Trail Bridge Reservoir.Includes mortality from str<strong>and</strong>ing, entrainment, <strong>and</strong> pred<strong>at</strong>ion. Theestim<strong>at</strong>e <strong>of</strong> 20% survival was partioned for the model parametersinto survival from fry to juveniles (50%), juveniles to smolts (50%),<strong>and</strong> survival during passage <strong>at</strong> Trail Bridge Dam (80%). Passagemortality <strong>of</strong> 20% is consistent with Bell (1981), which found arange <strong>of</strong> 1–46% mortalityAssumption, intended to provide the model with a loop back toreturning adults, but is not considered precise.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardE-5


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportTable E-2. Escape 5.1 sub-model parameters for spring <strong>Chinook</strong> salmon in the Study Area.Life-stage Parameter Value Source CommentsGravel p<strong>at</strong>ch areaSum <strong>of</strong> individualIndividual Gravel P<strong>at</strong>ch Areasp<strong>at</strong>ch areas=457 m 2 mapping, (Stillw<strong>at</strong>erSciences 2004b, 2006b)Female Spawnersto Deposited Eggs(Escape input)Average redd area[egg_region=disturbed_region=average reddarea]Redd defense area versus redd area[defended_region=4*disturbed_region]Redd defense timeTemporal distribution <strong>of</strong> spawning run[spawning_time=6*SD]Egg development timeTotal st<strong>at</strong>ion surveys <strong>of</strong>5.42 m 2 redd dimensions(Stillw<strong>at</strong>er Sciences2006a)4X the redd area Burner (1951)10 dSt<strong>and</strong>ard devi<strong>at</strong>ion= 4.5 d195 d(Stillw<strong>at</strong>er Sciences2006a), (FERC 1994)(Stillw<strong>at</strong>er Sciences2006a)Spawning Surveys <strong>and</strong>Rotary Screw Trapping(Stillw<strong>at</strong>er Sciences2006a)Fecundity 4,936 eggs Hagey 1968From d<strong>at</strong>a in Lower Carmen Bypass Reach.Based on d<strong>at</strong>a from Lower Carmen Bypass Reach.Defended region is equal to 4 times the disturbed region(redd size).Observ<strong>at</strong>ins <strong>of</strong> spawning timing in the Carmen BypassReach, <strong>and</strong> the Tuolumne River.Based on d<strong>at</strong>a from Lower Carmen Bypass Reach, 7September to 7 October, peak during third week inSeptemberBased on Lower Carmen bypass spawning surveys <strong>and</strong>rotary screw trapping results. Approxim<strong>at</strong>ely 195 dbetween the first observed spawning adults <strong>and</strong> early frycaptured in the rotary screw trap.Based on rel<strong>at</strong>ionships developed in the ColumbiaRiver. Likely a good approxim<strong>at</strong>ion for the McKenzieRiver. Size/fecundity rel<strong>at</strong>ionshipsY=267.82X-3,634, where X is female size in inches,assumed 32in fish.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardE-6


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportTable E-3. <strong>Spring</strong> <strong>Chinook</strong> salmon popul<strong>at</strong>ion dynamics model parameters <strong>and</strong> values assuming flowconditions th<strong>at</strong> resulted in the highest estim<strong>at</strong>ed habit<strong>at</strong> availability in the Carmen Bypass Reach.Values are shown for parameters th<strong>at</strong> vary from those used for current conditions; all other values areassumed to be the same (shown in Table E-1).Life-stage Parameter Value Source CommentsFemale spawnerto deposited eggsSuitablespawninggravel area289 m 2 Habit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciences2006b) <strong>at</strong> 205 cfsEstim<strong>at</strong>ed using <strong>Chinook</strong> salmonspawning guild. 145 m 2 added toestim<strong>at</strong>e for available habit<strong>at</strong> in CarmenBypass Reach in habit<strong>at</strong> unit #1, whichwas not included in habit<strong>at</strong> mappingstudy.Emergent fry toresident fry (< 55mm)Suitablehabit<strong>at</strong> area2,397 m 2 Habit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciences2006b) <strong>at</strong> 205 CFSEstim<strong>at</strong>ed using <strong>Chinook</strong> salmon fryrearing guild.Resident fry to age0+ juveniles (> 55mm with no signs <strong>of</strong>smolting)Suitablehabit<strong>at</strong> area4,780 m 2 Habit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciences2006b) <strong>at</strong> 205cfsRiver reaches estim<strong>at</strong>ed using <strong>Chinook</strong>salmon juvenile rearing guild.Reservoir areas based on <strong>Chinook</strong>salmon fry reservoir rearing guild.Table E-4. <strong>Spring</strong> <strong>Chinook</strong> salmon popul<strong>at</strong>ion dynamics model parameters <strong>and</strong> values assuming flowconditions th<strong>at</strong> resulted in the highest estim<strong>at</strong>ed habit<strong>at</strong> availability in Smith Bypass Reach. Values areshown for parameters th<strong>at</strong> vary from those used for current conditions; all other values are assumed tobe the same (shown in Table E-1).Life-stage Parameter Value Source CommentsProportion <strong>of</strong>female spawners toCarmen Bypass0.7Adults (> 500 mm)passed to femalespawnersFemale spawner todeposited eggsEmergent fry to residentfry (< 55 mm)Resident fry to age 0+juveniles (> 55 mmwith no signs <strong>of</strong>smolting)Proportion <strong>of</strong>female spawners toCarmen BypassSuitable spawninggravel areaSuitable habit<strong>at</strong>areaSuitable habit<strong>at</strong>area0.3Spawning surveys(Stillw<strong>at</strong>er Sciences2006a)Habit<strong>at</strong> mappingBy flow (cfs):120: 82 m 2 2006b)20: 22 m 2 (Stillw<strong>at</strong>er Sciences8,135 m 2 Habit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciences2006b) <strong>at</strong> 7 cfs7,587 m 2 Habit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciences2006b) <strong>at</strong> 50 cfsAssumes th<strong>at</strong> as spawninghabit<strong>at</strong> increases in SmithBypass Reach, additionalfemales will spawn there.20 cfs results in an increase inavailable habit<strong>at</strong>120 cfs is the flow th<strong>at</strong>maximizes spawning habit<strong>at</strong>7 cfs is the flow th<strong>at</strong>maximizes fry habit<strong>at</strong> (currentbase flow in summer)50 cfs the flow th<strong>at</strong> maximizesjuvenile rearing habit<strong>at</strong>28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardE-7


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportTable E-5. <strong>Chinook</strong> salmon popul<strong>at</strong>ion dynamics model parameters <strong>and</strong> values assuming large woodydebris enhancements in Carmen Bypass Reach, <strong>and</strong> Smith Bypass Reach.Sub Reach Life-stage Parameter Value Source CommentsSmithBypassReachCarmenBypassReachFemale spawner todeposited eggsEmergent fry toresident fry (< 55 mmFL)Resident fry to age 0+juveniles (>55 mmwith no sign <strong>of</strong>smolting)Female spawner todeposited eggsEmergent fry toresident fry (< 55 mmFL)Resident fry to age 0+juveniles (>55 mmwith no sign <strong>of</strong>smolting)Suitable spawninggravel area9 m 2 Habit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciences2006b) <strong>at</strong> 7 cfsHabit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciences2006b) <strong>at</strong> 7 cfsSuitable habit<strong>at</strong> 14, 234 m 2Suitable habit<strong>at</strong> 10,958 m 2 (Stillw<strong>at</strong>er SciencesHabit<strong>at</strong> mapping2006b) <strong>at</strong> 7 cfsSuitable spawninggravel area285 m 2 Habit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciences2006b) <strong>at</strong> 160 cfsSuitable habit<strong>at</strong> 4,194 m 2 2006b) <strong>at</strong> 205 cfsHabit<strong>at</strong> mapping(Stillw<strong>at</strong>er SciencesSuitable habit<strong>at</strong> 6,346 m 2 (Stillw<strong>at</strong>er SciencesHabit<strong>at</strong> mapping2006b) <strong>at</strong> 160 cfsEstim<strong>at</strong>ed using <strong>Chinook</strong> salmonspawning guild. 7 m 2 added toestim<strong>at</strong>e for available habit<strong>at</strong> inSmith Bypass Reach in habit<strong>at</strong>units #1-4, which were notincluded in habit<strong>at</strong> mappingstudy.Increased by a factor <strong>of</strong> 1.4 over80% <strong>of</strong> the reach based on largewoody debris enhancements insummer 2005.Based on <strong>Chinook</strong> salmon fryrearing guild. Assumes largewoody debris enhancementresults are similar to theincreases estim<strong>at</strong>ed for theCarmen Bypass Reach (factor <strong>of</strong>1.9).Based on salmonid juvenilerearing guild. Assumes largewoody debris enhancementresults are similar to theincreases estim<strong>at</strong>ed for theCarmen Bypass Reach (factor <strong>of</strong>1.7).Estim<strong>at</strong>ed using bull troutspawning guild. 145 m 2 addedto estim<strong>at</strong>e for available habit<strong>at</strong>in Carmen Bypass Reach inhabit<strong>at</strong> unit #1, which was notincluded in habit<strong>at</strong> mappingstudy. Also increased by afactor <strong>of</strong> 1.5 over 80% <strong>of</strong> thereach based on large woodydebris enhancements in summer2005.Based on <strong>Chinook</strong> salmon fryrearing guild increased by afactor <strong>of</strong> 1.9 over 80% <strong>of</strong> thereach based on large woodydebris enhancements in summer2005.Based on salmonid juvenilerearing guild increased by afactor <strong>of</strong> 1.7 over 80% <strong>of</strong> thereach based on large woodydebris enhancements in summer2005.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardE-8


