13.07.2015 Views

ssc-360 use of fiber reinforced plastics in the marine industry

ssc-360 use of fiber reinforced plastics in the marine industry

ssc-360 use of fiber reinforced plastics in the marine industry

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2/- -SSC-<strong>360</strong>USE OFFIBER REINFORCED PLASTICSIN THE MARINE INDUSTRYThis tiurnent has been approvedfor public release snd sale; itsdistribution is unlimitedSHIP STRUCTURE1990COMMITTEE


SHIP STRUCTURECOMMITTEETHE SHIP STRUCTURE COMMllTEE is constituted to prosecutea researchprogramto improve<strong>the</strong> hull structure <strong>of</strong>ships and o<strong>the</strong>r mar<strong>in</strong>e structures by an extension <strong>of</strong> knowledge perta<strong>in</strong><strong>in</strong>g to design, materials and methods <strong>of</strong> construction,RADM J. D. Sipes, USCG, (Chairman)Chief, Office <strong>of</strong> Mar<strong>in</strong>e Safety, Securifyand Environmental ProtectionU. S, Coast GuardMr. Alexander MalakhotiDirector, Structural IntegritySubgroup (SEA 55MNaval Sea Systems CommandDr. Donald LiuSenior Vice PresidentAmerican Bureau <strong>of</strong> Shipp<strong>in</strong>gMr. H. T. HailerAssociate Adm<strong>in</strong>istrator for Shipbuild<strong>in</strong>gand Ship OperationsMaritime Adm<strong>in</strong>istrationMr. Thomas W. AllenEng<strong>in</strong>eer<strong>in</strong>g Officer (N7)Military Sealift CommandCDR Michael K. Parmelee, USCG,Secretary, Ship Structure CommitteeU. S, Coast GuardCONTRACTING OFFICER TECHNICAL REPRESENTATIVESMr. William J. SiekierkaSEA55Y3Naval Sea Systems CommandMr. Greg D. WoodsSEA55Y3Naval Sea Systems CommandSHIP STRUCTURESUBCOMMllTEETHE SHIP STRUCTURE SUBCOMMl~EE acts for Ihe Ship Structure Committee on technical matters by provid<strong>in</strong>gtechnical coord<strong>in</strong>at<strong>in</strong>g for <strong>the</strong> determ<strong>in</strong>ation <strong>of</strong> goals and objectives <strong>of</strong> <strong>the</strong> program, and by evaluat<strong>in</strong>g and Interpret<strong>in</strong>g<strong>the</strong> results <strong>in</strong> terms <strong>of</strong> structural design, construction and operation.U, S, COAST GUARDDr. John S, Spencer (Chairman)CAPT T. E. ThompsonCAPT Donald S. JensenCDR Mark E, NellMILITARY SEALIFT COMMANDMr. Glenn M. AsheMr. Michael W, ToumaMr, Albert J, AftermeyerMr. Jeffery E, BeachNAVAL SEA SYSTEMSCOMMANDAMERICANBUREAU OF SHIPPINGMr. Roberl A, SielskiMr, Charles L. NullMr. W. Thomas PackardMr. Allen H. EngleMr. John F, ConIonMr. Stephen G. ArntsonMr. William M. HanzalekMr. Philip G, RynnMARITIME ADMINISTRATE ONMr. Frederick SeiboldMr. Norman O. HammerMr, Chao H. L<strong>in</strong>Dr. Walter M. MacleanSHIP STRUCTURE SUBCOMMllTEE LIAISON MEMBERSU,s. cn AST GUARIT ACADEMYLT Bruce Musta<strong>in</strong>U. S. MERCHANT MARINE ACADEMYDr. C, B, KimU. S, NAVALACADEMYDr. Ramswar BhattacharyyaSTATF UNIVERSITY OF NEW YORKMARITIME COLLEGEDr. W. R. PotterWELDING RESEARCH COUNCILDr. Mart<strong>in</strong> PragerNATIONAI ACA 13EMY OF SCIENCFSMARINE BOARDMr. Alexander B, StavovyNATIONAL ACADEMY OF SCIENCESCOMMllTEF ON MARINE STRLfCTUjSMr. Stanley G, StiansenSOCIETY OF NAVAL ARCHITECTS ANDMARINE ENGINEERS-HYITRODYNAMICSCOM Ml~EEDr. William SandbergAMERICANMr. Alexander D. WilsonIRON AND STEEL INSTITUTE


MemberAgencies:Address Correspondenceto:United States Coast GuamlNaval Sea Systems CommandMaritimeAdm<strong>in</strong>istrationAmerican Bureau <strong>of</strong> Sh@p<strong>in</strong>gMilitatySealift CommandShipStructureCommitteeAn InteragencyAdvisoty CommitteeDedicatedto <strong>the</strong> Improvement<strong>of</strong> Mar<strong>in</strong>eStructuresSeptember 6, 1990Secretary,Ship StructureCommitteeU.S.CoastGuard(G-MTH)2100 Sscond Street S.W.Wash<strong>in</strong>gton,D.C. 20593-0001PH: (202)267-0003FAX (202)267-0025SSC-<strong>360</strong>SR-1328USE OF FIBER REINFORCED PLASTICSIN MARINE STRUCTURESFiber <strong>re<strong>in</strong>forced</strong> <strong>plastics</strong> ( FRP ) have been <strong>use</strong>d extensively <strong>in</strong> <strong>the</strong>recreational boat<strong>in</strong>g <strong>in</strong>dustry for more than 30 years. We are nowbeg<strong>in</strong>n<strong>in</strong>g to see applications for more widespread <strong>use</strong>s <strong>of</strong> FRP <strong>in</strong>larger mar<strong>in</strong>e structures. Many traditional naval architects anddesign eng<strong>in</strong>eers are not familiar with <strong>the</strong> processes <strong>use</strong>d <strong>in</strong> <strong>the</strong>fabrication <strong>of</strong> FRP structures nor with <strong>the</strong> term<strong>in</strong>ology associatedwith <strong>the</strong>se processes. Although fundamental design considerationsfor FRP and steel structures are quite similar, <strong>the</strong> design <strong>of</strong>structural details varies drastically and must not be overlooked.This report is <strong>the</strong> most comprehensive study to date on <strong>the</strong> state<strong>of</strong> <strong>the</strong> mar<strong>in</strong>e composites <strong>in</strong>dustry and should for many years serveas an excellent reference and source book for designers andbuilders <strong>of</strong> FRP structures. Over 200 manufacturers provided<strong>in</strong>formation concern<strong>in</strong>g current build<strong>in</strong>g practices and material<strong>use</strong>s. Numerous charts, illustrations, and graphs are <strong>in</strong>cludedand help to expla<strong>in</strong> many <strong>of</strong> <strong>the</strong> concepts <strong>in</strong> <strong>the</strong> report.Rear ~ Admir -tGuard . .Chairman, Ship Structure Committee,.,/.(”” “’-,,4” !;s~{,,,/,{ u’-’’’’” ,,!,. ‘)


METRIC CONVERSIONFACTORSApproxlmma Comr.mlonsto M.tric MecturacApproximateConversionsSymbolWhm YOU Know Multiply bV To F<strong>in</strong>dSymbolwhen YOU Know MultiplvLENG<strong>in</strong>ftVddLENGTH9.6m0.91.6AREA9quaro <strong>in</strong>chn 6.6tquora f-tquuo~ardsquw~ mhtmO.mOaEcantlmoturcwrtimotutnntortkilormtwt~usrm cmtirrwtutcqums motwstquuo rmmrttquwo kilornotorsIucwmmmcmm#mIxr#dkrtdhnmill imotmsmm imomrtmttorsnwtorskilomotors0.040.43.31.10.6‘ AREAquart tantimmtws 0.16tqmrt nwt4r8 1.2quaro k ilomotort 0.4hocwrat {10.000 m$ ] 2.6ttoT&fiozcptqtgalU@3MAS(woi@tt)Oulwm 26 wtmtpourrdn 0.45 kil~~* tons 0.9 tonnmMx10 lb]fluid ou-Cupop<strong>in</strong>ttquwtsgdlontCUMCIoatcubk v-VOLUME616300.240.470.86&0.76miililitorcmill ilhcamillilitomIiwrsIitorcIitmtIitoracubic mmorswbic nwtmc32————=—-TEMPERATURE(exact] Oc Cdsiuc 9/% hh——Fnhrantuit 6/9 kltw C41durranpumm tubtract<strong>in</strong>a ttrnpwturo321—-~kgtml1Iims~3Wum 0.036kil<strong>of</strong>pmt 2.2,torrrrw l?CK)Okg) 1.1VOLUmill illtms 0.03iimrs 2.?liwr8 1.06lit ●rt 0.26cubic maters 36cubic matorc 1.3TEMPERATUwmpwatur- MM 32w 32-40 0 40t 1 I II I r ,-40 –20 I xOco


INTRODUCTIONTechnicalReport Documentotiotr Page1. Report No. 2, Govemmcni Accocxion No. 3. Rocipiont’t Catalog No,SSC <strong>360</strong>1 Ii, Titlt and subtitle I 5. R-port DatoMARINECOMPOSITES June, 1990Investigation<strong>of</strong> FiberglassRe<strong>in</strong>forcedPlastics6. Porform<strong>in</strong>B Orgoni ~atien Cods<strong>in</strong> Mar<strong>in</strong>e Structures?. Authotf,)Eric Greene8. P.rlorm<strong>in</strong>g Organization R*por+ No.SR 13289. Pderrni.H 0r9~izotion Nqmo ad Addresz 10. Work Unit tSo. (TRAIS)Eric Greene Associates,Inc.1SCush<strong>in</strong>gAvenueAnnapolis,Maryland 2140312. Sponsor<strong>in</strong>g Agency Namoand Addf*s~11. Contract m Gront No.DTCG23439-C-2001511 Typomf Repor! and PcriQd C*vorodF<strong>in</strong>al ReportShip StructureCommitteeU. S. Coast Guard2100 SeeondStreet 14. Spo”ror<strong>in</strong>g Ag<strong>of</strong>ic~ CQd-Wash<strong>in</strong>gton,DC 20593-001G-M15. Supol,montory N~*O_16. Ab=tructThe <strong>use</strong> <strong>of</strong> FiberglassRe<strong>in</strong>forcedPlastic (FRP)has <strong>in</strong>creased recently<strong>in</strong> mar<strong>in</strong>e structureswith am<strong>in</strong>imum <strong>of</strong> eng<strong>in</strong>eer<strong>in</strong>ganalysisand design evolution Although<strong>fiber</strong>glasshas ben <strong>use</strong>d formany years <strong>in</strong> small recreationaland high-performanceboats, a range <strong>of</strong> new compositematerialsare now be<strong>in</strong>g utilized for various applications. The objective<strong>of</strong> this documentis to examhm<strong>the</strong><strong>use</strong> <strong>of</strong> FRP and o<strong>the</strong>r compositematerials <strong>in</strong> m’ar<strong>in</strong>ecmwruction, determ<strong>in</strong>eimportantconsiderations<strong>in</strong> past desigq review developments<strong>in</strong> related <strong>in</strong>dustries;prediet areas for fituremar<strong>in</strong>e applications;and recommendfuture researchneeds.Reference <strong>in</strong>formationfor this project <strong>in</strong>cluded <strong>in</strong>vestigations<strong>of</strong> previousresearchers,materialsmanufacturers’data and mar<strong>in</strong>e <strong>in</strong>dustry survey results. The publicationis orgarsiz?d<strong>in</strong>to <strong>the</strong>follow<strong>in</strong>gchapters:. Applications. Materials● Design. Pmformance● Fabrication. Testig● Referenee17. Kw Ward, I 18. DISWI butkn StdtomontFi&r@assRe<strong>in</strong>forcedPlastic (FRP)Composites,Hull Structure,Re<strong>in</strong>forcementMaterial,Res<strong>in</strong>, SandwichConstructionThis documentis availableto <strong>the</strong> public through<strong>the</strong> National TechnicalInformationSenice,Spr<strong>in</strong>@eld, VA 22161 and <strong>the</strong> Mar<strong>in</strong>e TechnicalInformationFacilitv,National MaritimeResearchI Center, K<strong>in</strong>gs Po<strong>in</strong>~jNY 10024-169919. $gcurity Clossif. (<strong>of</strong> this mpmd M. $ocurity Clg@f. (<strong>of</strong> thl ~ pogo) 21. Nm <strong>of</strong> Pmwva 22. PriceUnclassified Unclassified 284.Fwm DOT F 1700.7 (B-T21 Reproduction <strong>of</strong> completod pago authorizedi.,-..,,,.., .”., ~ -.. .(‘\,,, ]%,? ,.,u“’”


Mar<strong>in</strong>eCompositesThe <strong>use</strong> <strong>of</strong> Fiberglass Re<strong>in</strong>forced Plastic (I?RP) has <strong>in</strong>creased recently <strong>in</strong> mar<strong>in</strong>e structures witha m<strong>in</strong>imum <strong>of</strong> eng<strong>in</strong>eetig analysis and design evolution. Although <strong>fiber</strong>glass has been <strong>use</strong>dfor many years <strong>in</strong> small recreational and high-performance boats, a range <strong>of</strong> new compositematerials are now be<strong>in</strong>g utilized for various applications. The objective <strong>of</strong> this document is toexam<strong>in</strong>e <strong>the</strong> <strong>use</strong> <strong>of</strong> FRP and o<strong>the</strong>r composite materials <strong>in</strong> mar<strong>in</strong>e construction; determ<strong>in</strong>eimportant considerations <strong>in</strong> past desigq review &velopments <strong>in</strong> related <strong>in</strong>dustries; predict areasfor future mar<strong>in</strong>e applications; and recommend future research needs.This publication has been developed for <strong>use</strong> by designers and builders <strong>in</strong> <strong>the</strong> HIP mar<strong>in</strong>e<strong>in</strong>dustry. Most <strong>of</strong> <strong>the</strong> materials and applications were drawn from current practice <strong>in</strong> <strong>the</strong> UnitedStates. All data is presented <strong>in</strong> English units, although an extensive set <strong>of</strong> conversion tables is<strong>in</strong>cluded <strong>in</strong> Chapter Seven.The FRP mar<strong>in</strong>e <strong>in</strong>dustry <strong>in</strong> this country is market driven with very little structure.Consequently, little formal eng<strong>in</strong>eer<strong>in</strong>g guidance is available. This document attempts tosummarize <strong>the</strong> works <strong>of</strong> <strong>in</strong>vestigators over <strong>the</strong> past thirty years who have studied both <strong>the</strong><strong>the</strong>oretical and experimental performance <strong>of</strong> FRP <strong>in</strong> a mar<strong>in</strong>e environmentAn <strong>in</strong>dustry survey was performed as part <strong>of</strong> this project to provide <strong>in</strong>put regard<strong>in</strong>g <strong>the</strong> build<strong>in</strong>gpractices and materials <strong>in</strong> <strong>use</strong> today. The responses from over 200 manufacturers are <strong>in</strong>cluded<strong>in</strong> <strong>the</strong> report <strong>in</strong> graphic form.Although formulas are presented to give <strong>the</strong> reader some <strong>in</strong>sight <strong>in</strong>to <strong>the</strong> vsriables that<strong>in</strong>fluence <strong>the</strong> behavior <strong>of</strong> a composite structure, current state-<strong>of</strong>-<strong>the</strong>-art does not satisfactorilypredict <strong>the</strong> exact strength <strong>of</strong> lam<strong>in</strong>ates found <strong>in</strong> mar<strong>in</strong>e construction. The behavior <strong>of</strong> sandwichpanels under extreme dynamic load is only recently be<strong>in</strong>g understood. In addition, a database<strong>of</strong> tested physical properties for <strong>the</strong> myriad <strong>of</strong> materials presented and possible orientations hasyet to be established. This sort <strong>of</strong> comprehensive test program is needed by <strong>the</strong> <strong>in</strong>dustry tosupport <strong>the</strong> rule-based design guidance developed by classillcation organizations.ii,/,,----...,L“ k /,’


INTRODUCTION● “Chapter One APPLICATIONSRecreational Mar<strong>in</strong>e lndustryi iii... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..1Rac<strong>in</strong>g Powerboats, .,, ,,, . . . . . . . . ,,, , . . . . . . . . ...1Rac<strong>in</strong>g Milboats i.. .,, ... . . . ..ii#. ., . . . . . . . . . . ...1Sunfish . . ..i. .,tt# . . . . . . . . ..tt #..... . . . . . . ..ti ...2Boston Whaler ., . . . . . . . ..i ii t..... . . . . . ..iiti . . ...2Block island @,, . . . . . . . . . . . . . . . . . . . ii. i . . . . . . . ...3Laser International . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...3;4$4*mm.mm.mm,**, ,.. mmmm. mmmmm . . ..mmm. . . . . . ...*..Bertr6rn ~::~::~: ~:::::::::::::’.::: ~:~~:::::::~~~;42G$x!%l%?gYacht’’::::::::::::::::::::::::::Canoes and Kayaks . . . . . . .. i....... . . . . . . . . . . ...15Evolution <strong>of</strong> Recreational Boat Construction Techniques ., ,1....1 5S<strong>in</strong>gle-Sk<strong>in</strong> Construction ii, ,,i . . .. ii . . . . . . . . . . . ...16Sandwich Construction .i, ,,i . . ..i. . . . . . . . . . . . . . . ..Res<strong>in</strong> Development ,, . . . ..r . . . . . . . . ,. ..,,,, . . . . . .Unidirectional and Stitched Fabric Re<strong>in</strong>forcement , ., ,6Advanced Fabrication Techniques , . i . i i i t t i . . . . ...6Alternate Re<strong>in</strong>forcement Materials . . . . . . . . . . . . i i i , ,7Commercial Mar<strong>in</strong>e lndust~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .,.,,,,,,8fish<strong>in</strong>glndust ~. . . . . ..ii . . . . . ..i. . . . . . . . . . . . . . . . . . . .. *4.....8AMTMat<strong>in</strong>e, ,, i . .,, ,, . . . . . . . . . . . . . . . . . . . . . . . . ...8Delta Maf<strong>in</strong>e, iii, ,,, ... ,.. .ii iii . . . . . . . . . . . . . ...8Lequerq, ... ,,. .iiii, ,.ii. iii iii. , . . . . . . . . . . . ...8Young Bro<strong>the</strong>rs . . . . . . . . .,, ,,... . . . . . . . . ,,, ,,,,, ,s 9Lifeboats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...9Watercraft America,,,,,,,,...,,. . . . . . . . . . . . . . ...9Schat-Mat<strong>in</strong>e Safe~ . . . ..i . . . . . . . . ..i . . . . . . . . . ...10Utii~Vessels ii. ..it, tii. .ilt. .i. lt ... . . . ..s . . . ..l . . . . . . ...10Boston Whaler i i i . . . . . . . . . . . . . . . . . . ., . . . . . . . . ...10LeComte, ,i. i . . . .. i . . . . . . . . . . . . . ,,, , . . . . . . . ...10Tetiron Maf<strong>in</strong>e SySems . . . . . . .. ii.. ., . . . . . . . . . ...11Passenger Ferries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...11Blount Mar<strong>in</strong>e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...11Karlskronavarvet, AB , ., .,, . . . . . . . . . . . . . . . . . . . ...11ArRide Crafi. , . . . . ..i . . . . . . . . ..i. ., . . . . . . . . . ...12Italcrafl i,. ... ii, .iiii . . . . ..i. ii.. ... s . . . . . . . ...12Commercial Ship Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . ...12Commercial Deep Sea Submersibles . .,, , . . . . . . . . . . . . . . . . . ...13Navigational Aids ... ,**... . . . . . . . . . . . . . . . . . . ,“, ,..1.. ..,,*, 13O~hore Eng<strong>in</strong>eer<strong>in</strong>g .i. hi, . . . . . . . . . .,, . . . . . . . . . . . . . . . . . . ...14Pil<strong>in</strong>g Forms and Jackets, ,,i, ,i, i. ,,, ,, .,...,,,,,14...111


Mar<strong>in</strong>e CompositesMilitarv. Amlication . . so fComDosites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ,15Navy . . . . . . . . . . . . . . . . ...*.., . . . . . . . . . ,,, ,. .,,, . . . . . . . . . ,,, 15Submar<strong>in</strong>es, ,., ,., ,,, iiii, ,,, . ..i . . . . . . . . . . . . ...15Patrol Boats, , .,, ,,, . . . . . . . . . . . . . . , . . . . . . . . . . ...16M<strong>in</strong>e Counter Measure Vessels , ..,,......,,..,..,16Components ...,,,,.,.......,..,,. . . . . ... . . . ...18Army . . . . . .,, ,,,.. . . . . . . . . ,s, ,,..s .s . . . . . . ,,, .ss.. . . . . . . . . 19Transportation Industw ,,,,,,, ,,,,,,, ,,,,,, ,., ,,,,, .s . . . . . . .,, ,,,,. . . . .21Automotive Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,.21MOBIK . . . ..ii. ... ,iiii. ... , ii.,.,,.. . . . . . . . . ...21Ford, ,, ...,,,.. .,, ,,,*.. . . . . . . . . . ,,, ,,,,,, . . . . .22General Motors, ,.. .iii, , . . .. iii.. . . . . . . . . . . . ...23Ch~sler .,, .,, .,, ,,, .ii i ii,,.,... ,, . . . . . . . . . . ...23Leahpt<strong>in</strong>gs .,,,,,.,,,.......,.,,,. . . . . . . . . . . . ...24Frames, ,,, ,, ... ,,,,,* . . . . . . . . . ,., !!,... . . . . . . .24Safety Devices ... ,,,,.. . . . . . . . . . .,, ,,,,,, . . . . . .24Manufactur<strong>in</strong>g Technologies ,, ., ., , . . . . . . i i , i i i , ,25Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...26Cargo Handl<strong>in</strong>g ..i i i i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...27lndustfial Use<strong>of</strong> FRP, , . . . . . . . . . . . . . . , . . . ..i . . . ..i. i . . . . . . . . ..i. i.iiitti28Pip<strong>in</strong>g Systems .,, iii,,,,,...,,,,. . . . . . . . . . . . . . . . . . . . . . . . ...28Pipe Construction ..i . . . . . .. iii... , . . . . . . . . . . . ...28Pip<strong>in</strong>g Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...28En<strong>in</strong>eer<strong>in</strong>g Considerations . . . . . . . . . . . . . . . . . . . ...28FRPPip<strong>in</strong>g Appications Y . ..i . . .. i.. , ., . . . . . . . . . . . . . . . . . . . . ...30Oillndust~ .i. ,,. ... iii, . . . .. iii. ,, . . . . . . . . . . ...30Coal M<strong>in</strong>e . . . . . . . . . . . . . . ..tt iii... . . . . . . . . . . ...31Paper Mill iii. i,, ., . . . . . . .. i....... . . . . . . . . . . ...31Power Production . . ..t . . ..i. .i . . . . . . . . . . . . . . . ...31Tanks, ,,, ,,, ,i, iii, ,,, ,,, ,,, i,,. . . . . . . . . . . . . . . . . . . . . . . . ...32Confiruction, . . . . ..ti. t . . . . .. i... . . . . . . . . . . . ...32Application “,. . . ...1 .,, ,,,,!, ,,, ,, . . . . . . . . . . . . .32Air Handl<strong>in</strong>g Equipment ,, . . . . . . . . . . . . . . ,,, ,,,,. ,,, ,,,.. . . . .32Commercial Ladders . i . . . . .,, ,,,1,. . . . . . . . . . . . . . . . . . . . . . . . .33Aerial Towers, ,,, i. i,,,,,...,,,, . . . . . . . . . . . . . . . . . . . . . . . . ...33Aerospace Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...34Bus<strong>in</strong>ess and Commercial, . ..i. i,. . . . . . . . . . . . . . 1. . . . . . . . . ...35Lear Fan21~. i,, ,,itt . . . . . . . . ..i. .,, ,,, ,. . . ...35Beech Starship .,, ,,, .,,.,,,......,........,.,,,35Boe<strong>in</strong>g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...35Airbus, ,,, ,,, i,, i i i,, ,,, . . . . . . . , . . . . . . . . . . . . ...35Milita~ .,, , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...35Advanced Tactical Fighter (ATF) . . . . , . . . i i . i . . . . , ,35Advanced Technolo y Bomber (B-2) , . . . i i , , , , . ...36Second Generation # rltish Harrier ‘JumpJet” (AV-8B) . .,, , . .,, , . . . . . . . . . . . . . . . . . . . . . . . ...36Navy Fi hter Aircrafl (F-18A) . . . . . . . . . . ..i. .t . . . ...37Osprey Yilt-Rotor (V-22) , . . . . . . . . . . . . . . . . . . . . . . ...37Helico~ters, ,.. iii, ,,, ,,. ..i. ii,. ,,, ,,, ..,,.....,,,,,..,,,,37Rotors i.iii. , . . . . ..i . . . . .. i..... . . . . . . . . . . . . ...37Structure and Components . . . . . . . . . . . . . . . . . . . ...37Experimental, ,,. ii, ,,, ,.. .,i. ,i. . , .,, ,,, ,,, , . . . . . . . . . . . ...38Voyager ,Daedalus,,, . . . . ,,,,,,, ,,,,.,. .,,,,ss ,,,,... . . . 38,,, ..,,. ,,, ,,,,, ,, . . . . . . ,,, ,,,,, . . . . . .38iv;


INTRODUCTIONChader Two MATERIAI=SComposite Materials . . . . .. i....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..41Re<strong>in</strong>forcement Materials . .,, ,,, ,.. . . . . . . . . . . . . . . . . . . . . . . . ...41Fiberglas, .ii, ,,, ,, i,, ,, . . . . . . . . . ,,, ,, ...,....,41Polymer Fibers . . . . . . ..ii. .. t...... . . . . . . . . . . . ...41Carbon Fibers tt, t, . . . . . . . . . . .. iit ,, . . . . . . . . . ...43Re<strong>in</strong>forceme;’~g$ruction. .iiii. i i,i, , . . . . ..i . . . . . . . ..ti. .fijKnits, ,, :::::::::::::;::::::::::::: :::: :;:: ::: ..46Omnidirectional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...46Unidirectional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...46Res<strong>in</strong>s i . . . . . . . . . . . . . . . . . . ..i. i.i ., . . . . . . 1. . . . . . . . . . . . . . ...47Polyester ii, , . . . . . . . . . . . ..ii. i.. r. . . . . . . . . . . . ...47;~~~Etier, ,,, , . .,, . . . . . . . . . . . . . . . . . . . . . . . . . . ...48., *,...,, . . . . . .48Thermoplast’ic~:::: :::: :::: :::: :::i ,, . . . . . . . . . ...48Core Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...49Balsa i,, ., . . . . . . . . .. i i i . . ..*...... ., . . . . . . . . ...49Thermoses Foams ..i. i.iii, ,i #,... . .,........,,,49Syntactic Foams, ..ii. ii, i.. t...... ., . . . . . . . . ...50Cross L<strong>in</strong>ked PVC Foams t,. tt . . . . . . . .,........,,,50Unear PVC Foam, ., . . ..ii. .ii. i. . .,, ,,, , . . . . ...51tii;:~mmb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51,,, ,,,,, ,* ...,,. . . . ,,, ,!,,$! t# i...... .52FRP Plank<strong>in</strong>g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52Core Fabfics . . . . . . . . . . . ..ii. ..tt* ,,, ., . . . . . . ...52Pl~ood, ,,, . . . . . . . . . . . .. i i........ 1.,........153Cost Considerations i i i,, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...53Lam<strong>in</strong>ate Property Assumptions . . . . . i , , t t i #. . . . . i .54Re<strong>in</strong>forcement Description i.. .i . . . . ,, . . . . . . . . . ...54Test Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..$~Fiber Weight Percentage ,. !,..... . . . . . . . . . ,.CCIIFiber Volume Percenta ett i,,..... . . . . . . . . . . . ...55Dty Fiber and Uncured B es<strong>in</strong> Density. . . . . i i ., . . . ...55Cured Lam<strong>in</strong>ate Density .. i i,....... . . . . . . . . . . ...55D~Hber Thickness, . . . . . . . . . ... . . . .ii, iiitit . . . ...55Fiber Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...56Res<strong>in</strong> Weihtii i,tt, ,.. .,iii. iii. i.. . .,, , . . . . ...56Lam<strong>in</strong>ate % eihtiii ..iitt. t . . . . . . . . . . . . . ..itt ,,56Re<strong>in</strong>forcemen7Cost Data *t, i....... . . . . ..i. ttiii56Total Material Cost . . . . . . . . ..i. ..i . . . . . . . . . . . . ...56Labor Cost, , . . . . . . . . . . . . ..ii. tt*. i , . . . . . . . . . ...56Total and Relative Ply Cost . . . . . . ...*. . . . . . . . . . ...56Strength Data . ..i. iii, i . . . . . . .. i... . . . . . . . . . ...56S<strong>in</strong>gle Sk<strong>in</strong> Strength Criteria Thickness Comparison . ..56S<strong>in</strong>gle Sk<strong>in</strong> Stiffness Criteria Thickness Com~arison i i .57Sandwich Construction Tension Criteria ThicknessCom~afison ..iii. .F . . . . . . .. F.. i.i . . . 1. . . . . . . ...57Sand’with Construction Compression CriteriaThickness Comparison ii,.....,.. . . . . . . . . . . . . . . .Sandwich Construction Stiffness Criteria ThicknessComparison ..i. i.4t* . . . . ..1. .i ii. . 1. . . . . . . . . . .Cost Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5859Re<strong>in</strong>forcement Description ...,.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii. 60]entEng<strong>in</strong>eer<strong>in</strong>g Properties ,,, ,,,.. . ...,,,, . . . . . . . . . . . . . . . . . . .6858


INTRODUCTIONSandwich Panel Flexural Stiffness ,,, i....., . . . . . . . . . . ,,, ,,, ,, 110Design <strong>of</strong> Details i.. ,ii. hi,,,,,,.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..114Secondary Bond<strong>in</strong>!?.l, l,t* . . ..l14Deck dge Connection: : : : : : : : ;:::::... . . . . . ...115Centerl<strong>in</strong>e Jo<strong>in</strong>ts .t . . . . . . . . . ..t. .t ,, . . . . . . . . . ...118Keel Attachment . . . . . . . . . . . . . . . . . . . . . . . . . . . ...119Bulkheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...121Stiffeners $ii . . ..i . . . . . . . ..iqtt i... . . . . . . . . . ...1122Eng<strong>in</strong>e Beds . . ..i. .t. ii . . . . . . . . . .. ii . .,.,,,,,.,126Hardware .i. i.i, t, . . . . . . . . . . . . . . . .,..,,.......126Thickness Transition . ..ii. .i . . .. iii , .,......,....129Hatches and Portlights . . . . . . ..iii. .i ,,, ,,, ,. . ...129Through-Hulls . . . . . . . . . . ..i. ..ii. i. *i . . . . . . . ..i.l29;~$$gr$tiachment .i i i t . . . . . . . . . . . . . . . . . . . . ...130... ,,,,,, . . . . . . . . . ., . . . ..!1 tli*iI... . . 130Chapter Four PERFORMANCEFatigue, ,,, ,,ti . . . . . . . . . . . . . . ..t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133Composite Fatiue Theory . . . ..i. i... . .,.,,,.,,,,,,,,......136Fatigue Test Daa. ? ..i. .i . . . ..ii iii .,, ,, . . . . . . . . . . . . . . . . ...137impact . . . ..i . . . . ..ll ti c. . . . . . . . . . . . . . . . . ...1.......................139impact Des<strong>in</strong> Considerations, .tt. . . . . . . . . . . . . . . . . . . . . ..ttt]~~Theoretical 8 envelopments ,, CII**. . . . . . . . . . . . . . . . . ,, ,11*.. .Delam<strong>in</strong>ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...111..143Water Absorption ... .i. ... .. i,,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...146Blisters . . . . . . . .. i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .,,,,.,......149Case -Histories . . . . . . . . . . . . . . .. iii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..154US Coast Guard 40 foot Patrol Boats . . . . . . . . . . . . . . . . . . . . . . ..1WSubmar<strong>in</strong>e Fai~ater . . . . . . . . . . . . ..t. ,,, . . . . . . . . . . . . . . . . . ..l~Gel Coat Cr;;;$~i, ii, t . . . . . . . . .. ii i . . ..i. .ii. ti.l~. .i. ..l~.,, . . . . . . . . . . . . . . . . . . . . . iii,,, 156Type n::::: :::: :,, tt . . . . . . . . . .. ii.. . .,,,,,,...157Type Ill ... .,1,, . . . . . . . . . . . . . . . . ... .,,** . . . 157Core Separation <strong>in</strong> Sandwich Construction . . . . . . . . . . . . i . . . ...157Failures <strong>in</strong> Secondary Bonds ..i it i,. . . . . . . . . . . . . . . . . . . . . . ...158Ultraviolet Exposure ,, **..,, . ...,,.. . ,., ,..., ,, s...., . . . . . . 158Temperature Effects . i i .,, ,,, ,,, . . . . ....,......,t,........:~~~Repair . i . .‘Major ~ng~&S~nbarn~ge’::::::~:~ :::ll; :::1:~~: ~~~~11111i161Major Dama e <strong>in</strong> Sandwich Construction ., . . . . . i . i i , , , . . . ...1628 oreDebond<strong>in</strong>g ... .,...1 . . . . . . . . . . . . . . . . . . . . . 163Small Non-Penetrat<strong>in</strong>g Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...163Blisters i . . . . . ..i. i . . . . . . . . . . . . . . . ,,. , . . . . . . . ..i . . ..i . . . . ..laChader Five FABRICATIONManufactur<strong>in</strong>g Processes . . ..i i i i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..l M$ old Build<strong>in</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..ii. .l~. ..l~v Ius, ,,, . . . . ..i .,, ,,11.s . . . . . . . . . .,, ,,,,,, ,,, 166Mods Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...166S<strong>in</strong>gle Sk<strong>in</strong> Construction l o. . . . . . . . . . ..r, l.t. l . . . ..ili. .il. ..lMCored Construction from Female Molds . . . . . . . . . . . t . . . . . . ...167Cored Construction over Male Plugs . . . . . . . . . . . . . . . . . . . . . ...167vii


Mar<strong>in</strong>e CompositesEquipment, ,,, .iiii, i,,,,,,,,,,, ,,, ,,, ,,, ,,, ,,, ,,, .,..,,,69&?%@ &%%%;”&ns’ :::::::::::::::::Impregnator ,,, ,s .,,,- ,,, - .!, ,,,,, ,,, ,,,,, ,,,,,,Health Considerations,,,,,,,,.,,, ,,, ,,, ,,, ,,, ,,, ..,,,,,,,,Future Trends,,,,,,,,,,,,.,.,,,,,, ,,, ,,, .,,,.....,,,,,,,,,Open Mold Res<strong>in</strong> Transfer Mold<strong>in</strong> (RTM) , , , , , , , , , ,Thermoplastic-Ther noset Hybrid 9recess .,, ,,,,,,,Post Cur<strong>in</strong>g,,, ,Hand Lay-Up,,,,,,.,,,::::: ,,, . :::::::::::::::::::::::::Spray-Up . . . . . . . . . . . . . . . . . . ,,, , .,, ,,, ,.. .,, ,,, ,,, ,,, ,s, ,Compression Mold<strong>in</strong>g .i i,,,, ,,, , ,,, ,,, ,,, ,,, ,,, ,,, ,, .,,,,filamen t~nd<strong>in</strong>g, ,iii, ii.,, ,,, , ,,, ,,, ..,.,.,,,,,,,,.,,,,Pultrusion iii, i,..,,,,,,,,,,,, s,,Vacuum Ba Mold<strong>in</strong>g, ,,, , . . . . . ..l l....::::::: :::l:;lll:::Autoclave 8 old<strong>in</strong>i,, ,,,,, ,,, ,,,,, ,,,,, ,,, ,,,,,Res<strong>in</strong> Transfer Mol<strong>in</strong>g:::::::: 3ii,. ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,Quali~Assurance t, . . . . . . . . . . . . . . , ..,,....,,,..,,,,........,,,,,,,, ,Materials ,, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,,, ,,, ,,, ,,, ,Re<strong>in</strong>forcement Material, ,,, ,.. .i iii i i,,,,,,.,,,,Res<strong>in</strong>, ,,i, ,,, ,,, ,,, hi,,.,,,,,,, ,,, ,,, ,, .,.,,,,Core Material, ,,, ,,, ,,, ,,, ,., ,,, , ,,, ,,, ,,, ,,, ,In-Process Quality Control, ,,, ,. ..,, ,,, . . . . . . . . . . . . . . . . . . . . .Cha@er Six TESTINGMechanical Test<strong>in</strong> . .,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,, ,,, ,,, , .,,,,,,197ASTM ? RPM;;; f; Tests,,,,,,,,,,,,,,,,,, , .,,,,,,,,,.,,,,,,197,,, ,,,,, ,, ., .,.,,, ,,, ,,,,, ,,, ,,,,, ,.,,,, 197Rbe~and Fabtic, ,,, ,i, hi...,,,, ,,, ,,, .,,,,,,,198Core Materials, ,. i.,,,,,,,,,,,,,,, ,,, ,,, ,,, ,,, ,199Solid FRP Lam<strong>in</strong>ates,,,,,,,,,.,,,,. ,,, ,,, ,,, ,,, ,201FRPSandwich Lam<strong>in</strong>ates,,.,,,,,,, ,,, ,,, ,,, ,,, ,,204ASTM FRPStructure Tests,,,,,,,,, ,,, ,,, ,,, ,,, ,, ,205SACMAFRP Material Tests, ,,, ,, i,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,, ,205Sandwich Panel Test<strong>in</strong>g,,,,,,,,,,,, ,,, ..,,,,,,,,,,,,,,,,,,,208Background, ,,, ,,, ,,, ,,, . . . . . . . . . ,,, , .,,,,,,,,208Pressure Table Design ,,, ,,iii, ,,, ,,, ,,, ,,, ,,, ,,208Test Results, ,,, ,,, iii, ,,, hi,,,,,,, ,,, ,,, ,,, ,,, ,208Material Test<strong>in</strong>g Conclusions , , , , , , , , , i , , , , , , , , , , ,209Accelerated Test<strong>in</strong>g, ,,. hi,,,,,,,, ,,, ,,, ,,, ,,, ,,211Rre Test<strong>in</strong>g, ,., ,,, ,,, ,,, ,, iii.,,, ,,, ,,, ,,, ,,, ,,, .,,,,.,,,,,,,,,,, ,,, ,212Small Scale Tests iiiii, ,,, ,i, i,, ,.i . . . . . . . . . . . . . . . . . . . . . ...212O gen-Tem erature Limit<strong>in</strong> Index (LOI)Tes Y - ASTM d’2863 (Modifie8 ,212N.BS. Smoke Chamber-ASTM E~2’ :::::::::::::,213Cone Calorimeter -ASTM P190, ... .ii ,,, ,,, .,,,,214Radiant Panel -ASTM E162 , . . . . . . . . . . . . . . . . . ...214Intermediate Scale Tests hi..,,,,,,, ,,, ,,, , ..,,,,,,,,,,,,,,,215DTRCBurn Through Test, , iii....,,, ,,, ,,, , ..,,..215US, No Quarter Scale Room Fire Test , , , , , i , , , , ,216One MeYer Furnace Test - ASTM E 119 (Modified) , , ,216Large Scale Tests, ,,, ,,i iii,,,,,,, ,,, ,,, , .,,,,,,,,,,,,,,,,216Corner Tests i iii,,,,,,,,,....,.,,, ,,, ,,, ,,, ,,, ,216Room Tests.,,,,,,.,,.,,,,,,,,,,,, ., .,,,,,,,,,,216Summary <strong>of</strong> Proposed MIL-STD-2202 (SH) Requirements , , , , , , , ,216777778;:81828384858687889090929494...mu


Mar<strong>in</strong>e CompositesReview <strong>of</strong> SOLAS Requirements for Structural Materials <strong>in</strong> Fires ..219Nondestructive Test<strong>in</strong>g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,, . . . . . . ...11224Radiogra~hy Techniques . ...,..... ., ..,,,,,,........,,,...224Ultrasonic <strong>in</strong>spection . . ..ttl t..... . . . . . . . . ..1 . . ..$ 111......224Acoustic Emission, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..225Thermography ... ,,*,,. . . . . ,,, ,0.s.. . . . . . . . . . . . . . . . . . . I*. 225SevenREFERENCERules and Re ulations1?S. CoastAmericanConversion Factors . iGlossary . . . . . . . . . . . .:~e~ter References .. . . . . . . . . . . . . .,,, ,,... . . . . . . . . . . . . . . . . I! *..... .W...c.c *. ...,,. 227Guard, itt, . . ..i. .i, it, tl. ..t. .t, ,i . . . . . . ..rt 11227Subchapter C - Un<strong>in</strong>spected Vessels i. i i.. , t t t t t. 227Subchapter H - Passenger Vessels . . i i i i . i t . i . . ...228Subchapter I - Cargo and Miscellaneous Vessels .. ,229Subcha ter T ~Small Passenger Vessels . . . . . . . . . . ,229Bureau oShippmg ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..2wRules for Build<strong>in</strong> and Class<strong>in</strong>g Re<strong>in</strong>forcedPlastic Vesels178 v . . . . . . . ..t. ttt t... . . . . . . ..ttt230Guide for Build<strong>in</strong> and Class<strong>in</strong>g OffshoreRac<strong>in</strong>g Yachts, 186 8 . . . . . . ..i . . .. t... . . . . . . . . ...231Proposed Guide for Build<strong>in</strong>g and Class<strong>in</strong> High SpeedCraft (Commercial, Patrol and Utility Cra I ) . . . . . . ...232Proposed Guide for High S eed andDisplacement Motor Yachft........ . ...,,,,.....233Classification . . . . ..t. t.. t . . . . . . ..t ,, . . . . . . . . ...233Hull Cetification, ii, . . . . . ..it. .tt i . . . . . . . . ..ttt235Plan Approval i . . . . . . .. i i i........ i....tttt235.235. . . . . . . . . ..!!.*. . . ...0.. .. !*.... . . . . . . . . ,~~...., 236,,...1. . ...!.. . . . . . . . l.w..t. . . . . . . . ,.,,,,~ ~,,,,, 2429L7,, . . . . . . ...!*! . . . . . . . 1 . . . . . . . . . . . . . ,1,,,,, ,J.,, , Ltif... ,,,.. . . . . . . . . I I*..,.. . . ...!!! s, ...,,, ,,,,,,~~ 268ix


Mar<strong>in</strong>e ComDosifesThis page<strong>in</strong>tentionally left blank


Ch@er OneAPPLICATIONS● ✍-O*O ● - ,Over30 years <strong>of</strong> FRP boat build<strong>in</strong>g experience stands beh<strong>in</strong>d today’s pleasure boats. Complexconfigurations and <strong>the</strong> advantages <strong>of</strong> seamless hulls were <strong>the</strong> driv<strong>in</strong>g factors <strong>in</strong> <strong>the</strong> development<strong>of</strong> FRP boats. FRP materials have ga<strong>in</strong>ed unilateral acceptance <strong>in</strong> pleasure craft beca<strong>use</strong> <strong>of</strong>light weight, vibration damp<strong>in</strong>g, corrosion resistance, impact resistance, low construction costsand ease <strong>of</strong> fabrication, ma<strong>in</strong>tenance and repair.Fiberglass construction has been <strong>the</strong> ma<strong>in</strong>stay <strong>of</strong> <strong>the</strong> recreational boat<strong>in</strong>g <strong>in</strong>dustry s<strong>in</strong>ce <strong>the</strong> mid1960’s. Mer about 20 years <strong>of</strong> development work, manufacturers seized <strong>the</strong> opportunity tomass produce easily ma<strong>in</strong>ta<strong>in</strong>ed hulls with a m<strong>in</strong>imum number <strong>of</strong> assembled parts. Much <strong>of</strong><strong>the</strong> early FRP structural design work relied on trial and error, which may have also led to <strong>the</strong>high attrition rate <strong>of</strong> stat-up builders. Current lead<strong>in</strong>g edge manufactur<strong>in</strong>g technologies aredriven by rac<strong>in</strong>g vessels, both power and sail.Rac<strong>in</strong>g PowerboatsThe structural components <strong>of</strong> a powerboat called <strong>the</strong> Aramid Arrow arc! an aramid prepreg and ~honeycomb sandwich composite. The boat weighs 3300 pounds, consumes 11 gallons <strong>of</strong> fuelper hour at 32 lmots, and has a top cruis<strong>in</strong>g speed <strong>of</strong> 42 knots. [1-1]The w<strong>in</strong>ner <strong>of</strong> <strong>the</strong> 1984 “Round Brita<strong>in</strong> Powerboat Race” was White Iveco, which averaged ashigh as 69 knots on one leg <strong>of</strong> <strong>the</strong> race. The hull is constructed <strong>in</strong> a sandwich configurationwith glass mathramid over 0.8 <strong>in</strong>ch Contourkore@ (bottom), 0.4 <strong>in</strong>ch Contourkore@ (sides), and0.5 <strong>in</strong>ch core (deck). The 36 foot hull and deck structure weighs 4600 pounds. [1-2]Rac<strong>in</strong>g boats employ advanced and hybrid composites for a higher performance craft and driversafety. Fo<strong>the</strong>rgiU Compositm Inc., Benn<strong>in</strong>gton, VT, has designed, tested and manufactured asafety cell cockpit for <strong>the</strong> rac<strong>in</strong>g boat driver. The safety cell is constructed <strong>of</strong> carbon andaramid <strong>fiber</strong>s with smrnid honeycomb core. This structure can withstand a 100 foot drop testwithout significant damage. Dur<strong>in</strong>g <strong>the</strong> Sacramento Grand Prix, three drivers <strong>in</strong> safety cellequipped boats survived <strong>in</strong>jury from accidents. The performance advantage <strong>of</strong> advancedcomposites was clearly demonstrated <strong>in</strong> 1978 <strong>in</strong> <strong>the</strong> Offshore Rac<strong>in</strong>g circuit, where boatsconstructed us<strong>in</strong>g aramid <strong>fiber</strong> re<strong>in</strong>forcement won 8 <strong>of</strong> <strong>the</strong> 10 races, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> U.S. and <strong>the</strong>World Championships. [1-3]Rac<strong>in</strong>g SailboatsOver <strong>the</strong> past ten years, <strong>the</strong> American Bureau <strong>of</strong> Shipp<strong>in</strong>g (ABS) has reviewed over 400different design plans for rac<strong>in</strong>g yachts. Designers <strong>use</strong>d <strong>the</strong> “ABS Gui& for Build<strong>in</strong>g andClass<strong>in</strong>g Offshore Rac<strong>in</strong>g Yachts” [1-4] for scantl<strong>in</strong>g development. Some <strong>of</strong> <strong>the</strong>se vessels havesuccessfully endured very heavy wea<strong>the</strong>r for long periods <strong>in</strong> events such as <strong>the</strong> ThitbreadRound <strong>the</strong> World Race” and <strong>the</strong> “Sydney Hobart Race.”The 77 foot carbon-glass-foam sandwich ketch Great Brita<strong>in</strong> 11,launched <strong>in</strong> 1973, won <strong>the</strong>1975-1976 “F<strong>in</strong>ancial Times Clipper Race” and set a record <strong>of</strong> 134.5 days for <strong>the</strong> 1977-1978“Whitbread Round <strong>the</strong> World Race.” British Oxygen, a 70 foot GRP ocean rac<strong>in</strong>g catamaranlaunched <strong>in</strong> 1974, won <strong>the</strong> “Round Brita<strong>in</strong> Race” that year. Launched <strong>in</strong> 1978, <strong>the</strong> GreatBrita<strong>in</strong> IV was a carbon-glass hybrid composite ocean rac<strong>in</strong>g trimaran which won its first event,<strong>the</strong> 1978 “Round Brith Race.” The Brittany Ferries GB, a 65 foot carbon-aramid-foam1


RecreationalMar<strong>in</strong>eIndustryA4ar<strong>in</strong>eCompositessandwich composite trimaran, won <strong>the</strong> 1981 Two-Handed Transatlantic Race. The E~Aquita<strong>in</strong>e 11was a 60 foot catamaran and, at <strong>the</strong> time, <strong>the</strong> largest structure built <strong>in</strong> carbon <strong>fiber</strong>.The Fmnule TAG was <strong>the</strong> world’s largest rac<strong>in</strong>g catamaran when it was launched <strong>in</strong> September1983. The hulls are aramid-epoxy prepreg and measure 80x 42 feet, and <strong>the</strong> sail<strong>in</strong>g weight is20,000 pounds. This is possibly <strong>the</strong> fastest sail<strong>in</strong>g yacht <strong>in</strong> <strong>the</strong> world, hav<strong>in</strong>g covered 524nautical miles <strong>in</strong> 24 hours and averag<strong>in</strong>g 21.8 knots. One <strong>of</strong> tlm lightest rac<strong>in</strong>g hulls built was<strong>the</strong> 35 foot Sumner W<strong>in</strong>e, a contender for <strong>the</strong> British Admirals Cup, which weighed 580pounds just out <strong>of</strong> <strong>the</strong> mold. Her construction was Div<strong>in</strong>ycell sandwich with unidirectionalcarbon <strong>fiber</strong>s. A carbon <strong>fiber</strong> rudder was also <strong>use</strong>d. The 60 foot carbon framed trimamnApricot won <strong>the</strong> 1985 “City <strong>of</strong> Plymouth Round Brita<strong>in</strong> and Ireland Race,” <strong>the</strong> 1985 “TAGRound Europe Multihull Race,” and Class II <strong>of</strong> <strong>the</strong> 1986 “Transatlantic Race.” Apricot iscapable <strong>of</strong> 30 Imots under full sail. The Colt Cars GB H, built by Mitsubishi Mar<strong>in</strong>e as anentrant for <strong>the</strong> 1985-1986 “Whitbread Race,” was at <strong>the</strong> time <strong>the</strong> world’s largest monocoquecomposite yacht. The UBS Switzerland was <strong>the</strong> fist boat to cross <strong>the</strong> l<strong>in</strong>e at <strong>the</strong> end <strong>of</strong> <strong>the</strong>1985-1986 ‘TVhitbread Race,” The 80 foot, 4400 pound hull was constructed with aramidprepreg over aramid honeycomb core and additional aramid fabric result<strong>in</strong>g <strong>in</strong> a hull thickness<strong>of</strong> 0.16 <strong>in</strong>ches.The Spectrum 42 cruis<strong>in</strong>g catamaran <strong>in</strong>corporates <strong>the</strong> same structural t~chniques and materialsas <strong>the</strong> rac<strong>in</strong>g catamarans. The lam<strong>in</strong>ate is vsried throughout <strong>the</strong> boat to achieve optimalstrength and <strong>fiber</strong> orientation. Unidirectional, aramid and E-glass tri-axial <strong>fiber</strong>s are <strong>use</strong>d.Carbon <strong>fiber</strong>s are <strong>use</strong>d <strong>in</strong> <strong>the</strong> crossbeam and <strong>in</strong> areas where extra re<strong>in</strong>forcement is needed. Theboat’s <strong>in</strong>itial production weight was estimated to be 30% lightm than any production multihull<strong>of</strong> equivalent size. [1-5]Several classes <strong>of</strong> boats were pioneers for various construction and production techniques andare presented here as illustrations <strong>of</strong> <strong>the</strong> <strong>in</strong>dustry’s evolutionary process.SunfishThe perennial sunfish has se<strong>in</strong>ed as <strong>the</strong> <strong>in</strong>troduction to <strong>the</strong> sport for many sailors. Thesimplicity <strong>of</strong> <strong>the</strong> lanteen rig and <strong>the</strong> board-like hull make <strong>the</strong> craft ideal for beach<strong>in</strong>g andcsrtopp<strong>in</strong>g. Alcort has produced over 250,000 <strong>of</strong> <strong>the</strong>m s<strong>in</strong>ce <strong>the</strong>ir <strong>in</strong>ception <strong>in</strong> 1952. Thebasically two-piece construction <strong>in</strong>corporates a hard ch<strong>in</strong>e hull to provide <strong>in</strong>herent structuralstiffen<strong>in</strong>g.Boston WhalerBoston Whaler has manufactured a l<strong>in</strong>e <strong>of</strong> outboard runabouts s<strong>in</strong>ce <strong>the</strong> early 1960’s. The 13foot tri-hull has been <strong>in</strong> production s<strong>in</strong>ce 1960 with over 70,000 built. The greatest sell<strong>in</strong>gfeature <strong>of</strong> all <strong>the</strong>ir boats is <strong>the</strong> uns<strong>in</strong>kable hull construction result<strong>in</strong>g from a thick foamsandwich construction. Hull and deck sections are sprayed-up with ortho-polyester res<strong>in</strong> to a33% glass content <strong>in</strong> massive steel molds before <strong>in</strong>jected with an expand<strong>in</strong>g urethane foam.The 1% to 2V2 <strong>in</strong>ch core provides signif~cant strength to <strong>the</strong> hull, enabl<strong>in</strong>g <strong>the</strong> sk<strong>in</strong>s to be fairlyth<strong>in</strong> and light. Ano<strong>the</strong>r <strong>in</strong>terest<strong>in</strong>g component on <strong>the</strong> Whalers is <strong>the</strong> seat re<strong>in</strong>forcement, whichis made <strong>of</strong> <strong>fiber</strong>glass <strong>re<strong>in</strong>forced</strong> Zytel, a <strong>the</strong>rmoplastic res<strong>in</strong>.


ChapterOneAPPLICATIONSBlock Island 40The Block Island 40 is a 40 foot yawl that was designed by William Txipp and built by <strong>the</strong>American Boat Build<strong>in</strong>g Co. <strong>in</strong> <strong>the</strong> late 1950’s and early 1960’s. At <strong>the</strong> time <strong>of</strong> construction,<strong>the</strong> boat was <strong>the</strong> largest <strong>of</strong>fshore sailboat built <strong>of</strong> <strong>fiber</strong>glass. Intended for transatlanticcross<strong>in</strong>gs, a ve~ conservative approach was taken to scantl<strong>in</strong>g deterrnhation. To detmn<strong>in</strong>e <strong>the</strong>damage tolerance <strong>of</strong> a hull test section, a curved panel was repeatedly run over with <strong>the</strong>designer’s car. The mat/woven rov<strong>in</strong>g lay-up proved adequate for this trial as well as manyyears <strong>of</strong> <strong>in</strong>-service performance. At least one <strong>of</strong> <strong>the</strong>se craft is currently enjoy<strong>in</strong>g a secondrac<strong>in</strong>g career thanks to some keel and rig modifications.Laser InternationalDoyle and Hadley-Coates applied ama<strong>the</strong>matical model to <strong>the</strong> case <strong>of</strong> a Laser 14foot rac<strong>in</strong>g d<strong>in</strong>ghy. The model successfullyanalyzed <strong>the</strong> ca<strong>use</strong>s <strong>of</strong> structural failure fromlaunch<strong>in</strong>g and beach<strong>in</strong>g such boats <strong>in</strong> SaudiArabia. [1-6]Laser International <strong>in</strong>vested $1.5 million <strong>in</strong><strong>the</strong> development and tool<strong>in</strong>g <strong>of</strong> a new,bigger boat, <strong>the</strong> 28 foot Farr Design GroupLaser 28. The Laser 28 has a PVC foamcore deck with aramid fabric <strong>in</strong>ner and outersk<strong>in</strong>s. A dry sandwich mold is <strong>in</strong>jected witha slow cur<strong>in</strong>g liquid res<strong>in</strong> through multipleentry ports, start<strong>in</strong>g at <strong>the</strong> bottom <strong>of</strong> <strong>the</strong>mold and work<strong>in</strong>g upward. [1-7]k\Figure 1-1 14 Foot Laser Sailboat[Laser International]Figure 1-2 International J/24 Sailboat[J /Boats]J/24The J/24 fractional rigged sloop has beenmanufactured s<strong>in</strong>ce 1977 at <strong>the</strong> rate <strong>of</strong> about500 per year. The vessel has truly become auniversally accepted “one-design” classallow<strong>in</strong>g sailors to race on a boat-for-boatbasis without regard for handicap allowances.Part <strong>of</strong> <strong>the</strong> fleet’s success is due to <strong>the</strong>manufacturer’s market<strong>in</strong>g skills and part isdue <strong>the</strong> boat’s all-around good performance.The hull construction is cored with“Contourkore” end-gra<strong>in</strong> balsa. Tillotson-Pearson manufactures J/Boats along withFreedoms, Rampages and Aldens. Thecompany supports extensive R & D andquality control programs.3


RecreationalMar<strong>in</strong>eIndustryMat<strong>in</strong>e CompositesIMP .IMP is a 40 foot custom ocean rac<strong>in</strong>g sloop that represented <strong>the</strong> U.S. <strong>in</strong> <strong>the</strong> Adrairal’s Cup <strong>in</strong>1977 and 1979. Sheisprobably <strong>the</strong>most successful design <strong>of</strong> Ron Hollmd, with much <strong>of</strong> herpefiormance attributable to sophisticated construction techniques. The hull and deck are <strong>of</strong>sandwich construction us<strong>in</strong>g a balsa core and unidirectional re<strong>in</strong>forcements <strong>in</strong> v<strong>in</strong>yl ester res<strong>in</strong>.Primary rig and keel loads are anchored to an alum<strong>in</strong>um box and tube frame system, which <strong>in</strong>turn is bonded to <strong>the</strong> hull. In this way, FRP hull stand<strong>in</strong>gs are determ<strong>in</strong>ed primarily to resisthydrodynamic forces. The result<strong>in</strong>g hybrid structure is extremely light and stiff. The one-<strong>of</strong>fconstruction utilized a male mold, which has become <strong>the</strong> standard technique for custom rac<strong>in</strong>gboats.BertramBerttam Yachts has built cruiser and sport fishczman~ powerboats s<strong>in</strong>ce‘1962. Their longevity<strong>in</strong> <strong>the</strong>bus<strong>in</strong>ess is <strong>in</strong> pan attribumbleto sound construction and some <strong>in</strong>novative prwluction techniques. All<strong>in</strong>terior joirmy and structumlelermms are lam<strong>in</strong>ated to a steel jig, which positions <strong>the</strong>se elements forprecise attachmentto <strong>the</strong> hull. A comb<strong>in</strong>ation<strong>of</strong> ma~ woven rov<strong>in</strong>g, knitted m.<strong>in</strong>fbmrmnts and carbon<strong>fiber</strong>s are Uti dw<strong>in</strong>g <strong>the</strong> hand kly-llp Of ktmtn craft.Westpoti ShipyardThe Westport Shipyad cbveloped <strong>the</strong>irvariible size mold concept when <strong>the</strong>yfound that a 70 foot by 20 fti mold wasconstantly be<strong>in</strong>g modikd to fabricatevessels <strong>of</strong> slightly dMerent dimensions.A s<strong>in</strong>gle bow section is jo<strong>in</strong>ed to a series<strong>of</strong> shapablepanels that raeasum up to 10feet by 48 fmt The panels are <strong>use</strong>d todef<strong>in</strong>e <strong>the</strong> developable sections <strong>of</strong> <strong>the</strong>hull. S<strong>in</strong>ce 1983, 40 to 50 hulls haveken prduced us<strong>in</strong>g this technique.Expensive <strong>in</strong>dividual hull tool<strong>in</strong>g iselim<strong>in</strong>ated thus mak<strong>in</strong>g customconstructioncompetitive with alum<strong>in</strong>um.A layer <strong>of</strong> mat and four woven rov<strong>in</strong>gscan lx layed-up wet with impregnatormach<strong>in</strong>es.Christensen Motor YachtChristensen has been build<strong>in</strong>ga l<strong>in</strong>e <strong>of</strong>semi-custom motor yachts over 100 feetlong, as illustrated <strong>in</strong> Figm 1-3. Thehulls are foam cored us<strong>in</strong>g a vacuumassist process. All yachts are built toABS~Alffl~S classification and<strong>in</strong>spection.130’ Pilot Ho<strong>use</strong>0a.&?Fi;H;>c,- ..-—107’ Flush Deck with Cockpit%!107’ Raised PilotHo<strong>use</strong>figure 1-3 Motor Yachts Greater than 100feet Produced by Christensen Motor Yacht Corporation[Christensen]4


ChapterOneAPPLICATIONSCanoes and KayaksCompetition canoes and kayaks employ advanced composites beca<strong>use</strong> <strong>of</strong> <strong>the</strong> better performancega<strong>in</strong>ed from lighter weight, <strong>in</strong>creased stiffness and superior impact resistance. Aramid <strong>fiber</strong><strong>re<strong>in</strong>forced</strong> composites have been very successful, and new <strong>fiber</strong> technologies us<strong>in</strong>gpolyethylene <strong>fiber</strong> re<strong>in</strong>forcement are now be<strong>in</strong>g attempted. The boat that won <strong>the</strong> U.S. NationalKayak and Canoe Rac<strong>in</strong>g Marathon was constructed with a new high molecular weightpolyethylene <strong>fiber</strong> and was 40% lighter than <strong>the</strong> identical boat made <strong>of</strong> aramid <strong>fiber</strong>. [1-3]Pounds <strong>of</strong> Re<strong>in</strong>forcement (Mllllons)500400. . . . . . ..300. . . . . . . . . ..L . . . . . .200. . . . . . . . . . . . . . . . . . . . . . . . . . . . .100. . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . .:... . . . . . . . . .. . . . . . . . . . . .} . . . . . . . . . . .. . . . . . . . . . . . } . . . . . . . . . ..!...... . . . . . . . . . . . ..01900 1909 1986 1969 197a 1976 1978 1981 1984 1987I I I I I I I I 1 I I I I I I I I I IF@Jre 1-4 Annual Shipment <strong>of</strong> Re<strong>in</strong>forced Thermoset and Thermoplastic Res<strong>in</strong>Composites for <strong>the</strong> Mar<strong>in</strong>eIndustrywith Associated Construction Developments. [DataSource: SPI Composites Institute (1960-1973 Extrapolated from Overall Data and 1989is Estimated)]Evolution <strong>of</strong> Recreational Boat Construction TechniquesFrom <strong>the</strong> 1950’s to <strong>the</strong> 1980’s, advances <strong>in</strong> materials and fabrication techniques <strong>use</strong>d <strong>in</strong> <strong>the</strong>pleasure craft <strong>in</strong>dustry have helped to reduce production costs and improve product quality.Although every boat builder employs unique production procedures that <strong>the</strong>y feel areproprietary, general <strong>in</strong>dustry trends can be traced over time as illustrated <strong>in</strong> Figure 1-4.5


RecreationalMar<strong>in</strong>eIndustryMar<strong>in</strong>e CompositesS<strong>in</strong>gle-Sk<strong>in</strong> ConstructionEarly <strong>fiber</strong>glass boat build<strong>in</strong>g produced s<strong>in</strong>gle-sk<strong>in</strong> structures with stiffeners to ma<strong>in</strong>ta<strong>in</strong>reasonable panel sizes. Smaller structures <strong>use</strong>d isotropic chopped strand mat layed-up manuallyor with a chopper gun, As strength requirements <strong>in</strong>creased, <strong>fiber</strong>glass cloth and woven rov<strong>in</strong>gwere <strong>in</strong>tegrated <strong>in</strong>to <strong>the</strong> lam<strong>in</strong>ate. An ortho-polyester res<strong>in</strong>, applied with rollers, was almostuniversally accepted as <strong>the</strong> matrix material <strong>of</strong> choice.Sandwich ConstructionIn <strong>the</strong> early 1970’s, designers realized that <strong>in</strong>creas<strong>in</strong>gly stiffer and lighter structures could berealized if a sandwich construction technique was <strong>use</strong>d. By lam<strong>in</strong>at<strong>in</strong>g an <strong>in</strong>ner and outer sk<strong>in</strong>about a low density core, re<strong>in</strong>forcements are located at a greater distance from <strong>the</strong> panel’sneutral axis. These structures perform exceptionally well when subjected to bend<strong>in</strong>g loadsproduced by hydrodynamic forces, PVC foam and end-gra<strong>in</strong> balsa have evolved as <strong>the</strong> primarycore materials.Res<strong>in</strong> DevelopmentGeneral purpose orrho-polyester lam<strong>in</strong>at<strong>in</strong>g res<strong>in</strong>s still prevail throughout <strong>the</strong> boat<strong>in</strong>g <strong>in</strong>dustrydue to its low cost and ease <strong>of</strong> <strong>use</strong>. However, boat builders <strong>of</strong> custom and higher-end crafthave <strong>use</strong>d a variety <strong>of</strong> o<strong>the</strong>r res<strong>in</strong>s that exhibit better performance characteristics. Epoxy res<strong>in</strong>shave long been known to have better strength properties than polyesters. Their high cost haslimited <strong>use</strong> to only <strong>the</strong> most specialized <strong>of</strong> applications. Iso-polyester res<strong>in</strong> has been shown toresist blister<strong>in</strong>g better than ortho-polyester res<strong>in</strong> and some manufacturers have switched to thisentirely or for <strong>use</strong> as a barrier coat. V<strong>in</strong>yl ester res<strong>in</strong> has performance properties somewherebetween polyester and epoxy, exceed<strong>in</strong>g epoxy <strong>in</strong> some respects, and has recently beenexam<strong>in</strong>ed for its excellent blister resistance. Cost is greater than polyester but less than epoxy.Unidirectional and Stitched Fabric Re<strong>in</strong>forcementThe boat<strong>in</strong>g <strong>in</strong>dustry was not truly able to take advantage <strong>of</strong> <strong>the</strong> directional strength propertiesassociated with <strong>fiber</strong>glass until unidirectional and stitched fabric re<strong>in</strong>forcements becameavailable. Woven re<strong>in</strong>forcements, such as cloth or woven rov<strong>in</strong>g, have <strong>the</strong> disadvantage <strong>of</strong>“pre-buckl<strong>in</strong>g” <strong>the</strong> <strong>fiber</strong>s, which greatly reduces <strong>in</strong>-plane strength properties. Unidirectionalre<strong>in</strong>forcements and stitched fabrics that are actually layers <strong>of</strong> unidirectional <strong>of</strong>fer superiorcharacteristics <strong>in</strong> <strong>the</strong> direction co<strong>in</strong>cident with <strong>the</strong> <strong>fiber</strong> axis. Pure unidirectional are veryeffective <strong>in</strong> longitud<strong>in</strong>al strength members such as str<strong>in</strong>gers or along hull centerl<strong>in</strong>es. The mostpopular <strong>of</strong> <strong>the</strong> knitted fabrics is <strong>the</strong> 45° by 45° knit which exhibits superior shear strength and is<strong>use</strong>d to streng<strong>the</strong>n hulls torsionally and to tape-<strong>in</strong> secondtuy structure:Advanced Fabrication TechniquesSpray-up with chopper guns and hand lay-up with rollers are <strong>the</strong> standard productiontechniques that have endured for 30 years. In an effort to improve <strong>the</strong> quality <strong>of</strong> lam<strong>in</strong>atedcomponents, some shops have adapted techniques to m<strong>in</strong>imize voids and <strong>in</strong>crease <strong>fiber</strong> ratios.One technique <strong>in</strong>volves plac<strong>in</strong>g vacuum bags ‘with bleeder holes over <strong>the</strong> lam<strong>in</strong>ate dur<strong>in</strong>g <strong>the</strong>cur<strong>in</strong>g process. This has <strong>the</strong> effect <strong>of</strong> apply<strong>in</strong>g uniform pressure to <strong>the</strong> sk<strong>in</strong> and draw<strong>in</strong>g outany excess res<strong>in</strong> or entrapped air. Ano<strong>the</strong>r technique <strong>use</strong>d to achieve consistent lam<strong>in</strong>ates<strong>in</strong>volves us<strong>in</strong>g a mechanical impregnator which can produce 55% <strong>fiber</strong> ratios.6


ChapterOneAPPLICATIONSAlternate Re<strong>in</strong>forcement MateriaisThe field <strong>of</strong> composites gives <strong>the</strong> designer <strong>the</strong> freedom to <strong>use</strong> various different re<strong>in</strong>forcementmaterials to improve structural performance over <strong>fiber</strong>glass. Carbon and aramid <strong>fiber</strong>s haveevolved as two high strength alternatives <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e <strong>in</strong>dustry. Each material has its ownadvantages and disadvantages, which will be treated <strong>in</strong> a later chapter. Suffice it to say thatboth are significantly more expensive than <strong>fiber</strong>glass but have created ano<strong>the</strong>r dimension <strong>of</strong>options with regards to lam<strong>in</strong>ate design. Some low-cost re<strong>in</strong>forcement materials that haveemerged lately <strong>in</strong>clude polyester and polypropylene, These materials comb<strong>in</strong>e moderatestrength properties with high stra<strong>in</strong>-to-failure characteristics.