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportTable E-6. <strong>Spring</strong> <strong>Chinook</strong> salmon popul<strong>at</strong>ion dynamics model parameters <strong>and</strong> values assuming passage<strong>at</strong> Smith Dam.Sub Reach Life-stage Parameter Value Source CommentsInitialProportion <strong>of</strong>SmithSmith femaleBypassspawners to0.5ReachSmith BypassInitialSmithReservoirUpperSmithRiverSmith femalespawnersSpawners toSmith Reservoirto Upper SmithspawnersFemalespawner todepositedeggsProportion <strong>of</strong>Smith femalespawners toSmith ReservoirPre-spawningmortality fromSmith Reservoirto upper SmithSuitablespawning gravelarea0.50.5AssumptionPIT tag mark-resightd<strong>at</strong>a (Stillw<strong>at</strong>erSciences 2006a)75 m 2 Habit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciences2006b)Mean redd area 5.4 m 2 <strong>of</strong> redd dimensions(Stillw<strong>at</strong>er SciencesTotal st<strong>at</strong>ion surveys2006a)Densityindependentr<strong>at</strong>e<strong>of</strong> increase4,936Escape 5.1 submodelthis studyPermeabilityanalysis (Stillw<strong>at</strong>erSciences 2006d)This is an arbitrary valueassuming half <strong>of</strong> the fish willspawn in Smith Bypass asopposed to migr<strong>at</strong>ing to SmithReservoir.Based on number <strong>of</strong> unique tagsdetected in spawning tributariesabove Trail Bridge Dam ascompared with the number <strong>of</strong>fish released into Trail BridgeReservoir. Assumed same forSmith Reservoir.Assumed to be the same as theCarmen Bypass Reach, sincegravel p<strong>at</strong>ch size is similar.Based on <strong>Chinook</strong> salmonfecundity.Deposited eggsto-emergentfryEmergent fry toresident fry (< 55mm)Survival r<strong>at</strong>e 0.5Maximum frydensitySuitable habit<strong>at</strong>areaDensityindependentsurvival r<strong>at</strong>eRel<strong>at</strong>ionshipbetweenpermeability <strong>and</strong>survival based on<strong>Chinook</strong> <strong>and</strong> cohosalmon (Tagart1976, McCuddin1977)208fish/100m 2 Bjorn (1978)613 m 2 Habit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciences2006b)0.8 AssumptionAssumed to be the same asSmith Bypass Reach.Big <strong>Spring</strong>s Creek, Idaho (ascited in Smith et al. 1985).Densities <strong>of</strong> 129 <strong>and</strong> 135 fish/m 2 also reported in Bjornn 1978<strong>and</strong> Bjornn <strong>and</strong> Reiser 1991,respectively.Estim<strong>at</strong>ed using <strong>Chinook</strong>salmon fry rearing guild.Mortality due to pred<strong>at</strong>ion <strong>and</strong>other sources28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardE-9


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportSub Reach Life-stage Parameter Value Source CommentsResident fry toage 0+ juveniles(> 55 mm withno signs <strong>of</strong>smolting)Maximumjuvenile densitySuitable habit<strong>at</strong>area4.2fish/100 m 2Snorkel surveyobserv<strong>at</strong>ions(Stillw<strong>at</strong>er Sciences2006a)1,583 m 2 Habit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciences2006b)Based on observ<strong>at</strong>ions in SmithBypass ReachRiver reaches estim<strong>at</strong>ed using<strong>Chinook</strong> salmon juvenilerearing guild. Reservoir areasbased on <strong>Chinook</strong> salmon fryreservoir rearing guild.Densityindependentsurvival r<strong>at</strong>e0.8 AssumptionMortality due to pred<strong>at</strong>ion <strong>and</strong>other sourcesAge O+ juvenileto age 1+ juvenileDensityindependentsurvival r<strong>at</strong>e0.75 Lestelle et al. 1996 Over winter survivalSmithReservoirMigrantemergent fryfrom UpperSmithEmergent fry toresident fry (< 55mm)Migrant fry fromUpper SmithFry to 0+juveniles (> 55mm with no signs<strong>of</strong> smolting)Age O+ juvenileto age 1+ juvenileDensityindependentsurvival r<strong>at</strong>e(duringmigr<strong>at</strong>ion fromUpper Smith)Maximum frydensitySuitable habit<strong>at</strong>areaDensityindependentsurvival r<strong>at</strong>eDensityindependentsurvival r<strong>at</strong>e(duringmigr<strong>at</strong>ion fromUpper Smith)Maximumjuvenile densityDensityindependentsurvival r<strong>at</strong>eDensityindependentsurvival r<strong>at</strong>e0.2511fish/100 m 2Fry seining d<strong>at</strong>a(Stillw<strong>at</strong>er Sciences2006a)49,348 m 2 Habit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciences2006b)0.8 Assumption0.2 Assumption220fish/100 m 20.5Piaskowski <strong>and</strong>Tabor 2001Based on TrailBridge estim<strong>at</strong>esBased on estim<strong>at</strong>es in CarmenBypass ReachCalcul<strong>at</strong>ed densities based onshoreline beach seining in TrailBridge Reservoir. The threehighest values were 13, 126,<strong>and</strong> 511 fish/100m 2 .Estim<strong>at</strong>ed using <strong>Chinook</strong>salmon fry rearing guild.Assume th<strong>at</strong> survival <strong>of</strong>emergent fry is low in thereservoir, but th<strong>at</strong> the dur<strong>at</strong>ion<strong>of</strong> time from emergent fry toresident fry is short.Conserv<strong>at</strong>ive value for survival,based on estim<strong>at</strong>es <strong>of</strong> frysurvival.Based on snorkel surveys innearshore habit<strong>at</strong> <strong>of</strong> southernLake Washington. Maximumdensity was observed in March,other densities reported by theauthors include 80, 160, <strong>and</strong> 15fish/100 m 2 during April, May,<strong>and</strong> June, respectively.0.75 Lestelle et al. 1996 Over winter survival28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardE-10


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportSub Reach Life-stage Parameter Value Source CommentsProportion usingFry Migr<strong>at</strong>ion0.9Smith spillwayAssumes most fish will pass viafrom SmithAssumptionReservoirProportion usingSmith Spillway.0.1Smith intakeSmithBypassReach (viaspillpassage)Trail BridgeReservoir(via SmithIntake)Age 1+ juvenileto smolt (55–>100 mm)1+ juvenilemigr<strong>at</strong>ionSmolt migr<strong>at</strong>ionMaximumdensity forsmoltsSuitable habit<strong>at</strong>areaDensityindependentsurvival r<strong>at</strong>eProportion usingSmith spillwayProportion usingSmith intakeProportion usingSmith spillwayProportion usingSmith intakeBradford (Dept. <strong>of</strong>Fish <strong>and</strong> Oceans, W.130 fish /100 m 2 VancouverLabor<strong>at</strong>ory, pers.comm.)49,348 m 2 Habit<strong>at</strong> mapping(Stillw<strong>at</strong>er Sciences2006b)0.8 Assumption0.90.10.90.1AssumptionAssumptionAll life-stages Passage survival 0.9 AssumptionSmolts leavingSmith BypassDensityindependentsurvival r<strong>at</strong>e0.95 AssumptionAll life-stages Passage survival 0.05 AssumptionAssumed to be the same as forjuveniles. Assumes no smoltsrearing in river reaches.Assumed to be the same as forjuveniles. Assumes no smoltsrearing in river reaches.Assumes low mortality duringsmolting. Includes mortalityfrom str<strong>and</strong>ing, entrainment,<strong>and</strong> pred<strong>at</strong>ion.Assumes most fish will pass viaSmith Spillway.Assumes most fish will pass viaSmith Spillway.Passage mortality <strong>at</strong> spillway isnot known, but assumed to behigh rel<strong>at</strong>ive to other spillwaysbased on it’s configur<strong>at</strong>ion.Assumes high survival <strong>of</strong>smolts passing through reach.Passage mortality <strong>at</strong> powertunnel <strong>and</strong> turbines is notknown, but assumed to be highbased on turbine type (Francistype).28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardE-11


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportTable E-7. <strong>Spring</strong> <strong>Chinook</strong> salmon popul<strong>at</strong>ion dynamics model parameters <strong>and</strong> values under currentconditions in the Carmen-Smith Spawning Channel.Life-stage Parameter Value SourceAdult (> 500 mm)to female spawnersFemale spawnerto depositedeggsDeposited eggs-toemergentfryEmergent fry toresident fry (< 55mm)Resident fry to 0+juveniles (> 55 mmwith no signs <strong>of</strong>smolting)Age O+ juvenile toage 1+ juvenileSex r<strong>at</strong>io(females tomales)Pre-spawningsurvivalSuitablespawning gravelareaNotes on model sensitivity,confidence, <strong>and</strong> certainty1:1.66 Smith 1993 Estim<strong>at</strong>ed in the Spawning Channel0.9Stillw<strong>at</strong>er Sciences(2006a)2,000 m 2 Spawning Channeldimensions survey(Stillw<strong>at</strong>er Sciences2006b)Mean redd area 5.4 m 2 <strong>of</strong> redd dimensions(Stillw<strong>at</strong>er SciencesTotal st<strong>at</strong>ion surveys2006a)Densityindependentr<strong>at</strong>e<strong>of</strong> increase4,936Escape 5.1 submodelthis studySurvival r<strong>at</strong>e 0.8 AssumptionMaximum frydensitySuitable habit<strong>at</strong>areaDensityindependentsurvival r<strong>at</strong>eMaximumjuvenile densitySuitable habit<strong>at</strong>areaDensityindependentsurvival r<strong>at</strong>eDensityindependentsurvival r<strong>at</strong>e208 fish/100m 2 Bjorn (1978)562 m 2 Spawning Channeldimensions survey(Stillw<strong>at</strong>er Sciences2006b)0.8 Assumption19.4 fish/100m 2Stillw<strong>at</strong>er Sciences(2006a)562 m 2 Spawning Channeldimensions survey(Stillw<strong>at</strong>er Sciences2006b)0.8 AssumptionBased on observ<strong>at</strong>ions <strong>of</strong> adult<strong>Chinook</strong> salmon <strong>and</strong> reddconstruction in Spawning Channelin 2004.Total estim<strong>at</strong>ed spawning channelarea is 2,800 m 2 . Estim<strong>at</strong>e wasadjusted by subtracting areas whereno potential spawning habit<strong>at</strong> isavailable (e.g., holding pool)Assumed the same as CarmenBypass Reach.Based on <strong>Chinook</strong> salmonfecundity.Assumed to be high, because <strong>of</strong>new gravel in 2005.Big <strong>Spring</strong>s Creek, Idaho (as citedin Smith et al. 1985). Densities <strong>of</strong>129 <strong>and</strong> 135 fish/ m 2 also reportedin Bjornn 1978 <strong>and</strong> Bjornn <strong>and</strong>Reiser 1991, respectively.Assumes th<strong>at</strong> margin areas aresuitable. Value is 20% <strong>of</strong> totalSpawning Channel surface area.Mortality due to pred<strong>at</strong>ion <strong>and</strong>other sources.Based on snorkel observ<strong>at</strong>ions,assuming 80% diver probability <strong>of</strong>observ<strong>at</strong>ion. Less than maximumreported in liter<strong>at</strong>ure (e.g., 30fish/100m 2 in Levings <strong>and</strong> Lauzier1991).Assumes th<strong>at</strong> margin areas aresuitable. Value is 20% <strong>of</strong> totalspawning channel surface area.Mortality due to pred<strong>at</strong>ion <strong>and</strong>other sources.0.75 Lestelle et al. 1996 Over winter survival28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardE-12


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportLife-stage Parameter Value SourceAge 1+ juvenile tosmolt (55–>100mm)Migrant emergentfry to smoltMigrant fry tosmoltMigrant juvenile tosmoltMaximumdensity forsmoltsSuitable habit<strong>at</strong>areaDensityindependentsurvival r<strong>at</strong>eDensityindependentsurvival r<strong>at</strong>e130 fish / 100m 2Bradford (Dept. <strong>of</strong>Fish <strong>and</strong> Oceans, W.VancouverLabor<strong>at</strong>ory, pers.comm.)562 m 2 Spawning Channeldimensions survey(Stillw<strong>at</strong>er Sciences2006b)0.8 Assumption0.010.070.65AssumptionNotes on model sensitivity,confidence, <strong>and</strong> certaintyAssumed to be the same as forjuveniles. Assumes no smoltsrearing in river reaches.Based on measurements in CarmenSmith Spawning Channel.Assumes low mortality duringsmolting.Based on sum <strong>of</strong> all mortality r<strong>at</strong>esestim<strong>at</strong>ed in the Trail Bridgepopul<strong>at</strong>ion. Includes mortality formigr<strong>at</strong>ion from spawning channel,<strong>and</strong> mortality in the mainstemMcKenzie River from pred<strong>at</strong>ion,<strong>and</strong> other sources. Assumes th<strong>at</strong>habit<strong>at</strong> is not limiting in themainstem. Objective is to provide anumber <strong>of</strong> smolts to compare toTrail Bridge Production, <strong>and</strong> is notconsidered precise. Mortality foremergent fry to smolts wasincreased to 99% to provide a moreconserv<strong>at</strong>ive estim<strong>at</strong>e forcomparisons.28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardE-13


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportAppendix FSensitivity analysis for bull trout popul<strong>at</strong>ion dynamics modelTablesTable F-1. Results <strong>of</strong> bull trout model sensitivity analysis under current conditions (subadult/adultK=111)................................................................................................................................... F-1Table F-2. Sensitivity analysis with increase in subadult/adult carrying capacity (k=500)..................... F-5Copyright © 2006 Eugene W<strong>at</strong>er & Electric Board - the following Appendix F to the <strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong><strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Report:Appendix FSensitivity analysis for bull trout popul<strong>at</strong>ion dynamics model


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportTable F-1. Results <strong>of</strong> bull trout model sensitivity analysis under current conditions (subadult/adult K=111).Life-step Parameter 50%decrease25%decreaseParameter valuesCurrent33%increase100%increase50%decreaseSteady-st<strong>at</strong>e adult popul<strong>at</strong>ion responses25%decreaseCurrent33%increaseProportion <strong>of</strong> females 0.25 0.375 0.5 0.6665 1 111 111 111 111 111Adults to female spawners Frequency <strong>of</strong> spawning (0to 1, i.e., annual=1)0.375 0.5625 0.75 0.9998 1.5 111 111 111 111 111Carmen Bypass Reach, Deposited Density-independenteggs-to-emergent frysurvival0.16 0.24 0.32 0.4266 0.64 111 111 111 111 111Suitable habit<strong>at</strong> area (m²) 465.5 698.25 931 1241 1862 111 111 111 111 111Carmen Bypass Reach, Emergent Density (fish/m²) 0.42 0.63 0.84 1.1197 1.68 111 111 111 111 111fry to resident early fryDensity-independentsurvival0.5 0.75 1 1.333 2 111 111 111 111 111Suitable spawning gravelCarmen female spawners to area (m²)108 162 216 287.93 432 111 111 111 111 111deposited eggsMean redd area (m²) 0.91 1.365 1.82 2.4261 3.64 111 111 111 111 111Fecundity (#eggs/female) 1419.5 2129.3 2839 3784.4 5678 111 111 111 111 111Carmen Bypass Reach, 1+ Density-independentJuveniles to 2+ juvenilessurvival0.4 0.6 0.8 1.0664 1.6 111 111 111 111 111Migr<strong>at</strong>ion from Carmen to Density-independentreservoirsurvival0.45 0.675 0.9 1.1997 1.8 111 111 111 111 111Suitable habit<strong>at</strong> area (m²) 1040 1560 2080 2772.6 4160 111 111 111 111 111Carmen Bypass Reach, Resident Density (fish/m²) 0.42 0.63 0.84 1.1197 1.68 111 111 111 111 111early fry to resident l<strong>at</strong>e fry Density-independent0.4 0.6 0.8 1.0664 1.6 111 111 111 111 111survivalSuitable habit<strong>at</strong> area (m²) 2027 3040.5 4054 5404 8108 111 111 111 111 111Carmen Bypass Reach, Resident Density (fish/m²) 0.11 0.165 0.22 0.2933 0.44 111 111 111 111 111l<strong>at</strong>e fry to juvenilesDensity-independent0.4 0.6 0.8 1.0664 1.6 111 111 111 111 111survivalReservoir, Emergent fry fromupstream to early fry grown inreservoirReservoir, 1+ Juveniles to 2+juveniles100%increaseSuitable habit<strong>at</strong> area (m²) 5244.5 7866.8 10489 13982 20978 111 111 111 111 111Density (fish/m²) 0.42 0.63 0.84 1.1197 1.68 111 111 111 111 111Density-independentsurvival0.005 0.0075 0.01 0.0133 0.02 111 111 111 111 111Density-independentsurvival0.2 0.3 0.4 0.5332 0.8 111 111 111 111 11128 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardF-1