ComercialMar<strong>in</strong>eIndustryMar<strong>in</strong>e CompositesThe <strong>use</strong> <strong>of</strong> <strong>fiber</strong>glass construction <strong>in</strong> <strong>the</strong> commercial mar<strong>in</strong>e <strong>in</strong>dustry has flourished over timefor a number <strong>of</strong> different reasons. Initially, long-term durability and favorable fabricationeconomics were <strong>the</strong> impetus for us<strong>in</strong>g FRP. More recently, improved vessel performancethrough weight reduction has encouraged its <strong>use</strong>. S<strong>in</strong>ce <strong>the</strong> early 1960’s, a key factor thatmakes FRP construction attractive is <strong>the</strong> reduction <strong>of</strong> labor costs when multiple vessels arefabricated from <strong>the</strong> same mold, Various sectors <strong>of</strong> <strong>the</strong> commercial market will be presented viaexamples <strong>of</strong> craft and <strong>the</strong>ir fabricators, Activity levels have traditionally been driven by <strong>the</strong>economic factors that <strong>in</strong>fluence <strong>the</strong> vessels’ <strong>use</strong>, ra<strong>the</strong>r than <strong>the</strong> overall success <strong>of</strong> <strong>the</strong> vessels<strong>the</strong>mselves.Fish<strong>in</strong>g IndustryAlthough <strong>the</strong> production <strong>of</strong> commercial vessels has tapered <strong>of</strong>f drastically, <strong>the</strong>re was much<strong>in</strong>terest <strong>in</strong> FRP trawlers dur<strong>in</strong>g <strong>the</strong> early 1970’s. These vessels that are still <strong>in</strong> service providetestimony to <strong>the</strong> reduced long-term ma<strong>in</strong>tenance claims which led to <strong>the</strong>ir construction. Forexample, <strong>the</strong> 55 foot POLLY ESTER has been <strong>in</strong> service <strong>in</strong> <strong>the</strong> North Sea s<strong>in</strong>ce 1967. Shrimptrawlers were <strong>the</strong> first FRP fish<strong>in</strong>g vessels built <strong>in</strong> this country with <strong>the</strong> R.C. BREiVT,launched<strong>in</strong> 1968. Today, commercial fish<strong>in</strong>g fleets are approximately 50% FRP construction. O<strong>the</strong>raspects <strong>of</strong> FRP construction that appeal to this <strong>in</strong>dustry <strong>in</strong>clude <strong>in</strong>creased hull life, reduction <strong>in</strong>hull weight and cleaner fish holds.AMT Mar<strong>in</strong>eAMT Mar<strong>in</strong>e <strong>in</strong> Quebec, Canada is probably today’s largest producer <strong>of</strong> FRP commercialfish<strong>in</strong>g vessels <strong>in</strong> North America. They <strong>of</strong>fer stock pot fishers, autol<strong>in</strong>ers, se<strong>in</strong>ers and sterntrawlers from 25 feet to 75 feet Over 100 craft have been built by <strong>the</strong> company <strong>in</strong> <strong>the</strong> 11 years<strong>of</strong> <strong>the</strong>ir existence, <strong>in</strong>clud<strong>in</strong>g 80910<strong>of</strong> all coastal and <strong>of</strong>fshore fish<strong>in</strong>g vessels registered <strong>in</strong>Quebec <strong>in</strong> recent years. AMT utilizes a variety <strong>of</strong> materials and manufactur<strong>in</strong>g processes under<strong>the</strong> direction <strong>of</strong> <strong>the</strong>ir R & D department to produce rugged utility and fish<strong>in</strong>g craft.Delta Mar<strong>in</strong>eDelta Mar<strong>in</strong>e <strong>in</strong> Seattle has been design<strong>in</strong>g and build<strong>in</strong>g <strong>fiber</strong>glass fish<strong>in</strong>g, charter and patrolboats for over 20 years. A 70 foot motor yacht has been developed from <strong>the</strong> highly successfulBear<strong>in</strong>g Sea Crabber. Yachts have been developed with 105 foot and 120 foot molds, whichcould easily produce fish<strong>in</strong>g boats if <strong>the</strong>re was a demand for such a vessel. The hulls can befitted with bulbous bows, which are claimed to <strong>in</strong>crease fuel economy and reduce pitch<strong>in</strong>g.The bulb section is added to <strong>the</strong> solid FRP hull after it is pulled from <strong>the</strong> mold. Delta Mar<strong>in</strong>efabricates sandwich construction decks utiliz<strong>in</strong>g balsa core.LequerqAno<strong>the</strong>r FRP commercial fishboat builder <strong>in</strong> Seattle is Lequerq. They specialize <strong>in</strong> build<strong>in</strong>gse<strong>in</strong>ers for Alaskan waters. The average size <strong>of</strong> <strong>the</strong> boats <strong>the</strong>y build is 50 feet. At <strong>the</strong> peak <strong>of</strong><strong>the</strong> <strong>in</strong>dustry, <strong>the</strong> yard was produc<strong>in</strong>g 15 boats a year for customers who sought lowerma<strong>in</strong>tenance and better cosmetics <strong>of</strong> <strong>the</strong>ir vessels. Some customers stressed <strong>the</strong> need for fastvessels and as a result, semi-displacement hull types emerged that operated <strong>in</strong> excess <strong>of</strong> 20knots. To achieve this type <strong>of</strong> perforrmmce, Airex@ foam cored hulls with directional glass8


ChapterOneAPPLICATIONSre<strong>in</strong>forcements were eng<strong>in</strong>eered to produce hull lam<strong>in</strong>ate weights <strong>of</strong> approximately threepounds per square foot.Young Bro<strong>the</strong>rsYoung Bro<strong>the</strong>rs is typical <strong>of</strong> a number <strong>of</strong> FRP boatbuilders <strong>in</strong> Ma<strong>in</strong>e. Their lobster and deckdraggers range <strong>in</strong> size from 30 to 45 feet and follow what would be considered traditional hulll<strong>in</strong>es with generous deadrise and full skegs to protect <strong>the</strong> props. Solid FRP construction is<strong>of</strong>fered more as a ma<strong>in</strong>tenanctt advantage than for its potential weight sav<strong>in</strong>gs. Follow<strong>in</strong>g <strong>the</strong>path <strong>of</strong> many commercial builders, this yard <strong>of</strong>fers <strong>the</strong> same hulls as yachts to <strong>of</strong>fset <strong>the</strong> decl<strong>in</strong>e<strong>in</strong> <strong>the</strong> demand for commercial fish<strong>in</strong>g vessels.LifeboatsThe first FRP lifeboats were built <strong>in</strong> Holland <strong>in</strong> 1958 when Airex foam core made its debut <strong>in</strong> a24 foot vessel. The service pr<strong>of</strong>ile <strong>of</strong> <strong>the</strong>se vessels make <strong>the</strong>m ideally suited for FRPconstruction <strong>in</strong> that <strong>the</strong>y are required to be ready for service after years <strong>of</strong> sitt<strong>in</strong>g idle <strong>in</strong> amar<strong>in</strong>e environment. Additionally, <strong>the</strong> craft must be able to withstand <strong>the</strong> impact <strong>of</strong> be<strong>in</strong>glaunched and sw<strong>in</strong>g<strong>in</strong>g <strong>in</strong>to <strong>the</strong> host vessel. The ability to economically produce lightweighthull and canopy structures with highly visible gelcoat f<strong>in</strong>ishes is also an attribute <strong>of</strong> FRPconstruction.Watercraft AmericaWatercraft is a 40 year old British company that began operations <strong>in</strong> <strong>the</strong> U.S. <strong>in</strong> 1974. Thecompany manufactures 21, 24, 26 and 28 foot USCG approved, totally enclosed, survival craftsuitable for 23, 33, 44 and 58 men, respectively. Design support is provided by HamptonUniversity <strong>in</strong> England. The vessels are diesel propelled and <strong>in</strong>clude compressed air systemsand deck washes to dissipate external heat Figure 1-5 shows <strong>the</strong> general conilguration <strong>of</strong> <strong>the</strong>sevessels. The plumb<strong>in</strong>g <strong>in</strong>corporates PVC pip<strong>in</strong>g to reduce weight and ma<strong>in</strong>tenance. Hull andcanopy construction utilizes a spray layup system with MIL- 1140 or C19663 gun rov<strong>in</strong>g. Res<strong>in</strong>is MIL-2-21607 or MIL7575C, Grade 1, Class 1,fme retardant with Polygardiso/mpg gelcoat f<strong>in</strong>ish.Each pass <strong>of</strong> <strong>the</strong> chopperAgun is manuallyconsolidated with a rollerand overlaps <strong>the</strong> previouspass by one third <strong>of</strong> itswidth. Quality controlmethods ensure hardness,thicknesses and weight <strong>of</strong><strong>the</strong> I<strong>in</strong>ished lam<strong>in</strong>ate.The company hasdiversified <strong>in</strong>to a l<strong>in</strong>e <strong>of</strong>workboats and SubchapterT passenger vessels toF@Ure 1-5 Typical Configuration <strong>of</strong> Watercraft EnclosedLiferaft pNatercraft]9


ComercialMar<strong>in</strong>eIndustryMar<strong>in</strong>e Composites<strong>of</strong>fset <strong>the</strong> decl<strong>in</strong>e <strong>in</strong> <strong>the</strong> <strong>of</strong>fshore oil bus<strong>in</strong>ess. Reliance Workboats <strong>of</strong> England and WaterCraftAmerica IrIc. have tearned up to build <strong>the</strong> Worlmuaster 1100 multipurpose boat. The 36 footboats can travel <strong>in</strong> excess <strong>of</strong> 50 mph and can be custom fitted for groups such as customs andlaw enforcement agencies, commercial or charter fish<strong>in</strong>g operators, and scuba-div<strong>in</strong>g operators.The boat was <strong>in</strong>troduced <strong>in</strong> Brita<strong>in</strong> <strong>in</strong> early 1989 and recently <strong>in</strong> America, [1-8]Schat-Mar<strong>in</strong>e SafetyA more diversified l<strong>in</strong>e <strong>of</strong> lifeboats meet<strong>in</strong>g CFR 160.035 is <strong>of</strong>fered by <strong>the</strong> $chat-hhr<strong>in</strong>e SafetyCorporation. Although <strong>the</strong>y claim that <strong>fiber</strong>glass construction is <strong>the</strong> ma<strong>in</strong>stay <strong>of</strong> <strong>the</strong> lifeboat<strong>in</strong>dustry, steel and alum<strong>in</strong>um hulls are <strong>of</strong>fered <strong>in</strong> 27 different sizes rang<strong>in</strong>g from 12 to 37 feetwith capacities from 4 to 145 persons. Molds for FRP hulls exist for <strong>the</strong> more popular sizes.These hulls are made <strong>of</strong> <strong>fiber</strong>glass and fm retardant res<strong>in</strong>s which are by far <strong>the</strong> mostma<strong>in</strong>tenance free and feature built-<strong>in</strong>, foamed <strong>in</strong> place flotation.The company also manufacturers FRP rigid hull <strong>in</strong>t3atable rescue boats (RIBs), fairwaters,ventilators, lifefloats and buoyancy apparatus.Utilitv VesselsBoats built for utility service are usually modifications <strong>of</strong> exist<strong>in</strong>g recreational or patrol boathulls. Lam<strong>in</strong>ate schedules may be <strong>in</strong>creased or additional equipment added, depend<strong>in</strong>g upon<strong>the</strong> type <strong>of</strong> service. Local and national law enforcement agencies <strong>in</strong>clud<strong>in</strong>g natural resourcemanagement organizations compromise <strong>the</strong> largest sector <strong>of</strong> utility boat <strong>use</strong>rs. O<strong>the</strong>r missionpr<strong>of</strong>des, <strong>in</strong>clud<strong>in</strong>g pilotage, fue-fight<strong>in</strong>g and launch service, have proven to be suitableapplications <strong>of</strong> FRP construction. To make production <strong>of</strong> a given hull form economicallyattractive, manufacturers will typically <strong>of</strong>fer a number <strong>of</strong> different topside configurations foreach hull.Boston WhalerUs<strong>in</strong>g similar construction methods outl<strong>in</strong>ed for <strong>the</strong>ir recreational craft, Boston Whaler typicallyadds some thickness to <strong>the</strong> sk<strong>in</strong>s <strong>of</strong> <strong>the</strong>ir commercial boats. Hulls 17 feet and under are <strong>of</strong>tri-hull conf@ration while <strong>the</strong> boats above 18 feet are a modi!5ed deep- ‘V’ with a deackiseangle <strong>of</strong> 18 degrees. The majority <strong>of</strong> boats configured for commercial service are for ei<strong>the</strong>r <strong>the</strong>Navy, Coast Guard or Army Corps <strong>of</strong> Eng<strong>in</strong>eers. Their durability and proven record make<strong>the</strong>m <strong>in</strong> demand among local agencies.LeComte fLeComte Holland BV manufactures versatile FRP land<strong>in</strong>g craft us<strong>in</strong>g vacuum-assisted <strong>in</strong>jectionmold<strong>in</strong>g. S-glass, carbon and amunid <strong>fiber</strong>s are <strong>use</strong>d with polyester res<strong>in</strong>. The entire hull ismolded <strong>in</strong> one piece us<strong>in</strong>g male and female molds via <strong>the</strong> res<strong>in</strong> transfer mold<strong>in</strong>g (RTM)process.LeComte <strong>in</strong>troduced a new type <strong>of</strong> rigid hull, <strong>in</strong>flatable rescue boat. The deep-’V’ hull is madeby RTM with hybrid <strong>fiber</strong>s, achiev<strong>in</strong>g a 25% weight sav<strong>in</strong>gs over conventional methods. Boatspeeds are <strong>in</strong> excess <strong>of</strong> 25 knots. [1-9]10


ChapterOneAPPLICATIONSTextron Mar<strong>in</strong>e SystemsTextron Mar<strong>in</strong>e Systems has long been <strong>in</strong>volved with <strong>the</strong> development <strong>of</strong> air cushion andsurface effect ships for <strong>the</strong> government. In 1988, <strong>the</strong> company implemented an R & D programto design and build a small air cushion vehicle with a m<strong>in</strong>imal payload <strong>of</strong> 1200 pounds. Theresult is a l<strong>in</strong>e <strong>of</strong> vessels that range <strong>in</strong> size from 24 to 52 feet that are fabricated from shapedsolid foam block, which is covered with GRP sk<strong>in</strong>s. The volume <strong>of</strong> foam gives <strong>the</strong> addedvalue <strong>of</strong> vessel uns<strong>in</strong>kability. Shell Offshore Inc. has recently taken delivery <strong>of</strong> a 24 footversion for <strong>use</strong> near <strong>the</strong> mouth <strong>of</strong> <strong>the</strong> Mississippi River.configuration <strong>of</strong> <strong>the</strong> type <strong>of</strong> vessel delivered to Shell.Figure1-6shows a typical CargoA==”==---”’--’”------=-------------------A9IFigure 1-6 Cargo Configuration for Textron Mar<strong>in</strong>e’s Utility Air Cushion Vehicle -ModeI 1200 Textron Mar<strong>in</strong>e]PassengerFerriesBlount Mar<strong>in</strong>eBlount Mar<strong>in</strong>e has developed a proprietary construction process <strong>the</strong>y call Hi-Tech@ that<strong>in</strong>volves <strong>the</strong> application <strong>of</strong> rigid polyurethane foam over an alum<strong>in</strong>um stiffen<strong>in</strong>g structure. Afleet <strong>of</strong> <strong>the</strong>se vessels have been constructed for New York City commuter runs.Karlskronavarvet, ABKarlskronavamet, AB <strong>in</strong> Karlskrona, Sweden, is among several European shipyards that buildpassenger and automobile ferries. The Surface Effect Ship (SES), JET RIDER is a high speedpassenger ferry designed and fabricated by Karlskronavarvet <strong>in</strong> 1986 for service <strong>in</strong> Norway.The SES JET RHIER is an air cushioned vehicle structured entirely <strong>of</strong> GRP sandwich. TheSES conf@ration resembles a traditional catamaran except that <strong>the</strong> hulls are much narrower.The bow and stern are fitted with flexible seals that work <strong>in</strong> conjunction with <strong>the</strong> hulls to trap<strong>the</strong> air cushion. Air flow for a surface effect ship is shown <strong>in</strong> Figure 1-7. The air cushion11


ComercialMar<strong>in</strong>eIndustryMar<strong>in</strong>e Compositescarries about 85% <strong>of</strong> <strong>the</strong> totalweight <strong>of</strong> <strong>the</strong> ship with <strong>the</strong>rema<strong>in</strong><strong>in</strong>g 15% supported by <strong>the</strong>hulls. The design consists <strong>of</strong> alow density PVC cellular plasticcore matetial with closed, *non-water-absorb<strong>in</strong>g cells, coveredwith a face material <strong>of</strong> glass <strong>fiber</strong>figllre 1-7 Air Flow <strong>in</strong> a Surface Effect Ship<strong>re<strong>in</strong>forced</strong> polyester plastic. The[Hellbratt & Gullberg, The High Speed Passengercomplete hull, superstructure and Ferry SES JET RIDER]foundation for <strong>the</strong> ma<strong>in</strong> eng<strong>in</strong>esand gears are also built <strong>of</strong> GRP sandwich. Ttis for fuel and water are made <strong>of</strong> hull-<strong>in</strong>tegratedsandwich panels. The sp=d under full load is 42 knots (full load <strong>in</strong>cludes 244 passengers andpayload total<strong>in</strong>g 27 metric tonnes). [1-10]Air Ride CraftDon Burg has patented a surface effect ship that utilizes a hi-hull configuration and hasdeveloped <strong>the</strong> concept for <strong>the</strong> passenger ferry marke~ Although <strong>the</strong> 109 foot version isconstructed <strong>of</strong> alum<strong>in</strong>um, <strong>the</strong> 84 and 87 foot counterparts are constructed from Airex-cored<strong>fiber</strong>glass to ABS spectilcations. The FRP vessels are constructed <strong>in</strong> Hong Kong by CheoyLee Shipyards, a pioneer <strong>in</strong> Far East FRP construction. To <strong>the</strong>ir credit is a 130 foot,tw<strong>in</strong>-screw motor yacht that was constructed <strong>in</strong> 1976.ItalcraftItalcraft has developed a 70 foot aramid/GRP hull with variable geometry to achieve highspeeds. The prototype demonstrated a 50 knot speed potential with 40% fuel sav<strong>in</strong>gs. Theconcept is be<strong>in</strong>g developed for a high-speed passenger ferry to accommodate 80 passengers andatta<strong>in</strong> a cruis<strong>in</strong>g speed <strong>of</strong> 43 knots. [1-11]CommercialShip ConstructionIn 1971, <strong>the</strong> Ship Structure Corrunittee published a detailed report entitled “Feasibility Study <strong>of</strong>Glass Re<strong>in</strong>forced Plastic Cargo Ship” prepared by Robert Scott and John Sommella <strong>of</strong> Gibbs &Cox. A 470 foot, dry/bulk cargo vessel was chosen for evaluation whereby eng<strong>in</strong>eer<strong>in</strong>g andeconomic factors were considered. It would be <strong>in</strong>structive to present some <strong>of</strong> <strong>the</strong> conclusions<strong>of</strong> that study at this time.. The general conclusion was that <strong>the</strong> design and fabrication <strong>of</strong> a large GRPcargo ship was shown to be totally with<strong>in</strong> <strong>the</strong> present state-<strong>of</strong>-<strong>the</strong>-art, but<strong>the</strong> long-term durability <strong>of</strong> <strong>the</strong> structure was questionable.. The most favorable lam<strong>in</strong>ate studied was a woven-rov<strong>in</strong>g/unidirectionalcomposite, which proved 43% lighter than steel but had 20% <strong>of</strong> <strong>the</strong> stiffness.●GRP structures for large ships currently can’t meet present U.S. CoastGuard fire regulations and significant economic <strong>in</strong>centive would benecessary to pursue variants.12


ChapterOneAPPLICATIONSc Cost analyses <strong>in</strong>dicate unfavorable required freight rates for GRP versussteel construction <strong>in</strong> all but a few <strong>of</strong> <strong>the</strong> sensitivity studies.●●Major structural elements such as deckho<strong>use</strong>s, hatch covers, k<strong>in</strong>g posts andbow modules appear to be very well suited for GRP construction.Commercial vessels <strong>of</strong> <strong>the</strong> 150-250 foot size appear to be more promis<strong>in</strong>gthan <strong>the</strong> vessels studied and deserve fur<strong>the</strong>r <strong>in</strong>vestigation.Thert are numerous non load-bear<strong>in</strong>g applications <strong>of</strong> FRP materials <strong>in</strong> commercial ships whereei<strong>the</strong>r corrosion resistance, weight or complex geometry justied <strong>the</strong> departure fromconventional materials. As an example, <strong>in</strong> <strong>the</strong> early 1980’s, Farrell L<strong>in</strong>es <strong>use</strong>d FRP false stacks<strong>in</strong> <strong>the</strong>ir C1O vessels that weighed over 30 tons. Also, pip<strong>in</strong>g for ballast and o<strong>the</strong>r applicationsis commonly made from FRP tub<strong>in</strong>g.CommercialDeeD Sea SubmersiblesFoam cored lam<strong>in</strong>ates are rout<strong>in</strong>ely be<strong>in</strong>g <strong>use</strong>d as buoyancy materials <strong>in</strong> commercial submersibles,The Cont<strong>in</strong>ental Shelf Institute <strong>of</strong> Norway has developed an unmanned submersible called <strong>the</strong>SNURRE, with an opemt<strong>in</strong>g depth <strong>of</strong> 1,500 fee~ that <strong>use</strong>s high crush po<strong>in</strong>t closed cell PVC foammaterial for buoyancy. From 1977 to 1984 <strong>the</strong> SNURRE operak.d successfully for over 2,000 hours<strong>in</strong> <strong>the</strong> North Sca The F<strong>in</strong>ch manned submersible, NAUTILE, recently visited <strong>the</strong> sea floor at <strong>the</strong>site <strong>of</strong> <strong>the</strong> Titanic. The NAUTILE is a manned submersible with operat<strong>in</strong>g depths <strong>of</strong> 20,000 feetand <strong>use</strong>s high crush po<strong>in</strong>t foam for buoyancy and FRP materials for non-pressure sk<strong>in</strong>s and fak<strong>in</strong>gs.The oil <strong>in</strong>dustry is mak<strong>in</strong>g <strong>use</strong> <strong>of</strong> a subrnmible named DAVID that not only utilizes foam forbuoyancy, but <strong>use</strong>s <strong>the</strong> foam <strong>in</strong> a sandwich configuration to act as <strong>the</strong> pressure vesseL The <strong>use</strong> <strong>of</strong>composites <strong>in</strong> <strong>the</strong> DAVID’s hull allowed <strong>the</strong> eng<strong>in</strong>em to design speckdid geometries that areneeded to make effective repairs <strong>in</strong> <strong>the</strong> <strong>of</strong>fshcm envimnmen~ [1-3]Sl<strong>in</strong>gsby Eng<strong>in</strong>eer<strong>in</strong>g Limited designed and developed a third-generation remotely operatedvehicle, called SOLO, for a variety <strong>of</strong> <strong>in</strong>spection and ma<strong>in</strong>tenance functions <strong>in</strong> <strong>the</strong> <strong>of</strong>fshore<strong>in</strong>dustry. SOLO carries a comprehensive array <strong>of</strong> sophisticated equipment and is designed tooperate at a depth <strong>of</strong> 5,000 feet under a hydrostatic pressure <strong>of</strong> 2 ksi. The pressure hull, chassisand fak<strong>in</strong>gs are constructed <strong>of</strong> glass <strong>fiber</strong> woven rov<strong>in</strong>g. [1-12]A prototype civilian submar<strong>in</strong>e has been built <strong>in</strong> Italy for <strong>of</strong>fshore work. “The design consists <strong>of</strong>an unpressurized, aramid-epoxy outer hull and <strong>of</strong>fers a better comb<strong>in</strong>ation <strong>of</strong> low weight withimproved stiffness and impact toughness. The operational range at 12 knots has been extendedby two hours over <strong>the</strong> range <strong>of</strong> a glass hull. [1-13]NavigationalAidsSteel buoys <strong>in</strong> <strong>the</strong> North Sea are be<strong>in</strong>g progressively replaced with plastic buoys due to<strong>in</strong>creas<strong>in</strong>g concern <strong>of</strong> darnage to vessels. Balrnoral Glassfibre produces a complete l<strong>in</strong>e <strong>of</strong>buoys and a light tower made <strong>of</strong> GRP that can withstand w<strong>in</strong>ds to 125 mph. Anchor moor<strong>in</strong>gbuoys supplied to <strong>the</strong> Egyptian <strong>of</strong>fshore oil <strong>in</strong>dustry are believed to be <strong>the</strong> largest GRP buoysever produced. These 13 foot diameter, 16.5 ton reserve buoyancy moor<strong>in</strong>gs are <strong>use</strong>d to anchortankers <strong>of</strong> up to 330,600 ton capacity. [1-14]13


ComercialMar<strong>in</strong>eIndustryMar<strong>in</strong>e CompositesOffshoreEng<strong>in</strong>eer<strong>in</strong>gComposite materials are already be<strong>in</strong>g <strong>use</strong>d <strong>in</strong> <strong>of</strong>fshore hydrocarbon production beca<strong>use</strong> <strong>of</strong> <strong>the</strong>irlightness, resistance to corrosion and good mechanical properties. One proposed new <strong>use</strong> forcomposites is for submar<strong>in</strong>e pipel<strong>in</strong>es, with circumferential carbon <strong>fiber</strong>s provid<strong>in</strong>g resistance toexternal pressure and longitud<strong>in</strong>al glass <strong>fiber</strong>s provid<strong>in</strong>g lengthwise flexibility. [1-9]Ano<strong>the</strong>r application for deep sea composites is driU<strong>in</strong>g risers for <strong>use</strong> at great water depths.Composites would signillcantly reduce <strong>the</strong> dynamic stress and <strong>in</strong>crease ei<strong>the</strong>r <strong>the</strong> work<strong>in</strong>g depthor <strong>the</strong> safety <strong>of</strong> deep water chill<strong>in</strong>g. Fifty foot l<strong>in</strong>es made from carbon and glass <strong>fiber</strong>s, with aburst pressure <strong>of</strong> 25 ksi, have been effectively subjected to three successive drill<strong>in</strong>g sessions to10 ksi fkom <strong>the</strong> North Sea rig PHVTAGONE84. [1-9]Pil<strong>in</strong>g Forms and JacketsDowns Fiberglass, Inc. <strong>of</strong> Alexandria, VA has developed a l<strong>in</strong>e <strong>of</strong> forms and jackets for <strong>use</strong> <strong>in</strong><strong>the</strong> build<strong>in</strong>g and mwnration <strong>of</strong> bridge columns. The “tidal zone” <strong>of</strong> maritime structures isknown to endure <strong>the</strong> most severe erosion effects and traditionally is <strong>the</strong> <strong>in</strong>itial area requir<strong>in</strong>grestoration. Common practice <strong>in</strong>volves <strong>the</strong> <strong>use</strong> <strong>of</strong> a pourable epoxy to encapsulate this portion<strong>of</strong> decay<strong>in</strong>g piles.The forms shown <strong>in</strong> Figure 1-8 are lightweight permanent forms with specially treated <strong>in</strong>nersurfaces to enhance bond<strong>in</strong>g characteristics. The basic jacket material- is E~glass mat andwoven rov<strong>in</strong>g <strong>in</strong> a polyester res<strong>in</strong> matrix.Conaate PileFonnforNewC<strong>of</strong>tskuotlonor Major Re@r—FormwithEw)ry Filler,,.0 L ..>A>~, ;’*,, .,“ “: +. :~,:;. ....’ r%,. -, .* ‘“:,,., ..: .-,.j ...;.,..*. - .: ....,●,7 ,’”- :.. .,’ 4 ‘“,,.; ;{, ..,..... ● .,~. :,..,;:. ,:... “t!!‘? ,. :.* d . .,,,: . .. ,,.. . .ii? .. ‘figure 1-8 Fiberglass Forms and Jackets for Waterl<strong>in</strong>e Corrosion Restoration[Dowries]14


ChapterOneAPPLICATIONSThe Department <strong>of</strong> Defense has sponsored composites research and &velopment projects tosupport military applications s<strong>in</strong>ce World War It. Typically, research has been orientedtowards a particular system or platform without regard to <strong>in</strong>tegration with<strong>in</strong> or amongst <strong>the</strong>DoD research entities. Advanced materials <strong>in</strong>vestigated by <strong>the</strong> Air Force and NASA areusually too cost prohibitive for consideration <strong>in</strong> mw<strong>in</strong>e structures. For that reason, this sectionwill deal primarily with <strong>the</strong> past and current activities <strong>of</strong> <strong>the</strong> Navy and <strong>the</strong> Army.NawAccord<strong>in</strong>g to a study prepared for <strong>the</strong> U.S. Navy <strong>in</strong> 1988, <strong>the</strong> military has been employ<strong>in</strong>gcomposite materials effectively for many years and has an <strong>in</strong>creas<strong>in</strong>g number <strong>of</strong> projects and<strong>in</strong>vestigations underway to fur<strong>the</strong>r explore <strong>the</strong> <strong>use</strong> <strong>of</strong> composites. [1-3] In 1946, <strong>the</strong> Navy lettwo contracts for development <strong>of</strong> 28 foot personnel boats <strong>of</strong> lam<strong>in</strong>ated plastic. W<strong>in</strong>nerManufactur<strong>in</strong>g Company <strong>use</strong>d a “bag mold<strong>in</strong>g” method while Marco Chemical employed an“<strong>in</strong>jection method.” The Navy <strong>use</strong>d <strong>the</strong> second method for some time with limited successuntil about 1950 when production contracts us<strong>in</strong>g hand layup were awarded. Between 1955and 1962, 32 Navy craft from 33 to 50 feet <strong>in</strong> length were manufactured by <strong>the</strong> “core mold”process, which proved not to be cost effective and was structurally unsatisfactory. [1-15]Dur<strong>in</strong>g <strong>the</strong> 1960’s, <strong>the</strong> Navy conducted a series <strong>of</strong> studies to consider <strong>the</strong> leasability <strong>of</strong> us<strong>in</strong>g an FRPhull for m<strong>in</strong>esweepers. In 1969, Peterson Builders, Inc. <strong>of</strong> Sturgeon Bay, M completed a 34 footlong midship test section. A complete design methodology and process description was developedfor this exercise. Although <strong>the</strong> scale <strong>of</strong> tie effort was forrnkkible, questions regard<strong>in</strong>g economicsand materials performance <strong>in</strong> production units went unanswered [1-16]Submar<strong>in</strong>esOne military program which employs composite materials is <strong>the</strong> W?iT SW?. Its compositecomponents have proven reliable for over 10 years. Both <strong>the</strong> elevator and <strong>the</strong> rudders amconstructed <strong>of</strong> a syntactic foam core with <strong>fiber</strong>glass and polyester sk<strong>in</strong>s. The outer sk<strong>in</strong> and hatches,<strong>the</strong> tail section and <strong>the</strong> ilxed l<strong>in</strong>s on <strong>the</strong> WETSUB arealsomade<strong>of</strong> composite materials. [1-3]The Navy’s ROV and m<strong>in</strong>e huntirgheutralization programs have been us<strong>in</strong>g composits materialsfor structural, sk<strong>in</strong> and buoyancy applications. Current ROVS employ composite sk<strong>in</strong>s and framesthat are constructed from metal molds us<strong>in</strong>g <strong>the</strong> vacuum bagg<strong>in</strong>g process. [1-3]Various submar<strong>in</strong>e structures am made <strong>of</strong> composite materials, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> periscope fair<strong>in</strong>gs onnuclear submar<strong>in</strong>es and <strong>the</strong> bow dome on combatant submar<strong>in</strong>es. Additionally, <strong>the</strong> <strong>use</strong> <strong>of</strong>ilarnent-wound air flasks for <strong>the</strong> ballast tanks <strong>of</strong> <strong>the</strong> Tlident class submar<strong>in</strong>es has been <strong>in</strong>vestigatedu nmanned, deep submersibles rely heavily on <strong>the</strong> <strong>use</strong> <strong>of</strong> composites for structural members and forbuoyancy. Syntactic foam is <strong>use</strong>d for buoyancy and thick-walled composites are <strong>use</strong>d for pressurehous<strong>in</strong>g. One unmanned deep sea submersible, which has a depth rat<strong>in</strong>g <strong>of</strong> 20,000 fee~ isconstructed with graphite composite by <strong>the</strong> prepreg fabrication technique. [1-3]The propellers for <strong>the</strong> MK 46 torpedo m now be<strong>in</strong>g made <strong>of</strong> composite materials. Moldedcomposite propeller assemblies have replaced <strong>the</strong> orig<strong>in</strong>al forged ah.un<strong>in</strong>urn propellers. Thecomposite propellers are compression molded <strong>of</strong> glass <strong>fiber</strong> <strong>re<strong>in</strong>forced</strong> polyester resim Advantages <strong>of</strong>15


MilitaryApplications<strong>of</strong> CompositesMar<strong>in</strong>e Composites<strong>the</strong> new composite propellers <strong>in</strong>clude weight sav<strong>in</strong>gs, chemical <strong>in</strong>ertness wd better acousticm~” -*<strong>of</strong> tie me~ ~wnents ~y reduces detectability. Additionally, studieshave projected this replacement to have saved <strong>the</strong> pmgmm about $21 milliom [1-3]A submar<strong>in</strong>e launched missile utilizes a capsule module that is constructed <strong>of</strong> compositematefials. The capsule design consists <strong>of</strong> a graphite, wet, filament-wound sandwichconstruction, metal honeycomb core and Kevlsx re<strong>in</strong>forcements. Ano<strong>the</strong>r torpedo project has<strong>in</strong>vestigated us<strong>in</strong>g a shell constructed <strong>of</strong> filament-wound carbon <strong>fiber</strong> composite <strong>in</strong> a sandwichconfiguration. The nose shell <strong>of</strong> <strong>the</strong> torpedo was constructed with syntactic foam core andprepreg sk<strong>in</strong>s <strong>of</strong> carbon and epoxy res<strong>in</strong>. Tesdng revealed a reduction <strong>in</strong> noise levels andweight as compared to <strong>the</strong> conventional alum<strong>in</strong>um nose shell. [1-3]Patrol BoatsThe Navy has a lot <strong>of</strong> <strong>in</strong>shore special warfare craft that are ma<strong>in</strong>ly operated by <strong>the</strong> NavalReserve Force. More than 500 river<strong>in</strong>e patrol boats were built between 1965 and 1973. These32 foot FRP hulls had ceramic armor and waterjet propulsion to allow shallow water operation.Production <strong>of</strong> GRP patrol craft for <strong>the</strong> Navy has not proven to be pr<strong>of</strong>itable for severalconcerns recently. Uniflite built 36 Special Warfare craft, reportedly <strong>of</strong> GRP/Kevlar@construction, to support SEAL operations <strong>in</strong> <strong>the</strong> esrly 1980’s and has s<strong>in</strong>ce gone out <strong>of</strong>bus<strong>in</strong>ess. The Sea Vik<strong>in</strong>g was conceived as a 35 foot multi-mission patrol boat with provisionsfor missiles. The project suffered major design and fiscal problems, <strong>in</strong>clud<strong>in</strong>g an unacceptableweight <strong>in</strong>crease <strong>in</strong> <strong>the</strong> lead ship, snd eventually its builder, RMI shipyard <strong>of</strong> San Diego, wentout <strong>of</strong> bus<strong>in</strong>ess.M<strong>in</strong>e Counter Measure VesselsThe U.S. Navy <strong>in</strong> l?Y 1984 had contracted with Bell Aerospace Textron (now Textron Mar<strong>in</strong>e)to design and construct <strong>the</strong> first <strong>of</strong> 14 m<strong>in</strong>esweeper hunters (MSH). The hulls were GRPmonohulls utiliz<strong>in</strong>g surface effect ship technology. Tests showed that <strong>the</strong> design could notwithstand explosive charges snd subsequent redesign efforts failed.In 1986, a contract was issued to Intermm<strong>in</strong>e USA to study possible adaptations <strong>of</strong> <strong>the</strong> LERICIcla<strong>ssc</strong>raft to carry U.S. systems. The LERZCIis 167 feet and is made with heavy s<strong>in</strong>gle sk<strong>in</strong> constructionthat varies from one to n<strong>in</strong>e <strong>in</strong>ches and <strong>use</strong>s no frames. hmmar<strong>in</strong> e is currently build<strong>in</strong>g <strong>the</strong> leadship <strong>in</strong> Savannah, GA and Avondale Shipyards has been chosen as <strong>the</strong> Navy’s second source forthis ProcurementThe Swedish and Italian Navies have been build<strong>in</strong>g m<strong>in</strong>esweep<strong>in</strong>g operations (MSO) ships withcomposite technology for many years. The Swedish Navy, <strong>in</strong> conjunction with <strong>the</strong> RoyalAustralian Navy snd <strong>the</strong> U. S. Navy, studied shock load<strong>in</strong>gs dur<strong>in</strong>g <strong>the</strong> development <strong>of</strong> <strong>the</strong>Swedish composite MSO. Shock load<strong>in</strong>gs (m<strong>in</strong>e explosion simulations) were performed onpanels to study candidate FRP materials and corfgurations such as:. Shapes <strong>of</strong> frame term<strong>in</strong>ations. Frames with different heightkidth ratio●Epoxy frames16


ChapterOneAPPLICATIONS. Sprayed-up lam<strong>in</strong>atess Corrugated lam<strong>in</strong>atess Sandwich with different core densities and thicknesses. Different types <strong>of</strong> repairs●Weight brackets and penetrations on panels. Adhesion <strong>of</strong> fire protection coat<strong>in</strong>gs <strong>in</strong> shock●The effect <strong>of</strong> double curved surfaces. Reduced scale panel with bolted and unbolted framesThis extensive test<strong>in</strong>g program demonstrated that a fmtmeless Glass Re<strong>in</strong>forced Plastic (GRP)sandwich design utiliz<strong>in</strong>g a rigid PVC foam core material was superior <strong>in</strong> shock load<strong>in</strong>g and resulted<strong>in</strong> better craft and crew survivability. The Swedish shock test<strong>in</strong>g program demonstrates that whenproperly designd composite materials can withstand and dampen large shock loads. [1-17] Table1-1 Summarizes <strong>the</strong> current <strong>use</strong> <strong>of</strong> FRP for m<strong>in</strong>e countermeasure vessels.Table 1-1. Current FRP M<strong>in</strong>e Counter Measure Vessels [ISSC, 1988]WILTON United K<strong>in</strong>gdom 1 425 46 15Hunt United K<strong>in</strong>gdom VesperThornycr<strong>of</strong>l 11 13 725 60 16SANDOWN United Kirmdom 9S~iffened ASTER Belgium Beliard 5 10 544 51.5 15S<strong>in</strong>gle Sk<strong>in</strong> ERIDAN France Lorient Dockyard 6 10 544 49.1 15ALKMAAR Ne<strong>the</strong>rlands Van derModified Indonesia Giessen-deNorde l%+%+1 IKIISHI F<strong>in</strong>land Oy FiskarsAB 7 20 15,2 111 IBAMO France GESMA MCM 5 900LANDSORT Sweden Karlskronavarvet 4 5 <strong>360</strong> 47.5 15FoamSandwich Bay Australia Barr<strong>in</strong>gton 2 6 170 30.9 10Stan Flex 300 Denmark DanyardAelbXg Als 7 16 300 54.0 30-ILERICI Italy 4 10 520 50 15LERIC/ Nigeria Intermar<strong>in</strong>e,SpAUnstiffenedThick Sk<strong>in</strong> KIMABALU Malaysia l=%%%I 1 IModified LER/C/ I South Korea Kang Nam 2 3 540 51 15,1 1 IOSPREY UnitedStates Intermar<strong>in</strong>e,USA o 17 660 57,317


MilitaryApplications<strong>of</strong> CompositesMar<strong>in</strong>e CompositesComponentsComposite ship stacks versus conventional steel ship stacks are under <strong>in</strong>vestigation for <strong>the</strong> U.S.surface fleet Non-structural ship components are be<strong>in</strong>g considered as candibtes for replacementwith composite parts. It is reported that two types <strong>of</strong> advanced non-structural bulkheads are <strong>in</strong>service <strong>in</strong> U.S. Navy ships. One <strong>of</strong> <strong>the</strong>se consists <strong>of</strong> alum<strong>in</strong>um honeycomb with alum<strong>in</strong>um facesheets, and <strong>the</strong> o<strong>the</strong>r consists <strong>of</strong> E-glass PRP sk<strong>in</strong>s over an amunid core material. [1-3]The OSPREY Class (MHC-51) rn<strong>in</strong>ehunter <strong>in</strong>corporates many FRP components <strong>in</strong>clud<strong>in</strong>g deckgrat<strong>in</strong>gs, flwr plates and support structure. Additional applications for composite materials arebe<strong>in</strong>g considered for follow-on vesselsThe David Taylor Research Center (DTRC) recently contracted for <strong>the</strong> construction <strong>of</strong> ashipboard composite foundation. An open design competition attracted proposals featur<strong>in</strong>ghand layup, res<strong>in</strong> transfer mold<strong>in</strong>g, pukrusion and filament w<strong>in</strong>d<strong>in</strong>g. A filament woundprototype proposed by Brunswick Defense won out, <strong>in</strong> part, beca<strong>use</strong> <strong>the</strong> long term productionaspects <strong>of</strong> <strong>the</strong> manufactur<strong>in</strong>g process seerned favorable. The foundation has successfully passeda shock testDevelopment <strong>of</strong> composite propulsion shafts for naval vessels is be<strong>in</strong>g <strong>in</strong>vestigated to replace<strong>the</strong> massive steel shafts that comptise up to 2% <strong>of</strong> <strong>the</strong> ship’s total weight. Composite shafts <strong>of</strong>glass and carbon re<strong>in</strong>forc<strong>in</strong>g <strong>fiber</strong>s <strong>in</strong> an epoxy matrix are projected to weigh 75% less than <strong>the</strong>traditional steel shafts and <strong>of</strong>fer <strong>the</strong> advantages <strong>of</strong> corrosion resistance, low bear<strong>in</strong>g loads,reduced magnetic signature, higher fatigue resistance, greater flexibility, excellent vibrationdamp<strong>in</strong>g and improved life-cycle cost. [1-3]Composite pressure vessels are be<strong>in</strong>g develops tested and manufactured for space and military<strong>use</strong>s. Composite pressure vessels were <strong>use</strong>d <strong>in</strong> three propulsion systems and <strong>the</strong> environmentalcontrol and life support system for <strong>the</strong> Space Shuttle ORBITER. Johnson Space Centerestimated a cost sav<strong>in</strong>gs <strong>of</strong> $10 million <strong>in</strong> fuel over <strong>the</strong> life-span <strong>of</strong> <strong>the</strong> ORBITER as comparedto all-metal vessels <strong>of</strong> <strong>the</strong> Apollo program type. Filament-wound pressure vessels constructed<strong>of</strong> graphite, <strong>fiber</strong>glass or Kevlsr@ with epoxy res<strong>in</strong>s over a titanium l<strong>in</strong>er have been <strong>use</strong>d.Aramid composites are <strong>use</strong>d <strong>in</strong> <strong>the</strong> Space Shuttle program to re<strong>in</strong>force equipment storageboxes, pressure vessels, purge and vent l<strong>in</strong>es, thus allow<strong>in</strong>g for weight sav<strong>in</strong>gs and <strong>in</strong>creasedstiffness. [1-3]The U.S. Navy studied <strong>the</strong> benefits <strong>of</strong> hydr<strong>of</strong>oils <strong>in</strong> 1966. The USN experimental patrol crsfthydr<strong>of</strong>oil (PCH- 1) HIGHPOINT was evaluated for weight sav<strong>in</strong>gs. The overall weight sav<strong>in</strong>gsover HY 80 steel were 44~0 for glass <strong>re<strong>in</strong>forced</strong> plastic, 36~0 for titanium alloy and 24% forHY 130 steel. In <strong>the</strong> mid 1970’s a hydr<strong>of</strong>oil control flap (Figure 1-9) and a hydr<strong>of</strong>oil boxbeam element apply<strong>in</strong>g advanced graphite-epoxy composites were evaluated by <strong>the</strong> Navy. [1-9]A recent program evaluated <strong>the</strong> <strong>use</strong> <strong>of</strong> advanced composites <strong>in</strong>stead <strong>of</strong> steel <strong>in</strong> <strong>the</strong> stabiliz<strong>in</strong>gflaps <strong>of</strong> <strong>the</strong> Italian RHS 160 hydr<strong>of</strong>oil. Carbon <strong>fiber</strong>s were <strong>the</strong> primary re<strong>in</strong>forcement, withglass added for galvanic corrosion resistance. [1-9]Composite blades <strong>of</strong> carbon-glass FRP sk<strong>in</strong>s over polyurethane foam core have been developedfor and <strong>use</strong>d successfiilly by hovercraft. The FRP blade weighs about 28 pounds, as compared to40 pounds for its duralum<strong>in</strong>um counterpart, snd tested better <strong>in</strong> fatigue than <strong>the</strong> metal blade. [1-9]18


ChapterOneAPPLICATIONSMI <strong>in</strong>titdfia~m$ 10 21 24 27.--L--aoti (IOI & I?OI &II & & & {w UOI tm} w) IIc9)I‘~%8AMV titmhnn=spm/umk~WECm@lmt<strong>in</strong>Cmpmkmi@W&y~ : ,t-, ;$F@.ltel-g U.S. Navy Patrol Craft Hydr<strong>of</strong>oil (PCH-l) Composite Flap [ASMEng<strong>in</strong>eer’sGuide to Composite Materials]The skirts surround<strong>in</strong>g <strong>the</strong> air cushion on hovercraft are made with <strong>fiber</strong> <strong>re<strong>in</strong>forced</strong> elastomers.Design and fabrication <strong>of</strong> three types, bag and f<strong>in</strong>ger skirts, loop and segment skirts, andpericell skirts, have been evaluated and are reviewed <strong>in</strong> <strong>the</strong> reference. [1-9]ArrowSome pressure vessels constructed <strong>of</strong> <strong>fiber</strong>glass and epoxy res<strong>in</strong> have evi&nced burst pressures<strong>of</strong> 50,000 psi. Kevlar@/epoxy structured pressure vessels had burst pressures <strong>of</strong> 57,000 psi, andgraphitdepoxy structures had burst pressures <strong>of</strong> 60,000 psi. These lightweigh~ high pressurecomposite vessels have <strong>the</strong> potential for <strong>use</strong> not only as air supplies <strong>in</strong> submersibles but also ascompressed-ti-energy storage systems. [1-3]Composites are be<strong>in</strong>g considered for structural, non-structural and ballistic applications <strong>in</strong>military combat and logistical support vehicles. In addition to weight reduction, compositeswill improve maneuver<strong>in</strong>g capability, corrosion resistance, deployability and vehicle survival.Applications akeady <strong>in</strong>vestigated or considered <strong>in</strong>clude composite covers for external storageboxes, <strong>in</strong>ternal ducts, electrical boxes (non-structural), composite brackets, seat components,and turret basket assembly (structural). Also under development are a com~osite.torsion tubewith steel spl<strong>in</strong>es to substitute for heavy steel bars, which are <strong>use</strong>d for vehicle suspension.[1-18]The U.S.structures,Amny has <strong>in</strong>vestigated <strong>the</strong> <strong>use</strong> <strong>of</strong> composite materials for combat vehicle hullstowage equipment and o<strong>the</strong>r mission critical structural components. A feasibility19


MilitaryApplications<strong>of</strong> CompositesMar<strong>in</strong>e Compositesstudy was performed by FMC Corporation, San Jose, CA un&r contract to <strong>the</strong> U.S. A-my TankAutomotive Command (TACOM), Warren, MI to determ<strong>in</strong>e <strong>the</strong> technical and economicfeasibilities <strong>of</strong> a composite lower weapon station basket for <strong>the</strong> M-2 Bradley Fight<strong>in</strong>g Vehicle(BFV). Critical issues were encountered and resolved <strong>in</strong> regard to design, producibility,material test<strong>in</strong>g and evaluations, crew survivability, and quality assurance and control. FMCCorporation is cont<strong>in</strong>u<strong>in</strong>g <strong>the</strong>ir development and ref<strong>in</strong>ement <strong>of</strong> composite manufactur<strong>in</strong>gprocesses to meet <strong>the</strong> needs <strong>of</strong> <strong>the</strong> future. Some projects <strong>in</strong>clude composite battery trays,ammunition boxes and o<strong>the</strong>r stowage components. The U.S. Army Materials TechnologyLaboratory is <strong>in</strong>vestigat<strong>in</strong>g major vehicle component applications such as hulls, turrets andramp doors. [1-19]TACOM recognizes <strong>the</strong> advantages <strong>of</strong> composite materials for combat and tactical militaryground vehicles and is <strong>in</strong>vestigat<strong>in</strong>g composites for various military vehicle applications.Composite vehicle bodies are be<strong>in</strong>g evaluated. One-piece graphite/epoxy driveshafts are be<strong>in</strong>gtested on <strong>the</strong> High Mobility Multipurpose Wheeled Vehicle (HMMWV) to replace <strong>the</strong>multi-piece metal shaft. TACOM sponsored a contract with General Dynamics that identifiedcomponents <strong>in</strong> <strong>the</strong> Abrams Tank, which are currently fabricated from alum<strong>in</strong>um or steel butcould be made from composites. Non-ballistic components were considered, such as seats,fenders, storage box, air ducts, torsion bar covers and fire ext<strong>in</strong>guisher brackets. Compositeroad wheels have been designed for <strong>the</strong> Abrams Tank with equivalent strength as <strong>the</strong>ir forgedalum<strong>in</strong>um counterparts but with <strong>the</strong> potential <strong>of</strong> reduc<strong>in</strong>g vehicle weight by 1,100 pounds; fieldtest<strong>in</strong>g <strong>of</strong> <strong>the</strong>se is required. Track p<strong>in</strong>s and track shoes for ground vehicles have also been<strong>in</strong>vestigated. The Ml 13A3 armored personnel carriers manufactured after June 1987 conta<strong>in</strong>Kevlar span l<strong>in</strong>ers mounted <strong>in</strong>side <strong>the</strong> alum<strong>in</strong>um body to catch spill fragments as a result <strong>of</strong>projectile impact and prevent fur<strong>the</strong>r damage to persomel or equipment. [1-20]Components for <strong>the</strong> Five Ton Truck were fabricated <strong>of</strong> composites and road tested. Thecomposite components <strong>in</strong>clude <strong>the</strong> frame (graphite <strong>re<strong>in</strong>forced</strong> epoxy), front and rear spr<strong>in</strong>gs(cont<strong>in</strong>uous glass <strong>re<strong>in</strong>forced</strong> epoxy), <strong>the</strong> drive shaft (filament wound graphite <strong>re<strong>in</strong>forced</strong>epoxy), wheels (compression molded glass <strong>re<strong>in</strong>forced</strong> epoxy), cargo bed (balsa core with<strong>fiber</strong>glass <strong>re<strong>in</strong>forced</strong> polyester and steel plate), seat slats (pultruded glass <strong>re<strong>in</strong>forced</strong> polyester),and hood/fender assembly (chopped glass <strong>re<strong>in</strong>forced</strong> polyester). The f<strong>in</strong>al report on this projectis available through DTIC. [1-20]The U.S. Army is also evaluat<strong>in</strong>g two proto~e, composite, 7,500 gallon, bulk fuel tankers andcompar<strong>in</strong>g <strong>the</strong>m to standard metal tankers. The composite tankers have a composite frame anda flame resistant foam core with glass <strong>re<strong>in</strong>forced</strong> res<strong>in</strong> sk<strong>in</strong>s. [1-20]In addition to <strong>the</strong> composite material evaluations cited here, composites are currently be<strong>in</strong>g<strong>use</strong>d <strong>in</strong> some military vehicles. The current HMMWV has a glass <strong>re<strong>in</strong>forced</strong>, polyester,hood/fender assembly, and some versions have a composite ro<strong>of</strong>. Kevlar@ is <strong>use</strong>d <strong>in</strong> someversions <strong>of</strong> <strong>the</strong> HMMWV, such as <strong>the</strong> ambulance, for <strong>the</strong> walls and ro<strong>of</strong>. The CommercialUtility Cargo Vehicle has a composite cap. [1-20]20


.—ChapterOneAPPLICATIONSThe transportation <strong>in</strong>dustry represents <strong>the</strong> best opportunity for growth <strong>in</strong> structural composites<strong>use</strong>. As raanufactur<strong>in</strong>g technologies mature, <strong>the</strong> cost and quality advantages <strong>of</strong> compositeconstruction will <strong>in</strong>troduce more, smaller manufacturers <strong>in</strong>to a marketplace that will be<strong>in</strong>creas<strong>in</strong>gly responsive to change. [1-21] Current FM technology has long been utilized <strong>in</strong><strong>the</strong> recreational vehicle <strong>in</strong>dustry where limited production runs preclude expensive tool<strong>in</strong>g andcomplex forms are common. Truck hoods and fair<strong>in</strong>g assemblies have been prevalent s<strong>in</strong>ce <strong>the</strong>energy crisis <strong>in</strong> 1974.AutomotiveApplicationsThe automotive <strong>in</strong>dustry has been slowly <strong>in</strong>corporat<strong>in</strong>g composite and FIW materials <strong>in</strong>to carsto enhance efficiency, reliability and customer appeal. In 1960, <strong>the</strong> average car conta<strong>in</strong>edapproximately 20 pounds <strong>of</strong> plastic material, while a car built <strong>in</strong> 1985 has on <strong>the</strong> average 245pounds <strong>of</strong> plastic. Plastic materials are replac<strong>in</strong>g smel <strong>in</strong> body panels, grills, bumpers andstructural members. Besides traditional <strong>plastics</strong>, newer materials that are ga<strong>in</strong><strong>in</strong>g acceptance<strong>in</strong>clude <strong>re<strong>in</strong>forced</strong> urethane, high heat distortion <strong>the</strong>rmo<strong>plastics</strong>, high glass loaded polyesters,structural foams, super tough nylons, high molecular weight polyethylene, high impactpolypropylene and polycarbonate blends. New processes are also accelerat<strong>in</strong>g <strong>the</strong> <strong>use</strong> <strong>of</strong><strong>plastics</strong> <strong>in</strong> automobiles. These new process<strong>in</strong>g technologies <strong>in</strong>clude reaction <strong>in</strong>jection mold<strong>in</strong>g<strong>of</strong> urethane, compression mold<strong>in</strong>g, structural foam mold<strong>in</strong>g, blow mold<strong>in</strong>g, <strong>the</strong>rmo<strong>plastics</strong>tamp<strong>in</strong>g, sheet mold<strong>in</strong>g, res<strong>in</strong> <strong>in</strong>jection mold<strong>in</strong>g and res<strong>in</strong> transfer mold<strong>in</strong>g. [1-22]MOBIKThe NIOBIK company <strong>in</strong> Gerl<strong>in</strong>gen, West Germany, is research<strong>in</strong>g and develop<strong>in</strong>g advancedcomposite eng<strong>in</strong>eer<strong>in</strong>g concepts <strong>in</strong> <strong>the</strong> automotive <strong>in</strong>dustry. They believe that tomorrow’s carmust be economical and functional and more environmentally compatible. Composite IntensiveVehicles (CIVS) will weigh less and thus enable considerable sav<strong>in</strong>gs <strong>in</strong> o<strong>the</strong>r areas. Lowerhorsepower eng<strong>in</strong>es, less assembly time and cost, longer lifespan and fewer repairs are among<strong>the</strong> benefits <strong>of</strong> composite <strong>in</strong>tensive automobiles. In addition, <strong>the</strong>se advanced composites willdampen noise and vibrations, allow for <strong>in</strong>tegration <strong>of</strong> parts, experience less corrosion, need lesstool<strong>in</strong>g and equipment transformation, and am recyclable. Obstacles <strong>the</strong>y face <strong>in</strong>clude presentlack <strong>of</strong> a high-speed manufactur<strong>in</strong>g technology for advanced composites and new eng<strong>in</strong>eer<strong>in</strong>gsolutions to overcome structural discont<strong>in</strong>uities. [1-23]The April 1989 issue <strong>of</strong> Plastics Technology magaz<strong>in</strong>e reports that MOBIK has developed ahigh speed method for mak<strong>in</strong>g advanced composite preforms for <strong>use</strong> <strong>in</strong> structural automotivecomponents. The prefomns are made from woven glass fabric and polye<strong>the</strong>rimide (PEI)<strong>the</strong>rmoplastic. The method enables vacuum form<strong>in</strong>g <strong>of</strong> 3 by 3 foot preforms <strong>in</strong> less than 30seconds at about 20 psi. The method <strong>in</strong>volves high speed <strong>fiber</strong> placement while <strong>the</strong> sheet isbe<strong>in</strong>g <strong>the</strong>rm<strong>of</strong>ormed. MOBIK plans to produce prototype automotive preforms at a pilot plantscheduled to open this fall. Initial applications will also <strong>in</strong>clude preforms for aircraft <strong>in</strong>teriorcab<strong>in</strong>s.21


TransportationIndustryMar<strong>in</strong>e CompositesFordComposite driveshafts are be<strong>in</strong>g <strong>use</strong>d <strong>in</strong> <strong>the</strong> automotive <strong>in</strong>dustry, Dur<strong>in</strong>g <strong>the</strong> 1985 Society <strong>of</strong>Plastics Industries (SPI) exhibit, Ford Motor Company won <strong>the</strong> transportation category with agraphite composite driveshtit for <strong>the</strong> 1985 Econol<strong>in</strong>e van. The driveshaft was constructed <strong>of</strong>20% carbon <strong>fiber</strong> and 40% E-glass <strong>fiber</strong> <strong>in</strong> a v<strong>in</strong>yl ester res<strong>in</strong> system. The shaft is totallycorrosion resistant and weighs 61YOless than <strong>the</strong> steel shaft it replaces. [1-22] Merl<strong>in</strong>Technologies and Celanese Corporation developed carbon/<strong>fiber</strong>glass composite driveshtits tha~<strong>in</strong> addition to weight sav<strong>in</strong>gs, <strong>of</strong>fer reduced complexity, warranty sav<strong>in</strong>gs, lower ma<strong>in</strong>tenance,cost sav<strong>in</strong>gs, and noise and vibration reduction as compared to <strong>the</strong>ir metal counterparts. [1-24]Ano<strong>the</strong>r structural composite developmental program, <strong>in</strong>itiated <strong>in</strong> 1981 by Ford MotorCompany, foc<strong>use</strong>d on design<strong>in</strong>g a composite rear floor pan for a Ford Escort model. F<strong>in</strong>iteelement models predicted that <strong>the</strong> composite part would not be as stiff but its strength would bedouble that <strong>of</strong> <strong>the</strong> identical steel part. The composite floor pan was made us<strong>in</strong>g <strong>fiber</strong>glass/v<strong>in</strong>ylester sheet (SMC) and directionally <strong>re<strong>in</strong>forced</strong> sheet (XMC) mold<strong>in</strong>g compounds. Stock Escortcomponents were <strong>use</strong>d as fasteners. Ten steel components were consolidated <strong>in</strong>to onecomposite mold<strong>in</strong>g, and a weight sav<strong>in</strong>gs <strong>of</strong> 1570 was achieved. A variety <strong>of</strong> static anddynamic material property tests were performed on <strong>the</strong> prototype, and all <strong>the</strong> specimensperformed as had been predicted by <strong>the</strong> models. The structural <strong>in</strong>tegrity <strong>of</strong> <strong>the</strong> part wasdemonstrated, hence <strong>the</strong> feasibility <strong>of</strong> mold<strong>in</strong>g a large structural part us<strong>in</strong>g selective cont<strong>in</strong>uousre<strong>in</strong>forcements was shown. [1-25]A sheet mold<strong>in</strong>g compound (SMC) material is <strong>use</strong>d to make <strong>the</strong> tailgate <strong>of</strong> <strong>the</strong> Ford Bronco IIand is also <strong>use</strong>d <strong>in</strong> heavy truck cabs. [1-22]Ford utilizes a blow molded TPE air duct on its Escort automobiles. The front and rear bumperpanels <strong>of</strong> Hyundai’s Sonata are made from eng<strong>in</strong>eered blow mold<strong>in</strong>g (EBM). [1-26]A study completed by Ford <strong>in</strong> 1988 confms <strong>the</strong> feasibility <strong>of</strong> extensive <strong>plastics</strong> <strong>use</strong> as a means<strong>of</strong> reduc<strong>in</strong>g production costs for low volume automobiles, such as electric powered cars.Accord<strong>in</strong>g to <strong>the</strong> study, <strong>plastics</strong> yield a parts reduction ratio <strong>of</strong> 5:1, tool<strong>in</strong>g costs are 60% lowerthsn for steel stamp<strong>in</strong>g dies, adhesive bond<strong>in</strong>g costs are 25-40% lower than weld<strong>in</strong>g, andstructural composites demonstrate outstand<strong>in</strong>g durability and crashworth<strong>in</strong>ess. Composite frontaxle crossmember parts have undergone extensive test<strong>in</strong>g <strong>in</strong> Detroit and await a rationale forproduction, [1-27]The Ford Taurus and Mercury Sable cars utilize <strong>plastics</strong> extensively. Applications <strong>in</strong>cludeexterior, <strong>in</strong>terior and under <strong>the</strong> hood components, <strong>in</strong>clud<strong>in</strong>g grills, <strong>in</strong>strument panels andoutside door handles, to ro<strong>of</strong> trim panels and <strong>in</strong>sulations, load floors, cool<strong>in</strong>g fans and batterytrays. The polycarbonate/PBT wraparound front and rear bumpers are <strong>in</strong>jection molded <strong>of</strong>General Electric’s Xenoy@material. [1-28]O<strong>the</strong>r significant new plastic applications <strong>in</strong> Ford vehicles <strong>in</strong>clude <strong>the</strong> <strong>in</strong>troduction <strong>of</strong> <strong>the</strong> highdensity polyethylene fuel tank <strong>in</strong> <strong>the</strong> 1986 Aerostar van. [1-28]A prototype graphite <strong>re<strong>in</strong>forced</strong> plastic vehicle was built <strong>in</strong> 1979 by Ford Motor Company.The project’s objective was to demonstrate concept feasibility and identify items critical to22


ChapterOneAPPLICATIONSproduction. The prototype car weighed 2,504 pounds, which was 1,246 pounds lighter than <strong>the</strong>same car manufactured <strong>of</strong> steel. Automotive eng<strong>in</strong>eers are beg<strong>in</strong>n<strong>in</strong>g to realize <strong>the</strong> advantages<strong>of</strong> part <strong>in</strong>tegration, simplified production and reduced <strong>in</strong>vestment cost, <strong>in</strong> addition to weightsav<strong>in</strong>gs and better durability. [1-22]The Ford Motor Company <strong>in</strong> Redford, MI established eng<strong>in</strong>eer<strong>in</strong>g feasibility for <strong>the</strong> structuralapplication <strong>of</strong> an HSMC Radiator Support, <strong>the</strong> primary concern be<strong>in</strong>g weight sav<strong>in</strong>gs. [1-29]The Ford Motor Company and Dow Chemical Company comb<strong>in</strong>ed efforts to design, build andtest a structural composite crossmember/transverse leaf spr<strong>in</strong>g suspension module for a smallvan. Prototype parts were fabricated and evaluated <strong>in</strong> vehicle and laboratory tests, and resultswere encourag<strong>in</strong>g. [1-30]General MotorsBuick <strong>use</strong>s Hoechst Celanese’s Riteflex@ BP 9086 polyester elastomer alloy for <strong>the</strong> bumperfascia on its 1989 LeSabre for its pa<strong>in</strong>tability, performance and processability. [1-26]The Pontiac Fiero has an all plastic sk<strong>in</strong> mounted on an all steel space frame. The space frameprovides all <strong>the</strong> functional streng<strong>the</strong>n<strong>in</strong>g and stiffen<strong>in</strong>g and consists <strong>of</strong> a five-piece modulardesign, and <strong>the</strong> plastic body panels are for cosmetic appearance. The shifter trim plate for <strong>the</strong>Pontiac Fiero k made <strong>of</strong> molded styrene maleic anhydride (SMA) and resists warp<strong>in</strong>g and. scratch<strong>in</strong>g, readily accepts pa<strong>in</strong>ts and exceeds impact targets.Drive axle seals on <strong>the</strong> 1985 GM front wheel drive cars and trucks are made <strong>of</strong> Hytrel polyesterelastomer for improved ma<strong>in</strong>tenance, performance and life.Wheel covers for <strong>the</strong> Pontiac Grand AM are molded <strong>of</strong> Vydyne m<strong>in</strong>eral <strong>re<strong>in</strong>forced</strong> nylon forhigh temperature and impact resistance. [1-28]GenCorp Automotive developed a low density sheet mold<strong>in</strong>g compound (SMC) that is claimedto be 30% lighter than standard SMC. The material has been <strong>in</strong>troduced on <strong>the</strong>all-plastic-bodied GM 200 m<strong>in</strong>ivan and <strong>the</strong> 1989 Corvette. [1-26] The automotive exteriorpanels on <strong>the</strong> GM 200 APV m<strong>in</strong>ivan are plastic. The m<strong>in</strong>ivan has polyurea fenders and SMCsk<strong>in</strong> for ro<strong>of</strong>s, hoods and door panels. BMW also <strong>use</strong>s plastic exterior panels on its Z1 model.[1-31]ChryslerIn a jo<strong>in</strong>t program <strong>in</strong>itiated <strong>in</strong> 1984 between <strong>the</strong> Shell Development Company, Houston, TXand <strong>the</strong> Chrysler Corporation, a composite version <strong>of</strong> <strong>the</strong> steel front crossmember for Chrysler’sT-1 15 m<strong>in</strong>ivan was designed, fabricated and tested. Chrysler completed <strong>in</strong>-vehicle prov<strong>in</strong>ggrounds test<strong>in</strong>g <strong>in</strong> March 1987. The program <strong>in</strong>creased confidence that composites made fromnon-exotic commercially available materials and fabrication processes can withstand severeservice <strong>in</strong> structural automotive applications. [1-32]Chrysler <strong>use</strong>s nearly 40 pounds <strong>of</strong> acrylonitrile-butadiene-styrene (A13S) <strong>in</strong> its s<strong>in</strong>gle-piece,four-segment molded <strong>in</strong>terior unit for <strong>the</strong> Dodge Caravan and Plymouth Voyager. [1-28]23


Trsnsportatlon IndustryA4ar<strong>in</strong>eCompositesLeafspr<strong>in</strong>gsResearch and test<strong>in</strong>g has been performedby <strong>the</strong> University <strong>of</strong> Michigan on acomposite elliptic spr<strong>in</strong>g, which wasdesigned to replace steel coil spr<strong>in</strong>gs <strong>use</strong>d<strong>in</strong> current automobiles. The compositespr<strong>in</strong>g consists <strong>of</strong> a number <strong>of</strong> hollowelliptic elements jo<strong>in</strong>ed toge<strong>the</strong>r, as shown<strong>in</strong> Figure 1-10. The elliptic spr<strong>in</strong>gelements were manufactured by w<strong>in</strong>d<strong>in</strong>g<strong>fiber</strong> <strong>re<strong>in</strong>forced</strong> epoxy tapes to variousthicknesses over a collapsible mandrel.The work performed <strong>in</strong>dicates that FRPspr<strong>in</strong>gs have considerable potentisl as asubstitute for steel coil spr<strong>in</strong>gs. Among<strong>the</strong> advantages <strong>of</strong> <strong>the</strong> composite designare a weight sav<strong>in</strong>gs <strong>of</strong> almost 50Y0,easier repairability, and <strong>the</strong> potentialelim<strong>in</strong>ation <strong>of</strong> shock absorbers due to <strong>the</strong>high damp<strong>in</strong>g characteristics <strong>in</strong>herent <strong>in</strong><strong>fiber</strong> <strong>re<strong>in</strong>forced</strong> <strong>plastics</strong>. [1-33]Figure 1-10 Composite Elliptic Spr<strong>in</strong>g[ASA4 Eng<strong>in</strong>eers’Guideto CompositeA4aterW]Composite leaf spr<strong>in</strong>gs for heavy trucks have been designed, manufactured and tested. In oneprogram, a <strong>fiber</strong>glass sheet mold<strong>in</strong>g compound and epoxy res<strong>in</strong> were <strong>use</strong>d with a steel ma<strong>in</strong>leaf <strong>in</strong> a compression-mold<strong>in</strong>g process. Mechanical test<strong>in</strong>g <strong>of</strong> <strong>the</strong> f<strong>in</strong>ished parts demonstratedthat design requirements for <strong>the</strong> component can be met us<strong>in</strong>g composites while achiev<strong>in</strong>g am<strong>in</strong>imum <strong>of</strong> 40% weight reduction over steel leaf spr<strong>in</strong>gs. [1-34]FramesGraphite and Kevlar <strong>fiber</strong>s with epoxy res<strong>in</strong> were <strong>use</strong>d to make a composite heavy truck framedeveloped by <strong>the</strong> Convair Division <strong>of</strong> General Dynamics. The composite frame weighs 62%less than steel and has <strong>the</strong> same strength and stiffness. The frame was tested for one year(18,640 miles) on a GMC truck without any problems. No stracturtd damage was evident, boltholes ma<strong>in</strong>ta<strong>in</strong>ed <strong>the</strong>ir <strong>in</strong>tegrity, and <strong>the</strong>re was no significant creep <strong>of</strong> <strong>the</strong> res<strong>in</strong> matrix. [1-35]A torsionally stiff, lightweight monocoque chassis was designed and fabricated <strong>in</strong> 1986 by <strong>the</strong>Vehicle Research Institute at Western Wash<strong>in</strong>gton University, Bell<strong>in</strong>gham, WA. Called <strong>the</strong>Vildng VIII, this high performance, low cost sports car utilizes composite materials throughoutand weighs only 1,420 pounds. Fiberglass, Kevlar@and carbon <strong>fiber</strong> were <strong>use</strong>d with v<strong>in</strong>yl esterres<strong>in</strong>, epoxy adhesive and alum<strong>in</strong>um honeycomb core <strong>in</strong> vsrious sandwich configurations.F<strong>in</strong>al detailed test results were not available <strong>in</strong> <strong>the</strong> literature, however, most <strong>of</strong> <strong>the</strong> performancegoals were met with <strong>the</strong> model. [1-36]Safety DevicesHoneycomb structures can absorb a lot <strong>of</strong> mechanical energy without residual rebound and areparticularly effective for cushion<strong>in</strong>g air dropped supplies or <strong>in</strong>strument packages <strong>in</strong> missiles,24


ChapterOneAPPLICATIONSprovid<strong>in</strong>g earthquake damage restra<strong>in</strong>ts for above ground pipel<strong>in</strong>es, or protect<strong>in</strong>g people <strong>in</strong>rapid transit vehicles. A life-sav<strong>in</strong>g cushion<strong>in</strong>g device called <strong>the</strong> Truck Mounted CrashCushion (TMCC) has been <strong>use</strong>d by <strong>the</strong> California Department <strong>of</strong> Motor Transportation. TheTMCC has proven effective <strong>in</strong> prevent<strong>in</strong>g <strong>in</strong>jury to, and sav<strong>in</strong>g <strong>the</strong> lives <strong>of</strong>, highway workersand motorists. The TMCC is mounted to slow mov<strong>in</strong>g or stopped transportation departmentma<strong>in</strong>tenance and construction vehicles. In case <strong>of</strong> an accident, after an <strong>in</strong>itial threshold stress(that can be eh.n<strong>in</strong>ated by prestress<strong>in</strong>g <strong>the</strong> honeycomb core) at which compressive failurebeg<strong>in</strong>s, <strong>the</strong> core carries <strong>the</strong> crush<strong>in</strong>g load at a controlled, nem l<strong>in</strong>ear rate until it k completelydissipated wkhout bounc<strong>in</strong>g <strong>the</strong> impact<strong>in</strong>g car or truck <strong>in</strong>to a work crew or oncom<strong>in</strong>g traffic.Manufactur<strong>in</strong>g TechnologiesMany competitive, stampable <strong>re<strong>in</strong>forced</strong> <strong>the</strong>rmoplastic sheet products have been <strong>use</strong>d dur<strong>in</strong>g <strong>the</strong>past few years <strong>in</strong> <strong>the</strong> auto <strong>in</strong>dustry both <strong>in</strong> <strong>the</strong> U.S. and abroad. In 1988, Exxon AutomotiveIndustry Sector, Farm<strong>in</strong>gton Hills, MI, <strong>in</strong>troduced its Taffen STC (structural <strong>the</strong>rmoplasticcomposite) stampable and compression-moldable sheet This long-glass <strong>re<strong>in</strong>forced</strong>polypropylene sheet has already been <strong>use</strong>d by European auto makers Peugeot, Audi, Vauxhall(GM) and Renault for <strong>in</strong>strument panel components, load floors, battery trays and o<strong>the</strong>rstructwd parts. A spokesman for Exxon claims that <strong>the</strong> materkil is under evaluation for 40different programs at Ford, General Motors and Chrysler. [1-26]A North American automotive eng<strong>in</strong>eer<strong>in</strong>g company has been design<strong>in</strong>g and test<strong>in</strong>g blowmolded fuel tanks for cars. Hedw<strong>in</strong> Corporation, West Bloorniield, MI recently announced <strong>the</strong>application <strong>of</strong> an all-HDPE blow molded fuel tank forward <strong>of</strong> <strong>the</strong> drive shaft. The tank wasproduced for <strong>the</strong> 1989 Ford Thunderbird and Mercury Cougar, and Hedw<strong>in</strong> claims it is <strong>the</strong> fist<strong>in</strong> a U.S.-built car to be mounted forward <strong>of</strong> <strong>the</strong> drive shaft. Beca<strong>use</strong> <strong>of</strong> <strong>the</strong> tank’s location, <strong>the</strong>design had to allow <strong>the</strong> shaft to pass through <strong>the</strong> middle <strong>of</strong> <strong>the</strong> tank, mak<strong>in</strong>g it necessary to goto an exceed<strong>in</strong>gly complex shape. [1-26]At <strong>the</strong> Spr<strong>in</strong>g 1989 Society <strong>of</strong> Automotive Eng<strong>in</strong>eers International Congress & Exposition,significant developments <strong>in</strong> quality-enhanc<strong>in</strong>g polymer systems and materials technology weredemonstrated. General achievements <strong>in</strong>clude: [1-26]...●✎✎☛Breakthroughs <strong>in</strong> high-productivity reaction <strong>in</strong>jection mold<strong>in</strong>g (RIM)formulations and <strong>the</strong> equipment to handle <strong>the</strong>m.Success for <strong>the</strong>rmoplastic elastomer (TPE) fasci~ with an uhra-s<strong>of</strong>t<strong>the</strong>rmoplastic stymnic-based product soon to emerge.Upgraded eng<strong>in</strong>eer<strong>in</strong>g and sound-damp<strong>in</strong>g foams for <strong>in</strong>terior automotiveand o<strong>the</strong>r specialty applications.More high-heat polyethylene terephthalate PET materials.A polyphenylene sulfide stionegrade for underhood <strong>use</strong>.Long-steel-<strong>fiber</strong> <strong>re<strong>in</strong>forced</strong> res<strong>in</strong>s designed for EMI shield<strong>in</strong>g.Impact-modikd polycarbonates, high-heat ABS grades, glass-<strong>re<strong>in</strong>forced</strong>acrylic-styrene-acrylonitrile/polybutylene terephthalate (ASA/PBT) blends,and impact acrylics.25


TransportationIndustryA.M7eCompositesAlso at <strong>the</strong> Spr<strong>in</strong>g 1989 Exposition, Mobay Chemical Co. <strong>in</strong>troduced a MM polyureaformulation that is claimed to <strong>of</strong>fer dramatic productivity ga<strong>in</strong>s, excellent <strong>the</strong>rmal stability, asurface f<strong>in</strong>ish as smooth as steel, and good abrasion, corrosion and wear resistance. Mobay isbuild<strong>in</strong>g a facility at New Mart<strong>in</strong>sville, WV to produce a patented am<strong>in</strong>e-term<strong>in</strong>ated polye<strong>the</strong>r(ATPE) claimed to improve <strong>the</strong> quality <strong>of</strong> auto body panels and o<strong>the</strong>r components made withits polyurea systems. Mobay claims that its un<strong>re<strong>in</strong>forced</strong> STR-400 structural RIM (SKIM)system, which can be <strong>use</strong>d for automotive applications such as bumper beams, trunk modules,truck boxes, spare-tire covers and ro<strong>of</strong> caps, <strong>of</strong>fers 50% greater notched Izod strength than itsearlier grade <strong>of</strong> SRIM. [1-26]Dow Chemical announced at <strong>the</strong> show its completion <strong>of</strong> <strong>the</strong> design and eng<strong>in</strong>eer<strong>in</strong>g <strong>of</strong> ultrahigh speed equipment to run <strong>the</strong> fast new RIM materials. [1-26]Pro<strong>of</strong> <strong>of</strong> SRIM’s practicality was seen on a bumper beam on <strong>the</strong> 1989 Corvette on display at<strong>the</strong> Dow exhibit. It is molded by Ardyne Inc., Grand Haven, MI, us<strong>in</strong>g Dow’s Spectrim MM310 system. The SRIM beam comb<strong>in</strong>es a directional and random glass preform with a matrix<strong>of</strong> <strong>the</strong>rmosett<strong>in</strong>g polycarbamate res<strong>in</strong> and saves 18~0 <strong>in</strong> weight and 14~0 <strong>in</strong> labor and materialcosts, accord<strong>in</strong>g to Chevrolet. [1-26]Hercules announced two new SRIM systems at <strong>the</strong> Exposition. One, Grade 5000 is a SRIMsystem designed for glass re<strong>in</strong>forcement and <strong>in</strong>tended for such <strong>use</strong>s as hoods, trunk lids, doorpanels, side fair<strong>in</strong>gs and fenders. The o<strong>the</strong>r, Grade 1537, is said to <strong>of</strong>fer a higher heatdeflection temperature (185”F) and better impact, stiffness and strength properties and is<strong>in</strong>tended primarily for bumper covers, side fair<strong>in</strong>g extensions, ro<strong>of</strong> panels and sun visors. It isclaimed to ma<strong>in</strong>ta<strong>in</strong> ductility from -3~ to 150°F. [1-26]MaterialsThe follow<strong>in</strong>g is a list <strong>of</strong> some promis<strong>in</strong>g materialautomotive applications:systems that have been <strong>in</strong>troduced for. Porsche <strong>use</strong>s Du Pent’s Bexoly V <strong>the</strong>rmoplastic polyester elastomer for <strong>the</strong><strong>in</strong>jection molded front and rear fascias on its new Camera 4 model.c Shell Chemical is <strong>in</strong>troduc<strong>in</strong>g new styrcnic-based fiton elastomers, whichare extremely s<strong>of</strong>t with “excellent” compression set and moldability. Itsapplications <strong>in</strong> <strong>the</strong> transportation <strong>in</strong>dustry <strong>in</strong>clude w<strong>in</strong>dow seals and wea<strong>the</strong>rgasket<strong>in</strong>g, where s<strong>of</strong>tness, better than average heat resistance, and lowcompression set are important.●●A foam that debuted at <strong>the</strong> Spr<strong>in</strong>g 1989 Exposition is a cold cur<strong>in</strong>g flexiblePUR from Mobay, which is designed to reduce noise levels <strong>in</strong>sideautomobiles. BMW now <strong>use</strong>s <strong>the</strong> foam system, called Bayfit SA, on all itsmodels.General Electric Plastics has designed and developed a one-piece, structural<strong>the</strong>rmoplastic, advanced <strong>in</strong>strument panel module, called AIM, forautomobiles. The one-piece design sharply reduces production time. [1-26]26


ChapterOneAPPLICATIONSCargo Handl<strong>in</strong>g. Glass <strong>re<strong>in</strong>forced</strong> <strong>the</strong>rmoplastic polyesters such as PBT (polybutyleneterephtlwilate) are <strong>use</strong>d extensively <strong>in</strong> <strong>the</strong> automotive <strong>in</strong>dustry for exteriorbody parts such as grilles, wheel covers and components for doors, w<strong>in</strong>dowsand mirrors. PBT is also <strong>in</strong> demand for underhood applications such asdistributor caps, rotors and ignition parts. O<strong>the</strong>r <strong>use</strong>s <strong>in</strong>clude headlampparts, w<strong>in</strong>dshield wiper assemblies, and water pump and brake systemcomponents.. Du Pent’s Bexloy K 550 RPET has been accepted by Chrysler for <strong>use</strong> onfenders on some 1992 models. [1-37]. The Polimotor/Lola T-616 is <strong>the</strong> world’s first competition race car with aplastic eng<strong>in</strong>e. The four cyl<strong>in</strong>der Polirnotor eng<strong>in</strong>e is ?4 plastic andconta<strong>in</strong>s dynamic parts <strong>of</strong> <strong>in</strong>jection molded polymer supplied by AmocoChemicals. The race car weighs 1500 pounds and has a carbon <strong>fiber</strong> chassisand body.. Torlon@is a high performance polyamideimide <strong>the</strong>rmoplastic made byAmoco. Torlon@has a very low coefficient <strong>of</strong> <strong>the</strong>rmal expansion, whichnearly matches that <strong>of</strong> steel and is stronger than many o<strong>the</strong>r types <strong>of</strong> hightemperature polymers <strong>in</strong> its price range. It can be <strong>in</strong>jection molded toprecise detail with low unit cost. Torlon@thrust washers were <strong>in</strong>corporated<strong>in</strong>to Cumm<strong>in</strong>s’ gear-driven diesel eng<strong>in</strong>es start<strong>in</strong>g <strong>in</strong> 1982. [1-28]Shipp<strong>in</strong>g conta<strong>in</strong>ers are now be<strong>in</strong>g constructed <strong>of</strong> FRP materials to achieve weight sav<strong>in</strong>gs andto facilitate and simplify transshipment. Santa Fe Railway has developed an FRP conta<strong>in</strong>er unitthat is modular, allow<strong>in</strong>g conta<strong>in</strong>ers to be easily transferred to/from trucks, tra<strong>in</strong>s and ships.The conta<strong>in</strong>ers me constructed us<strong>in</strong>g <strong>fiber</strong>glass <strong>in</strong> a polyester matrix with a core <strong>of</strong> balsa wood.The units are aerodynamically designed to reduce w<strong>in</strong>d drag. The conta<strong>in</strong>ers can be stacked up‘ to six conta<strong>in</strong>ers high when placed on a ship for transport. Aside from <strong>the</strong> substantial weightsav<strong>in</strong>gs achieved us<strong>in</strong>g <strong>the</strong>se conta<strong>in</strong>ers, <strong>the</strong> transported goods need not be transferred from oneform <strong>of</strong> conta<strong>in</strong>er to ano<strong>the</strong>r. This results <strong>in</strong> lower handl<strong>in</strong>g costs and reduces <strong>the</strong> risk <strong>of</strong> cargodamage. [1-38]Rail and truck tanks made from sandwich FRP utilizetraditional metallic cyl<strong>in</strong>drical counterparts. Projects <strong>in</strong>advantage <strong>of</strong> this technology.more effective volume than <strong>the</strong>irNor<strong>the</strong>rn Europe are now tak<strong>in</strong>g27


IndustrialUse <strong>of</strong> FRPMar<strong>in</strong>e CompositesThermoplastic IEs<strong>in</strong>swere frrst <strong>in</strong>troduced <strong>in</strong> 1889 and have s<strong>in</strong>ce developed <strong>in</strong> form and applicationwith a variety <strong>of</strong> <strong>in</strong>dustrial <strong>use</strong>s. Re<strong>in</strong>forced polyester res<strong>in</strong>s werE first utilized <strong>in</strong> 1944 and shall be<strong>the</strong> focus <strong>of</strong> this <strong>in</strong>vestigation <strong>of</strong> <strong>in</strong>dustrial <strong>the</strong>rmo<strong>plastics</strong>. FRP’s advantages <strong>in</strong> this field <strong>in</strong>clude:lightweight structural applications, wide <strong>use</strong>ful temperature range, chemical resistance, flexibility,<strong>the</strong>rmal and electrical <strong>in</strong>sulation, and favorable fatigue characteristics.Pip<strong>in</strong>g SystemsThe <strong>use</strong> <strong>of</strong> FRP for large diameter <strong>in</strong>dustrial pip<strong>in</strong>g is attractive beca<strong>use</strong> handl<strong>in</strong>g and corrosionconsiderations are greatly improved. Filament wound pip<strong>in</strong>g can be <strong>use</strong>d at worldngtemperatures up to around 300T with a projected service life <strong>of</strong> 100 years, Interior surfacesare much smoo<strong>the</strong>r than steel or concrete, which reduces frictional losses. The major difficultywith FRP pip<strong>in</strong>g <strong>in</strong>stallation is associated with connection arrangements. Constructiontechniques and eng<strong>in</strong>eer<strong>in</strong>g considerations are presented below, along with specific applicationexamples.Pipe ConstructionThe cyl<strong>in</strong>drical geometry <strong>of</strong> pipes make <strong>the</strong>m extremely well suited for filament w<strong>in</strong>d<strong>in</strong>gconstruction. In this process, <strong>in</strong>dividual lengths <strong>of</strong> <strong>fiber</strong>glass are wound on to a mandrel form<strong>in</strong> an eng<strong>in</strong>eered geometry. Res<strong>in</strong> is ei<strong>the</strong>r applied at <strong>the</strong> time <strong>of</strong> w<strong>in</strong>d<strong>in</strong>g or pre-impregnated(prepreg) <strong>in</strong>to <strong>the</strong> <strong>fiber</strong>glass <strong>in</strong> a semi-cured state. High pressure pipes and tanks are fabricatedus<strong>in</strong>g this technique.A more economical method <strong>of</strong> produc<strong>in</strong>g pipes is called centrifugal cast<strong>in</strong>g. In this process,chopped glass <strong>fiber</strong>s are rrtixed with res<strong>in</strong> and applied to <strong>the</strong> <strong>in</strong>side <strong>of</strong> a rotat<strong>in</strong>g cyl<strong>in</strong>dricalmold. The re<strong>in</strong>forcement <strong>fiber</strong>s end up <strong>in</strong> a random arrangement mak<strong>in</strong>g <strong>the</strong> structure’sstrength properties isotropic. This process is <strong>use</strong>d for large diameter pipe <strong>in</strong> low pressureapplications.Contact mold<strong>in</strong>g by hand or with automated spray equipment is also <strong>use</strong>d to produce largediameter pipe. The designer has somewhat more flexibility over directional strength propertieswith this process. Different applications may be more sensitive to ei<strong>the</strong>r hoop stresses orlongitud<strong>in</strong>al bend<strong>in</strong>g stresses. Figure 1-11 shows <strong>the</strong> typical construction sequence <strong>of</strong> acontact-molded pipe.Pip<strong>in</strong>g MaterialsFiberglass is by far <strong>the</strong> most widely <strong>use</strong>d re<strong>in</strong>forcement material for <strong>re<strong>in</strong>forced</strong> pip<strong>in</strong>gcomponents. The strength benefits <strong>of</strong> higher strength <strong>fiber</strong>s do not justify <strong>the</strong> added cost forlarge structures. The type <strong>of</strong> res<strong>in</strong> system <strong>use</strong>d does vary greatly, depend<strong>in</strong>g upon <strong>the</strong> givenapplication. Table 1-2 lists various res<strong>in</strong> characteristics.Eng<strong>in</strong>eer<strong>in</strong>g ConsiderationsThe general approach to FRP pipe construction <strong>in</strong>volves a chemically resistant <strong>in</strong>ner layer thatis surrounded by a high <strong>fiber</strong> content structural layer and f<strong>in</strong>ally a res<strong>in</strong> rich coat<strong>in</strong>g.Additional re<strong>in</strong>forcement is provided by ribbed stiffeners, which are ei<strong>the</strong>r solid or hollow.28


ChapterOneAPPLICATIONS1. SMOOTH INNER SURACE [ RESIN RICH INTERIOR REINFORCED WITH SURFACINGVEIL , 90% RESIN / 10% QLASS)2. NEKT INTERIORLAYER( REINFORCEDWITH CHOPPEDSTRAND MAT, $!5. 30% GLASS)3. REMAININ13TNICKNESS( 70% RESIN/ 30% QLASS)4. EXTERIORSURFACE( REsIN RICH SURFACINGVEIL/ PROTECTSAOAINST WEATHERING*SPILLAGE , FUMES , ETC.)Figure 1-11 Cutaway View <strong>of</strong> Contact-Molded Pipe [Cheremis<strong>in</strong><strong>of</strong>f, Fiberg/ass-Re<strong>in</strong>forcedPlastics Deskbook]Table 1-2. FRP Pipe Res<strong>in</strong> SystemsICheremis<strong>in</strong><strong>of</strong>fl Fiberg/ass-Re<strong>in</strong>forced Plastics Deskbao~Res<strong>in</strong>IsophthalicFurmaratedbi-sphenolA-type polyesterFire-retardant polyesterVarious<strong>the</strong>rmoset res<strong>in</strong>sHigh-qualityepoxyV<strong>in</strong>yl ester and proprieta~res<strong>in</strong> systemsAppllcatlonMild corrosives at moderate temperaturesand generaI acid wastesMildto severecorrosivefluids <strong>in</strong>clud<strong>in</strong>gmany alkaliesand acidsMaximum chemical resistance to acids,alkalies and solventsHigh degree <strong>of</strong> chemical resistance tospecific chemicalsExtremely high resistance to strongcaustic solutionsExtremelyhigh resistanceto organicacids, oxidiz<strong>in</strong>g acids, alkalis and s~ecificsolvents operat<strong>in</strong>g <strong>in</strong> excess <strong>of</strong> 350 F~FRPFIJ$NGEThe jo<strong>in</strong><strong>in</strong>g <strong>of</strong> FRP pipe to o<strong>the</strong>r bmaterials, such as steel, can beEaccomplished us<strong>in</strong>g a simple flange t<strong>of</strong>lange mate; with an encased concretesystem that utilizes thrust r<strong>in</strong>gs; or with ak,.,rubber expansion jo<strong>in</strong>t, as shown <strong>in</strong> FigureJOINT1-12. For straight FRP connections, an’0’ r<strong>in</strong>g seal can be <strong>use</strong>d. Figure 1-12 Typical Expansion Jo<strong>in</strong>tTie-In [Cheremis<strong>in</strong><strong>of</strong>f, Fiberg/ass-/?e<strong>in</strong>forcedPlastics Deskbook]L 0, InRFR tYDANClnM /DIDSPnUMNCNT(VALVE, PUMP,ETC.)29