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportParameter valuesSteady-st<strong>at</strong>e adult popul<strong>at</strong>ion responsesLife-step Parameter 50% 25%33% 100% 50% 25%33% 100%CurrentCurrentdecrease decreaseincrease increase decrease decreaseincrease increaseSuitable habit<strong>at</strong> area (m²) 123971 185956 247941 330505 495882 56 83 111 148 223Reservoir, Total juveniles to Density (fish/m²) 0.0002 0.0003 0.0004 0.0006 0.0009 56 83 111 148 223subadultsDensity-independent annual0.2 0.3 0.4 0.5332 0.8 111 111 111 111 111survivalSuitable habit<strong>at</strong> area (m²) 60591 90886 121181 161534 242362 111 111 111 111 111Reservoir, Total l<strong>at</strong>e fry to Density (fish/m²) 0.11 0.165 0.22 0.2933 0.44 111 111 111 111 111juveniles grown in reservoir Density-independent0.005 0.0075 0.01 0.0133 0.02 111 111 111 111 111survivalSuitable habit<strong>at</strong> area (m²) 5244.5 7866.8 10489 13982 20978 111 111 111 111 111Reservoir, Total early fry to l<strong>at</strong>e frygrown in reservoirReservoir, Migrant early fryleaving Carmen to early fry fromCarmenReservoir, Migrant early fryleaving Smith to early fry fromSmithReservoir, Migrant emergent fryleaving Sweetw<strong>at</strong>er to emergent fryfrom Sweetw<strong>at</strong>erReservoir, Migrant emergent fryleaving Carmen to emergent fryfrom CarmenReservoir, Migrant emergent fryleaving Smith to emergent fry fromSmithReservoir, Migrant emergent fryleaving Sweetw<strong>at</strong>er to emergent fryfrom Sweetw<strong>at</strong>erReservoir, Migrant l<strong>at</strong>e fry leavingCarmen to l<strong>at</strong>e fry from CarmenReservoir, Migrant l<strong>at</strong>e fry leavingSmith to l<strong>at</strong>e fry from SmithReservoir, Migrant l<strong>at</strong>e fry leavingSweetw<strong>at</strong>er to l<strong>at</strong>e fry fromSweetw<strong>at</strong>erDensity (fish/m²) 0.42 0.63 0.84 1.1197 1.68 111 111 111 111 111Density-independentsurvival0.025 0.0375 0.05 0.0667 0.1 111 111 111 111 111Density-independentsurvivalDensity-independentsurvivalDensity-independentsurvivalDensity-independentsurvivalDensity-independentsurvivalDensity-independentsurvivalDensity-independentsurvivalDensity-independentsurvivalDensity-independentsurvival0.25 0.375 0.5 0.6665 1 111 111 111 111 1110.25 0.375 0.5 0.6665 1 111 111 111 111 1110.25 0.375 0.5 0.6665 1 111 111 111 111 1110.025 0.0375 0.05 0.0667 0.1 111 111 111 111 1110.025 0.0375 0.05 0.0667 0.1 111 111 111 111 1110.025 0.0375 0.05 0.0667 0.1 111 111 111 111 1110.45 0.675 0.9 1.1997 1.8 111 111 111 111 1110.45 0.675 0.9 1.1997 1.8 111 111 111 111 1110.45 0.675 0.9 1.1997 1.8 111 111 111 111 11128 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardF-2


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportParameter valuesSteady-st<strong>at</strong>e adult popul<strong>at</strong>ion responsesLife-step Parameter 50% 25%33% 100% 50% 25%33% 100%CurrentCurrentdecrease decreaseincrease increase decrease decreaseincrease increaseReservoir, Previous adults to old Density-independentadults (>1 year <strong>at</strong> >400 mm FL) survival0.4 0.6 0.8 1.0664 1.6 111 111 111 111 111Reservoir, Previous subadults to Density-independentnew adults (first year >400 mm FL) survival0.325 0.4875 0.65 0.8665 1.3 111 111 111 111 111Smith Bypass Reach, Deposited Density-independenteggs-to-emergent frysurvival0.27 0.405 0.54 0.7198 1.08 111 111 111 111 111Suitable habit<strong>at</strong> area (m²) 1698.5 2547.8 3397 4528.2 6794 111 111 111 111 111Smith Bypass Reach, Emergent fry Density (fish/m²) 0.42 0.63 0.84 1.1197 1.68 111 111 111 111 111to resident early fryDensity-independent0.5 0.75 1 1.333 2 111 111 111 111 111survivalSuitable spawning gravelSmith female spawners toarea (m²)3.5 5.25 7 9.331 14 111 111 111 111 111deposited eggsMean redd area (m²) 0.91 1.365 1.82 2.4261 3.64 111 111 111 111 111Fecundity (#eggs/female) 1419.5 2129.3 2839 3784.4 5678 111 111 111 111 111Smith Bypass Reach, 1+ Juveniles Density-independentto 2+ juvenilessurvival0.4 0.6 0.8 1.0664 1.6 111 111 111 111 111Migr<strong>at</strong>ion from Smith to reservoirDensity-independentsurvival0.45 0.675 0.9 1.1997 1.8 111 111 111 111 111Suitable habit<strong>at</strong> area (m²) 4067.5 6101.3 8135 10844 16270 111 111 111 111 111Smith Bypass Reach, Resident Density (fish/m²) 0.42 0.63 0.84 1.1197 1.68 111 111 111 111 111early fry to resident l<strong>at</strong>e fry Density-independent0.4 0.6 0.8 1.0664 1.6 111 111 111 111 111survivalSuitable habit<strong>at</strong> area (m²) 3500 5250 7000 9331 14000 111 111 111 111 111Smith Bypass Reach, Resident Density (fish/m²) 0.11 0.165 0.22 0.2933 0.44 111 111 111 111 111early fry to resident l<strong>at</strong>e fry Density-independent0.4 0.6 0.8 1.0664 1.6 111 111 111 111 111survivalSweetw<strong>at</strong>er Creek, Deposited eggsto-emergentfrysurvivalDensity-independent0.05 0.075 0.1 0.1333 0.2 111 111 111 111 111Suitable habit<strong>at</strong> area (m²) 140.5 210.75 281 374.57 562 111 111 111 111 111Sweetw<strong>at</strong>er Creek, Emergent fry to Density (fish/m²) 0.42 0.63 0.84 1.1197 1.68 111 111 111 111 111resident early fryDensity-independent0.5 0.75 1 1.333 2 111 111 111 111 111survivalSuitable spawning gravelSweetw<strong>at</strong>er female spawners to area (m²)81 121.5 162 215.95 324 111 111 111 111 111deposited eggsMean redd area (m²) 0.25 0.375 0.5 0.6665 1 111 111 111 111 111Fecundity (#eggs/female) 1419.5 2129.3 2839 3784.4 5678 111 111 111 111 11128 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardF-3


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportParameter valuesSteady-st<strong>at</strong>e adult popul<strong>at</strong>ion responsesLife-step Parameter 50% 25%33% 100% 50% 25%33% 100%CurrentCurrentdecrease decreaseincrease increase decrease decreaseincrease increaseSweetw<strong>at</strong>er Creek, 1+ Juveniles to Density-independent2+ juvenilessurvival0.4 0.6 0.8 1.0664 1.6 111 111 111 111 111Migr<strong>at</strong>ion from Sweetw<strong>at</strong>er to Density-independentreservoirsurvival0.45 0.675 0.9 1.1997 1.8 111 111 111 111 111Suitable habit<strong>at</strong> area (m²) 440.5 660.75 881 1174.4 1762 111 111 111 111 111Sweetw<strong>at</strong>er Creek, Resident early Density (fish/m²) 0.42 0.63 0.84 1.1197 1.68 111 111 111 111 111fry to resident l<strong>at</strong>e fryDensity-independent0.4 0.6 0.8 1.0664 1.6 111 111 111 111 111survivalSuitable habit<strong>at</strong> area (m²) 1318.5 1977.8 2637 3515.1 5274 111 111 111 111 111Sweetw<strong>at</strong>er Creek, Resident early Density (fish/m²) 0.11 0.165 0.22 0.2933 0.44 111 111 111 111 111fry to resident l<strong>at</strong>e fryDensity-independent0.4 0.6 0.8 1.0664 1.6 111 111 111 111 111survivalTotal female spawners to Carmen Proportion <strong>of</strong> spawners tospawnersCarmen0.37 0.555 0.74 0.9864 1.48 111 111 111 111 111Total female spawners to Smith Proportion <strong>of</strong> spawners tospawnersSmith R.0 0 0 0 0 111 111 111 111 111Total female spawners toProportion <strong>of</strong> spawners toSweetw<strong>at</strong>er spawnersSweetw<strong>at</strong>er Cr.0.13 0.195 0.26 0.3466 0.52 111 111 111 111 11128 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardF-4


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportTable F-2. Sensitivity analysis with increase in subadult/adult carrying capacity (K=500).Life-step Parameter 50%decrease25%decreaseParameter valuesCurrent33%increase100%increase50%decreaseSteady-st<strong>at</strong>e adult popul<strong>at</strong>ion responses25%decreaseCurrent33%increaseProportion <strong>of</strong> females 0.25 0.375 0.5 0.6665 1 500 500 500 500 500Adults to female spawners Frequency <strong>of</strong> spawning (0to 1, i.e., annual=1)0.375 0.5625 0.75 0.9998 1.5 500 500 500 500 500Carmen Bypass Reach, Deposited Density-independenteggs-to-emergent frysurvival0.16 0.24 0.32 0.4266 0.64 500 500 500 500 500Suitable habit<strong>at</strong> area (m²) 465.5 698.25 931 1241 1862 497.92 500 500 500 500Carmen Bypass Reach, Emergent Density (fish/m²) 0.42 0.63 0.84 1.1197 1.68 497.92 500 500 500 500fry to resident early fryDensity-independentsurvival0.5 0.75 1 1.333 2 500 500 500 500 500Suitable spawning gravelCarmen female spawners to area (m²)108 162 216 287.93 432 500 500 500 500 500deposited eggsMean redd area (m²) 0.91 1.365 1.82 2.4261 3.64 500 500 500 500 500Fecundity (#eggs/female) 1419.5 2129.3 2839 3784.4 5678 500 500 500 500 500Carmen Bypass Reach, 1+ Density-independentJuveniles to 2+ juvenilessurvival0.4 0.6 0.8 1.0664 1.6 497.92 500 500 500 500Migr<strong>at</strong>ion from Carmen to Density-independentreservoirsurvival0.45 0.675 0.9 1.1997 1.8 497.92 500 500 500 500Suitable habit<strong>at</strong> area (m²) 1040 1560 2080 2772.6 4160 500 500 500 500 500Carmen Bypass Reach, Resident Density (fish/m²) 0.42 0.63 0.84 1.1197 1.68 500 500 500 500 500early fry to resident l<strong>at</strong>e fry Density-independentsurvival0.4 0.6 0.8 1.0664 1.6 497.92 500 500 500 500Suitable habit<strong>at</strong> area (m²) 2027 3040.5 4054 5404 8108 500 500 500 500 500Carmen Bypass Reach, Resident Density (fish/m²) 0.225 0.3375 0.45 0.5999 0.9 500 500 500 500 500l<strong>at</strong>e fry to juvenilesDensity-independentsurvival0.4 0.6 0.8 1.0664 1.6 497.92 500 500 500 500Suitable habit<strong>at</strong> area (m²) 5244.5 7866.8 10489 13982 20978 500 500 500 500 500Reservoir, Emergent fry fromupstream to early fry grown inDensity (fish/m²) 0.42 0.63 0.84 1.1197 1.68 500 500 500 500 500reservoirDensity-independent0.005 0.0075 0.01 0.0133 0.02 500 500 500 500 500survivalReservoir, 1+ Juveniles to 2+ Density-independentjuvenilessurvival0.2 0.3 0.4 0.5332 0.8 500 500 500 500 500100%increase28 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardF-5


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportParameter valuesSteady-st<strong>at</strong>e adult popul<strong>at</strong>ion responsesLife-step Parameter 50% 25% Curren 33% 100% 50% 25%33% 100%Currentdecrease decrease t increase increase decrease decreaseincrease increaseSuitable habit<strong>at</strong> area (m²) 123971 185956 247941 330505 495882 382.35 382.35 500 569.99 569.99Reservoir, Total juveniles to Density (fish/m²) 0.001 0.0015 0.002 0.0027 0.004 382.35 382.35 500 569.99 569.99subadultsDensity-independent annual0.2 0.3 0.4 0.5332 0.8 476.17 500 500 500 500survivalSuitable habit<strong>at</strong> area (m²) 60591 90886 121181 161534 242362 500 500 500 500 500Reservoir, Total l<strong>at</strong>e fry to Density (fish/m²) 0.225 0.3375 0.45 0.5999 0.9 500 500 500 500 500juveniles grown in reservoir Density-independentsurvival0.005 0.0075 0.01 0.0133 0.02 500 500 500 500 500Suitable habit<strong>at</strong> area (m²) 5244.5 7866.8 10489 13982 20978 500 500 500 500 500Reservoir, Total early fry to l<strong>at</strong>e frygrown in reservoirDensity (fish/m²) 0.42 0.63 0.84 1.1197 1.68 500 500 500 500 500Reservoir, Migrant early fryleaving Carmen to early fry fromCarmenReservoir, Migrant early fryleaving Smith to early fry fromSmithReservoir, Migrant emergent fryleaving Sweetw<strong>at</strong>er to emergent fryfrom Sweetw<strong>at</strong>erReservoir, Migrant emergent fryleaving Carmen to emergent fryfrom CarmenReservoir, Migrant emergent fryleaving Smith to emergent fry fromSmithReservoir, Migrant emergent fryleaving Sweetw<strong>at</strong>er to emergent fryfrom Sweetw<strong>at</strong>erReservoir, Migrant l<strong>at</strong>e fry leavingCarmen to l<strong>at</strong>e fry from CarmenReservoir, Migrant l<strong>at</strong>e fry leavingSmith to l<strong>at</strong>e fry from SmithReservoir, Migrant l<strong>at</strong>e fry leavingSweetw<strong>at</strong>er to l<strong>at</strong>e fry fromSweetw<strong>at</strong>erDensity-independentsurvivalDensity-independentsurvivalDensity-independentsurvivalDensity-independentsurvivalDensity-independentsurvivalDensity-independentsurvivalDensity-independentsurvivalDensity-independentsurvivalDensity-independentsurvivalDensity-independentsurvival0.025 0.0375 0.05 0.0667 0.1 500 500 500 500 5000.25 0.375 0.5 0.6665 1 500 500 500 500 5000.25 0.375 0.5 0.6665 1 500 500 500 500 5000.25 0.375 0.5 0.6665 1 500 500 500 500 5000.025 0.0375 0.05 0.0667 0.1 500 500 500 500 5000.025 0.0375 0.05 0.0667 0.1 500 500 500 500 5000.025 0.0375 0.05 0.0667 0.1 500 500 500 500 5000.45 0.675 0.9 1.1997 1.8 500 500 500 500 5000.45 0.675 0.9 1.1997 1.8 500 500 500 500 5000.45 0.675 0.9 1.1997 1.8 500 500 500 500 50028 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardF-6