IndustrialUse <strong>of</strong> FRPMar<strong>in</strong>eCompositesPractices or codes regard<strong>in</strong>g safe FRP pipe design are established by <strong>the</strong> follow<strong>in</strong>g organimions:*The American Society for Test<strong>in</strong>g and Materials (ASTM). The American Society for Mechanical Eng<strong>in</strong>eers (ASME). The American Petroleum Institute (API)Table 1-3 presents average properties <strong>of</strong> FRP pipe manufactured by different methods. Table1-4 lists some recommended wall thicknesses for fdament wound and contact molded pipes atvarious <strong>in</strong>ternal pressures.FRP Pip<strong>in</strong>g ApplicationsOil IndustryApproximately 500,000 feet <strong>of</strong> FRP pipe is <strong>in</strong>stalled at a Halge-Union Texas project near R<strong>in</strong>gw@OK and is believed to be tbe s<strong>in</strong>gle largest FRP pipe <strong>in</strong>stallation. FRP epoxy pipe was selectedbeca<strong>use</strong> <strong>of</strong> its excellent corrosion resistance and low paaffiu buildup. The smoothness <strong>of</strong> <strong>the</strong> pipewalls and low <strong>the</strong>rmal conductivity contribute to <strong>the</strong> <strong>in</strong>herent resistance to pamffm accumulation. Thematerials that tend to corrode metallic pip<strong>in</strong>g <strong>in</strong>clude crudes, natural gases, saltwater and corrosivesoils. At an <strong>of</strong>fshore <strong>in</strong>stallation <strong>in</strong> <strong>the</strong> Arabian Gulf, FRP v<strong>in</strong>yl ester pip was selected beca<strong>use</strong> <strong>of</strong> itsexcellent mistance to saltwater and humidity. At this site, seawater is illtered through a series <strong>of</strong> 15foot diameter treks that are connected by 16 <strong>in</strong>ch diameter pip<strong>in</strong>g us<strong>in</strong>g a multitude <strong>of</strong> FIW fitt<strong>in</strong>gs.Table 1-3. Average Properties <strong>of</strong> Various FRP Pipe[Cheremis<strong>in</strong><strong>of</strong>f, F]b@ass-Re<strong>in</strong>forced P/astfcs DeskbooKjPropertyModulus<strong>of</strong> Elasticit <strong>in</strong>Axial Tension@ 7+F, psiUltimate Axial TensileStrength @ 77° F, psiUltimate Hoop TensileStrength @ 77° F, psiModulus <strong>of</strong> Elasticity <strong>in</strong>Beam Flexure @ 77° F, psiCoefficient <strong>of</strong> ThermaJExpansion, <strong>in</strong>ch/<strong>in</strong>ch/ FHeat DeflectionTemperature @ 264 psi, ‘FTherqal ~onductivity,Btu/ft -hr- F/<strong>in</strong>chFilamentWound CentrifugallyCast ContactMoldedwith Epoxy or with E o or with g:: :sterPolyester Res<strong>in</strong>s Polyes???er esln)’1.O-2.7X 106 1.3 -1,5X106 0,8- I.8X 1068,000-10,000 25,000 9,000-18,00024,000-50,000 35,000 9,000-10,0001-2X106 1.3 -1.5X106 1.0- I.2X 1068.5- 12.7x 106 13 X106 15 X106200-300 200-300 200-2501.3- 2.0 0.9 1.5Specific Gravity 1,8- 1.9 1.58 1.3- 1.7Corrosive Resistance E E NRE = excellent, will resist most corrosive chemicalsNR = not recommendedfor highly alkal<strong>in</strong>e or solvent applications30


ChapterOneAPPLICATIONS.Coal M<strong>in</strong>eCoal m<strong>in</strong>es have successfully <strong>use</strong>d FRP epoxy res<strong>in</strong> pipe, accord<strong>in</strong>g to <strong>the</strong> Fiber GlassResources Corporation. The materiil is capable <strong>of</strong> handl<strong>in</strong>g freshwater, acid n<strong>in</strong>e water andslurries more effectively than mild steel and considerably cheaper than sta<strong>in</strong>less steel.Additionally, FRP is well suited for remote areas, fm protection l<strong>in</strong>es, boreholes and roughterra<strong>in</strong> <strong>in</strong>stallations.Paper MillA paper mill <strong>in</strong> Wiscons<strong>in</strong> was experienc<strong>in</strong>g a problem with large concentrations <strong>of</strong> sodiumhydroxide that was a byproduct <strong>of</strong> <strong>the</strong> de<strong>in</strong>k<strong>in</strong>g process. Type 316 sta<strong>in</strong>less steel was replacedwith a corrosion resistant FRP us<strong>in</strong>g bell and spigot-jo<strong>in</strong><strong>in</strong>g methods to fur<strong>the</strong>r reduce<strong>in</strong>stallation costs.Power ProductionCirculat<strong>in</strong>g water pipes <strong>of</strong> 96 <strong>in</strong>ch diameter FRP were specially designed to meet <strong>the</strong>eng<strong>in</strong>eer<strong>in</strong>g challenges <strong>of</strong> <strong>the</strong> BIG CAJUN#2 fossil fuel power plant <strong>in</strong> New Roads, LA. The<strong>in</strong>stability <strong>of</strong> <strong>the</strong> soil precluded <strong>the</strong> <strong>use</strong> <strong>of</strong> conventional thrust blocks to absorb axial loads. Bycustom lay-up <strong>of</strong> axial <strong>fiber</strong>, <strong>the</strong> pipe itself was made to handle <strong>the</strong>se loads. Additionally,custom elbow jo<strong>in</strong>ts were eng<strong>in</strong>eered to improve flow characteristics <strong>in</strong> tight turns.ITable 1-4. Recommended Pipe Wall Thickness <strong>in</strong> Inches[Cheremis<strong>in</strong><strong>of</strong>f, Fiberg/ass-Re<strong>in</strong>forced Plastics Deskbook]Internal Pressure Rat<strong>in</strong>a. Dsi-. .InsideDiam. 25 50 75 100 125 150Inche& Flkunent Contact Fllamemt COntaGt Filament contact Ftlament Con@t Filament contact Fllment ContactWound Molded Wound Molded Wound Molded Wound Molded Wound Molded Wound Mo[d~2 0.188 0.187 0.188 0,187 0.188 0,187 0.188 0.187 0.188 0.187 0.188 o.j871 1 1 I I I I I I I I4 I 0.188 I 0.187 [ 0.188 I 0.187 I 0.188 I 0.187 I 0.188 I 0.250 I 0.188 I 0,250 I o.I88 I 0.2501 1 1 I I I I I IG I 0.188 I 0.187 I 0.188 I 0.187 I 0.188 I 0.250 I 0.188 ] 0.250 I 0.188 I 0,312 I 0.188 I 0,3751 1 1 1 I I I I8 I 0.188 I 0.187 I 0.188 I 0.250 I 0.188 I 0,250 I 0.188 I 0,312 ] 0.188 I 0.375 I 0,188 I 0.4371 1 1 I I I I I10 I 0.188 I 0.187 I 0.188 I 0.250 I 0.188 I 0.312 I 0.188 I 0.375 I 0,188 I 0.437 ] 0.188 I 0.50012 0.188 0.187 0.188 0,250 0.188 0,375 0.188 0.437 0.188 0.500 0,214 om62518 0.188 0.250 0.188 0.375 0,188 0.500 0,214 0.625 0.268 0.750 0.321 0.93724 0.188 0.250 0.188 0.437 0.214 0.625 0.286 0.812 0.357 1,000 0.429 1.1201 1 I 1 I I I I I I I36 I 0.188 I 0.375 I 0.214 I 0.625 I 0.321 I 0.937 I 0.429 I 1.250 / 0.536 I 1,500 I 0.843 I 1.810~ 0.188 0.437 0.286 0.812 0.429 1.250 0.571 1.620 0.714 2.000 0,857 2.44060 0.188 0,500 0.357 1.000 0.536 1.500 0.714 2.000 om893 2.500 1.070 3.00072 0.214 0.625 0,429 1.250 0,643 1.810 0.857 2m440 1.070” 3.000 1.290 3.62096 0.286 0.812 0.571 1.620 0.857 2.440 1.140 3.250 1.430 4.000 1.710 4.81031


Industrial Use <strong>of</strong> FRP W<strong>in</strong>e CompositesTanksFRP storage tanks megt<strong>in</strong>g <strong>in</strong>creased attention as<strong>of</strong>lati duemrecent ~velationstiattiekmetallic counterparts are corrod<strong>in</strong>g and ruptur<strong>in</strong>g <strong>in</strong> underground <strong>in</strong>stallations. The fact that itsactivity can go unnoticed for some time can lead to severe environmental rmcations.ConstructionRESIN-RICH LAYER TOUTERSURFACEA cross-sectional view <strong>of</strong> a typical (CHEMIWY RESISTANTMN’ ORORWNICFRP tank would closely resemble POLYESTERORVINYLESTERI J~VEIL $PRWEO<strong>the</strong> pipe described <strong>in</strong> <strong>the</strong> previoussection with a barrier <strong>in</strong>ner sk<strong>in</strong>followed by <strong>the</strong> primary re<strong>in</strong>forc<strong>in</strong>gelement. Figure 1-13 shows <strong>the</strong>typical construction <strong>of</strong> an FRP tank.A general limit for design stra<strong>in</strong>level is 0.001 ‘w~~~h accord<strong>in</strong>g toIIASTM for filament wound tanks/lDESMFERENTIALand National Institute <strong>of</strong> Standardsand Technology (NIST) for contactRANDOMLY ORIENjEDCHOWED STRANDUiYERmolded tanks. Hoop tensile moduliirange from 2.0 x 106to 4.3 x 106forfilament w<strong>in</strong>d<strong>in</strong>g and 1.0 x 106 to Figure 1-13 Cross-Sectional View <strong>of</strong> StandardVetiical Tank Wall Lam<strong>in</strong>ate [Cheremis<strong>in</strong><strong>of</strong>f,1.2 x 106for contact mold<strong>in</strong>g.Fiberglass-Re<strong>in</strong>forced Plastics DeskbookjApplicationFRP is <strong>use</strong>d for vertical tanks when <strong>the</strong> material to be stored creates a corrosion problem forconventional steel tanks. Designs vary primarily <strong>in</strong> <strong>the</strong> bottom sections to meet dra<strong>in</strong>age andstrength requirements. Horizontal tanks are usually <strong>use</strong>d for underground storage <strong>of</strong> fuel oils.Owens-Com<strong>in</strong>g has fabricated 48,000 gallon tanks for this purpose that require no heat<strong>in</strong>gprovision when buried below <strong>the</strong> frost l<strong>in</strong>e.Air Handl<strong>in</strong>gEquipmentFRP blower fans <strong>of</strong>fer protection aga<strong>in</strong>st corrosive fumes and gases. The ease <strong>of</strong> moldabilityassociated with FIW fan blades enables <strong>the</strong> designer to specify an optimum shape. An overallreduction <strong>in</strong> component weight makes <strong>in</strong>stallation easier. In addition to axial fans, varioustypes <strong>of</strong> centrifugal fans are fabricated <strong>of</strong> FRP.Ductwork and stacks are also fabricated <strong>of</strong> FRP when corrosion resistance and <strong>in</strong>stallation easeare <strong>of</strong> pammount concern. Stacks are generally fabricated us<strong>in</strong>g hand lay-up techniquesemploy<strong>in</strong>g some type <strong>of</strong> fwe-retardant res<strong>in</strong>.32


ChaDterOneAPPLICATIONSCommercialLaddersThe Fiber Technology Corporation is an example <strong>of</strong> a company that has adapted an alum<strong>in</strong>umladder design for a customer to produce a non-conductive FRP replacemen~ The <strong>in</strong>tricateangles and flares <strong>in</strong>corporated <strong>in</strong>to <strong>the</strong> alum<strong>in</strong>um design precluded <strong>the</strong> <strong>use</strong> <strong>of</strong> a pultrusionprocess. Additionally, <strong>the</strong> design <strong>in</strong>corporated unique h<strong>in</strong>ges to give <strong>the</strong> ladder addedversatility. All <strong>the</strong>se features were ma<strong>in</strong>ta<strong>in</strong>ed while <strong>the</strong> objective <strong>of</strong> produc<strong>in</strong>g a lighter,non-conductive alternative was achieved.Aerial TowersIn 1959, <strong>the</strong> Plastic Composites Corporation <strong>in</strong>troduced an aerial man-lift device <strong>use</strong>d byelectrical and telephone <strong>in</strong>dustries. The bucket, upper boom and lower boom <strong>in</strong>sulator are tillfabricated <strong>of</strong> <strong>fiber</strong>glass. The towers, known today as “cherry pickers,” are currently cerdf~ed to69 kVA <strong>in</strong> accordance with ANSI standards and vefiled for structural <strong>in</strong>tegrity us<strong>in</strong>g acousticemission techniques.33


AerospaceCompositesMar<strong>in</strong>eConmosifesThe <strong>use</strong> <strong>of</strong> composites <strong>in</strong>tlm aerospace <strong>in</strong>dustry has <strong>in</strong>creased dramatically s<strong>in</strong>ce <strong>the</strong> 1970’s.Traditional materials for aircraft construction <strong>in</strong>clude alum<strong>in</strong>um, steel and titanium. Theprimary benefits that composite components can <strong>of</strong>fer are reduced weight and assemblysimplification. The performance advantages associated with reduc<strong>in</strong>g <strong>the</strong> weight <strong>of</strong> aircraftstructural elements has been <strong>the</strong> major impetus for military aviation composites development.Although commercial carriers have <strong>in</strong>creas<strong>in</strong>gly been concerned with fuel economy, <strong>the</strong>potential for reduced production and ma<strong>in</strong>tenance costs has proven to be a major factor <strong>in</strong> <strong>the</strong>push towards composites. Composites are also be<strong>in</strong>g <strong>use</strong>d <strong>in</strong>creas<strong>in</strong>gly as replacements formetal parts on older planes. Figure 1-14 shows current and projected expenditures foradvanced composite materials <strong>in</strong> <strong>the</strong> aerospace <strong>in</strong>dustry.4000I$ mllllonseooo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0lQa2 1087 1982 2000= Mllltary ~ Oommerolal @ Bualnee8~ Hellooptera ~ Mlaslee U SpaoQ ProgramaFigure 1-14 Advanced Composite Sales for <strong>the</strong> Aerospace Industry, [Source: P-023N Advanced Po/yrner Matrix Composites, Bus<strong>in</strong>ess Communication Company, Inc.]When compar<strong>in</strong>g aerospace composites development to that <strong>of</strong> <strong>the</strong> mar<strong>in</strong>e <strong>in</strong>dustry, it isimportant to note <strong>the</strong> differences <strong>in</strong> economic and eng<strong>in</strong>eer<strong>in</strong>g philosophies. The research,design and test<strong>in</strong>g resources available to <strong>the</strong> aerospace designer eclipse what is available to hiscounterpart <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e <strong>in</strong>dustry by at least an order <strong>of</strong> magnitude. Aircraft developmentrema<strong>in</strong>s one <strong>of</strong> <strong>the</strong> last bastions <strong>of</strong> U.S. supremacy, which accounts for its broad economic base<strong>of</strong> support. On <strong>the</strong> eng<strong>in</strong>eer<strong>in</strong>g side, perfomce benefits are much more significant foraircraft than ships. A comparison <strong>of</strong> overall vehicle weights provides a good illustration <strong>of</strong> thisconcept.34


ChapterOneAPPLICATIONSAlthough <strong>the</strong> two <strong>in</strong>dustries are so vastly different lessons can be learned from aircraftdevelopment programs that are applicable to mar<strong>in</strong>e structures. Material and processdevelopment, design methodologies, quaMcation programs and long-term performance aresome <strong>of</strong> <strong>the</strong> fields where <strong>the</strong> mar<strong>in</strong>e designer can adapt <strong>the</strong> experience that <strong>the</strong> aerospace<strong>in</strong>dustry has developed. New aircraft utilize what would be considered high performancecomposites <strong>in</strong> mar<strong>in</strong>e terms. These <strong>in</strong>clude carbon, boron and aramid <strong>fiber</strong>s comb<strong>in</strong>ed wi<strong>the</strong>poxy res<strong>in</strong>s. Such materials have replaced <strong>fiber</strong>glass re<strong>in</strong>forcements, which are still <strong>the</strong>backbone <strong>of</strong> <strong>the</strong> max<strong>in</strong>e <strong>in</strong>dustry. However, structural <strong>in</strong>tegrity, producibility and performanceat elevated temperatures are some concerns common to both <strong>in</strong>dustries. Examples <strong>of</strong> specilicaerospace composites development programs are provided to illustrate <strong>the</strong> direction <strong>of</strong> this<strong>in</strong>dustry.Bus<strong>in</strong>ess and CommercialLear Fan 2100As one <strong>of</strong> <strong>the</strong> fust aircraft conceived and eng<strong>in</strong>eered as a “composites” craft, <strong>the</strong> Lear Fan <strong>use</strong>sapproximately 1880 pounds <strong>of</strong> carbon, glass and aramid <strong>fiber</strong> material. In addition tocomposite elements that are common to o<strong>the</strong>r aircraft, such as doors, control surfaces, fair<strong>in</strong>gsand w<strong>in</strong>g boxes, <strong>the</strong> Lear Fan has an all composite body and propeller blades.Beech StarshipThe Starship is <strong>the</strong> first all-composite airplane to receive FAA certification.3000 pounds <strong>of</strong> composites are <strong>use</strong>d on each aircraft.ApproximatelyBoe<strong>in</strong>gThe Boe<strong>in</strong>g 757 and 767 employ about 3000 pounds each <strong>of</strong> composites for doors and con~olsurfaces. The 767 rudder at 36 feet is <strong>the</strong> largest commercial component <strong>in</strong> service. The737-300 <strong>use</strong>s approximately 1500 pounds <strong>of</strong> composites, which represents about 3% <strong>of</strong> <strong>the</strong>overall structural weight. Composites are widely <strong>use</strong>d <strong>in</strong> aircraft <strong>in</strong>teriors to create luggagecompartments, sidewalls, floors, ceil<strong>in</strong>gs, galleys, cargo l<strong>in</strong>ers and bulkheads. Fiberglass wi<strong>the</strong>poxy or phenolic res<strong>in</strong> utiliz<strong>in</strong>g honeycomb sandwich construction gives <strong>the</strong> designer freedomto create es<strong>the</strong>tically pleas<strong>in</strong>g structures while meet<strong>in</strong>g flammability and impact resistancerequirements.AirbusIn 1979, a pilot project was started to manufacture carbon <strong>fiber</strong> f<strong>in</strong> box assemblies for <strong>the</strong>A300/A310 aircraft. A highly mechanized production process was established to determ<strong>in</strong>e ifhigh material cost could be <strong>of</strong>fset by <strong>in</strong>creased manufactur<strong>in</strong>g efficiency. Although materialcosts were 35% greater than a comparable alum<strong>in</strong>um structure, total manufactur<strong>in</strong>g costs werelowered 65 to 85%. Robotic assemblies were developed to handle and process materials <strong>in</strong> anoptimal and repeatable fashion.MilitaryAdvanced Tacticai Fighter (ATF)Advanced composites enable <strong>the</strong> ATF to meet improved performance requirements such asreduced drag, low radm observability and <strong>in</strong>creased resistance tQtemperatures generated at high35


Aerospace Composites /Wt<strong>in</strong>e Compositesspeeds. The ATF will be approximately 50% composites by weight us<strong>in</strong>g DuPont’s Avimid Kpolyamide for <strong>the</strong> fit prototype. Figure 1-15 depicts a proposed w<strong>in</strong>g composition asdeveloped by McDonnell Aircraft through <strong>the</strong>ir Composite Flight W<strong>in</strong>g Program.FaiupBoron~ GraphiteaniumAlum<strong>in</strong>um~ FiberglassUnderstructure ..—---- / “\u—Figure 1-15 Composite W<strong>in</strong>g Composition for Advanced Tactical Fighter [Moors, f3esjgnConsiderations - Composite Fhght W<strong>in</strong>g Pfogwn]Advanced Technology Bomber (B-2)The B-2 derives much <strong>of</strong> its stealth qualities from <strong>the</strong> material properties <strong>of</strong> composites and<strong>the</strong>ir ability to be molded <strong>in</strong>to complex shapes. Each B-2 conta<strong>in</strong>s an estimated 40,000 to50,000 pounds <strong>of</strong> advanced composite materials. Accord<strong>in</strong>g to Northrop, nearly 900 newmaterials and processes were developed for <strong>the</strong> plane.Second Generation British Harrier “Jump Jet” (AV-8B)This vertical take-<strong>of</strong>f and land<strong>in</strong>g (VTOL) airmail is very sensitive to overall weight. As aresult 26~o <strong>of</strong> <strong>the</strong> vehicle is fabricated <strong>of</strong> composite material. Much <strong>of</strong> <strong>the</strong> substructure iscomposite, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> entire w<strong>in</strong>g. Bisrnaleimides (BMI’s) are <strong>use</strong>d on <strong>the</strong> aircraft’sunderside and w<strong>in</strong>g trail<strong>in</strong>g edges to withstand <strong>the</strong> high temperatures generated dur<strong>in</strong>g take-<strong>of</strong>fand land<strong>in</strong>g.36


Ch@er oneAPPLICATIONSNavy Fighter Aircraft (F-18A)The w<strong>in</strong>g sk<strong>in</strong>s <strong>of</strong> <strong>the</strong> F-18A represented <strong>the</strong> fmt widespread <strong>use</strong> <strong>of</strong> graphite/epoxy <strong>in</strong> aproduction aircraft. The sk<strong>in</strong>s vary <strong>in</strong> tilckness up to one <strong>in</strong>ch, serv<strong>in</strong>g as primary as well assecondary load carry<strong>in</strong>g members. It is <strong>in</strong>terest<strong>in</strong>g to note that <strong>the</strong> graphite sk<strong>in</strong>s are separatedfrom <strong>the</strong> alum<strong>in</strong>um hrn<strong>in</strong>g with a <strong>fiber</strong>glass barrier to prevent galvanic corrosion. The carrierbased environment that Navy aircraft are subjected to has presented unique problems to <strong>the</strong>aerospace designer. Corrosion from salt water surround<strong>in</strong>gs is exacerbated by <strong>the</strong> sulfuremission from <strong>the</strong> ship’s exhaust stacks.Osprey Tilt-Rotor (V-22)The tilt-rotor V-22 is also a weight sensitive craft that is currently be<strong>in</strong>g developed by Boe<strong>in</strong>gand Bell Helicopter. Up to 40% <strong>of</strong> <strong>the</strong> airframe consists <strong>of</strong> composites, mostly AS-4 and IM-6graphite <strong>fiber</strong>s <strong>in</strong> 3501-6 epoxy (both from Hercules). New <strong>use</strong>s <strong>of</strong> composites are be<strong>in</strong>gexploited on this vehicle, such as shaft<strong>in</strong>g and thick, heavily loaded components.Consequently, higher design stra<strong>in</strong> values are be<strong>in</strong>g utilized.HelicoptersRotorsComposite materials have been <strong>use</strong>d for helicopter rotors for some time now and have ga<strong>in</strong>edvirtually 100% acceptance as <strong>the</strong> material <strong>of</strong> choice. The <strong>use</strong> <strong>of</strong> fibrous composites <strong>of</strong>fersimprovements <strong>in</strong> helicopter rotors due to improved aerodynamic geometry, improvedaerodynamic tun<strong>in</strong>g, good damage tolerance and potenthd low cost. Anisotrophic strengthproperties are very desirable for <strong>the</strong> long, narrow foils. Additionally, a cored structure has <strong>the</strong>provision to <strong>in</strong>corporate <strong>the</strong> required bakmce weight at <strong>the</strong> lead<strong>in</strong>g edge. The favorablestructural properties <strong>of</strong> <strong>the</strong> mostly <strong>fiber</strong>glass foils allow for <strong>in</strong>creased lift and speed. Fatiguecharacteristics <strong>of</strong> <strong>the</strong> composite blade are considerably better than <strong>the</strong>ir alum<strong>in</strong>um counterpartswith <strong>the</strong> alum<strong>in</strong>um fail<strong>in</strong>g near 40,000 cycles and <strong>the</strong> composite blade exceed<strong>in</strong>g 500,000cycles without ftiure. Vibratory stra<strong>in</strong> <strong>in</strong> this same test<strong>in</strong>g program was * 510 ~‘mh~~hforalum<strong>in</strong>um snd * 2400 ~‘i~tih for <strong>the</strong> composite.Sikorsky Aircraft <strong>of</strong> United Aircraft Corporation has proposed a Cross Beam Rotor @BR)m,which is a simpfied, lightweight system that makes extensive <strong>use</strong> <strong>of</strong> composites. The lowtorsional stiffness <strong>of</strong> a unidirectional composite spar allows pitch change motion to beaccommodated by elastic deformation, whereas sufficient bend<strong>in</strong>g stiffness prevents areoelastic<strong>in</strong>stability. Figure 1-16 shows a configuration for a tw<strong>in</strong> besm composite blade <strong>use</strong>d with thissystem.Structure and ComponentsThe extreme vibratory environment that helicopters operate <strong>in</strong> makes composites look attractivefor o<strong>the</strong>r elements. In an experimental program that Boe<strong>in</strong>g undertook, 11,000 metal parts werereplaced by 1,500 composite ones, thus elim<strong>in</strong>at<strong>in</strong>g 90% <strong>of</strong> <strong>the</strong> vehicle’s fasteners.Producibility and ma<strong>in</strong>tenance considerations improved zilongwith overall structural reliability.37


AerospaceCom~ositesMar<strong>in</strong>e CompositesTIFigure 1-16 Tw<strong>in</strong> Beam Composite Blade for XBRTM Helicopter Rotor System[Salk<strong>in</strong>d, New CO/?pOsiteHelicopter Rotor Concepts]ExperimentalVoyagerNearly 90% <strong>of</strong> <strong>the</strong> VOYAGER aircraft was made<strong>of</strong> carbon <strong>fiber</strong> composites. Thestrength-to-weight ratio <strong>of</strong> this matmkil allowed <strong>the</strong> vehicle to carry stilcient fuel to circle <strong>the</strong>globe without refuel<strong>in</strong>g. The plane’s designer and builder, Burt Rutan, is renowned forbuild<strong>in</strong>g <strong>in</strong>novative tdrcraft us<strong>in</strong>g composites. He has also designed an Advanced TechnologyTactical Transport <strong>of</strong> composites and built <strong>the</strong> w<strong>in</strong>g sail that was fitted to <strong>the</strong> 60 foot catamaran<strong>use</strong>d <strong>in</strong> <strong>the</strong> last America’s Cup defense.DaedalusThe GOSSAMERCONDORand GOSSAMERALBATROSScaught people’s imag<strong>in</strong>ation by be<strong>in</strong>g<strong>the</strong> f~st two human-powered aircraft to capture prize money that was unclaimed for 18 years. Theseaircraft wem constructed <strong>of</strong> alum<strong>in</strong>um tubes and mylar w<strong>in</strong>gs supporkd by steel cable. Theaerodynamic drag <strong>of</strong> <strong>the</strong> cabl<strong>in</strong>g proved to be <strong>the</strong> factor limit<strong>in</strong>g flight endurance. The lMEDALUSproject’s goal was to fly 72 miles from Crete to Santor<strong>in</strong>i. By hand construct<strong>in</strong>g graphite spars overalum<strong>in</strong>um mandrels, <strong>the</strong> vehicle’s drag was m<strong>in</strong>imized and <strong>the</strong> overall aircraft structure wasreduced to 68 pounds, which mad; this endurance record possible. Figure 1-17 is acompilation <strong>of</strong> sketches show<strong>in</strong>g various details <strong>of</strong> <strong>the</strong> Daedalus.38


ChapterOneAPPLICATIONSFigure 1-17 Eng<strong>in</strong>eer’s Representation <strong>of</strong> <strong>the</strong> DAEDALUS [Drella,Techno/ogy /3eview]39


AerospaceComposksMar<strong>in</strong>e CompositesThis page<strong>in</strong>tentionally left blank40


Chapter TwoMATERIALSRe<strong>in</strong>forcementMaterialsFiberglassGlass <strong>fiber</strong>s account forover 90% <strong>of</strong> <strong>the</strong> <strong>fiber</strong>s <strong>use</strong>d <strong>in</strong> <strong>re<strong>in</strong>forced</strong> <strong>plastics</strong> beca<strong>use</strong> <strong>the</strong>y are<strong>in</strong>expensive to produce and have relatively good strength to weight characteristics.Additionally, glass <strong>fiber</strong>s exhibit good chemical resistance and processability. The excellenttensile strength <strong>of</strong> glass <strong>fiber</strong>s, however, has been shown to deteriorate when loads are appliedfor long periods <strong>of</strong> time. [2-1] Cont<strong>in</strong>uous glass <strong>fiber</strong>s are formed by extrud<strong>in</strong>g molten glass t<strong>of</strong>dament diameters between 5 and 25 micrometers. Table 2-1 depicts <strong>the</strong> designations <strong>of</strong> <strong>fiber</strong>diameters commonly <strong>use</strong>d <strong>in</strong> <strong>the</strong> FRP <strong>in</strong>dustry.Individualfilsmnts are coated with a siz<strong>in</strong>gto mdm abrasionaud <strong>the</strong>n comb<strong>in</strong>ed <strong>in</strong>to a strand <strong>of</strong> ei<strong>the</strong>r102or 204 filamnts. The siz<strong>in</strong>gacts as a coupl<strong>in</strong>gagent dur<strong>in</strong>gres<strong>in</strong> impregnation. Table 2-2 lists sometypicalglassf<strong>in</strong>ishesand <strong>the</strong>ir compatiblem<strong>in</strong> systems. E-glass (lime alum<strong>in</strong>umbomsilicate)is <strong>the</strong> mostcurmnonre<strong>in</strong>forcermnt <strong>use</strong>d <strong>in</strong> mar<strong>in</strong>e hn<strong>in</strong>ates lwa<strong>use</strong> <strong>of</strong> its gmd strenglhpmpwties and mistanm towatm degmdation. S-glass (silicon dioxide, alum<strong>in</strong>um and magnesium oxides) exhibits about ane th<strong>in</strong>ibter tensile slrength, and <strong>in</strong> genersl, demonstrates betkr fatigue resistance. Table 2-3 lists <strong>the</strong>cornposidonby weight far both E- and S-glass. The cost for this variety <strong>of</strong> glass filxr is about three t<strong>of</strong>our tkres that <strong>of</strong> Bglass. Table 24 conta<strong>in</strong>sdata on mw E-#ass and S-#ass <strong>fiber</strong>s.Table 2-1. Glass Fiber Diameter Designations[Shell, @o# Res<strong>in</strong>s for F]&erg/ass Re<strong>in</strong>forced Plastics]IDeslgnatlon MllsMicrometers(10+ meters)Ic 0.18 4.57ID 0.23 5.84I DE 0.25 6.35IE 0.28 7.11l+=%==Polymer FibersThe-most common aramid <strong>fiber</strong> is Kevlsr@developed by DuPont This is <strong>the</strong> predom<strong>in</strong>ant organicre<strong>in</strong>forc<strong>in</strong>g <strong>fiber</strong> whose <strong>use</strong> dates to <strong>the</strong> eaily 1970’s as a ~placement for steel belt<strong>in</strong>g <strong>in</strong> tires. Theoutstand<strong>in</strong>g features <strong>of</strong> sramids are low weigh~ high tensile sirength and modulus, impact andfatigue resistance, and weaveability. Compressive performance <strong>of</strong> sramids is relatively poor, as <strong>the</strong>yshow nonl<strong>in</strong>ear ductile behavior at low stra<strong>in</strong> values. Although <strong>the</strong> fibem are resistant to strongacids and bases, ultraviolet degradation can ca<strong>use</strong> a problem as can water absorption with Kevlar@49. Ultra-high modulus Kevlar” 149 absorbs almost two thirds less water at a given relativehumidity. Aramids tend to be difficult to cut and wet-out dur<strong>in</strong>g lam<strong>in</strong>ation.41


ComDosite Materials Mar<strong>in</strong>e CwnwsitesTable 2-2. Typical Glass F<strong>in</strong>ishes [BGF, Shell and SP Systems]Designation Type <strong>of</strong> Flnlsh Res<strong>in</strong> System114 Methacrylato chromic chloride Epoxy161 S<strong>of</strong>t, clear with good wet-out PolyesterVolan@ Methacrylato chromic chloride Polyester or Epoxy504 Volan@f<strong>in</strong>ish with .03%-,06% chrome Polyester or Epoxy504A Volan@f<strong>in</strong>ish with .06%-.07% chrome Polyester or EpoxyA-100 Am<strong>in</strong>o silane Epoxy538 A-1 100 am<strong>in</strong>o silane plus glycer<strong>in</strong>e Epoxy550 Modiiied Volanm Polyester558 Epoxy-functional silane Epoxy627 Silane replacement for Volan@ Polyesteror EpoxySP 550 Proprietary Polyester or EpoxyY-2967 Am<strong>in</strong>o silane EpoxyY-408617 Epoxy-modified methoxy silane EpoxyZ-6040 Epoxy-modified methoxy silane EPOXYZ-6030 Methacrylate Silane PolyesterGaran V<strong>in</strong>yl silane EPOXYNOL-24 Halosilane (<strong>in</strong> xylene) Epoxys-553 Proprietary EpoxyS-920 Proprietary Epoxys-735 Proprietary EpoxyTable 2-3. Glass Composition by Weight for E- and S-Glass [BGF]E-GlassS-GlassSilicone Dioxide 52 -56% 64- 66?40Calcium Oxide 16- 25% 0- .3%Alum<strong>in</strong>um Oxide 12-16?40 24- 26%Boron Oxide 5-lo% —Sodium Oxide & Potassium Oxide 0- 2?.40 0- .3%Magnesium Oxide o-5% 9-11?40Iron Oxide .05- .4% 0- .3”/’0Titanium Oxide 0-.870 —Fluorides 0 -1.0% —42


Chapter TwoMATERIALSAllied Corporation developed a high strength/modulus extended cha<strong>in</strong> polyethylene <strong>fiber</strong> calledSpectra” that was <strong>in</strong>troduced <strong>in</strong> 1985. Room temperature specific mechanical properties <strong>of</strong>Spectra@ are slightly better than Kevlar@, although performance at elevated temperatures falls<strong>of</strong>f. Chemical and wear resistance data is superior to <strong>the</strong> aramids. Data for both Kevlar@ andSpectra@ <strong>fiber</strong>s is also conta<strong>in</strong>ed <strong>in</strong> Table 2-4, The percent <strong>of</strong> manufacturers us<strong>in</strong>g variousre<strong>in</strong>forcement materials is represented <strong>in</strong> Figure 2-1.FiberTable 2-4. MechanicalProperties <strong>of</strong> Re<strong>in</strong>forcement FibersD&;:lJy Tensile Strength Tensile Modulus Ultlmate ~btpsl x 103 psl x 106 ElongationE-Glass .094 500 10.5 4.8?40 .80-1.20S-Glass .090 665 12.6 5.7% 4Aramid-Kevla# 49 .052 525 18 2.9!/. 16Spectra@ 900 .035 375 17 3.5% 22Polyester-COMPE@ ,049 150 1.4 22.0% 1.75Carlmn-PAN .062-.065 350-700 33”57 0.38-2 .0% 17-450Polyester and nylon <strong>the</strong>rmoplastic <strong>fiber</strong>shave recently been <strong>in</strong>troduced to <strong>the</strong>mar<strong>in</strong>e <strong>in</strong>dustry as primary re<strong>in</strong>forcementsand <strong>in</strong> a hybrid ammgernent with<strong>fiber</strong>glass. Allied Corporation hasdeveloped a <strong>fiber</strong> called COMPET@,which is <strong>the</strong> product <strong>of</strong> apply<strong>in</strong>g a f<strong>in</strong>ishto PET <strong>fiber</strong>s that enhances matrixadhesion properties. Hoechst-Celanesemanufactures a product called Treveria@,which is a heat mated polyestm fikr fabricdesigned as a “bulk<strong>in</strong>g” material aud as a gelcoat barrier to reduce ‘>r<strong>in</strong>t-through.”Although polyester <strong>fiber</strong>s hav~ fairly highstrengths,<strong>the</strong>ir sdffnessis considembly belowthat <strong>of</strong> glass. O<strong>the</strong>r attractivefeahrres<strong>in</strong>cludelow density, nmsonable cost, good impactand fatigue resistance, and potential forvibration damp<strong>in</strong>g and blister resistanm.Carbon FibersThe terms “carbon” and “graphite” <strong>fiber</strong>sare typically <strong>use</strong>d <strong>in</strong>terchangeably, althoughgraphite technically refers to <strong>fiber</strong>s that aregreater than 99% carbon composition versus93 to 95% for PAN-base <strong>fiber</strong>s. Allcont<strong>in</strong>uous carbon <strong>fiber</strong>s produced to dateThermoplasticFibergiaaaCarbon FiberFiberaKeviarHybridsO<strong>the</strong>ro% 20% 40% 60% 60% 100%-Hull ~Dsck ~PartsF@llre 2-I Mar<strong>in</strong>e Industry Re<strong>in</strong>forcementMaterial IJse [EGA Survey]I43


Composite Materials Mar<strong>in</strong>e Compositesare made from organic precursors, which <strong>in</strong> addition to PAN (polyacrylonitrile), <strong>in</strong>clude rayonand pitches, with <strong>the</strong> latter two generally <strong>use</strong>d for low modulus <strong>fiber</strong>s.Carbon <strong>fiber</strong>s <strong>of</strong>fer <strong>the</strong> highest strength and stiffness <strong>of</strong> all <strong>the</strong> re<strong>in</strong>forcement <strong>fiber</strong>s. The <strong>fiber</strong>sare not subject to stress rupture or stress corrosion, as with glass and aramids. Hightemperature performance is particularly outstand<strong>in</strong>g. The major drawback to <strong>the</strong> PAN-base<strong>fiber</strong>s is <strong>the</strong>ir relative cost, which is a function <strong>of</strong> high precursor costs and an energy <strong>in</strong>tensivemanufactur<strong>in</strong>g process. Table 2-5 shows some comparative <strong>fiber</strong> performance data.Re<strong>in</strong>forcementConstructionRe<strong>in</strong>forcement materials are comb<strong>in</strong>ed with res<strong>in</strong> systems <strong>in</strong> a variety <strong>of</strong> forms to createstructural lam<strong>in</strong>ates. The percent <strong>of</strong> manufacturers us<strong>in</strong>g vmious re<strong>in</strong>forcement styles isrepresented <strong>in</strong> Figure 2-3. Table 2-5 provides deffitions for <strong>the</strong> various forms <strong>of</strong>re<strong>in</strong>forcement materials. Some <strong>of</strong> <strong>the</strong> lower strength non-cont<strong>in</strong>ous configurations are limitedto <strong>fiber</strong>glass due to process<strong>in</strong>g and economic considerations.Table 2-5. De cription <strong>of</strong> Various Forms <strong>of</strong> Re<strong>in</strong>forcements[Shell, Epon8Res<strong>in</strong>s for Fi&erg/ass Re<strong>in</strong>forced Plastics]Form Descrlptlon Prlnclpal ProcessesFilaments Fibers as <strong>in</strong>itially drawn Processed fur<strong>the</strong>r before <strong>use</strong>Cont<strong>in</strong>uous Strands Cont<strong>in</strong>uousBasic filamentsbun Iesa<strong>the</strong>red toge<strong>the</strong>r <strong>in</strong>Processed fur<strong>the</strong>r before <strong>use</strong>tYarnsTwisted strands (treated withafter-f<strong>in</strong>ish)Processed fur<strong>the</strong>r before <strong>use</strong>ChoppedStrands Strands chopped 1/4to 2 <strong>in</strong>ches Injectionmold<strong>in</strong>g; matcheddieRov<strong>in</strong>gsMilled FibersRe<strong>in</strong>forc<strong>in</strong>g MatsStrands bundled toge<strong>the</strong>r like rope butnot twistedFilament w<strong>in</strong>d<strong>in</strong>g; sheet mold<strong>in</strong>g;spray-up; pultrusionCont<strong>in</strong>uous strands hammermilled <strong>in</strong>to Compound<strong>in</strong>g; cast<strong>in</strong>g; <strong>re<strong>in</strong>forced</strong>short lengths %2 to M <strong>in</strong>ches long reaction <strong>in</strong>jection mold<strong>in</strong>g (RRIM)Nonwoven random matt<strong>in</strong>g consist<strong>in</strong>g<strong>of</strong> cont<strong>in</strong>uous or chopped strandsHand lay-up; res<strong>in</strong> transfer mold<strong>in</strong>g(RTM); centrifugal cast<strong>in</strong>gWoven Fabric Cloth woven from yarns Hand lay-up;prepregWoven Rov<strong>in</strong>gSpun Rov<strong>in</strong>gNonwovenFabricsStrands woven like fabric but coarser Hand or mach<strong>in</strong>e la -up; res<strong>in</strong>and heavier transfer mold<strong>in</strong>g (R#M)Cont<strong>in</strong>uous s<strong>in</strong>gle strand looped onitself many times and held with a twistProcessed fur<strong>the</strong>r before <strong>use</strong>Similarto matt<strong>in</strong>g but made with Hand or mach<strong>in</strong>e la -up; res<strong>in</strong>unidirectional rov<strong>in</strong>gs <strong>in</strong> sheet form transfer mold<strong>in</strong>g (R+M)Surfac<strong>in</strong>g Mats Random mat <strong>of</strong> mon<strong>of</strong>ilament Hand lay-up; die mold<strong>in</strong>g; pultrusionWovensWoven composite re<strong>in</strong>forcements generally fall <strong>in</strong>to <strong>the</strong> category <strong>of</strong> cloth or woven rov<strong>in</strong>g. Thecloths are lighter <strong>in</strong> weigh~ typically from 6 to 10 ounces per square yard and require about 40 to 5044


Chapter TwoMATERIALSPla<strong>in</strong>weave ‘-Basket weaveTwillCrowfootsat<strong>in</strong>8 harness sat<strong>in</strong>5 harness sat<strong>in</strong>figUre z-z Re<strong>in</strong>forcement Fabric Construction Variations [ASiW Eng<strong>in</strong>eered Materkals Handbooklplies to achieve a one <strong>in</strong>ch thickness.Their <strong>use</strong> <strong>in</strong> mar<strong>in</strong>e construction is limitedto small parts and repairs. Particular weavepatterns <strong>in</strong>clude plah weave, which is <strong>the</strong>most highly <strong>in</strong>terlace@basket weave, whichhaswarpandfdl yarns thatarepaird~andsat<strong>in</strong> weaves, which exhibit a m<strong>in</strong>imum <strong>of</strong><strong>in</strong>terlac<strong>in</strong>g. The sat<strong>in</strong> weaves are produced<strong>in</strong> standard four-, five- m eight-harne<strong>ssc</strong>onfgumtions, which exhibit a correspond<strong>in</strong>g<strong>in</strong>mase <strong>in</strong> resistance to shear distortion(easily draped). Figure 2-2 shows somecommercially available weave patterns.Woven rov<strong>in</strong>g m<strong>in</strong>forcenxmts consist <strong>of</strong>flattened bundles <strong>of</strong> cont<strong>in</strong>uous shards <strong>in</strong> apla<strong>in</strong> weave pattern with slightly morematerial <strong>in</strong> <strong>the</strong> warp direction. This is <strong>the</strong>most common type <strong>of</strong> re<strong>in</strong>forcement <strong>use</strong>d forlarge mar<strong>in</strong>e structures beca<strong>use</strong> it is available<strong>in</strong> fairly heavy weights (24 ounces per squareyard is <strong>the</strong> most common), which enables arapid build up <strong>of</strong> tbiclmess. Also, directionals~ngth charactistics are possible with amaterial that is stall fairly drapable.Impact resistance is enhanced beca<strong>use</strong> <strong>the</strong><strong>fiber</strong>s are cont<strong>in</strong>uously woven.Chopped Strand MatWoven Rov<strong>in</strong>gUnldlrectlonalClothKnitted FabricO<strong>the</strong>rro% 20% 40% 60% 80% 100%= Hull ~Deck ~Part6Figure 2-3 Mar<strong>in</strong>e Industry Re<strong>in</strong>forcementStyle Use [EGASurvey]I45


Comnosite MaterialsMar<strong>in</strong>e CompositesEnd ViewWoven Rov<strong>in</strong>gEnd ViewKnitted BiaxialFigure 2-4 Comparison <strong>of</strong> Conventional Woven Rov<strong>in</strong>g and a Knitted Biaxial FabricShow<strong>in</strong>g Theoretical K<strong>in</strong>k Stress <strong>in</strong> Woven Rov<strong>in</strong>g [Composites Re<strong>in</strong>forcements, Inc.]KnitsKnitted re<strong>in</strong>forcement fabrics were first <strong>in</strong>troduced by Knytex@ <strong>in</strong> 1975 to provide greaterstrength and stiffness per unit thickness as compared to woven rov<strong>in</strong>gs. A lmittedre<strong>in</strong>forcement is constructed us<strong>in</strong>g a comb<strong>in</strong>ation <strong>of</strong> unidirectional re<strong>in</strong>forcements that arestitched toge<strong>the</strong>r with a non-structural syn<strong>the</strong>tic such as polyester. A layer <strong>of</strong> mat may also be<strong>in</strong>corporated <strong>in</strong>to <strong>the</strong> construction. The process provides <strong>the</strong> advantage <strong>of</strong> hav<strong>in</strong>g <strong>the</strong>re<strong>in</strong>forc<strong>in</strong>g <strong>fiber</strong> ly<strong>in</strong>g flat versus <strong>the</strong> crimped orientation <strong>of</strong> woven rov<strong>in</strong>g <strong>fiber</strong>. Additionally,re<strong>in</strong>forcements can be oriented along any comb<strong>in</strong>ation <strong>of</strong> axes. Superior glass to res<strong>in</strong> ratiosare also achieved, which makes overall lam<strong>in</strong>ate costs competitive with traditional materials.Figure 2-4 shows a comparison <strong>of</strong> woven rov<strong>in</strong>g and knitted construction.OmnidirectionalOmnidirectional re<strong>in</strong>forcements can be applied dur<strong>in</strong>g hand lay-up as prefabricated mat or via<strong>the</strong> spray-up process as chopped strand mat. Chopped strand mat consists <strong>of</strong> randomly orientedglass <strong>fiber</strong> strands that are held toge<strong>the</strong>r with a soluble res<strong>in</strong>ous b<strong>in</strong>der. Cont<strong>in</strong>uous strand matis similar to chopped strand mat, except that <strong>the</strong> <strong>fiber</strong> is cont<strong>in</strong>uous and layed down <strong>in</strong> a swirlpattern. Both hand lay-up and spray-up produce plies wifi equal properties along <strong>the</strong> x and yaxes and good <strong>in</strong>terlam<strong>in</strong>ar shear strength. This is a very economical way to build upthickness, especially with complex molds. The ultimate mechanical properties are, <strong>of</strong> course,not on par with <strong>the</strong> cont<strong>in</strong>uous strand re<strong>in</strong>forcements.UnidirectionalPure unidirectional construction implies no structural re<strong>in</strong>forcement <strong>in</strong> <strong>the</strong> Ill direction. Ultrahigh strength/modulus material, such as carbon <strong>fiber</strong>, is sometimes <strong>use</strong>d <strong>in</strong> this form due to its46


Chapter TwoMATERIALShigh cost snd specificity <strong>of</strong> application. Material widths are generally limited due to <strong>the</strong>difficulty <strong>of</strong> handl<strong>in</strong>g and wet-out. Anchor Re<strong>in</strong>forcements has recently <strong>in</strong>troduced a l<strong>in</strong>e <strong>of</strong>unidirectional that are held toge<strong>the</strong>r with a <strong>the</strong>rmoplastic web b<strong>in</strong>der that is compatible with<strong>the</strong>rmoset res<strong>in</strong> systems. The company claims that <strong>the</strong> material is easier to handle and cut thantraditional pure unidirectional material. Typical applications for unidimctionals <strong>in</strong>clude -stemand centerl<strong>in</strong>e stiffen<strong>in</strong>g as well as <strong>the</strong> tops <strong>of</strong> stiffeners. Entire hulls are fabricated fromunidirectional re<strong>in</strong>forcements when an ultra high performance lam<strong>in</strong>ate is desired.PolyesterThe percent <strong>of</strong> manufacturers us<strong>in</strong>g various res<strong>in</strong> systems is represented <strong>in</strong> Figure 2-5. Polyesterres<strong>in</strong>s are <strong>the</strong> simplest, most economical res<strong>in</strong> systems that are easiest to <strong>use</strong> and show goodchemical resistance. Almost one half million tons <strong>of</strong> this material is <strong>use</strong>d annually <strong>in</strong> <strong>the</strong> UnitedStates. Unsaturated polyesters consist <strong>of</strong> unsaturated material, such as rnaleic anhydride or fumaricaci~ that is dissolved <strong>in</strong> a reactive monomer, such as stymne. Polyester res<strong>in</strong>s have long beenconsidered <strong>the</strong> least toxic <strong>the</strong>rrnoset to personnel, although recent scrut<strong>in</strong>y <strong>of</strong> styrene emissions <strong>in</strong><strong>the</strong> workplace has led to <strong>the</strong> development <strong>of</strong> alternate formulations (see Chapter Five). Mostpolyesters are air <strong>in</strong>hibited and will not cure when exposed to air. Typically, parafiln is added to <strong>the</strong>res<strong>in</strong> formulation, which has <strong>the</strong> effect <strong>of</strong>seal<strong>in</strong>g <strong>the</strong> surface dur<strong>in</strong>g <strong>the</strong> cureprocess. However, <strong>the</strong> wax l?dm on <strong>the</strong>surface presents a problem for secondarybond<strong>in</strong>g or f<strong>in</strong>ish<strong>in</strong>g and must bephysically removed Non-sir <strong>in</strong>hibited Ortho Polyesterres<strong>in</strong>s do not present this problem and are,<strong>the</strong>refore, more widely accepted <strong>in</strong> <strong>the</strong>mar<strong>in</strong>e <strong>in</strong>dustry.The two basic polyester res<strong>in</strong>s <strong>use</strong>d <strong>in</strong> <strong>the</strong>mar<strong>in</strong>e <strong>in</strong>dustry are orthophthalic andisophthdic. The ortho res<strong>in</strong>s were <strong>the</strong>Origitld ~Up Of polyesters d@Oped andsre still <strong>in</strong> widespread <strong>use</strong>. They havesomewhat limited <strong>the</strong>rmal stabili~, chemicalresistance, and processability characteristics.The iso res<strong>in</strong>s generally have bettermechanical properties snd show betterchemical resistance. Their <strong>in</strong>creasedresistance to water permeation has promptedmany builders to <strong>use</strong> this res<strong>in</strong> as a gel coator barrier coat <strong>in</strong> marhe lam<strong>in</strong>ates,V<strong>in</strong>yl Ester1s0 PolyesterEpoxy0% 20% 40% 60% 80% 100%-Hull = Deck = PartsiThe rigidity <strong>of</strong> polyester res<strong>in</strong>s can belessened by <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> ratio <strong>of</strong>saturated to unsaturated acids. FlexibleFigure 2-5 Mar<strong>in</strong>e Industry Res<strong>in</strong> systemUse [EGA Survey]47


Chapter TwoMATERIALSmold<strong>in</strong>g compounds that s<strong>of</strong>ten at high temperatures. Polyethylene, polystyrene, polypropylene,polyamides and nylon me examples <strong>of</strong> <strong>the</strong>rmo<strong>plastics</strong>. Their <strong>use</strong> <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e <strong>in</strong>dustry hasgenerally been limited to small boats and recreational items. Re<strong>in</strong>forced <strong>the</strong>rmoplastic materialshave recently been <strong>in</strong>vestigated for <strong>the</strong> large scale production <strong>of</strong> structural components. Someattractive features <strong>in</strong>clude no exo<strong>the</strong>nn upon cure, which has plagued ~ament w<strong>in</strong>d<strong>in</strong>g <strong>of</strong> extremelythick sections with <strong>the</strong>rmoses, and enhanced damage tolerance. Processability and smngthscompatible with ~<strong>in</strong>forcernent material m key areas currently under developmentTable 2-7. Comparative Data for Some Thermoset Res<strong>in</strong> Systems (cast<strong>in</strong>gs)OrthophthalicAtlas P 2020BarcolTensile TensileRes<strong>in</strong> Stren thUltlmateHardnesspsl x 7‘odu’u? Elongation ~l~t03 pslxloDicyclo entadiene (DCPD)Atlas 8t-6044IsophthalicCoRezyn 9595V<strong>in</strong>yl EsterDerakane411 -45EpoxyGouegonGLR 12542 7.0 5.9 .91% .6654 11.2 9.1 .86?’0 .6746 10.3 5.65 2.09!0 .8535 11-12 4.9 5-6% 1.4484D* 7 4.2 4.0940 2.69*Hardness values for epoxies are traditionally given on <strong>the</strong> “Shore D scaleCore MaterialsBalsaThe percent <strong>of</strong> manufacturers us<strong>in</strong>g various core materials is represented <strong>in</strong> Figure 2-6. Endgra<strong>in</strong> balsa’s closed-cell structure consists <strong>of</strong> elongated, prismatic cells with a length (gra<strong>in</strong>direction) that is approximately sixteen times <strong>the</strong> diameter (see Figure 2-7). In densitiesbetween 6 and 9 pounds ft3, <strong>the</strong> material exhibits excellent stiffness and bond strength. Balsawill typically absorb more res<strong>in</strong> than closed cell foaro dur<strong>in</strong>g lam<strong>in</strong>ation and is also subject towater migration, although this has been shown to be limited to action parallel to <strong>the</strong> gra<strong>in</strong>.Although <strong>the</strong> static strength <strong>of</strong> balsa panels will generally be higher than <strong>the</strong> PVC foams,impact energy absorption is lower. End-grt<strong>in</strong> balsa is available <strong>in</strong> sheet form for flat panelconstruction or <strong>in</strong> a scrim-backed block arrangement that conforms to complex curves. ChapterFive goes <strong>in</strong>to fur<strong>the</strong>r detail regard<strong>in</strong>g <strong>the</strong> core selection process.Thermoset FoamsFoamed <strong>plastics</strong> such as cellular cellulose acetate (CCA), polystyrene, and polyurethane arevery light (about 2 lbs/ft3) and resist water, fungi and decay. These materials have very lowmechanical properties and polystyrene will be attacked by polyester res<strong>in</strong>. These foams willnot conform to complex curves. Use is generally limited to buoyancy ra<strong>the</strong>r than structuralapplications. Polyurethane is <strong>of</strong>ten foamed <strong>in</strong>-place when <strong>use</strong>d as a buoyancy materkd.49


Composite Materials Mar<strong>in</strong>e CompositesBalsaL<strong>in</strong>ear PVCFabricRigid PVCUrethaneO<strong>the</strong>ru% 20% 40% 60% 80% 100%Figure 2-7 Balsa Cell Geometrywith A = Average Cell Length = ,025”;B = Average Cell Diameter= ,00126”;C = Average Cell Wall Thickness =.00006” [Baltek Corporation]Syntactic FoamsSyntactic foams are made by mix<strong>in</strong>g hollowFigure 2-6 Mar<strong>in</strong>e Industry Core microsphere <strong>of</strong> glass, epoxy and phenolicMaterial Use [EGA Survey]<strong>in</strong>to fluid res<strong>in</strong> with additives and cur<strong>in</strong>gagents to form a moldable, curable,lightweight fluid mass. Omega Chemical has <strong>in</strong>troduced a sprayable syntactic core materialcalled SprayCore ‘. The company claims that thicknesses <strong>of</strong> %“ can be achieved at densitiesbetween 30 and 43 lbs/ft3. The system is be<strong>in</strong>g marketed as a replacement for core fabrics withsuperior physical properties. Material cost for a square foot <strong>of</strong> %“ material is approximately$2.20.Cross L<strong>in</strong>ked PVC FoamsPolyv<strong>in</strong>yl foam ems am manufacti by corab<strong>in</strong><strong>in</strong>g a polyv<strong>in</strong>yl copolyrmr with stabilizm-s,plasticizers,cross-l<strong>in</strong>k<strong>in</strong>g compounds and blow<strong>in</strong>g agents. The mixture is heated under pressure to <strong>in</strong>itiate <strong>the</strong>cross-l<strong>in</strong>k<strong>in</strong>greaetion and <strong>the</strong>n submerged <strong>in</strong> hot water tanks to expand to <strong>the</strong> desired density. Celldiametersmnge fi-om.0100 to .KK1<strong>in</strong>ches (as compared to .0013 <strong>in</strong>ches fur balsa). [2-2] The msdt<strong>in</strong>gmaterial is <strong>the</strong>rmoplastic,enabl<strong>in</strong>g <strong>the</strong> mattxial to conform to compound curves <strong>of</strong> a hulL PVC foamshave almost exclusively replaced urethane f- as a structuralcore matmial, exmpt <strong>in</strong> confqgmttionswhere <strong>the</strong> foam is “blown” <strong>in</strong> place. A number <strong>of</strong> manufactmrs nmket ems-l<strong>in</strong>ked PVC pruducts to<strong>the</strong> mar<strong>in</strong>e <strong>in</strong>dus~ <strong>in</strong> sheet form with densitiesrang<strong>in</strong>g fmm 2 to 12 pounds per # As with <strong>the</strong> balsaproducts,solid sheetsor ti backed block constructionconfigurationsare available.50


Chapter TwoMATERIALSL<strong>in</strong>ear PVC FoamAimx@is cutmntly tbe only l<strong>in</strong>ear PVC foam coreproduced for <strong>the</strong> mar<strong>in</strong>e <strong>in</strong>dustry. Its uniquemechanical properties aIE a result <strong>of</strong> anon-connected molecular structure, which allowssignificant displacements before faihue. Incomparison to <strong>the</strong> cross lhbd (non-l<strong>in</strong>ear)PVCS,Aimx@ will exhibit less favorable staticproperties and better impact absorptioncapability. Individual cell diameters rangefrom .020 to .080 <strong>in</strong>ches. [2-3] A detailedcomparison <strong>of</strong> core material performance willbe presented <strong>in</strong> <strong>the</strong> Section on MechanicalTest<strong>in</strong>g <strong>of</strong> Composite Materials. Table 2-8shows some <strong>of</strong> <strong>the</strong> physical properties <strong>of</strong> <strong>the</strong>core materials presented here.AXESHoneycombVarious types <strong>of</strong> manufactured honeycombFigure 2-8 Hexagonalcores are <strong>use</strong>d extensively <strong>in</strong> <strong>the</strong> aerospace.HoneycombGeometry [MIL-STD-401 B]<strong>in</strong>dustry. Constituent materials <strong>in</strong>cludealurn<strong>in</strong>~ phenolic res<strong>in</strong> impregnated<strong>fiber</strong>glass, polypropylene andaramid <strong>fiber</strong> phenolic treatedpaper. Densities range from 1to 6 lbs/f? and cell sires varyfrom % to % <strong>in</strong>ches. [2-4]Physical properties vary <strong>in</strong> anear l<strong>in</strong>ear fashion with density,as dlustrated <strong>in</strong> Figure 2-9.Although <strong>the</strong> fabrication <strong>of</strong>extremely lightweight panels ispossible with honeycomb cmes,applications <strong>in</strong> a mar<strong>in</strong>eenvironment are limited due to<strong>the</strong> difficulty <strong>of</strong> bond<strong>in</strong>g tocomplex face geometries and<strong>the</strong> potential for sigdicantwater absorption. The Navy has1 I 1I112Ibm 14 61 81 10I 121had some corrosion problemsDrollywhen an alum<strong>in</strong>um honeycombcore was <strong>use</strong>d for ASROC A Shear Modulus (Longitud<strong>in</strong>al) D UnstabilizedCompressionStrengthB Stabilized CompressionStrength E Shear Strength (Longitud<strong>in</strong>al)hous<strong>in</strong>gs. Data on a Nomex@ C Shear Modulus (Transverse) F Shear Stren~th (Transverse)honeycomb product ispresented <strong>in</strong> Table 2-8. Figure 2-9 Core Strengths and Moduli for VariousCore Densities <strong>of</strong> Aramid Honeycomb [Ciba-Geigy]51


Composite Materials Mar<strong>in</strong>e CompositesPMI FoamRohm Tech, Inc. markets a polymrthacrylimide (PMI) foam for composite construction cakdRohacell@. The material requires m<strong>in</strong>imum lam<strong>in</strong>at<strong>in</strong>g pressures to develop good peel strength.The most attractive feature <strong>of</strong> this material is its ability to withstand cur<strong>in</strong>g temperatures <strong>in</strong>excess <strong>of</strong> 35(YF. Table 2-8 summarizes <strong>the</strong> physical properties <strong>of</strong> a common grade <strong>of</strong>Rohacell@.FRP Plank<strong>in</strong>gSeemann Fiberglass, Inc. developed a product called C-Flex@ <strong>in</strong> 1973 to help <strong>the</strong> amateursbuild a cost effective one-<strong>of</strong>f hull. The plank<strong>in</strong>g consists <strong>of</strong> rigid <strong>fiber</strong>glass rods held toge<strong>the</strong>rwith unsaturated strands <strong>of</strong> cont<strong>in</strong>uous <strong>fiber</strong>glass rov<strong>in</strong>gs and a light <strong>fiber</strong>glass cloth. Theself-support<strong>in</strong>g material will conform to compound curves. Typical application <strong>in</strong>volves a set<strong>of</strong> male frames as a form. The plank<strong>in</strong>g has more rigidity than PVC foam sheets, whichelim<strong>in</strong>ates <strong>the</strong> need for extensive longitud<strong>in</strong>al str<strong>in</strong>gers on <strong>the</strong> male mold. A 14i<strong>in</strong>ch variety <strong>of</strong>C-Flex@weighs about l/2 pound dry and costs about $2.00 per square foot.Table 2-8. Comparative Data for Some Sandwich Core MaterialsMateriai ‘ensi Stren th Stren th Stren th Eiasticitibslf~ ‘e;:#e com~ive ‘~ ‘;:::jf #!!~ ~,I Balsa CK 7 1320 1187 315 370.0 17.4 2.35IIAirex@R62.80 5-6 200 125 170 9.2 2.9 5.37Div<strong>in</strong>ycell@ H 100 6 450 290 217 17.4 6.5 6,10I Klegecell II R 100 6,23 479 319 233 11.5 7,0 5.83Core-CeiilMC70.75 5 210 184 130 9.6 3.7 3.47Rohacell@ 711G 4.7 398 213 185 13.1 4.3 7.54Nomex@HRH-78 6 N/A 1125 200 60.0 6.0 13.53Nidaplast H8PP 4.8 N/A 218 160 — — 2.35Core FabricsVarious natural and syn<strong>the</strong>tic materials are <strong>use</strong>d to manufacture products called core fabrics thatare designed to build up lam<strong>in</strong>ate thickness economically. One such product that is popular <strong>in</strong><strong>the</strong> mar<strong>in</strong>e <strong>in</strong>dustry is Firet Coremat, a spun-bound polyester produced by Lantor. HoechstCelanese has recently <strong>in</strong>troduced a product called Trevira@, which is a cont<strong>in</strong>uous filamentpolyester. The cont<strong>in</strong>uous <strong>fiber</strong>s seem to produce a fabric with superior mechanical properties.Ozite produces a core fabric called Compozitex m from <strong>in</strong>organic vitreous <strong>fiber</strong>s. Themanufacturer claims that a unique manufactur<strong>in</strong>g process creates a mechanical <strong>fiber</strong> lock with<strong>in</strong> <strong>the</strong>fabric. Although many manufacturers have had much success with such materials <strong>in</strong> <strong>the</strong> center <strong>of</strong><strong>the</strong> lam<strong>in</strong>ate, <strong>the</strong> <strong>use</strong> <strong>of</strong> a non-structural thick ply near <strong>the</strong> lamhate surface to elim<strong>in</strong>ate pr<strong>in</strong>t-tbmughis a dangerous practice. The high modulus, low strength ply carIproduce pmnamre failures. O<strong>the</strong>rmanufacturers have started to produce “bulldng” products that are primarily <strong>use</strong>d to build upkun.<strong>in</strong>atethickness. Some physical properties <strong>of</strong> core fabric materials are presented <strong>in</strong> Table 2-9.52


Chapter TwoMATERIALSTable 2-9. Comparative Data for Some “Bulk<strong>in</strong>g” Materials(impregnated with polyester res<strong>in</strong> to manufacturers’ recommendation)Coremat@ 4mm .157 37-41 551 3191 580 130 .44Trevira@ Core 100 ,100 75 2700 17700 1800 443 .28Baltek@Mat T-2000 ,098 40-50 1364 — 1364 — .31I Tigercore TY-3 ,142 35 710 3000 1200 110 .44 II CompozitexTM 3mm .118 — — — — — .35PlywoodPlywood should also be mentioned as a structural core material, although <strong>fiber</strong>glass is generallyviewed as merely a sheath<strong>in</strong>g when <strong>use</strong>d <strong>in</strong> conjunction with plywood Exceptions to thischaracterization <strong>in</strong>clude local re<strong>in</strong>forcements <strong>in</strong> way <strong>of</strong> hardware <strong>in</strong>stallations, where plywoodreplaces a lighter density core to improve compression properties <strong>of</strong> <strong>the</strong> lam<strong>in</strong>ate. Plywood isalso sometimes <strong>use</strong>d as a form for longitud<strong>in</strong>al, especially <strong>in</strong> way <strong>of</strong> eng<strong>in</strong>e mounts. Recentconcern over <strong>the</strong> cont<strong>in</strong>ued propensity for wood to absorb moisture <strong>in</strong> a maritime environment,which can ca<strong>use</strong> swell<strong>in</strong>g and subsequent delam<strong>in</strong>ation, has precipitated a decl<strong>in</strong>e <strong>in</strong> <strong>the</strong> <strong>use</strong> <strong>of</strong>wood <strong>in</strong> conjunction with FRP. The uneven surface <strong>of</strong> plywood makes it a poor bond<strong>in</strong>g surface.Also, <strong>the</strong> low strength and low stra<strong>in</strong> characteristics <strong>of</strong> plywood can lead to premature failures.The technique <strong>of</strong> lam<strong>in</strong>at<strong>in</strong>g numerous th<strong>in</strong> plies <strong>of</strong> wood developed by <strong>the</strong> Gougeon Bro<strong>the</strong>rsand known as wood epoxy saturation teehnique (WEST@ System) elim<strong>in</strong>ates many <strong>of</strong> <strong>the</strong>shortcom<strong>in</strong>gs <strong>in</strong>volved with us<strong>in</strong>g wood <strong>in</strong> composite structures.Cost ConsiderationsThe owners and designers <strong>of</strong> composite mar<strong>in</strong>e structures have a broad range <strong>of</strong> materials that<strong>the</strong>y can choose from. The vast majority <strong>of</strong> construction to date has been with <strong>fiber</strong>glassre<strong>in</strong>forcement and ortho-polyester res<strong>in</strong> beca<strong>use</strong> <strong>of</strong> <strong>the</strong> relative ease <strong>of</strong> <strong>use</strong> and low cost. Whenweight, strength, stiffness or durability requirements are at a premium, <strong>the</strong> <strong>use</strong> <strong>of</strong> higherperformance materials can be rationalized.Product Description and Test Data Tables are <strong>in</strong>cluded at <strong>the</strong> end <strong>of</strong> this section to assist <strong>in</strong> <strong>the</strong>evaluation <strong>of</strong> economic differences between commercially available re<strong>in</strong>forcements based onvarious strength criteria developed <strong>in</strong> <strong>the</strong> 1978 ABS Rules for Re<strong>in</strong>forced Plastic Vessels [2-5]and <strong>the</strong> 1986 Guide for Offshore Rac<strong>in</strong>g Yachts [2-6] and supplier price quotes from Fall,1989. Cost data is presented to compare various products fmm a particular vendor. Manufaetwrsshould consult lewd suppliers to get current regional pric<strong>in</strong>g <strong>in</strong>formation.53


Composite MaterialsAJw<strong>in</strong>eCom~osifeslam<strong>in</strong>ate Property AssumptionsEach Data Table <strong>in</strong>cludes a set <strong>of</strong> variables that rema<strong>in</strong> constant for <strong>the</strong> range <strong>of</strong> re<strong>in</strong>forcements<strong>in</strong> <strong>the</strong> table. The key variable is <strong>the</strong> selection <strong>of</strong> a res<strong>in</strong> system. All entries with<strong>in</strong> a giventable should have a common res<strong>in</strong> system <strong>use</strong>d for test data derivation. A res<strong>in</strong> system isusually determ<strong>in</strong>ed before re<strong>in</strong>forcement selection based on cost, builder’s capabilities, barrierperformance, toughness and shear strength. Res<strong>in</strong> cost is entered <strong>in</strong>to <strong>the</strong> Data Table on a perpound basis to compare lam<strong>in</strong>ates that require different amounts <strong>of</strong> res<strong>in</strong>.Lam<strong>in</strong>ate schedules <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e <strong>in</strong>dustry are necessarily specified by thickness to conformwith established shipbuild<strong>in</strong>g practices. Dry re<strong>in</strong>forcement material undergoes some degree <strong>of</strong>compaction dur<strong>in</strong>g <strong>the</strong> lam<strong>in</strong>at<strong>in</strong>g process. This value is dependent upon <strong>the</strong> specificmanufactur<strong>in</strong>g process utilized and is <strong>in</strong>put <strong>in</strong> <strong>the</strong> form <strong>of</strong> a percentage. Res<strong>in</strong> also changesdensity from <strong>the</strong> published “neat” value when cured. This phenomena, known as shr<strong>in</strong>kage, isalso represented as a percentage.Labor variables <strong>in</strong>clude <strong>the</strong> hourly wage rate ad <strong>the</strong> rate at which material can be assembled.The latter is expressed <strong>in</strong> terms <strong>of</strong> hours to lam<strong>in</strong>ate one squsre foot <strong>of</strong> one ply. A value <strong>of</strong> .05hours per square foot equates to about 12 pounds per hour <strong>of</strong> <strong>the</strong> Base Lam<strong>in</strong>ate. This is <strong>the</strong>value that Scott gives for s<strong>in</strong>gle sk<strong>in</strong> military boats (see Table 2-10). A difficulty factor isassigned for materials o<strong>the</strong>r than standsrd <strong>fiber</strong>glass products. This factor takes <strong>in</strong>to accounthan~<strong>in</strong>g and wet-out procedures.Table 2-10. Hand Layup Production Rates for 10 or More Identical Hulls[Scott, Fiberglass Boat Constmctjon]Type <strong>of</strong> Construction Type <strong>of</strong> Boat Lbs/Hour* Ft2/Hourt Hours/Ft2*S<strong>in</strong>gle Sk<strong>in</strong> with FramesSandwichConstruction* Based on matiwoven rov<strong>in</strong>g lam<strong>in</strong>atet S<strong>in</strong>gle ply <strong>of</strong> mat/woven rov<strong>in</strong>g lam<strong>in</strong>ate* Time to lam<strong>in</strong>ate one ply <strong>of</strong> mat/woven rov<strong>in</strong>gRecreational 20 33 .03Military 12 20 .05Recreational 10 17 .06Military 6 10 .10S<strong>in</strong>ce all calculated data is thickness and density dependent, an estimate for void volume is<strong>in</strong>cluded. This value is <strong>use</strong>d to modify <strong>the</strong> total estimated lam<strong>in</strong>ate weight, but is not <strong>in</strong>cluded<strong>in</strong> any derived strength calculations.Re<strong>in</strong>forcement DescriptionThe manufacturer’s designation is <strong>use</strong>d here to identify <strong>the</strong> commercial product represented.Refer to pages 60-67 for composition and construction <strong>in</strong>formation about <strong>the</strong>se products. Thebase lam<strong>in</strong>ate consists <strong>of</strong> one layer <strong>of</strong> woven rov<strong>in</strong>g and one mat to form what is considered as<strong>in</strong>gle ply.54


Chapter TwoMATERIALSTest AngleS<strong>in</strong>ce <strong>the</strong> majority <strong>of</strong> materials listed are anisotropic, <strong>in</strong>formation on <strong>the</strong> orientation <strong>of</strong> testspecimens is <strong>in</strong>cluded. Much care shotid be taken <strong>in</strong> <strong>in</strong>terpret<strong>in</strong>g <strong>the</strong> comparative data,especially with unidirectional re<strong>in</strong>forcements. Most material test<strong>in</strong>g is done along axes <strong>of</strong>primary re<strong>in</strong>forcement.Fiber Weight PercentageThe percentage <strong>of</strong> re<strong>in</strong>forcement <strong>fiber</strong> <strong>in</strong> a given lam<strong>in</strong>ate is determ<strong>in</strong>ed by burnout tests andreported as a weight percentage. Mechanical properties will vary widely with vary<strong>in</strong>g <strong>fiber</strong>ratios. Strength data is <strong>of</strong>ten given as a function <strong>of</strong> <strong>fiber</strong> ratio, which is why this descriptormust be <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> Data Table entry.Fiber Volume PercentageThe percentage <strong>of</strong> <strong>fiber</strong> by volume is given by <strong>the</strong> follow<strong>in</strong>g relationship presented by Chamis:[2-7]where:“=*‘V = void volumePf = <strong>fiber</strong> densityPm = res<strong>in</strong> densityl.f = percentage <strong>of</strong> <strong>fiber</strong> by weightDry Fiber and Uncured Res<strong>in</strong> DensityDensities are presented <strong>in</strong> pounds per square foot for one <strong>in</strong>ch thickness. This base, unit isbetter for visualization purposes than cubic feet or cubic <strong>in</strong>ches. Data is derived from virg<strong>in</strong>material properties.Cured lam<strong>in</strong>ate DensityThe cured lam<strong>in</strong>ate density is derived as follows:where:pl=~vxpfx(l +Apf)+’mxpm x(l+Apm)A Pf= <strong>fiber</strong> compaction expressed as a percentageA ~ = res<strong>in</strong> shr<strong>in</strong>kage expressed as a percentagekm = res<strong>in</strong> volumeDry Fiber ThicknessThis value, given <strong>in</strong> roils, is representative <strong>of</strong> <strong>the</strong> re<strong>in</strong>forcement material alone without res<strong>in</strong> andbefore any mechanical compaction such as vacuum bagg<strong>in</strong>g, roller<strong>in</strong>g, squeegee<strong>in</strong>g or o<strong>the</strong>rprocess<strong>in</strong>g.55


Composite MaterialsMar<strong>in</strong>e CompositesFiber WeightThis valu~ is merely <strong>the</strong> product <strong>of</strong> <strong>fiber</strong> volume and <strong>fiber</strong> density.Res<strong>in</strong> WeightTo calculate res<strong>in</strong> weight, a value for res<strong>in</strong> volume must be derived. This is simply:( 1- kf- k, ). This value is multiplied by <strong>the</strong> res<strong>in</strong> density to get <strong>the</strong> res<strong>in</strong> weight.Lam<strong>in</strong>ate WeightThe lam<strong>in</strong>ate weight is <strong>the</strong> sum <strong>of</strong> <strong>the</strong> <strong>fiber</strong> weight and <strong>the</strong> res<strong>in</strong> weight.Re<strong>in</strong>forcement Cost DataCurrent pric<strong>in</strong>g is entered ei<strong>the</strong>r on a per pound basis or per l<strong>in</strong>ear yard, based on a 50” wideroll. Cost data for re<strong>in</strong>forc<strong>in</strong>g material is based on 1000 square yard quantities as <strong>of</strong>November, 1989.Total Material CostThe material cost per square foot is calculated on a weight basis for re<strong>in</strong>forcementThe sum is presented as ply cost per square foot,and res<strong>in</strong>.Labor CostThe <strong>in</strong>put labor rate is multiplied by <strong>the</strong> productivity valuelabor factor.(ft2/hr) and <strong>the</strong> assigned materialTotal and Relative Ply CostThe total cost per ply is <strong>the</strong> sum <strong>of</strong> material and labor costs. This data is also represented as apercentage relative to <strong>the</strong> base lam<strong>in</strong>ate <strong>in</strong> <strong>the</strong> form <strong>of</strong> cost required to achieve an equalthickness.Strength DataDerived strength and stiffness properties are from tests performed accord<strong>in</strong>g to ASTMstandards (see Chapter Six). S<strong>in</strong>gle sk<strong>in</strong> lam<strong>in</strong>ates <strong>of</strong> at least %s <strong>in</strong>ch should be tested withsufficient numbers <strong>of</strong> specimens to produce statistical agreement. Hand laid up test samplesfabricated under <strong>the</strong> guidel<strong>in</strong>es recommended by <strong>the</strong> res<strong>in</strong> manufacturer are to be <strong>use</strong>d.S<strong>in</strong>gle Sk<strong>in</strong> Strength Criteria Thickness ComparisonThe required thickness for <strong>the</strong> candidate material is expressed <strong>in</strong> terms <strong>of</strong> percentage <strong>of</strong> <strong>the</strong>base lam<strong>in</strong>ate. The relationship <strong>use</strong>d is:where:c‘f,m‘f‘fk,‘f= flexural strength <strong>of</strong> <strong>the</strong> base lam<strong>in</strong>ate= flexural strength <strong>of</strong> <strong>the</strong> subject lam<strong>in</strong>ate56


Composite MaterialsMar<strong>in</strong>e CompositesSandwich Construction Compression Criteria Thickness ComparisonThe compression criteria is based on <strong>the</strong> ABS <strong>in</strong>ner sk<strong>in</strong> section modulus formula <strong>in</strong> a similarfashion to that detailed above. The relationship reduces to:where:(~j,x6XUCOf)‘1 = SikfImerB&do = compressive strength <strong>of</strong> subject lam<strong>in</strong>atecSM1m,, =Bau<strong>in</strong>ner sk<strong>in</strong> section modulus required for 1“ wide sandwich panelto match Sill <strong>of</strong> 1“ thick s<strong>in</strong>gle sk<strong>in</strong> base lam<strong>in</strong>ate<strong>the</strong> above expression is based on <strong>the</strong> follow<strong>in</strong>g relationship:SM1~,, =(tzxOf)6x a=Sandwich Construction Stiffness Criteria lhickness ComparisonTo achieve a sandwich structure from alternate materiaJ with stiffness equal to a panel withbase material sk<strong>in</strong>s, <strong>the</strong> relationship presented <strong>in</strong> Section 7.3.2.c <strong>of</strong> <strong>the</strong> ABS Guide [2-6] is<strong>use</strong>d. As with <strong>the</strong> section modulus comparison developed above, equivalent moments <strong>of</strong> <strong>in</strong>ertiaare compared l<strong>in</strong>early to represent alternate material sk<strong>in</strong> thickness for a given core dimension.The ma<strong>the</strong>matical relationship <strong>use</strong>d is:where:(t;Nx Et)* 12 XV2X(E; +EC)tl =I BaseEt = tensile modulus <strong>of</strong> subject lam<strong>in</strong>ateEC= compressive modulus <strong>of</strong> subject lam<strong>in</strong>ateI B&e=required moment <strong>of</strong> <strong>in</strong>ertia <strong>of</strong> base lam<strong>in</strong>ate for 1“ wide strip tomatch 1 <strong>of</strong> 1“ thick s<strong>in</strong>gle sk<strong>in</strong> lam<strong>in</strong>ate<strong>the</strong> above expression is based on <strong>the</strong> follow<strong>in</strong>g relationship:(t3x E)I Sandwich = 12xv2x(E, +Ec]58


Chaoter TwoMATERIALSCost ComparisonsAll <strong>of</strong> <strong>the</strong> above five thiclmess comparison criteria are fur<strong>the</strong>r reduced to cost equivalents bymultiply<strong>in</strong>g <strong>the</strong> thickness relationship to <strong>the</strong> base material by <strong>the</strong> relative equivalent thickne<strong>ssc</strong>ost relationship data.These relationships are developed for <strong>the</strong> purpose <strong>of</strong> material comparison at <strong>the</strong> prelim<strong>in</strong>arydesign stage. The strength data is derived from test specimens which may have propertiessignflcantly different from an as-built lamhate. Samples should always be tested to verify <strong>the</strong>physical properties <strong>of</strong> a lam<strong>in</strong>ate produced by <strong>the</strong> builder under conditions similsr to that <strong>of</strong> <strong>the</strong>F<strong>in</strong>al product. Additionally, <strong>the</strong> comparisons developed for sandwich psnels were <strong>in</strong>dependent<strong>of</strong> core thiclmess and properties. Response prediction procedures for cored panels are presented<strong>in</strong> Chapter Three. This type <strong>of</strong> analysis is essential for predict<strong>in</strong>g sandwich panel response. Itwill be shown that different core materials snd dimensions are required to achieve truecompatibility with <strong>the</strong> variety <strong>of</strong> re<strong>in</strong>forcement materials presented <strong>in</strong> <strong>the</strong> Data Tables.However, <strong>the</strong> analysis presented does give a good relative <strong>in</strong>dication <strong>of</strong> sk<strong>in</strong> contribution topanel response.Additional equations relat<strong>in</strong>g to sandwich properties are given <strong>in</strong> <strong>the</strong> Sandwich ConstructionSection <strong>of</strong> Chapter Three. Readers may also refer to specific requirements <strong>of</strong> govern<strong>in</strong>gregulatory bodies or national standards outl<strong>in</strong>ed <strong>in</strong> Chapter Seven.Cost<strong>in</strong>g <strong>in</strong>formation is provided for eng<strong>in</strong>eer<strong>in</strong>g purposes only. Data is current as <strong>of</strong> August,1990. Quotations were based on 1000 pound purchases <strong>of</strong> material. The cost per l<strong>in</strong>eal yard isbased on 50 <strong>in</strong>ch wide re<strong>in</strong>forcement material. Builders should <strong>of</strong> course consult <strong>the</strong>ir localsuppliers for current regional pric<strong>in</strong>g, as msrket fluctuations are common.59


Re<strong>in</strong>forcementDescriptionManheCon@tes60


Chapter TwoMATERIALS61


Re<strong>in</strong>forcement DescriptionMar<strong>in</strong>e Composites.62


mwProduct Descriptionsfor Various RelntorcementMaterialsUsed <strong>in</strong> Mar<strong>in</strong>e ConstructIonTnde t4ame Product Descrlptfon CodeWeight ThickcostMaterlai Weaveoz/yd21g/m2 roils $/yd I $/lbTf3EVARN0 Boat and Tool<strong>in</strong>g Fabric 7533 5.9 198 10 E-Glass Pla<strong>in</strong> 2.76 5.44TREVARNO Boat and Tool<strong>in</strong>g Fabric 7544 19.2 651 22 E-Glass Pla<strong>in</strong> 6.12 3.67TREVA13N0 Boat and To<strong>of</strong><strong>in</strong>g Fabric 7587 20.7 700 30 E-Glass Mock Leno 7.16 3.99TREVARNO Boat and Tool<strong>in</strong>g Fabitc 7597 39.2 1328 45 E-Glass Sat<strong>in</strong> 13.52 3.98TREVARNO Advanced Composite Fabrics 4522 3.7 125 5.5 S-Glass Pla<strong>in</strong> 5.56 17.31TREVARNO Advanced Composite Fabrics 4533 5.8 197 9 S-Glass Pla<strong>in</strong> 6.83 13.57TREVA13N0 Advanced Composite Fabrics 282 5.7 193 7.2 Cartmn Pla<strong>in</strong> 27.43 55.44TREVARNO Advanced composite Fabrics 584 10.9 370 13.5 Cat<strong>in</strong> Sat<strong>in</strong> 52.35 55.33TREVARNO Advanced Composite Fabrics 613 Ia.o 373 13.5 Carbon 51-IS 33.10 34.66TF?EVARNO Advanced Composite Fabrics 690 19.0 644 24 Cadre Pla<strong>in</strong> 34.94 21.18TREVARNO Advanced Composite Fabfics 716 4.6 156 6.1 Carbon Pla<strong>in</strong> 13.99 35.04TREVARNO Advanced Composite Fabrics 120 1.8 61 4.5 Kevlar Pla<strong>in</strong> 20.17129.09TREVARNO Advanced Composite Fabrics 281 5.0 170 10 Kevlar Pla<strong>in</strong> 23.50 54.14TREVARNO Advanced Composite Fabrics 285 5.0 170 10 Kevlar Cnwfoot 17.99 41.45TREVARNO Advanced Composite Fabrics 500 . 5.0 170 10 Kevlar Pla<strong>in</strong> 14.67 33.80TREVARNOAdvanced Composite Fabrics 900 9.0 305 13 Kevlar Sat<strong>in</strong> 19.05 24.38TREVARNO Advanced Coqosite Fabrics 1350 13.5 458 26 Kevlar Basket 25.52 21.78HERCULES Graphite Woven Fabrics A193-P 5.7 193 10.5 AS4 Carhan Pla<strong>in</strong> 23.22 47.00HERCULES Graphite Woven Fabrics A280-5H 8.3 280 16 AS4 Cartxm 5H Sat<strong>in</strong> 33.69 47.00HERCULES Graphite Woven Fabrics A370-5H 10.9 370 21 AS4 Carbon 5H Sat<strong>in</strong> 36.00 38.00HERCULES Graphite Woven Fabrics A370-8H 10.9 370 21 AS4 Carbon 8H Sat<strong>in</strong> 44.5247.00HERCULES Graphite Woven Fabrics 1<strong>360</strong>-5H 10.6 <strong>360</strong> 20.4 IM6 Carbon 5H Sat<strong>in</strong> 50.6955.00PRECOM InternationalAEROTEX Vertex R-Glass Unidirectional VRX 16-300 4.7 160 RGlass Unidirectional 7.86 19.21AEROTEX Vertex R-Glass Unidirectional VRX 28-300 8.3 280 R-Glass Unidirectional 10.88 15.18AEROTEX Carbotex Carbon Unidirectional Cx 10-300 3.0 100 <strong>in</strong>t Mod Cartmn Unidirectional 13.00 50.73AEROTEX Carbotex Carbon Unidirectional CX IM 12-267 3.5 120 HTX Carban Unidirectional 25.75 83.74AEROTEX Carbatex Carbon Unidirectional Cx 16-300 4.7 160 tiTX Carbon Unidirectional 16.63 40.55AEROTEX Carbatex Carbon Unidirectional CX 22-300 6.5 220 HTX Carbon Unidirectional 19.25 34.t5AEROTEX Carbotex Carbon Unidirectional CX 32-300 9.4 320 HTX Carbon Unidirectional 23.38 28.55Anchor Re<strong>in</strong>forcements, Inc.ANCAREF Unidirectional G135 4.0 136 E-Glass Unidirectional 4.62 13.30ANCAREF Unidirectional G300 8.8 298 E-Glass Unidirectional 5.08 6.65ANCAREF Unidirectional G600 17.7 600 E-Glass Unidirectional 6.41 4.17Ahlnnnrr *F i*- .** . --- .-.. --- . . . .. . . . . . ..— ——fultimma- +4’3,-4a UDUUA 1{.{ mm b-tilass umawecllonal 11.11 7.23


Re<strong>in</strong>forcement DescriptionMar<strong>in</strong>e Composites


Chapter TwoMATERIALS.... . . -. ...