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportParameter valuesSteady-st<strong>at</strong>e adult popul<strong>at</strong>ion responsesLife-step Parameter 50% 25% Curren 33% 100% 50% 25%33% 100%Currentdecrease decrease t increase increase decrease decreaseincrease increaseReservoir, Previous adults to old Density-independentadults (>1 year <strong>at</strong> >400 mm FL) survival0.4 0.6 0.8 1.0664 1.6 417.05 493.52 500 500 500Reservoir, Previous subadults to Density-independentnew adults (first year >400 mm FL) survival0.325 0.4875 0.65 0.8665 1.3 500 500 500 500 500Smith Bypass Reach, Deposited Density-independenteggs-to-emergent frysurvival0.27 0.405 0.54 0.7198 1.08 500 500 500 500 500Smith Bypass Reach, Emergent fryto resident early frySmith female spawners todeposited eggsSmith Bypass Reach, 1+ Juvenilesto 2+ juvenilesMigr<strong>at</strong>ion from Smith to reservoirSmith Bypass Reach, Residentearly fry to resident l<strong>at</strong>e frySmith Bypass Reach, Residentearly fry to resident l<strong>at</strong>e frySweetw<strong>at</strong>er Creek, Deposited eggsto-emergentfrySweetw<strong>at</strong>er Creek, Emergent fry toresident early frySweetw<strong>at</strong>er female spawners todeposited eggsSuitable habit<strong>at</strong> area (m²) 1376.5 2064.8 2753 3669.7 5506 500 500 500 500 500Density (fish/m²) 0.42 0.63 0.84 1.1197 1.68 500 500 500 500 500Density-independentsurvival0.5 0.75 1 1.333 2 500 500 500 500 500Suitable spawning gravelarea (m²)3.5 5.25 7 9.331 14 500 500 500 500 500Mean redd area (m²) 0.91 1.365 1.82 2.4261 3.64 500 500 500 500 500Fecundity (#eggs/female) 1419.5 2129.3 2839 3784.4 5678 500 500 500 500 500Density-independentsurvival0.4 0.6 0.8 1.0664 1.6 500 500 500 500 500Density-independentsurvival0.45 0.675 0.9 1.1997 1.8 500 500 500 500 500Suitable habit<strong>at</strong> area (m²) 2282.5 3423.8 4565 6085.1 9130 500 500 500 500 500Density (fish/m²) 0.42 0.63 0.84 1.1197 1.68 500 500 500 500 500Density-independentsurvival0.4 0.6 0.8 1.0664 1.6 500 500 500 500 500Suitable habit<strong>at</strong> area (m²) 2825 4237.5 5650 7531.5 11300 500 500 500 500 500Density (fish/m²) 0.225 0.3375 0.45 0.5999 0.9 500 500 500 500 500Density-independentsurvival0.4 0.6 0.8 1.0664 1.6 500 500 500 500 500Density-independentsurvival0.05 0.075 0.1 0.1333 0.2 500 500 500 500 500Suitable habit<strong>at</strong> area (m²) 140.5 210.75 281 374.57 562 500 500 500 500 500Density (fish/m²) 0.42 0.63 0.84 1.1197 1.68 500 500 500 500 500Density-independentsurvival0.5 0.75 1 1.333 2 500 500 500 500 500Suitable spawning gravelarea (m²)81 121.5 162 215.95 324 500 500 500 500 500Mean redd area (m²) 0.25 0.375 0.5 0.6665 1 500 500 500 500 500Fecundity (#eggs/female) 1419.5 2129.3 2839 3784.4 5678 500 500 500 500 50028 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardF-7


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportParameter valuesSteady-st<strong>at</strong>e adult popul<strong>at</strong>ion responsesLife-step Parameter 50% 25% Curren 33% 100% 50% 25%33% 100%Currentdecrease decrease t increase increase decrease decreaseincrease increaseSweetw<strong>at</strong>er Creek, 1+ Juveniles to Density-independent2+ juvenilessurvival0.4 0.6 0.8 1.0664 1.6 500 500 500 500 500Migr<strong>at</strong>ion from Sweetw<strong>at</strong>er to Density-independentreservoirsurvival0.45 0.675 0.9 1.1997 1.8 500 500 500 500 500Suitable habit<strong>at</strong> area (m²) 440.5 660.75 881 1174.4 1762 500 500 500 500 500Sweetw<strong>at</strong>er Creek, Resident early Density (fish/m²) 0.42 0.63 0.84 1.1197 1.68 500 500 500 500 500fry to resident l<strong>at</strong>e fryDensity-independentsurvival0.4 0.6 0.8 1.0664 1.6 500 500 500 500 500Suitable habit<strong>at</strong> area (m²) 1318.5 1977.8 2637 3515.1 5274 500 500 500 500 500Sweetw<strong>at</strong>er Creek, Resident early Density (fish/m²) 0.225 0.3375 0.45 0.5999 0.9 500 500 500 500 500fry to resident l<strong>at</strong>e fryDensity-independentsurvival0.4 0.6 0.8 1.0664 1.6 500 500 500 500 500Total female spawners to Carmen Proportion <strong>of</strong> spawners tospawnersCarmen0.37 0.555 0.74 0.9864 1.48 500 500 500 500 500Total female spawners to Smith Proportion <strong>of</strong> spawners tospawnersSmith R.0 0 0 0 0 500 500 500 500 500Total female spawners toProportion <strong>of</strong> spawners toSweetw<strong>at</strong>er spawnersSweetw<strong>at</strong>er Cr.0.13 0.195 0.26 0.3466 0.52 500 500 500 500 50028 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardF-8


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportAppendix GSensitivity analysis for spring <strong>Chinook</strong> salmon popul<strong>at</strong>iondynamics modelTablesTable G-1. Sensitivity analysis for spring <strong>Chinook</strong> salmon under current conditions. .............. G-1Table G-2. Sensitivity analysis for spring <strong>Chinook</strong> salmon under current conditions in theCarmen-Smith Spawning Channel........................................................................... G-5Copyright © 2006 Eugene W<strong>at</strong>er & Electric Board - the following Appendix G to the <strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong><strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical Report:Appendix GSensitivity analysis for spring <strong>Chinook</strong> salmon popul<strong>at</strong>iondynamics model


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportTable G-1. Sensitivity analysis for spring <strong>Chinook</strong> salmon under current conditions.Life-step Parameter 50%decreaseAdults passed above Trail Bridge damto total female spawnersParameter valuesSteady-st<strong>at</strong>e adult popul<strong>at</strong>ion responses25%33% 100 50% 25%33% 100%CurrentCurrentdecreaseincrease increase decrease decreaseincrease increaseProportion <strong>of</strong> Females 0.25 0.375 0.5 0.6665 1 42.041 85.192 100.13 100.13 100.13Pre-spawning survival 0.25 0.375 0.5 0.6665 1 42.041 85.192 100.13 100.13 100.13Survival from smolt toreturning adult0.04 0.06 0.08 0.1066 0.16 21.021 63.894 100.13 133.47 200.25Passed smolts entering mainstem toadults returning to TB damSurvival during passage from fry inDownstream passageTrail Bridge Reservoir to mainstem.efficiencyEstim<strong>at</strong>ed based on Bell (1981)0.4 0.6 0.8 1.0664 1.6 100.13 100.13 100.13 100.13 100.13Survival during passage from juvenilesDownstream passagein Trail Bridge Reservoir to mainstem.efficiencyEstim<strong>at</strong>ed based on Bell (1981)0.4 0.6 0.8 1.0664 1.6 100.13 100.13 100.13 100.13 100.13Survival during passage from smolts inDownstream passageTrail Bridge Reservoir to mainstem.efficiencyEstim<strong>at</strong>ed based on Bell (1981)0.4 0.6 0.8 1.0664 1.6 21.021 63.894 100.13 125.16 125.16Carmen Bypass Reach, Deposited eggsto-emergentfryDensity-independent survival 0.16 0.24 0.32 0.4266 0.64 72.397 88.253 100.13 115.94 147.61Suitable habit<strong>at</strong> area (m²) 1040.5 1560.8 2081 2774 4162 97.321 98.723 100.13 101.99 105.74Carmen Bypass Reach, Emergent fry toresident fryDensity (fish/m²) 1.04 1.56 2.08 2.7726 4.16 97.321 98.723 100.13 101.99 105.74Density-independent survival 0.4 0.6 0.8 1.0664 1.6 72.397 88.253 100.13 112 112Suitable spawning gravel areaCarmen female spawners to deposited(m²)106 159 212 282.6 424 76.381 88.254 100.13 115.91 115.91eggsMean redd area (m²) 2.7 4.05 5.4 7.1982 10.8 115.91 115.91 100.13 88.262 76.381Fecundity (#eggs/female) 2468 3702 4936 6579.7 9872 72.397 88.254 100.13 115.94 147.61Suitable habit<strong>at</strong> area (m²) 2025 3037.5 4050 5398.7 8100 97.326 98.743 100.13 101.99 105.72Carmen Bypass Reach, Resident fry toDensity (fish/m²) 0.02 0.03 0.04 0.0533 0.08 97.326 98.743 100.13 101.99 105.720+ juvenilesDensity-independent survival 0.4 0.6 0.8 1.0664 1.6 92.647 96.386 100.13 103.86 103.86Carmen Bypass Reach, 0+ juveniles to1+ juveniles Density-independent survival0.375 0.5625 0.75 0.9998 1.5 96.976 98.551 100.13 102.22 102.23Returning adults to adults passed aboveTrail Bridge DamUpstream passage efficiency0.5 0.75 1 1.333 2 42.041 85.192 100.13 100.13 100.13Trail Bridge Reservoir, Emergent fryfrom upstream to fry grown in reservoirSuitable habit<strong>at</strong> area (m²) 5244.5 7866.8 10489 13982 20978 100.13 100.13 100.13 100.13 100.13Density (fish/m²) 2.55 3.825 5.1 6.7983 10.2 100.13 100.13 100.13 100.13 100.13Density-independent survival 0.25 0.375 0.5 0.6665 1 78.826 90.591 100.13 112.83 138.2728 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardG-1


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportParameter valuesSteady-st<strong>at</strong>e adult popul<strong>at</strong>ion responses25%33% 100 50% 25%33% 100%CurrentCurrentdecreaseincrease increase decrease decreaseincrease increaseSuitable habit<strong>at</strong> area (m²) 5244.5 7866.8 10489 13982 20978 100.13 100.13 100.13 100.13 100.13Density (fish/m²) 1.1 1.65 2.2 2.9326 4.4 100.13 100.13 100.13 100.13 100.13Density-independent survival 0.25 0.375 0.5 0.6665 1 38.317 74.119 100.13 127.74 183.07Suitable habit<strong>at</strong> area (m²) 5244.5 7866.8 10489 13982 20978 100.13 100.13 100.13 100.13 100.13Density (fish/m²) 1.1 1.65 2.2 2.9326 4.4 100.13 100.13 100.13 100.13 100.13Density-independent survival 0.45 0.675 0.9 1.1997 1.8 21.021 63.894 100.13 111.25 111.25Life-step Parameter 50%decreaseTrail Bridge Reservoir, Total fry to 0+juveniles grown in reservoirTrail Bridge Reservoir, Total 1+juveniles to smolts grown in reservoirTrail Bridge Reservoir, Migrantemergent fry leaving Carmen toemergent fry from CarmenTrail Bridge Reservoir, Migrantemergent fry leaving Smith to emergentfry from SmithTrail Bridge Reservoir, Migrant fryleaving Carmen to fry from CarmenTrail Bridge Reservoir, Migrant fryleaving Smith to fry from SmithSmith Reservoir, Migrant fry leavingSmith Reservoir to migrant fry passedfrom Smith ReservoirSmith Bypass Reach, Migrant 1+juveniles leaving Smith Reservoir tomigrant 1+ juveniles passed from SmithReservoirSmith Bypass Reach, Smolts leavingSmith Reservoir to smolts passed fromSmith ReservoirSmith female spawners to Smith BypassspawnersSmith Bypass Reach, Deposited eggsto-emergentfrySmith Bypass Reach, Emergent fry toresident frySmith spawners to deposited eggsDensity-independent survival 0.1 0.15 0.2 0.2666 0.4 78.826 90.591 100.13 112.83 138.27Density-independent survival 0.1 0.15 0.2 0.2666 0.4 100.13 100.13 100.13 100.13 100.13Density-independent survival 0.1 0.15 0.2 0.2666 0.4 92.997 96.561 100.13 104.87 114.38Density-independent survival 0.1 0.15 0.2 0.2666 0.4 82.282 92.49 100.13 110.3 130.67Downstream passageefficiencyDownstream passageefficiencyDownstream passageefficiencyProportion <strong>of</strong> Spawners toSmith Bypass0.1 0.15 0.2 0.2666 0.4 100.13 100.13 100.13 100.13 100.130.25 0.375 0.5 0.6665 1 100.13 100.13 100.13 100.13 100.130.25 0.375 0.5 0.6665 1 100.13 100.13 100.13 100.13 100.130.5 0.75 1 1.333 2 105.7 105.25 100.13 100.13 100.13Density-independent survival 0.27 0.405 0.54 0.7198 1.08 80.95 92.188 100.13 110.7 127.05Suitable habit<strong>at</strong> area (m²) 4067.5 6101.3 8135 10844 16270 99.183 100.13 100.13 100.13 100.13Density (fish/m²) 1.04 1.56 2.08 2.7726 4.16 99.183 100.13 100.13 100.13 100.13Density-independent survival 0.5 0.75 1 1.333 2 80.95 92.188 100.13 100.13 100.13Suitable spawning gravel area(m²)3.5 5.25 7 9.331 14 80.95 92.188 100.13 110.7 126.76Mean redd area (m²) 0.45 0.675 0.9 1.1997 1.8 126.76 110.71 100.13 92.194 80.95Fecundity (#eggs/female) 2468 3702 4936 6579.7 9872 80.95 92.188 100.13 110.7 129.9928 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardG-2


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportParameter valuesSteady-st<strong>at</strong>e adult popul<strong>at</strong>ion responses25%33% 100 50% 25%33% 100%CurrentCurrentdecreaseincrease increase decrease decreaseincrease increaseSuitable habit<strong>at</strong> area (m²) 3500 5250 7000 9331 14000 95.287 97.706 100.13 103.34 109.8Density (fish/m²) 0.02 0.03 0.04 0.0533 0.08 95.287 97.706 100.13 103.34 109.8Density-independent survival 0.4 0.6 0.8 1.0664 1.6 80.95 92.188 100.13 108.06 108.06Suitable habit<strong>at</strong> area (m²) 24674 37011 49348 65781 98696 100.13 100.13 100.13 100.13 100.13Density (fish/m²) 2.55 3.825 5.1 6.7983 10.2 100.13 100.13 100.13 100.13 100.13Density-independent survival 0.1 0.15 0.2 0.2666 0.4 100.13 100.13 100.13 100.13 100.13Suitable habit<strong>at</strong> area (m²) 24674 37011 49348 65781 98696 100.13 100.13 100.13 100.13 100.13Density (fish/m²) 1.1 1.65 2.2 2.9326 4.4 100.13 100.13 100.13 100.13 100.13Density-independent survival 0.25 0.375 0.5 0.6665 1 100.13 100.13 100.13 100.13 100.13Life-step Parameter 50%decreaseSmith Bypass Reach, Total fry to 0+juvenilesSmith Reservoir, Emergent fry fromupstream to fry grown in reservoirSmith Reservoir, Total fry to 0+juveniles growin in reservoirSmith Reservoir, Juveniles <strong>and</strong> streamjuveniles to migrant juveniles en routeto Smith BypassSmith Reservoir, Juveniles <strong>and</strong> streamjuveniles to smolts grown in reservoirSmith Reservoir, Migrant emergent fryleaving Upper Smith to emergent fryfrom Upper SmithSmith Reservoir, Migrant fry leavingUpper Smith to fry from Upper SmithSmith Reservoir, 1+ juveniles leavingupper Smith to 1+ juveniles from upperSmithSmith Reservoir, Smolts to smolts enroute to Smith BypassSmith Reservoir, Total fry to migrantfry en route to Smith BypassSmith Reservoir, 0+ juveniles to 1+juvenilesSpawners to Smith Reservoir to UpperSmith spawnersSmith Bypass Reach, 0+ juveniles to 1+juvenilesTrail Bridge Reservoir, Migrant fryleaving Smith Reservoir to migrant frypassed from Smith ReservoirTrail Bridge Reservoir, 1+ juvenilesleaving Smith Reservoir to 1+ juvenilespassed from Smith ReservoirProportion <strong>of</strong> migrant juv. enroute to Smith Bypass0.45 0.675 0.9 1.1997 1.8 100.13 100.13 100.13 100.13 100.13Suitable habit<strong>at</strong> area (m²) 24674 37011 49348 65781 98696 100.13 100.13 100.13 100.13 100.13Density (fish/m²) 1.1 1.65 2.2 2.9326 4.4 100.13 100.13 100.13 100.13 100.13Density-independent survival 0.4 0.6 0.8 1.0664 1.6 100.13 100.13 100.13 100.13 100.13Density-independent survival 0.1 0.15 0.2 0.2666 0.4 100.13 100.13 100.13 100.13 100.13Density-independent survival 0.25 0.375 0.5 0.6665 1 100.13 100.13 100.13 100.13 100.13Density-independent survival 0.45 0.675 0.9 1.1997 1.8 100.13 100.13 100.13 100.13 100.13Proportion <strong>of</strong> smolts en routeto Smith BypassProportion <strong>of</strong> migrant fry enroute to Smith Bypass0.45 0.675 0.9 1.1997 1.8 100.13 100.13 100.13 100.13 100.130.45 0.675 0.9 1.1997 1.8 100.13 100.13 100.13 100.13 100.13Density-independent survival 0.375 0.5625 0.75 0.9998 1.5 100.13 100.13 100.13 100.13 100.13Pre-spawning survival 0.25 0.375 0.5 0.6665 1 100.13 100.13 100.13 100.13 100.13Density-independent survival 0.375 0.5625 0.75 0.9998 1.5 94.682 97.404 100.13 103.75 103.75Downstream passageefficiencyDownstream passageefficiency0.025 0.0375 0.05 0.0667 0.1 100.13 100.13 100.13 100.13 100.130.025 0.0375 0.05 0.0667 0.1 100.13 100.13 100.13 100.13 100.1328 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardG-3