Re<strong>in</strong>forcementDescriWion Mar<strong>in</strong>a Cmnnnc[fes66


at4Product Descriptions for Various Re<strong>in</strong>forcement Materials Used <strong>in</strong> Mar<strong>in</strong>e ConstructionTfade Name Product Description CodeWeight ThickMatedai Weaveoz/yd2]g/m2 mi!s $/y~;/ibVECTORPLY Double Bias w/ mat Vxl 808 24.0 814 43 E-Glass Stitch-bonded 4.63 2.22VECTORPLY Knit Warp Triaxial TW36 36.0 1221 62 E-Glass Stitch-bonded 6.72 2.15VECTORPLY Knit Warp Triaxial TW24 24.0 814 40 E-Glass stitch-bonded 5.71 2.74VECTORPLY Knit Fill Triaxial TF36 36.0 1221 62 E-Glass Slitch-bondecf 6.72 2.15VECTORPLY Knit E-glass (O,90) w/ mai V1808 24.0 814 43 E-Glass Stitch-bonded 3.54 1.70VECTORPLY Knit E-glass (O,90) w/ mai Vlalo 27.0 915 48 E-Glass Stitch-bonded 3.94 1.68Low pr<strong>of</strong>ile 24 oz. Woven Rov<strong>in</strong>g 3 24.0 814 40 E-Glass Woven Rov<strong>in</strong>g 2.08 1.00Low pr<strong>of</strong>ile 18 oz. Woven Rov<strong>in</strong>g 11 18.0 610 30 E-Glass Woven Rov<strong>in</strong>g 1.63 1.04Low pr<strong>of</strong>iie F<strong>in</strong>e weave Rov<strong>in</strong>g Rov<strong>in</strong>g 1109 10.0 339 17 E-Glass Woven Rov<strong>in</strong>g 1.87 2.15THREE PLY Mat/18 oz. Knit {0, 90)/Mal V1808-08 31.0 1051 80 E-Glass Stiictl-bonded 5.09 1.89WOVMAT Woven Rov<strong>in</strong>g/chopped <strong>fiber</strong>s 1010 20.0 678 32 E-Glass WR/chopped fbrs 2.95 1.70WOVMAT Woven Rot<strong>in</strong>g/chopped <strong>fiber</strong>s 1524 38.0 1288 66 E-Glass WR/chopped fbrs 3.99 1.21BGF Industries, Inc.Re<strong>in</strong>forcedPlastics WovenCloth 1522 11.9 402 5.6 E-Glass Pla<strong>in</strong> 3.00 2.92Re<strong>in</strong>forced Plastics Woven Cloth 2532 7.3 246 10 E-Glass Pla<strong>in</strong> 3.36 5.34Re<strong>in</strong>forced Plastics Woven Cloth 3733 5.8 197 8 E-Glass Pla<strong>in</strong> 2.97 5.90Re<strong>in</strong>forced Plastics Woven Cloth 7500 9.6 325 12 E-Glass Pla<strong>in</strong> 4,49 5.39North American TextilesNORTEX Woven Fabric N120 2.0 68 5 Kevlar Pla<strong>in</strong> 15.10 86.98NORTEX Woven Fabric N281 5.0 170 11 Kevlar Pla<strong>in</strong> 13.00 29.95NORTEX Woven Fabric N285 5.0 170 9 Kevlar Cmwfoot 13.00 29.95NORTEX Woven Fabric NI118 3.0 102 6 Carbon Pla<strong>in</strong> 48.33185.59NORTEX Woven Fabtic N1122 3.5 119 7 Cat<strong>in</strong> Pla<strong>in</strong> 59.06194.39NOf3TEX Woven Fabric N3113 6.0 203 11 Carbon Pla<strong>in</strong> 25.00 48.00NORTEX Woven Fabric N3118 8.5 288 11 Carbon 4 x 4 Twill 35.87 48.61NORTEX Woven Fabric N3125 12.0 407 16 Carbon 8 I-fS 49.83 47.84NORTEX Woven Fabric N611 1 10.5 356 14 Carbon Pla<strong>in</strong> 25.78 28.28NORTEX Woven Fabrfc N2577 20.0 678 30 Cat<strong>in</strong> Pla<strong>in</strong> 34.17 19.68NORTEX Woven Fabric N3376 3.5 119 8 CarbotiE-Glass Pla<strong>in</strong> 27.28 89.79NORTEX Woven Fabric N3375 4.5 153 8 Cat<strong>in</strong>/E-Glass Pla<strong>in</strong> 18.58 47.56NORTEX Woven Fabric MI-476 7.5 254 12 CarboWE-Glass Pla<strong>in</strong> 14.95 22.96NORTEX Woven Fabric NI 222 3.0 102 6 Carkn/Kevlar Pla<strong>in</strong> 19,25 73.92NORTEX Woven Fabric N2312 6.0 203 11 Carbon/Kevlar Pla<strong>in</strong> 14.26 27.38NORTEX Woven Fabric N4375 5.0 170 8 Kevlar/E-Glass Pla<strong>in</strong> 8.13 18.73.. ---— . . ... —. .. —- -- .-. ——. —. . —NW? I kX Woven Fi3bIiC N4475 12.5 424 12 Kevfar/E-Glass Pla<strong>in</strong> 7.01 6.46


Advanced Textiles Re<strong>in</strong>forcements Tested at FIT Structural Composites Lab with FRP A 100 Polyester Res<strong>in</strong>—c p $ guq~ z ;$ 3 n g g ~ ;fla gm ~$ gg g~ gg gg& Gn 9 $4


Chapter TwoMATERIALSDescrlptlonSandwichStiffnessCrlterlaSandwichCompressiveStrengthCrlterlaSandwichTensileStrengthCrlterlaS<strong>in</strong>gle Sk<strong>in</strong>StiffnessCriteriaS<strong>in</strong>gle $klnStrengthCrlterlaSandwichStiffnessCrlterlaSandwichCompressiveStrengthCrlterlaS;::sl:hStrengthCrlterlaS<strong>in</strong>gle Sk<strong>in</strong>StiffnessCrlterlaS<strong>in</strong>gle Sk<strong>in</strong>StrengthCrlterlaCompressiveStrengthTensileModulusTensileStrengthFlexuralModulusFlexuralStrength69


Re<strong>in</strong>forcement Eng<strong>in</strong>eer<strong>in</strong>g PropertiesMar<strong>in</strong>e CompositesCost Relatlveto $ gBase Lam<strong>in</strong>ateper Thlcknesa ~ G~I IFiber Cost by a k?!?Weight g g ‘7Cured Lam<strong>in</strong>ate :Density*UncuredRes<strong>in</strong> = x g ~Density~ ~Dry Fiber qDensity . ml%vgggy $ $0 r+ml ml5%0Fiber by $ $Weight ~ qHTesl Angle 00I70


Chapter TwoMATERIALS$ $Sandwich s 3Stiffness Crlterla ~ -1 #Sandwich ~ * *CompressiveStrength Crlterla ~ $ ~Y! ‘‘Strength Crlterla ~ ~ ~SandwichStlffnees CrlterlaSandwichCompressiveStrengthCrlterlaSandwichTensileStrengthCrlterlaS<strong>in</strong>gle Sk<strong>in</strong>Stiffness Crlterlaco;qn&sgveo 0 0a o0 w 1-- OJ 7CompressiveStrength ~ $ ~IIllFlexuralStrengthm mN w 371


Re<strong>in</strong>forcement Eng<strong>in</strong>eer<strong>in</strong>g PropertiedMar<strong>in</strong>e CompositesCost Relative toBase Lam<strong>in</strong>ate z 5 2per Thlcknese 0 . .* a.$0mIIcoq0C9 CD CQ03 m av q q0 0 0w1-15Cured Lam<strong>in</strong>ateDensitym o 0y Lqqm m m$ticoqN1 I II‘/0 Fiber byVolume~ ~ Em m m$NP)YOFiber by g g gWeight m U3mIITest Angle 900972


——Chapter TwoMATERIALSSk<strong>in</strong>Crlterla2~N1--l”l=l’S<strong>in</strong>gle Sk<strong>in</strong>Strength CrlterlaSandwichStiffness CrlterlaSandwichCompressiveStrength CrlterlaS;&d;w:hStrength CrlterlaS<strong>in</strong>gle Sk<strong>in</strong>Stiffness Crlterlau“S<strong>in</strong>gle Sk<strong>in</strong>Str$ngth CrlterlaLz CompressiveStrengthTensileModulusTensileStrengthFlexuralModulusFlexuralStrength73


Composite MaterialsMar<strong>in</strong>e CompositesThis page<strong>in</strong>tentionally left blank74


Chapter ThreeDESIGNHull as a longitud<strong>in</strong>alGhderClassical approaches to ship structural design treat <strong>the</strong> hull structure as a beam for purposes <strong>of</strong>analyticsilevaluation. [3-1] Obviously, <strong>the</strong> vtidity <strong>of</strong> this approach is related to <strong>the</strong> vessel’s lengthto beam and length to depth ratios. Consequently, beam analysis is not <strong>the</strong> primary analyticalapproach for small h Never<strong>the</strong>less, it is imructive to regard hull structme as a beam whenconsider<strong>in</strong>g frees that act on <strong>the</strong> vessel’s overall length. By determ<strong>in</strong><strong>in</strong>g which elements <strong>of</strong> <strong>the</strong> hullare primmily <strong>in</strong> tension, compression or shear, scantl<strong>in</strong>g determ<strong>in</strong>ation can be approached <strong>in</strong> a momrational manner. This is particularly important when design<strong>in</strong>g with misotrophic materisls whereorientation aikcts <strong>the</strong> structure’s load carry<strong>in</strong>g capabilities to such a great extent.A variety <strong>of</strong> different phenomena contribute to <strong>the</strong> overall longitud<strong>in</strong>al bend<strong>in</strong>g momentsexperienced by. a ship’s hull structure. Analyz<strong>in</strong>g <strong>the</strong>se global load<strong>in</strong>g mechanisms statically isnot very realistic with smaller craft. Here, dynamic <strong>in</strong>teraction <strong>in</strong> a seaway will generallyproduce load<strong>in</strong>gs <strong>in</strong> excess <strong>of</strong> what static <strong>the</strong>ory predicts. However, empirical <strong>in</strong>formation hasled to <strong>the</strong> development <strong>of</strong> accepted safety factors that can be applied to <strong>the</strong> statically derivedstress predictions. Force producers are presented here <strong>in</strong> an order that corresponds todecreas<strong>in</strong>g vessel size, ie., ship <strong>the</strong>ory fwstStill Water Bend<strong>in</strong>g MomentBefore a ship even goes to sea, somestress distribution pr<strong>of</strong>de exists with<strong>in</strong><strong>the</strong> structure. Figure 3-1 shows how<strong>the</strong> summation <strong>of</strong> buoyancy andweight distribution curves leads to <strong>the</strong>development <strong>of</strong> load, shear andmoment diagrams. Stresses apparent<strong>in</strong> <strong>the</strong> still water condition generallybecome extreme only <strong>in</strong> cases whereconcentrated loads are applied to <strong>the</strong>structure, which can be <strong>the</strong> case whenholds <strong>in</strong> a commercial vessel areselectively filled. The sdll waterbend<strong>in</strong>g moment (SWBM) is animportant concept for composites&sign beca<strong>use</strong> <strong>fiber</strong>glass isparticularly susceptible to creep orfracture when subjected to long termloads. Static fatigue <strong>of</strong> glass <strong>fiber</strong>scan reduce <strong>the</strong>ir load carry<strong>in</strong>gcapability by as much as 70 to 80%depend<strong>in</strong>g on load duration,temperature, moisture conditions ando<strong>the</strong>r factors. [3-2]WI Ii~-— ———.— .. ———— L~ ________IL—— -----(u} RECTAW13ULAR mARGIZ-UNLOfiDE+ ‘——————t-) ~ARGE-HALF LOADEDi 1!I OASIELINE\ 1{dl WEIGHT AUD EIUOV+MCY cURVES====5==(0> SHEAR Awn 9ENO!WG MOMENT CURVES~gllre a-l Bend<strong>in</strong>g Moment Development<strong>of</strong> Rectangular Barge <strong>in</strong> Still Water [Pr<strong>in</strong>ciples <strong>of</strong>Naval Architecture]75


. ,Loads for FRP Ship DesignMar<strong>in</strong>e CompositesWave Bend<strong>in</strong>g MomentA static approach to predict<strong>in</strong>g ship structure stresses <strong>in</strong> a seaway <strong>in</strong>volves <strong>the</strong> superposition <strong>of</strong>a tcochoidal wave with a wavelength equal to <strong>the</strong> vessel’s length <strong>in</strong> a hogg<strong>in</strong>g and sagg<strong>in</strong>gcondition as shown <strong>in</strong> Figure 3-2. The trochoidal wave form was orig<strong>in</strong>ally postulated byFroude as a realistic two-dirnensional pr<strong>of</strong>ile, which was easily def<strong>in</strong>ed ma<strong>the</strong>matically. Theheight <strong>of</strong> <strong>the</strong> wave is usually taken as ~ZO,.O&G or 1,1L2, with <strong>the</strong> latter most applicable tosmaller ships. Approximate calculation methods for maximum bend<strong>in</strong>g moments and shear<strong>in</strong>gforces have been developed as prelim<strong>in</strong>ary design tools for ships over 300 feet long. [3-3]I(o) VESSEL IN STILL WATERIIItI(b) VESSEL IN SAGGINGCONDITIONI(e) VESSEL IN HOGGINGCONDITIONFigure 3-2 Superposition <strong>of</strong> Static Wave Pr<strong>of</strong>ile [FJrh@es <strong>of</strong> fVava/Architecture]Ship Oscillation ForcesThe dynatnic response <strong>of</strong> a vessel operat<strong>in</strong>g <strong>in</strong> a given sea spectrum is very difficult to predictanalytically. Accelerations experienced throughout <strong>the</strong> vessel vary as a function <strong>of</strong> vertical,longitud<strong>in</strong>al and transverse location. These accelerations produce virtual <strong>in</strong>creases <strong>of</strong> <strong>the</strong>weight <strong>of</strong> concentrated masses, hence additional stress. The designer should have a feel for atleast <strong>the</strong> worst locations and dynamic behavior that can comb<strong>in</strong>e to produce extreme loadscenarios. Figure 3-3 is presented to def<strong>in</strong>e <strong>the</strong> terms commonly <strong>use</strong>d to describe ship motion.It is generally assumed that comb<strong>in</strong>ed roll and pitch forces near <strong>the</strong> deck edge forward are<strong>in</strong>dicative <strong>of</strong> <strong>the</strong> extreme accelerations throughout <strong>the</strong> ship.Dynamic PhenomenaDynamic load<strong>in</strong>g or vibration can be ei<strong>the</strong>r steady state, as with propulsion <strong>in</strong>ducedphenomena, or transien4 such as with slamm<strong>in</strong>g through waves. In <strong>the</strong> former case, loadamplitudes are generally with<strong>in</strong> <strong>the</strong> design limits <strong>of</strong> hull structural material. However. <strong>the</strong>fatigue process “can lead to premature iailures, especially if structural components axe <strong>in</strong>resonance with <strong>the</strong> forc<strong>in</strong>g frequency. A prelitiary vibration analysis <strong>of</strong> major structural76


Chapter ThreeDESIGNYAWlliEAVE42I“-L --------------1YS WAYFigure 3-3 Pr<strong>in</strong>cipal Axes and Ship Motion Nomenclature [Evans, Sh@ StructuralDesign Concepts]ensure that natural frequencies are not near shsft and blade rate for normal operat<strong>in</strong>g speeds.[3-4] The <strong>the</strong>oretical analysis <strong>of</strong> vibration characteristics associated with complex compositestructures is problematic, at best. Some consolation can be found <strong>in</strong> <strong>the</strong> fact that compositestructures have superior damp<strong>in</strong>g properties when compared to metals. This is especially truefor sandwich construction.The transient dynamic load<strong>in</strong>g referred to generally describes events that occur at much higherload amplitu&s. Slamm<strong>in</strong> g <strong>in</strong> waves is <strong>of</strong> particular <strong>in</strong>terest when consider<strong>in</strong>g <strong>the</strong> design <strong>of</strong>high-speed craft. This topic will be covered <strong>in</strong> detail <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g section on panel load<strong>in</strong>gas <strong>the</strong> <strong>in</strong>tense load<strong>in</strong>g is genemilly localized. Apply<strong>in</strong>g an acceleration factor to <strong>the</strong> static wavebend<strong>in</strong>g analysis outl<strong>in</strong>ed above can give some <strong>in</strong>dication <strong>of</strong> <strong>the</strong> overall girder stressesproduced as a high-speed craft slams <strong>in</strong>to a wave. O<strong>the</strong>r hull girder dynamic phenomena <strong>of</strong>note <strong>in</strong>clude spr<strong>in</strong>g<strong>in</strong>g and whipp<strong>in</strong>g <strong>of</strong> <strong>the</strong> hull when wave encounter frequency is co<strong>in</strong>cidentwith hull natural frequency.Haul<strong>in</strong>g and Block<strong>in</strong>g LoadsWhen a vessel is hauled and blocked for storage, <strong>the</strong> weight <strong>of</strong> <strong>the</strong> vessel is not uniformlysupported as <strong>in</strong> <strong>the</strong> water. The po<strong>in</strong>t load<strong>in</strong>g from sl<strong>in</strong>gs and cradle fmtures is obviously aproblem and will be addressed <strong>in</strong> <strong>the</strong> &tail design section. The overall hull, however, will besubject to bend<strong>in</strong>g stresses when a vessel is lifted with sl<strong>in</strong>gs at two po<strong>in</strong>ts. Except <strong>in</strong> extremesituations, <strong>in</strong>-service design criteria for small craft up to about 100 feet should be more severethan this case. When undergo<strong>in</strong>g long term storage or over-land transit, consideration must begiven to what f~tures will be employed over a given period <strong>of</strong> time. Large unsupportedweights, such as mach<strong>in</strong>ery, keels or tanks, can produce unacceptable overall bend<strong>in</strong>g moments<strong>in</strong> addition to <strong>the</strong> local stress concentrations. Dur<strong>in</strong>g transportation, acceleration forcestransmitted through <strong>the</strong> trailer’s support system can be quite high. The onset <strong>of</strong> fatique damagemay be quite precipitous, especially with cored construction.77


, .Loadsfor FRP Ship DesignMar<strong>in</strong>e CompositesSail<strong>in</strong>g Vessel Rigg<strong>in</strong>g LoadsThe major longitud<strong>in</strong>al load produc<strong>in</strong>g element associated with sail<strong>in</strong>g vessels is <strong>the</strong> mastoperat<strong>in</strong>g <strong>in</strong> conjunction with <strong>the</strong> headstay and backstay. Upw<strong>in</strong>d sail<strong>in</strong>g performance is <strong>of</strong>tena function <strong>of</strong> headstay tension, which can be very demand<strong>in</strong>g on a lightweight, rac<strong>in</strong>g structure.The mast works <strong>in</strong> compression under <strong>the</strong> comb<strong>in</strong>ed action <strong>of</strong> <strong>the</strong> aforementioned longitud<strong>in</strong>alstays and <strong>the</strong> more heavily loaded athwartship shroud system (see Shroud Attachment <strong>in</strong>follow<strong>in</strong>g section). Hull deflection is <strong>in</strong> <strong>the</strong> sagg<strong>in</strong>g mode, which can be additive with waveaction response. The characteristic design criteria for high performance sail<strong>in</strong>g vessels isusually deflection limitations.Lateral Load<strong>in</strong>gLateralload<strong>in</strong>g on a ship’s hull is normally <strong>of</strong> concern only when <strong>the</strong> hull form is ve~ long andslender. Global forces are <strong>the</strong> result <strong>of</strong> beam seas. In <strong>the</strong> case <strong>of</strong> sail<strong>in</strong>g vessels, lateral loads canbe significant when <strong>the</strong> vessel is sad<strong>in</strong>g upw<strong>in</strong>d <strong>in</strong> a heeled condition. Methods for evaluat<strong>in</strong>gwave bend<strong>in</strong>g moment should be <strong>use</strong>d with a neutral axis that is parallel to <strong>the</strong> water.Lateral load<strong>in</strong>g can also result from dock<strong>in</strong>g and tug assisted maneuvers, although <strong>the</strong> designcriteria will usually be dictated by local strength <strong>in</strong> <strong>the</strong>se <strong>in</strong>stances.Torsional Load<strong>in</strong>gTorsional load<strong>in</strong>g <strong>of</strong> hull structures is <strong>of</strong>ten overlooked beca<strong>use</strong> <strong>the</strong>re is no convenientanalytical approach that has been documented. Quarter<strong>in</strong>g seas can produce twist<strong>in</strong>g momentswith<strong>in</strong> a hull structure, especially if <strong>the</strong> hull has considerable beam. In <strong>the</strong> case <strong>of</strong> rnultihulls,this load<strong>in</strong>g phenomena <strong>of</strong>ten determ<strong>in</strong>es <strong>the</strong> configuration <strong>of</strong> cross members. Newre<strong>in</strong>forcement materials are oriented with <strong>fiber</strong>s <strong>in</strong> <strong>the</strong> bias direction (+ 450), which makes <strong>the</strong>mextremely well suited for resist<strong>in</strong>g torsional load<strong>in</strong>g.Load<strong>in</strong>gNormal to Hull and Deck SurfacesThe loads on ship structures me reasonably well established (e.g. PNA, etc), while <strong>the</strong> loads onsmall craft structures have received much less attention. There are some generalizations whichcan be made concern<strong>in</strong>g <strong>the</strong>se loads, however. The dom<strong>in</strong>ant loads on ships are global <strong>in</strong>-planeloads (loads affect<strong>in</strong>g <strong>the</strong> entire structure), while <strong>the</strong> dom<strong>in</strong>ant loads on small craft are local out<strong>of</strong> plane loads (loads normal to <strong>the</strong> hull surface over very small portions <strong>of</strong> <strong>the</strong> hull surface).As a result, structural analysis <strong>of</strong> ships is traditionally approached through approximat<strong>in</strong>g <strong>the</strong>entire ship as a box beam, while <strong>the</strong> structural analysis <strong>of</strong> small craft is approached throughlocal panel analysis. The analysis <strong>of</strong> large boats (or small ships) must <strong>in</strong>clu& both global andlocal loads, as ei<strong>the</strong>r may be <strong>the</strong> dom<strong>in</strong>ant factor. S<strong>in</strong>ce out-<strong>of</strong>-plane loads are dom<strong>in</strong>ant forsmall craft, <strong>the</strong> discussion <strong>of</strong> <strong>the</strong>se loads will center on small craft, however, much <strong>of</strong> <strong>the</strong>discussion could be applied to ships or o<strong>the</strong>r large mar<strong>in</strong>e structures. The American Bureau <strong>of</strong>Shipp<strong>in</strong>g provides empirical expressions for <strong>the</strong> derivation <strong>of</strong> design heads for sail and powervessels. [3-5, 3-6]Out-<strong>of</strong>-plane loads can be divided <strong>in</strong>to two categories: distributed loads (such as hydrostatic andhydrodynamic loads) and po<strong>in</strong>t loads (such as keel, rig, and rudder loads on sail boats, or stra~rudder or eng<strong>in</strong>e mounts for power boats). The hydrostatic loads on a boat at rest are relativelysimple and can be determ<strong>in</strong>ed from fmt pr<strong>in</strong>ciples. The hydrodynamic loads are very complex,78


Chapter ThreeDESIGNhowever, and have not beenstudied extensively, thus <strong>the</strong>y areusually treated <strong>in</strong> an extremelysimplified manner. The mostcommon approach is to <strong>in</strong>crease<strong>the</strong> static pressure load by a fixedproportion, called <strong>the</strong> dynamicload factor. [3-7] The sources <strong>of</strong>po<strong>in</strong>t loads vary widely, but mostcan be estimated from firstpr<strong>in</strong>ciples by mak<strong>in</strong>g a few basicassumptions.IIHydrodynamic LoadsThere are several approaches toestimat<strong>in</strong>g <strong>the</strong> hydrodynamicloads for plan<strong>in</strong>g power boats,however most are based on <strong>the</strong>fnst comprehensive work <strong>in</strong> thisarea, performed by Heller andJasper. The method is based onrelat<strong>in</strong>g <strong>the</strong> stra<strong>in</strong> <strong>in</strong> a structurefrom a static load to <strong>the</strong> stra<strong>in</strong> <strong>in</strong> astructure from a dynamic load <strong>of</strong><strong>the</strong> same magnitude. The ratio <strong>of</strong><strong>the</strong> dynamic stra<strong>in</strong> to <strong>the</strong> staticstra<strong>in</strong> is called <strong>the</strong> “responsefactor~’ and <strong>the</strong> maximumresponse factor is called <strong>the</strong>“dynsmic load factor.” l%isapproach is summarized here as anexample <strong>of</strong> this type <strong>of</strong>calculation. Heller and Jasper<strong>in</strong>strumented and obta<strong>in</strong>ed data onan alum<strong>in</strong>um hull torpedo boat(Y’P 110) and <strong>the</strong>n <strong>use</strong>d this dataas a basis for <strong>the</strong> empirical aspects<strong>of</strong> <strong>the</strong>ir load calculation. Anexample <strong>of</strong> <strong>the</strong> data is presented <strong>in</strong>Figure 3-4. The dynamic loadfactor is a function <strong>of</strong> <strong>the</strong> impactpressure rise time, to, over <strong>the</strong>natural period <strong>of</strong> <strong>the</strong> structure, T,and is presented <strong>in</strong> Figure 3-5,where C/cC is <strong>the</strong> fraction <strong>of</strong>critical damp<strong>in</strong>g.The <strong>the</strong>oreticalAte*IeromettrFigure 3-4 Pressures Recorded <strong>in</strong> Five and SixFoot Waves at a Speed Of 28 Knots [Heller andJasper, On <strong>the</strong> Structural Design <strong>of</strong> Plan<strong>in</strong>g Cra~0 I&TR9Ure s-s Dynamic Load FactorsTime Vary<strong>in</strong>g Impact Loads [Heller and<strong>the</strong> Structural Design <strong>of</strong> Plan<strong>in</strong>g Cramfor TypicalJasper, On279


Loads for FRP Ship DesignMar<strong>in</strong>e Compositesdevelopment <strong>of</strong> <strong>the</strong> load prediction leads to <strong>the</strong> follow<strong>in</strong>g equations:Maximum Impact Force Per Unit Length:where:PO= maximum impact force per unit lengthw= hull beamL= waterl<strong>in</strong>e lengthY~~ = vertical acceleration <strong>of</strong> <strong>the</strong> CGg = gravitational accelerationMaximum Effective Pressure at <strong>the</strong> Keel3P0——’01 – Gwhere:P~j = maximum effective pressure at <strong>the</strong> keelG = half girthMaximum Effective Pressurewhere:~ = <strong>the</strong> maximum effective pressure for designDLF = <strong>the</strong> Dynamic @ad Factor from Figure 3-5 (based on known ormeasured crItIcal damp<strong>in</strong>g)An example <strong>of</strong> <strong>the</strong> pressure calculation for <strong>the</strong> YPl 10 is also presented by Heller and Jaspe~Maximum Force Per Unit Length:PfJ= 3 ; :~~~(1 + 4.7) = 1,036 lbs~mMaximum Effective Pressure at <strong>the</strong> Keel:1036 X3’01 = 96= 32.4 psi80


. ...-Chapter ThreeDESIGNMaximum Effective Pressure:p= 32.4x 1.1= 35.64 psiThis work is <strong>the</strong> foundation for most prediction methods. O<strong>the</strong>r presentations <strong>of</strong> loadcalculation, measurement, or design can be found <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g: Jones (1984), Reichard(1985), Savitsky (1964), Savitsky and Brown (1978), Savitsky (1985), American Bureau <strong>of</strong>Shipp<strong>in</strong>g Guidel<strong>in</strong>es, Lloyd’s Register <strong>of</strong> Shipp<strong>in</strong>g Rules, and Det Norske Veritas Rules.Po<strong>in</strong>t LoadsOut-<strong>of</strong>-plane po<strong>in</strong>t loads occur for a variety <strong>of</strong> reasons. The largest loads on a boat <strong>of</strong>ten occurwhen <strong>the</strong> boat is <strong>in</strong> dry storage, transported over land, removed from <strong>the</strong> water or placed <strong>in</strong>to <strong>the</strong>water. The weight <strong>of</strong> a boat is distributed over <strong>the</strong> hull while <strong>the</strong> boat is <strong>in</strong> <strong>the</strong> water, but isconcentrated at support po<strong>in</strong>ts <strong>of</strong> relatively small area when <strong>the</strong> boat is out <strong>of</strong> <strong>the</strong> water. As anexample, an 80 foot long 18 foot wide power boat weigh<strong>in</strong>g 130,000 pounds would probably onlyexperience a hydrostatic pressure <strong>of</strong> a few psi. If <strong>the</strong> boat was supported on land by 12 blockswith a surface area <strong>of</strong> 200 square <strong>in</strong>ches each, <strong>the</strong> support areas would see an average load <strong>of</strong> 54psi. Equipment mount<strong>in</strong>g, such as rudders, struts, eng<strong>in</strong>es, mast and rigg<strong>in</strong>g, booms, cranes, etc.can also <strong>in</strong>troduce out-<strong>of</strong>-plane po<strong>in</strong>t loads <strong>in</strong>to <strong>the</strong> structure through mechanical fasteners.General Res~onse <strong>of</strong> FRP Mar<strong>in</strong>e StructuresHull Girder Stress DistributionWhen <strong>the</strong> primary load forces act upon<strong>the</strong> hull structure as a long, slenderbeam, stress distribution patterns looklike Figure 3-6 for <strong>the</strong> hogg<strong>in</strong>gcondition with tension and compression<strong>in</strong>terchanged for <strong>the</strong> sagg<strong>in</strong>g case. Themagnitude <strong>of</strong> stress <strong>in</strong>creases withdistance from <strong>the</strong> neutral axis. On <strong>the</strong>o<strong>the</strong>r hand, shear stress becomesmaximum at <strong>the</strong> neutral axis. Figure3-7 shows <strong>the</strong> longitud<strong>in</strong>al distribution<strong>of</strong> pr<strong>in</strong>cipal stresses for a long, slendership*The relationship between bend<strong>in</strong>g momentand hull stress can be estimated fromsimple beam <strong>the</strong>ury for <strong>the</strong> purposes <strong>of</strong>prdim<strong>in</strong>ary design. The basic relationshipis stated as follows:M Mc Figure 3-6 Theoretical and MeasuredStress Distribution for a Cargo Vessel MidshipSection [R7nciples <strong>of</strong> Naval Architecture]81


Loads for FRP Ship DesignMar<strong>in</strong>e Compositeswhere:a = unit stressM = bend<strong>in</strong>g momentSikl = section modulusc = distance to neutral axisI = moment <strong>of</strong> <strong>in</strong>ertiaThe neutral axis is at <strong>the</strong> centroid <strong>of</strong> all longitud<strong>in</strong>al strength members, which far compositeconstruction must take <strong>in</strong>to account specific material properties along <strong>the</strong> ship’s longitud<strong>in</strong>al axis.The actual neutral axis rarely co<strong>in</strong>cides with <strong>the</strong> geomettic center <strong>of</strong> <strong>the</strong> vessel’s midship section.Hence, values for o and c will be different for extteme <strong>fiber</strong>s at <strong>the</strong> deck and hull bottom.PRINCIPAL STRESSES, TENSILE and COMPRESSIVEMAXIMUM SHEARING STRESSESPRINCIPAL STRESSES, TENSILE and COMPRESSIVEMAXIMUM SHEARING STRESSESFigure 3-7 Longitud<strong>in</strong>al Distribution <strong>of</strong> Stresses <strong>in</strong> a Combatant [Hovgaard, StrLIcturalDesign <strong>of</strong> Warships]Buckl<strong>in</strong>g <strong>of</strong> Hat-Stiffened PanelsFRP lam<strong>in</strong>ates generally have ultimate tensile and compressive strengths that are comparablewith mild steel but stiffness is usually only 5V0to 10%. A dom<strong>in</strong>ant design consideration <strong>the</strong>nbecomes elastic <strong>in</strong>stability under compressive load<strong>in</strong>g. Analysis <strong>of</strong> <strong>the</strong> buckl<strong>in</strong>g behavior <strong>of</strong>FRP grillages common <strong>in</strong> ship structures is complicated by <strong>the</strong> anisotrophic nature <strong>of</strong> <strong>the</strong>materials and <strong>the</strong> stiffener configurations typically utilized. Smith [3-8] has developed a series<strong>of</strong> data curves to make approximate estimates <strong>of</strong> <strong>the</strong> destabiliz<strong>in</strong>g stress, OX,required to producecatastrophic failure <strong>in</strong> transversely framed structures (see Figure 3-8). Theories for sandwichlam<strong>in</strong>ates will be presented <strong>in</strong> <strong>the</strong> section cover<strong>in</strong>g sandwich construction.82


Chapter ThreeDESIGNfigure 3-8 Transversely Stiffened Panel [Smith, Buck/<strong>in</strong>g Problems <strong>in</strong> <strong>the</strong> Design <strong>of</strong>Fiberglass-Re<strong>in</strong>forced Plastic Ships]The lowest buckl<strong>in</strong>g stresses <strong>of</strong> a transversely framed structure usually correspond to one <strong>of</strong> <strong>the</strong><strong>in</strong>terframe modes illustrated <strong>in</strong> Figure 3-9.The frrst type <strong>of</strong> buckl<strong>in</strong>g (a) <strong>in</strong>volves maximum flexural rotation <strong>of</strong> <strong>the</strong> shell/stiffener <strong>in</strong>terfaceand m<strong>in</strong>imal displacement <strong>of</strong> <strong>the</strong> actual stiffener.This action is dependent upon <strong>the</strong> restra<strong>in</strong><strong>in</strong>g stiffness <strong>of</strong> <strong>the</strong> stiffener and is <strong>in</strong>dependent <strong>of</strong> <strong>the</strong>transverse span.The buckl<strong>in</strong>g phenomena shown <strong>in</strong> (b) is <strong>the</strong> result <strong>of</strong> extreme stiffener rotation, and as such, isa function <strong>of</strong> mnsverse span which <strong>in</strong>fluences stiffener torsional stiffness.The third type <strong>of</strong> <strong>in</strong>terframe buckl<strong>in</strong>g depicted (c) is unique to FRP structures but can <strong>of</strong>tenproceed <strong>the</strong> o<strong>the</strong>r failure modes. In this scenario, flexural deformation <strong>of</strong> <strong>the</strong> stiffenersproduces bend<strong>in</strong>g <strong>of</strong> <strong>the</strong> shell plat<strong>in</strong>g at a half-wavelength co<strong>in</strong>cident with <strong>the</strong> stiffener spac<strong>in</strong>g.Large, hollow top-hat stiffeners can ca<strong>use</strong> this effect. The restra<strong>in</strong><strong>in</strong>g <strong>in</strong>fluence <strong>of</strong> <strong>the</strong> stiffeneras well as <strong>the</strong> transverse span length are factors that control <strong>the</strong> onset <strong>of</strong> this type <strong>of</strong> buckl<strong>in</strong>g.All buckl<strong>in</strong>g modes are additionally <strong>in</strong>fluenced by <strong>the</strong> stiffener spac<strong>in</strong>g and dimensions and <strong>the</strong>flexural rigidity <strong>of</strong> <strong>the</strong> shell.Buckl<strong>in</strong>g <strong>of</strong> <strong>the</strong> structure may also occur at half-wavelengths greater than <strong>the</strong> spac<strong>in</strong>g <strong>of</strong> <strong>the</strong>stiffeners. The next mode encountered is depicted <strong>in</strong> Figure 3-9 with nodes at or betweenstiffeners. Formulas for simply supported orthotropic plates show good agreement with morerigorous folded-plate analysis <strong>in</strong> predict<strong>in</strong>g critical loads for thisapproximate formula is:type <strong>of</strong> failure. [3-8] The83


Loads for FRP Ship DesignMar<strong>in</strong>e Compositeswhere:N=&D] =Dv =L=critical load per unit widthflexural rigidity per unit widthflexural rigidity <strong>of</strong> <strong>the</strong> shell <strong>in</strong> <strong>the</strong> x-directionstiffened panel rigidity = 1A(C=+ CY) with C = torsional rigidity per unitwidth and C~ = twist<strong>in</strong>g rigidity <strong>of</strong> <strong>the</strong> shell (~st term is dom<strong>in</strong>ant)buckl<strong>in</strong>g wavelengthLongitud<strong>in</strong>ally framed vessels are also subject to buckl<strong>in</strong>g failure, albeit at generally higher criticalloads. If <strong>the</strong> panel <strong>in</strong> question spans a longitud<strong>in</strong>al distance L, a suitable formula for estimatigC1’itiCdbucldhg Stfe~S,~w, based on <strong>the</strong> assumption <strong>of</strong> simply supported end conditions is:where:$EIAL2a= ycr “ n2EI1 -1--L~(-AsEI =A=GA, =flexural rigidity <strong>of</strong> a longitud<strong>in</strong>al with assumed effective shell widthtotal cross-sectional area <strong>of</strong> <strong>the</strong> longitud<strong>in</strong>al <strong>in</strong>clud<strong>in</strong>g effective shellshear rigidity with A.= area <strong>of</strong> <strong>the</strong> stiffener webs-a-DJ--(a)I[NODE LINES OCCiIkBETwEEN FwUWS7-—.— .1I(b)Io~NODE LINE$ COINCIUwITHFwAMESu- ‘L ‘w ~(c)~gure 3-9 Interframe Buckl<strong>in</strong>gModes[Smith, Buckl<strong>in</strong>g Problems <strong>in</strong> <strong>the</strong>Design <strong>of</strong> Fiberglass-Re<strong>in</strong>forced PlasticSh@]Figure 3-10 Extraframe Buckl<strong>in</strong>gModes [Smith, Buckl<strong>in</strong>g Problems <strong>in</strong> <strong>the</strong>Design <strong>of</strong> Fiberg/ass-Re<strong>in</strong>forced P/asticSh@sJ84


Chapter ThreeDESIGNBuckl<strong>in</strong>g failure can occur at reducedprimary criticzil stress levels if <strong>the</strong>structure is subjected to orthogonalcompressive stresses or high shearstresses. Areas where biaxialcompression may occur <strong>in</strong>clude sideshell where lateral hydrodynamic loadcan be signhlcant or <strong>in</strong> way <strong>of</strong> framesthat can ca<strong>use</strong> secondary transversestress. Areas <strong>of</strong> high shear stress<strong>in</strong>clude side shell near <strong>the</strong> neutral axis,bulkheads and <strong>the</strong> webs <strong>of</strong> stiffeners.Large hatch open<strong>in</strong>gs are notorious forcreat<strong>in</strong>g slmss concentrations at <strong>the</strong>ircorners, where stress levels csn be 3-4times greater than <strong>the</strong> edge midspan.Large cut-outs reduce <strong>the</strong> compressivestability <strong>of</strong> <strong>the</strong> grillage structure andmust <strong>the</strong>refore be carefully analyzedSmith [3-8] has proposed a method foranalyz<strong>in</strong>g this pmtion <strong>of</strong> an FRP vesselwhereby a plane-stress analysis isfollowed by a grillage buckl<strong>in</strong>gcalculation to determ<strong>in</strong>e <strong>the</strong> distribution<strong>of</strong> destabiliz<strong>in</strong>g forces (see Figure 3-11).Figure 3-12 shows <strong>the</strong> fwst two globalfailure modes and associated averagestress at <strong>the</strong> structure’s mid-length.Shl P’s SIOE~. _., ._. -– . —T –--– - -, —. .— . .. . . . . . .,-. ..~.. - --—1❑ . 4: nx—x.- .- :: —. \ \– \ +/’ /,::.— - —.■~1. . —.I1 1------- . . . .... .- .-— -— . -.(d) FINITE ELEMEN1 lBEAkliArl ON.—. LCL{b) blSTRllU?lON OF LONGl?UblNAL $Tnt$$fi9Ure q-l 1 Plane Stress Analysis <strong>of</strong> HatchOpen<strong>in</strong>g [Smith, Buckl<strong>in</strong>g Problems <strong>in</strong> <strong>the</strong> 12esign<strong>of</strong> Fiberglass-Re<strong>in</strong>forced Plastic Ships]II1-4Ia. ❑figllre $1 z Deck Grillage Buckl<strong>in</strong>g Modes Near Hatch Open<strong>in</strong>g [Smith, Buck/<strong>in</strong>gProblems <strong>in</strong> <strong>the</strong> Design <strong>of</strong> Fiberglass-Re<strong>in</strong>forced Plastic Sh(os]85


Mechanics <strong>of</strong> Composite MaterialsMar<strong>in</strong>e CompositesThe physical behavior <strong>of</strong> composite materials is quite different from that <strong>of</strong> most coramoneng<strong>in</strong>eer<strong>in</strong>g materials that are homogeneous and isolropic. Metals will generally have <strong>the</strong> samecomposition regardless <strong>of</strong> where or <strong>in</strong> what orientation a sample is taken. On <strong>the</strong> o<strong>the</strong>r hand,<strong>the</strong> makeup and physical properties <strong>of</strong> composites will vary with location and orientation <strong>of</strong>pr<strong>in</strong>cipal axes. These materials are termed anisotrophic, which mesns <strong>the</strong>y exhibit differentproperties when tested <strong>in</strong> different directions. Most composite structures me, however,orthotropic hav<strong>in</strong>g three mutually perpendicular planes <strong>of</strong> symmetry.The mechanical behavior <strong>of</strong> composites is traditionallyevaluated on both microscopic and macroscopicscsle to take <strong>in</strong>to account <strong>in</strong>homogeneity. Microrrdsnics attempts to quant@ <strong>the</strong> <strong>in</strong>teractions <strong>of</strong><strong>fiber</strong> and matrix @enforcement and res<strong>in</strong>) on a microscopic scsle on par witi <strong>the</strong> diamet~ <strong>of</strong> a s<strong>in</strong>gle<strong>fiber</strong>. Macrornechanics treats composites as homogeneous materials with mechanical proptztiesrepresentative <strong>of</strong> <strong>the</strong> medium as a whole. The latter analytical approach is more realistic for <strong>the</strong> study<strong>of</strong> tie lam<strong>in</strong>ates that arE<strong>of</strong>ten thick and laden with tbrough-lam<strong>in</strong>ate <strong>in</strong>consistencies. However, itis <strong>in</strong>structive to undmtand <strong>the</strong> concepts <strong>of</strong> micromechanics as <strong>the</strong> basis fur macromechanic properties.The designer is aga<strong>in</strong> cautioned to verify all analytical work by tdng builder’s specimens.MicromechanicTheorvGeneral Fiber/Matrix RelationshipThe <strong>the</strong>ory <strong>of</strong> micromechanics was developed about 30 yesm ago to help expla<strong>in</strong> <strong>the</strong> complexmechanisms <strong>of</strong> stress and stra<strong>in</strong> transfer between <strong>fiber</strong> and matrix with<strong>in</strong> a composite. [3-9]Ma<strong>the</strong>matical relationships have been developed whereby knowledge <strong>of</strong> constituent materialproperties can lead to behavior predictions. Theoretical predictions <strong>of</strong> composite stiffness havetraditionally been more accurate than predictions <strong>of</strong> ultimate strength. Table 3-1 describes <strong>the</strong><strong>in</strong>put and output variables associated with micromechanics.Table 3-1. Micromechanics Concepts[Chamis, AS/1#Eng<strong>in</strong>eers’ Guide to Composite Materials]InputFiber propertiesMatrix propertiesEnvironmental conditionsFabrication process variablesGeometric configurationoutputLfniaxial strengthsFracture toughnessImpact resistanceHygro<strong>the</strong>rmai effectsThe basic pr<strong>in</strong>ciples <strong>of</strong> <strong>the</strong> <strong>the</strong>ory can be illustrated by exam<strong>in</strong><strong>in</strong>g a composite’ element un&r auniaxial force. Figure 3-13 shows <strong>the</strong> state <strong>of</strong> stress and transfer mechanisms <strong>of</strong> <strong>fiber</strong> andmatrix when subjected to pure tension. On a macroscopic scale, <strong>the</strong> element is <strong>in</strong> simpletension, while <strong>in</strong>ternally a number <strong>of</strong> stresses can be present. Represented <strong>in</strong> Figure 3-13 arecompressive stresses (vertical SITOWSpo<strong>in</strong>t<strong>in</strong>g <strong>in</strong>wards) and shear stresses (half arrows along <strong>the</strong><strong>fiber</strong>/matrix <strong>in</strong>terface). This comb<strong>in</strong>ed stress state will determ<strong>in</strong>e <strong>the</strong> failure po<strong>in</strong>t <strong>of</strong> <strong>the</strong>86


Chapter ThreeDESIGNmaterial. The bottom illustration <strong>in</strong>Figure 3-13 is representative <strong>of</strong> a poor<strong>fiber</strong>/matrix bond or void with<strong>in</strong> <strong>the</strong>lam<strong>in</strong>ate. The result<strong>in</strong>g imbalance <strong>of</strong>stresses between <strong>the</strong> <strong>fiber</strong> and matrix canlead to local <strong>in</strong>stability caus<strong>in</strong>g <strong>the</strong> <strong>fiber</strong>to shift or buckle. A void along 1% <strong>of</strong><strong>the</strong> <strong>fiber</strong> surface generally reduces<strong>in</strong>terracial shear strength by 7%. [3-9]Fiber OrientationOrientation <strong>of</strong> re<strong>in</strong>forcements <strong>in</strong> alam<strong>in</strong>ate is widely known to dramaticallyeffect <strong>the</strong> mechanical performance <strong>of</strong>composites. Figure 3-14 is presented tounderstand tension failure mechanisms <strong>in</strong>unidirectional composites on amicroscopic scale. Note that at an angle<strong>of</strong> U, <strong>the</strong> strength <strong>of</strong> <strong>the</strong> composite isalmost completely dependent on <strong>fiber</strong>tensile strength. The follow<strong>in</strong>g equationsrefer to <strong>the</strong> three failure mechanismsshown <strong>in</strong> Figure 3-14:Fiber tensile failure:a=c cMatrix or <strong>in</strong>terracial shew‘c= a s<strong>in</strong>@ CosalComposite tensile failure:where:0= ua= c0=0=‘c=au =composite tensilestrengthapplied stressangle between <strong>the</strong><strong>fiber</strong>s and tensile axisshear strength <strong>of</strong> <strong>the</strong>matrix or <strong>in</strong>terfacetensile strength <strong>of</strong><strong>the</strong> matrixFigure 3-I 3 State <strong>of</strong> Stress and StressTransfer to Re<strong>in</strong>forcement [Materia/ Eng<strong>in</strong>eer<strong>in</strong>g,May, 1978 p. 29]Tensilefailure<strong>in</strong> <strong>fiber</strong>4- u=uc.~ 0.s$Shear failure <strong>in</strong> matrix-<strong>fiber</strong>$ I~0102030 40606070 BOXIFiber al<strong>in</strong>ement to tensile axis, #r degfi9Ure $14 Failure Mode as a Function<strong>of</strong> Fiber Alignment [ASM Eng<strong>in</strong>eers’ Guide toComposite Materials]P87


Mechanics <strong>of</strong> Composite MaterialsA4ar<strong>in</strong>eCompositesMicromechanics GeometryFigure 3-15 shows <strong>the</strong> orientationand nomenclature for a typical<strong>fiber</strong> composite geometry.Properties along <strong>the</strong> <strong>fiber</strong> or xdirection (l-axis) are calledlongitud<strong>in</strong>al; transverse or y(2-axis) are called transverse; and<strong>in</strong>-plane shear (l-2 plane) is alsocalled <strong>in</strong>tralam<strong>in</strong>ar shear. Thethrough-thickness properties <strong>in</strong><strong>the</strong> z direction (3-axis) are called<strong>in</strong>terlam<strong>in</strong>ar. Ply properties aretypically denoted with a letter todescribe <strong>the</strong> property withsuitable subscripts to describe <strong>the</strong>constituent material, plane,direction and sign (withstrengths). As an example, S~ ~1~<strong>in</strong>dicates matrix longitud<strong>in</strong>altensile strength.The derivation <strong>of</strong> micromechanicsequations is based on <strong>the</strong>assumption that 1) <strong>the</strong> ply and itsconstituents behave l<strong>in</strong>earlyelastic until fracture (see Figure3-16), 2) bond<strong>in</strong>g is completebetween <strong>fiber</strong> and matrix and 3)fracture occurs <strong>in</strong> one <strong>of</strong> <strong>the</strong>follow<strong>in</strong>g modes: a) longitud<strong>in</strong>altension, b) <strong>fiber</strong> compression, c)delam<strong>in</strong>ation, d) <strong>fiber</strong>microbuckl<strong>in</strong>g, e) transversetension, or f) <strong>in</strong>tralam<strong>in</strong>ar shear.[3-2] ThB follow<strong>in</strong>g equationsdescribe <strong>the</strong> basic geometricrelationships <strong>of</strong> compositemicromechanics:Partial volumes:kf+km+k, = 1Angla.plieImn<strong>in</strong>ataPly1=z34r3tv2—-. ___.—. . .————. . ___———_ .—————— ___——— ____———— ———ShearTransverseFiberMatrix~ LongitudirdFigure 3-15 Fiber Composite Geometry[Chamis, ASM Eng<strong>in</strong>eers’ Guide to Composite Materials]/$0---Wn 2‘1 – t’”’Stra<strong>in</strong>~IntrdarrdnarshearFigure 3-16 Typical Stress-Stra<strong>in</strong> Behavior <strong>of</strong>Un~directional Fiber’ Composites [Chamis, ASM En-g<strong>in</strong>eers’ Guide to Composite Materia/s]88


.=,Chapter ThreeDESIGNPly density:Res<strong>in</strong> volume ratio:1+= kj Pf+ km Pmkm=Fiber volume ratio:(1-k)P1+= +-1Pf mmWeight ratio:kf =(1-k)PI1++ —-1~ Lfmwhere:f = <strong>fiber</strong>,m= matrixv = void1 = plyk = weight percentElastic ConstantsThe equations for relat<strong>in</strong>g elastic moduli and Poisson’s ratios are given below. properties <strong>in</strong><strong>the</strong> 3-axis direction are <strong>the</strong> same as <strong>the</strong> 2-axis direction beca<strong>use</strong> <strong>the</strong> ply is assumed transverselyisotropic <strong>in</strong> <strong>the</strong> 2-3 plane (see bottom illustration <strong>of</strong> Figure 3-15).Longitud<strong>in</strong>al modulus:Transverse modulus:“’’”*’E’”\ 1Shear modulus:89


—Mechanics <strong>of</strong> Composite MaterialsMar<strong>in</strong>e CompositesPoisson’s ratio:‘112= kf v112+ kmvm= V[13In-Plane Uniaxial StrengthsThe equations for approximat<strong>in</strong>g composite strength properties are based on <strong>the</strong> fracturemechanisms outl<strong>in</strong>ed above undm micromechanics geometry. Three <strong>of</strong> <strong>the</strong> fracture modes fallunder <strong>the</strong> head<strong>in</strong>g <strong>of</strong> longitud<strong>in</strong>al compression. It should be emphasized that prediction <strong>of</strong>material strength properties is currently beyond <strong>the</strong> scope <strong>of</strong> simplifkd ma<strong>the</strong>matical <strong>the</strong>ory.The follow<strong>in</strong>g approximations aredom<strong>in</strong>ate particular failure modes.Approximate longitud<strong>in</strong>al tension:presentedto give <strong>in</strong>sight <strong>in</strong>to which physical propertiess ~llT=kS.ffTApproximate <strong>fiber</strong> compression:s IHc=~fsjcApproximate delam<strong>in</strong>ation/shear:s~~lc= 10 S/lX + 2.5S~TApproximate rnicrobuckl<strong>in</strong>g:Gms lIIC=l–kf 1->T1f12Approximate transverse tension:s mT90


.Chapter ThreeDESIGNApproximate transverse compression:‘22c=[’-($-’f)p-2]]’~Approximate <strong>in</strong>tralam<strong>in</strong>ar shear:Approximate void <strong>in</strong>fluence on matrix:Through-Thickness Uniaxiai StrengthsEstimates for properties <strong>in</strong> <strong>the</strong> 3-axis directionam given by <strong>the</strong> equations below. Note that <strong>the</strong><strong>in</strong>terlarr<strong>in</strong>ar shear equation is <strong>the</strong> same as that for <strong>in</strong>-plane. The short beam shear depends heavily on<strong>the</strong> res<strong>in</strong> shear strength and is about 1Y2times <strong>the</strong> <strong>in</strong>terlamimr value. Also, <strong>the</strong> longitud<strong>in</strong>al flexuralstrengthis <strong>fiber</strong> dom<strong>in</strong>ated while <strong>the</strong> transverseflexural strengthis mm sensitiveto matrix strength.Approximate <strong>in</strong>terlam<strong>in</strong>ar shear:s 113s=s 123S=Approximate fkxuralstrength:s lllF=s 122F=91


Mechanics <strong>of</strong> Composite MaterialsMar<strong>in</strong>e CompositesApproximate short-beam shear:s 113SB = 1.5 S1~3~s 123SB =1“5‘123sUnlaxial Fracture ToughnessFracture toughness is an <strong>in</strong>dication <strong>of</strong> a composite material’s ability to resist defects ordiscont<strong>in</strong>uities such as holes and notches. The fracture modes <strong>of</strong> general <strong>in</strong>terest <strong>in</strong>clude:open<strong>in</strong>g mode, <strong>in</strong>-plane shear and out-<strong>of</strong>-plane shear. The equations” to predict longitud<strong>in</strong>al,transverse and <strong>in</strong>tralam<strong>in</strong>ar shear fmcture toughness are beyond <strong>the</strong> scope <strong>of</strong> this text and canbe found <strong>in</strong> <strong>the</strong> cited reference. [3-2]In-Plane Unlaxial Impact ResistanceThe impact resistance <strong>of</strong> unidirectional composites is def<strong>in</strong>ed as <strong>the</strong> <strong>in</strong>-plane uniaxial impactenergy density. The five densities are: longitud<strong>in</strong>al tension and compression; transverse tensionand compression; and <strong>in</strong>tralam<strong>in</strong>ar shear. The reader is aga<strong>in</strong> directed to reference [3-2] forfur<strong>the</strong>r elaboration.Through-Thickness Uniaxial Impact ResistanceThe through-thickness impact resistance is associated with impacts normal to <strong>the</strong> surface <strong>of</strong> <strong>the</strong>composite, which is generally <strong>of</strong> particular <strong>in</strong>terest. The energy densities are divided asfollows: longitud<strong>in</strong>al <strong>in</strong>terlam<strong>in</strong>ar shear, transverse <strong>in</strong>terlam<strong>in</strong>ar shear, longitud<strong>in</strong>al flexure, andtransverse flexure. The derivation <strong>of</strong> equations and relationships for this and <strong>the</strong> rema<strong>in</strong><strong>in</strong>grnicromechanics phenomena can be found <strong>in</strong> <strong>the</strong> reference.ThermalThe follow<strong>in</strong>g <strong>the</strong>rmal behavior properties for a composite are derived from constituent materialproperties: heat capacity, longitud<strong>in</strong>al conductivity, and longitud<strong>in</strong>al and transverse <strong>the</strong>rmalcoefficients <strong>of</strong> expansion.Hygral PropertiesThe ply hygral properties predicted by micromechanics equation <strong>in</strong>clude ditfusivity andmoisture expansion. Additional equations have been derived to estimate moisture <strong>in</strong> <strong>the</strong> res<strong>in</strong>and composite as a function <strong>of</strong> <strong>the</strong> relative humidity ratio. An estimate for moisture expansioncoefficient is also postulated.Hydro<strong>the</strong>rmal EffectsThe comb<strong>in</strong>ed environmental effect <strong>of</strong> moisture and temperature is usually termedhydro<strong>the</strong>rmal. All <strong>of</strong> <strong>the</strong> res<strong>in</strong> dom<strong>in</strong>ated properties me particularly <strong>in</strong>fluenced by hydro<strong>the</strong>rmal<strong>in</strong>fluences. The degraded properties that are quantified <strong>in</strong>clude: glass transition temperature <strong>of</strong>wet res<strong>in</strong>, mechanical characteristics, and <strong>the</strong>rmal behavior.92


Chapter ThreeDESIGNMacromechanicTheoryLam<strong>in</strong>ae or PliesThe most elementary level considered by macromechanic <strong>the</strong>ory is <strong>the</strong> lam<strong>in</strong>a or ply. Thisconsists <strong>of</strong> a s<strong>in</strong>gle layer <strong>of</strong> re<strong>in</strong>forcement and associated volume <strong>of</strong> matrix material. Inaerospace applications, all specifications are expressed <strong>in</strong> terms <strong>of</strong> ply quantities. Mar<strong>in</strong>eapplications typically <strong>in</strong>volve thicker lam<strong>in</strong>ates and are usually specifkd accord<strong>in</strong>g to overallthickness, especially when successive plies are identical.For most polymer matrix composites, <strong>the</strong> re<strong>in</strong>forcement <strong>fiber</strong> will be <strong>the</strong> primary load carry<strong>in</strong>gelement beca<strong>use</strong> it is stronger and stiffer than <strong>the</strong> matrix. The mechanism for transferr<strong>in</strong>g loadthroughout <strong>the</strong> re<strong>in</strong>forcement <strong>fiber</strong> is <strong>the</strong> shear<strong>in</strong>g stress developed <strong>in</strong> <strong>the</strong> matrix. Thus, caremust be exercised that <strong>the</strong> matrix material does not become a stra<strong>in</strong> limit<strong>in</strong>g factor. As anextreme example, if a polyester re<strong>in</strong>forcement with an ultimate elongation <strong>of</strong> about 2070 wascomb<strong>in</strong>ed with a polyester res<strong>in</strong> with 1.5V0elongation to failure, crack<strong>in</strong>g <strong>of</strong> <strong>the</strong> res<strong>in</strong> wouldoccur before <strong>the</strong> <strong>fiber</strong> was stressed to a level that was 109i0<strong>of</strong> its ultimate strength.Lam<strong>in</strong>atesA lam<strong>in</strong>ate consists <strong>of</strong> a series <strong>of</strong> lam<strong>in</strong>ae or plies that are bonded toge<strong>the</strong>r with a materi@ thatis usually <strong>the</strong> same as <strong>the</strong> matrix <strong>of</strong> each ply. Indeed, with contact mold<strong>in</strong>g, <strong>the</strong> wet-out andlam<strong>in</strong>at<strong>in</strong>g processes are cont<strong>in</strong>uous operations. A potential weak area <strong>of</strong> lam<strong>in</strong>ates is <strong>the</strong> shearstrength between layers <strong>of</strong> a lam<strong>in</strong>ate, especially when <strong>the</strong> entire lam<strong>in</strong>ation process is notcont<strong>in</strong>uous. This concept is fur<strong>the</strong>r described <strong>in</strong> <strong>the</strong> Design <strong>of</strong> Details section and ChapterFive.A major advantage to design and construction with composites is <strong>the</strong> ability to varyre<strong>in</strong>forcement material and orientation throughout <strong>the</strong> plies <strong>in</strong> a lam<strong>in</strong>ate. In this way, <strong>the</strong>physical properties <strong>of</strong> each ply can be optimized to resist <strong>the</strong> load<strong>in</strong>g on <strong>the</strong> lam<strong>in</strong>ate as awhole, as well as <strong>the</strong> out <strong>of</strong> plane loads that create unique stress fields <strong>in</strong> each ply. Figure 3-17illustrates <strong>the</strong> concept <strong>of</strong> stress field discont<strong>in</strong>uity with<strong>in</strong> a lam<strong>in</strong>ate.Lam<strong>in</strong>ate PropertiesPredict<strong>in</strong>g <strong>the</strong> physical properties <strong>of</strong> lam<strong>in</strong>ates based on published data for <strong>the</strong> longitud<strong>in</strong>aldirection (l-axis) is not very <strong>use</strong>ful as this data was probably derived from samples fabricated<strong>in</strong> a very controlled environment. Conditions under which mar<strong>in</strong>e lam<strong>in</strong>ates are fabricated canseverely limit <strong>the</strong> resultant mechanical properties. To date, safety factors have generally beensufficiently high to prevent widespread failure. However, <strong>in</strong>stances <strong>of</strong> stress concentration,res<strong>in</strong>-rich areas and voids can negate even large safety factors.There are essentially three ways <strong>in</strong> <strong>use</strong> today to predict <strong>the</strong> behavior <strong>of</strong> a ltiated structureunder a given load<strong>in</strong>g scenario. In all cases, estimates for Elastic properties are more accuratethan those for Strength properties. This is <strong>in</strong> part due to <strong>the</strong> variety <strong>of</strong> failure mechanisms<strong>in</strong>volved. The analytical techniques currently <strong>in</strong> <strong>use</strong> <strong>in</strong>clude:. Property charts called “Carpet Plots” that provide mechanical performancedata based on orientation composition <strong>of</strong> <strong>the</strong> lam<strong>in</strong>ate;93


Mechanics <strong>of</strong> Composite MaterialsMar<strong>in</strong>e CompositesGENERAL UMINATE STRUCTURE, WITH L0406u“ 4 4% dw’”>–’ ““ev1PLY FISERS.,~’=< “ ,xANDY ARE LAMWJATE,OR GEOMETRIC2 OIRECTI~S: 1 AND zFIBERs ARE ●RINCIPALDIFIECTIONSOF4W’” FIBERDiRECTl~ % h _ . . .. .k‘* STRESSFIELD IN PRINCIPAL1 AND 2DIRECTIONS FOR EACH LAYER4~gure s-l 7 Elastic Properties <strong>of</strong> Plies with<strong>in</strong> a Lam<strong>in</strong>ate [Schwartz, CompositeMaterials Handbook]“ Lam<strong>in</strong>ate analysis s<strong>of</strong>tware that allows <strong>the</strong> <strong>use</strong>r to build a lam<strong>in</strong>ate from amaterials database and view <strong>the</strong> stress and stra<strong>in</strong> levels with<strong>in</strong> and betweenplies <strong>in</strong> each <strong>of</strong> <strong>the</strong> three mutually perpendicular axes;●Test data based on identical lam<strong>in</strong>ates loaded <strong>in</strong> a similar fashion to <strong>the</strong>design case.Carpet PlotsExamples <strong>of</strong> Carpet Plots based on a Carbon FiberEpoxy lam<strong>in</strong>ate are shown <strong>in</strong> Figures 3-18,3-19 and 3-20 for modulus, strength and Poisson’s ratio, respectively. The resultant mechanicalproperties are based on <strong>the</strong> assumption <strong>of</strong> uniaxial load<strong>in</strong>g (hence, values are for longitud<strong>in</strong>alproperties only) and assume a given design temperature and design criterion (such as B-basiswhere <strong>the</strong>re is 90~0 confidence that 95% <strong>of</strong> <strong>the</strong> failures will exceed <strong>the</strong> value). [3-2] StephenTsai, an acknowledged authority on composites design, has dismissed this technique as a validdesign tool <strong>in</strong> favor <strong>of</strong> <strong>the</strong> more rigorous lam<strong>in</strong>ated plate <strong>the</strong>ory. [3-10]94


.Chapter ThreeDESIGNCarpet plots have been a commonprelim<strong>in</strong>ary design tool with<strong>in</strong> <strong>the</strong>aerospace <strong>in</strong>dustry where lam<strong>in</strong>atestypically consist <strong>of</strong> a large number <strong>of</strong> th<strong>in</strong>plies. Additionally, out <strong>of</strong> plane loads arenot <strong>of</strong> primary concern as is <strong>the</strong> case withmar<strong>in</strong>e structures. An aerospace designeressentially views a lam<strong>in</strong>ate as ahomogeneous eng<strong>in</strong>eer<strong>in</strong>g material withsome degraded mechanical propertiesderived from carpet plots. Typical mar<strong>in</strong>elam<strong>in</strong>ates consist <strong>of</strong> much fewer plies thatare primarily not from unidirectionalre<strong>in</strong>forcements. Significant out <strong>of</strong> planeload<strong>in</strong>g and high aspect ratio structuralpanels render <strong>the</strong> unidirectional data fromcarpet plots somewhat mean<strong>in</strong>gless fordesign<strong>in</strong>g FRP max<strong>in</strong>e structures. oi___“. J . . .J.__llo 20 4;4$p!lms, %15007 -, ~’ “---- -“~ ‘ +MFigure 3-18 Carpet plot illustrat<strong>in</strong>gLam<strong>in</strong>ate Tensile Modulus [ASM Eng<strong>in</strong>eeredMaterials Handbook]01- .J_l-l_lao 40 00 40 10044”Plkl, %Figure 3-19 Carpet plot II-Iustrat<strong>in</strong>g Tensile Strength [ASM Eng<strong>in</strong>eeredMaterials Handbook ]oL-L~LJo m 411 K! In mw mm,%Figure 3-20 Carpet plot Illustrat<strong>in</strong>g Poisson’sRat io [ASM Eng<strong>in</strong>eered MaterialsHandbook ]95


Mechanics <strong>of</strong> Composite MaterialsMar<strong>in</strong>e CompositesComputer lam<strong>in</strong>ate AnalysisThere are a number <strong>of</strong> structural analysis computer programs available for ma<strong>in</strong>framecomputers that <strong>use</strong> f<strong>in</strong>ite-element or f<strong>in</strong>ite-difference numerical methods and are suitable forevaluat<strong>in</strong>g composites. In general, <strong>the</strong>se programs will address: [3-2]o Structural response <strong>of</strong> lam<strong>in</strong>ated and multidirectional <strong>re<strong>in</strong>forced</strong> composites●Changes <strong>in</strong> material properties with temperature, moisture and ablativedecomposition. Th<strong>in</strong>-shelled, thick-shelled, and/or plate structuresc Thermal-, pressure- traction-, deformation- and vibration-<strong>in</strong>duced load states. Failure modes. Non-l<strong>in</strong>earity. Structural <strong>in</strong>stability. Fracture mechanicsThe maj<strong>of</strong>ity <strong>of</strong> <strong>the</strong>se codes for ma<strong>in</strong>hnes are quite expensive to acquire and operate, whichprecludes <strong>the</strong>ir <strong>use</strong> for general mar<strong>in</strong>e structures. Specialized military applications such as apressure hull for a torpedo or a highly stressed weight critical component might justify analysiswith <strong>the</strong>se sort <strong>of</strong> programs.More <strong>use</strong>ful to <strong>the</strong> mar<strong>in</strong>e designer, are <strong>the</strong> PC based lam<strong>in</strong>ate analysis programs that allow anumber <strong>of</strong> variations to be evaluated at relatively low cost. The s<strong>of</strong>tware generally costs lessthan $500 and can run on hardware that is probably already <strong>in</strong>tegrated <strong>in</strong>to a design <strong>of</strong>fice. Thebetter programs are based on lam<strong>in</strong>ated plate <strong>the</strong>ory, which treats each ply as aquasi-homogeneous material. Prediction <strong>of</strong> ultimate strengths with materials that enternon-elastic regions, such as foam cores, will be <strong>of</strong> limited accuracy. Some o<strong>the</strong>r assumptions <strong>in</strong>lam<strong>in</strong>ated plate <strong>the</strong>ory <strong>in</strong>clude: [3-2]. The thickness <strong>of</strong> <strong>the</strong> plate is much smaller than <strong>the</strong> <strong>in</strong>-plane dimensions. The stra<strong>in</strong>s <strong>in</strong> <strong>the</strong> deformed are small compared to unity●Normals to <strong>the</strong> undefomned plate surface rema<strong>in</strong> normalplate surface. Vertical deflection does not vary through <strong>the</strong> thickness. Stress normal to <strong>the</strong> plate surface is negligibleto <strong>the</strong> deformedFor a detailed description <strong>of</strong> lam<strong>in</strong>ated plate <strong>the</strong>ory, <strong>the</strong> reader is advised to refer toIntroduction to CompositeMaterials, by S.W. Tsai and H.T. Hahn, Technornic, Lancaster, PA(1985).96


Chapter ThreeDESIGNTable 3-2 illustrates a typical range <strong>of</strong> <strong>in</strong>put and output variables for computer latn<strong>in</strong>ate analysisprograms. Some programs are menu driven while o<strong>the</strong>rs follow a spreadsheet format. Oncematerial properties have been specifkd, <strong>the</strong> <strong>use</strong>r can “build” a lam<strong>in</strong>ate by select<strong>in</strong>g materialsand orientation. As a m<strong>in</strong>imum, stresses and stra<strong>in</strong>s failure levels for each ply will becomputed. Some programs will show stress and stra<strong>in</strong> states versus design allowable based onvarious failure criteria. Most programs will predict which ply will fail fit and provide somerout<strong>in</strong>e for lam<strong>in</strong>ate optimization. In-plsne loads can usually be entered to compute predictedstates <strong>of</strong> stress and stra<strong>in</strong> <strong>in</strong>stead <strong>of</strong> failure envelopes.Table 3-2.Typical Input and Output Variables for Lam<strong>in</strong>ate Analysis ProgramsInputoutputLoadCondltlons MaterialProperties Ply Properties Lam<strong>in</strong>ateResponseLongitud<strong>in</strong>al In-Plane Modulus <strong>of</strong> Elasticity Thicknesses* Longitud<strong>in</strong>al DeflectionLoadsTransverse In-PlaneLoadsVertical In-PlaneLoads (shear)Long$::;t:lBend<strong>in</strong>gPoisson’s Ratio Orientation* Transverse DeflectionShear Modulus Fiber Volume* Vertical DeflectionLongitud<strong>in</strong>al Strength Longitud<strong>in</strong>al Stiffness Longitud<strong>in</strong>al Stra<strong>in</strong>Triw#vmsvd:Bend<strong>in</strong>gVertical Moments(torsional)Failure CriteriaTemperature ChangeTransverse Strength Transverse Stiffness Transverse Stra<strong>in</strong>Shear StrengthLongitud<strong>in</strong>al Poisson’sRatioVertical Stra<strong>in</strong>Thermal Expansion Tran~:rse Poisson’s Longitud<strong>in</strong>al StressCoefficientsper PlyLon&ujd# Shear Transverse Stress perPlyTrann$ Shear Ve:~j~ress (shear)‘These ply properties are usually treated as <strong>in</strong>put variablesFirst Ply to FailSafety FactorsFailure CriteriaFailure criteria <strong>use</strong>d for analysis <strong>of</strong> composites structures sre similar to those <strong>in</strong> <strong>use</strong> forisotropic materials, which <strong>in</strong>clude maximum stress, maximum stra<strong>in</strong> and quadratic <strong>the</strong>ories.[3-10] These criteria me empirical methods to predict failure when a lam<strong>in</strong>ate is subjected to astate <strong>of</strong> comb<strong>in</strong>ed stress. The multiplicity <strong>of</strong> possible failure modes prohibits <strong>the</strong> <strong>use</strong> <strong>of</strong> a morerigorously derived ma<strong>the</strong>matical formulation. The basic material data required for all <strong>the</strong>criteria is longitud<strong>in</strong>al and transverse tensile, and compressive as well as longitud<strong>in</strong>al shearstrengths. Two-dimensional failure <strong>the</strong>ory is based on <strong>the</strong>se properties.97


Mechanics <strong>of</strong> Composite MateriaisMar<strong>in</strong>e CompositesMaximum Stress CriteriaEvaluation <strong>of</strong> lam<strong>in</strong>ated structures us<strong>in</strong>g this criteria beg<strong>in</strong>s with a calculation <strong>of</strong> <strong>the</strong>strengtldstress ratio for each stress component. This quantity expresses <strong>the</strong> relationshipbetween <strong>the</strong> maximum, ultimate or allowable strength, and <strong>the</strong> applied correspond<strong>in</strong>g stress,The lowest ratio represents <strong>the</strong> mo& that controls ply failure. This criteria ignores <strong>the</strong>complexities <strong>of</strong> composites failure mechanisms and <strong>the</strong> associated <strong>in</strong>teractive nature <strong>of</strong> <strong>the</strong>various stress components.Maximum Stra<strong>in</strong> CriteriaThe maximum stra<strong>in</strong> criteria follows <strong>the</strong> logic <strong>of</strong> <strong>the</strong> maximum stress criteria. The maximumstra<strong>in</strong> associated with each applied stress field is merely <strong>the</strong> value calculated by divid<strong>in</strong>gstrengths by moduli <strong>of</strong> elasticity. The dom<strong>in</strong>at<strong>in</strong>g failure mode is that which produces <strong>the</strong>highest stra<strong>in</strong> level. Simply stated, failure is controlled by <strong>the</strong> ply that first reaches its elasticlimit. This concept is important to consider when design<strong>in</strong>g hybrid laro<strong>in</strong>ates that conta<strong>in</strong> lowstra<strong>in</strong> materials, such as carbon <strong>fiber</strong>.Both <strong>the</strong> maximum stress and maximum stra<strong>in</strong> criteria can be visualized <strong>in</strong> two-dimensionalspace as a box with absolute positive and negative values for longitud<strong>in</strong>al and transverse axes.This failure envelope implies no <strong>in</strong>teraction between <strong>the</strong> stress fields and material response.Quadratic Criteria for Stress and Stra<strong>in</strong> SpaceOne way to <strong>in</strong>clud~ <strong>the</strong> coupl<strong>in</strong>g effects (Poisson phenomena) <strong>in</strong> a failure criteria is to <strong>use</strong> a<strong>the</strong>ory based on distortional energy, The resultant failure envelope is an ellipse which is veryoblong. A constant, called <strong>the</strong> normalized empirical constant, which relates <strong>the</strong> coupl<strong>in</strong>g <strong>of</strong>strength factors, generally falls between -!/2 (von Mises criteria) and O (moditkd Hill criteria).[3-10] A stra<strong>in</strong> space failure envelope is more commonly <strong>use</strong>d for <strong>the</strong> follow<strong>in</strong>g reasons:cPlotted data is less oblong. Data does not vary with each lam<strong>in</strong>ate. Input properties are derived more reliably. Axes are dimensionlessFirst- and Last-Piy to Faiiure CriteriaThese criteria are probably more relevant with aerospace structures where lam<strong>in</strong>ates mayconsist <strong>of</strong> over 50 plies. The <strong>the</strong>ory <strong>of</strong> fist-ply failure suggests an envelope that describes <strong>the</strong>failure <strong>of</strong> <strong>the</strong> i%st ply. Analysis <strong>of</strong> <strong>the</strong> lmn<strong>in</strong>ate cont<strong>in</strong>ues with <strong>the</strong> contribution from that andsuccessive plies removed. With <strong>the</strong> last ply to failure <strong>the</strong>ory, <strong>the</strong> envelope is developed thatcorresponds to failure <strong>of</strong> <strong>the</strong> ilnal ply <strong>in</strong> what is considered analogous to ultimate failure. Each<strong>of</strong> <strong>the</strong>se concepts fail to take <strong>in</strong>to account <strong>the</strong> contribution <strong>of</strong> a partially failed ply or <strong>the</strong>geomernc coupl<strong>in</strong>g effects <strong>of</strong> adjacent ply faihrre.ThicknessDesign CriteriaMany components and smaller hull structures <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e <strong>in</strong>dustry are designed us<strong>in</strong>g purelyempirical methods. The spectilcation criteria is usually based on satisfactory <strong>in</strong>-service98


Chapter ThreeDESIGNperformance <strong>of</strong> similar structure. This method is normally only applied to production<strong>fiber</strong>glass parts that are fabricated by hand lay-up or spray-up techniques where builders haveestablished a work<strong>in</strong>g criteria for m<strong>in</strong>imum thickness. Owens-Com<strong>in</strong>g [3-11] has developed asimple methodology for relat<strong>in</strong>g lam<strong>in</strong>ate thickness to <strong>the</strong> amal weight <strong>of</strong> <strong>fiber</strong>glass applied and<strong>the</strong> <strong>fiber</strong>glass weight percent. The follow<strong>in</strong>g relationship based on factors from Figure 3-21 ispostulated:where:~_wz100T= w.lam<strong>in</strong>ate thickness <strong>in</strong> <strong>in</strong>chesmount <strong>of</strong> <strong>fiber</strong>glass <strong>use</strong>d <strong>in</strong> ounces per square footfactor from Figure 3-21766z4Fact3or. . . . .~. . . . . .. . . . . . . . . . . . . . .. . . . . . ... . . . . .\. . . . . ... . . . .. . . . . . ... . . . . .. . . . . .. . . . . .,. . . . ... . ...+. . . . . . ... . . . . ./. . . . .. . . . .21.612. . . . . ... . . . . . . . . . . . . ... . . . . .\.. . . . .\.. . . . . ... . . . . ... . . . . .. . . . .D.610316 20 24 28 32 36 40 44 48 62 58 60Fiberglass Relnfomement% by WeightI~ Z Factor — Speclflc Gravity IFigure 3-21 Z-Factor and Approximate Lam<strong>in</strong>ate Specific Gravity for FiberglassLam<strong>in</strong>ates with Unfilled Res<strong>in</strong> Systems [Owens-Corn<strong>in</strong>g Fiberglas, The Hand Lay-Up andSpray-Up Guide]99


Mechanics <strong>of</strong> Composite MaterialsMar<strong>in</strong>e CompositesConventional Lam<strong>in</strong>ate Pro~eW DataIt has been emphasized throughout this document that accurate design eng<strong>in</strong>eer<strong>in</strong>g can only beaccomplished if material property data is determ<strong>in</strong>ed from lam<strong>in</strong>ate test<strong>in</strong>g us<strong>in</strong>g shipyardsamples. However, <strong>the</strong> designer must have some start<strong>in</strong>g po<strong>in</strong>t for <strong>the</strong> purposes <strong>of</strong> conduct<strong>in</strong>gprelim<strong>in</strong>ary design or trade-<strong>of</strong>f studies. In <strong>the</strong> early 1970’s, Owens-Com<strong>in</strong>g Fiberglas <strong>in</strong>conjunction with Gibbs & Cox published a document entitled Design Propem”es<strong>of</strong> Mar<strong>in</strong>eGrade Fiberglas bn<strong>in</strong>ates. [3-12] The lam<strong>in</strong>ates considered were manufactured by <strong>the</strong> handlayup method and generally utilized orthophthalic polyester res<strong>in</strong>. The follow<strong>in</strong>g materialswere considered <strong>in</strong> <strong>the</strong> study:. Chopped Strand Mat - ?4 oz/f# to 3 oz/ft2 with data also relevant for“spray-up” lam<strong>in</strong>ates.●Woven Rov<strong>in</strong>g - Most lam<strong>in</strong>ates <strong>use</strong>d 24 oz/yd2, with some data on 18 and40 oz/yd2 material <strong>in</strong>cluded. Fabric construction is 5 x 4, account<strong>in</strong>g forsuperior petiormance <strong>in</strong> <strong>the</strong> warp direction. Most U.S. Navy construction<strong>use</strong>s only woven rov<strong>in</strong>g.*Mat-Woven Rov<strong>in</strong>g Lam<strong>in</strong>ate - Most data is for alternat<strong>in</strong>g layers <strong>of</strong> 24oz/yd2 woven rov<strong>in</strong>g and Ilh oz/ft? rrwt. This construction technique hastraditionally been <strong>the</strong> most popular with recreational boat builders, <strong>in</strong> partbeca<strong>use</strong> <strong>in</strong>terlmnimr shear strength is perceived to be better than purewoven rov<strong>in</strong>g lam<strong>in</strong>ates. The data presented here does not support this,although fabrication considerations still favor this technique.Data for “wet strength” was <strong>use</strong>d whenever possible, although <strong>the</strong> authors po<strong>in</strong>t out that <strong>the</strong>state-<strong>of</strong>-<strong>the</strong>-art for general purpose polyester res<strong>in</strong> at that time had reduced “wet” versus “dry”prope~ differences to about 5 to 7%. In <strong>the</strong> twenty years that have elapsed s<strong>in</strong>ce most <strong>of</strong> thisdata was collected, res<strong>in</strong>s have improved fur<strong>the</strong>r as has siz<strong>in</strong>g agents on <strong>fiber</strong>glass.The Gibbs & Cox data is be<strong>in</strong>g reproduced <strong>in</strong> this document not so much for <strong>the</strong> absolutematerial properties that can be extracted but more to show <strong>the</strong> range <strong>of</strong> data accumulated and<strong>the</strong> graphical method chosen for representation. The variety <strong>of</strong> data sources and statisticalprocess<strong>in</strong>g techniques varied to <strong>the</strong> po<strong>in</strong>t where <strong>the</strong> compiled data was not suitable forstatistical analysis. References [3-13] through [3-20] were cited as sources for <strong>the</strong> materialproperty data.100


Chapter ThreeDESIGNTENSILE STRENGTH AT 0“ (WARP)MAT ldA7.i30WN0 WOVEN KWlNL3-4lAhllMATE6 INMATES* ‘ LAMINATkS/TENS4LE MODULUS AT W (WARP)MAT MAT-ROVING WOVEN ROVING4LAMINATE6 LAMINATES LAMINATES40.MDkA3.0 ,-I+o20 so 40 50 en 70I+OVERALLAVEIWGEOUW CONTENl %TENSILE STFiENGTFI AT 9W [FILLI1‘ ‘ii 1MAT-BOVIMGI wOVEN FIOVlmj I I I 1LAMINATESI LAMINATFfl- 1AMINA7ES 1 1I40,000 I I I I I I I I ITENSILE MODULUS AT SW (FILL)MAT MAT-SOVINQ WUVEN ROVINGdLAMINATE9 LAMINATES UMINATCS3.0S5.90,2.0 .—--26,i?*$~$20,~zk ,s,1.0.= /’/ \10.6,20 30 40 60 80 70GbWSGON1tNT ‘#+OVEEALLAVERAGE020 Sn 40 60 60 70GIASS CONTENT %+OVERALLAVERAGE~gure 3-22 On-Axis Tensile Properties <strong>of</strong> 11A oz Mat and 24 oz Woven Rov<strong>in</strong>g[Gibbs and Cox, Design Properties <strong>of</strong> Mar<strong>in</strong>e Grade Fiberglass Lam<strong>in</strong>ates]101


Mechanics <strong>of</strong> Composite MaterialsMar<strong>in</strong>e CompositesFLEXURAL sTRENGTH AT W (WARPIMAT ~AT-UOVINQ WOVEN ROVING4LAMINATES LAMINATES LAMINATESFLEXURAL MODULUS AT 0° (WARP)MAT MAT.ROVINQ WOVEN RoVINQ●LAMINATES LAMINATES- “ LAMINATES50,000 _ _ . _ _ _S.O\ — — —/:a/t /$;b sa,ouo / 7 [ .— —.A J/L / /:x~~.as0z2,02 /:/F 10 Ab /// .+OVERALLAVERAGE/yy+OVERALLAVERAGEZo,m__20 “’ 3i“ 40 so m ‘mGLASS CONTENT %o.20 2Q 40 60 80 70GLASS CONTENT xFLEXURAL STFIENINH AT SO. (FILL)MAT MAT+iOVING wovkN ROVING -4LAMINATSS LAMINATE~ - UMINATESFLEXURAL MO13ULU$ AT 90° (FILL]MAT MAT.ROVINQ WoVEN ROVING4UMINATES U2AINATES L4MINATESSo,wo3,0@J,MOg. 2.0~$F1i~i SO.WO//F~~ozi/3 /t1.0 / 9 +’ Yk/+0VER4LLAVHIAGE+OVHIALLAVERAGE20 20 40 50 so 70GLASS CONSENT %o20 30 40 50 so 10GL4SSaTENT %Figure 3-23 On-Axis Flexural Properties <strong>of</strong> IYZ oz Matand240z Woven Rov<strong>in</strong>g[GibbsandCox, Design Properties <strong>of</strong> Mar<strong>in</strong>e Grade Fiberglass Lam<strong>in</strong>ates]102


Chapter ThreeDESIGNCOMPRESSIVE STRENGTH AT Oh AND 20*MAT ~ ~NT.ROVlN13 WOVEN ROVTNO4LAMINATES L4MINATE8F “ UJJINATE9COMPRESSIVE MowLus AT o? AND 90”40.0003,0-—~ 30000g2.0~fk$ 20,0mo1,0—+OVERALLAVERAQEYI-+OVERMLAVER4GE10,OMJJo 30 40 60 so 70GLAS9CONTENT %o20 30 40 50 Cu 70QLASSCONTENT %COMPRESSIVE STRENGTH AT 46*MAT MAT-ROVINQ WOVEN ROVINGdLAMINATES UMINATE8 LAMINATESICOMPRESSIVE MODULUS AT 45*MAT MAT-ROVlffi WOVEN ROVING4bUAINATES LAMINATE6 LAMINATESI1Ig ~qo~EggE$% 20,0w \~ L\ \\~1.0+OVERALLAVERAGE+OVERALLAVERAGE10,00030 2n 40 m m 70.3LASSaNTENT %020 00 40 a ml 70C+ASS CONTENT %Figure 3-24 Compressive Properties <strong>of</strong> 11A oz Mat and 24 oz Woven Rov<strong>in</strong>g [Gibbsand Cox, Design Properties <strong>of</strong> Mar<strong>in</strong>e Grade Fiberglass Lam<strong>in</strong>ates]103


Mechanics <strong>of</strong> Composite MaterialsMar<strong>in</strong>e CompositesTENSILE STRENGTH AT4s0MAT MAT~OVING WOVEN ROVINQ4 .,. -IAMINATES LAMINATES IAMINATESTENSILE MoDULUS AT 459MAT MAT-ROVING ~VEtJ ROVINQ+1AMlt4ATES LAMIt4ATEfi LAMINATES.WOW _., .26,000 .-~ 2C,000~w2.0~IR~2 ,,0I“b’u””mmzh I I I I I I{/~ L--;E$I ,UYA_- -4 F------ -~-6 -6,200+OVERALLAVERAGE+OVERAILAVERAOE1o20 20’ 40 60 Eo 70QLABS CONTENT %020 30 40 so 00 70G@SCCINTENT ?,FLEXURAL sTREN9w AT 4s’MAT MAT-R(WING WOVFN ROVING4UIMINATES LAMINATES UMINATESFLEWJRAL MODULUS AT 45°MAT MAT-ROVING WOVEMROVING+LAMINAW9 LAMINATES LAMINATESI1 1 I # 1 I 1 1 Ig 4!2,000Za~$; - ––$m ~:. ,. . .“gso ~oo~ ~-’r 1 I I IIyJ*+OVERALLAVERAGE, 1 I 1 1 1 1I OvmA1 .. -,.,-. IW’E~GE20,03020 m 40 50 SJl 70GMSS CONTENT %o20 30 40 50 so ToGU9SQNTENr %Figure 3-25 Off-Axis Properties <strong>of</strong> 1VP oz Mat and 24 oz Woven Rov<strong>in</strong>g [Gibbs andCox, Design Properties <strong>of</strong> Mar<strong>in</strong>e Grade Fiberglass Lam<strong>in</strong>ates]104


Chapter ThreeDESIGNPARALLEL SHEAR STRENGTHMAT ~ ~AT-ROMNG WOVEN RWINGdLAMINATES UMINATES- “ L4MlNATzaPER PENDICUMR SHEAR STRENGTHMAT MAT-ROVING WOVEN HOVINGdLAMW4ATS6 IAMINATES IAMINA7SSE 16,0002zE3&04~ ,“,,,W\v \ \ \l 1 1[ ,0,0,01 1 1 1 [ I I I I& 7OVERALLAVEFIAGE+OVERALLAVER4GE6.MO20 30 40 50 so ToGLASS CONTENT %20 so 40 60 m 70QLASSCONTENT t,TIIICKNES6 PER PAIR-ALTERNATING PLIESOF 1-112 Oz. MATAND 24 OZ WOVEN ROVINGMT J MAT-ROVING WQVSN flQvlNG4lAMl NATES7 LAMINATES LAMINATESTHICKNESS PERPLY-1-1/2 OZ. MAT OR24 OZ. WOVEN ROVINGMAT MAT-ROVING WOVEN ROWNG4LAMINATES UMINATE8 LAMINATES.13.C71,12 _ _1.06.11 _ _.03! ~A.10.04\.09\ g I,09,08-\+OVERALLAVERAGE.02 +OVERALLAVERAQE.0720 30 40 m 50 70GLAS$WNTENTx,0120 30 40 50 E4 70GLASS CONTENT %Figure 3-26 Shear and Thickness Properties <strong>of</strong> 11A oz Mat and 24 oz WovenRov<strong>in</strong>g [Gibbs and Cox, Design Properties <strong>of</strong> Mar<strong>in</strong>e Grade Fiberglass Lam<strong>in</strong>ates]105


Sandwich ConstructionMar<strong>in</strong>e CompositesThe structure <strong>of</strong> most small craft is designed to withstand high localized forces normal to <strong>the</strong>hull panels, as this is <strong>the</strong> dom<strong>in</strong>ant load<strong>in</strong>g <strong>of</strong> <strong>the</strong> structure. Therefore, <strong>the</strong> structure must bedesigned with relatively higher flexural stiffness and strength than <strong>in</strong>-plane stiffness andstrength. This is especially true when compar<strong>in</strong>g sandwich to solid lam<strong>in</strong>ates, along withcorrespond<strong>in</strong>g frame spac<strong>in</strong>g. Sandwich construction is <strong>of</strong>ten <strong>use</strong>d <strong>in</strong> high performance boatsbeca<strong>use</strong> good out-<strong>of</strong>-plane flexural properties can be achieved at relatively low weights. Table3-3 developed for honeycomb core structures illustrates <strong>the</strong> potential ga<strong>in</strong>s <strong>of</strong> utiliz<strong>in</strong>g sandwichconstruction.Table 3-3. Strength and Stiffness for Cored and Solid Construction[Hexcel, The 13aslcson Bonded Sandwich Construction]IRelative StiffnessRelativeStrength1001007003503700925RelativeWeight100103106Sandwich panels consist <strong>of</strong> th<strong>in</strong>, high stiffness and strength sk<strong>in</strong>s over a thick, low density corematerial. The behavior <strong>of</strong> sandwich beams and panels is quite different from “solid” beams andpanels, with higher flexural stiffness and strength relative to <strong>in</strong>-plane properties. Mostdesigners have substantial experience with solid GRP, alum<strong>in</strong>um, or steel construction, and<strong>the</strong>re are a number <strong>of</strong> widely accepted scantl<strong>in</strong>g rules for <strong>the</strong>se materials. However, <strong>the</strong>experience base for sandwich construction is relatively small, and although <strong>the</strong>re has been somework on sandwich scantl<strong>in</strong>g rules, <strong>the</strong>re is at present no widely accepted scantl<strong>in</strong>g rule forsandwich construction,Flexural Stiffness<strong>of</strong> a BeamThe flexural stiffness <strong>of</strong> a beam is a function <strong>of</strong> <strong>the</strong> elastic modulus, which is similar for <strong>the</strong>solid beam and <strong>the</strong> sandwich sk<strong>in</strong>s, and <strong>the</strong> moment <strong>of</strong> <strong>in</strong>ertia, which is ve~ different for solidand sandwich beams. The moment <strong>of</strong> <strong>in</strong>ertia for <strong>the</strong> two types <strong>of</strong> beams are:Solid Beam Moment <strong>of</strong> Inetia= bh3Ig =106


chapterThreeDESIGNApproximateSandwich Beam Sk<strong>in</strong>s Moment<strong>of</strong> Inetiia2b+ ~ 2bt&+=— —12 4Approximate Sandwich Beam Core Moment <strong>of</strong> Inertiawhere:J=tic12b = <strong>the</strong> width <strong>of</strong> <strong>the</strong> beamh = <strong>the</strong> height <strong>of</strong> <strong>the</strong> beamr = <strong>the</strong> thiclmess <strong>of</strong> <strong>the</strong> sandwich sk<strong>in</strong>sd = <strong>the</strong> thickness <strong>of</strong> <strong>the</strong> core, as per Figure 3-27F@Ure 3-27 Geometry<strong>of</strong> Sandwich Beams [Hexcel, The Basics on Bonded SandwichConstruction]The flemrral stiffness is <strong>the</strong> product <strong>of</strong> <strong>the</strong> modulus <strong>of</strong> elasticity and <strong>the</strong> moment <strong>of</strong> <strong>in</strong>ertiaSolid Beam Flexural StiffnessEbh3EgI~ = -&107


SandwichConstructionMar<strong>in</strong>e CompositesApproximate Sandwich Beum Flexural Stiffnesswhere:E~= <strong>the</strong> modulus <strong>of</strong> <strong>the</strong> solid beamE~= <strong>the</strong> modulus <strong>of</strong> <strong>the</strong> sandwich fac<strong>in</strong>g materialEC= <strong>the</strong> modulus <strong>of</strong> <strong>the</strong> core materialThese expressions can be simplified by neglect<strong>in</strong>g <strong>the</strong> smaller terms. The follow<strong>in</strong>gcommon to sandwich construction, can be <strong>use</strong>d to determ<strong>in</strong>e <strong>the</strong> relative magnitudeterms:ratios,<strong>of</strong> <strong>the</strong>t– = 0.1d:=200cSubstitut<strong>in</strong>g <strong>the</strong>se ratios <strong>in</strong>to <strong>the</strong> expression for <strong>the</strong> flexural stiffness <strong>of</strong> a sandwich bea.rmit canbe seen that <strong>the</strong> fist and tid tern-s contribute less than 1% <strong>of</strong> <strong>the</strong> flexural stiffness, thus <strong>the</strong>ycan be neglected with little error. The result<strong>in</strong>g expression is:Simplified Sandwich BeamUs<strong>in</strong>g this mpressio~ <strong>the</strong> ratio <strong>of</strong> <strong>the</strong> flexural stiffnesses<strong>of</strong> a solid beam and a sandwich beam i~When <strong>the</strong>re is no core, t = ?2 and when E~= E , <strong>the</strong> bend<strong>in</strong>g stiffness ratio is 1.0. If <strong>the</strong>sandwich beam is at least as thick as <strong>the</strong> solid b~am, and Ef = E~, <strong>the</strong>n this ratio is alwaysgreater than 1.0, thus for a given weight, a sandwich beam is stiffer than a solid beam. As anexample, let E~=E~, d=h=l, mdt=0.2h:# = (1)~= 1728h3SgThus <strong>the</strong> sandwich beam, which is 20% thicker than <strong>the</strong> solid beam, has a flexural stiffness1.73 times greater than <strong>the</strong> solid beam If <strong>the</strong> fac<strong>in</strong>g density is ten times <strong>the</strong> core density, <strong>the</strong>sandwich beam would weigh only 4890 <strong>of</strong> <strong>the</strong> solid beam weight108


Chapter ThreeDESIGNFlexural Strength<strong>of</strong> a BeamThe flexural stmgth <strong>of</strong> <strong>the</strong> solid andsandwich beams is a function <strong>of</strong> <strong>the</strong>stress distribution <strong>in</strong> <strong>the</strong> beams and <strong>the</strong>limit<strong>in</strong>g material slrength. The generalstress distribution <strong>in</strong> sandwich beamssubjected to a moment M is presented <strong>in</strong>Figure 3-28. The maximumtensile/compressive stresses <strong>in</strong> <strong>the</strong> twobeams are:Solid Beam= 6Ms— 8 bh2Ḃ/‘IJ -— i2jlQ0 TAssumed Stress Distribution<strong>in</strong> <strong>the</strong>Classical Sandwich TheorySandwich Beamwhere:‘f=M(d+t)bts = <strong>the</strong> maximum stressg <strong>in</strong> <strong>the</strong> solid beamsf = <strong>the</strong> max<strong>in</strong>mm stress<strong>in</strong> <strong>the</strong> sandwich beamM = <strong>the</strong> applied momentThe result<strong>in</strong>g ratio <strong>of</strong> maximum stress is:u ‘TMore Realistic Stress Distribution<strong>in</strong> a Sandwich ElelmentFigure 3-28 Stress Distribution With<strong>in</strong> aSandwich Beam [Rasmussen and Baatrup,Rational Design <strong>of</strong> Large Sandwich Structures]When no core is presen~ h = 2t, d = Oand Ef = E~, <strong>the</strong> maximum stress ratio approaches ~.This ratio should be 1.0, but <strong>the</strong> stress was assumed constant, ra<strong>the</strong>r than l<strong>in</strong>early vary<strong>in</strong>g,through <strong>the</strong> face thickness. This emor is largest for <strong>the</strong> case with no core, but becomesnegligible when <strong>the</strong> core thickness is much greater than <strong>the</strong> fac<strong>in</strong>g thiclmess. The sameexample <strong>use</strong>d previously, with t = 0.2h and d = h, yields <strong>the</strong> follow<strong>in</strong>g maximum stress ratio:: = 0694&’109


Ssndwich ConstructionAM<strong>in</strong>e CmmusifesIf <strong>the</strong> limit<strong>in</strong>g failure mechanism is tensile/compressive strength <strong>of</strong> <strong>the</strong> fachgs, <strong>the</strong> sandwichbeam has a flexural strength 1.44 times that <strong>of</strong> <strong>the</strong> solid beam. Thus <strong>the</strong> flexural strength <strong>of</strong> <strong>the</strong>sandwich beam is also greater than that <strong>of</strong> <strong>the</strong> solid beam for this example, although not asdramatic as <strong>the</strong> <strong>in</strong>crease <strong>in</strong> flexural stiffness.Summary <strong>of</strong> Beam ComparisonSandwich beams can be designed to have higher flexural strength and stiffness at lower weigh~but <strong>the</strong> <strong>in</strong>-plane stiffness and strength per unit weight are lower than for solid beams. Theflexural stiffness <strong>of</strong> a sandwich beam is a l<strong>in</strong>ear function <strong>of</strong> <strong>the</strong> face thickness and <strong>the</strong> modulus<strong>of</strong> <strong>the</strong> face material, but <strong>the</strong> stiffness <strong>in</strong>creases with <strong>the</strong> square <strong>of</strong> <strong>the</strong> core thickness. Thus,doubl<strong>in</strong>g <strong>the</strong> sk<strong>in</strong> thickness or fac<strong>in</strong>g modulus will double <strong>the</strong> flexural stiftness, but doubl<strong>in</strong>g<strong>the</strong> core thiclmess will <strong>in</strong>crease <strong>the</strong> flexural stiffness by a factor <strong>of</strong> 4.0. The flexural stiffness <strong>of</strong>a solid beam is a l<strong>in</strong>ear function <strong>of</strong> <strong>the</strong> modulus <strong>of</strong> <strong>the</strong> material, and a function <strong>of</strong> <strong>the</strong> cube <strong>of</strong><strong>the</strong> beam thiclmess, The flexural strength <strong>of</strong> a sandwich beam is a l<strong>in</strong>ear function <strong>of</strong> <strong>the</strong> fac<strong>in</strong>gthickness, fac<strong>in</strong>g strength and core thiclmess. The strength <strong>of</strong> a solid beam is a l<strong>in</strong>ear function<strong>of</strong> <strong>the</strong> material strength and is proportional to <strong>the</strong> square <strong>of</strong> <strong>the</strong> beam thiclmess. Figure 3-29illustrates some basic structural design concepts applicable to sandwich construction.SandwichPanel Flexural StiffnessThe primary <strong>use</strong> <strong>of</strong> sandwich lam<strong>in</strong>ates, with high flexural stiffness and strength, is for largeunsupported panels, such as hulls, decks and bulkheads. Bwun <strong>the</strong>ory is commonly <strong>use</strong>d <strong>in</strong> <strong>the</strong>design <strong>of</strong> <strong>the</strong>se panels, s<strong>in</strong>ce this type <strong>of</strong> <strong>the</strong>ory is successfully utilized for steel construction.This <strong>the</strong>ory does not work well for sandwich panels, however, s<strong>in</strong>ce it does not considermembrane effects. F<strong>in</strong>ite element method @EM) analysis can be <strong>use</strong>d to predict <strong>the</strong> behavior<strong>of</strong> <strong>the</strong> sandwich panels, but this method also has Iirnitations. Deflection or stra<strong>in</strong> predictionsfor loads where <strong>the</strong> structural response <strong>of</strong> <strong>the</strong> materials is l<strong>in</strong>ear are generally satisfactory,however, <strong>the</strong>se predictions are usually not very good for <strong>the</strong> non-l<strong>in</strong>ear or plastic responseregion. Strength prediction, or failure anilysis, is a problem when failure occurs outside <strong>the</strong>elastic response range <strong>of</strong> <strong>the</strong> materials, which is usually <strong>the</strong> situation. Also, <strong>the</strong> accuracy <strong>of</strong> <strong>the</strong>FEM predictions is highly dependent on material properties, which must be obta<strong>in</strong>ed fromtest<strong>in</strong>g. Thus FBM is <strong>use</strong>ful for analyz<strong>in</strong>g <strong>the</strong> structural response to work<strong>in</strong>g or design loads,but is <strong>of</strong> limited <strong>use</strong> <strong>in</strong> predict<strong>in</strong>g structural response to extreme loads.The limitations <strong>of</strong> analytical approaches to <strong>the</strong> problem leads to a reliance on mechanicaltest<strong>in</strong>g <strong>of</strong> both <strong>the</strong> materials and <strong>the</strong> structure. Materials test<strong>in</strong>g is based on standard tests, suchas ASTM tests, which are developed to provi& <strong>in</strong>dustry wide standards. The mar<strong>in</strong>e <strong>in</strong>dustryhas not played an active role <strong>in</strong> develop<strong>in</strong>g <strong>the</strong>se standard tests, thus most <strong>of</strong> <strong>the</strong> tests which are<strong>use</strong>d have been developed by and for o<strong>the</strong>r <strong>in</strong>dustries, and are not necessarily applicable to <strong>the</strong>mar<strong>in</strong>e <strong>in</strong>dustry. In particular, almost all <strong>of</strong> <strong>the</strong> material tests are uniaxial load tests, while <strong>the</strong>materials <strong>in</strong> mar<strong>in</strong>e structures are usually subjected to multi-axial loads. As an example, beamflexural tests are <strong>use</strong>d to determ<strong>in</strong>e flexurd stiffness and strength <strong>of</strong> sandwich lam<strong>in</strong>ates. Thistest method can lead to large errors when consider<strong>in</strong>g pressure loaded sandwich panels, such asthose <strong>in</strong> boat hulls. Figures 3-30 through 3-33 present relative flexural stiffness and strengths<strong>of</strong> several sandwich lam<strong>in</strong>ates obta<strong>in</strong>ed by test<strong>in</strong>g sandwich beams us<strong>in</strong>g ASTM C 393 andstructural test<strong>in</strong>g <strong>of</strong> sandwich panels constructed <strong>of</strong> <strong>the</strong> same lam<strong>in</strong>ates us<strong>in</strong>g distributed110


—Chapter ThreeDESIGN1.The fac<strong>in</strong>gs should be thick enoughwithstand <strong>the</strong> tensile, compressiveand shear stresses <strong>in</strong>duced by <strong>the</strong>design load.to2.The core should have sufficientstrength to withstand <strong>the</strong> shearstresses <strong>in</strong>duced by <strong>the</strong> designloads. Core bond<strong>in</strong>g material musthave sufficient strength to carryshear stress <strong>in</strong> <strong>the</strong> core,3.The core should be thick enough and -have sufficient shear modulus toprevent overall buckl<strong>in</strong>g <strong>of</strong> <strong>the</strong>sandwich under load, and to prevent - ~crimp<strong>in</strong>g.+Hllllll, .4.Comtxessive modulus <strong>of</strong> <strong>the</strong> core and<strong>the</strong> compressive modulus <strong>of</strong> <strong>the</strong>fac<strong>in</strong>gs should be sufficient toprevent wr<strong>in</strong>kl<strong>in</strong>g <strong>of</strong> <strong>the</strong> faces underdesign load.-HIIIIHT7TIIIIHH+5.With honeycomb cores, <strong>the</strong> cellstructure should be small enough toprevent <strong>in</strong>tracell dimpl<strong>in</strong>g <strong>of</strong> <strong>the</strong>fac<strong>in</strong>gs under design load.+ +I6.7.The core should have sufficientcompressive strength to resistcrush<strong>in</strong>g by design loads act<strong>in</strong>gnormal to <strong>the</strong> panel fac<strong>in</strong>gs or bycompressive stresses <strong>in</strong>ducedthrough flexure,The sandwich structure should havesufficient flexural and shear figidity -to prevent excessive deflectionsunder design load,tFigure 3-29 Basic Santilch Structural Criteria [ASM Eng<strong>in</strong>eered Maferia/s Handbq111


SandwichConstructionMar<strong>in</strong>e Composites100%Rolatlve Roam Stlt?neSQ100%Relatlve Panel Stlftrmss00%80%60%60%40%40%20%20%0%Alrex H-60 H-80 H-1OO R-76 R-1OO EtaloaGom Mmt~rlml0%Alrex H-60 H-BO H-1OO R-76 R-1OO BalsaCOr.MmtorlmlFigure 3-30 ReIative Stiffness forFRP Beams with DifferentCores [Reich~Fi9Ure S-31 Relative Stiffness forFRP Panels with DifferentCores [Reichard]1Ooqdatlvo Pmnml StrenothIeo%60%40%20%‘- AlrOX H-60 H-SO H-100 R-76 R-100 BaleaCormMatorlml0%Airox H-60 H-EO H-1OO R-76 R-1OO BalaaCoroMmtmrlalfigllrea-sz Relative Strength forFRP Beams with 13ifferent Cores [Reichard]Figure 3-33 Relative Strength forFRP Paneis with Different Cores [Reichard]112


Chapter ThreeDESIGNpressure load<strong>in</strong>g. The core materials tested <strong>in</strong>cluded products fiorn. Airex‘, Div<strong>in</strong>ycell@,Klegecell” and Baltek. It is obvious that <strong>the</strong>re are sigrdlcant differences between beam andpanel test<strong>in</strong>g.The primary obstacles to <strong>the</strong> <strong>use</strong> <strong>of</strong> sandwich construction for retie structures are <strong>the</strong>limitations <strong>of</strong> <strong>the</strong> analytical methods and <strong>the</strong> lack <strong>of</strong> appropriate test methods. Both <strong>of</strong> <strong>the</strong>seareas are presently be<strong>in</strong>g addressed by <strong>in</strong>dividual researchers, but a coord<strong>in</strong>ated, <strong>in</strong>dustry wideeffort is necessmy to adequately address <strong>the</strong>se problems. Some forrdulas are presented herethat relate sandwich properties to an equivalent solid sk<strong>in</strong> thiclmess, t~~.for sk<strong>in</strong>s <strong>in</strong> tension:[1tF tc+f T = ~t2xafor sk<strong>in</strong>s <strong>in</strong> compression:t2) ox a cwhere:tF =tc =af =at=(3C=Sandwich sk<strong>in</strong> thiclmessCore thicknessS<strong>in</strong>gle sk<strong>in</strong> flexural strengthSandwich sk<strong>in</strong> tensile strengthSandwich sk<strong>in</strong> compressive strengthsandwich bend<strong>in</strong>g stiffness:t~: x EI sandwich = 12x 0.5 (Et+ qwhere:Et =E, =EC =S<strong>in</strong>gle sk<strong>in</strong> flexural modulusSandwich sk<strong>in</strong> tensile modulusSandwich sk<strong>in</strong> compressive modulus113


Design <strong>of</strong> DetailsA.@<strong>in</strong>eCompositesIn review<strong>in</strong>g <strong>the</strong> past three decades <strong>of</strong> FRP boat construction, very few failures can beattributed to <strong>the</strong> overall structural collapse <strong>of</strong> <strong>the</strong> structure due to primary hull girder load<strong>in</strong>g.This is <strong>in</strong> part due to <strong>the</strong> fact that <strong>the</strong> overall size <strong>of</strong> FRP ships has been limited, but alsobeca<strong>use</strong> safety factors have been very conservative. In contrast to this, numerous failuresresult<strong>in</strong>g from what is termed “local phenomena” have been observed, especially <strong>in</strong> <strong>the</strong> earlyyears <strong>of</strong> FRP development. As high-strength materials sre <strong>in</strong>troduced to improve vesselperformance, <strong>the</strong> safety cushion associated with “bulky” lam<strong>in</strong>ates dim<strong>in</strong>ishes. As aconsequence, <strong>the</strong> FRP designer must pay carefal attention to <strong>the</strong> structural performance <strong>of</strong>details.Details <strong>in</strong> FRP construction can be any area <strong>of</strong> <strong>the</strong> vessel where stress concentrations may bem present. These typically <strong>in</strong>clude areas <strong>of</strong> discont<strong>in</strong>uity and applied load po<strong>in</strong>ts. As an example,failures <strong>in</strong> hull panels generally occur along <strong>the</strong>ir edge, ra<strong>the</strong>r than <strong>the</strong> center. [3-21] FRPconstruction is particularly susceptible to local failure beca<strong>use</strong> <strong>of</strong> <strong>the</strong> difficulty <strong>in</strong> achiev<strong>in</strong>glan<strong>in</strong>ate quality equal to a flat panel. Additionally, stress concentration areas typically havedist<strong>in</strong>ct load paths which must co<strong>in</strong>cide with <strong>the</strong> directional strengths <strong>of</strong> <strong>the</strong> FRP re<strong>in</strong>forc<strong>in</strong>gmaterial, With <strong>the</strong> benefit <strong>of</strong> h<strong>in</strong>dsight knowledge and a variety <strong>of</strong> re<strong>in</strong>forc<strong>in</strong>g materialsavailable today, structural detail design can rely less on “brute force” techniques.Secondary Bond<strong>in</strong>gFRP structures will always demonstrate superior structural properties if <strong>the</strong> part is fabricated <strong>in</strong>one cont<strong>in</strong>uous cycle without total cur<strong>in</strong>g <strong>of</strong> <strong>in</strong>termediate plies. This is beca<strong>use</strong> <strong>in</strong>terlam<strong>in</strong>srproperdes are enhanced when a chemical as well as mechanical bond is present. Someties <strong>the</strong>part size, thickness or manufactur<strong>in</strong>g sequence preclude a cont<strong>in</strong>uous layup, thus requir<strong>in</strong>g <strong>the</strong>application <strong>of</strong> wet plies over a previously cured lam<strong>in</strong>ate, known as secondary bond<strong>in</strong>g.Much <strong>of</strong> <strong>the</strong> test data available on secondary bond<strong>in</strong>g performance dates back to <strong>the</strong> early1970’s when research was active, support<strong>in</strong>g an FRP m<strong>in</strong>esweeper program. Frame andbulkhead connections were targeted as weak po<strong>in</strong>ts when large hulls were subjected to extremeshock from detonated charges. Reports on secondtuy bond strength by Owens-Com<strong>in</strong>gFiberglas [3-22] and Della Rocca & Scott [3-23] are summarized below:●Failures were generally cohesive <strong>in</strong> nature and not at <strong>the</strong> bond <strong>in</strong>terface l<strong>in</strong>e.A clean lam<strong>in</strong>ate surface at <strong>the</strong> time <strong>of</strong> bond<strong>in</strong>g is essential and can best beachieved by <strong>use</strong> <strong>of</strong> a peel<strong>in</strong>g ply. A peel<strong>in</strong>g ply consists <strong>of</strong> a dry piece <strong>of</strong>re<strong>in</strong>forcement (usually cloth) that is laid down without be<strong>in</strong>g wetted out.After cure, this strip is peeled away, leav<strong>in</strong>g a rough bond<strong>in</strong>g surface withraised glass <strong>fiber</strong>s.c Filleted jo<strong>in</strong>ts proved to be superior to right-angle jo<strong>in</strong>ts <strong>in</strong> fatigue tests. Itwas postulated that <strong>the</strong> bond angle material was stressed <strong>in</strong> more <strong>of</strong> a pureflexural mode for <strong>the</strong> radi<strong>use</strong>d geometry.●Bond strengths between plywood and FRP lam<strong>in</strong>ates is less than that <strong>of</strong>FRP itself. Secondary mechanical fasteners might be considered.114


Chapter ThreeDESIGN. In a direct comparison between plywood frames and hat-sectioned stiffeners,<strong>the</strong> stiffeners appear to be superior based on static tests.. Chopped strand mat <strong>of</strong>fers a better secondary bond surface than wovenrov<strong>in</strong>g.Table 3-4. SecondaryBond Technique Desirability [DellaRoccaandScott, Mhtsrii#sTest Progmm for Application <strong>of</strong> <strong>fiber</strong>glass Plastics to U.S. N&y M<strong>in</strong>esweepws]Preferable Bond<strong>in</strong>gAcce table Bond<strong>in</strong>g UndesirableTechniques f echnlques ProceduresBondres<strong>in</strong>:ei<strong>the</strong>r general purpose orfire retardant, resilientSutiace treatment:roughened with apneumatic saw tooth hammer, peel ply,or cont<strong>in</strong>uouscure <strong>of</strong> rib to panel; oneply <strong>of</strong> mat <strong>in</strong> way <strong>of</strong> bondStitiener fay<strong>in</strong>g flange thickness:m<strong>in</strong>imum consistent with rib strengthrequirementBolts or mechanical fasteners arerecommended <strong>in</strong> areas <strong>of</strong> high stressBond res<strong>in</strong>: general pumose orfire retardant,rigid air <strong>in</strong>hibitedNo surfaceSurfacetreatment:rough smcfifq l~eatnlenlExcessivestiffenerfay<strong>in</strong>g flangethicknessDeck Edge ConnectionS<strong>in</strong>ce <strong>the</strong> majority <strong>of</strong> FRP vessels are built with <strong>the</strong> deck and hull com<strong>in</strong>g from diHerent molds, <strong>the</strong>builder must usually decide on a suitable technique for jo<strong>in</strong><strong>in</strong>g <strong>the</strong> two. S<strong>in</strong>ce this connection is at<strong>the</strong> extm.me<strong>fiber</strong> location for both vertical and transverse hull girder load<strong>in</strong>g, alternat<strong>in</strong>g tensile andcompressive stresses are expected to beat a maxkmun. The <strong>in</strong>tegrity <strong>of</strong> this \-DEcK LOADl NGconnection is also responsible formuch <strong>of</strong> <strong>the</strong> torsional rigidityexhibited by <strong>the</strong> hull. Secon@y deckand side shell load<strong>in</strong>g shown <strong>in</strong> Figure1 BONOEO LAM I NATES3-34 is <strong>of</strong>ten <strong>the</strong> design limit<strong>in</strong>g—. /’TEND To PEEL APARTcondition. O<strong>the</strong>r &signconsiderations <strong>in</strong>clude: ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>gz,Ifiwatertight <strong>in</strong>~grity under stress,SHAPEzresist<strong>in</strong>g local impact from dock<strong>in</strong>g,//!11 ~,, ,1 .=.. !personnel foot<strong>in</strong>g assistance andj]appearance (fak<strong>in</strong>g <strong>of</strong> shear). Figures4:3-35 through 3-45 show someS1 DE SHELLtraditional deck edge connectionLOADINGtechniques for various side shell anddeck constructions, Open FRP boatsgenerally require some stiffen<strong>in</strong>g at ~gllr’e 3-34 Deck Edge Connection - NormalDeck and Shell Load<strong>in</strong>a Produces Tension<strong>the</strong> gunwale. Figures 3-46 throughat <strong>the</strong> Jo<strong>in</strong>t [Gibbs and ~ox, Mar<strong>in</strong>e Design3-49 depict some wuiations on <strong>the</strong>Manual for FRPjtreatment <strong>of</strong> smaU boat gunwales.115


Design <strong>of</strong> DetailsMar<strong>in</strong>e CompositesPREDECKD CONINGOEDI NATE -]il i PRE-UOLDEOSHELL LAMINATEOtCKFigure 3-35 Shaped Wood GunwaleClamp [Gibbs and Cox, Mar<strong>in</strong>eDesign Manual for FRPlLAMINATEFI BEuGLA5sdOINTUE I NFORCEL4ENTCOhU 1N’S MOLDEDVEE OR SCfiRFS.IELL LA#l NATEFigure 3-36 Wood Coam<strong>in</strong>g and “Jo<strong>in</strong>t <strong>in</strong> Deck [Gibbs and Cox, Mar<strong>in</strong>e DesignManual for FRPjSNAt IN PLAcERUBB ING STRIP==,+ }/7 ,. /-,II,“’vb~~,’:-: i1 PLY t4ht IN JOINT*IF I BERGLASS JO I NL—------- ‘/,(’ ---THROUGH BOLTS1,, . -’ y]HEI NFORCEMENT;~ +“-5J::”RHTE/.-,,r& .!.ALTERNATE COW TWCTI ON SPLAY I NGENDs 10 TAKE SNAP ON STRIPFigure 3-37 Coam<strong>in</strong>g with Jo<strong>in</strong>t <strong>in</strong>Shell [Gibbs and Cox, Mar<strong>in</strong>e DesignManual for FRPlFigure 3-38 Small Boat Type withSnap <strong>in</strong> Plaoe Rubb<strong>in</strong>g Strip [Gibbs andCox, Mar<strong>in</strong>e Design Manual for FRflDECKP RE-MoLLAMIRUBBINHsTRlp1 PLLTl+Pm5+IELlGNINa STRIP2ES I REDW SI+ELL LAW NATEfigure 3-39 Comb<strong>in</strong><strong>in</strong>g Bond<strong>in</strong>g &Mechanical Fasten<strong>in</strong>g [Gibbs and Cox,Mar<strong>in</strong>e Design Manual for FF?flFigure 3-40 Sandwich Deck withWood Coam<strong>in</strong>g and Jo<strong>in</strong>t <strong>in</strong> Deck [Gibbsand Cox, iWfne Des&n Manual for FRPj116


Chapter ThreeDESIGNPRE-MOLDEO,SANDWI CH CONSTRUCT 10N./’1 /1I N DECKa-l C14 CON61WJImmlm DECK//7- OPT 10NAL EXTERIORF I BERQLASS .JO1NTRE I NFORCEMENlSANMI Cl! CORE CUFAXMl m’ms 0WEnFigure 3-41 Sandwich Deck withMolded-In Coam<strong>in</strong>g and Jo<strong>in</strong>t <strong>in</strong> ShellFigure 3-42 Interior Deck to Shell\~~bb:~d Cox, Mar<strong>in</strong>e Design Manual/’----PRE.MOLDEDDECK LAMI NATE_—-.—————— _.—. .—. ,__THROW3H BOLTSOR BONDED CONNEC1 i ON SHELL LAM I MATEF I BERGLASSREi NCOROEMENTJOINTPRE-WOLDEO5tIELL LAM I NATEFigure 3-43 Simple Molded-InCoam<strong>in</strong>g with Mechanical Fasten<strong>in</strong>gs[Gibbs and Cox, Mar<strong>in</strong>e Design Manualfor FRPlFigure 3-44 Deck Edge Connection- Simple Butt Jo<strong>in</strong>t [Gibbs and Cox,Mar<strong>in</strong>e Desi@ Manual for FRP’jPRE-MOLUODECK LAMI N*TESNAP I N PLAcc RUBBI Na5TR 1P ON OVERHANGSEPARATELYMOLOEtI----., = = =----,, ~-::F letRoLAss ,101N1 -.+; PR L-MOL DEDRE I NFORCDAEN1? SVLLL LAMI NATEGUNWALE“-~‘S1 DE SHELL1 Ly:&yY’--’””Figure 3-45 Modified Butt Jo<strong>in</strong>t withOverhana for Snap <strong>in</strong> Place Rubb<strong>in</strong>gStrip [Gibbs and Cox, Mar<strong>in</strong>e DesignManual for FRIJlFigure 3-46 SeDeratelv MoldedFi~erglass Gunwa(e [Gibb~ and Cox,Mar<strong>in</strong>e Design Manual for FRPl117


Design <strong>of</strong> DetailsEach builder develops <strong>the</strong>ir own methodfor deck edge connection that suits <strong>the</strong>irparticular needs. In lieu <strong>of</strong> specify<strong>in</strong>gone particular conilguration, Gibbs &Cox [3-13] <strong>of</strong>fered <strong>the</strong> follow<strong>in</strong>gguidel<strong>in</strong>es that have relevance today:.,. A jo<strong>in</strong>t should develop maximumefficiency or <strong>the</strong> full strength <strong>of</strong><strong>the</strong> weaker <strong>of</strong> <strong>the</strong> two pieces be<strong>in</strong>gjo<strong>in</strong>ed....*A jo<strong>in</strong>t must be easy to fabricateto ensure quality control <strong>in</strong> areasnot easily accessed for <strong>in</strong>spection.A jo<strong>in</strong>t should be compatible withmold<strong>in</strong>g methods <strong>use</strong>d andconsistent with overall hull “fabrication requirements.Exterior re<strong>in</strong>forcement is essentiaJto resist loads normal to <strong>the</strong> sideshell and deck.Exposed edges, if unavoidable,should always be sealed to preventdelam<strong>in</strong>ation.S I DESVELL—Figure 3-47[Gibbs and Cox,/-–7V ,.Marir?e Composites“’k %EAL EDGE OF LAM I NATEWITH REsi MIntegrally Molded GunwaleMar<strong>in</strong>e Des@nManual for FR~4-SEAL EDGE OF LAM I NATEWITH PESlt+WOOD CLAW kRUBBING STRIP---s1 DE Si-tELLTHROUGH BOLTSFigure 3-48 Wood Gunwale [Gibbs andCox, Mar<strong>in</strong>e Design Manual for FRFl-LJEAL EDGE OF LAMI NATEWITHRESINALUM I t#JMEXTRUS 10NRUBBINGSTRIPALUMINUMEXTRUS i ONTHROUGH BOLTS *. -S1 (JE SHELLTHROUGH BOLTS=.- S! DE SHELL+“3Figure 3-49Alum<strong>in</strong>um Gunwale [Gibbs and Cox, Mar<strong>in</strong>e Design Manual for F/?~Centerl<strong>in</strong>e Jo<strong>in</strong>tsTo facilitate hand layup fabrication, some builders produce hulls from separate female moldsfor each side <strong>of</strong> <strong>the</strong> hull. This enables <strong>the</strong> lam<strong>in</strong>ators to work on a more horizontal surface.When such a technique is <strong>use</strong>d, some form <strong>of</strong> butt jo<strong>in</strong>t must be utilized to jo<strong>in</strong> <strong>the</strong> two hull118


Chapter ThreeDESIGNhalves. This highly stressed portion <strong>of</strong><strong>the</strong> hull must be fabricated with care,especially s<strong>in</strong>ce secondary bond<strong>in</strong>g is<strong>in</strong>volved. Builders rarely skimp onmaterial s<strong>in</strong>ce this jo<strong>in</strong>t is low <strong>in</strong> <strong>the</strong>vessel where weight is desirable. Inaddition to adequate strength and goodadhesion, <strong>the</strong> jo<strong>in</strong><strong>in</strong>g lam<strong>in</strong>ate should<strong>in</strong>clude sufficient mat re<strong>in</strong>forcements tocreate a superior water permeationbarrier, Figures 3-50 through 3-52 showtypical connection configurations forvarious size boats. Figure 3-53 shows atypical centerboard trunk that may befound <strong>in</strong> a small sailboat As will beshown for bulkheads, <strong>the</strong> connectionillustrated <strong>in</strong> Figure 3-53 could beimproved with <strong>the</strong> addition <strong>of</strong> a radi<strong>use</strong>dfillet. Figure 3-55 is a detail sketch forrecommended butt jo<strong>in</strong><strong>in</strong>g techniqueswith s<strong>in</strong>gle sk<strong>in</strong> lam<strong>in</strong>ates.Keel AttachmentExternally mounted ballasted keels forsailboats have traditionally been fastenedto a match<strong>in</strong>g FRP stub as pictured <strong>in</strong>Figure 3-54. This technique may still bevalid for a few cruis<strong>in</strong>g type designs thatsport such a fat-sectioned keel.However, performance sailboats s<strong>in</strong>ce<strong>the</strong> 1970’s have had much higher aspectratio keels with very f<strong>in</strong>e root sections.The current go-fast <strong>the</strong>ory has led tokeels where <strong>the</strong> root section is th<strong>in</strong>nestat <strong>the</strong> top and meets <strong>the</strong> hull at a cleanright-angle when viewed <strong>in</strong> transversesection. Needless to say, <strong>the</strong>se high liftkeels produce tremendous moments at<strong>the</strong> fay<strong>in</strong>g region that, at times, is onlytwo to three <strong>in</strong>ches wide. ABS providesgood guidance [3-5] for <strong>the</strong> selectionand arrangement <strong>of</strong> keel bolts associatedwith externally mounted f<strong>in</strong> keels.Adequate solid FM sk<strong>in</strong> thiclmess and<strong>in</strong>ternal transverse structure must beFI BERQLAsS JOINTTHROUfiH BOLTS ORRIVETS~ PRE-MOLDEDTROWELED I N PLAOEFILLEO RESINFigure 3-50 Connection <strong>of</strong> Shell Halves -Centerl<strong>in</strong>e Skeg [Gibbs and Cox, Mar<strong>in</strong>e DesignManual for FRflVI EIERGLN3S JOINREINFORCEMENTF t OERQLASS JOINTREINFORCEMENT \I NBoARD ANO @JTBOA!J;~RE-MOLDEDHALVESO OR CASTSHELLI ROM OALLASTI N RESIN I MPREQNATEDREINFORCEMENTFigure 3-51 Connection <strong>of</strong> Shell Halves -Cruis<strong>in</strong>g Sailboat with Ballast [Gibbs and Cox,Mar<strong>in</strong>e Design Manual for FR~FI EIERGLASSRE I NFOROEMENTJO I t4T/“. ..- ——-SHELL‘1 PLY LIGHT MAT ANDVEE JOINT 1 pLY CLOTHHALVESFigure 3-52 Connection <strong>of</strong> Shell HaIves -Small Boats Only [Gibbs and Cox, Mar<strong>in</strong>e DesignManual for FRPl119


Design <strong>of</strong> DetailsMar<strong>in</strong>e CompositesPFIE4JOLDE0F 10ERGLAS~E 1NFORCLOCALFIBEBQLASSREINFORCEMENT —1 ● LY L1tiH1 MAT -- “AND ‘1 PLY CLOTVLARGEWASHER+&lWJNK AND SHELL MOLnE> SEPARA1 ELYFigure 3-53 Connection <strong>of</strong> Shelland Centerboard Trunk [Gibbs andCox, Mar<strong>in</strong>e Design Manual for FRPlFigure 3-54 Ballast to Hull Connection[Gibbs and Cox, Mar<strong>in</strong>e DesignManual for FRflSAND OR GRIND TO:l:Ml:O’E7/BACKING PLATESTO Ix REUOVECICELLOPHANE/SEPARATINGOR OTHERFILMPRE~OED J L MOL13ED IN PLACE L.-mmmII NATE dOINT REINFORCEMENT LAMI NATE& PBEFERRED CONSTRUCTION~TIWL EIACK,W PLATEPW-mLmoJ LSMXING PLATE L MOLDED IN kRE+OLOEDLAwINATE ‘- TO BE REMoVED PLAcE dOINT LAM I NATEREINFORCEMENTh.ACCEPTABLEALTEPNATEFigure 3-55Butt Jo<strong>in</strong>ts [Gibbsand Cox, Mar<strong>in</strong>e Design ManualforFR~120


Cha@erThreeDESIGNprovided to support hydrodynamic lift and ground<strong>in</strong>g forces that are transmitted through <strong>the</strong>bolts. Installation <strong>of</strong> propeller struts, especially s<strong>in</strong>gle foil types popular on sailboats and somepowerboats, should be treated with similar caution as shaft or propeller imbalance, as well aslateral shaft resonances, can create large alternat<strong>in</strong>g moments.BulkheadsThe scantl<strong>in</strong>g for actual bulkheads are usually determ<strong>in</strong>ed from regulatory body requirements orfirst pr<strong>in</strong>cipals cover<strong>in</strong>g flood<strong>in</strong>g loads and <strong>in</strong>-plane deck compression loads. Design pr<strong>in</strong>cipalsdeveloped for hull panels are also relevant for determ<strong>in</strong><strong>in</strong>g required bulkhead strength. Of<strong>in</strong>terest <strong>in</strong> this section is <strong>the</strong> connection <strong>of</strong> bulkheads or o<strong>the</strong>r panel stiffeners that are normal to<strong>the</strong> hull surface. In addition to <strong>the</strong> jo<strong>in</strong>t strength, <strong>the</strong> strength <strong>of</strong> <strong>the</strong> bulkhead and <strong>the</strong> hull <strong>in</strong><strong>the</strong> immediate area <strong>of</strong> <strong>the</strong> jo<strong>in</strong>t must be considered. O<strong>the</strong>r design considerations <strong>in</strong>clude:●●●●●Some method to avoid creation <strong>of</strong> a “hard” spot should be <strong>use</strong>dStiffness <strong>of</strong> jo<strong>in</strong>t should be consistent with local hull panelAvoid lam<strong>in</strong>at<strong>in</strong>g <strong>of</strong> sharp, 90° cornersGeometry should be compatible with fabrication capabilitiesCutouts should not leave bulkhead core material exposedAn acceptable configuration for <strong>use</strong> with solid FRP hulls is shown <strong>in</strong> Figure 3-56. As a generalrule, tape-<strong>in</strong> material should be at least 2 <strong>in</strong>ches along each leg have a thickness half <strong>of</strong> <strong>the</strong>solid side she~ taper for a length ecpd to at least three times <strong>the</strong> tape-<strong>in</strong> thiclmess; and <strong>in</strong>cludesome sort <strong>of</strong> filletmaterial. Figure 3-57shows an example <strong>of</strong>\elastomeric support under<strong>the</strong> bulkhead <strong>in</strong>conjunction with a hull<strong>of</strong> sandwich construction. THESE DI MENw10t#3 SHOULDBE MI NIWM CONSISTENTDouble bias knitted tapes./WITH STRENGTH REQUI REMENTowith or without a matF I SERGLASS ANGLESzfl MI NIWM REcOMNENDEDOTO FORM00NNECT10Nback<strong>in</strong>g are excellentchoices for tape-<strong>in</strong>material. With primaryre<strong>in</strong>forcement oriented atY 45°, all <strong>fiber</strong>glass addsto <strong>the</strong> strength <strong>of</strong> <strong>the</strong>jo<strong>in</strong>t, while at <strong>the</strong> sametime afford<strong>in</strong>g moreflexibility. Figure 3-58shows a comparisonbetween double-bias tape<strong>in</strong>versus conventionalwoven rov<strong>in</strong>g tape-<strong>in</strong>.,2,.”: /-.A,1:~;L.l,EXTRA PLIES Of F I BEROLASS MATJ’!!-.-—/“ ,.4 .,, TO REINFORCE SHELL - OPT10tL4L,/.” ~ ●“I>,,,.;\ SHELL OR DECK - I LLET CORES - USE CONTINUOUSLAUIN4TE STRIP WITH I NCOWRESSIBLEBULKWAD OR fW4EFigure 3-56 Connection <strong>of</strong> Bulkheads and Fram<strong>in</strong>g toShell or Deck [Gibbs and Cox, Mar<strong>in</strong>e Design Manua/ forFRq121


Design<strong>of</strong> Details Akrhe CompositesStiffenersStiffeners <strong>in</strong> FRP construction canei<strong>the</strong>r be longitud<strong>in</strong>al or transverseand usually have a non-structural corethat serves as a form. In general, GLEcont<strong>in</strong>uity <strong>of</strong> longitud<strong>in</strong>al membersshould be ma<strong>in</strong>ta<strong>in</strong>ed withappropriate cut-outs <strong>in</strong> transversemembers. These <strong>in</strong>tersections shouldbe completely bonded on both <strong>the</strong>H9UW 3-57 Elastomericfore snd aft side <strong>of</strong> <strong>the</strong> transversement [USCG NVIC No. 8-87]member with a schedule similar toBulkhead Attatch-that <strong>use</strong>d for bond<strong>in</strong>g to <strong>the</strong> hall.B ;‘..Traditional FRP design philosophy :.. Double Bias Tape Woven Rov<strong>in</strong>g ;produced stiffeners that were verynarrow and deep to take advantage<strong>of</strong> <strong>the</strong> <strong>in</strong>creased section modulus andstiffness produced by this geometry.The current trend withhigh-perfommnce vehicles is towardshallower, wider stiffeners thatreduce effective panel width andm<strong>in</strong>imize stress concentrations.Figure 3-59 shows how panel spancan be reduced with a low aspectratio stiffener. Some builders - areFigure 3-58 Double Bias and Woven Rov<strong>in</strong>g<strong>in</strong>vestigat<strong>in</strong>g techniques to <strong>in</strong>tegrally Bulkhead Tape-In [Knytex]mold <strong>in</strong> stiffeners alongwith <strong>the</strong> hull’s primary<strong>in</strong>ner sk<strong>in</strong>, - thusSPAN OR SPACING .elirn<strong>in</strong>adng secondary l+- FOR STIWENERS Ibond<strong>in</strong>g problemsaltoge<strong>the</strong>r.Regulatory agencies,such as ABS, typicallyspecify stiffenerSPAN FOR Ascantl<strong>in</strong>gs <strong>in</strong> terms <strong>of</strong> 1- PLATE PANEL~required- section moduliand moments <strong>of</strong> <strong>in</strong>ertia.[Refi 3-5, 3-6, 3-24] Figure 3-59 Illustration <strong>of</strong> Referencemensions [USCG NVIC No. 8-87]Exarnples <strong>of</strong> a s<strong>in</strong>gleStiffener Span Disk<strong>in</strong>FRP stiffener and a high-strength material stiffener with a cored panel are presented alongwith sample property calculations to illustrate <strong>the</strong> design process. These examples aretaken from USCG NVIC No. 8-87. [3-24]i122


Chapter ThreeDESIGN‘~w”: :,B5.5”6S)”O.j’ D - &q~.fl+~+YtL 4 ,::=,4. ● ‘:


Design <strong>of</strong> DetailsAMne CompositesAIThree <strong>in</strong>ch wide layer <strong>of</strong>Kevla# <strong>in</strong> <strong>the</strong> topflange <strong>of</strong> <strong>the</strong> stiffener0.5”7.5”6.5’42?Dc0.5”1—Figure 3-61 Str<strong>in</strong>ger Geometry for Sandwich Construction <strong>in</strong>clud<strong>in</strong>g High-StrengthRe<strong>in</strong>forcement [USCG NVIC No. 8-87]Table 3-6. High Strength Stiffener with Sandwich Side ShellItem b h A=bxh d Ad Ad2 IAl 3.70 0.50 3.29* 7,25 52.56 381.08 0.039A2 3.80 0.50 1.90 6.75 12,83 86.57 0.040B 0.50 5.00 2.50 4.00 10.00 40.00 5.208B 0.50 5.00 2,50 4,00 10.00 40.00 5.208c 2.00 0.50 1.00 1.75 1.75 3.06 0.021c 2.00 0.50 1.00 1.75 0.75 0.56 0.021D 3,00 0.50 0.75 0.67 0.50 0.33 0.01El 28.94 0.25 7.23 1.375 9.95 13.68 0.038E2 28.94 0.25 7.23 0.125 0.90 0.11 0.038Totals: 27.40 99.24 565.39 10.620m-INA = ~iO+ ~d2– [Ad2] = 10.86+ 115.92- [16.85X (1.81)2] = 71.58 ti4SM,OP= +=‘A tOJ7SM&tO~= ~ INAbdtom71.58—=4.1930.26 <strong>in</strong>3= 71.58—=1.8139.55 <strong>in</strong>s124


ChqXerThreeDESIGN●●SYM130LS:b= width or horizontal dimensionh = height or vertical dimensiond = height tQcenter <strong>of</strong> A from reference axisNA = neutral axisi= oitem moment <strong>of</strong> <strong>in</strong>ertia= bhxzd NA =distance from reference axis to real NAI NA =moment <strong>of</strong> <strong>in</strong>ertia <strong>of</strong> stiffener and plate about <strong>the</strong> real neutral axisThe assumed neutral axis is at <strong>the</strong> outer shell so all distances are positive.●Note how <strong>the</strong> stiffened plate is divided <strong>in</strong>to discreet areas and lettered.●Items B and C have <strong>the</strong> same effaton section properties and are counted twice.●Some simplifications were made for <strong>the</strong> vertical legs <strong>of</strong> <strong>the</strong> stiffener, item B.The item io was calculated us<strong>in</strong>g <strong>the</strong> equation for <strong>the</strong> 1 <strong>of</strong> an <strong>in</strong>cl<strong>in</strong>ed rectangle.Consider<strong>in</strong>g <strong>the</strong> legs as vertical members would be a fur<strong>the</strong>r simplification.●Item D is comb<strong>in</strong>ed from both sides <strong>of</strong> <strong>the</strong> required bond<strong>in</strong>g angle taper.●EKeVZa@ = 9.8 msiRatio <strong>of</strong> elastic mochdi E = E@$~S 5.5 msi✎☛Effective area <strong>of</strong> Kevlar@ compared to <strong>the</strong> E-glass = 3.7 x 0.5 x 1.78 = 3.29●The overall required section modulus for this example must also reflect <strong>the</strong> mixedmaterials calculated as a mtiler to <strong>the</strong> required section modulus:E ● UltimateStrength~_~l&,sMKo,ar9= sME_gh~x EK’’l”’x~~b~ UltimateS*engthK~Vk,*E KevkraUlti17UUt? Strength~_~~~ 9.8 m~i ~lo ksiE x UltimateNrengthK,VbP= 5.5 rnsi x 196ksi = 1.0.l-glmsRe<strong>in</strong>forc<strong>in</strong>g <strong>fiber</strong>s <strong>of</strong> different strengths and different moduli can be limited <strong>in</strong> <strong>the</strong> smount<strong>of</strong> strength that <strong>the</strong> <strong>fiber</strong>s can develop by <strong>the</strong> maximum elongation tolerated by <strong>the</strong> res<strong>in</strong>and <strong>the</strong> stra<strong>in</strong> to failure <strong>of</strong> <strong>the</strong> surround<strong>in</strong>g lam<strong>in</strong>ate. Thmefore, <strong>the</strong> slrength <strong>of</strong> <strong>the</strong> overalllam<strong>in</strong>ate should be amdyz@ and for marg<strong>in</strong>al safety factor designs or arrangementsmeet<strong>in</strong>g <strong>the</strong> m<strong>in</strong>imum <strong>of</strong> a rule, tests <strong>of</strong> a sample lam<strong>in</strong>ate should be conducted to prove<strong>the</strong> <strong>in</strong>tegrity <strong>of</strong> <strong>the</strong> design. In this example, <strong>the</strong> required section modulus was unchsngedbut <strong>the</strong> credit for <strong>the</strong> actusl section modulus to meet <strong>the</strong> rule was significant.125


Design <strong>of</strong> DetailsMar<strong>in</strong>e CompositesEng<strong>in</strong>e BedsIf properly fabricated, eng<strong>in</strong>e beds <strong>in</strong> FRP vessels can potentially reduce <strong>the</strong> transmission <strong>of</strong>mach<strong>in</strong>ery vibration to <strong>the</strong> hull. Any foundation support<strong>in</strong>g propulsion mach<strong>in</strong>ery should begiven <strong>the</strong> same attention afforded <strong>the</strong> ma<strong>in</strong> eng<strong>in</strong>e girders.As a general rule, eng<strong>in</strong>e girdersshould be <strong>of</strong> sufficient strength,stiffness and stability to ensureproper operation <strong>of</strong> rotat<strong>in</strong>gmach<strong>in</strong>ery. Proper bond<strong>in</strong>g to <strong>the</strong>hull over a large area is essential.Girders should be cont<strong>in</strong>uousthrough transverse frames andterm<strong>in</strong>ate with a gradual taper.Lam<strong>in</strong>ated timbers have been <strong>use</strong>das a core material beca<strong>use</strong> <strong>of</strong>excellent damp<strong>in</strong>g properties and <strong>the</strong>ability to hold lag bolt fasteners.Consideration should be given tobedd<strong>in</strong>g lag bolts <strong>in</strong> res<strong>in</strong> to preventwater egress. Some builders <strong>in</strong>cludesome metallic stock between <strong>the</strong>core and <strong>the</strong> lam<strong>in</strong>ate to acceptmach<strong>in</strong>e screws. If this is done,proper care should be exercised toguarantee that <strong>the</strong> metal rema<strong>in</strong>sbonded to <strong>the</strong> core. New, highdensity PVC foam cores <strong>of</strong>fer anattractive alternative that elim<strong>in</strong>ates<strong>the</strong> concern over future wood decay.Figures 3-62 through 3-64 showsome typical eng<strong>in</strong>e mount<strong>in</strong>gconfigurations.HardwareThrough-bolts are always moredesirable than self-tapp<strong>in</strong>g fasteners.Hardware <strong>in</strong>stallations <strong>in</strong> s<strong>in</strong>gle sk<strong>in</strong>lam<strong>in</strong>ates is fairly straightforward.Back<strong>in</strong>g plates <strong>of</strong> alum<strong>in</strong>um orsta<strong>in</strong>less steel are always preferableover simple washers. If us<strong>in</strong>g onlyoversized washers, <strong>the</strong> localthickness should be <strong>in</strong>creased by atleast 25%. [3-25] The strength <strong>of</strong>hardware <strong>in</strong>stallations should beENG I NE HOLD-DOWN ---.— .-. %‘0’--—————i,FlaERGLASS ANGLE ,=PRE4,10LDEDTRANSVERSEANDctiQwiSWITAWEE$- - ._-_—_. =\ IIv~ I 2ERGLASSCONNECT I NG ANGLESi— ENGINE(j\/I‘oA;j::L::o:T”pSHELLFigure 3-62 Eng<strong>in</strong>e Bearer - Pre-MoldedFiberglass Angle Bonded to Shell [Gibbs and Cox,Mar<strong>in</strong>e Design Manual for FRflENGINE HOLD-DOWN ~.. -------- -— ENGINE00LT3STEELTHROUGH BWITH METANON-STRUCTURALCOPEORLATORHELLsTRIPEB WITHFigure 3-63 Eng<strong>in</strong>e Bearer - Steel AngleBolted to Hat Stiffener [Gibbs and Cox, Mar<strong>in</strong>eDesign Manual for FRfli! STEEL CLIP IN WAY OF\, ENGINE HOLO-DOWNL.–.JFt BERGLASS ST IFFENERNOWSTRUCTURALCOPEBOLTSWI THFigure 3-64 Eng<strong>in</strong>e Bearer - Steel ClipBolted to Hat Stiffener [Gibbs and Cox, Mar<strong>in</strong>eDesign Manual for FRfl126


Chapter ThreeDESIGNconsistent with <strong>the</strong> comb<strong>in</strong>ed load on a particular piece <strong>of</strong> hardware. In addition to shear andnormal loads, applied moments with tall hardware must be considered. W<strong>in</strong>ches that aremounted on pedestals are examples <strong>of</strong> hardware that produce large overturn<strong>in</strong>g moments.Hardware <strong>in</strong>stallation <strong>in</strong> cored construction requires a little more plann<strong>in</strong>g and effort. Lowdensity cores have very poor hold<strong>in</strong>g power with screws and tend to compress under <strong>the</strong> load <strong>of</strong>bolts. Some builders simply taper <strong>the</strong> lam<strong>in</strong>ate to a solid thiclmess <strong>in</strong> way <strong>of</strong> planned hardware<strong>in</strong>stallations. This technique has <strong>the</strong> drawback <strong>of</strong> generally reduc<strong>in</strong>g <strong>the</strong> section modulus <strong>of</strong> <strong>the</strong>deck unless a lot <strong>of</strong> solid glass is <strong>use</strong>d, A more efficient approach <strong>in</strong>volves <strong>the</strong> <strong>in</strong>sertion <strong>of</strong> ahigher density core <strong>in</strong> way <strong>of</strong> planned hardware. In <strong>the</strong> pas~ <strong>the</strong> material <strong>of</strong> choice wasplywood, but high density PVC foam will provide superior adhesion. Figure 3-65 illustratesthis technique.UPPERSKIN<strong>of</strong> SANDwl CHMOLDED- I N OR PRE-MOLDEDF 18EF?GLASSINSERT I NWAYOF THREADEDFASTENER.. .. . . . . . .LOWERSKI N OFFigure 3-65 Fiberglass Insert for Threaded or Bolted Fasteners <strong>in</strong> Sandwich Construction[Gibbs and Cox, Mar<strong>in</strong>e Design Manual for F/?PlHardware must <strong>of</strong>ten be located and mounted after <strong>the</strong> primary lam<strong>in</strong>ate is complete. Toelim<strong>in</strong>ate <strong>the</strong> possibility <strong>of</strong> core crush<strong>in</strong>g, a compression tube as illustrated <strong>in</strong> Figure 3-66should be <strong>in</strong>serted.Non-essential hardware and trim,especially on small boats, is <strong>of</strong>tenmounted with screw fasteners.Table 3-7 is reproduced toprovide some guidance <strong>in</strong>determ<strong>in</strong><strong>in</strong>g <strong>the</strong> potential hold<strong>in</strong>gforce <strong>of</strong> <strong>the</strong>se fasteners. Thistable is suitable for <strong>use</strong> with matand woven rov<strong>in</strong>g type lam<strong>in</strong>atewith tensile strength between 6and 25 ksi; compressive strengthbetween 10 and 22 ksti and shearstrength between 10 and 13 ksi.ANDw I cl-l SKINSCORE MATER I AALLY REI hIFORCEDI NGREASED BEARINGENGTH I F NECESSARYFITTIEuFigure 3-66 Through Bolt<strong>in</strong>g <strong>in</strong> Sandwich Construction[Gibbs and Cox, Mar<strong>in</strong>e Design Manua/ forFRPl127


Design <strong>of</strong> DetailsMar<strong>in</strong>e CompositesTable 3-7. Hold<strong>in</strong>g Forces <strong>of</strong> Fasteners <strong>in</strong> Mat/Polyester Lam<strong>in</strong>ates[Gibbs and Cox, Mar<strong>in</strong>e Design Manual for FRPJAxial Holdlng ForceLateral Holdlng ForceT&d Mh’ilmum Maximum Mlnlmum MaximumDee::Force(Ibs)YW)hyi$Mach<strong>in</strong>e ScrewsDen~\hForoe Depth Force(Ibs) (<strong>in</strong>s) (Ibs)4-40 .125 40 .3125 450 .0625 150 .125 2906-32 ,125 60 ,375 600 ,0625 180 .125 3808-32 .125 100 .4375 1150 .0625 220 .1875 75010-32 .125 150 .5 1500 ,125 560 .25 13501/4 -20 .1875 300 .625 2300 .1875 1300 .3125 1900!3@-18 .1875 400 .75 <strong>360</strong>0 .1875 1600 .4375 290094-16 .25 530 .875 5000 .25 2600 .625 40007/16.14 .25 580 1.0 6500 .3125 3800 .75 5000l&.13 .25 620 1.125 8300 .375 5500 ,875 60009/16.12 ,25 650 1,25 10000 .4375 6500 .9375 8000‘%-11 .25 680 1,375 12000 .4375 6800 1.0 11000W4- 10 .25 700 1.5 13500 .4375 7000 1.0625 17000—Self Tapp<strong>in</strong>g Thread Cutt<strong>in</strong>g Screws4-40 .125 80 ,4375 900 ,125 250 .1875 4106-32 .125 100 .4375 1100 ,125 300 .25 7008-32 .25 350 .75 2300 .1875 580 .375 130010-32 .25 400 .75 2500 .1875 720 .4375 17501/4-20 .375 600 1.0625 4100 .25 1600 .625 3200Self Tapp<strong>in</strong>g Thread Form<strong>in</strong>g Screws4-24 .125 50 .375 500 .125 220 .1875 5006-20 .1875 110 .625 850 .125 250 .25 6008-18 .25 180 ,8125 1200 .1875 380 .3125 85010-16 .25 220 .9375 2100 .25 600 .5 150014-14 .3125 <strong>360</strong> 1.0625 3200 .25 900 .6875 28005/16.18 .375 570 1.125 4500 .3125 1800 .8125 4400%-12 .375 700 1,125 5500 .375 <strong>360</strong>0 1.0 6800128


Chapter ThreeDESIGNThickness TransitionFRP construction gives <strong>the</strong> designer <strong>the</strong> Horn to tailor sk<strong>in</strong> thiclmesses very precisely. Theefficiency <strong>of</strong> cored structures <strong>in</strong> resist<strong>in</strong>g normal loads makes this type <strong>of</strong> construction popular.These two advantages <strong>of</strong> FRP construction csn lead to stress concentrations if thicknessvariations are not - adequatelytapered. Figure 3-67 illustrates arecommen&d taper equal to threetimes <strong>the</strong> core thiclmess. When ~+ 3taper<strong>in</strong>g from a cored lam<strong>in</strong>ate to asolid area, consideration should be /Eaz;] .~.*,*.O.*.f.*.f..*.9.*:”?*;+;+:, J.,.,.J.f. CQRE;.;*x.”b”.’given to <strong>the</strong> m.iluced sectionmodulus that will occur withoutadditional re<strong>in</strong>forcement material.Figure 3-67 Recommended Core Taper forHatches and Potilights Transition to S<strong>in</strong>gle-Sk<strong>in</strong> [USCG NVIC No. 8-87]Stress concentrations - around deckand hull open<strong>in</strong>gs are a problem with metal as well as FRP hulls. Ship designers are acutelyaware <strong>of</strong> this problem when desi@ng conta<strong>in</strong>erships with large hatch covers. The designer isexpected to make allowances for <strong>the</strong> loss <strong>of</strong> longitud<strong>in</strong>al and torsional strength. Corners <strong>of</strong>open<strong>in</strong>gs should be radi<strong>use</strong>d to relieve undue smess concentrations.Open<strong>in</strong>gs <strong>in</strong> smaller crtit are usually cut as <strong>the</strong> vessel news completion. In <strong>the</strong> case <strong>of</strong> FRPconstructed vessels, re<strong>in</strong>forcement <strong>fiber</strong>s can be cut <strong>in</strong> a fashion that ca<strong>use</strong>s excessivedeterioration <strong>of</strong> global strengths. Just as additional fram<strong>in</strong>g is usually added around an open<strong>in</strong>g<strong>in</strong> a metal ship, perimeter re<strong>in</strong>forcement is required with FRP. Restoration <strong>of</strong> re<strong>in</strong>forcement <strong>in</strong><strong>the</strong> direction that was severed is a primary goal Unidirectional and hi-axial tapes are <strong>use</strong>fulmaterials for local re<strong>in</strong>forcement.Care should always be exercised <strong>in</strong> <strong>the</strong> plann<strong>in</strong>g phases <strong>of</strong> a deck layout, especially when highperformance lam<strong>in</strong>ates are utiized. At a recent conference, a naval architect recounted a story<strong>of</strong> how a deck on a rac<strong>in</strong>g sailboat collapsed just aft <strong>of</strong> <strong>the</strong> deck partners after a pair <strong>of</strong>compasses were flush mounted. The po<strong>in</strong>t was made that <strong>the</strong> scantl<strong>in</strong>gs should not have beenso marg<strong>in</strong>al as to fail when two simple four <strong>in</strong>ch diameter holes were drilled. It was also notedthat such a modification to <strong>the</strong> deck is actwilly quite extreme when <strong>the</strong> amount <strong>of</strong> unidirectional<strong>fiber</strong> that was severed is considered.Through-HullsThrough-hull fitt<strong>in</strong>gs represent a specisl case <strong>of</strong> hull open<strong>in</strong>g <strong>in</strong> that <strong>the</strong>y are usually locatedbelow <strong>the</strong> waterl<strong>in</strong>e. These fitt<strong>in</strong>gs must exhibit <strong>the</strong> highest degree <strong>of</strong> both watertight andstructural <strong>in</strong>tegrity. NonmetaUic fitt<strong>in</strong>gs are ga<strong>in</strong><strong>in</strong>g popularity beca<strong>use</strong> <strong>of</strong> <strong>the</strong>ir noncorrosiveand <strong>in</strong>ert electrical properties. Any fitt<strong>in</strong>g will have a flat flange and a similsr mat<strong>in</strong>g surfaceshould be molded or mach<strong>in</strong>ed <strong>in</strong>to <strong>the</strong> hull.129


Design<strong>of</strong> DetailsMar<strong>in</strong>e CompositesWith s<strong>in</strong>gle sk<strong>in</strong> lam<strong>in</strong>ates, holes are normally drilled after <strong>the</strong> hull is completwl Carefulattention must be paid toward <strong>the</strong> seal<strong>in</strong>g <strong>of</strong> <strong>the</strong> lam<strong>in</strong>ate edges after <strong>the</strong> hole is drilled.Bedd<strong>in</strong>g and <strong>in</strong>stallation <strong>of</strong> <strong>the</strong> fitt<strong>in</strong>g is accomplished with <strong>the</strong> accompany<strong>in</strong>g hardware.Through-hull fitt<strong>in</strong>gs <strong>in</strong> sandwich can be <strong>in</strong>stalled a number <strong>of</strong> ways. One <strong>in</strong>volves <strong>the</strong> taper toa solid section with <strong>in</strong>stallation as per above. An alternative method <strong>use</strong>s a high density <strong>in</strong>sert<strong>in</strong> way <strong>of</strong> <strong>the</strong> fitt<strong>in</strong>g. Extreme care must be taken to seal <strong>the</strong> edge <strong>of</strong> <strong>the</strong> core and pott<strong>in</strong>g isusually suggested. Pott<strong>in</strong>g is similar to encapsulat<strong>in</strong>g, except that steps are taken to <strong>in</strong>surecomplete penetration <strong>of</strong> all <strong>the</strong> voids before <strong>the</strong> res<strong>in</strong> catalyzes. The high density core can alsobe <strong>in</strong>stalled by drill<strong>in</strong>g an oversize hole and lam<strong>in</strong>at<strong>in</strong>g it <strong>in</strong> place.Shroud AttachmentLoads at shroud and stay chaiuplates can be very grea~ wpecially with tall rigs.High-performance rac<strong>in</strong>g sailboats typically have very narrow spreader and shroud basedimensions to improve closew<strong>in</strong>dedness. Extreme tensile and deck compressive loads are thuscreated. As a design start<strong>in</strong>g po<strong>in</strong>t, <strong>the</strong> break<strong>in</strong>g strength <strong>of</strong> all shrouds and stays comb<strong>in</strong>edthrough vector addition should be considered. Figure 3-68 shows an <strong>in</strong>stallation for a cruis<strong>in</strong>gtype sadboat where <strong>the</strong> cha<strong>in</strong>plates may be mounted to <strong>the</strong> shell plat<strong>in</strong>g. More <strong>of</strong>ten than not,cha<strong>in</strong>plates are located fur<strong>the</strong>r <strong>in</strong>board than this. Never<strong>the</strong>less, <strong>in</strong>stallation details rema<strong>in</strong>similar if ty<strong>in</strong>g <strong>in</strong>to a bulkhead or longitud<strong>in</strong>al frame.Local re<strong>in</strong>forcement <strong>of</strong> <strong>the</strong>panel should extend bothfore and aft <strong>of</strong> <strong>the</strong> mast agood distance. An effective<strong>in</strong>sert capable <strong>of</strong> resist<strong>in</strong>gbolt compression and shesrloads should be present.Secondary stabiliz<strong>in</strong>gstructure as well as deckstreng<strong>the</strong>n<strong>in</strong>g <strong>in</strong> way <strong>of</strong> <strong>the</strong>mast partners are required.Bolted connections throughFRP should not load <strong>the</strong>material for greater thanabout 20q0 <strong>of</strong> its ultimatestrength if creep is to beavoided.SANDWICHCORE DECKWEB FRAME4~REINFORCED\BACKINGPLATESANDWICHCORE SHELLxEFFECTIVEINSERTFigure 3-68 Typical Shroud Attachment to Side Shellwith Sandwich Construction [USCG NVIC No. 8-87]RuddersRudders and support<strong>in</strong>g structure represent one <strong>of</strong> <strong>the</strong> most challeng<strong>in</strong>g design problems fac<strong>in</strong>ga nawd architect. High aspect ratio spade rudders are an extreme example. Hydrodynamicperformance criteria dictates <strong>the</strong> <strong>use</strong> <strong>of</strong> a ra<strong>the</strong>r nmrow foil section. The high aspect ratioproduces an enormous transverse moment about <strong>the</strong> lower bear<strong>in</strong>g. The rudder post itself mustadditionally resist torsional loads and rotate freely. Figure 3-69 is <strong>in</strong>cluded to illustrate <strong>the</strong>stress distribution result<strong>in</strong>g from bend<strong>in</strong>g moment and torque.130