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportParameter valuesSteady-st<strong>at</strong>e adult popul<strong>at</strong>ion responsesLife-step Parameter 50% 25%33% 100 50% 25%33% 100%CurrentCurrentdecrease decreaseincrease increase decrease decreaseincrease increaseTrail Bridge Reservoir, 1+ juvenilesleaving Carmen Bypass to 1+ juveniles Density-independent survival 0.45 0.675 0.9 1.1997 1.8 96.976 98.551 100.13 100.83 100.83from Carmen BypassTrail Bridge Reservoir, 1+ juvenilesleaving Smith Bypass to 1+ juveniles Density-independent survival 0.45 0.675 0.9 1.1997 1.8 94.682 97.404 100.13 101.34 101.34from Smith BypassTrail Bridge Reservoir, Smolts leavingSmith Bypass Reach to smolts from Survival r<strong>at</strong>e during migr<strong>at</strong>ion 0.5 0.75 1 1.333 2 100.13 100.13 100.13 100.13 100.13Smith Bypass ReachTrail Bridge Reservoir, Smolts leavingDownstream passageSmith Reservoir to smolts passed fromefficiencySmith Reservoir0.025 0.0375 0.05 0.0667 0.1 100.13 100.13 100.13 100.13 100.13Trail Bridge Reservoir, 0+ juveniles to1+ juveniles grown in reservoirDensity-independent survival 0.375 0.5625 0.75 0.9998 1.5 38.317 74.119 100.13 127.74 127.77Total female spawners to Carmen Proportion <strong>of</strong> Spawners t<strong>of</strong>emale spawnersCarmen0.4 0.6 0.8 1.0664 1.6 72.397 89.126 100.13 35.284 35.284Upper Smith River, Deposited eggs-toemergentfryDensity-independent survival 0.25 0.375 0.5 0.6665 1 100.13 100.13 100.13 100.13 100.13Upper Smith River, Emergent fry toresident fryUpper Smith female spawners todeposited eggsUpper Smith River, Resident fry to 0+juvenilesUpper Smith River, 0+ juveniles to 1+juvenilesSuitable habit<strong>at</strong> area (m²) 306.5 459.75 613 817.13 1226 100.13 100.13 100.13 100.13 100.13Density (fish/m²) 1.04 1.56 2.08 2.7726 4.16 100.13 100.13 100.13 100.13 100.13Density-independent survival 0.4 0.6 0.8 1.0664 1.6 100.13 100.13 100.13 100.13 100.13Suitable spawning gravel area(m²)37.5 56.25 75 99.975 150 100.13 100.13 100.13 100.13 100.13Mean redd area (m²) 2.7 4.05 5.4 7.1982 10.8 100.13 100.13 100.13 100.13 100.13Fecundity (#eggs/female) 2468 3702 4936 6579.7 9872 100.13 100.13 100.13 100.13 100.13Suitable habit<strong>at</strong> area (m²) 791.5 1187.3 1583 2110.1 3166 100.13 100.13 100.13 100.13 100.13Density (fish/m²) 0.02 0.03 0.04 0.0533 0.08 100.13 100.13 100.13 100.13 100.13Density-independent survival 0.4 0.6 0.8 1.0664 1.6 100.13 100.13 100.13 100.13 100.13Density-independent survival 0.375 0.5625 0.75 0.9998 1.5 100.13 100.13 100.13 100.13 100.1328 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardG-4


FINAL REPORT Carmen-Smith Hydroelectric Project (FERC No. 2242)<strong>Popul<strong>at</strong>ion</strong> <strong>Dynamics</strong> <strong>of</strong> <strong>Bull</strong> <strong>Trout</strong> <strong>and</strong> <strong>Spring</strong> <strong>Chinook</strong> <strong>Salmon</strong> Technical ReportTable G-2. Sensitivity analysis for spring <strong>Chinook</strong> salmon under current conditions in the Carmen-Smith Spawning Channel.Parameter valuesSteady-st<strong>at</strong>e adult popul<strong>at</strong>ion responsesLife-step Parameter 50% 25%33% 100 50% 25%33% 100%CurrentCurrentdecrease decreaseincrease increase decrease decreaseincrease increaseSpawning Channel, Smolts to returningadultsDensity-independent survival0.035 0.0525 0.07 0.0933 0.14 2.2634 3.3962 4.5287 6.0372 9.0584Spawning Channel, Adults to female Proportion <strong>of</strong> Females 0.25 0.375 0.5 0.6665 1 4.5268 4.5282 4.5287 4.529 4.5292spawnersPre-spawning survival 0.45 0.675 0.9 1.1997 1.8 4.5268 4.5282 4.5287 4.529 4.5292Spawning Channel, Deposited eggs-toemergentfryDensity-independent survival0.4 0.6 0.8 1.0664 1.6 4.5268 4.5282 4.5287 4.529 4.529Suitable habit<strong>at</strong> area (m²) 281 421.5 562 749.15 1124 4.4408 4.5055 4.5287 4.542 4.5515Spawning Channel, Emergent fry toDensity (fish/m²) 1.04 1.56 2.08 2.7726 4.16 4.4408 4.5055 4.5287 4.542 4.5515resident fryDensity-independent survival 0.5 0.75 1 1.333 2 4.5268 4.5282 4.5287 4.5287 4.5287Suitable spawning gravel areaSpawning Channel, Female spawners to(m²)1000 1500 2000 2666 4000 4.5287 4.5287 4.5287 4.5287 4.5287deposited eggsMean redd area (m²) 2.7 4.05 5.4 7.1982 10.8 4.5287 4.5287 4.5287 4.5287 4.5287Fecundity (#eggs/female) 2468 3702 4936 6579.7 9872 4.5268 4.5282 4.5287 4.529 4.5292Spawning Channel, 1+ juveniles tosmoltsSpawning Channel, Resident fry to 0+juvenilesSuitable habit<strong>at</strong> area (m²) 281 421.5 562 749.15 1124 4.4762 4.515 4.5287 4.5365 4.5421Density (fish/m²) 0.65 0.975 1.3 1.7329 2.6 4.4762 4.515 4.5287 4.5365 4.5421Density-independent survival 0.4 0.6 0.8 1.0664 1.6 2.2701 3.402 4.5287 5.6488 5.6488Suitable habit<strong>at</strong> area (m²) 281 421.5 562 749.15 1124 2.3034 3.4227 4.5287 5.9761 8.7833Density (fish/m²) 0.097 0.1455 0.194 0.2586 0.388 2.3034 3.4227 4.5287 5.9761 8.7833Density-independent survival 0.4 0.6 0.8 1.0664 1.6 4.4391 4.505 4.5287 4.5398 4.539828 March 2006 Stillw<strong>at</strong>er SciencesCopyright © 2006 Eugene W<strong>at</strong>er & Electric BoardG-5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!