...Chapter ThreeDESIGNmIiTransve&e Section‘7i\ IPr<strong>of</strong>ileBend<strong>in</strong>g MomentDistributionTo&eDistributionFigure 3-69 Typical Force Distribution with<strong>in</strong> a Spade Rudder [A13SGuide for Bui/d<strong>in</strong>gand Class<strong>in</strong>g Offshore Rac<strong>in</strong>g Yachts]Rudder weight is usually <strong>of</strong>fset by its buoyancy. The rnass, however, still exists and W<strong>in</strong>crease <strong>the</strong> vessel’s radius <strong>of</strong> gyration. Prudent design practice would strive to ma<strong>in</strong>ta<strong>in</strong> agood safety factor for <strong>the</strong> rudder structure beca<strong>use</strong> even m<strong>in</strong>or failures can <strong>in</strong>capacitate a vessel.The commercial mar<strong>in</strong>e <strong>in</strong>dustry recognizes this fact, but <strong>the</strong> competitive yacht<strong>in</strong>g market wascompelled to experiment with exotic materials such as carbon <strong>fiber</strong> <strong>in</strong> <strong>the</strong> late 1970’s. Thefailure rate <strong>in</strong> <strong>the</strong> 1979 Fastnet Race has become one <strong>of</strong> <strong>the</strong> most notorious cases <strong>of</strong> poorcomposite ‘design and process eng<strong>in</strong>eer<strong>in</strong>g. Those failures were primarily due to <strong>fiber</strong>misalignment with pr<strong>in</strong>cipal stresses and manufactur<strong>in</strong>g <strong>in</strong>consistencies. More thorougheng<strong>in</strong>eer<strong>in</strong>g, greater selection <strong>of</strong> re<strong>in</strong>forcement cordlguration and improved manufactur<strong>in</strong>gprocesses have virtually elim<strong>in</strong>ated failures <strong>in</strong> exotic lightweight rudder posts.Bear<strong>in</strong>g foundations with<strong>in</strong> <strong>the</strong> hull structure must be <strong>of</strong> sufficient strength to resist <strong>the</strong>moments transmitted through <strong>the</strong> bear<strong>in</strong>gs. Transverse r<strong>in</strong>g frames are typically <strong>in</strong>cluded to<strong>in</strong>crease torsional stiffness. ABS rules give good guidance on rudder stock and bear<strong>in</strong>gsupport.131


.Design <strong>of</strong> DetailsMar<strong>in</strong>e CompositesThis page Intentionally left blank132


ChapterFourPERFORMANCEAfundamental problem conced<strong>in</strong>g <strong>the</strong> eng<strong>in</strong>eer<strong>in</strong>g <strong>use</strong>s <strong>of</strong> <strong>fiber</strong> <strong>re<strong>in</strong>forced</strong> <strong>plastics</strong> (FRP)is<strong>the</strong> determ<strong>in</strong>ation <strong>of</strong> <strong>the</strong>ir resistance to comb<strong>in</strong>ed states <strong>of</strong> cyclic stress. [4-1] Compositematerials exhibit very complex failure mechanisms under static and fatigue load<strong>in</strong>g beca<strong>use</strong> <strong>of</strong>anisotropic characteristics <strong>in</strong> <strong>the</strong>ir strength and stiffness. [4-2] Fatigue ca<strong>use</strong>s extensive damagethroughout <strong>the</strong> specimen volume, lead<strong>in</strong>g to failure from general degradation <strong>of</strong> <strong>the</strong> material<strong>in</strong>stead <strong>of</strong> a predom<strong>in</strong>ant s<strong>in</strong>gle crack. A predom<strong>in</strong>ant s<strong>in</strong>gle crack is <strong>the</strong> most cormnon failuremechanism <strong>in</strong> static load<strong>in</strong>g <strong>of</strong> isotropic, brittle materials such as metals, There are four basicfailure mechanisms <strong>in</strong> composite materials as a result <strong>of</strong> fatigue: matrix crack<strong>in</strong>g, delam<strong>in</strong>ation,<strong>fiber</strong> breakage and <strong>in</strong>terracial debond<strong>in</strong>g. The different failure modes comb<strong>in</strong>ed with <strong>the</strong><strong>in</strong>herent anisotropies, complex stress fields, and overall non-l<strong>in</strong>ear behavior <strong>of</strong> compositesseverely limit our ability to understand <strong>the</strong> true nature <strong>of</strong> fatigue. [4-3] Figure 4-1 shows atypical comparison <strong>of</strong> <strong>the</strong> fatigue damage <strong>of</strong> composites and metals over time.Many aspects <strong>of</strong> tension-tension and tension-compression fatigue load<strong>in</strong>g have been<strong>in</strong>vestigated, such as <strong>the</strong> effects <strong>of</strong> heat, frequency, pre-stress<strong>in</strong>g samples, flaw<strong>in</strong>g samples, andmoisture [4-5 through 4-13], Mixed views exist as to <strong>the</strong> effects <strong>of</strong> <strong>the</strong>se parameters oncomposite lam<strong>in</strong>ates, due to <strong>the</strong> variation <strong>of</strong> materials, <strong>fiber</strong> orientations, and stack<strong>in</strong>gsequences, which make each composite behave differently.uATmlRCahcaweo~~oslfccnAcrumOC~ONDCVOID,FATtGtJE CYCLES OR TIME~gllre g-l Typical Comparison <strong>of</strong> Metal and Composite Fatigue Damage [Salk<strong>in</strong>d,Fat@ue <strong>of</strong> Composites]133


FatigueMar<strong>in</strong>e CompositesExtensive work has been done to establish failure criteria <strong>of</strong> composites dur<strong>in</strong>g fatigue load<strong>in</strong>g[4-1, 4-5,4-14, 4-15]. Fatigue failure can be defied ei<strong>the</strong>r as a loss <strong>of</strong> adequate stiffness, or asa loss <strong>of</strong> adequate strength. There sre two approaches to determ<strong>in</strong>e fatigue life; constant stre<strong>ssc</strong>ycl<strong>in</strong>g until loss <strong>of</strong> strength, and constant amplitude cycl<strong>in</strong>g until loss <strong>of</strong> stiffness. Theapproach to utilize depends on <strong>the</strong> design requirements for <strong>the</strong> lam<strong>in</strong>ate.In general, stiffness reduction is an acceptable failure criterion for many components which<strong>in</strong>corporate composite materials, [4-15] Figure 4-2 shows a typical curve <strong>of</strong> stiffness reductionfor composites and metal’. Stiffness change is a precise, easily measured and easily <strong>in</strong>terpreted<strong>in</strong>dicator <strong>of</strong> damage which can be directly related to microscopic degradation <strong>of</strong> compositematerials. [4-15]In a constant amplitude deflection load<strong>in</strong>g situation <strong>the</strong> degradation rate is related to <strong>the</strong> stresswith<strong>in</strong> <strong>the</strong> composite sample. hitidy, a larger load is required to deflect <strong>the</strong> sample. Thiscorresponds to a higher stress level. As fatigu<strong>in</strong>g cont<strong>in</strong>ues, less load is required to deflect <strong>the</strong>sample, hence a lower stress level exists <strong>in</strong> <strong>the</strong> sample. As <strong>the</strong> stress with<strong>in</strong> <strong>the</strong> sample isreduced, <strong>the</strong> amount <strong>of</strong> deterioration <strong>in</strong> <strong>the</strong> sample decreases. The reduction <strong>in</strong> load required todeflect <strong>the</strong> sample corresponds to a reduction <strong>in</strong> <strong>the</strong> stiffness <strong>of</strong> that sample. Therefore, <strong>in</strong>constant amplitude fatigue <strong>the</strong> stiffness reduction is dramatic at first, as substantial matrixdegradation occurs, and <strong>the</strong>n quickly tapers <strong>of</strong>f until only small reductions occur.sTIFPNESSLQa cYcLgsFigure 4-2 Comparison <strong>of</strong> MetalFatigue <strong>of</strong> Composites]andCompositeStiffness Reduction [Salk<strong>in</strong>d,134


ChapterFourPERFORMANCEIn a unidirectional <strong>fiber</strong> composite, cracks may occur along <strong>the</strong> <strong>fiber</strong> axis, which usually<strong>in</strong>volves matrix crack<strong>in</strong>g. Cracks may also form transverse to <strong>the</strong> <strong>fiber</strong> direction, which usually<strong>in</strong>dicates <strong>fiber</strong> breakage and matrix failure. The accumulation <strong>of</strong> cracks transverse to <strong>fiber</strong>direction leads to a reduction <strong>of</strong> load carry<strong>in</strong>g capacity <strong>of</strong> <strong>the</strong> lam<strong>in</strong>ate and with fur<strong>the</strong>r fatiguecycl<strong>in</strong>g may lead to a jagged, irregular failure <strong>of</strong> <strong>the</strong> composite material, This failure mode isdrastically different from <strong>the</strong> metal fatigue failure mode, which consists <strong>of</strong> <strong>the</strong> <strong>in</strong>itiation andpropagation <strong>of</strong> a s<strong>in</strong>gle crack, [4-1] Hahn [4-16] predicted that cracks <strong>in</strong> composite materialspropagate <strong>in</strong> four dist<strong>in</strong>ct modes. These modes are illustrated <strong>in</strong> Figure 4-3, where region Icorresponds to <strong>the</strong> <strong>fiber</strong> and region It corresponds to <strong>the</strong> matrix.IIIlltIIII-——(a)[b) (c) (d)Figure 4-3 Fatigue Failure Modes for Composite Materials - Mode (a) remesents atough matrix where <strong>the</strong> crack is forced to propagate through <strong>the</strong> <strong>fiber</strong>. Mode “(b)occurswhen <strong>the</strong> <strong>fiber</strong>/matrix <strong>in</strong>terface is weak. This is, <strong>in</strong> effect, debond<strong>in</strong>g. Mode (c) resultswhen <strong>the</strong> matrix is weak and has relatively little toughness. F<strong>in</strong>ally, Mode (d) occurs witha strong <strong>fiber</strong>/matrix <strong>in</strong>terface and a tough matrix. Here, <strong>the</strong> stress concentration is largeenough to ca<strong>use</strong> a crack to form <strong>in</strong> a neighbor<strong>in</strong>g <strong>fiber</strong> without crack<strong>in</strong>g <strong>of</strong> <strong>the</strong> matrix.Mode (b) is not desirable beca<strong>use</strong> <strong>the</strong> Iamlnate acts like a dry <strong>fiber</strong> bundle and <strong>the</strong> potentialstrength <strong>of</strong> <strong>the</strong> <strong>fiber</strong>s is not realized. Mode (c) is also undesirable beca<strong>use</strong> it is similarto crack propagation <strong>in</strong> brittle materials. The optimum strength is realized <strong>in</strong> Mode (a) as<strong>the</strong> <strong>fiber</strong> strengths are fully utilized. [Hahn, Fatigue <strong>of</strong> Composites]M<strong>in</strong>or cracks <strong>in</strong> composite materials may occur suddenly without warn<strong>in</strong>g and <strong>the</strong>n propagateat once through <strong>the</strong> specimen. [4-1] It should be noted that even when many cracks have beenformed <strong>in</strong> <strong>the</strong> res<strong>in</strong>, composite materials may still reta<strong>in</strong> respectable strength propefies. [4-17]The retention <strong>of</strong> <strong>the</strong>se strength properties is due to <strong>the</strong> fact that each <strong>fiber</strong> <strong>in</strong> <strong>the</strong> lam<strong>in</strong>ate is aload-carry<strong>in</strong>g member, and once a <strong>fiber</strong> fails <strong>the</strong> load is redistributed to ano<strong>the</strong>r <strong>fiber</strong>.135


FatigueA&f<strong>in</strong>e CompositesComposite Fatigue TheoryThere are many <strong>the</strong>ories <strong>use</strong>d to describe <strong>the</strong> composite material strength and fatigue life.S<strong>in</strong>ce no one analytical model can account for all <strong>the</strong> possible failure processes <strong>in</strong> a compositematerial, statistical methods to describe fatigue life have been adopted. Weibull’s distributionhas proven to be a <strong>use</strong>ful method to describe <strong>the</strong> material strength and fatigue life. TheWeibull distribution is based on three parameters; scale, shape and location. Estimat<strong>in</strong>g <strong>the</strong>separameters is based on one <strong>of</strong> three methods: <strong>the</strong> maximum-likelihood estimation method, <strong>the</strong>moment estimation method, or <strong>the</strong> standardized variable method. These methods <strong>of</strong> estimationare discussed <strong>in</strong> detail <strong>in</strong> references [4-18, 4-19], It has been shown that <strong>the</strong> moment estimationmethod and <strong>the</strong> maximum-likelihood method lead to lage errors <strong>in</strong> estimat<strong>in</strong>g <strong>the</strong> scale and <strong>the</strong>shape parameters, if <strong>the</strong> location parameter is taken to be zero. The standardized variableestimation gives accurate and more efficient estimates <strong>of</strong> all three parameters for low shapeboundaries. [4-19]Ano<strong>the</strong>r method <strong>use</strong>d to describe fatigue behavior is to extend static strength <strong>the</strong>ory to fatiguestrength by replac<strong>in</strong>g static strengths with fatigue functions.The power law has been <strong>use</strong>d to represent fatigue data for metals when high numbers <strong>of</strong> cyclesare <strong>in</strong>volved. By add<strong>in</strong>g ano<strong>the</strong>r term <strong>in</strong>to <strong>the</strong> equation for <strong>the</strong> ratio <strong>of</strong> oscillatory-to-meanstress, <strong>the</strong> power law can be applied to composite materials. [4-20]Algebraic and l<strong>in</strong>ear first-order differential equations can also be <strong>use</strong>d to describe <strong>the</strong> compositefatigue behavior. [4-14]There are many different <strong>the</strong>ories <strong>use</strong>dto describe fatigue life <strong>of</strong> compositematerials. However, given <strong>the</strong> broadrange <strong>of</strong> usage and diverse variety <strong>of</strong>composites <strong>in</strong> <strong>use</strong> <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e<strong>in</strong>dustry, <strong>the</strong>oretical calculations as to<strong>the</strong> fatigue life <strong>of</strong> a given compositeshould only be <strong>use</strong>d as a ilrst-order<strong>in</strong>dicator. Fatigue test<strong>in</strong>g <strong>of</strong> lam<strong>in</strong>ates<strong>in</strong> an experimental test program isprobably <strong>the</strong> best method <strong>of</strong> determ<strong>in</strong><strong>in</strong>g<strong>the</strong> fatigue properties <strong>of</strong> a candidatelam<strong>in</strong>ate. Fur<strong>the</strong>r test<strong>in</strong>g anddevelopment <strong>of</strong> <strong>the</strong>se <strong>the</strong>ories must beaccomplished to enhance <strong>the</strong>ir accuracy.Despite <strong>the</strong> lack <strong>of</strong> knowledge, empiricaldata suggest that composite materialsperform better than metals <strong>in</strong> fatiguesituations. Figure 4-4 depicts fatiguestrength characteristics for some metaland composite materials. [4-21]100—80 — -80 - -40—-20- -0— 1@Cycle+10failure~gure 4-4 Comparison <strong>of</strong> FatigueStrengths <strong>of</strong> Graphite/Epoxy, Steel, Fiberglass/Epoxyand Alum<strong>in</strong>um [Hercules]136


ChapterFourPERFORMANCEFatiaue Test DataAlthough precise predictions <strong>of</strong> fatigue life expectancies for F~ lam<strong>in</strong>ates is currently beyond<strong>the</strong> state-<strong>of</strong>-<strong>the</strong>-art <strong>of</strong> analytical techniques, some <strong>in</strong>sight <strong>in</strong>to <strong>the</strong> relative performance <strong>of</strong>constituent materials can be ga<strong>in</strong>ed from published test data. The InterPlastic Corporationconducted an exhaustive series <strong>of</strong> fatigue tests on mat/woven rov<strong>in</strong>g lam<strong>in</strong>ates to comparevtious polyester and v<strong>in</strong>yl ester res<strong>in</strong> formulations. [4-22] The conclusion <strong>of</strong> those tests isshow <strong>in</strong> Figure 4-5 and is summarized as follows:“Cyclic flexural test<strong>in</strong>g <strong>of</strong> specific polyester res<strong>in</strong> types resulted <strong>in</strong> predictabledata that oriented <strong>the</strong>mselves by polymer description, i.e., orthophthalic wasexceeded by isophthalic, and both were vastly exceeded by v<strong>in</strong>yl ester typeres<strong>in</strong>s. Little difference was observed between <strong>the</strong> standard v<strong>in</strong>yl ester and <strong>the</strong>new preaccelerated thixotropic v<strong>in</strong>yl esters.”+- curw?FllIEquatim:-D1~1 {04 ;.s /06PFK)JECIHS CYCLES T(IFAILUREiolFigure 4-5 Curve Fit <strong>of</strong> ASTM D671 Data for Various Types <strong>of</strong> Unsaturated PolyesterRes<strong>in</strong>s [Interplastic, Cycle Test Evacuation <strong>of</strong> Various Polyester Types and a Ma<strong>the</strong>maticalModel for Predict<strong>in</strong>g Flexural Fatigue Endurance]With regards to re<strong>in</strong>forcement materials <strong>use</strong>d <strong>in</strong> mar<strong>in</strong>e lam<strong>in</strong>ates, <strong>the</strong>re is not a lot <strong>of</strong>comparative test data available to illustrate fatigue characteristics. It should be noted thatfatigue performance is very dependent on <strong>the</strong> <strong>fiber</strong>/res<strong>in</strong> <strong>in</strong>terface performance. Tests by137


FatigueMar<strong>in</strong>e Compositesvarious <strong>in</strong>vestigators [4-23] suggest that a rank<strong>in</strong>g <strong>of</strong> materials from best to worst would looklike:oHigh Modulus Carbon Fiber. High Strength and Low Modulus Carbon. Kevlar/Carbon Hybrid*Kevlar●Glass/Kevlax Hybrids S-GlassoE-GlassThe construction and orientation <strong>of</strong> <strong>the</strong> re<strong>in</strong>forcement also plays a critical role <strong>in</strong> determ<strong>in</strong><strong>in</strong>gfatigue performance, It is generally perceived that larger quantities <strong>of</strong> th<strong>in</strong>ner plies performbetter than a few layers <strong>of</strong> thick plies. Figure 4-23 shows a comptison <strong>of</strong> various fabricconstructions with regard to fatigue performance.60 -——— Flexuralfatiguaat23‘C (73 OF)— Axial fatigue at 23 % (73 OF).=xi~=502 40:E- 30 \.:~dJ220 -‘~’\“’”’’--i%>-~-


ChapterFourPERFORMANCEThe <strong>in</strong>troduction <strong>of</strong> FRP and FRP sandwich materials <strong>in</strong>to <strong>the</strong> boat<strong>in</strong>g <strong>in</strong>dustry has led tolighter, stiffer and faster boats. This leads, <strong>in</strong> general, to reduced impact performance, s<strong>in</strong>cehigher speeds ca<strong>use</strong> impact energy to be higher, while stiffer structures usually absorb lessimpact energy before failure. Thus, <strong>the</strong> response <strong>of</strong> a FRP composite mar<strong>in</strong>e sh-ucture toimpact loads is an important consideration.The complexity and variability <strong>of</strong> boat impacts makes it very difficult to def<strong>in</strong>e an impact loadfor design purposes. There is also a lack <strong>of</strong> <strong>in</strong>formation on <strong>the</strong> behavior <strong>of</strong> <strong>the</strong> FRP compositematerials when subjected to <strong>the</strong> high load rates <strong>of</strong> an impact, and analytical methods are, atpresent, relatively crude. Thus, it is difficult to explicitly <strong>in</strong>clude impact loads <strong>in</strong>to <strong>the</strong>structural analysis and design process. Instead, basic knowledge <strong>of</strong> <strong>the</strong> pr<strong>in</strong>ciples <strong>of</strong> impactload<strong>in</strong>g and structural response is <strong>use</strong>d as a guide to design structures for relatively betterimpact performance,The impact response <strong>of</strong> a composite structure can be divided <strong>in</strong>to four categories. In <strong>the</strong> first,<strong>the</strong> entire energy <strong>of</strong> <strong>the</strong> impact is absorbed by <strong>the</strong> structure <strong>in</strong> elastic deformation, and <strong>the</strong>nreleased when <strong>the</strong> structure returns to its orig<strong>in</strong>al position or shape. Higher energy levelsexceed <strong>the</strong> ability <strong>of</strong> <strong>the</strong> structure to absorb <strong>the</strong> energy elastically. The next level is plasticdeformation, <strong>in</strong> which some <strong>of</strong> <strong>the</strong> energy is absorbed by elastic deformation, while <strong>the</strong>rema<strong>in</strong>der <strong>of</strong> <strong>the</strong> energy is absorbed through permanent plastic deformation <strong>of</strong> <strong>the</strong> structure.Higher energy levels result <strong>in</strong> energy absorbed through damage to <strong>the</strong> structure. Fimilly, <strong>the</strong>impact energy levels can exceed <strong>the</strong> capabilities <strong>of</strong> <strong>the</strong> structure, lead<strong>in</strong>g to catastrophic failure.The maximum energy which can be absorbed <strong>in</strong> elastic deformation depends on <strong>the</strong> stiffness <strong>of</strong><strong>the</strong> materials and <strong>the</strong> geometry <strong>of</strong> <strong>the</strong> structure. Damage to <strong>the</strong> structural lam<strong>in</strong>ate can be <strong>in</strong> <strong>the</strong>form <strong>of</strong> res<strong>in</strong> crack<strong>in</strong>g, delam<strong>in</strong>ation between plies, &bond<strong>in</strong>g <strong>of</strong> <strong>the</strong> res<strong>in</strong> <strong>fiber</strong> <strong>in</strong>terface, and<strong>fiber</strong> breakage for solid FRP lam<strong>in</strong>ates, with <strong>the</strong> addition <strong>of</strong> debond<strong>in</strong>g <strong>of</strong> sk<strong>in</strong>s from <strong>the</strong> core <strong>in</strong>sandwich lam<strong>in</strong>ates. The amount <strong>of</strong> energy which can be absorbed <strong>in</strong> lam<strong>in</strong>ate and structuraldamage depends on <strong>the</strong> res<strong>in</strong> properties, <strong>fiber</strong> types, fabric types, <strong>fiber</strong> orientation, fabricationtechniques and rate <strong>of</strong> impactImpact Design ConsiderationsThe general pr<strong>in</strong>ciples <strong>of</strong> impact design are as follows. The k<strong>in</strong>etic energy <strong>of</strong> an impact is:where:K.E. = $v = <strong>the</strong> collision velocity and m is <strong>the</strong> mass <strong>of</strong> <strong>the</strong> boat or <strong>the</strong> impactor,whichever is smaller.The energy that can be absorbed by an isotropic beam po<strong>in</strong>t loaded at mid-span is:r K.E. = — o 2%21”139


ImpactMar<strong>in</strong>e Compositeswhere:L= <strong>the</strong> span lengthM = <strong>the</strong> momentE = Young’s Modulus1 = moment <strong>of</strong><strong>in</strong>mtiaFor <strong>the</strong> small deformations <strong>of</strong> a composite panel, <strong>the</strong> expression can be simplified to:where:K.E. = S2AL~6EC2s = <strong>the</strong> stressA = cross-sectional arear = <strong>the</strong> depth <strong>of</strong> <strong>the</strong> beamc = <strong>the</strong> depth <strong>of</strong> <strong>the</strong> outermost <strong>fiber</strong> <strong>of</strong> <strong>the</strong> beamFrom this relationship, <strong>the</strong> follow<strong>in</strong>g conclusions can be dram.●Increas<strong>in</strong>g <strong>the</strong> sk<strong>in</strong> lam<strong>in</strong>ate modulus E ca<strong>use</strong>s <strong>the</strong> sk<strong>in</strong> stress levels to <strong>in</strong>crease.The weight rema<strong>in</strong>s <strong>the</strong> same and <strong>the</strong> flexural sdfFnessis <strong>in</strong>creased.. Increas<strong>in</strong>g <strong>the</strong> beam thickness r &creases <strong>the</strong> sk<strong>in</strong> stress levels, but it also<strong>in</strong>creases flexural stiffness and <strong>the</strong> weigh~●Increas<strong>in</strong>g <strong>the</strong> span length L decreases <strong>the</strong> sk<strong>in</strong> stress levels. The weightrema<strong>in</strong>s <strong>the</strong> same, but flexural stiffness is decreased.Therefore, <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> span will decrease sk<strong>in</strong> stress levels and <strong>in</strong>crease impact energyabsorption, but <strong>the</strong> flexural stiffness is reduced, thus <strong>in</strong>creas<strong>in</strong>g static load stress levels.For a sandwich structure:where:~= btd22s = sk<strong>in</strong>stressd = core thicknessb = beam widtht = sk<strong>in</strong> thickness140


ChapterFourPERFORMANCEThus <strong>the</strong> energy absorption <strong>of</strong> a sandwich beam is:~E = S2btL. .4EFrom this relationship, <strong>the</strong> follow<strong>in</strong>g conclusions can be drawn:● Increas<strong>in</strong>g <strong>the</strong> sk<strong>in</strong> lam<strong>in</strong>ate modulus E ca<strong>use</strong>s <strong>the</strong> sldn stress levels to<strong>in</strong>crease. The weight rema<strong>in</strong>s <strong>the</strong> same and <strong>the</strong> flexural stiffness is<strong>in</strong>creased.●Increas<strong>in</strong>g <strong>the</strong> sk<strong>in</strong> thickness tdecreases <strong>the</strong> sk<strong>in</strong> stress levels, but it also<strong>in</strong>creases flexural stiffness and <strong>the</strong> weight.c Increas<strong>in</strong>g <strong>the</strong> span length L decreases <strong>the</strong> sk<strong>in</strong> stress levels. The weightrema<strong>in</strong>s <strong>the</strong> same, but flexural stiffness is decreased.●Core thickness has no effect on impact energy absorption.Therefore, <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> span will decrease sldn stress levels and <strong>in</strong>crease impact energyabsorption, while <strong>the</strong> flexural stiffness can be ma<strong>in</strong>ta<strong>in</strong>ed by <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> core thickness.An impact study <strong>in</strong>vestigat<strong>in</strong>g sandwich panels with different core materials, different <strong>fiber</strong>types and different res<strong>in</strong>s supports some <strong>of</strong> <strong>the</strong> above conclusions. [4-24] This study found thatpanels with higher density foam cores performed better than identical panels with lower densityfoam cores, while rigid cores such as balsa and Nomex@did not fare as well as <strong>the</strong> foam. This<strong>in</strong>dicates that strength is a more important property than modulus for impact performance <strong>of</strong>core materials. The difference <strong>in</strong> performance between panels constructed <strong>of</strong> E-glass, Kevlar@,and carbon <strong>fiber</strong> fabrics was small, with <strong>the</strong> carbon <strong>fiber</strong> panels perform<strong>in</strong>g slightly better than<strong>the</strong> o<strong>the</strong>r two types. The reason for <strong>the</strong>se results is not clear, but <strong>the</strong> <strong>in</strong>vestigator felt that <strong>the</strong>higher flexural stiffness <strong>of</strong> <strong>the</strong> carbon <strong>fiber</strong> sk<strong>in</strong> distributed <strong>the</strong> impact load over a greater area<strong>of</strong> <strong>the</strong> foam core, thus <strong>the</strong> core material damage was lower for this panel. Epoxy, polyester andv<strong>in</strong>yl ester res<strong>in</strong>s were also compared. The differences <strong>in</strong> performance were slighq with <strong>the</strong>v<strong>in</strong>yl ester provid<strong>in</strong>g <strong>the</strong> best performance, followed by polyester and epoxy. Impactperformance for <strong>the</strong> different res<strong>in</strong>s followed <strong>the</strong> strength/stiffness ratio, with <strong>the</strong> bestperformance from <strong>the</strong> res<strong>in</strong> with <strong>the</strong> highest strength to stiffness ratio.General impact design concepts can be summarized as follows:. Impact Energy Absorption Mechanisms*Elastic deformation. Matrix crack<strong>in</strong>g. Delam<strong>in</strong>ationc Fiber breakage. Interracial debond<strong>in</strong>g●Core shear141


ImpactMar<strong>in</strong>e CompositesThe failure mechanism is usually that <strong>of</strong> <strong>the</strong> limit<strong>in</strong>g material <strong>in</strong> <strong>the</strong> composite, however,positive synergism between spectic materials can dramatically improve itnpact perbrrnance.General material relationships are as follows:. Kevlar@and S-glass are better than E-glass and carbon <strong>fiber</strong>s.●●V<strong>in</strong>yl ester is better than epoxy and polyester.Foam core is better than Nomex@and Balsa.. Quasi-isotropic lam<strong>in</strong>ates are better than Orthotropic lam<strong>in</strong>ates.●●High <strong>fiber</strong>/res<strong>in</strong> ratios are better than low.Many th<strong>in</strong> plies <strong>of</strong> re<strong>in</strong>forc<strong>in</strong>g fabric are better than a few thicker plies.TheoreticalDevelopmentsTheoretical snd experimental analysis have been conducted for ballistic impact (high speed, smallmass projectile) to evaluate spedic impact events. The <strong>the</strong>ory can be applied to lower velocity,larger mass impacts act<strong>in</strong>g on mar<strong>in</strong>e structures as summarized <strong>in</strong> Figure 4-7 and below.1. Determ<strong>in</strong>e <strong>the</strong> surface pressure and its distribution <strong>in</strong>duced by <strong>the</strong> impactor as a function<strong>of</strong> impact parameters, lam<strong>in</strong>ate and sncture properties, and impactor properties.2. Determ<strong>in</strong>e <strong>the</strong> <strong>in</strong>ternal three dimensional stress field ca<strong>use</strong>d by <strong>the</strong> surface pressure.3. Determ<strong>in</strong>e <strong>the</strong> failure modes <strong>of</strong> <strong>the</strong> lam<strong>in</strong>ate and structure result<strong>in</strong>g from <strong>the</strong> <strong>in</strong>ternalstresses,and how <strong>the</strong>y <strong>in</strong>teract to ca<strong>use</strong> damage.duProjectileD=nTargetlmp~:tlri::csd(timedependent)Resultantsims*sFailureCa<strong>use</strong>d bvStresses-Figure 4-7 Impact Initiation and Propagation [Jones, Impact Analysis <strong>of</strong> CompositeSandwich Panels as a Function <strong>of</strong> Sk<strong>in</strong>, Core and Res<strong>in</strong> Materials]142


ChapterFourPERFORMANCEInterlam<strong>in</strong>ar stress <strong>in</strong> composite structures usually results from <strong>the</strong> mismatch <strong>of</strong> eng<strong>in</strong>eer<strong>in</strong>gproperties between plies. These stresses are <strong>the</strong> underly<strong>in</strong>g ca<strong>use</strong> <strong>of</strong> delam<strong>in</strong>ation <strong>in</strong>itiation andpropagation. Delam<strong>in</strong>ation is deilned as <strong>the</strong> cracldng <strong>of</strong> <strong>the</strong> matrix between plies. meaforementioned stresses are out-<strong>of</strong>-plane and occur at structural discont<strong>in</strong>uities, as shown <strong>in</strong>Figure 4-8. In cases where <strong>the</strong> primary load<strong>in</strong>g is <strong>in</strong>-plane, stress gradients can produce anout-<strong>of</strong>-plane load scenario beca<strong>use</strong> <strong>the</strong> local structure may be discont<strong>in</strong>uous.FreeedgeBoltedjo<strong>in</strong>t.. #11-11PFigure 4-8 Sources <strong>of</strong> Out-<strong>of</strong>-Plane Loads from Load Path Discont<strong>in</strong>uities [ASM, Engi~eeredMaterials HandbooKjAnalysis <strong>of</strong> <strong>the</strong> delam<strong>in</strong>ation problem hasidentiled <strong>the</strong> stra<strong>in</strong> energy release rate, G, as akey parameter for characteriz<strong>in</strong>g failures. Thisquantity is <strong>in</strong>dependent <strong>of</strong> layup sequence ordelam<strong>in</strong>ation source. [4-25] NASA and Army<strong>in</strong>vestigators have shown from f<strong>in</strong>ite elementanalysis that once a delam<strong>in</strong>ation is modeled a fewply thiclmesses from an edge, G reaches a plateaugiven by <strong>the</strong> equation shown <strong>in</strong> Figure 4-9.where:hG=$ttaIn energyrdwmralomt =&=EM =lam<strong>in</strong>ate thicknessremote stra<strong>in</strong>modulus beforedelam<strong>in</strong>ationmodulus afterdelam<strong>in</strong>ationFigure 4-9 Stra<strong>in</strong> Energy ReleaseRate for Delam<strong>in</strong>ation Growth10’Brien, Delam<strong>in</strong>ation Durability <strong>of</strong>Composie Materials for Rotorcra~143


Delam<strong>in</strong>ation#Mar<strong>in</strong>e CompositesYYIYiMode 1Mode IIMode IllFigure 4-10 Basic Modes <strong>of</strong> Load<strong>in</strong>g Involv<strong>in</strong>g Different Crack Surface Displacements[ASM,Eng<strong>in</strong>eered Materials Handbook]L<strong>in</strong>ear elastic fracture mechanics identies three dist<strong>in</strong>ct load<strong>in</strong>g modes that correspond todifferent crack surface displacements. Figure 4-10 depicts <strong>the</strong>se different modes as follows:. Mode I - Open<strong>in</strong>g or tensile load<strong>in</strong>g where <strong>the</strong> crack surfaces move directlyapart●●Mode II - Slid<strong>in</strong>g or <strong>in</strong>-plane shear where <strong>the</strong> crack surfaces slide over eacho<strong>the</strong>r <strong>in</strong> a direction perpendicular to <strong>the</strong> lead<strong>in</strong>g edge <strong>of</strong> <strong>the</strong> crackMode Ill - Tear<strong>in</strong>g or antiplane shear where <strong>the</strong> crack surfaces moverelative to each o<strong>the</strong>r and parallel to <strong>the</strong> lead<strong>in</strong>g edge <strong>of</strong> <strong>the</strong> crack(scissor<strong>in</strong>g)Mode I is <strong>the</strong> dom<strong>in</strong>ant form <strong>of</strong> load<strong>in</strong>g <strong>in</strong> cracked metallic structures. With composites, anycomb<strong>in</strong>ation <strong>of</strong> modes may be encountered. Analysis <strong>of</strong> mode contribution to total stra<strong>in</strong>energy release rate has been done us<strong>in</strong>g f<strong>in</strong>ite element techniques, but this method is toocumbersome for check<strong>in</strong>g <strong>in</strong>dividual designs. A simplified technique has been developed byWrgia Tech for NASA/Army whereby Mode II and III stra<strong>in</strong> energy release rates arecalculated by higher order plate <strong>the</strong>ory and <strong>the</strong>n subtracted from <strong>the</strong> total G to determ<strong>in</strong>e ModeI contribution.Delam<strong>in</strong>ation <strong>in</strong> tapered lam<strong>in</strong>ates is <strong>of</strong> particular <strong>in</strong>terest beca<strong>use</strong> <strong>the</strong> designer usually hascontrol over taper angles. Figure 4-11 shows delam<strong>in</strong>ation <strong>in</strong>itiat<strong>in</strong>g <strong>in</strong> <strong>the</strong> region “A” where<strong>the</strong> first transition from th<strong>in</strong> to thick lam<strong>in</strong>ate occurs. This region is modeled as a flat lam<strong>in</strong>atewith a stiffness discont<strong>in</strong>uity <strong>in</strong> <strong>the</strong> outer “belt” plies and a cont<strong>in</strong>uous stiffness <strong>in</strong> <strong>the</strong> <strong>in</strong>ner“core” plies. The belt stiffness <strong>in</strong> <strong>the</strong> tapered region, lIz, was obta<strong>in</strong>ed from a tensortransfomnation <strong>of</strong> <strong>the</strong> th<strong>in</strong> region, El, transformed through <strong>the</strong> taper angle, beta. As seen <strong>in</strong> <strong>the</strong>figure’s equation, G will <strong>in</strong>crease as beta <strong>in</strong>creases, beca<strong>use</strong> <strong>the</strong> belt stiffness is a function <strong>of</strong><strong>the</strong> taper angle. [4-25]Lately, <strong>the</strong>re has been much <strong>in</strong>terest <strong>in</strong> <strong>the</strong>res<strong>in</strong> systems that resist impact damage.aerospace <strong>in</strong>dustry <strong>in</strong> <strong>the</strong> development <strong>of</strong> “tough”The traditional, high-strength epoxy systems are144


ChapterFourPERFORMANCEDelam<strong>in</strong>ation ~--:“’’’”w●15 x 104 - [09’(*45’d,~& .10“N2 x .5 -0 510152025Taperangle,~, degIG=$(:-+JBeltE core + Nx\tEl1% I BeltDelam<strong>in</strong>ation~‘2 = F (~) E* =t‘2 5 +‘core coreFigure q-l 1 Stra<strong>in</strong> Energy Release Rate Analysis <strong>of</strong> Delam<strong>in</strong>ation <strong>in</strong> a TaperedLam<strong>in</strong>ate [0’Brien, Delam<strong>in</strong>ation Durability <strong>of</strong> Composie Materia/s for Rotorcraftltypically characterized as brittle whencompared to systems <strong>use</strong>d <strong>in</strong> <strong>the</strong>mar<strong>in</strong>e <strong>in</strong>dustry. In a recent test <strong>of</strong>aerospace matrices, little difference <strong>in</strong>delam<strong>in</strong>ation durability showed up.However, <strong>the</strong> tough matrix compositesdid show slower delam<strong>in</strong>ation growth. lq ~Figure 4-12 is a schematic <strong>of</strong> a log-logplot <strong>of</strong> delam<strong>in</strong>ation growth rate, ‘Ydv,where:BrittlemstdxToughmetrixGC = cyclic stra<strong>in</strong>energy releaserateGt~ = cyclic threshold‘th ‘th ‘log GIIGcFigure 4-12 Comparison <strong>of</strong> Delam<strong>in</strong>ationGrowth Rates for Composites with Brittle andTough Matrices [0’Brien, Delam<strong>in</strong>ation Durability<strong>of</strong> Composie Materials for Rotorcrat7J145


Water AbsorptionMar<strong>in</strong>e CompositesWhen an organic matrix composite is exposed to a humid environment or liquid, both <strong>the</strong>moisture content and material temperature may change with time. These changes usuallydegrade <strong>the</strong> mechanical properties <strong>of</strong> <strong>the</strong> lam<strong>in</strong>ate. The study <strong>of</strong> water absorption with<strong>in</strong>composites is based on <strong>the</strong> follow<strong>in</strong>g parameters as a function <strong>of</strong> time: [4-26]...●✎✎The temperature <strong>in</strong>side <strong>the</strong> material as a function <strong>of</strong> positionThe moisture concentration <strong>in</strong>side <strong>the</strong> materialThe total amount (mass) <strong>of</strong> moisture <strong>in</strong>side <strong>the</strong> materialThe moisture and temperature <strong>in</strong>duced “hydro<strong>the</strong>rmal” stress <strong>in</strong>side <strong>the</strong>materialThe dimensional changes <strong>of</strong> <strong>the</strong> materialThe mechanical, chemical, <strong>the</strong>rmal or electric changesT,hT, ‘$ ‘1Figure 4-13 Time Vary<strong>in</strong>g Envir~nmentalConditions <strong>in</strong> a M-ultilayeredComposite [Spr<strong>in</strong>ger, Ew4fmvnental Effectson Composite Materia/s]To determ<strong>in</strong>e <strong>the</strong> physical changes with<strong>in</strong> acomposite lam<strong>in</strong>ate, <strong>the</strong> temperature distributionand moisture content must be determ<strong>in</strong>ed.When temperature varies across <strong>the</strong> thicknessonly and equilibrium is quickly achieved, <strong>the</strong>moisture and temperature distribution process iscalled “Fickian” diffusion, which is analogousto Fourier’s equation for heat conduction.Figure 4-13 illustrates some <strong>of</strong> <strong>the</strong> keyparameters <strong>use</strong>d to describe <strong>the</strong> Ficldandiffusion process <strong>in</strong> a multilayered composite.The letter T refers to temperature and <strong>the</strong> letterC refers to moisture concentration.Fick’s second law <strong>of</strong> diffusion can berepresented <strong>in</strong> terms <strong>of</strong> three pr<strong>in</strong>cipal axes by<strong>the</strong> follow<strong>in</strong>g differential equation: [4-27]ac a% a2c a2cx = “ axxz+ ‘Y q+ “ 3X,2Figure 4-14 shows <strong>the</strong> change <strong>in</strong> moisture content, M, versus <strong>the</strong> square root <strong>of</strong> tie. Theapparent plateau is characteristic <strong>of</strong> Fickian predictions, although experimental procedures haveshown behavior that varies from this. Additional water absorption has been attributed to <strong>the</strong>relaxation <strong>of</strong> <strong>the</strong> polymer matrix under <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> swell<strong>in</strong>g stresses. [4-28] Figure 4-15depicts some experimental results from <strong>in</strong>vestigations conducted at elevated temperatures.146


ChapterFourPERFORMANCEMm.-- ——-— --——— - — -——- .MaI------- 1M,.— -fi ~s~L F tmSQUARE ROOTW TIME,fiFiqure 4-I 4 Charme <strong>of</strong> Moisture Content with <strong>the</strong> SauareRo~t <strong>of</strong> Time for “Fic~an”Diffusion[Spr<strong>in</strong>ger,Environrnenti/Effects on Composite Materials]Water temperature {’C)● 30A 45● 605 10 15 20 25 30/immersiontime -s}Figure 4-15 Lam<strong>in</strong>ate Water AbsortMion K<strong>in</strong>etios for ExperimentalLam<strong>in</strong>ate Specimens [Pritchard, The L/se <strong>of</strong> Water A&-sorbtion K<strong>in</strong>etic Data to Predict Lam<strong>in</strong>ate Property Changes]AStructural designers areprimarily <strong>in</strong>terested <strong>in</strong><strong>the</strong> long termdegradation <strong>of</strong>mechanical propertieswhen composites areimmersed <strong>in</strong> water. Byapply<strong>in</strong>g curve-fitt<strong>in</strong>gprogramstoexperimental data,extrapolations about longterm behavior can bepostulated. [4-28]Figure 4-16 depicts a 25year prediction <strong>of</strong> shearstrength for glasspolyester specimensdried after immersion.Strength valueseventually level <strong>of</strong>f atabout 60q0 <strong>of</strong> <strong>the</strong>irorig<strong>in</strong>al value, with <strong>the</strong>degradation processaccelerated at highertemperatures. Figure4-17 shows similar datafor wet tensile strength.Experimental data at <strong>the</strong>higher temperatures is <strong>in</strong>relative agreement for<strong>the</strong> f~st three years.Table 4-1 shows <strong>the</strong>apparent maximummoisture content and <strong>the</strong>transverse diffusivitiesfor two polyester and ‘one v<strong>in</strong>yl ester E-glasslam<strong>in</strong>ate. The numericaldesignation refers t<strong>of</strong>iber content by weightLam<strong>in</strong>ate water contents cannot be compared directly with cast res<strong>in</strong> water contents, s<strong>in</strong>ce <strong>the</strong><strong>fiber</strong>s do not absorb water and <strong>the</strong> water is concentrated <strong>in</strong> <strong>the</strong> res<strong>in</strong> (approximately 75% byvolume for bidirectional lam<strong>in</strong>ates and 67% by volume for unidirectional ones). [4-28]147


Water AbsorptionMar<strong>in</strong>e CompositesI 1 I I I I I 1 I I I I2 5 10 25 2 5 10 25Time(ycarslTim- (YoardFigure 4-16 Predicted Dry Shear Figureq-lv Predicted Wet TensileStrength versus Square Root <strong>of</strong> lmmer- Strength versus Square Root <strong>of</strong> immersionTime [Pritchard, The Use <strong>of</strong> Water sion Time [Pritchard, The Use <strong>of</strong> WaterAbsorption K<strong>in</strong>etic Data to Predict Lami- Absorbtion K<strong>in</strong>etic Data to Predict Lam<strong>in</strong>ateProper?yChanges]nate Property Changes]-—m–m– a A ----- —------ . . . . . . . Wu ● . -.. .- ----- . . .I ame 4-_I. Apparem Maximum Molslure Gontent ana 1ransverse Dmusnmies otSome Polyester E-Glass and V<strong>in</strong>yl Ester Lam<strong>in</strong>ates[Spr<strong>in</strong>ger, Environmental Effects on Composite Maferhls]SubstanceT Maximum Moisture Content* Transverse DiffusivitytFEr SMC-R25 VE SMC-R50 SMC-R50 SMC-R25 VE SMC-R50 SMC-R50509!.Humidity23 0.17 0.13 0,10 10.0 10.0 30.093 0.10 0.10 0.22 50.0 50.0 30.010070 23 1.00 0.63 1,35 10.0 5.0 9!0Humidity93 0.30 0,40 0.56 50,0 50.0 50.0Salt WaterDiesel FuelLubricat<strong>in</strong>g OilAntifreeze●Values given <strong>in</strong> percent23 0.85 0.50 1.25 10.0 5.0 15.093 2.90 0.75 1.20 5.0 30.0 80.023 0.29 0.19 0.45 6.0 5.0 5.093 2.80 0.45 1.00 6.0 10.0 5.023 0.25 0.20 0.30 10.0 10,0 10.093 0.60 0,10 0.25 10.0 10.0 10,023 0.45 0,30 0.65 50.0 30.0 20.093 4.25 3.50 2.25 5.0 0.8 10.0‘Values given are Dz12x 107 mm2/sec148


ChapterFourPERFORMANCEThe blister<strong>in</strong>g <strong>of</strong> gelcoated, FRPstructures hasrOceived much attention ti recent years. Thedefect manifests itself as a localized raised swell<strong>in</strong>g <strong>of</strong> <strong>the</strong> lam<strong>in</strong>ate <strong>in</strong> an apparently randomfashion after a hull has been immersed <strong>in</strong> water for some period <strong>of</strong> time. When blisters arerupture~ a viscous acidic liquid is expelled. Studies have <strong>in</strong>dicated that one to three percent <strong>of</strong>boats surveyed <strong>in</strong> <strong>the</strong> Great Lakes and England, respectively, have appreciable blisters. [4-29]There are two primary ca<strong>use</strong>s <strong>of</strong> blister development. The fwst <strong>in</strong>volves vsrious defects<strong>in</strong>troduced dur<strong>in</strong>g fabrication. Air pockets can ca<strong>use</strong> blisters when’ a part is heated underenvironmental conditions. Entrapped liquids are also a source <strong>of</strong> blister formation. Table 4-2lists some liquid contam<strong>in</strong>ate sources and associated blister discrim<strong>in</strong>at<strong>in</strong>g features.Table 4-2. Liquid Contam<strong>in</strong>ateSources Dur<strong>in</strong>g Spray-Up That Can Ca<strong>use</strong> Blister<strong>in</strong>g[Cook, Po/ycor Polyester Gel Coats and Resh]CatalystWaterSolventsOilLlquld Common Source Dlstlngulsh<strong>in</strong>g CharacterlstlcsUncatalyzed Res<strong>in</strong>Overspray, drips due to leaks <strong>of</strong>malfunction<strong>in</strong>g valves.Air l<strong>in</strong>es, improperly storedmaterial, perspiration.Leaky solvent flush system,overspray, carried by wet rollers.Compressor seals leak<strong>in</strong>g,Malfunction<strong>in</strong>g gun or ran out <strong>of</strong>catalyst.Usually when punctured, <strong>the</strong> blister has av<strong>in</strong>egar-like odor; <strong>the</strong> area around it, if <strong>in</strong><strong>the</strong> lam<strong>in</strong>ate, is browner or burnt color.If <strong>the</strong> part is less than 24 hours old, wetstarch iod<strong>in</strong>e test paper will turn blue.No real odor when punctured; areaaround blister is whitish or milky.Odor; area sometimes white <strong>in</strong> color.Very little odor; fluid feels slick and willnot evaporate.Styrene odor and sticky,Even when <strong>the</strong> most careful fabrication procedures are followed, blisters can still develop overa period <strong>of</strong> time. These type <strong>of</strong> blisters are ca<strong>use</strong>d by osmotic water penetration, a subject thathas recently been exam<strong>in</strong>ed by <strong>in</strong>vestigators. The osmotic process allows smaller watermolecules to penetrate through a particular lam<strong>in</strong>ate, which react with polymers to form lsrgermolecules, thus trapp<strong>in</strong>g <strong>the</strong> larger reactants <strong>in</strong>side. A pressure or concentration gradientdevelops, which leads to hydrolysis with<strong>in</strong> <strong>the</strong> lam<strong>in</strong>ate. Hydrolysis is def<strong>in</strong>ed asdecomposition <strong>of</strong> a chemical compound through <strong>the</strong> reaction with water. Epoxide andpolyurethane res<strong>in</strong>s exhibit better hydrolytic stability than polyester res<strong>in</strong>s. In addition to <strong>the</strong>contam<strong>in</strong>ants listed <strong>in</strong> Table 4-2, <strong>the</strong> follow<strong>in</strong>g substances act as easily hydrolyzableconstituents: [4-30]. Glass mat b<strong>in</strong>der. Pigment carriers. Mold release agents149


—..BlistersMar<strong>in</strong>e Composites. Stabilizers*Promoters●●CatalystsUncross-l<strong>in</strong>ked res<strong>in</strong> componentsBlisters can be classfied as ei<strong>the</strong>r coat<strong>in</strong>g blisters or those located under <strong>the</strong> surface at substrate<strong>in</strong>terfaces (see Figure 4-18). The blisters under <strong>the</strong> surface are more serious and will be <strong>of</strong>primary concern. Some features that dist<strong>in</strong>guish <strong>the</strong> two typs <strong>in</strong>clude:....Diameter to height ratio <strong>of</strong> sub-gel blister is usually greater than 10:1 andapproaches 40:1 whereas coat<strong>in</strong>g blisters have ratios near 2:1,Sub-gel blisters are much larger than coat<strong>in</strong>g blisters.The coat<strong>in</strong>g blister is more easily punctured than <strong>the</strong> sub-gel blister.Fluid <strong>in</strong> sub-gel blisters is acidic (pH 3.0 to 4.0), while fluid <strong>in</strong> coat<strong>in</strong>gblisters has a pH <strong>of</strong> 6.5 to 8.0.lA’Rs’DEtINSIDE OF HULL~ Air-lam<strong>in</strong>ae Bounda~Coat<strong>in</strong> substrate> Inte aces~ Waier-G,C. BoundaryLAYER A+ LAYER B {OUTSIDE HULLt DIRECTION OF tWATER PENETRATIONFigure 4-18 Structure Description for a Sk<strong>in</strong> Coated Composite with: Layer A = GelCoat, Layer B = lnterlayer and Layer C = Lam<strong>in</strong>ate Substrate [Interplastic, A Study <strong>of</strong>Permeation Barriers to Prevent Blisters <strong>in</strong> Mar<strong>in</strong>e Composites and a Novel Technique forEvaluat<strong>in</strong>g Blister Formation]Both types <strong>of</strong> blisters are essentially cosmetic problems, although sub-gel blisters do have <strong>the</strong>ability to compromise <strong>the</strong> lam<strong>in</strong>ate’s <strong>in</strong>tegrity through hydrolytic action. A recent <strong>the</strong>oreticaland experimental <strong>in</strong>vestigation [4-31] exam<strong>in</strong>ed <strong>the</strong> structural degradation effects <strong>of</strong> blisterswith<strong>in</strong> hull lam<strong>in</strong>ates. A f<strong>in</strong>ite element model <strong>of</strong> <strong>the</strong> blister phenomena was created byprogressively remov<strong>in</strong>g material from <strong>the</strong> surface down to <strong>the</strong> sixth layer, as shown <strong>in</strong> Figure4-19. Stra<strong>in</strong> gage measurements were made on sail and power boat hulls that exhibited severeblisters. The field measurements were <strong>in</strong> good agreement with <strong>the</strong> <strong>the</strong>oretically determ<strong>in</strong>edvalues for strength and stiffness. Stiffness was relatively unchanged, while stiength valuesdegraded 15% to 30%, well with<strong>in</strong> <strong>the</strong> marg<strong>in</strong> <strong>of</strong> safety <strong>use</strong>d for <strong>the</strong> lam<strong>in</strong>ates..-150


ChapterFourPERFORMANCE250@pressureduetoFigure 4-19 InternalBlister AxisymetricF<strong>in</strong>iteElementModel[KokarakisandTaylor,Theoretical and Experimental Investigation <strong>of</strong> Blistered Fiberglass Boa@The fact that <strong>the</strong> distribution <strong>of</strong> blisters is apparently random hasprecluded any documentedcases <strong>of</strong> catastrophic fsilures attributed to blister<strong>in</strong>g. The repair section <strong>of</strong> this document willdeal with comective measures to remove blisters.As was previously mentioned, recent <strong>in</strong>vestigations have foc<strong>use</strong>d on what materials performbest to prevent osmotic blister<strong>in</strong>g. Referr<strong>in</strong>g to Figure 4-18, Layer A is considered to be <strong>the</strong>gel coat surface <strong>of</strong> <strong>the</strong> lam<strong>in</strong>ate. Table 4-3 lists some permeation rates for three types <strong>of</strong>polyester res<strong>in</strong>s that are commonly <strong>use</strong>d as gel coats.----- - . .. .- — —I ame 4-s ~omposmon and Permeation Rates for Some Polyester Res<strong>in</strong>s <strong>use</strong>d<strong>in</strong> GelCoats [Crump,A Study <strong>of</strong> IWster Formation <strong>in</strong> Ge/ Coated Lam<strong>in</strong>ates]Res<strong>in</strong> Glycol Sat#aJed Uns~W~ated PermeationRate*H O @ 77*F H20 @ 150”FNPG ISONPG OrthoNeopentyl Isophthalic Maleicglycol acid anhydrideNeopentyl Phthalic Maleicglycol anhydride anhydrideGeneral Propylene Phthalic MaleicPurpose glycol anhydride anhydride●grams/cubic centimeter per day x 1040.25 4.10.24 3.70.22 3.6Investigators at <strong>the</strong> Interplastic Corporation concentrated <strong>the</strong>ir efforts on determ<strong>in</strong><strong>in</strong>g anoptimum barrier ply, depicted as Lay~r B <strong>in</strong> Figure 4-18. Their tests <strong>in</strong>volved <strong>the</strong> completesubmersion <strong>of</strong> edge-sealed specimens that were required to have two gel coated surfaces. Theconclusion <strong>of</strong> this study was that a v<strong>in</strong>yl ester cladd<strong>in</strong>g applied on an orthophthalic lam<strong>in</strong>at<strong>in</strong>gres<strong>in</strong> <strong>re<strong>in</strong>forced</strong> composite substantially reduced blister<strong>in</strong>g.Investigators at <strong>the</strong> Univmsity <strong>of</strong> Rhode I&u@ under <strong>the</strong> sponsorship <strong>of</strong> <strong>the</strong> U.S. Coast Gusr~conducted a series <strong>of</strong> experiments to test various coat<strong>in</strong>g materials and methods <strong>of</strong> application.Table 4-4 summmizes <strong>the</strong> results <strong>of</strong> tests performd at 65”C. Blister severity was subjectivelyevaluated on a scale <strong>of</strong> Oto 3. The polyester top coat appeared to be <strong>the</strong> best perbm<strong>in</strong>g scheme.151


BlistersMar<strong>in</strong>e CompositesTable 4-4. Results from URI Coat<strong>in</strong>g Investigation[Mar<strong>in</strong>e, The Effects at Coat<strong>in</strong>g on Blister Formation]Coat<strong>in</strong>g Scheme SurFace Treatment lnitl%~’rneBilsterSeverityBllstersPresent?Epoxytop coatnone 5 3 Yessand<strong>in</strong>g 5 1 Yesacetonewipe 5 1 Yesboth 5 1 Yesnone 5 2 YesPolyurethane top sand<strong>in</strong>g 14 1 Yescoatacetone wipe ~ 1 YesPolyestertop coatboth ? 1 Yesnone . 0 Nosand<strong>in</strong>g . 0 Noacetonewipe . 0 Noboth . 0 Nonone 8 3 YesEpoxy top coat sand<strong>in</strong>g 8 1 Yesover epoxyacetone wipe 8 2-3 Yesboth 8 2 Yesnone 7 1 YesPolyurethane topcoat oversand<strong>in</strong>g 7 1 Yespolyurethane acetone wipe 7 1 Yesboth 7 1 Yesnone 8 3 NoPolyester top coat sand<strong>in</strong>g . 0 Noover polyesteracetone wipe 8 2 Noboth 8 1 Nonone 8 3 YesEpoxy top coat sand<strong>in</strong>g 8 2 Yesover polyurethaneacetone wipe 17 1-2 7both 19 2 Yesnone 11 3 YesPolyurethane top sand<strong>in</strong>g . 0 Yescoat over epoxyacetonewipe 11 1-3 Yesboth . 1 Yes152


ChapterFourPERFORMANCEBl[sterCoatlngScheme Surface Treatment Inltlatlon Time(days)BllsterSeverityBlistersPresent?none 6 3 YesPolyurethane top sand<strong>in</strong>g 6 3 Yescoat over polyesteracetone wipe 6 3 Yesboth 6 1 Yesnone 9 3 YesEpoxytop coat sand<strong>in</strong>g 9 3 Yesover polyesteracetonewipe 9 3 Yesboth 9 3 YesBllster Severity ScaleO no change <strong>in</strong> <strong>the</strong> coated lam<strong>in</strong>ate1 questionable presence <strong>of</strong> coat<strong>in</strong>g blisters; surface may appear rough, with rare,small p<strong>in</strong> size blisters2 numerous blisters are present3 severe blister<strong>in</strong>g over <strong>the</strong> entire lam<strong>in</strong>ate surface153


Cass HistoriesMar<strong>in</strong>e CompositesAdvocates <strong>of</strong> <strong>fiber</strong>glass construction have <strong>of</strong>ten po<strong>in</strong>ted to <strong>the</strong> long tarn ma<strong>in</strong>tenance advantages <strong>of</strong>FRP materials. Wastage allowances and shell plat<strong>in</strong>g replacement associated with corrosion andgalvanic action <strong>in</strong> metal hulls is not a consideration when design<strong>in</strong>g <strong>fiber</strong>glass hulls. However,concern over long term degradation <strong>of</strong> strength properdes due to <strong>in</strong>-service conditions promptedseveril studies <strong>in</strong> <strong>the</strong> 60’s snd 70’s. The results <strong>of</strong> those <strong>in</strong>vestigations along with some casehistories that illustrate common FRP structural failures are presented <strong>in</strong> this section. It should benoted that documented failures are usually <strong>the</strong> result <strong>of</strong> one <strong>of</strong> <strong>the</strong> follow<strong>in</strong>g. Inadequate design●Improper selection <strong>of</strong> materials. Poor workmanshipUS Coast Guard 40 foot Patrol BoatsThese multipurpose craft were developed <strong>in</strong> <strong>the</strong> early 1950’s for law enforcement and search andrescue missions. The boats were 40 feet overall with an 11 foot beam and displaced 21,000pounds. Tw<strong>in</strong> 250 horsepower diesel eng<strong>in</strong>es produced a top speed <strong>of</strong> 22 lmots. S<strong>in</strong>gle sk<strong>in</strong> FRPconstruction was <strong>re<strong>in</strong>forced</strong> by transverse alum<strong>in</strong>um frames, a decidedly conservative approach at<strong>the</strong> time <strong>of</strong> construction. Lsm<strong>in</strong>ate schedules consisted <strong>of</strong> alternat<strong>in</strong>g plies <strong>of</strong> 10 ounce boat clothand 1~2 ounce mat to thicknesses <strong>of</strong> %4<strong>in</strong>ch for <strong>the</strong> bottom and %i <strong>in</strong>ch for <strong>the</strong> sides.In 1962, Owens-Corn<strong>in</strong>g Fiberglass and <strong>the</strong> US Coast Guard tested psnels cut from three boatsthat had been <strong>in</strong> service 10 years. In 1972, more extensive tests were performed on a largerpopulation <strong>of</strong> samples taken from CG Hull 40503, which was be<strong>in</strong>g retired after 20 years <strong>in</strong>service. It should be noted that service <strong>in</strong>cluded duty <strong>in</strong> an extremely polluted ship channelwhere contact with sulfuric acid was constant and exposure to extreme temperatures dur<strong>in</strong>g onefire fight<strong>in</strong>g episode. Total operat<strong>in</strong>g hours for <strong>the</strong> vessel was 11,654. Visual exam<strong>in</strong>ation <strong>of</strong>sliced specimens <strong>in</strong>dicated that water or o<strong>the</strong>r chemical reactants had not entered <strong>the</strong> lara<strong>in</strong>ate.The comparative physical test data is presented <strong>in</strong> Table 4-5.Table H. Physical Property Datafor 10 Year and 20 Year Tests <strong>of</strong> USCG Patrol Boat[Owens-Corn<strong>in</strong>gFiberglas,Fiber Glass Mufne Lam<strong>in</strong>ates,20 Y- <strong>of</strong> Proven Dumbi/i@Hull CG 40503 I 10 Year Tests I 20 Year TestsTensile StrengthCompressive StrengthFlexuralStrengthShear StrengthAverage psi 5990 6140Number <strong>of</strong> samples 1 10Average psi 12200 12210Number <strong>of</strong> samples 2 10Average psi 9410 10850Number<strong>of</strong> samples 1 10Average psi 6560 6146Number<strong>of</strong> samples 3 10154


ChapterFourPERFORMANCESubmar<strong>in</strong>e FairwaterIn <strong>the</strong> early 1950’s, <strong>the</strong> U.S. Navy developed a <strong>fiber</strong>glass replacement for <strong>the</strong> alum<strong>in</strong>um fairwatersthat wem fitted on submar<strong>in</strong>es. The fairwater is <strong>the</strong> hydrodynamic cowl<strong>in</strong>g that surrounds <strong>the</strong>submar<strong>in</strong>e’s sail, as shown <strong>in</strong> Figure 4-20. The motivation beh<strong>in</strong>d this program was electrolyticcomosion and ma<strong>in</strong>tenance problems. The lam<strong>in</strong>ate<strong>use</strong>d consisted <strong>of</strong> style 181 Volan glass cloth <strong>in</strong>a general purpose polyester res<strong>in</strong> that was nixedwith a flexible res<strong>in</strong> for added toughness.Vacuum bag mold<strong>in</strong>g was <strong>use</strong>d and cur<strong>in</strong>g tookplace at room temperature.The fairwater <strong>in</strong>stalled on <strong>the</strong> U.S,S. Halfkak wasexam<strong>in</strong>ed <strong>in</strong> 1965 after 11 years <strong>in</strong> semice. Thetested material’s physical properties are shown <strong>in</strong>Table 4-6. After perform<strong>in</strong>g <strong>the</strong> tests, <strong>the</strong>conclusion that <strong>the</strong> materials were not adverselyaffected by long term exposure to wea<strong>the</strong>r wasreached. It should be noted that a detailed analysis<strong>of</strong> <strong>the</strong> component <strong>in</strong>dicated that a safety factor <strong>of</strong>four was ma<strong>in</strong>ta<strong>in</strong>ed throughout <strong>the</strong> service Me <strong>of</strong><strong>the</strong> part. Thus, <strong>the</strong> mean stress was kept below <strong>the</strong>long term static fatigue strength limit, which at<strong>the</strong> time was taken to be 20 to 25 percent <strong>of</strong> <strong>the</strong>ultimate strength <strong>of</strong> <strong>the</strong> materials mentioned.Figure 4-20 Submar<strong>in</strong>e Fairwaterfor <strong>the</strong> US.S. Halfbeak [Lieble<strong>in</strong>, Survey<strong>of</strong> Long-Term Durability <strong>of</strong> Fiberglass-/<strong>re<strong>in</strong>forced</strong> Plastic Simotures]Table 4-6. Property Tests <strong>of</strong> Samples from Fa<strong>in</strong>ivater<strong>of</strong> US.S. Halfbeak[Fried & Graner, Durability <strong>of</strong> Re<strong>in</strong>forced Plastic Sfrucfuraflkktefials <strong>in</strong> Il@<strong>in</strong>e Service]PropertyConditionog#rJal1965 Data(1954)’ Ist Panel 2hdPanel AverageFlexuralStrength, Dry 52400 51900 51900 51900psiWet+ 54300 46400 47300 46900FlexuralM~ulus, Dry 2.54 2.62 2.41 2.52psi x 10-Wet 2.49 2.45 2.28 2.37Compressive Strength, Dry — 40200 3800 39100pslWet — 35900 35200 35600Barcol Hardness Dry 55 53 50 52Specific Gravity Dry 1.68 1,69 1.66 1.68Res<strong>in</strong> Content Dry 47.6?4. 47.470 48.2?40 47.8?40* Average <strong>of</strong> three panelst Specimen boiled for two hours, <strong>the</strong>n cooled at room temperature for one hour prior to test<strong>in</strong>g155


Case HistoriesMar<strong>in</strong>e CompositesGel Coat Crack<strong>in</strong>aHairl<strong>in</strong>e cracks <strong>in</strong> exterior gel coat surfaces are traditionally treated as a cosmetic problem.However, barr<strong>in</strong>g some deficiency <strong>in</strong> manufactur<strong>in</strong>g, such as thickness gaug<strong>in</strong>g, catalyzation ormold release technique, gel coat cracks <strong>of</strong>ten are <strong>the</strong> result <strong>of</strong> design <strong>in</strong>adequacies and can leadto fur<strong>the</strong>r deterioration <strong>of</strong> <strong>the</strong> lam<strong>in</strong>ate.Gel coat formulations represent a f<strong>in</strong>ebalance between high gloss propertiesand material toughness. Designers mustbe constantly aware that <strong>the</strong> gel coatlayer is not <strong>re<strong>in</strong>forced</strong>, yet it canexperience <strong>the</strong> highest stra<strong>in</strong> <strong>of</strong> <strong>the</strong> entirelam<strong>in</strong>ate beca<strong>use</strong> it is <strong>the</strong> far<strong>the</strong>st awayfrom <strong>the</strong> n@mil axis.This section will attempt to classify tyyx <strong>of</strong>get coat cracks and describe <strong>the</strong> stress fieldassociated with <strong>the</strong>m [4-32] Figwe 4-21shows a schematic repmentation <strong>of</strong> threetypes <strong>of</strong> gel coat cracks that wae analyzedby Smith us<strong>in</strong>g microscopic andfractographic techniques. That <strong>in</strong>vestigationlead to <strong>the</strong> follow<strong>in</strong>g conclusions:Type IThese are <strong>the</strong> most prevalent type <strong>of</strong>cracks observed by mar<strong>in</strong>e surveyors andhave traditionally been attributed tooverly thick gel coat surface or impactfrom <strong>the</strong> opposite side <strong>of</strong> <strong>the</strong> lam<strong>in</strong>ate.Although crack patterns can becomera<strong>the</strong>r complex, <strong>the</strong> source can usually betraced radially to <strong>the</strong> area <strong>of</strong> highestcrack density. The dom<strong>in</strong>ant stress fieldis one <strong>of</strong> highly localized tensile stresses,which can be <strong>the</strong> result <strong>of</strong> <strong>in</strong>ternal braces(stiffener hard spots) or overload <strong>in</strong>bend<strong>in</strong>g and flex<strong>in</strong>g (too large a panelspan for lam<strong>in</strong>ate). Thermal stressescreated by different <strong>the</strong>rmal expansioncoefficients <strong>of</strong> materials with<strong>in</strong> a lam<strong>in</strong>atecan create cracks. This problem isespecially apparent when plywood is<strong>use</strong>d as a core. Residual stress can also<strong>in</strong>fluence <strong>the</strong> growth <strong>of</strong> Type I cracks.‘ Adjacent stress fields<strong>in</strong>fluence patternType Radialor DivergentConfiguration1111I4I? IIIm=nm ,Ilall- M41m nbmt mm muI 1CIKLUnctnIType II Randomly Spaced Parallel and Vertical FracturesType Ill Cracks at Hole <strong>of</strong> O<strong>the</strong>r Stress ConcentrationFigure 4-21 Schematic Representations<strong>of</strong> Gel Coat Crack Patterns [Smith, Crack<strong>in</strong>g<strong>of</strong> Ge/ Coated Composites]156


ChapterFourPERFORMANCECracks tend to <strong>in</strong>itiate at po<strong>in</strong>ts <strong>of</strong> non-uniformity <strong>in</strong> <strong>the</strong> lam<strong>in</strong>ate, such as voids or areas thatare res<strong>in</strong> rich or starved. The propagation <strong>the</strong>n proceeds <strong>in</strong> a bilateral fashion, fmlly <strong>in</strong>to <strong>the</strong>lam<strong>in</strong>ate itself.Type IIType II cracks are primarily found <strong>in</strong> hull structures and transoms, although similar fractureshave been noted along soles and comb<strong>in</strong>gs [4-33]. In <strong>the</strong> latter <strong>in</strong>stance, <strong>in</strong>sufficient supporthas been cited as <strong>the</strong> contribut<strong>in</strong>g ca<strong>use</strong>, with <strong>the</strong> pattern <strong>of</strong> crack<strong>in</strong>g primarily attributable to<strong>the</strong> geometry <strong>of</strong> <strong>the</strong> part. The more classical Type II cracks are <strong>the</strong> result <strong>of</strong> <strong>the</strong>rmal fatigue,which is <strong>the</strong> dom<strong>in</strong>ant contribut<strong>in</strong>g factor for crack nucleation. The parallel nature <strong>of</strong> <strong>the</strong>cracks makes it difficult to p<strong>in</strong>po<strong>in</strong>t <strong>the</strong> exact orig<strong>in</strong> <strong>of</strong> <strong>the</strong> failure, although it is believed thatcracks nucleate at <strong>fiber</strong> bundles perpendicular to <strong>the</strong> apparent stress fields. O<strong>the</strong>r factorscontribut<strong>in</strong>g to this type <strong>of</strong> crack growth are global stress fields and high <strong>the</strong>rmal gradients.Type IllCrack<strong>in</strong>g associated with -holes drilled <strong>in</strong> <strong>the</strong> lam<strong>in</strong>ate are quite obvious. The hole acts as anotch or stress concentrator, allow<strong>in</strong>g cracks to develop with little externally applied stress.Factors contribut<strong>in</strong>g to <strong>the</strong> degree <strong>of</strong> crack propagation <strong>in</strong>clude:. Global stress field●Method <strong>of</strong> mach<strong>in</strong><strong>in</strong>g <strong>the</strong> hole. Degree <strong>of</strong> post cureCore Separation <strong>in</strong> Sandwich ConstructionIt has been shown that sandwich construction can have tremendous strength and stiffnessadvantages for hull panels, especially when primary loads are out <strong>of</strong> plane. As a rule, materialcosts will also be competitive with s<strong>in</strong>gle-sk<strong>in</strong> construction, beca<strong>use</strong> <strong>of</strong> <strong>the</strong> reduced number <strong>of</strong>plies <strong>in</strong> a lam<strong>in</strong>ate. However, construction with a core material requires additional labor skill toensure proper bond<strong>in</strong>g to <strong>the</strong> sk<strong>in</strong>s. Debond<strong>in</strong>g <strong>of</strong> sk<strong>in</strong>s from structural cores is probably <strong>the</strong>s<strong>in</strong>gle most common mode <strong>of</strong> lam<strong>in</strong>ate failure seen <strong>in</strong> sandwich construction. The problemmay ei<strong>the</strong>r be present when <strong>the</strong> hull is new or manifest itself over a period <strong>of</strong> time under<strong>in</strong>-service load conditions.Although most reasons for debond<strong>in</strong>g relate to fabrication techniques, <strong>the</strong> designer may also beat fault for specify<strong>in</strong>g too th<strong>in</strong> a core, which <strong>in</strong>tensifies <strong>the</strong> <strong>in</strong>terlam<strong>in</strong>ar shear stress field whena panel is subject to normal loads. Problems that can be traced to <strong>the</strong> fabrication shop <strong>in</strong>clude:...●✎Insufficient preparation <strong>of</strong> core surface to resist excessive res<strong>in</strong> absorptionImproper contact with f~st sk<strong>in</strong>, especially <strong>in</strong> female moldsApplication <strong>of</strong> second sk<strong>in</strong> before core bedd<strong>in</strong>g compound has curedInsufficient bedd<strong>in</strong>g <strong>of</strong> core jo<strong>in</strong>tsContam<strong>in</strong>ation <strong>of</strong> core material (dirt or moisture)157


CassHistorissMar<strong>in</strong>e CompositesSelection <strong>of</strong> bond<strong>in</strong>g res<strong>in</strong> is also critical to <strong>the</strong> performance <strong>of</strong> this <strong>in</strong>terface. Some transitionbetween <strong>the</strong> “s<strong>of</strong>t” cores and relatively stiff sk<strong>in</strong>s is required This can be achieved if a res<strong>in</strong>with a reduced modulus <strong>of</strong> elasticity is selected.had sources that can exacerbate a poorly bonded sandwich panel <strong>in</strong>clude wave skunm<strong>in</strong>g,dynamic deck load<strong>in</strong>g from gear or personnel, and global compressive loads that tend to seekout <strong>in</strong>stable panels. Areas that have been shown to be susceptible to core debond<strong>in</strong>g <strong>in</strong>clude:...●✎✎Stress concentrations willoccur at <strong>the</strong> face to core,:::;::\ ::::: !,:.:.., ....... ,.:,:~jj::..,,,. ,,,,,, ,,,:~:-jo<strong>in</strong>t <strong>of</strong> scrim-cloth orcontoured core material if<strong>the</strong> voids are not filled with Figure 4-22 Illustration <strong>of</strong> Stressa bond<strong>in</strong>g agent, as shownConcentration Areas <strong>in</strong> Unfilled ContouredCore Material [Morgan, Design<strong>in</strong> Figure 4-22to <strong>the</strong> Limit: Optimiz<strong>in</strong>g Core and Sk<strong>in</strong>Areas with extreme Properties]curvature that can ca<strong>use</strong>difficulties when lay<strong>in</strong>g <strong>the</strong>core <strong>in</strong> placePanel locations over stiffenersCenters <strong>of</strong> excessively large panelsCockpit floorsTransomsFailures <strong>in</strong> SecondaryBondsSecondary bond failures are probably <strong>the</strong> most common structural failure on FRP boats. Forreasons outl<strong>in</strong>ed <strong>in</strong> <strong>the</strong> Detail Design section <strong>of</strong> this document, complete chemical bond<strong>in</strong>gstrength is not always obta<strong>in</strong>ed. Additiomdly, geometries <strong>of</strong> secondarily bonded componentsusually tend to create stress concentrations at <strong>the</strong> bond l<strong>in</strong>e. Some specific areas wheresecondary bond failures have been noted <strong>in</strong>clude:. Stiffeners and bulkhead attachments. Furniture and floor attachment. Rudder bear<strong>in</strong>g and steer<strong>in</strong>g gear supportUltravioletExposureThe three major categories <strong>of</strong> res<strong>in</strong>s that are <strong>use</strong>d <strong>in</strong> boat build<strong>in</strong>g, polyester, v<strong>in</strong>yl ester andepoxy, have different reactions to exposure to sunlight. Sunlight consists <strong>of</strong> uhraviolet rays andheat.158


ChapterFourPERFORMANCEEpoxies are generallyve~ sensitive touhraviolet (UV) light andifexposed to UV rays for anysignMcant period <strong>of</strong> time <strong>the</strong> @ns will degracb to <strong>the</strong> po<strong>in</strong>t where <strong>the</strong>y have little, if any, strengthleft to <strong>the</strong>m The v<strong>in</strong>yl esters, beca<strong>use</strong> <strong>the</strong>re m epoxy l<strong>in</strong>kages <strong>in</strong> <strong>the</strong>m are also sensitive to Wand will degrade with time, although <strong>in</strong> general not as rapidly as an epoxy. Polyester, although it issomewhat sensitive to W degradation, is <strong>the</strong> least sensitive <strong>of</strong> <strong>the</strong> three to W lightThe outer surface <strong>of</strong> most boats is covered with a gel coat Gel coats are based on ortho orisopolyester res<strong>in</strong> systems that are heavily filled and conta<strong>in</strong> pigments. In addition, <strong>of</strong>ten <strong>the</strong>reis a UV screen added to help protect <strong>the</strong> res<strong>in</strong>, although for most gel coats <strong>the</strong> pigment itselfse<strong>in</strong>es as <strong>the</strong> W protector.In general, <strong>the</strong> exposure <strong>of</strong> <strong>the</strong> gel coats to W radiation will ca<strong>use</strong> fad<strong>in</strong>g <strong>of</strong> <strong>the</strong> color which isassociated with <strong>the</strong> pigments <strong>the</strong>mselves and <strong>the</strong>ir mtction to sunlight but also on white or <strong>of</strong>f-whitegel coats W exposure can ca<strong>use</strong> yellow<strong>in</strong>g. The yellow<strong>in</strong>g, <strong>in</strong> genera is a degradation <strong>of</strong> <strong>the</strong> res<strong>in</strong>ra<strong>the</strong>r than <strong>the</strong> pigments and will f<strong>in</strong>ally lead to <strong>the</strong> phenomenon known as “chalk<strong>in</strong>g.” Chalk<strong>in</strong>goccurs when <strong>the</strong> very th<strong>in</strong> outer coat<strong>in</strong>g <strong>of</strong> Es<strong>in</strong> degrades under <strong>the</strong> W light to <strong>the</strong> po<strong>in</strong>t where itexposes <strong>the</strong> ~er and some <strong>of</strong> <strong>the</strong> pigment <strong>in</strong> <strong>the</strong> gel coat The high gloss f<strong>in</strong>ish that is typical <strong>of</strong> gelcoats is due to that th<strong>in</strong> layer. Once it degrades and disappears <strong>the</strong> gloss is gone, and what’s left isstill a cola-d surface but it is no longer sh<strong>in</strong>y. Beca<strong>use</strong> <strong>the</strong> pigments are no longer sealed by <strong>the</strong>th<strong>in</strong> outer coat<strong>in</strong>g <strong>of</strong> res<strong>in</strong>, <strong>the</strong>y actually can degrade and lose some <strong>of</strong> <strong>the</strong>ir color and <strong>the</strong>yeventually loosen up fmm <strong>the</strong> fish to give a k<strong>in</strong>d <strong>of</strong> a chalky surface effect.There are some gel coats that are based on v<strong>in</strong>yl ester res<strong>in</strong>. These are not generally <strong>use</strong>d <strong>in</strong><strong>the</strong> mar<strong>in</strong>e <strong>in</strong>dustry, but some boat manufacturers are start<strong>in</strong>g to <strong>use</strong> <strong>the</strong>m below <strong>the</strong> water l<strong>in</strong>eto prevent blister<strong>in</strong>g, s<strong>in</strong>ce v<strong>in</strong>yl ester res<strong>in</strong>s are not typically susceptible to blister<strong>in</strong>g.However, if <strong>the</strong>se res<strong>in</strong>s are <strong>use</strong>d on <strong>the</strong> top side or <strong>the</strong> decks <strong>of</strong> a boat, <strong>the</strong>y will sufferyellow<strong>in</strong>g and chalk<strong>in</strong>g very quickly as compared to a good orrho or isopolyester gel coat,Tempercrture EffectsIn addition to this type <strong>of</strong> degradation ca<strong>use</strong>d by sunlight, <strong>the</strong> o<strong>the</strong>r problem that must beconsidered is <strong>the</strong> effects <strong>of</strong> heat, The sun will actually heat up <strong>the</strong> gel coat and <strong>the</strong> lam<strong>in</strong>atebeneath i~ The amount <strong>of</strong> damage that can be done depends on a number <strong>of</strong> factors. First, <strong>the</strong><strong>the</strong>rmal expansion coefficient <strong>of</strong> <strong>fiber</strong>glass is very different from that <strong>of</strong> res<strong>in</strong>. Thus, when alam<strong>in</strong>ate with a high glass content is heated significantly <strong>the</strong> <strong>fiber</strong>glass tends to be relativelystable, whereas <strong>the</strong> res<strong>in</strong> tries to expand but can’t beca<strong>use</strong> it’s held <strong>in</strong> place by <strong>the</strong> glass. Theresult <strong>of</strong> this is that <strong>the</strong> pattern <strong>of</strong> <strong>the</strong> <strong>fiber</strong>glass will show through <strong>the</strong> gel coat <strong>in</strong> many cases, aphenomenon known as “pr<strong>in</strong>t through.” Of course, if re<strong>in</strong>forc<strong>in</strong>g <strong>fiber</strong>s are <strong>use</strong>d which have<strong>the</strong>n-ml expsnsion coefficients similar to <strong>the</strong> res<strong>in</strong>s, it is less likely that pr<strong>in</strong>t through will occur.Ano<strong>the</strong>r consideration <strong>in</strong> addition to <strong>the</strong> <strong>the</strong>rmal coefficient <strong>of</strong> expansion is <strong>the</strong> temperature atwhich <strong>the</strong> res<strong>in</strong> was cured Most polyester res<strong>in</strong>s have a heat distortion temperature <strong>of</strong> around150-20WF. This means that when <strong>the</strong> res<strong>in</strong> becomes heated to that temperature it has gone above<strong>the</strong> cure tempermure, and <strong>the</strong> res<strong>in</strong> will become very s<strong>of</strong>t When res<strong>in</strong> becomes s<strong>of</strong>t <strong>the</strong> lam<strong>in</strong>atebecomes unstable. The res<strong>in</strong> can actually cure fur<strong>the</strong>r when it’s heated to <strong>the</strong>se temperatures.When it cools down <strong>the</strong> res<strong>in</strong> will try to S- but s<strong>in</strong>ce it’s been set at <strong>the</strong> higher temperatureand <strong>the</strong> glass doesn’t change dimensions very much, <strong>the</strong> res<strong>in</strong> is held <strong>in</strong> place by <strong>the</strong> glass,159


Case HistoriesMar<strong>in</strong>e Composites<strong>the</strong>reby creat<strong>in</strong>g very large <strong>in</strong>ternal sttwses solely due to <strong>the</strong>se <strong>the</strong>rmal effects. This canhappen also <strong>in</strong> a new lam<strong>in</strong>ate when it’s cured, but this is also someth<strong>in</strong>g that can happen to alam<strong>in</strong>ate that’s exposed to <strong>the</strong> sun and is heated higher than its heat distortion temperature.This can be a problem with all room temperature <strong>the</strong>rrnosett<strong>in</strong>g res<strong>in</strong>s, polyester v<strong>in</strong>yl ester andepoxies, although it is less likely to be a problem with v<strong>in</strong>yl ester and epoxy than withpolyester, beca<strong>use</strong> <strong>the</strong> v<strong>in</strong>yl esters and epoxies usually cure at a higher exo<strong>the</strong>rm temperature.As mentioned above, <strong>the</strong> heat distortion temperature <strong>of</strong> polyester res<strong>in</strong>s can range born about15~-200”. In Florida or <strong>the</strong> tropics it’s not uncommon to get temperatures <strong>in</strong> excess <strong>of</strong> 15W onboats with white gel coats. Temperatures have been measured as high as 18(Yon <strong>the</strong> decks <strong>of</strong>boats with red gel coat, close to 200” on <strong>the</strong> decks <strong>of</strong> boats with dark blue gel coat and wellover 200” on <strong>the</strong> decks <strong>of</strong> boats with black gel coat. That’s one <strong>of</strong> <strong>the</strong> reasons why <strong>the</strong>re arevery few boats with black gel coat. Some sport fish<strong>in</strong>g boats or o<strong>the</strong>r boats are equipped with aw<strong>in</strong>d screen which, ra<strong>the</strong>r than be<strong>in</strong>g clear, is actually <strong>fiber</strong>glass coated with black gel coat fora stylish appearance. This particular part <strong>of</strong> <strong>the</strong>se boats suffers very badly from pr<strong>in</strong>t throughproblems beca<strong>use</strong> <strong>the</strong> heat distortion temperature or <strong>the</strong> res<strong>in</strong> <strong>in</strong> <strong>the</strong> gel coat is exceeded.Obviously, dur<strong>in</strong>g each day and night much temperature cycl<strong>in</strong>g occurs; <strong>the</strong> lam<strong>in</strong>ate will gethot <strong>in</strong> <strong>the</strong> day, cool <strong>of</strong>f at nigh~ get hot aga<strong>in</strong> <strong>the</strong> next day, etc. The res<strong>in</strong> will already bepostcured to some extent, however it will still suffer from this cyclic heat<strong>in</strong>g and cool<strong>in</strong>g.These temperature cycles tend to produce <strong>in</strong>ternal stresses which <strong>the</strong>n ca<strong>use</strong> <strong>the</strong> lam<strong>in</strong>ate t<strong>of</strong>atigue more rapidly than it normally would.Ano<strong>the</strong>r <strong>the</strong>rmal effect <strong>in</strong> fatigue is ca<strong>use</strong>d by shadows mov<strong>in</strong>g over <strong>the</strong> deck <strong>of</strong> a boat that’ssitt<strong>in</strong>g <strong>in</strong> <strong>the</strong> sun. As <strong>the</strong> sun travels overhead, <strong>the</strong> shadow will progress across <strong>the</strong> deck. At<strong>the</strong> edge <strong>of</strong> <strong>the</strong> shadow <strong>the</strong>re can be a very large temperature differential on <strong>the</strong> order <strong>of</strong>2(Y-3~. As a result, as that shadow l<strong>in</strong>e travels <strong>the</strong>re is a very sharp heat<strong>in</strong>g or cool<strong>in</strong>g at <strong>the</strong>edge, and <strong>the</strong> differential ca<strong>use</strong>s signiilcant stress right at that po<strong>in</strong>t That stress will result <strong>in</strong>fatigue <strong>of</strong> <strong>the</strong> material. Boats that are always tied up <strong>in</strong> <strong>the</strong> same position at <strong>the</strong> dock, so that<strong>the</strong> same areas <strong>of</strong> <strong>the</strong> boat get <strong>the</strong>se shadows travel<strong>in</strong>g across <strong>the</strong>m, can actually suffer fatiguedaruage with <strong>the</strong> boat not even be<strong>in</strong>g <strong>use</strong>cLAno<strong>the</strong>r environmental effect, which sometimes is considered by boat designers and sometimes isnot heat, but cold Most res<strong>in</strong>s will absorb some amount <strong>of</strong> moisture, some more than o<strong>the</strong>rs. Alam<strong>in</strong>ate which has absorbed a significant amount <strong>of</strong> moisture will experience severe stresses if<strong>the</strong> lam<strong>in</strong>ate becomes frozen, s<strong>in</strong>ce water expands when it freezes. This expansion can generatesignificant pressures <strong>in</strong> a lam<strong>in</strong>ate amdcan actually ca<strong>use</strong> delam<strong>in</strong>ation or stress crack<strong>in</strong>g.Ano<strong>the</strong>r problem with cold temperatures concerns <strong>the</strong> case <strong>of</strong> a lam<strong>in</strong>ate over plywood.Plywood is relatively stable <strong>the</strong>rmally and has a low coefficient <strong>of</strong> <strong>the</strong>rmal expansion ascompared to <strong>the</strong> res<strong>in</strong>s <strong>in</strong> <strong>the</strong> <strong>fiber</strong>glass lam<strong>in</strong>ated over it. If <strong>the</strong> <strong>fiber</strong>glass lam<strong>in</strong>ate is relativelyth<strong>in</strong> and <strong>the</strong> plywood fairly thick, <strong>the</strong> plywood will dom<strong>in</strong>ate. When <strong>the</strong> res<strong>in</strong> tries to contract<strong>in</strong> cold temperatures, <strong>the</strong> plywood will try to prevent it from contract<strong>in</strong>g and local crack<strong>in</strong>g willoccur <strong>in</strong> <strong>the</strong> res<strong>in</strong> beca<strong>use</strong> <strong>the</strong> plywood is not homogeneous. There is a gra<strong>in</strong> to <strong>the</strong> w@ sosome areas won’t restra<strong>in</strong> <strong>the</strong> contract<strong>in</strong>g res<strong>in</strong> and o<strong>the</strong>r areas wilL As a result, spidenvebcrack<strong>in</strong>g can occur. This effect has been noted on new boats that have been built <strong>in</strong> warmerclimates and sent to nor<strong>the</strong>rn regions.160


ChapterFourPERFORMANCEFaihrresi nFRPconstructedv esselsf all<strong>in</strong>too ne<strong>of</strong>twocaEgoties. Firsg<strong>the</strong> faih.rrecanbe<strong>the</strong>result <strong>of</strong> a collision or o<strong>the</strong>r extreme force. Secondly, <strong>the</strong> failure may have occurred beca<strong>use</strong> <strong>of</strong>design <strong>in</strong>adequacies. In <strong>the</strong> case <strong>of</strong> <strong>the</strong> latter, <strong>the</strong> repair should go beyond restor<strong>in</strong>g <strong>the</strong>darnaged srea back to its orig<strong>in</strong>al strength, The loads and stress distributions should bereexam<strong>in</strong>ed to determ<strong>in</strong>e proper design alterations. When <strong>the</strong> failure is ca<strong>use</strong>d by an unusualevent, it should be kept <strong>in</strong> m<strong>in</strong>d that all repair work relies on secondary bond<strong>in</strong>g, which meansthat stronger or additional replacement material is needed to achieve <strong>the</strong> orig<strong>in</strong>al strength. Ingeneral, repair to FRP vessels can be easier than o<strong>the</strong>r materials. However, proper preparationand work<strong>in</strong>g environment are critical.Major S<strong>in</strong>gle-Sk<strong>in</strong>DamageDamage to <strong>the</strong> hull or deck structure is considered major when <strong>the</strong> structural <strong>in</strong>tegrity <strong>of</strong> <strong>the</strong>vessel is compromised. If <strong>the</strong> damage is extensive, provisions must be made to adequatelysupport <strong>the</strong> vessel to <strong>in</strong>sure <strong>the</strong> restoration <strong>of</strong> <strong>the</strong> orig<strong>in</strong>al form. The as-built lsm<strong>in</strong>ate scheduleshould be determ<strong>in</strong>ed <strong>in</strong> order to reproduce strength and orientation properties. The follow<strong>in</strong>ggeneral repair procedure should be followed [4-34]Edge and Surface Preparation: The area to be repaired should be defied by athorough suxvey<strong>of</strong> <strong>the</strong> damage. The lsm<strong>in</strong>ate should be cut back to au area tlyt hasbeen determ<strong>in</strong>ed to be sound The edges <strong>of</strong> <strong>the</strong> sound lam<strong>in</strong>ate should be taped backto a slope <strong>of</strong> 1:12 as shown <strong>in</strong> Figure 4-23b. Surface preparation with coarsesandpaper is recommended to produce a roughened area for secondarybond adhesion.Mold<strong>in</strong>g: The method <strong>of</strong> creat<strong>in</strong>g a female mold for repair<strong>in</strong>g a damaged areadepends greatly on <strong>the</strong> extent <strong>of</strong> <strong>the</strong> damage. In <strong>the</strong> case <strong>of</strong> a 75 foot GulfShrimper that collided with a barge, <strong>the</strong> entire bow section <strong>of</strong> <strong>the</strong> vessel wasreplaced us<strong>in</strong>g a female mold taken from a sistership. [4-35] When damage toan area is not too extensive, <strong>the</strong> general form can be temporarily recreated us<strong>in</strong>gauto body fdler, thus enabl<strong>in</strong>g a mold to be fabricated <strong>in</strong> place. The area issubsequently cut back to sound lam<strong>in</strong>ate, as outl<strong>in</strong>ed above. Large molds mayrequire stiffeners to ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong>ir form.Lam<strong>in</strong>at<strong>in</strong>g: Lam<strong>in</strong>ated qairs have traditionally been done us<strong>in</strong>g a ply tapersequence illustrated <strong>in</strong> Figure 4-23& It has been determ<strong>in</strong>ed that this techniqueproduces relatively weak res<strong>in</strong> rich areas at <strong>the</strong> repair <strong>in</strong>terface. As an alternative, itis recommended to iirst apply a layer that completely covers <strong>the</strong> work ~ followedby successively tapered layers. The plies should be slightly larger <strong>the</strong>n necessarywhen lam<strong>in</strong>ated to allow for subsequent gr<strong>in</strong>d<strong>in</strong>g. Also note <strong>the</strong> extension <strong>of</strong> <strong>the</strong>first and last layers over <strong>the</strong> sound lam<strong>in</strong>ate illustrated <strong>in</strong> Figure 4-23b.F<strong>in</strong>ish<strong>in</strong>g: When fair<strong>in</strong>g <strong>the</strong> repair job <strong>in</strong> preparation for gel coat or pa<strong>in</strong>tapplication, extreme care should be exercised to <strong>in</strong>sure that <strong>the</strong> lam<strong>in</strong>ated sldns<strong>of</strong> <strong>the</strong> repair re<strong>in</strong>forcements are not compromised.161


,RepairMar<strong>in</strong>e Compositesa) Conventlotml Taper Sequence for FRP RepairsMATCHEDLAMINATE PLIES.MOLD ORBACKJNGRESIN RICH AREAb) RecommendedTaper Sequeneefor FRP RepairsFIRST LAYER COVERS GROUNDFULL REPAIR JOINT FLUSH 12 TO 1 TAPER 0.75 tI /+“t 4Figure 4-23 Illustrations <strong>of</strong> Conventional and Preferredfor S<strong>in</strong>gle-Sk<strong>in</strong> Construction [USCG NVIC No. 8-87]FRP Hole Repair TechniquesMajor Damage <strong>in</strong> Sandwich ConstructionDeterm<strong>in</strong><strong>in</strong>gg <strong>the</strong> extent <strong>of</strong> darnage with sandwich construction is a bit more difficult beca<strong>use</strong>debond<strong>in</strong>g may extend far beyond <strong>the</strong> area <strong>of</strong> obvious visual darnage. The cut back area shouldbe <strong>in</strong>creas<strong>in</strong>gly larger proceed<strong>in</strong>g from <strong>the</strong> outer to <strong>the</strong> <strong>in</strong>ner sk<strong>in</strong> as shown <strong>in</strong> Figure 4-24.Repair to <strong>the</strong> sk<strong>in</strong>s is generally similar to that for s<strong>in</strong>gle-sk<strong>in</strong> construction. The new core wiUnecesstuily be th<strong>in</strong>ner than <strong>the</strong> exist<strong>in</strong>g one to accommodate <strong>the</strong> additional repair lam<strong>in</strong>atethickness. Exireme care must be exercised to <strong>in</strong>sw that <strong>the</strong> core is properly bonded to bothsk<strong>in</strong>s and <strong>the</strong> gap between new and old core is illled.162


ChapterFourPERFORMANCE/\ /\ ~R SKINOUTER SKINMOLD OR BACKINGFigure 4-24 Technique for Repair<strong>in</strong>g Damage to Sandwich Construction [USCGNVIC No. 8-87]Core Debond<strong>in</strong>gRepair<strong>in</strong>g large sections <strong>of</strong> lam<strong>in</strong>ate where <strong>the</strong> core has separated from <strong>the</strong> sk<strong>in</strong> is costly andwill generally result <strong>in</strong> a structure that is <strong>in</strong>ferior to <strong>the</strong> origimd design, both from a strengthand weight standpo<strong>in</strong>t. Pilot holes must be drilled throughout <strong>the</strong> structure <strong>in</strong> <strong>the</strong> areassuspected to be debonded. These holes will also serve as ports for evacuation <strong>of</strong> any moistureand <strong>in</strong>jection <strong>of</strong> res<strong>in</strong>, which can restore <strong>the</strong> mechanical aspects <strong>of</strong> <strong>the</strong> core bond to a certa<strong>in</strong>degree. In most <strong>in</strong>stances, <strong>the</strong> core never was fully bonded to <strong>the</strong> sk<strong>in</strong>s as a result <strong>of</strong>manufactur<strong>in</strong>g deficiencies.Small Non-Penetrat<strong>in</strong>gHolesIf <strong>the</strong> structural <strong>in</strong>tegrity <strong>of</strong> a lam<strong>in</strong>ate has not been compromised, a repair can be accomplishedus<strong>in</strong>g a “structural” putty. This mixture usually consists <strong>of</strong> res<strong>in</strong> or a gel coat formulationmixed with milled <strong>fiber</strong>s or o<strong>the</strong>r randomly oriented ffler that contributes to <strong>the</strong> mixture’sstrength properties.For m<strong>in</strong>or surface damage, filler is only required to thicken <strong>the</strong> mixture for workability.follow<strong>in</strong>g general procedure [4-36] can be followed:The●Clean surface with acetone to remove all wax, dirt and grease.. Remove <strong>the</strong> damaged material by sand<strong>in</strong>g or with a putty knife or razorblade. Wipe clean with acetone, be<strong>in</strong>g careful not to saturate <strong>the</strong> area.. Fonmdate <strong>the</strong> putty mixture us<strong>in</strong>g about 1% MEICPcatalyst.. Apply <strong>the</strong> putty mixture to <strong>the</strong> damaged area to a thickness <strong>of</strong> about ~lb”.. If a gel coat mixture is <strong>use</strong>~ a piece <strong>of</strong> cellophane should be placed over<strong>the</strong> gel coat and spread out with a razor’s edge. After about 30 m<strong>in</strong>utes, <strong>the</strong>cellophane can be removed.●Wet-sand and buff gel coated surface or sand and pa<strong>in</strong>t when match<strong>in</strong>g apa<strong>in</strong>ted f<strong>in</strong>ish.163


RepairMar<strong>in</strong>e CompositesBlistersThe technique <strong>use</strong>d to repair a blistered hull depends on <strong>the</strong> extent <strong>of</strong> <strong>the</strong> problem. Whereblisters are few and spaced far apart, <strong>the</strong>y can be repaired on an <strong>in</strong>dividual basis. If areas <strong>of</strong> <strong>the</strong>hull have a cluster <strong>of</strong> blisters, gel coat should be removed from <strong>the</strong> vic<strong>in</strong>ity surround<strong>in</strong>g <strong>the</strong>problem. In <strong>the</strong> case where <strong>the</strong> entire bottom is severely blistered, gel coat removal over <strong>the</strong>entire surface is recommended. The follow<strong>in</strong>g repair procedure [4-37] is advised:Gel Coat Removal: Sand blast<strong>in</strong>g is not recommended beca<strong>use</strong> it shatters <strong>the</strong>underly<strong>in</strong>g lam<strong>in</strong>ate, thus wesken<strong>in</strong>g <strong>the</strong> structure. Also, <strong>the</strong> gel coat is harderthan <strong>the</strong> lam<strong>in</strong>ate, which has <strong>the</strong> effect <strong>of</strong> quickly erod<strong>in</strong>g <strong>the</strong> lam<strong>in</strong>ate once <strong>the</strong>gel coat is removed. Gr<strong>in</strong>d<strong>in</strong>g or sand<strong>in</strong>g until <strong>the</strong> laru<strong>in</strong>ate has a “clear” qualityis <strong>the</strong> prefemed approach.Lam<strong>in</strong>ate Preparation: It is essential that <strong>the</strong> lam<strong>in</strong>ate is clean. If <strong>the</strong> blistercan not be completely removed, <strong>the</strong> area should be thoroughly washed withwater and treated with a water soluble silane wash. A f<strong>in</strong>al wash to removeexcess silane is recommended. The lam<strong>in</strong>ate is <strong>the</strong>n required to be thoroughlytied. Vacuum bagg<strong>in</strong>g is an excellent way to accomplish this. In lieu <strong>of</strong> this,moderate heat application and fans can work.Res<strong>in</strong> Coat<strong>in</strong>g: The f<strong>in</strong>al critical element <strong>of</strong> <strong>the</strong> repair procedure is <strong>the</strong> selection<strong>of</strong> a res<strong>in</strong> to seal <strong>the</strong> exposed lam<strong>in</strong>ate and create a barrier layer. As illustrated<strong>in</strong> <strong>the</strong> Blisters section, v<strong>in</strong>yl ester res<strong>in</strong>s are superior for this application and arechemically compatible with polyester lam<strong>in</strong>ates, which to date are <strong>the</strong> onlymaterials to exhibit blister<strong>in</strong>g problems. Epoxy res<strong>in</strong> <strong>in</strong> itself can provide <strong>the</strong>best barrier performance, but <strong>the</strong> adhesion to o<strong>the</strong>r materials will not be as good.Epoxy repair might be most appropriate for isolated blisters, where <strong>the</strong> <strong>in</strong>creasedcost can be justified.164


ChapterFiveFABRICATIONThe various fabrication processes applicable to mar<strong>in</strong>e composite structures are summarized <strong>in</strong><strong>the</strong> tables at <strong>the</strong> end <strong>of</strong> this section. The most common technique <strong>use</strong>d for large structures suchas boat hulls, is <strong>the</strong> open mold process. Specifically, hand lay-up or spray-up techniques axe<strong>use</strong>d. Spray-up <strong>of</strong> chopped <strong>fiber</strong>s is generally limited to smaller hulls and parts. Figure 5-1shows <strong>the</strong> results <strong>of</strong> an <strong>in</strong>dustry survey <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> relative occurrence <strong>of</strong> variousmanufactur<strong>in</strong>g processes with<strong>in</strong> <strong>the</strong> mar<strong>in</strong>e <strong>in</strong>dustry.The most popular forms <strong>of</strong> open mold<strong>in</strong>g <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e <strong>in</strong>dustry are s<strong>in</strong>gle-sk<strong>in</strong> from femalemolds, cored construction from female molds and cored construction from male mol~ Industrysurvey results show<strong>in</strong>g <strong>the</strong> pwpuhrity <strong>of</strong> <strong>the</strong>se techniques is shown <strong>in</strong> Figure 5-2.ProoesssHand Layup81ngie-t3k<strong>in</strong>Vacuum BagAutoclave Cure$prayupt1I!Cored w/ Male MoldGored w/ Female Mold!RIM or RTMOthnrO<strong>the</strong>ro% 20% 405 60% 80% 100%10% 20% 40% 60% 80% 100%Peroant <strong>of</strong> Companlaa In surveymFigure 5-1 Mar<strong>in</strong>e Industry Manufactur<strong>in</strong>gProcesses [EGA Survey]Figure 5-2 Mar<strong>in</strong>e Industry ConstructionTechniques [EGA Survey]Mold Build<strong>in</strong>gAknost all production hull fabrication is done with female molds that enable <strong>the</strong> builder toproduce a number <strong>of</strong> identical parts with a quality exterior ftish. It is essential that molds arecarefully constructed us<strong>in</strong>g <strong>the</strong> proper materials if consistent ftish quality and dimensionalcontrol are desired.165


. lManufactur<strong>in</strong>g ProcessssMar<strong>in</strong>e CompositesPlugsA mold is built over a plug that geometrically resembles <strong>the</strong> fished pm The plug is typicallybuilt <strong>of</strong> non-porous wood, such as oak, mahogany or ash, The wood is <strong>the</strong>n covered with aboutthree layers <strong>of</strong> 7.5 to 10 ounce cloth or equivalent thickness <strong>of</strong> mat. The surface is faired andftished with a surface cur<strong>in</strong>g res<strong>in</strong>, with pigment <strong>in</strong> <strong>the</strong> first coat to assist <strong>in</strong> obta<strong>in</strong><strong>in</strong>g auniform surface. After <strong>the</strong> plug is wet-sanded, three coats <strong>of</strong> carnauba wax snd a layer <strong>of</strong> PVApart<strong>in</strong>g fti can be applied by hand.MoldsThe fwst step <strong>of</strong> build<strong>in</strong>g a mold on a male plug consists <strong>of</strong> gel coat application, which is a criticalstep <strong>in</strong> <strong>the</strong> process. A non-pigmented gel coat that is specifically fomnulated for mold applicationsshould be applied <strong>in</strong> 10 mil layers to a thickness <strong>of</strong> 30to40 roils. The characteristics <strong>of</strong> tool<strong>in</strong>g gelcoats <strong>in</strong>cluck toughness, high heat distortion, high gloss and good glass retention. A back-up layer<strong>of</strong> gel that is pigmented to a dark color is <strong>the</strong>n applied to enable <strong>the</strong> lam<strong>in</strong>ator to detect air <strong>in</strong> <strong>the</strong>production lam<strong>in</strong>ates and evenly apply <strong>the</strong> production gel coat surfaces.After <strong>the</strong> gel coat layers have cured overnigh~ <strong>the</strong> back-up lam<strong>in</strong>ate can be applied, start<strong>in</strong>gwith a surfac<strong>in</strong>g mat or veil to prevent pr<strong>in</strong>t-through. Re<strong>in</strong>forcement layers can consist <strong>of</strong>ei<strong>the</strong>r mat and cloth or mat and woven rov<strong>in</strong>g to a m<strong>in</strong>imum thickness <strong>of</strong> 1/4<strong>in</strong>ch. Additionalthickness or cor<strong>in</strong>g can be <strong>use</strong>d to stiffen large molds. Fram<strong>in</strong>g and o<strong>the</strong>r stiffeners arerequired to streng<strong>the</strong>n <strong>the</strong> overall mold and permit handl<strong>in</strong>g.The mold should be post cured <strong>in</strong> a hot-air oven at 1O(YFfor 12 to 24 hours. After this, wetsand<strong>in</strong>gand buff<strong>in</strong>g can be undertaken. The three layers <strong>of</strong> wax and PVA are applied <strong>in</strong> amanner similar to <strong>the</strong> plug. [5-1]S<strong>in</strong>gle Sk<strong>in</strong> ConstructionAlmost all mar<strong>in</strong>e construction done h female molds is fished with a gel coat surface, <strong>the</strong>refore,this is <strong>the</strong> first procedure <strong>in</strong> <strong>the</strong> fabrication sequence. Molds must first be carefully waxed and coatedwith a part<strong>in</strong>g agent Gel coat is spmyed to a thickness <strong>of</strong> 20 to 30 roils and allowed to cure. Aback-up re<strong>in</strong>forcemen~ such as a surfac<strong>in</strong>g mat, veil or polyester fabric is <strong>the</strong>n applied to tiucepr<strong>in</strong>t-through. Recent test<strong>in</strong>g has shown that <strong>the</strong> polyester fabrics have suptior mechanical pmpmtieswhile possess<strong>in</strong>g<strong>the</strong>rmal expansion coefkients similarto common res<strong>in</strong> systems. [5-2]Res<strong>in</strong> can be delivered ei<strong>the</strong>r by spray equipment or <strong>in</strong> small batches via buckets. If <strong>in</strong>dividualbuckets are <strong>use</strong>d, much care must be exercised to ensure that <strong>the</strong> res<strong>in</strong> is properly catalyzed.S<strong>in</strong>ce <strong>the</strong> catalyzation process is very sensitive to temperature, ambient conditions should bema<strong>in</strong>ta<strong>in</strong>ed between 60” snd 85”F. Exact formulation <strong>of</strong> catalysts and accelerators is required tomatch <strong>the</strong> environmental conditions at hand.Re<strong>in</strong>forcement material is usually precut outside <strong>the</strong> mold on a flat table. Some material supplyho<strong>use</strong>s are now <strong>of</strong>fer<strong>in</strong>g precut kits <strong>of</strong> re<strong>in</strong>forcements to <strong>the</strong>ir customers. [5-3] After a th<strong>in</strong>layer <strong>of</strong> res<strong>in</strong> is applied to <strong>the</strong> mold, <strong>the</strong> re<strong>in</strong>forcement is put <strong>in</strong> place and res<strong>in</strong> is drawn up byroll<strong>in</strong>g <strong>the</strong> surface with mohair or grooved metal rollers, or with squeegees. This operation isvery critical <strong>in</strong> hand lay-up fabrication to ensure complete wet-out, consistent <strong>fiber</strong>/res<strong>in</strong> ratio,and to elim<strong>in</strong>ate entrapped air bubbles.166


ChapterFiveFABRICATIONAfter <strong>the</strong> hull lam<strong>in</strong>at<strong>in</strong>g process is complete, <strong>the</strong> <strong>in</strong>stallation <strong>of</strong> stigers and frames can start.The hull must be supported dur<strong>in</strong>g <strong>the</strong> <strong>in</strong>stallation <strong>of</strong> <strong>the</strong> <strong>in</strong>terior structure beca<strong>use</strong> <strong>the</strong> lam<strong>in</strong>atewill not have sufficient stiffness to properly support <strong>the</strong>mselves, Secondary bond<strong>in</strong>g shouldfollow <strong>the</strong> procedures outl<strong>in</strong>ed <strong>in</strong> <strong>the</strong> section on Details.Cored Constructionfrom Female MoldsCored construction from female molds follows much <strong>the</strong> same procedure as that for s<strong>in</strong>gle sk<strong>in</strong>construction. The most critical phase <strong>of</strong> this operation, however, is <strong>the</strong> application <strong>of</strong> <strong>the</strong> coreto <strong>the</strong> outir lam<strong>in</strong>ate. The difficulty stems from <strong>the</strong> follow<strong>in</strong>g:●✎✎✎✎Dissimilar materials are be<strong>in</strong>g bonded toge<strong>the</strong>rCore materials usually have some memory and resist <strong>in</strong>sertion <strong>in</strong>to concave moldsBond<strong>in</strong>g is a “bl<strong>in</strong>d” process once <strong>the</strong> core is <strong>in</strong> placeContoured core material will produce voids as <strong>the</strong> material is bent <strong>in</strong>to placeMoisture contam<strong>in</strong>ation <strong>of</strong> smfacesInvestigators have shown that mechanical properties can be severely degraded if voids are presentwith<strong>in</strong> <strong>the</strong> sandwich structure. [5-4] Most suppliers <strong>of</strong> contoured core material also supply aviscous bedd<strong>in</strong>g compound that is specially formulated to bond <strong>the</strong>se cores.Whenever possible, non-contoured core material is preferable. In <strong>the</strong> case <strong>of</strong> PVC foams,preheat<strong>in</strong>g may be possible to allow <strong>the</strong> material to more easily conform to a surface withcompound curves. Vacuum bag assistance is recommended to draw <strong>the</strong>se cores down to <strong>the</strong>outer lam<strong>in</strong>ate and to pull res<strong>in</strong> up <strong>in</strong>to <strong>the</strong> surface <strong>of</strong> <strong>the</strong> core.Cored Constructionover Male PlugsWhen hulls are fabricated on a custom basis, boat builders usually do not go through <strong>the</strong>expense <strong>of</strong> build<strong>in</strong>g a female mold. Instead, a male plug is constructed, over which <strong>the</strong> corematerial is placed directly. Builders claim that a better lam<strong>in</strong>ate can be produced over a convexra<strong>the</strong>r than a concave surface,Figure 5-5 shows <strong>the</strong> various stages <strong>of</strong> one-<strong>of</strong>f construction from a male plug. (A variation <strong>of</strong><strong>the</strong> technique shown <strong>in</strong>volves <strong>the</strong> fabrication <strong>of</strong> a plug f<strong>in</strong>ished to <strong>the</strong> same degree as describedabove under Mold Mak<strong>in</strong>g. Here, <strong>the</strong> <strong>in</strong>ner sk<strong>in</strong> is lam<strong>in</strong>ated f~st while <strong>the</strong> hull isupside-down. This technique is more common with balsa core materials.) A detail <strong>of</strong> <strong>the</strong> coreand outer sk<strong>in</strong> on and <strong>of</strong>f <strong>of</strong> <strong>the</strong> mold is shown <strong>in</strong> Figure 5-3.With l<strong>in</strong>ear PVC foam, <strong>the</strong> core is attached to <strong>the</strong> battens <strong>of</strong> <strong>the</strong> plug with ei<strong>the</strong>r nails from <strong>the</strong>outside or screws from <strong>the</strong> <strong>in</strong>side, as illustrated <strong>in</strong> Figure 5-4. If nails are <strong>use</strong>d, <strong>the</strong>y are pulledthrough <strong>the</strong> foam after <strong>the</strong> outside lam<strong>in</strong>ate has cured. Screws can be reversed out from <strong>in</strong>side<strong>the</strong> mold.167


Manufactur<strong>in</strong>g ProcessesMar<strong>in</strong>e CompositesMale PlugLongitud<strong>in</strong>al Battens Stationsor FramesSequence Shows F<strong>in</strong>ishedLam<strong>in</strong>ate and Removal from<strong>the</strong> Male PlugAMale Plug With Core And OutsideSk<strong>in</strong>.Outer k<strong>in</strong>fCore MaterialFigure 5-3 Detail <strong>of</strong> SandwichConstruction over Male Plug [Johannsen, One-Off Alrex Fiberglass SandwichConstruction]I,/-,’ -\Receiv<strong>in</strong>gMold with Hull Consist<strong>in</strong>g OfCore and Outside Sk<strong>in</strong>.~9Ure s-a Detail <strong>of</strong> Foam Placementon Plugs Show<strong>in</strong>g Both Nailsfrom <strong>the</strong> Outside and Screws from <strong>the</strong>Inside [Johannsen, One-Off AirexFiberglass Sandwich Construction]Figure 5-5 Simple, Wood Frame MalePlug <strong>use</strong>d <strong>in</strong> Sandwich Construction [Johannsen,One-0t7 Airex Fiberglass SandwichConstruction]168


ChapterFive.FABRICATIONEquipmentVarious manufactur<strong>in</strong>g equipment is <strong>use</strong>d toassist <strong>in</strong> <strong>the</strong> lam<strong>in</strong>at<strong>in</strong>g process. Most devicesare aimed at ei<strong>the</strong>r reduc<strong>in</strong>g man-hourrequirements or improv<strong>in</strong>g manufactur<strong>in</strong>gconsistency. Figure 5-6 gives a representation<strong>of</strong> <strong>the</strong> percentage <strong>of</strong> mar<strong>in</strong>e fabricators that <strong>use</strong><strong>the</strong> equipment described below.Chopper Gun and Spray-UpA special gun is <strong>use</strong>d to deposit a mixture <strong>of</strong>res<strong>in</strong> and chopped strands <strong>of</strong> <strong>fiber</strong>glassfilament onto <strong>the</strong> mold surface that resembleschopped strand mat. The gun is called a“chopper gun” beca<strong>use</strong> it draws cont<strong>in</strong>uousstrands <strong>of</strong> <strong>fiber</strong>glass from a spool through aseries <strong>of</strong> whirl<strong>in</strong>g blades that chop it <strong>in</strong>tostrands about two <strong>in</strong>ches long. The choppedstrands are blown <strong>in</strong>to <strong>the</strong> path <strong>of</strong> two streams<strong>of</strong> atomized liquid res<strong>in</strong>, one accelerated andone catalyzed (known as <strong>the</strong> two-pot gun).When <strong>the</strong> mixture reaches <strong>the</strong> mold, a randompattern is produced.1Realn Spray GunChopper GunQel Coat Spray GunImpregnator0% 20% 40% 60% 80% 100%-Hull =Deck ~PertsAlternately, catalyst can be <strong>in</strong>jected <strong>in</strong>to aFigure 5-6 Mar<strong>in</strong>e Industry Manufactur<strong>in</strong>gEquipment [EGA Survey]stream <strong>of</strong> promoted res<strong>in</strong> with a catalyst<strong>in</strong>jector gun. Both liquids are delivered to as<strong>in</strong>gle-head, dual nozzle gun <strong>in</strong> proper proportions and are mixed ei<strong>the</strong>r <strong>in</strong>ternally or externally.Control <strong>of</strong> gel times with this type <strong>of</strong> gun is accomplished by adjust<strong>in</strong>g <strong>the</strong> rate <strong>of</strong> catalystflow.Spray systems may also be ei<strong>the</strong>r airless or air-atomized. The airless systems <strong>use</strong> hydraulicpressure to disperse <strong>the</strong> res<strong>in</strong> mix. The air atomized type <strong>in</strong>troduces air <strong>in</strong>to <strong>the</strong> res<strong>in</strong> mix toassist <strong>in</strong> <strong>the</strong> dispersion process. Figures 5-7 and 5-8 illustrate <strong>the</strong> operation <strong>of</strong> air-atomiz<strong>in</strong>gand airless systems.Res<strong>in</strong> and Gel Coat Spray GunsVolume production shops apply res<strong>in</strong> to lam<strong>in</strong>ates via res<strong>in</strong> spray guns. A two-part system is<strong>of</strong>ten <strong>use</strong>d that mixes sepmate supplies <strong>of</strong> catalyzed and accelerated res<strong>in</strong>s with a gun similar toa pa<strong>in</strong>t sprayer. S<strong>in</strong>ce nei<strong>the</strong>r type <strong>of</strong> res<strong>in</strong> can cure by itself without be<strong>in</strong>g added to <strong>the</strong> o<strong>the</strong>r,this system m<strong>in</strong>imizes <strong>the</strong> chances <strong>of</strong> premature cure <strong>of</strong> <strong>the</strong> res<strong>in</strong>. This system providesuniformity <strong>of</strong> cure as well as good control <strong>of</strong> <strong>the</strong> quantity and dispersion <strong>of</strong> res<strong>in</strong>. Res<strong>in</strong> sprayguns can also be <strong>of</strong> <strong>the</strong> catalyst <strong>in</strong>jection type described above. Table 5-1 provides a surnmsry<strong>of</strong> <strong>the</strong> various types <strong>of</strong> spray equipment available. Air atomized guns can ei<strong>the</strong>r be <strong>the</strong> <strong>in</strong>ternaltype illustrated <strong>in</strong> Figure 5-9 or <strong>the</strong> external type shown <strong>in</strong> Figure 5-10.169


Manufactur<strong>in</strong>g ProcessesMar<strong>in</strong>e CompositwFigure 5-7 Air Atomiz<strong>in</strong>g Gun Show<strong>in</strong>gPossible “Fog” Effect at Edge <strong>of</strong>Spray Pattern [Venus-Gusmer]21. Annular nng around llle fluld nozzle tIP.2. Conlamment holes.3. Wngs. hornsor ears.4, Side-port holes,5. Angularconverg<strong>in</strong>g hales.AIR NOZZLEISIDE PORTCONTROL STEMFigure 5-8 Airless Spray Gun Show<strong>in</strong>gPossible Bounce Back from <strong>the</strong> Mold[Venus-Gusmer].,. ,FIGURE 2FLhINLETFigure 5-9 Internal AtomizationSpray Gun [B<strong>in</strong>ks Mfg.]Figure 5-10 External AtomizationSpray Gun [B<strong>in</strong>ks Mfg.]170


ChapterFiveFABRICATIONTable 5-1. Description <strong>of</strong> Spray Equipment[Cook, i%/ycor Po/yester Gel Coats and Res<strong>in</strong>s]Process Technique DescrlptlonGravityThe material is above <strong>the</strong> gun and flows to <strong>the</strong> gunnot commonly <strong>use</strong>d for gel coats - sometimes <strong>use</strong>dIor more viscous materials).The material is picked up by pass<strong>in</strong>g air over a tubeMaterial Delivery suction <strong>in</strong>serted <strong>in</strong>to <strong>the</strong> material (no direct pressure on <strong>the</strong>material). Not commonly <strong>use</strong>d for mak<strong>in</strong>g productionparts due to slow delivery rates,Method <strong>of</strong>CatalyzatlonAtomizationThe material is forced to <strong>the</strong> gun by direct air pressurePressure or by a pump. Pressure feed systems - ma<strong>in</strong>ly pumps- are <strong>the</strong> mam systems <strong>use</strong>d with gel coats.Hot PotCatalyst InjectionInternalExternalAirless AtomizationAir Assist AirlessCatalyst is measured <strong>in</strong>to a conta<strong>in</strong>er (pressure potand mixed by hand. This is <strong>the</strong> most accurate metkodbut requires <strong>the</strong> most clean up.Catalyst is added and mixed at or <strong>in</strong> <strong>the</strong> gun headrequir<strong>in</strong>g Cypriot l<strong>in</strong>es and a method <strong>of</strong> meter<strong>in</strong>gcatalyst and material flow. This is <strong>the</strong> most commonsystem <strong>use</strong>d <strong>in</strong> larger shops.Air and res<strong>in</strong> meet <strong>in</strong>side <strong>the</strong> gun head and come outa s<strong>in</strong>gle orifice, This system is not recommended forgel coats as it has a tendency to ca<strong>use</strong> porosity andproduce a rougher film.Internal mix air nozzles are typically <strong>use</strong>d <strong>in</strong> highproduction applications where f<strong>in</strong>ish quality is notcritical, The nozzles are subjecl to wear, althoughreplacement is relatively <strong>in</strong>expensive. Some materialstend to clog nozzles.Air and res<strong>in</strong> meet outside <strong>the</strong> gun head or nozzle,This is <strong>the</strong> most common type <strong>of</strong> spray gun. The res<strong>in</strong>is atomized <strong>in</strong> three stages:First Stage Atomization - fluid leav<strong>in</strong>g <strong>the</strong> nozzleorifice is immediately surrounded by an envelope <strong>of</strong>pressurized air emitted from an annular r<strong>in</strong>g,Second Stage Atomization- <strong>the</strong> fluid stream nexl<strong>in</strong>tersectstwo streams<strong>of</strong> air from wnverg<strong>in</strong>g holes<strong>in</strong>dexedto 90” to keep <strong>the</strong> stream from spread<strong>in</strong>g.Third Stage Atomization - <strong>the</strong> W<strong>in</strong>gs” <strong>of</strong> <strong>the</strong> gunhave air orifices that <strong>in</strong>ject a f<strong>in</strong>al stream <strong>of</strong> airdesigned to produce a fan pattern.Res<strong>in</strong> is pressurized to 1200 to 2000 psi via a highratio pump. The stream atomizes as d asses throu h<strong>the</strong> sprayer orifice. This system is <strong>use</strong>xfor large an8high volume operations, as it is cleaner and moreefficient than air atomized systems.Material is pressurized to 500 to 1000 psi and fur<strong>the</strong>ratomized with low pressure air at <strong>the</strong> gun orifice toref<strong>in</strong>e <strong>the</strong> spray pattern.171


Manufactur<strong>in</strong>g ProcessesMar<strong>in</strong>e CompositesImpregnatorImpregnators are high output mach<strong>in</strong>esdesigned for wett<strong>in</strong>g and plac<strong>in</strong>gwoven rov<strong>in</strong>g and o<strong>the</strong>r materkds thatcan reta<strong>in</strong> <strong>the</strong>ir <strong>in</strong>tegrity when wetted.These mach<strong>in</strong>es can also processre<strong>in</strong>forcements that comb<strong>in</strong>e mat andwoven rov<strong>in</strong>g as well as Kevlar.@Lam<strong>in</strong>ates are layed <strong>in</strong>to <strong>the</strong> moldunder <strong>the</strong> impregnator by us<strong>in</strong>gpneumatic drive systems to move <strong>the</strong>mach<strong>in</strong>e with overhead bridge-crane organtries. Figure 5-11 shows aconfiguration for a semi-gantryimpregnator, which is <strong>use</strong>d when <strong>the</strong>span between overhead structuralmembers may be too great.Roll goods to 60 <strong>in</strong>ches can be wettedand layed up <strong>in</strong> one cont<strong>in</strong>uousmovement <strong>of</strong> <strong>the</strong> mach<strong>in</strong>e. Theprocess <strong>in</strong>volves two nip rollers thatcontrol a pool <strong>of</strong> catalyzed material onei<strong>the</strong>r side <strong>of</strong> <strong>the</strong> re<strong>in</strong>forcement &additional set <strong>of</strong> rubber rollers is <strong>use</strong>dto feed <strong>the</strong> re<strong>in</strong>forcement through <strong>the</strong>nip rollers and prevent <strong>the</strong>re<strong>in</strong>forcement from be<strong>in</strong>g pulledthrough by its own weight as it dropsto <strong>the</strong> mold. Figure 5-12 is a schematicrepresentation <strong>of</strong> <strong>the</strong> impregnatormaterial path.Impregnators are <strong>use</strong>d for large scaleoperations, such as m<strong>in</strong>ecountermeasure vessels, 100 footyachts and barge volume production <strong>of</strong>barge covers. In addition to <strong>the</strong>benefits achieved through reduction <strong>of</strong>labor, quality control is improved byreduc<strong>in</strong>g <strong>the</strong> variation <strong>of</strong> lam<strong>in</strong>ate res<strong>in</strong>content. High <strong>fiber</strong> volumes and lowvoid content are also claimed byequipment manufacturers. [5-5]Figure 5-11 Configuration <strong>of</strong> Semi-GantryImpregnator ~enus-Gusmer]q@#FiberglassFeed RollsNip RollsFigure 5-12 Impregnator Material Path[Raymer, Large Scale Process<strong>in</strong>g Mach<strong>in</strong>eryfor Fabrication <strong>of</strong> Composite Hulls and Superstructures]ap172


ChapterFiveFABRICATIONHealth ConsiderationsThis document’s treatment <strong>of</strong> <strong>the</strong> <strong>in</strong>dustrial hygiene topic should serve only as an overview.Builders are advised to familiarize <strong>the</strong>mselves with all relevant federal, state and localregulations. An effective <strong>in</strong>-plant program considers <strong>the</strong> follow<strong>in</strong>g items: [5-6]oExposure to styrene, solvents, catalysts, <strong>fiber</strong>glass dust, noise and heat. The <strong>use</strong> <strong>of</strong> personal protective equipment to m<strong>in</strong>imize sk<strong>in</strong>, eye andrespiratory contact to chemicals and dust. The <strong>use</strong> <strong>of</strong> eng<strong>in</strong>eer<strong>in</strong>g controls such as ventilation, enclosures or processisolation. The <strong>use</strong> <strong>of</strong> adm<strong>in</strong>istrative controls, such as worker rotation, to m<strong>in</strong>imizeexposures Work practice control, <strong>in</strong>clud<strong>in</strong>g material handl<strong>in</strong>g and dispens<strong>in</strong>g methods,and storage <strong>of</strong> chemicalss A hazard communication program to convey chemical <strong>in</strong>formation and safehandl<strong>in</strong>g techniques to employeesSome health related term<strong>in</strong>ology should be expla<strong>in</strong>ed to better understand <strong>the</strong> mechanisms <strong>of</strong>worker exposure and government regulations. The relationship between <strong>the</strong> term “toxicity” and“hazard” should fist be def<strong>in</strong>ed. All chemicals are toxic, if <strong>the</strong>y are handled <strong>in</strong> an unsafemanner. Alternatively, “hazard” takes <strong>in</strong>to account <strong>the</strong> toxicity <strong>of</strong> an agent and <strong>the</strong> exposurethat a worker has to that agent. “Acute toxicity” <strong>of</strong> a product is its harmful effect aftershort-term exposure. “Chronic toxicity” is characterized by <strong>the</strong> adverse health effects whichhave been ca<strong>use</strong>d by exposure to a substance over a significant period <strong>of</strong> time or by long-termeffects result<strong>in</strong>g from a s<strong>in</strong>gle or few doses. [5-7]Exposure to agents can occur several ways. Sk<strong>in</strong> and eye contact can happen when handl<strong>in</strong>gcomposite materials. At risk are unprotected areas, such as hands, lower arms and face.“Irritation” is def<strong>in</strong>ed as a localized reaction characterized by <strong>the</strong> presence <strong>of</strong> redness andswell<strong>in</strong>g, which may or may not result <strong>in</strong> cell death. “Corrosive” materials will ca<strong>use</strong> tissuedestruction without normal heal<strong>in</strong>g. Dur<strong>in</strong>g <strong>the</strong> manufactur<strong>in</strong>g and cur<strong>in</strong>g <strong>of</strong> composites, <strong>the</strong>release <strong>of</strong> solvents and o<strong>the</strong>r volatiles from <strong>the</strong> res<strong>in</strong> system can be <strong>in</strong>haled by workers. Fiberand res<strong>in</strong> gr<strong>in</strong>d<strong>in</strong>g dust are also a way that foreign agents can be <strong>in</strong>haled. Although not widelyrecognized, <strong>in</strong>gestion can also occur <strong>in</strong> <strong>the</strong> work place. Simple precautions, such as wash<strong>in</strong>g <strong>of</strong>hands prior to eat<strong>in</strong>g or imok<strong>in</strong>g can reduce this risk.Worker exposure to contam<strong>in</strong>ants can be monitored by ei<strong>the</strong>r plac<strong>in</strong>g a sophisticated pump andair collection device on <strong>the</strong> worker or us<strong>in</strong>g a passive collector that is placed on <strong>the</strong> worker’scollar, Both techniques require that <strong>the</strong> <strong>in</strong>terpretation <strong>of</strong> data be done by tra<strong>in</strong>ed personnel.Exposure limits are based on standards developed by <strong>the</strong> American Conference <strong>of</strong>Governmental Industrial Hygienists (ACGIH) as follows:173


Manufactur<strong>in</strong>g ProcessesMar<strong>in</strong>e CompositesThreshold Limit Value - Time Weighted Average (TLV-TWA) - <strong>the</strong> timeweightedaverage for a normal 8-hour workday and a 40-hour workweek, towhich nearly all workers may be exposed, day after day, without adverse effectThreshold Limit Value - Short Term Exposure Limit (TLV-STEL) - <strong>the</strong>concentration to which workers can be exposed cont<strong>in</strong>uously for a short period<strong>of</strong> time (15 m<strong>in</strong>utes) without suffer<strong>in</strong>g from (1) imitation, (2) chronic orirreversible tissue darnage, or (3) narcosis <strong>of</strong> sufficient degree to <strong>in</strong>crease <strong>the</strong>likelihood <strong>of</strong> accidental <strong>in</strong>jury, impair self-rescue or materially reduce workefficiency, and provided that <strong>the</strong> daily TLV-TWA is not exceeded.Threshold Limit Value - Ceil<strong>in</strong>g (TLV-C) - <strong>the</strong> concentration that should notbe exceeded dur<strong>in</strong>g any part <strong>of</strong> <strong>the</strong> work<strong>in</strong>g day.The occupational Safety and Health Adm<strong>in</strong>istration (OSHA) issues legally b<strong>in</strong>d<strong>in</strong>g PermissibleExposure Limits (PELs) for various compounds based on <strong>the</strong> above def<strong>in</strong>ed exposure limits.The limits are published <strong>in</strong> <strong>the</strong> Code <strong>of</strong> Federal Regulations 29 CFR 19100.1000 and areconta<strong>in</strong>ed <strong>in</strong> OSHA’S revised Air Contam<strong>in</strong>ant Standard (OSHA, 1989). Table 5-2 lists <strong>the</strong>permissible limits for some agents found <strong>in</strong> a composites fabrication shop.Table 5-2.Permissible Exposure Limits and Health Hazards <strong>of</strong> Some Com~ositeMaterials [SACMA, Safe Handl<strong>in</strong>g <strong>of</strong> Advanced Compos!fe “Material Components: Health Information]Component I Primary Health Hazard I TLV-TWA I TLV-STELStyrene MonomerAcetoneStyrene vapors can ca<strong>use</strong> eye and sk<strong>in</strong>irritation. It can also ca<strong>use</strong> systemiceffectson <strong>the</strong> central nervoussystem,Overexposureto acetone by <strong>in</strong>halationmayca<strong>use</strong> irritation<strong>of</strong> mucousmembranes,headacheand na<strong>use</strong>a.50 ppm750 ppmMethyl ethylkeytone (MEK) I I Eye, nose and throat irritation, 200 ppmIPolyurethaneRes<strong>in</strong>Carbon andGraphite FibersThe isicyanates may strongly irritate <strong>the</strong> sk<strong>in</strong>and <strong>the</strong> mucous membranes <strong>of</strong> <strong>the</strong> eyes andrespiratory tract,Handl<strong>in</strong>g<strong>of</strong> carbon and graphite <strong>fiber</strong>s canca<strong>use</strong> mechanicalabrasion and irritation.100 ppm1000 ppm300 ppm0.005 ppm 0.02 ppm10 mg/m3’ —FiberglassMechanical irrigation <strong>of</strong> <strong>the</strong> eyes, nose andthroat.10 mg/m3t —1 1Aramid Fibers M<strong>in</strong>imalpotential for irritation to sk<strong>in</strong>. 5 fibrils/cm3* I, 1—Value for total dust - natural graphite is to be controlled to 2.5 mg/m3T Value for fibrous glass gust - Althou h no standards exist for fibrous glass, a TWA <strong>of</strong> 15 mym3(total dust) and 5 mg/m (respirable ? raction) has been established for “particles not o<strong>the</strong>rvwseregulated* Acceptable exposure limit established by DuPont based on <strong>in</strong>ternal studies174


Chapter FiveFABRICATIONThe boat build<strong>in</strong>g <strong>in</strong>dustry has expressed concern that <strong>the</strong> PEL’s for styrene would beextremely costly to achieve when kuge parts, such as hulls, are evaluated. In a letter to <strong>the</strong>Fiberglass Fabrication Association, OSHA statedOSHA also“The <strong>in</strong>dustry does not have <strong>the</strong> burden <strong>of</strong> prov<strong>in</strong>g <strong>the</strong> technical unfeasibility <strong>of</strong>eng<strong>in</strong>eer<strong>in</strong>g controls <strong>in</strong> an enforcement case....The burden <strong>of</strong> pro<strong>of</strong> would be onOSHA to prove that <strong>the</strong> level could be atta<strong>in</strong>ed with eng<strong>in</strong>eer<strong>in</strong>g and workpractice controls <strong>in</strong> an enforcement action if OSHA believed that was <strong>the</strong> case.”[5-8]stated that operations comparable to boat build<strong>in</strong>g-. may comply -. with <strong>the</strong> PEL’sthrough <strong>the</strong> <strong>use</strong> <strong>of</strong> respiratory protection-when <strong>the</strong>y:“(1) employ <strong>the</strong> manual or spray-up process, (2) <strong>the</strong> manufactured items utilize<strong>the</strong> same equipment and technology as that found <strong>in</strong> boat build<strong>in</strong>g, and (3) <strong>the</strong>same consideration <strong>of</strong> large part size, cotiguration <strong>in</strong>terfer<strong>in</strong>g with air-flowcontrol techniques, and res<strong>in</strong> usage apply.”The <strong>use</strong> <strong>of</strong> proper ventilation is <strong>the</strong> primsrytechnique for reduc<strong>in</strong>g airbornecontam<strong>in</strong>ants, There are three types <strong>of</strong>ventilation <strong>use</strong>d <strong>in</strong> polyester fabricationshops:Good System - flesh air oarriesfumes away fromworkerGeneral (Dilution) Ventilation. Thepr<strong>in</strong>cipal <strong>of</strong> dilution ventilation is to dilutecontam<strong>in</strong>ated air with a volume <strong>of</strong> fresh air.Figure 5-13 shows good and bad examples<strong>of</strong> general ventilation systems. These types<strong>of</strong> systems can be costly as <strong>the</strong> totalvolume <strong>of</strong> room air should be changedapproximately every 2 to 12 m<strong>in</strong>utes.Local Ventilation. A local exhaust systemmay consist <strong>of</strong> a capture hood or exhaustbank designed to evacuate air from aspeciilc area. Spray booths are an exaraple<strong>of</strong> local ventilation devices <strong>use</strong>d <strong>in</strong> shopswhere small parts are fabricated.Directed-Flow Ventilation. These systemsdirect air flow patterns over a part <strong>in</strong>relatively small volumes. The air flow is<strong>the</strong>n captured by an exhaust bank locatednear <strong>the</strong> floor, which establishes a generaltop-to-bottom flow. [5-6]Bad System- <strong>in</strong>oom<strong>in</strong>gair drawsva ors past workers.Mov<strong>in</strong>g<strong>the</strong> benchWOUI $ help.Figure s-ls General Ventilation Techniquesto Dilute Airborne Contam<strong>in</strong>antsthrough Air Turnover [FRP Supply, Hea/th,Safety and Environmental Manuaij175


Manufactur<strong>in</strong>g ProcessesMar<strong>in</strong>e CompositesOne yard <strong>in</strong> Denmark, Danyard Aalbmg A/S, has <strong>in</strong>vested a significant amount <strong>of</strong> capital toreach that country’s standards for styrene emission dur<strong>in</strong>g <strong>the</strong> fabrication <strong>of</strong> <strong>fiber</strong>glassmultipurpose navy vessels, Total allowable PELs <strong>in</strong> Denmark are 25 ppm, which translates toabout 12 ppm for styrene when o<strong>the</strong>r contam<strong>in</strong>ants are considered. The air-handl<strong>in</strong>g systemthat <strong>the</strong>y’ve <strong>in</strong>stilled for a 50,000 square foot shop moves over 5 million cubic feet per hour,with roughly two thirds dedicated to styrene removal and one third for heat<strong>in</strong>g. [5-9]Many U.S. manufacturers are switch<strong>in</strong>g to replacement products for acetone to clean equipmentas an effort to reduce volatiles <strong>in</strong> <strong>the</strong> workplace. Low-styrene emission lam<strong>in</strong>at<strong>in</strong>g res<strong>in</strong>s havebeen touted by <strong>the</strong>ir manufacturers as a solution to <strong>the</strong> styrene exposure problem. An example<strong>of</strong> such a product is produced by USS Chemicals and is claimed to have a 2070 reduction <strong>in</strong>styrene monomer content. [5-10] To document company claims, worker exposure <strong>in</strong> Floridaand California boat build<strong>in</strong>g plants were monitored for an 8-hour shift. In <strong>the</strong> Florida plant,average worker exposure was 120 ppm for <strong>the</strong> conventional res<strong>in</strong> and 54 ppm for <strong>the</strong>low-styrene emission res<strong>in</strong>. The California plant showed a reduction <strong>of</strong> 31% between res<strong>in</strong>systems. Table 5-3 is a breakdown <strong>of</strong> exposure levels by job description.Table 5-3. Personnel Exposure to Styrene <strong>in</strong> Boat Manufactur<strong>in</strong>g [ModernPlastics, Low-Styrene Emission Lam<strong>in</strong>at<strong>in</strong>g Res<strong>in</strong>s Prove it <strong>in</strong> <strong>the</strong> Workplace]Worker OccupationFlorldaPlant$tyrene Exposure, TLV-TWAStandard Res<strong>in</strong>Low-StyreneEmission Res<strong>in</strong>Hull gun runner 113.2 64.0Gun runner 1 158.2 37.7Gun runner 2 108.0 69.6Gun runner 3 80.3 43.9Roller 1 140,1 38.4Roller 2 85.1 43.6Roller 3 131,2 56.9CaliforniaPlantForeman (chopper) 30 7Chopper 2 106 77Chopper 3 41 47Roller 1 75 37Roller 2 61 40Roller 3 56 42Area sampler 1 18 12Area sampler 2 19 4Area sampler 3 9 13Area sampler 4 30 16176


Chanter FiveFABRICATIONFuture TrendsOpen Mold Res<strong>in</strong> Transfer Mold<strong>in</strong>g (RTM)Seemann Composites <strong>of</strong> Gulfport, Mississippi has developed a vacuum assisted RTM processthat utilizes a s<strong>in</strong>gle open-mold. Res<strong>in</strong> is <strong>in</strong>jected under a vacuum illrn, thus elirn<strong>in</strong>adng <strong>the</strong>need for a second mold. Figure 5-14 shows <strong>the</strong> various elements <strong>of</strong> <strong>the</strong> process. The processis patented, primarily beca<strong>use</strong> <strong>of</strong> <strong>the</strong> uniqueness <strong>of</strong> <strong>the</strong> res<strong>in</strong> distribution medium. Parts up to1000 pounds have been manufactured by <strong>the</strong> process. Materials tested <strong>in</strong>clude polyester, v<strong>in</strong>ylester phenolic and epoxy res<strong>in</strong>s and E-glass, carbon <strong>fiber</strong> and Kevlar@re<strong>in</strong>forcementBeca<strong>use</strong> re<strong>in</strong>forcement material is layed up dry and res<strong>in</strong> <strong>in</strong>fusion is controlled, <strong>fiber</strong> volumesto 75% with wovens and 80% with unidirectional have been achieved. Correspond<strong>in</strong>gly,tensile strengths <strong>of</strong> 87 ksi and flexural strengths <strong>of</strong> 123 ksi have been documented with E-glass<strong>in</strong> v<strong>in</strong>yl ester res<strong>in</strong>. Additional advantages <strong>of</strong> <strong>the</strong> process <strong>in</strong>clude enhanced quality control andreduced volatile emissions. [5-11]1,J’ {2[’or’Figure 5-14 Seemann Composites Res<strong>in</strong> Infusion Mold<strong>in</strong>g Process (SCRIMP@)Show<strong>in</strong>g: 1. Fluid Impervious Outer Sheet, 2. Seal<strong>in</strong>g Tape, 3. Rigid Mold, 4. Res<strong>in</strong>Inlet, 5. Helical Spr<strong>in</strong>g Extension, 6. Vacuum Outlet, 7. Cont<strong>in</strong>uous PeripheralTrough, 8. Dry Lay-Up <strong>of</strong> Re<strong>in</strong>forcement Material, 9. Distribution Medium, 10, Peel Ply[Seemann Composites, US Patent # 4,902,215]177


Manufactur<strong>in</strong>g ProcessesMar<strong>in</strong>e CompositesThermoplastic-Yhermoset Hybrid ProcessA company called Advance USA is currently construct<strong>in</strong>g a 15 foot rac<strong>in</strong>g sailboat called <strong>the</strong>JY 15 us<strong>in</strong>g a comb<strong>in</strong>ation <strong>of</strong> vacuum form<strong>in</strong>g, <strong>in</strong>jection foam and res<strong>in</strong> transfer mold<strong>in</strong>g.Designed by Johnstone Yachts, Inc. <strong>the</strong> boat is a very high-performance plan<strong>in</strong>g boat.The hull is essentkdly a three-element composite, consist<strong>in</strong>g <strong>of</strong> a lam<strong>in</strong>ated <strong>the</strong>rmoplastic sheeton <strong>the</strong> outside, a polyurethane foam core and an <strong>in</strong>ner sk<strong>in</strong> <strong>of</strong> RTM produced, <strong>re<strong>in</strong>forced</strong>polyester. The 0.156 <strong>in</strong>ch outer sheet is vacuum formed ~d consists <strong>of</strong> pigmented Revel@ (awea<strong>the</strong>rable rubber-styrene copolymer made by Dow Chemical and <strong>use</strong>d for hot tubs, amongo<strong>the</strong>r th<strong>in</strong>gs) covered with a scratch resistaut acrylic film and backed by an impact grade <strong>of</strong>Dow’s Magnum AIM. The foam core is a two part urethane that f<strong>in</strong>ishes out to be about threepounds per cubic foot. The <strong>in</strong>ner sk<strong>in</strong> is ei<strong>the</strong>r glass cloth or mat comb<strong>in</strong>ed with polyesterres<strong>in</strong> us<strong>in</strong>g an RTM process.The hull and deck are built separately and bonded toge<strong>the</strong>r with epoxy as shown <strong>in</strong> Figure5-15. Although <strong>in</strong>vestment <strong>in</strong> <strong>the</strong> alum<strong>in</strong>um-filled, epoxy molds is si@lcan~ <strong>the</strong> builderclaims that a lighter and stronger boat can be built by this process <strong>in</strong> two-thirds <strong>the</strong> timerequired for spray-up construction. Additionally, <strong>the</strong> hull has <strong>the</strong> advantage <strong>of</strong> a <strong>the</strong>rmoplasticexterior that is proven to be mom impact resistant than FRP. Closed-mold processes alsoproduce less volatile emmisions. [5-12]figure S-15 Schematic<strong>of</strong> JY-15 Show<strong>in</strong>gHull and Deck Parts prior to Jo<strong>in</strong><strong>in</strong>g withEpoxy ~acht<strong>in</strong>g, Yacht<strong>in</strong>g-k 7990 Honor Ro//j178


Chapter FiveFABRICATIONPost Cur<strong>in</strong>gThe physical propernes <strong>of</strong> polymer lam<strong>in</strong>ates is very dependent upon <strong>the</strong> degree <strong>of</strong>cross-hik<strong>in</strong>g <strong>of</strong> <strong>the</strong> matrices dur<strong>in</strong>g polymerization. Post cur<strong>in</strong>g can greatly <strong>in</strong>fluence <strong>the</strong>degree <strong>of</strong> cross-l<strong>in</strong>k<strong>in</strong>g and thus <strong>the</strong> glass-transition temperature <strong>of</strong> <strong>the</strong>rmoset res<strong>in</strong> systems,Some builders <strong>of</strong> custom rac<strong>in</strong>g yachts are post cur<strong>in</strong>g hulls, especially <strong>in</strong> Europe whereepoxies sre <strong>use</strong>d to a greater extent. An epoxy such as Gougeon’s GLR 125 can almost doubleits tensile strength and more than double ultimate elongation when cured at 25~F for threehours, [5-13]Owens-Corn<strong>in</strong>g performed a series <strong>of</strong> tests on several res<strong>in</strong> systems to determ<strong>in</strong>e <strong>the</strong> <strong>in</strong>fluence<strong>of</strong> cure cycle on material properties. Res<strong>in</strong> cast<strong>in</strong>gs <strong>of</strong> isophthalic polyester, v<strong>in</strong>yl ester andepoxy were tested, with <strong>the</strong> results shown <strong>in</strong> Table 5-4.Table 5-4. Effect <strong>of</strong> Cure Conditions on Mechanical Properties[Owens-Corn<strong>in</strong>g, ~ostcur~ng Changes Polymer Pfapertles]Tensile PropertiesFlexural PropertiesRes<strong>in</strong> System Cure Youn ‘S Ultlmate Ultimate Youn ‘s UltlmateCycle Modu~~$ Stren th Defo&~;tion Y(Xlo) (pslj y:;o~; ‘t&llthA 3.61 8000 7.0 2.0 7000Owens-Corn<strong>in</strong>g E-737Polyester16%CobaltlDMA/ B 4.80 13500 3.4 5.0 18900MEKP(1OO:2:I:2)c 4,80 13400 3.4 5.0 18900A 2.71 3000 9.0 2.8 6500Dow 411-415 V<strong>in</strong>yl Ester B(100:0.4) 2.80 3400 6.8 4.0 15600c 4.20 9500 4.2 4,8 17000D 3.72 12700 7.0 4.0 15600Dow DER-331Epoxy/MDA (100:26.2) E 3.72 12700 6,5 4,1 15600F 4.39 13300 6.0 4.4 16200A 24 hours@ 72-FCure CyclesB 24 hours@ 72°F plus 1 hour@ 225°Fc 24 hours@ 72-F plus 2 hours @ 225°FD2 hours @I250”FE 2 hours@ 250”F plus 1.5 hours@ 350”FF 2 hours@ 250”F plus 2.5 hours@ 350”F179


Manufactur<strong>in</strong>g ProcessesMar<strong>in</strong>e CompositesHAND LAY-UPA contact mold method suitable for mak<strong>in</strong>g boats, tanks, hous<strong>in</strong>gs and build<strong>in</strong>g panels forprototypesand o<strong>the</strong>r large parts requir<strong>in</strong>ghigh strength. Productionvolume is low to medium.bm<strong>in</strong>ntContact moldGel coatProcess DescrlptlonA pigmented gel mat is first applied to <strong>the</strong> mold by spray un for a hi h-quality surface. When <strong>the</strong>gel coat has beoome tacky, <strong>fiber</strong>glass re<strong>in</strong>forcement (usua7 Iy mat or cYoth) is manually placed on<strong>the</strong> mold. The base res<strong>in</strong> is a plied by pour<strong>in</strong>g, brush<strong>in</strong> or spray<strong>in</strong>q, Squeegees or rollers are<strong>use</strong>d to densify <strong>the</strong> lam<strong>in</strong>ate, tEoroughly wett<strong>in</strong>g <strong>the</strong> re<strong>in</strong>vorcement wdh <strong>the</strong> res<strong>in</strong>, and remov<strong>in</strong>gentrapped air. Layers <strong>of</strong> <strong>fiber</strong>glass mat or woven rov<strong>in</strong>g and res<strong>in</strong> are added for thickness.Catalystsand acceleratorsare added to <strong>the</strong> res<strong>in</strong> systemto allow <strong>the</strong> res<strong>in</strong>to cure without externalheat. The amounts <strong>of</strong> catalyst and accelerator are diotated by <strong>the</strong> work<strong>in</strong>g time necessary andoverall thickness <strong>of</strong> <strong>the</strong> f<strong>in</strong>ished part.The lam<strong>in</strong>ate may be cored or stiffened with PVC foam, balsa and honeycomb materials to reduceweight and <strong>in</strong>crease panel stiffness.Res<strong>in</strong> SystemsGeneral-purpose,room-temperaturecur<strong>in</strong>g polyesterswhich will not dra<strong>in</strong> or sag on verticalsurfaces. Epoxiesand v<strong>in</strong>yl esters are also <strong>use</strong>d.MoldsSim Ie, s<strong>in</strong>gle-cavity,one-piece,ei<strong>the</strong>r male or female, <strong>of</strong> any size. Vacuumbag or autoclavemetRods may be <strong>use</strong>d to speed cure, <strong>in</strong>crease <strong>fiber</strong> content and improve surface f<strong>in</strong>ish,Major AdvantagesSimplest method <strong>of</strong>fer<strong>in</strong>g low-cost tool<strong>in</strong>g, simple process<strong>in</strong>g and a wide range <strong>of</strong> parl sizes.Design changes are readily made. There is a m<strong>in</strong>imum <strong>in</strong>vestment <strong>in</strong> equipment. With goodoperator skill, good production rates and consistent quality are obta<strong>in</strong>able.180


Chmter FiveFABRICATIONSPRAY-UPA low-to-medium volume, open mold method similar to hand lay-up <strong>in</strong> its suitability for mak<strong>in</strong>gboats, tanks, tub/shower units and o<strong>the</strong>r simple! medium to large size shapes such as truck hoods,recreational vehicle panels and commercial refrigeration display cases. Greater shape complexityis possible with spray-up than with hand lay-up.CatalyCont<strong>in</strong>uous Chopper/spray mold coatstrand rov<strong>in</strong>ggunProcess DescrlptlonFibergla<strong>ssc</strong>ont<strong>in</strong>uousstrand rov<strong>in</strong>g is fed through a comb<strong>in</strong>ation chopper and spra gun. Thisdevice simultaneouslydepositschopped rov<strong>in</strong>g and catalyzed res<strong>in</strong> onto <strong>the</strong> mold. ! he lam<strong>in</strong>atethus deposited is densifiedwith rollersor squeegeesto removeair and thoroughlywork <strong>the</strong> res<strong>in</strong><strong>in</strong>to <strong>the</strong> re<strong>in</strong>forc<strong>in</strong>gstrands. Additionallayers <strong>of</strong> chopped rov<strong>in</strong>g and res<strong>in</strong> may be added asrequiredfor thickness. Cure is usually at room temperature or may be accelerated by moderateapplication <strong>of</strong> heat.As with hand lay-up, a superior surface f<strong>in</strong>ish maybe achieved by first spray<strong>in</strong>g gel coat onto <strong>the</strong>mold rior to spray-up <strong>of</strong> <strong>the</strong> substrate. Woven rov<strong>in</strong>g is occasionally added to <strong>the</strong> iam<strong>in</strong>ate forspecific strength orientation, Aiso, core materialsare easily <strong>in</strong>corporated.Res<strong>in</strong> SystemsGeneral-purpose,room-temperaturecur<strong>in</strong>g polyesters,iow-heat-cur<strong>in</strong>gpolyesters.MoldsSimpie, s<strong>in</strong> ie-cavity, usuaiiy one-piece, ei<strong>the</strong>r maie or femaie, as with hand iay-up moids.Occasional Fy molds maybe assembied <strong>in</strong> several pieces,<strong>the</strong>n disassembledwhen remov<strong>in</strong>g <strong>the</strong>part. This technique is <strong>use</strong>fui when pad complexity is great.Ma]or AdvantagesSimpie, low-cost tool<strong>in</strong>g, simple process<strong>in</strong>g; portabie equipment permits on-site fabrication; vitiuallyno parl size imitations, The process may be automated,181


Manufactur<strong>in</strong>g ProcessesMar<strong>in</strong>e CompositesCOMPRESSIONMOLDINGA high-volume, high-pressure method suitable for mold<strong>in</strong> complex, high-stren h<strong>fiber</strong>glass-<strong>re<strong>in</strong>forced</strong> plastic parts. Fairl large parts can \ e molded with excelrent surface f<strong>in</strong>ish.Thermosett<strong>in</strong>g res<strong>in</strong>s are normally <strong>use</strong> J .Femalemold halfMold<strong>in</strong>gcompound/ H&t and pressureMale mold halfProcess DescrlptlonMatched molds are mounted <strong>in</strong> a hydraulic or mechanical mold<strong>in</strong>g press. A weighed charge <strong>of</strong>sheet or bulk mold<strong>in</strong>g compound, or a “preform” or <strong>fiber</strong>glass mat with res<strong>in</strong> added at <strong>the</strong> press, islaced <strong>in</strong> <strong>the</strong> open mold. In <strong>the</strong> case <strong>of</strong> preform or mat mold<strong>in</strong>g, <strong>the</strong> res<strong>in</strong> maybe added ei<strong>the</strong>rBefore or after <strong>the</strong> re<strong>in</strong>forcement is positioned <strong>in</strong> <strong>the</strong> mold, depend<strong>in</strong>g on part configuration. Thetwo halves <strong>of</strong> <strong>the</strong> mold are closed, and heat (225 to 320”F) and pressure (150 to 2000 psi) areapplied. Depend<strong>in</strong>g on thickness, size, and shape <strong>of</strong> <strong>the</strong> part, cur<strong>in</strong>g cycles range from less than am<strong>in</strong>ute to about five m<strong>in</strong>utes. The mold is opened and <strong>the</strong> f<strong>in</strong>ished part is removed. Typical parts<strong>in</strong>clude: automobile front ends, appliance hous<strong>in</strong>gs and structural components, furniture, electricalcomponents, bus<strong>in</strong>ess mach<strong>in</strong>e hous<strong>in</strong>gs and parts.Res<strong>in</strong> SystemsPolyesters (comb<strong>in</strong>ed with <strong>fiber</strong>glass re<strong>in</strong>forcement as bulk or sheet mold<strong>in</strong>g compound, preform ormat), eneral purpose flexible or semirigid, chemical resistant, flame retardant, high heat distortion;also pienolics, rrrelam<strong>in</strong>es, silicones, dallyl phtalate, some epoxies.MoldsS<strong>in</strong>gle- or multiple-cavity hardened and chrome plated molds, usually cored for steam or hot oilheat<strong>in</strong>g; sometimes electric heat is <strong>use</strong>d. Side cores, provisions for <strong>in</strong>serts, and o<strong>the</strong>r ref<strong>in</strong>ementsare <strong>of</strong>ten employed. Mold materials <strong>in</strong>clude cast <strong>of</strong> forged steel, cast iron and cast alum<strong>in</strong>um.Major AdvantagesHighest volume and highest part uniformity <strong>of</strong> any <strong>the</strong>rmoset mold<strong>in</strong>~ method. The process can beautomated. Great part design flexibility, good mechanical and chemical propetiies obta<strong>in</strong>able.Inserts and attachments can be molded <strong>in</strong>. Superior color and f<strong>in</strong>ish are obta<strong>in</strong>able, contribut<strong>in</strong>g tolower part f<strong>in</strong>ish<strong>in</strong>g cost. Subsequent trimm<strong>in</strong>g and mach<strong>in</strong><strong>in</strong>g operations are m<strong>in</strong>imized.182


Chapter FiveFABRICATIONFILAMENT WINDINGA process result<strong>in</strong>g <strong>in</strong> a high degree <strong>of</strong> <strong>fiber</strong> orientation and high <strong>fiber</strong> load<strong>in</strong>g to provide extremelyhigh tensile strengths <strong>in</strong> <strong>the</strong> manufacture <strong>of</strong> hollow, generally cyl<strong>in</strong>drical products such as chemicaland fuel storage tanks and pipe, pressure vessels and rocket motor cases.bm<strong>in</strong>ateMandrel/Cctnt<strong>in</strong>uous strand Ras<strong>in</strong> applicatorrov<strong>in</strong>g\Process DescriptionCont<strong>in</strong>uous strand re<strong>in</strong>forcement is utilized to achieve maximum lam<strong>in</strong>ate strength. Re<strong>in</strong>forcementis fed through a res<strong>in</strong> bath and wound onto a suitable mandrei (pre-impregnated rov<strong>in</strong>g may also be<strong>use</strong>d), Special w<strong>in</strong>d<strong>in</strong>g mach<strong>in</strong>es iay down cont<strong>in</strong>uous strands <strong>in</strong> a predeterm<strong>in</strong>ed pattern toprovide maximum stren th <strong>in</strong> <strong>the</strong> directions required. When sufficient layers have been applied, <strong>the</strong>wound mandrel is cure3at room temperature or <strong>in</strong> an oven. The mold<strong>in</strong>g is <strong>the</strong>n stripped from <strong>the</strong>mandrel. Equipment is available to perform filament w<strong>in</strong>d<strong>in</strong>g on a cont<strong>in</strong>uous basis.Polyesters and epoxies.Res<strong>in</strong> SystemsMoidsMandrels <strong>of</strong> suitable size and shape, made <strong>of</strong> steel or alum<strong>in</strong>um form <strong>the</strong> <strong>in</strong>ner surface <strong>of</strong> <strong>the</strong>hollow part, Some mandrels are collapsible to facilitate part removal.Major AdvantagesThe process affords <strong>the</strong> hi best strength-to-weight ratio <strong>of</strong> any <strong>fiber</strong>glass <strong>re<strong>in</strong>forced</strong> plasticmanufactur<strong>in</strong>g practice an%provides <strong>the</strong> highest degree <strong>of</strong> controi over uniformit y and <strong>fiber</strong>orientation. Filament wound structures can be accurately mach<strong>in</strong>ed. The process may beautomated when high volume makes this economically feasible. The re<strong>in</strong>forcement <strong>use</strong>d is low <strong>in</strong>cost, Integral vessel closures and fitt<strong>in</strong>gs may be wound <strong>in</strong>to <strong>the</strong> lam<strong>in</strong>ate.183


Manufactur<strong>in</strong>g ProcessesMar<strong>in</strong>e CornposjfesPULTRUSIONA cont<strong>in</strong>uous process for <strong>the</strong> manufacture <strong>of</strong> products hav<strong>in</strong>g a constant cross section, such as rodstock, structural shapes, beams, channels, pips, tub<strong>in</strong>g and fish<strong>in</strong>g rods.Pull<strong>in</strong>gdevice\, “m//l\\\\ll/~$+.fi~+?1:,’ ~;~,y.~:: ~,.:,,-.,.~~ ;i,+:~$.: . ‘ ,;@wX@,~f+@@!..,,+,,.WJW&*g&*.x.xp?XjE$* ,Vx: ;.%+:}:: ,-4,$.*,x@$J?++i~j+mi.; ..‘ w%Heat sourceF<strong>in</strong>ished stock~\ Res<strong>in</strong> applicatorCont<strong>in</strong>uous strand rov<strong>in</strong>g,mat, or clothProcessDescrlptlonCont<strong>in</strong>uous strand <strong>fiber</strong>glass rov<strong>in</strong>g, mat or cloth is impregnated <strong>in</strong> a res<strong>in</strong> bath, <strong>the</strong>n drawn througha steel die, which sets <strong>the</strong> shape <strong>of</strong> <strong>the</strong> stock and controls <strong>the</strong> <strong>fiber</strong>hes<strong>in</strong> ratio. A portion <strong>of</strong> <strong>the</strong> dieis heated to <strong>in</strong>itiate <strong>the</strong> cure. With <strong>the</strong> rod stock, cure is effected <strong>in</strong> an oven. A pull<strong>in</strong>g deviceestablishes production speed.General-purpose polyesters and epoxies.Hardenedsteel dies.Res<strong>in</strong> SystemsMoldsMa]or AdvantagesThe process is a cont<strong>in</strong>uous operation that can be readily automated, It is adaptable to shapeswith small cross-sectional areas and <strong>use</strong>s low cost re<strong>in</strong>forcement. Very high strengths are possibledue to <strong>the</strong> length <strong>of</strong> <strong>the</strong> stock be<strong>in</strong>g drawn. There is no practical limit to <strong>the</strong> length <strong>of</strong> stockproduced by cont<strong>in</strong>uous pultrusion.184


Chapter FiveFABRICATIONVACUUM BAG MOLDINGMechanicalproperties<strong>of</strong> open-moldlam<strong>in</strong>atescan be improvedwith a vacuum-assisttechnique.Entrappedair and excess res<strong>in</strong> are removedto producea productwith a higher percentage<strong>of</strong> <strong>fiber</strong>re<strong>in</strong>forcement,~m<strong>in</strong>ateFlexible filmProcessDescrlptlonA flexible film (PVA or cellophane is placed over <strong>the</strong> completed lay-u , its jo<strong>in</strong>t sealed, and avacuum drawn. A bleeder.ply <strong>of</strong> fiLergla<strong>ssc</strong>loth, non-wovennylon, poYyester cloth or o<strong>the</strong>rabsorbentmaterialis first placed over <strong>the</strong> lam<strong>in</strong>ate. Atmospheric ressure elim<strong>in</strong>atesvoids <strong>in</strong> <strong>the</strong>lam<strong>in</strong>ate, and forces excess res<strong>in</strong> and air from <strong>the</strong> mold. The adzition <strong>of</strong> pressure fur<strong>the</strong>r results <strong>in</strong>hi h <strong>fiber</strong> concentration and provides better adhesion between layers <strong>of</strong> sandwich construction.d en lay<strong>in</strong>g non-contoured sheets <strong>of</strong> PVC foam or balsa <strong>in</strong>to a female mold, vacuum bagg<strong>in</strong>g is<strong>the</strong> technique <strong>of</strong> choice to ensure proper secondary bond<strong>in</strong>g <strong>of</strong> <strong>the</strong> core to <strong>the</strong> outer lam<strong>in</strong>ate.Res<strong>in</strong> SystemsPolyesters,v<strong>in</strong>yl esters and epoxies.MoldsMolds are similarto those <strong>use</strong>d for conventional open-mold processes,Major AdvantagesVacuum bag process<strong>in</strong>g can produce lam<strong>in</strong>ates with a uniform degree <strong>of</strong> consolidation, while at <strong>the</strong>same time remov<strong>in</strong>g entrapped air, thus reduc<strong>in</strong>g <strong>the</strong> f<strong>in</strong>ished void content. Structures fabricatedwith traditional hand lay-up techniques can become res<strong>in</strong> rich, especially <strong>in</strong> areas where puddlescan collect. Vacuum bagg<strong>in</strong>g can elim<strong>in</strong>ate <strong>the</strong> problem <strong>of</strong> res<strong>in</strong> rich lam<strong>in</strong>ates. Additionally,complete <strong>fiber</strong> wet-out can be accomplished if <strong>the</strong> process is done correctly. Improvedcore-bond<strong>in</strong>g is also possible with vacuum bag process<strong>in</strong>g.185


Manufactur<strong>in</strong>g ProcessesMar<strong>in</strong>e CompositesAUTOCLAVE MOLDINGA pressurized autoclave is <strong>use</strong>d for cur<strong>in</strong>g high-quality aircraft components at elevatedtemperatures under very controlled conditions. A greater lam<strong>in</strong>ate density and faster cure can beaccomplished with <strong>the</strong> <strong>use</strong> <strong>of</strong> an autoclave.Air or vacuumProcessDescrlptlonMost autoclaves are built to operate at 200”F, which will process <strong>the</strong> 250. to 350”F epoxies <strong>use</strong>d <strong>in</strong>aerospace applications. The autoclaves are usually pressurized with nitrogen or carbon dioxide toreduce <strong>the</strong> fire hazard associated with us<strong>in</strong>g shop air. Most autoclaves operate at 100 psi undercomputer control systems l<strong>in</strong>ked to <strong>the</strong>rmocouples embedded <strong>in</strong> <strong>the</strong> lam<strong>in</strong>ates.Res<strong>in</strong> SystemsMostly epoxies <strong>in</strong>corporated <strong>in</strong>to prepreg systems.MoldsLam<strong>in</strong>atedstructurescan be fabricated us<strong>in</strong>g a variety <strong>of</strong> open- or close-mold techniques.MajorAdvantagesVery precise quality control over <strong>the</strong> cur<strong>in</strong>g cycle can be accomplished with an autoclave. This isespecially important for high temperature cure aerospace res<strong>in</strong> systems that produce superiormechanical properties. The performance <strong>of</strong> <strong>the</strong>se epoxy systems is very much dependent on <strong>the</strong>time and temperature variables <strong>of</strong> <strong>the</strong> cure cycle, which is closely controlleddur<strong>in</strong>g autoclavecure.186


Chapter FiveFABRICATIONRESIN TRANSFER MOLDINGRes<strong>in</strong> transfer mold<strong>in</strong>g is an <strong>in</strong>termediate-volume mold<strong>in</strong>g process for produc<strong>in</strong>g <strong>re<strong>in</strong>forced</strong> plasticparts, and a viable alternative to hand lay-up, spray-up and compression mold<strong>in</strong>g.ALaid-Up Mat or Wcwen Re<strong>in</strong>forcementProcess DescrlptlonMost successful production res<strong>in</strong> transfer mold<strong>in</strong>g RTM) operations are now based on <strong>the</strong> <strong>use</strong> <strong>of</strong>res<strong>in</strong>/catalyst mix<strong>in</strong>g mach<strong>in</strong>e~ us<strong>in</strong>g positive dispIacement piston-type pump<strong>in</strong>g equipment toensure accurate control <strong>of</strong> resWcatalyst ratio. A wnstantly chang<strong>in</strong>g back pressure conditionexists as res<strong>in</strong> is forced <strong>in</strong>to a closed tool already occupied by re<strong>in</strong>forcement <strong>fiber</strong>.The basic RTM mold<strong>in</strong>g process <strong>in</strong>volves <strong>the</strong> connection <strong>of</strong> a meter, mix and dispense mach<strong>in</strong>e to<strong>the</strong> <strong>in</strong>let <strong>of</strong> <strong>the</strong> mold. Clos<strong>in</strong>g <strong>of</strong> <strong>the</strong> mold will give <strong>the</strong> redeterm<strong>in</strong>ed shape with <strong>the</strong> <strong>in</strong>let <strong>in</strong>jectionporl typically at <strong>the</strong> lowest po<strong>in</strong>t and <strong>the</strong> vent ports at tIe highest.Res<strong>in</strong>SystemsPolyesters, v<strong>in</strong>yl esters, polyurethane,epoxies and nylons.MoldsRTM can utilize ei<strong>the</strong>r “hard” or “s<strong>of</strong>t” tool<strong>in</strong>g, depend<strong>in</strong>g upon <strong>the</strong> expected duration <strong>of</strong> <strong>the</strong> run,Hard tool<strong>in</strong>g is usually mach<strong>in</strong>ed from alum<strong>in</strong>um while s<strong>of</strong>t tool<strong>in</strong>g is made up <strong>of</strong> a lam<strong>in</strong>atedstructure, usually epoxy.MajorAdvantagesThe close-mold process produces parts with two f<strong>in</strong>ished surfaces. By lay<strong>in</strong>g up re<strong>in</strong>forcementmaterial dry <strong>in</strong>side <strong>the</strong> mold, any comb<strong>in</strong>ation <strong>of</strong> materials and orientation can be <strong>use</strong>d, <strong>in</strong>clud<strong>in</strong>g3-D re<strong>in</strong>forcements. Part thickness is also not a problem as exo<strong>the</strong>rm can be controlled.Carbon/epoxy structures up to four <strong>in</strong>ches thick have been fabricated us<strong>in</strong>g this technique.187


Quality AssuranceMar<strong>in</strong>e CompositesUnlike a structure fabricated from metal plate, a composite hull achieves its form entirely at <strong>the</strong>time <strong>of</strong> fabrication. As a result, <strong>the</strong> overall <strong>in</strong>tegrity <strong>of</strong> an FRP mar<strong>in</strong>e structure is verydependent on a successful Quality Assurance Program (QAP) implemented by <strong>the</strong> builder. Thisis especially true when advanced, high-performance craft are constructed to scantl<strong>in</strong>gs that<strong>in</strong>corporate lower safety factors, In <strong>the</strong> past, <strong>the</strong> <strong>in</strong>dustry has benefited horn <strong>the</strong> process controlleeway afforded by structures considered to be “overbuilt” by today’s standards. Increasedmaterial, labor and fuel costs have made a comprehensive QAP seem like an economicallyattractive way <strong>of</strong> produc<strong>in</strong>g more efilcient mar<strong>in</strong>e structures.The basic elements <strong>of</strong> a QAP <strong>in</strong>clude:●●Inspection and test<strong>in</strong>g <strong>of</strong> raw materials <strong>in</strong>clud<strong>in</strong>g re<strong>in</strong>forcements, res<strong>in</strong>s andcoresIn-process <strong>in</strong>spection <strong>of</strong> manufactur<strong>in</strong>g and fabrication processes. Destructive and non-destructive evaluation <strong>of</strong> completed composite structuresThe last topic will be covered <strong>in</strong> <strong>the</strong> section on Test<strong>in</strong>g <strong>of</strong> Mar<strong>in</strong>e Composites. Each buildermust develop a QAP consistent with <strong>the</strong> product and facility. Figure 5-16 shows <strong>the</strong> <strong>in</strong>teraction<strong>of</strong> various elements <strong>of</strong> a QAP. The flow<strong>in</strong>g elements should be considered by managementwhen evaluat<strong>in</strong>g alternative QAPs: [5-14]. Program eng<strong>in</strong>eered to <strong>the</strong> structure●$ufilcient organization to control labor <strong>in</strong>tensive nature <strong>of</strong> F’RI?constructionc Provide for tra<strong>in</strong><strong>in</strong>g <strong>of</strong> production personnelwTimely test<strong>in</strong>g dur<strong>in</strong>g production to monitor critical stepss Cont<strong>in</strong>uous production process monitor<strong>in</strong>g with recordkeep<strong>in</strong>g●Simple, easily implemented program consistent with <strong>the</strong> product. Emphasis on material screen<strong>in</strong>g and iu-process monitor<strong>in</strong>g as lam<strong>in</strong>ates areproduced on sitewThe three sequences <strong>of</strong> a QAP, pre, dur<strong>in</strong>g and post construction, should beallocated <strong>in</strong> a manner consistent with design and production philosophy●Specifications and standards for composite materials must be tailored to <strong>the</strong>material <strong>use</strong>d and <strong>the</strong> applicationoThe balance between cost, schedule and quality should consider <strong>the</strong> designand performance requirements <strong>of</strong> <strong>the</strong> productTable 5-5 lists some questions that eng<strong>in</strong>eer<strong>in</strong>g personnel must evaluate when consider<strong>in</strong>g <strong>the</strong>design and implementation <strong>of</strong> a QAP. [5-14]188


Chapter FiveFABRICATION1LbFacilities ApprovaliStorage Controland Test<strong>in</strong>gTool Pro<strong>of</strong> <strong>of</strong>Cure CycleITool<strong>in</strong>g InspectionSurface ConditionCompatibilityDimensional Control b~I +Lsy-Up <strong>in</strong>spectionOrientation <strong>of</strong> PiiesSequence <strong>of</strong> PliesInspection forContam<strong>in</strong>antsProcess Verification CouponsLam<strong>in</strong>ate InspectIonProcess RecordsNon-Destructive EvaluationDimensional ControlCoupon ResuitsmIFigure 5-16 Inspectionvanced Composite Design]Requirements for Composite Materials [U.S. Air Force, Ad-189


Quality AssuranceMar<strong>in</strong>e CompositesTable 5=5. Eng<strong>in</strong>eer<strong>in</strong>g Considerations Relevant to an FRP QualityAssurance Program [Thomas and Cable, Qualify Assessment <strong>of</strong> GlassRe<strong>in</strong>forced Plastic Ship Hulls <strong>in</strong> Naval Applications]Eng<strong>in</strong>eer<strong>in</strong>gConslderatlonsDesign CharacteristicsMaterial,Design ParametersStress Critical AreasVariablesLongitud<strong>in</strong>al bend<strong>in</strong>g, panel deflection, cost, weight, damage toleranceInterlam<strong>in</strong>arshear strength, compressive strength, shear stre h, tensilestrength, impact strength, stiffness, material cost, material proYuction wst,material structuralweight, material ma<strong>in</strong>tenance requirementsKeel area, bow, shell below waterl<strong>in</strong>e, superstructure, load po<strong>in</strong>tsDelam<strong>in</strong>ation, voids, <strong>in</strong>clusions, uncured res<strong>in</strong>, im roper overallglass to res<strong>in</strong> ratio?local omission <strong>of</strong> layers <strong>of</strong> re<strong>in</strong>forcement,Important Defects discoloration, cram , btisters, pr<strong>in</strong>t-through, res<strong>in</strong> starved or richareas, wr<strong>in</strong>kles, re<strong>in</strong>Yorcement discont<strong>in</strong>uities, impro er thickness,foreign object damage, construction and assembly f efectsProper supervision, improv<strong>in</strong>g <strong>the</strong> production method, materialDefect Prevention screen<strong>in</strong>g, tra<strong>in</strong><strong>in</strong>g <strong>of</strong> personnel, <strong>in</strong>wrporation <strong>of</strong> automation toelim<strong>in</strong>ate <strong>the</strong> human <strong>in</strong>terface <strong>in</strong> labor <strong>in</strong>tensive production processesDefect DetectionDefect CorrectionDefect EvaluationEffort AllocationEvaluation <strong>of</strong> sample plugs from <strong>the</strong> structure, test<strong>in</strong>g <strong>of</strong> built-<strong>in</strong> testtabs, test<strong>in</strong>g <strong>of</strong> cutouts for hatches and ports, nondestructive test<strong>in</strong>g<strong>of</strong> lam<strong>in</strong>ated structurePermanent repair, replacement, temporary repairComparison with various standards based on: defect location,severity, overall impact on structural performancePreconstruction, construction, post-constructionQuality assurance <strong>of</strong> raw materials can consist <strong>of</strong> qua.litigation <strong>in</strong>spections or qualityconformance <strong>in</strong>spections. Qualiilcation <strong>in</strong>spections serve as a method for determ<strong>in</strong><strong>in</strong>g <strong>the</strong>suitability <strong>of</strong> particular materials for an application prior to production. Quality conformance<strong>in</strong>spections are <strong>the</strong> day-to-day checks <strong>of</strong> <strong>in</strong>com<strong>in</strong>g raw material designed to <strong>in</strong>sure that <strong>the</strong>material conforms with m<strong>in</strong>imum standards. These standards will wry, depend<strong>in</strong>g on <strong>the</strong> type<strong>of</strong> material <strong>in</strong> question.Re<strong>in</strong>forcement MaterialInspection <strong>of</strong> re<strong>in</strong>forcement materials consists <strong>of</strong> visual <strong>in</strong>spection <strong>of</strong> fabric rolls, tests on fabricspecimens and tests on lmn<strong>in</strong>ated samples. This section will concentrate on visual <strong>in</strong>spection asit represents <strong>the</strong> most cost effective way an average boat builder can <strong>in</strong>sure raw materialconformance. Exact <strong>in</strong>spection requirements will vary depend<strong>in</strong>g upon <strong>the</strong> type <strong>of</strong> material (EandS-Glass, Kevlar@,carbon <strong>fiber</strong>, etc.) and construction (mat, gun-rov<strong>in</strong>g, woven rov<strong>in</strong>g, kni~unidirectiontil, prepreg, etc.). As a general guidel<strong>in</strong>e, <strong>the</strong> follow<strong>in</strong>g <strong>in</strong>spection criteria should b~<strong>use</strong>d for rolled goods: [5-15]c Uncleanl<strong>in</strong>ess (dirt, grease, sta<strong>in</strong>s, spots, etc.)r190


Chapter FiveFABRICATION●✎●✎✎Objectionable odor (any odor o<strong>the</strong>r than f<strong>in</strong>ish<strong>in</strong>g compounds)Color not characteristic <strong>of</strong> <strong>the</strong> f<strong>in</strong>ish or not uniformFabric brittle (<strong>fiber</strong>s break when flexed) or f<strong>use</strong>dUneven weav<strong>in</strong>g or knitt<strong>in</strong>g throughout clearly visibleWidth outside <strong>of</strong> specfled toleranceThe builder will also want to make sure that rolls are <strong>the</strong> length specified and do not conta<strong>in</strong> anexcessive number <strong>of</strong> s<strong>in</strong>gle pieces. As <strong>the</strong> material is be<strong>in</strong>g rolled out for cutt<strong>in</strong>g or <strong>use</strong>, <strong>the</strong>follow<strong>in</strong>g defects should be noted and compared to established rejection criteria:oFiber ply misalignment~Creases or wr<strong>in</strong>kles embeddedDAny knots. Any hole, cut or tear●Any spot, sta<strong>in</strong> or streak clearly visibleDAny brittle or f<strong>use</strong>d area. Any smashed <strong>fiber</strong>s or <strong>fiber</strong> bundles. Any broken or miss<strong>in</strong>g ends or yarnsoAny thickness variation that is clearly visible●Foreign matter adher<strong>in</strong>g to <strong>the</strong> surface. Uneven f<strong>in</strong>ish●Damaged stitch<strong>in</strong>g or knitted threadsAs part <strong>of</strong> a builder’s’ overall QAP, lot or batch numbers <strong>of</strong> all re<strong>in</strong>forcements should berecorded and correlated with <strong>the</strong> specific application. The follow<strong>in</strong>g <strong>in</strong>formation shouldaccompany all <strong>in</strong>com<strong>in</strong>g re<strong>in</strong>forcement material and be recordd. Manufacturer. Material identification●●●✎✎✎✎Vendor or supplierLot or batch numberDate <strong>of</strong> manufactureFabric weightFabric widthType or style <strong>of</strong> weaveChemical f<strong>in</strong>ish191


QualityAssuranceMar<strong>in</strong>eCompositesThe handl<strong>in</strong>g and storage <strong>of</strong> re<strong>in</strong>forcement material should conform with <strong>the</strong> manufacturer’srecommendations. Material can easily be damaged by rough handl<strong>in</strong>g or exposure to water,organic solvents or o<strong>the</strong>r liquids. Ideally, re<strong>in</strong>forcement material should be stored undercontrolled temperature and relative humidity conditions, as some are slightly hydroscopic.Usually room temperature conditions with adequate protection from ra<strong>in</strong> water is sufilcient for<strong>fiber</strong>glass products. Advanced materkils and especially prepregs will have specific handl<strong>in</strong>g<strong>in</strong>structions that must be followed. If <strong>the</strong> ends <strong>of</strong> re<strong>in</strong>forcement rolls have mask<strong>in</strong>g tape toprevent fray<strong>in</strong>g, all <strong>the</strong> adhesive must be thoroughly removed prior to lam<strong>in</strong>ation.Res<strong>in</strong>Lam<strong>in</strong>at<strong>in</strong>g res<strong>in</strong> does not reveal much upon visual <strong>in</strong>spection. Therefore, certa<strong>in</strong> tests <strong>of</strong> <strong>the</strong>material <strong>in</strong> a catalyzed and uncatdyzed state must be performed The follow<strong>in</strong>g tests can beperformed on uncatalyzed res<strong>in</strong>:Specific Gravity - The specific gravity <strong>of</strong> res<strong>in</strong> is determ<strong>in</strong>edweigh<strong>in</strong>g a known volume <strong>of</strong> liquid.by preciselyViscosity - The viscosity <strong>of</strong> uncatalyzedres<strong>in</strong> is determ<strong>in</strong>ed by us<strong>in</strong>g a calibrated<strong>in</strong>strument such as a MacMichael orBrooldeld viscometer, like <strong>the</strong> oneshown <strong>in</strong> Figure 5-17.Acid Number - The acid nurnkr <strong>of</strong> apdyemr or v<strong>in</strong>yl ester les<strong>in</strong> is an <strong>in</strong>dictor<strong>of</strong> <strong>the</strong> relative reactivity <strong>of</strong> <strong>the</strong> res<strong>in</strong>. It isdefied as <strong>the</strong> numbm <strong>of</strong> milligrams <strong>of</strong>potassium hydroxide required to newralizeone gtmn <strong>of</strong> polyester. It is &tmm<strong>in</strong>ed bytitrat<strong>in</strong>g a suitable sample <strong>of</strong> material as asolution <strong>in</strong> neutral acetone with 0.1 nomnalpotassium hydroxide us<strong>in</strong>gphenolphthale<strong>in</strong> as an <strong>in</strong>dicator. Mostbuilders will <strong>in</strong>stead rely on <strong>the</strong> gel test<strong>of</strong> catalyzed res<strong>in</strong> to determ<strong>in</strong>e reactivity.figure S-IT BrookfieldModel LVF Viscometer andSp<strong>in</strong>dles [Cook, Po/ycor Pm’yesterGel Coats and Res<strong>in</strong>s]The test<strong>in</strong>g <strong>of</strong> catalyzed res<strong>in</strong> us<strong>in</strong>g <strong>the</strong> follow<strong>in</strong>g tests will provide more <strong>in</strong>formation, as <strong>the</strong>tests reflect <strong>the</strong> specific catalysts and ambient temperature conditions <strong>of</strong> <strong>the</strong> builder’s shop.Gel Time - The gel time <strong>of</strong> a res<strong>in</strong> is an <strong>in</strong>dicator <strong>of</strong> <strong>the</strong> res<strong>in</strong>’s ability topolymerize and harden and <strong>the</strong> work<strong>in</strong>g time available to <strong>the</strong> manufacturer. TheSociety <strong>of</strong> <strong>the</strong> Plastics Industry and ASTM D-2471 specify alternative butsimilar methods for deteti g gel time. Both <strong>in</strong>volve <strong>the</strong> placement <strong>of</strong> a fixedamount <strong>of</strong> catalyzed res<strong>in</strong> <strong>in</strong> a elevated temperature water bath. Gel time ismeasured as <strong>the</strong> time required for <strong>the</strong> res<strong>in</strong> to rise from 150”F to 19~F withtemperature measurements made via an embedded <strong>the</strong>rmocouple.192


Chapter FiveFABRICATIONAn alternative procedure that is coomonly <strong>use</strong>d <strong>in</strong>volves a cup gel titner.Catalyzed res<strong>in</strong> is placed <strong>in</strong> a cup and a motorized sp<strong>in</strong>dle is activated with atimer. As <strong>the</strong> res<strong>in</strong> cures, <strong>the</strong> sp<strong>in</strong>dle slows and eventually stalls <strong>the</strong> meter at agiven torque. Gel time is <strong>the</strong>n read <strong>of</strong>f <strong>of</strong> <strong>the</strong> unit’s timer device.Peak Exo<strong>the</strong>rm - The peak exo<strong>the</strong>rm <strong>of</strong> a catalyzed res<strong>in</strong> system is an <strong>in</strong>dicator<strong>of</strong> <strong>the</strong> heat generation potential <strong>of</strong> <strong>the</strong> res<strong>in</strong> dur<strong>in</strong>g polymerization, which<strong>in</strong>volves exo<strong>the</strong>rmic chemical reactions. It is desirable to m<strong>in</strong>imize <strong>the</strong> peakexo<strong>the</strong>rm to reduce <strong>the</strong> heat build-up <strong>in</strong> thick lam<strong>in</strong>ates. The peak exo<strong>the</strong>rm isusually determ<strong>in</strong>ed by fabricat<strong>in</strong>g a sample lam<strong>in</strong>ate and record<strong>in</strong>g <strong>the</strong>temperature rise and time to peak. ASTM D-2471 provides a detailed procedurefor accomplish<strong>in</strong>g this.Barcol Hardness - The Barcol hardness<strong>of</strong> a cured res<strong>in</strong> sample is measuredwith a calibrated Barcol impresser, asshown <strong>in</strong> Figure 5-18. This test will<strong>in</strong>dicate <strong>the</strong> degree <strong>of</strong> hardness achieveddur<strong>in</strong>g cure as well as <strong>the</strong> degree <strong>of</strong>cur<strong>in</strong>g dur<strong>in</strong>g fabrication.Manufacturer’s will typically specify aBarcol hardness value for a particularres<strong>in</strong>.Specific Gravity - Measurement <strong>of</strong> Figure 5-18 Barcollmpresspecificgravity<strong>of</strong>cured,unfilled res<strong>in</strong>sor (Model934 or 935 for read<strong>in</strong>gsover 75) [Cook, Po/ycorsystem <strong>in</strong>volves <strong>the</strong> weigh<strong>in</strong>g <strong>of</strong> lmown Polyester Gel Coats and Revolume<strong>of</strong> cured resti.s<strong>in</strong>s]The follow<strong>in</strong>g <strong>in</strong>formation should accompany all <strong>in</strong>com<strong>in</strong>g shipments <strong>of</strong> res<strong>in</strong> and be recordedby <strong>the</strong> manufacturer for futare reference:. Product name or code number and chemical type. Limit<strong>in</strong>g values for mechanical and physical properties. Storage and handl<strong>in</strong>g <strong>in</strong>structions●●●Maximum usable storage life and storage conditionsRecommended catalysts, mix<strong>in</strong>g procedure; f<strong>in</strong>ishes to <strong>use</strong> <strong>in</strong>re<strong>in</strong>forcements; cur<strong>in</strong>g t<strong>in</strong>e and conditionsSafety <strong>in</strong>formationThe storage and handl<strong>in</strong>g <strong>of</strong> res<strong>in</strong> is accomplished ei<strong>the</strong>r with 55 gallon drums or via speciallydesigned bulk storage tanks. Table 5-6 lists some precautions that should be observed for drumand bulk storage.193


Quality AssuranceMar<strong>in</strong>e CompositesTable 5-6. Precautions for Storage and Handl<strong>in</strong>g <strong>of</strong> Res<strong>in</strong>[SNAME, Guide for Quality Assured Fiberglass Re<strong>in</strong>forced Plastic Structures]Drum StorageBulk StorageDate drum upon receipt and store us<strong>in</strong>g first-<strong>in</strong>first-out systemto assure stock rotationUse a stra<strong>in</strong>erto prevent impuritiesfrom ei<strong>the</strong>r<strong>the</strong> tank truck or to delivery l<strong>in</strong>esDo not store materialmore than three months Install a vacuum pressurerelief valve to allow(or per manufacturer’s recommendation)air to flow dur<strong>in</strong>g tank fill<strong>in</strong>g and res<strong>in</strong> usageKeep drums out <strong>of</strong> dkect sunlight, us<strong>in</strong>g covers Use a manhole or conical tank bottom to permitif outdoors, to prevent water contam<strong>in</strong>ation periodic cleanoutStore drums <strong>in</strong> well ventilated area betvmen Phenolic and epoxy tank l<strong>in</strong>ers prevent <strong>the</strong>32*F and 77°F attack <strong>of</strong> tank metal by stored res<strong>in</strong>If drums are stored at a temperatureA pump should provide for both <strong>the</strong> deliverysubstantially different from lam<strong>in</strong>at<strong>in</strong>g area, res<strong>in</strong> through <strong>the</strong> l<strong>in</strong>es and <strong>the</strong> circulation <strong>of</strong> res<strong>in</strong> totemperature must be brought to <strong>the</strong> temperature. prevent sedimentation, which can also be<strong>of</strong> <strong>the</strong> lam<strong>in</strong>at<strong>in</strong>g area, which usually requires a controlled with a blade or propeller type stirr<strong>in</strong>gcouple <strong>of</strong> daysdeviceKeep drums sealed until just prior to <strong>use</strong>Electrically ground tank to fill<strong>in</strong>g truckJust prior to <strong>in</strong>sertion <strong>of</strong> a spiqot or pump, make Throttl<strong>in</strong>g valves are <strong>use</strong>d to control res<strong>in</strong> flowsure that <strong>the</strong> top <strong>of</strong> <strong>the</strong> drum is clean to reduce rates and level <strong>in</strong>dicators are <strong>use</strong>ful for show<strong>in</strong>g<strong>the</strong> risk <strong>of</strong> contam<strong>in</strong>ation<strong>the</strong> amount <strong>of</strong> material on handCore MaterialIn general, core material should be visually exam<strong>in</strong>ed upon receipt to determ<strong>in</strong>e size,uniformity, workmanship and correct identification. Core material can be tested to determ<strong>in</strong>etensile, compressive and shear strength and moduli us<strong>in</strong>g appropriate ASTM methods. Densitysnd water absorption, as a m<strong>in</strong>imum, should be tested.Manufacturers will supply storage requirements specific to <strong>the</strong>ir product. All core materialsshould be handled and stored <strong>in</strong> such a way as to elim<strong>in</strong>ate <strong>the</strong> potential for contact with watersnd dirt. This is critical dur<strong>in</strong>g fabrication as well as storage. Perspiration from workers is amajor contam<strong>in</strong>ation problem that seriously effects <strong>the</strong> quality <strong>of</strong> surface bonds.In-ProcessQuality ControlIn order to consistently produce a quality lam<strong>in</strong>ated product, <strong>the</strong> fabricator must have somecontrol over <strong>the</strong> lam<strong>in</strong>at<strong>in</strong>g environment. Some guidel<strong>in</strong>es proposed by ABS [5-16] <strong>in</strong>clude:●●Premises are to be fully enclosed, dry, clean, shaded from <strong>the</strong> sun, andadequately ventilated and lighted.Temperature is to be ma<strong>in</strong>ta<strong>in</strong>ed adequately constant between 60”F and90”F. The humidity is to be kept adequately constsnt to preventcondensation and is not to exceed 80%. Where spray-up is taldng place, <strong>the</strong>humidity is not to be less than 40%.194


ChapterFiveFABRICATIONc Scaffold<strong>in</strong>g is to be provided where necessary so that all lam<strong>in</strong>at<strong>in</strong>g workcsn be carried out without stand<strong>in</strong>g on coxes or on lam<strong>in</strong>ated surfaces.An <strong>in</strong>-process quality control program mustbe <strong>in</strong>dividually tailored to <strong>the</strong> project andpersonnel <strong>in</strong>volved. Smaller jobs with highlytrtied lam<strong>in</strong>ators may proceed flawlesslywith little oversight and controls. Big jobsthat utilize more material and a large workforce typical need more built-<strong>in</strong> controls to<strong>in</strong>sure that a quality lam<strong>in</strong>ate is constructed.Selection <strong>of</strong> materials also plays a critical role<strong>in</strong> <strong>the</strong> amount <strong>of</strong> <strong>in</strong>-process <strong>in</strong>spectionrequired Figure 5-19 gives an <strong>in</strong>dication <strong>of</strong>some techniques <strong>use</strong>d by <strong>the</strong> boat build<strong>in</strong>g<strong>in</strong>dustry. The follow<strong>in</strong>g topics should beaddressed <strong>in</strong> a quality control program●●●Mold <strong>in</strong>spection prior toapply<strong>in</strong>g releas<strong>in</strong>g agentand gel coatGel coat thiclmess,uniformity <strong>of</strong> applicationand cure check prior tolam<strong>in</strong>at<strong>in</strong>gCheck res<strong>in</strong> formulationand nix<strong>in</strong>g check andrecord amounts <strong>of</strong> baseres<strong>in</strong>, catalysts, hardeners,accelerators, additives andfillersMaterialTechniqueAcceptanceBarcol HardneesMechanicalTeatTest<strong>in</strong>gBurn Out or AddVlaual Ply InspactTadnoor Lnmlnatat Check that re<strong>in</strong>forcements are uniformly imp~gnatedthat lay-up is <strong>in</strong> accordance with spectications.●✎●Check and record <strong>fiber</strong>/res<strong>in</strong>0% 20% 40% 60% 80% 100%Peroent <strong>of</strong> Companies <strong>in</strong> Surveyfigure &19 Mar<strong>in</strong>e Industry QualityControl Efforts [EGA Survey]and well wet-out andCheck that cur<strong>in</strong>g is occurr<strong>in</strong>g as specified with immediate remedial actionif improper cur<strong>in</strong>g or blister<strong>in</strong>g is notedOverall visual <strong>in</strong>spection <strong>of</strong> completed lay-up for defects listed <strong>in</strong> Table 5-7that can be corrected before release from <strong>the</strong> moldCheck and record Barcol hardness <strong>of</strong> cured part prior to release from moldF<strong>in</strong>ished lt<strong>in</strong>ates should be tested to guarantee m<strong>in</strong>imum physical pi-operties. This can bedone on cut-outs, run-<strong>of</strong>f tabs or on test panels fabricated s-ti”dtan~usly with <strong>the</strong> hull on asurface that is 45* to <strong>the</strong> horizontal. Burn-out or acid tests are <strong>use</strong>d to determ<strong>in</strong>e <strong>the</strong> <strong>fiber</strong>/res<strong>in</strong>195


Qualhy AssuranceMar<strong>in</strong>e Compositesratio. Thickness, which should not vary more than 15%, can also be checked from <strong>the</strong>sespecimens. With vessels <strong>in</strong> production, ABS requires <strong>the</strong> follow<strong>in</strong>g test<strong>in</strong>g schedule:Table 5-6. Pro~osed Test Schedule for ABS Inspected Vessels [ABS, ProposedGuide for Bufid<strong>in</strong>g and Class<strong>in</strong>g High-Speed and Displacement Mot&r Ya_chts]Vessel Length (feet)Under30Frequency <strong>of</strong> Test<strong>in</strong>gEvery 12* vessel30 to 40 Every 10th vessel40 to 50 Every 8ti vessel50 to 60 ~60 to 70 Every 4* vessel70 to 80 Every o<strong>the</strong>r vessel80 and over Every vessel[SNAME,Table 5-7. Defects Present <strong>in</strong> Lam<strong>in</strong>ated StructuresGuide for C?uaiityAssured Fiberglass Re<strong>in</strong>forced Piastic Structures]Defect DescrlptlonAir Bubble or Voids - May besmall and non-connectedorlarge and <strong>in</strong>terconnectedDelamlnatlons - This is <strong>the</strong>separation<strong>of</strong> <strong>in</strong>dividuallayers<strong>in</strong> a lam<strong>in</strong>ateand is probably<strong>the</strong> most structurallydamagmgtype <strong>of</strong> defectCraz<strong>in</strong>g - M<strong>in</strong>uteflaws orcracks m a res<strong>in</strong>Warp<strong>in</strong>g or ExcessiveShr<strong>in</strong>kage - Visible change <strong>in</strong>size or shapeWash<strong>in</strong>g- Displacement<strong>of</strong><strong>fiber</strong>sby res<strong>in</strong> flow dur<strong>in</strong>gwet-out and wip<strong>in</strong>g <strong>in</strong> <strong>the</strong> lay-upRes<strong>in</strong> Rich - Area <strong>of</strong> highres<strong>in</strong> contentRes<strong>in</strong> Sta<strong>in</strong>ed - Area<strong>of</strong> lowres<strong>in</strong> contentSurface Defects - Flaws thatdo not go beyond outer plyProbable Ca<strong>use</strong>Air entrapment <strong>in</strong> <strong>the</strong> res<strong>in</strong> mix, <strong>in</strong>sufficient res<strong>in</strong> or poor wett<strong>in</strong>g,styreneboil-<strong>of</strong>f from excessiveexo<strong>the</strong>rm,<strong>in</strong>sufficientwork<strong>in</strong>g<strong>of</strong><strong>the</strong> plies or porous moldsContam<strong>in</strong>ated re<strong>in</strong>forcemen~, <strong>in</strong>sufficient pressure dur<strong>in</strong>g wet-out,failure to clean surfaces dur<strong>in</strong>g multistage la -ups, forcefulremoval <strong>of</strong> a part from a mold, excessive drii’I<strong>in</strong>g pressure,damage from sharp impacts, forc<strong>in</strong>g a lam<strong>in</strong>ate <strong>in</strong>to place dur<strong>in</strong>gassembly or excessive exo<strong>the</strong>rm and shr<strong>in</strong>kage <strong>in</strong> heavy sectionsExcessive stresses <strong>in</strong> <strong>the</strong> lam<strong>in</strong>ate occurr<strong>in</strong>g dur<strong>in</strong>g cure or bystress<strong>in</strong>g <strong>the</strong> lam<strong>in</strong>ateDefective mold construction, change <strong>in</strong> mold shape dur<strong>in</strong>gexo<strong>the</strong>rm, temperature differentialsor heat contractionscaus<strong>in</strong>guneven cur<strong>in</strong>g, removal from mold before sufficient cure, excessstyrene, cure temperature too high, cure cycle too fast or extremechanges <strong>in</strong> part cross sectional areaRes<strong>in</strong>formulationtooviscous,looselywovenor defectivere<strong>in</strong>forcements, wet-out procedure too rapid or excessive force<strong>use</strong>d dur<strong>in</strong>g squeegee<strong>in</strong>gPoor res<strong>in</strong> distribution or imperfections such as wr<strong>in</strong>kl<strong>in</strong>g <strong>of</strong> <strong>the</strong>re<strong>in</strong>forcementPoor res<strong>in</strong> distribution, <strong>in</strong>sufficient res<strong>in</strong>, poor re<strong>in</strong>forcement f<strong>in</strong>ishor too high <strong>of</strong> a res<strong>in</strong> viscosityPorosity,roughness,pitt<strong>in</strong>g,alligator<strong>in</strong>g,orange peel, blister<strong>in</strong>g,wr<strong>in</strong>kles, mach<strong>in</strong><strong>in</strong>g areas or protrud<strong>in</strong>g <strong>fiber</strong>sTack<strong>in</strong>ess or Undercure - Low concentration<strong>of</strong> catalyst or accelerators,failure to mix <strong>the</strong>Indicated by low Barcol read<strong>in</strong>g res<strong>in</strong> properly, excessive amounts <strong>of</strong> styrene or <strong>use</strong> <strong>of</strong>or excessive styrene odor deteriorated res<strong>in</strong>s or catalysts196


Chapter SixTESTINGIdeally, all test<strong>in</strong>g should be conducted us<strong>in</strong>g standardized test methods. Standardized testprocedures have been established by <strong>the</strong> American Society for Test<strong>in</strong>g Materials (ASTM), <strong>the</strong>U.S. Military (MlL), various <strong>in</strong>dustrial associations, as well as foreign agencies andorganizations. The <strong>in</strong>dividual tests have been established for specific purposes andapplications. The tests may or may not be applicable to o<strong>the</strong>r applications, but must beevaluated on a case by case basis. The test methods for FRP materials have been developedprimarily for <strong>the</strong> aerospace <strong>in</strong>dustry, thus <strong>the</strong>y may or may not be applicable to <strong>the</strong> mar<strong>in</strong>e<strong>in</strong>dustry.There are three major types <strong>of</strong> test<strong>in</strong>g: 1) tests <strong>of</strong> <strong>the</strong> <strong>in</strong>dividual FRP components, 2) tests <strong>of</strong> <strong>the</strong>FRP lam<strong>in</strong>ates, 3) tests <strong>of</strong> <strong>the</strong> FRP structure. In general, <strong>the</strong> tests <strong>of</strong> <strong>in</strong>dividual FRPcomponents tend to be application <strong>in</strong>dependent, however, some <strong>of</strong> <strong>the</strong> properties may not be<strong>use</strong>ful <strong>in</strong> certa<strong>in</strong> applications. Tests <strong>of</strong> <strong>the</strong> FRP lamhates tend to be more applicationdependent, and tests <strong>of</strong> FRP structures are heavily application dependent. ASTM tests whichare applicable to <strong>the</strong> mar<strong>in</strong>e <strong>in</strong>dustry are exam<strong>in</strong>ed, and <strong>the</strong>ir limitations are discussed.ASTM FRP Material TestsRes<strong>in</strong>s~~ D-rA “on<strong>of</strong> PlastiThis test is commonly <strong>use</strong>d to determ<strong>in</strong>e <strong>the</strong> water absorption characteristics <strong>of</strong> neat res<strong>in</strong>s andFRP materials. The test results are <strong>of</strong>ten <strong>use</strong>d to compare <strong>the</strong> water absorption rates <strong>of</strong> differentres<strong>in</strong> systems.~44This test can <strong>use</strong>d to obta<strong>in</strong> <strong>the</strong> tensile modulus and strength <strong>of</strong> cured res<strong>in</strong>s, but is mostcommonly <strong>use</strong>d to obta<strong>in</strong> tensile properties <strong>of</strong> FRP lam<strong>in</strong>ates. The pr<strong>in</strong>cipal difficulty withtensile tests is cast<strong>in</strong>g pure res<strong>in</strong> samples <strong>of</strong> appropriate dimensions without <strong>in</strong>troduc<strong>in</strong>g stressand stress cracks dur<strong>in</strong>g <strong>the</strong> res<strong>in</strong> cure process.. . .e Pronerhes <strong>of</strong> RWd PlasncsThis test can <strong>use</strong>d to obta<strong>in</strong> <strong>the</strong> compressive modulus and strength <strong>of</strong> cured res<strong>in</strong>s, but is mostcommonly <strong>use</strong>d to obta<strong>in</strong> compressive properties <strong>of</strong> FRP lam<strong>in</strong>ates. One difficulty with thistest is cast<strong>in</strong>g pure res<strong>in</strong> samples <strong>of</strong> appropriate dimensions without <strong>in</strong>troduc<strong>in</strong>g slress andstress cracks dur<strong>in</strong>g <strong>the</strong> res<strong>in</strong> cure process. Ano<strong>the</strong>r difficulty is actually obta<strong>in</strong><strong>in</strong>g acompression failure for calculation <strong>of</strong> compressive strength. The samples are restra<strong>in</strong>ed fromEuler buckl<strong>in</strong>g and shear failure by a test jig, which is bolted to <strong>the</strong> sample. If this jig is notpositioned and tightened correctly, failure modes o<strong>the</strong>r than pure compression failure mayoccur. Also, if <strong>the</strong> jig is too tight it could effect <strong>the</strong> modulus values.ASTM D 792-66 Test Methods for $necific Gravitv and Densitv <strong>of</strong> Plastics bv DimlacementThis test can be <strong>use</strong>d to determ<strong>in</strong>e <strong>the</strong> specif3c gravity or density <strong>of</strong> cured res<strong>in</strong> or FRP samples.It is not suitable for most sandwich lam<strong>in</strong>ates due to water absorption and/or trapp<strong>in</strong>g <strong>of</strong> airbubbles by <strong>the</strong> core materials.197


Mechanical Test<strong>in</strong>fiMar<strong>in</strong>e Composites. . .D 1201-81 Sp~osetiu~ Polyester ~These speciilcations apply only to <strong>re<strong>in</strong>forced</strong> polyester compression mold<strong>in</strong>g compounds, butsimilar guidel<strong>in</strong>es could be developed for polyester <strong>the</strong>rmosett<strong>in</strong>g res<strong>in</strong>s and FRP lam<strong>in</strong>ates.ASTM ~ 1652 Test Mdd for EPOXYContent <strong>of</strong> FFc@l@bsThis test is <strong>use</strong>d to determ<strong>in</strong>e <strong>the</strong> purity <strong>of</strong> epoxy res<strong>in</strong>s. It is <strong>of</strong>ten <strong>use</strong>d as psrt <strong>of</strong> <strong>the</strong> materialacceptance/rejection test<strong>in</strong>g <strong>in</strong> a quality control program.ASTM D 1763-81 Spedld.mb@oxy MUṀThese specifications apply to epoxy res<strong>in</strong>s, and can be <strong>use</strong>d to establish materialacceptance/rejection criteria for quality control programs.~Variations <strong>of</strong> this test are commonly <strong>use</strong>d to determ<strong>in</strong>e appropriate catalyst levels, work<strong>in</strong>g timeand cure times by <strong>fiber</strong>glass fabricators. This test can also be <strong>use</strong>d as part <strong>of</strong> <strong>the</strong> materialacceptance/rejection test<strong>in</strong>g for a quality control program.Fibers and Fabric~STM D 191O-XXTest Methods for Construction Characteristics <strong>of</strong> Woven FabricsThis test deals with <strong>in</strong>spection <strong>of</strong> <strong>the</strong> fabric with respect to thread count, width and weight <strong>of</strong><strong>the</strong> fabric. This test should be <strong>in</strong>cluded as part <strong>of</strong> <strong>the</strong> material acceptance/rejection test<strong>in</strong>g <strong>of</strong> aquality control program.ASTM D 2150-81 Specific ation for Woven Rovirwm Fab~“cfor Polvest er-Glass Lam<strong>in</strong>atesThis test establishes specifications for woven rov<strong>in</strong>g glass fabric and appropriate test<strong>in</strong>gprocedures for <strong>the</strong> material acceptance/rejection test<strong>in</strong>g <strong>of</strong> a quality control programASTM D 2343-67Test Method for Tensile Propert ies <strong>of</strong> Glass Fiber Strands. Yams. andThis test is commonly <strong>use</strong>d to determ<strong>in</strong>e <strong>fiber</strong> properties before <strong>the</strong> glass <strong>fiber</strong> is converted <strong>in</strong>t<strong>of</strong>abric. This data should be supplied to <strong>the</strong> boat builder from <strong>the</strong> converter as part <strong>of</strong> fabricdocumentation. This test can be <strong>use</strong>d to determ<strong>in</strong>e <strong>the</strong> stiffness and strength <strong>of</strong> unidirectionaltapes.ASTM D 2408-87. .Test Method for Fmlsh content.<strong>of</strong> Woven Glass Fab~c. Clemed andThis test evaluates <strong>the</strong> amount <strong>of</strong> am<strong>in</strong>o-silane f<strong>in</strong>ish, or siz<strong>in</strong>g, applied to lass fabric.Arn<strong>in</strong>o-sihme f<strong>in</strong>ished fabric is <strong>use</strong>d with epoxy and phenolic res<strong>in</strong> systems. The data is <strong>use</strong>ful,s<strong>in</strong>ce <strong>the</strong> siz<strong>in</strong>g is applied to enhance <strong>the</strong> bond<strong>in</strong>g between <strong>the</strong> glass <strong>fiber</strong>s and <strong>the</strong> res<strong>in</strong> system.ASTM D 2409-84 Test Method for F<strong>in</strong>ish Content <strong>of</strong> Woven Glass Fabric. Cleaned and After-F<strong>in</strong>ished with V<strong>in</strong>vl-Silane Tkoe F<strong>in</strong>ishes for Plastic Lam<strong>in</strong>ahMTMs test evaluates <strong>the</strong> amount <strong>of</strong> v<strong>in</strong>yl-silane f<strong>in</strong>ish, or siz<strong>in</strong>g, applied to glass fabric.V<strong>in</strong>yl-silane f<strong>in</strong>ished fabric is <strong>use</strong>d with polyester res<strong>in</strong> systems. The data is <strong>use</strong>ful, s<strong>in</strong>ce <strong>the</strong>siz<strong>in</strong>g is applied to enhance <strong>the</strong> bond<strong>in</strong>g between <strong>the</strong> glass <strong>fiber</strong>s and <strong>the</strong> res<strong>in</strong> system.198


Chapter SixTESTING. .D 7.41O-R7. Test Me-for F@ Co~. Cleaned and.ed with _ Co~This test evaluates <strong>the</strong> amount <strong>of</strong> chrome complex f<strong>in</strong>ish, or siz<strong>in</strong>g, applied to glass fabric.Chrome complex f<strong>in</strong>ished fabric is <strong>use</strong>d with polyester, epoxy and phenolic res<strong>in</strong> systems. Thedata is <strong>use</strong>ful, s<strong>in</strong>ce <strong>the</strong> siz<strong>in</strong>g is applied to enhance <strong>the</strong> bond<strong>in</strong>g between <strong>the</strong> glass <strong>fiber</strong>s and<strong>the</strong> res<strong>in</strong> system. .TM D 7660-84 Test -d for F~ <strong>of</strong> Woven G~ Cletmed and. . ,. . . .ter-Fuushed with A@mSdaW Tyye Flh for Pl~tic JiammaksThis test evaluates <strong>the</strong> amount <strong>of</strong> acrylic-silane f<strong>in</strong>ish, or siz<strong>in</strong>g, applied to glass fabric.Acrylic-silane f<strong>in</strong>ished fabric is <strong>use</strong>d with polyester res<strong>in</strong> systems. The data is <strong>use</strong>ful, s<strong>in</strong>ce <strong>the</strong>siz<strong>in</strong>g is applied to enhance <strong>the</strong> bond<strong>in</strong>g between <strong>the</strong> glass <strong>fiber</strong>s and <strong>the</strong> res<strong>in</strong> system..133317-~1 Spec~This standard sets specifications for high modulus organic yarn and rov<strong>in</strong>g (i.e. carbon <strong>fiber</strong>).The spectilcation can be <strong>use</strong>d as a guide for acquisition specifications and for materialacceptance/rejection test<strong>in</strong>g.~ A -TfHi h “rThis test method is <strong>use</strong>d to establish <strong>the</strong> density <strong>of</strong> <strong>fiber</strong>s. This <strong>in</strong>formation is <strong>of</strong> <strong>use</strong> toconverters (manufacturers <strong>of</strong> fabric) and direct <strong>use</strong>rs <strong>of</strong> tow, such as filament w<strong>in</strong>d<strong>in</strong>g.~d AsTMD 41- TsMf Cont<strong>in</strong> ilamen naphite Yarns. Strands. Rov<strong>in</strong>gs and TowsThis test method is <strong>use</strong>d to establish <strong>the</strong> tensile modulus and strength <strong>of</strong> carbon <strong>fiber</strong> tow. This<strong>in</strong>formation is <strong>of</strong> <strong>use</strong> to converters (manufacturers <strong>of</strong> fabric) and direct <strong>use</strong>rs <strong>of</strong> tow, such asfilament w<strong>in</strong>d<strong>in</strong>g.Core MaterialsAST M C 271-6 1 Test Method for De nsitv <strong>of</strong> co re Materials for Structu ral SandwichConstruetion~This test is commonly <strong>use</strong>d to determ<strong>in</strong>e <strong>the</strong> density <strong>of</strong> core materials. The test is simple,however hand measurement <strong>of</strong> <strong>the</strong> samples can be <strong>in</strong>consistent, which may lead to errors <strong>in</strong>density. Also, <strong>the</strong> test does not make provision for test<strong>in</strong>g <strong>of</strong> sandwich specimen, thus <strong>the</strong>effects <strong>of</strong> <strong>the</strong> face/core adhesive on apparent core density are not <strong>in</strong>cluded. (see ASTM D1622-83)ASTM C 272-53 Test Method for Water Absom-ion <strong>of</strong> Core Mat~ rilfrSandm“chConstxuctionsThis test is <strong>use</strong>d to determ<strong>in</strong>e <strong>the</strong> water absorption properties <strong>of</strong> core materials such as fo~honeycomb and balsa. The test is conducted on sandwich core materials without faces or o<strong>the</strong>rmethods <strong>of</strong> seal<strong>in</strong>g <strong>the</strong> surfaces. Also, <strong>the</strong> duration <strong>of</strong> <strong>the</strong> test is only 24 hours. These factorsmake this test <strong>in</strong>appropriate for direct <strong>use</strong> <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e <strong>in</strong>dustry. However, <strong>the</strong> mechanicalproperties <strong>of</strong> <strong>the</strong> core materials are <strong>of</strong>ten a function <strong>of</strong> <strong>the</strong> water content. This test can be <strong>use</strong>dto determ<strong>in</strong>e <strong>the</strong> water content levels <strong>of</strong> <strong>the</strong> core materials before mechanical test<strong>in</strong>g todeterm<strong>in</strong>e <strong>the</strong> variation <strong>of</strong> <strong>the</strong> mechanical properties as a function <strong>of</strong> water content.199


Mechanical Test<strong>in</strong>gMarjne CompositesC 7.73-61 Mew <strong>of</strong> Shear ~ <strong>in</strong> Flatwiwme <strong>of</strong> Flat ~wjch C~This test is commonly <strong>use</strong>d to determ<strong>in</strong>e <strong>the</strong> shear properties <strong>of</strong> various core materials. Thetest has some serious flaws, but can yield <strong>use</strong>ful <strong>in</strong>formation. The shear modulus is dependenton <strong>the</strong> stiffness <strong>of</strong> <strong>the</strong> mount<strong>in</strong>g plates, <strong>the</strong>refore, <strong>the</strong> specifications for <strong>the</strong>se plates must beclosely followed. The test specimen shape is such that stress concentrations are produced at <strong>the</strong>edge <strong>of</strong> <strong>the</strong> specimen, which may l~ad to premature failure and artificially low strength.Materials with high stra<strong>in</strong> to failure undergo a transition from dom<strong>in</strong>ant shear stress at lowstra<strong>in</strong>s to dom<strong>in</strong>ant tensile stress at high stra<strong>in</strong>s, thus <strong>the</strong> shear strengths <strong>of</strong> <strong>the</strong>se materials arehighly suspect.. .C 365-57 Test Me~latwise C~~ve Stre#h <strong>of</strong> Wdwlch C!oresThis test is commonly <strong>use</strong>d for quality assurance/material acceptance test<strong>in</strong>g, s<strong>in</strong>ce <strong>the</strong>specimen preparation is quite simple, Cyl<strong>in</strong>drical or rectangular samples are <strong>use</strong>d, howevercyl<strong>in</strong>drical samples appear to yield more consistent results. The material properties aredependent on <strong>the</strong> load or stra<strong>in</strong> rate, thus <strong>the</strong> load rate or stra<strong>in</strong> rate must be controlled with<strong>in</strong><strong>the</strong> guidel<strong>in</strong>es <strong>of</strong> <strong>the</strong> test procedures.ASTM C 366-57 Methods for MeasWement <strong>of</strong> Thickness <strong>of</strong> Sandwith CoresThis test can be <strong>use</strong>d to measure <strong>the</strong> thickness and variation <strong>in</strong> thickness <strong>of</strong> various corematerials. The test is simple, but requires special apparatus, which is not commonly available<strong>in</strong> <strong>the</strong> mar<strong>in</strong>e <strong>in</strong>dustry.ASTM C 394-62 Test Method for Shear Fatkme <strong>of</strong> Sandwith Core MaterialsThis test was designed to measure shem fatigue <strong>of</strong> sandwich core materials. The test apparatusis similar to ASTM C 273-61, thus ASTM C 394-62 is subject to some <strong>of</strong> <strong>the</strong> same problems.The dom<strong>in</strong>ant problem is <strong>the</strong> stress concentrations which occur at <strong>the</strong> edge <strong>of</strong> <strong>the</strong> test sample.Most fatigue failures beg<strong>in</strong> at <strong>the</strong>se locations and propagate <strong>in</strong>to <strong>the</strong> core material fairly rapidly,thus this test is not representative <strong>of</strong> core fatigue phenomena <strong>in</strong> sandwich constructions.~d 1 21-ce~l ar PlasticsThis test is commonly <strong>use</strong>d to determ<strong>in</strong>e <strong>the</strong> compressive properties <strong>of</strong> foam core materials.Procedure A, utiliz<strong>in</strong>g cross-head motion for <strong>the</strong> stra<strong>in</strong> calculation, yields significantly differentmodulus values and stra<strong>in</strong> to failure values than procedure B, which utilizes direct stra<strong>in</strong>measurement. Also, samples may be ei<strong>the</strong>r square or cyl<strong>in</strong>drical. There can be substantiallydifferent modulus, strength and stra<strong>in</strong> to failure values between <strong>the</strong> two sample shapes. Thereappears to be general agreement between experts <strong>in</strong> <strong>the</strong> field <strong>of</strong> foam core test<strong>in</strong>g thatprocedure B with cyl<strong>in</strong>drical samples is <strong>the</strong> preferred test. Care must be taken when cutt<strong>in</strong>g <strong>the</strong>samples to avoid damag<strong>in</strong>g <strong>the</strong> surface <strong>of</strong> <strong>the</strong> foam, s<strong>in</strong>ce this can alter test results dramatically.Foam material properties are strongly dependent on stra<strong>in</strong> rate, thus stra<strong>in</strong> rate or load<strong>in</strong>g ratemust carefully controlled with<strong>in</strong> <strong>the</strong> guidel<strong>in</strong>es <strong>of</strong> <strong>the</strong> test method.ASTM D 1622-83 Test Method for Apparent De~sitv <strong>of</strong> Ritid Cellular PlasticsThis test is commonly <strong>use</strong>d to determ<strong>in</strong>e <strong>the</strong> density <strong>of</strong> foam core materials. The testis simple,however hand measurement <strong>of</strong> <strong>the</strong> foam samples can be <strong>in</strong>consistent, which may lead to errors<strong>in</strong> density. The test does make provision for determ<strong>in</strong><strong>in</strong>g <strong>the</strong> apparent density <strong>of</strong> sandwichconstructions, thus <strong>the</strong> effects <strong>of</strong> <strong>the</strong> face material and <strong>the</strong> face/core adhesive material ondensity can be determ<strong>in</strong>ed.200


ChapterSixTESTINGThis test is commonly <strong>use</strong>d to determ<strong>in</strong>e tensile properties <strong>of</strong> foam core materials and face/coretensile adhesion strength <strong>of</strong> foam sandwich conshwctions. There are tlqee specimen types, tw<strong>of</strong>or tensile properties snd one for face/core tensile adhesion strength.Type A specitnens are tapered cyl<strong>in</strong>ders, which are mounted <strong>in</strong> match<strong>in</strong>g tapered collars. Thefabrication <strong>of</strong> <strong>the</strong>se specimen is more <strong>in</strong>volved than <strong>the</strong> o<strong>the</strong>r specimen, thus is more subject toerror. The tapered collars <strong>in</strong>troduce compression stresses <strong>in</strong>to <strong>the</strong> ends <strong>of</strong> <strong>the</strong> specimen, whichcan lead to premature failure, however, this type <strong>of</strong> failure can be determ<strong>in</strong>ed through location<strong>of</strong> <strong>the</strong> failure <strong>in</strong> <strong>the</strong> region <strong>of</strong> <strong>the</strong> collsr. Tensile modulus and stra<strong>in</strong> to failure can be&term<strong>in</strong>ed us<strong>in</strong>g extensometer data, but cross-head motion is not suitable for calculat<strong>in</strong>g <strong>the</strong>separameters.Type B specimen are square or cyl<strong>in</strong>drical <strong>in</strong> shape, and are bonded to face plates. Cyl<strong>in</strong>dricalspecimen appear to yield more consistent results. Strength calculations can be affected by <strong>the</strong>failure mode (adhesive failure or tensile fosrn failure), <strong>the</strong>refore extra sqmples must be tested to<strong>in</strong>sure sufficient data for strength calculations. The failure mode is easily determ<strong>in</strong>ed, however,<strong>the</strong> tensile strength can be calculated us<strong>in</strong>g only samples with tensile foam failures. Modulusand stra<strong>in</strong> to failure can be calculated from extensorneter da~Type C specimens are similar to Type B specimens, except that <strong>the</strong> specimen is a sandwichlam<strong>in</strong>ate, and is <strong>use</strong>d only for strength calculations. An additional failure mode (face/coreadhesion failure) is possible, thus care must be taken to identify <strong>the</strong> failure mode accurately.Also, if <strong>the</strong> face/core adhesion strength is greater thsn <strong>the</strong> face/test fmture adhesion or <strong>the</strong> foamcore tensile strength, it can not be determ<strong>in</strong>ed us<strong>in</strong>g this test. The properties <strong>of</strong> foam aredependent on stra<strong>in</strong> rate, thus stra<strong>in</strong> rate or load rate must be carefully controlled with<strong>in</strong> <strong>the</strong>guidel<strong>in</strong>es <strong>of</strong> <strong>the</strong> test method.Solid FRP Lam<strong>in</strong>atesASTM D 638-84 Test Method for Tensile Properties <strong>of</strong> PlasticsThis test can <strong>use</strong>d to obta<strong>in</strong> <strong>the</strong> tensile modulus amd strength <strong>of</strong> cured res<strong>in</strong>s, but is mostcommonly <strong>use</strong>d to obta<strong>in</strong> tensile properties <strong>of</strong> FIW lam<strong>in</strong>ates. The pr<strong>in</strong>cipal difficulty with thistest is that <strong>the</strong> sample is cut to a dog bone shape, asshown <strong>in</strong> Figure 6-1. This ca<strong>use</strong>s stre<strong>ssc</strong>oncentrations <strong>in</strong> <strong>the</strong> area <strong>of</strong> <strong>the</strong> taper, with failure<strong>of</strong>ten occurr<strong>in</strong>g <strong>in</strong> this area <strong>in</strong>stead <strong>of</strong> <strong>the</strong> testsection, mak<strong>in</strong>g determ<strong>in</strong>ation <strong>of</strong> tensile strengthimpossible (see ASTM D 3039). This test isappropriate for (0°, 9~) and rsndomly orientedre<strong>in</strong>forc<strong>in</strong>g fabrics, and <strong>the</strong> lam<strong>in</strong>ates must besymmetric. Off-axis <strong>fiber</strong>s (directions o<strong>the</strong>r thanO“ or 90°) <strong>in</strong>troduce stress concentrations <strong>in</strong>to <strong>the</strong>lsm<strong>in</strong>ate, which lowers <strong>the</strong> ultimate smngth.FlexUral stresses occur <strong>in</strong> unsymmetrical lam<strong>in</strong>atessubjected to uniaxial <strong>in</strong>-plane loads, which canca<strong>use</strong> premature failure <strong>of</strong> <strong>the</strong> test samples.+L+~ LO JFigure 6-1 Dogbone TensileTest Specimens [ASTM D638]201


Mechanical Test<strong>in</strong>gMar<strong>in</strong>e Compositese <strong>of</strong> Pk@cs bv Co~de .-<strong>of</strong> F-This test is commonly <strong>use</strong>d to determ<strong>in</strong>e <strong>the</strong> flexural fatigue properties <strong>of</strong> FRP lam<strong>in</strong>ates. Thetest<strong>in</strong>g is conducted at 30 Hz, which is representative <strong>of</strong> <strong>the</strong> natud frequency <strong>of</strong> many boatstructures. This frequency is high enough to heat up <strong>the</strong> sample,thus this will have an effect on<strong>the</strong> data. The test samples are mach<strong>in</strong>ed with a tapered “neck.” There is a tendency for stre<strong>ssc</strong>oncentrations and premature failures <strong>in</strong> <strong>the</strong> taper due to <strong>the</strong> cut <strong>fiber</strong>s, thus <strong>the</strong> failures must beexam<strong>in</strong>ed and recorded., . .D 695-85 Test Method for C_sslve Proper&s <strong>of</strong> ~This test can <strong>use</strong>d to obta<strong>in</strong> <strong>the</strong> compressive modulus and strength <strong>of</strong> cured res<strong>in</strong>s, but is mostcommonly <strong>use</strong>d to obta<strong>in</strong> compressive properties <strong>of</strong> FRP lam<strong>in</strong>ates. The pr<strong>in</strong>cipal difllcultywith this test is actually obta<strong>in</strong><strong>in</strong>g a compression failure for calculation <strong>of</strong> compressive strength.The samples are restra<strong>in</strong>ed from Euler buckl<strong>in</strong>g and shear failure by a test jig which is bolted to<strong>the</strong> sample. If this jig is not positioned and tightened correctly, failure modes o<strong>the</strong>r than purecompression failure may occur. Also, if <strong>the</strong> jig is too tight, it could effect <strong>the</strong> modulus values.This test is appropriate for (0,90) and randomly oriented re<strong>in</strong>forc<strong>in</strong>g fabrics, and <strong>the</strong> lam<strong>in</strong>atesmust be symmetric. Off-axis <strong>fiber</strong>s (directions o<strong>the</strong>r than O or 90 degrees) <strong>in</strong>troduce stre<strong>ssc</strong>oncentrations <strong>in</strong>to <strong>the</strong> lam<strong>in</strong>ate which lowers <strong>the</strong> ultimate strength. Flexural stresses occur <strong>in</strong>unsymmetrical lam<strong>in</strong>ates subjected to uniaxial <strong>in</strong>-plane loads, which can ca<strong>use</strong> premature failure<strong>of</strong> <strong>the</strong> test samples..ASTM D 732-85 Test Method for Shear Strength <strong>of</strong> PINUCSb v Punch ToolThis test is <strong>use</strong>d to determ<strong>in</strong>e out-<strong>of</strong>-plane shear strength, thus it is representative <strong>of</strong> “punchthrough” or impacts with sharp edged objects. There are so many factors which contribute to<strong>the</strong> out-<strong>of</strong>-plane shear strength that test results are most commonly <strong>use</strong>d to directly compare <strong>the</strong>shear resistance <strong>of</strong> two or more lam<strong>in</strong>ates.ASTM D 790-84 Test Method s for Flex@ Pro~er&ies<strong>of</strong> 1Un<strong>re<strong>in</strong>forced</strong>and Remforced Plasticsand Electrical Insulatirw MaterialaThis test is one <strong>of</strong> <strong>the</strong> most commonly <strong>use</strong>d tests <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e <strong>in</strong>dustry. The dom<strong>in</strong>ate loadson boats are <strong>of</strong>ten localized loads which <strong>in</strong>troduce bend<strong>in</strong>g stresses <strong>in</strong>to <strong>the</strong> lam<strong>in</strong>ate, thusflexural stiffness and strength are important properties for mar<strong>in</strong>e lam<strong>in</strong>ates, The test is also agood quality control test, s<strong>in</strong>ce <strong>the</strong> lam<strong>in</strong>ate is subjected to all three major stresses: tensile,compressive, and shear. The test is not <strong>use</strong>d to determ<strong>in</strong>e material properties, but is <strong>of</strong>ten <strong>use</strong>dto compare candidate lam<strong>in</strong>ates.~- 244-4 frShear Strenpth <strong>of</strong> Parallel Fiberco mnosites bv Short-Beam MethodThis test is similar to ASTM D 790, except that <strong>the</strong> span is very short, thus <strong>the</strong> shear stressesare dom<strong>in</strong>ant. The test is <strong>use</strong>d to determ<strong>in</strong>e <strong>the</strong> iuterlarn<strong>in</strong>ar shear strength developed by <strong>the</strong>res<strong>in</strong>, thus it is most commonly <strong>use</strong>d as a quality control test for evaluat<strong>in</strong>g <strong>the</strong> res<strong>in</strong>.ASTM D 2583-81 Test Method for In den-“ Hardness <strong>of</strong> Rl“gid Plastics bv~eans <strong>of</strong> aBarCO1ImmessorThis is probably <strong>the</strong> most common test <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e <strong>in</strong>dustry. Barcol hardness can be <strong>use</strong>d todeterm<strong>in</strong>e <strong>the</strong> state <strong>of</strong> cure <strong>of</strong> <strong>the</strong> res<strong>in</strong> at <strong>in</strong>termediate steps <strong>in</strong> <strong>the</strong> fabrication process. It canalso be <strong>use</strong>d to monitor <strong>the</strong> rate <strong>of</strong> cure <strong>of</strong> <strong>the</strong> res<strong>in</strong>. It is simple and <strong>in</strong>expensive, thus itprovides an excellent quality control test..202


ChapterSixTESTING. . .D 2584-68 Te~ <strong>of</strong> Cured Raced RemFiber-res<strong>in</strong> ratio is one <strong>of</strong> <strong>the</strong> most important quality control tests. This data is also necessaryfor <strong>in</strong>terpretation <strong>of</strong> physical and mechanical test data. This testis <strong>the</strong> most common method <strong>of</strong>obta<strong>in</strong><strong>in</strong>g <strong>the</strong> <strong>fiber</strong>-res<strong>in</strong> ratio for GRP lam<strong>in</strong>ates.. .ASTM D 2587-68 Test = for Ace~mon <strong>of</strong> GIMS Fiber S-This test is an alternate method for obta<strong>in</strong><strong>in</strong>g <strong>fiber</strong>-res<strong>in</strong> ratios for GRP hun<strong>in</strong>ates (see ASTM D2584).D 3039-76 Test ~es. .<strong>of</strong> Flba<strong>in</strong> C~This is <strong>the</strong> preferred test for determ<strong>in</strong><strong>in</strong>gtensile modulus and strength <strong>of</strong> FRPlam<strong>in</strong>ates. The test samples utilize adhesivelybonded tabs shown <strong>in</strong> Figure 6-2, <strong>in</strong>stead <strong>of</strong> adog bone taper, to obta<strong>in</strong> a high stress testsection. Failures can still occur outside <strong>of</strong> <strong>the</strong>1 I Itest section, but <strong>the</strong>se failures are usmdly tab‘AIdebond<strong>in</strong>g, thus it is easy to determ<strong>in</strong>e iffailure data should be <strong>in</strong>cluded iu <strong>the</strong> uMmate‘-ltensile strength calculation. This test isappropriate for (O”, 90°) and randomlyoriented re<strong>in</strong>forc<strong>in</strong>g fabrics, and <strong>the</strong> lam<strong>in</strong>atesmust be symmetric. Off-axis <strong>fiber</strong>s(directions o<strong>the</strong>r than (Y or 90”) <strong>in</strong>troducestress concentrations <strong>in</strong>to <strong>the</strong> lam<strong>in</strong>ate whichlowers <strong>the</strong> ultimate strength. Flexural stressesoccur <strong>in</strong> unsymmetrical lam<strong>in</strong>ates subjected to Figure 6-2 Tensile Test Specimenuniaxial <strong>in</strong>-plane loads which can ca<strong>use</strong> with Tabs [ASTM D 3039]premature failure <strong>of</strong> <strong>the</strong> test samples.~fent 1 1- Mh<strong>of</strong> Res<strong>in</strong>-Matrix Composites bv MatrixLThis test is an alternate method for obta<strong>in</strong><strong>in</strong>g <strong>fiber</strong>-res<strong>in</strong> ratios for GRP lam<strong>in</strong>ates (see ASTM D2584), but is <strong>the</strong> primary method for obta<strong>in</strong><strong>in</strong>g <strong>fiber</strong>-res<strong>in</strong> ratios for carbon <strong>fiber</strong> or graphite<strong>fiber</strong> <strong>re<strong>in</strong>forced</strong> lam<strong>in</strong>ates.ASTM D 3410-75 Test Method for Comnre ssive Frot)erties <strong>of</strong> Unidirectional or CroSs~lV~~This test yields more consistent results than ASTM D 695, but <strong>the</strong> test jig, shown <strong>in</strong> Figure 6-3,is very complicated and <strong>the</strong> tolerances on sample size are very tight, thus it is not as commonly<strong>use</strong>d as ASTM D 695. This test is appropriate for ((Y, 90”) and randomly oriented re<strong>in</strong>forc<strong>in</strong>gfabrics, snd <strong>the</strong> lam<strong>in</strong>ates must be symmetric. Off-axis <strong>fiber</strong>s (directions o<strong>the</strong>r than 0° or 90°)<strong>in</strong>troduce stress concentrations <strong>in</strong>to <strong>the</strong> lam<strong>in</strong>ate, which lowers <strong>the</strong> ultimate strength. Flexuralstresses occur <strong>in</strong> unsymmetrical lam<strong>in</strong>ates subjected to uniaxial <strong>in</strong>-plane loads, which can ca<strong>use</strong>premature failure <strong>of</strong> <strong>the</strong> test ssmples.203


Mechanical Test<strong>in</strong>gMar<strong>in</strong>e Compositeso e*C?d EFigure 6-3Restra<strong>in</strong><strong>in</strong>g Fixture for Test<strong>in</strong>g Compressive Properties <strong>of</strong> Unidirectionalor Crossply Fiber-Res<strong>in</strong> Composites [ASTM ~3410]A~tl4- M Tni - <strong>in</strong>F” “n-~This test is designed to provide fatigue data for designers so that lam<strong>in</strong>ates can be designed to apredeterm<strong>in</strong>ed life span. The test is tension-tension, thus it is an <strong>in</strong>-plane fatigue test withoutrevers<strong>in</strong>g loads. This limits <strong>the</strong> <strong>use</strong>fulness <strong>of</strong> <strong>the</strong> data, beca<strong>use</strong> most parts <strong>of</strong> <strong>the</strong> boat structureare subjected to tension-compression load<strong>in</strong>g or flexural load<strong>in</strong>g. Samples must not be cycledtoo quickly (


ChapterSixTESTING. .364-61 ~ww ~ve S~This test is commonly <strong>use</strong>d to determ<strong>in</strong>e <strong>the</strong> <strong>in</strong>-plane strength <strong>of</strong> sandwich constructions. Thereare several different failure mechanisms which can limit <strong>the</strong> <strong>in</strong>-plane strength <strong>of</strong> sandwichconstructions: general column buckl<strong>in</strong>g (Euler Buckl<strong>in</strong>g), wr<strong>in</strong>kl<strong>in</strong>g, dimpl<strong>in</strong>g, and crimp<strong>in</strong>g.There are established equations for <strong>the</strong> critical stress for each type <strong>of</strong> failure mode, but <strong>the</strong>seequations assume a high quality lam<strong>in</strong>ate. Therefore, this test can be <strong>use</strong>d to determ<strong>in</strong>e <strong>the</strong>quality <strong>of</strong> <strong>the</strong> lam<strong>in</strong>ate, as well as to check <strong>the</strong> results <strong>of</strong> <strong>the</strong> predicted failures. Thus it isimportant to know <strong>the</strong> failure mode, as well as <strong>the</strong> mechanical properties <strong>of</strong> <strong>the</strong> face and corematerials <strong>use</strong>d <strong>in</strong> <strong>the</strong> predictive equations, to make <strong>use</strong> <strong>of</strong> <strong>the</strong> results <strong>of</strong> this tes~. .c 393-~This test is commonly <strong>use</strong>d to determ<strong>in</strong>e <strong>the</strong> flexural properties <strong>of</strong> a sandwich construction.The ma<strong>in</strong> advantage <strong>of</strong> sandwich construction is to enhance flexural stiffness and strength, ands<strong>in</strong>ce all <strong>the</strong> important factors, such as face stiffness and strength, fa~e/core bond, and shearstiffness and strength contribute to <strong>the</strong> overall flexural stiffness and strength, this test is anexcellent quality control/quality assurance test The test can also be <strong>use</strong>d as an alternative toASTM C 273-61 for calculat<strong>in</strong>g <strong>the</strong> shear properties <strong>of</strong> <strong>the</strong> core material. The procedures forobta<strong>in</strong><strong>in</strong>g <strong>the</strong> shear properties <strong>of</strong> <strong>the</strong> core material are quite <strong>in</strong>volved, but appear to yieldexcellent results. Investigations <strong>in</strong>to <strong>the</strong> possibility <strong>of</strong> us<strong>in</strong>g this test method for fatigue test<strong>in</strong>g<strong>of</strong> core materials shows great potential, but a standard test needs to be established.~@T) TM 4-2T() f Sandw “ch ConStt’Uc tionSThis test is <strong>use</strong>d to determ<strong>in</strong>e deflection as a function <strong>of</strong> time for sandwich constructionssubjected to long duration static load<strong>in</strong>g (creep). This test is one <strong>of</strong> <strong>the</strong> few which addressestest<strong>in</strong>g at different temperatures, an kportant feature for mar<strong>in</strong>e lam<strong>in</strong>ates. The ma<strong>the</strong>maticsassociated with <strong>the</strong> test are very limited, however, it is difficult to extend test data thoughpredictions, which is important when exam<strong>in</strong><strong>in</strong> g creep phenomena.ASTM FRP Structure Tests~ ATM 2 - R-fr o Classifyirw Visual Defects <strong>in</strong> Glass-Re<strong>in</strong>forced?klstl“cLam<strong>in</strong>ate PartsThis test sets standards for visual <strong>in</strong>spection and classillcation <strong>of</strong> defects <strong>in</strong> GRP lam<strong>in</strong>ates.Most boat builders utilize visual <strong>in</strong>spection as <strong>the</strong> primary structural quality control test, but <strong>the</strong>results are not lmnsferable due to lack <strong>of</strong> standardization. Use <strong>of</strong> this stantid practiceguidel<strong>in</strong>e would allow this <strong>in</strong>formation to be <strong>use</strong>d quantitatively.SACMA FRP Material TestsThe Suppliers <strong>of</strong> Advanced Composite Materials Association (SACMA) has developed a set <strong>of</strong>recommended test methods for oriented <strong>fiber</strong> res<strong>in</strong> composites. These tests are similar toASTM standard tests, and are ei<strong>the</strong>r improvements on <strong>the</strong> correspond<strong>in</strong>g ASTM standard testsor are new tests to obta<strong>in</strong> data not covered by ASTM standard tests. The tests are <strong>in</strong>tended for<strong>use</strong> with prepreg materials, thus some modifications may be necessary to accommodatecommon mar<strong>in</strong>e lam<strong>in</strong>ates. Also, <strong>the</strong> tolerances on <strong>fiber</strong> orientations (10, and specimen size(approximately 0.005 <strong>in</strong>ch) are not realistic for mar<strong>in</strong>e lam<strong>in</strong>ates.205


Mechanical Test<strong>in</strong>gMar<strong>in</strong>e Compositesd Test _ for ~~ive Prrqties <strong>of</strong> ~Fibfir—~ . .This test corresponds to ASTM D 695, Test for Compressive Properties <strong>of</strong> Plastic Materials.The major difference between <strong>the</strong> two tests is that <strong>the</strong> SACMA test calls for tabs to be bondedto <strong>the</strong> ends <strong>of</strong> <strong>the</strong> specimen to m<strong>in</strong>imize <strong>the</strong> possibility <strong>of</strong> premature failure <strong>of</strong> <strong>the</strong> sample at <strong>the</strong>ends where <strong>the</strong> load is <strong>in</strong>troduced. Thus one <strong>of</strong> <strong>the</strong> major problems with us<strong>in</strong>g <strong>the</strong> ASTM D695 test for FRP materials is elim<strong>in</strong>ated. SRM 1-88 and ASTM D 695 both rely on a metal jigto prevent buckl<strong>in</strong>g <strong>of</strong> <strong>the</strong> sample. The sample must be <strong>in</strong>stalled <strong>in</strong> <strong>the</strong> jig very carefully toavoid bias<strong>in</strong>g <strong>the</strong> results,thus leav<strong>in</strong>g <strong>the</strong> repeatability and reliability <strong>of</strong> <strong>the</strong> test open toquestion. This also makes determ<strong>in</strong>ation <strong>of</strong> <strong>the</strong> compressive modulus very difficult and timeconsum<strong>in</strong>g, s<strong>in</strong>ce it can only be done by <strong>use</strong> <strong>of</strong> stra<strong>in</strong> gages. SRM 1-88 should yield bettercompressive data for mar<strong>in</strong>e lam<strong>in</strong>ates than ASTM D 695.ed Te~ for Co~act -ies <strong>of</strong>This test has no correspond<strong>in</strong>g ASTM test. The method <strong>in</strong>volves determ<strong>in</strong>ation <strong>of</strong> <strong>the</strong>compression after impact properties <strong>of</strong> <strong>fiber</strong>-res<strong>in</strong> composites <strong>re<strong>in</strong>forced</strong> by oriented highmodulus <strong>fiber</strong>s. The method specifies impact and compression test<strong>in</strong>g procedures for specimen4 x 6 <strong>in</strong>ches <strong>in</strong> size, with a thickness <strong>of</strong> 0.18 to 0.22 <strong>in</strong>ches. The sample size limits <strong>the</strong>applicability to msr<strong>in</strong>e lam<strong>in</strong>ates, s<strong>in</strong>ce thick lam<strong>in</strong>ates (greater than 0.22 <strong>in</strong>ches) can not betested. Also, <strong>the</strong> method does not allow test<strong>in</strong>g <strong>of</strong> sandwich lam<strong>in</strong>ates. Ano<strong>the</strong>r potentialproblem is that <strong>the</strong> impact level is determ<strong>in</strong>ed from <strong>the</strong> energy <strong>of</strong> <strong>the</strong> impact, however, researchhas shown that low velocity and high velocity impacts at <strong>the</strong> same energy levels ca<strong>use</strong> differenttypes and amounts <strong>of</strong> damage. The load<strong>in</strong>g is uniaxial, while most mar<strong>in</strong>e lam<strong>in</strong>ates aresubjected to multi-axial loads. Use for mar<strong>in</strong>e applications appesrs to be extremely limited.SRM %88 SARCMA ecomnx@ed Test Wod for Ouen-Hole Commess ion nerhes <strong>of</strong>Oriented Fiber-Res<strong>in</strong> Comnosi@This test has no correspond<strong>in</strong>g ASTMtest. The method <strong>in</strong>volves determ<strong>in</strong>ation<strong>of</strong> <strong>the</strong> compression properties <strong>of</strong> <strong>fiber</strong>res<strong>in</strong>composites <strong>re<strong>in</strong>forced</strong> by orientedhigh modulus <strong>fiber</strong>s conta<strong>in</strong><strong>in</strong>g a circularhole. The recommended specimen size is1.5 <strong>in</strong>ches wide by 12 <strong>in</strong>ches long with a0.25 <strong>in</strong>ch hole, but o<strong>the</strong>r sizes can betested as long as <strong>the</strong> 6:1 specimen widthto hole diameter ratio is ma<strong>in</strong>ta<strong>in</strong>ed. Thetest fmture is shown <strong>in</strong> Figure 6-4. Thetest method does not allow test<strong>in</strong>g <strong>of</strong>sandwich lam<strong>in</strong>ates, and specties aquasi-isotropic lam<strong>in</strong>ate (+45°, W, -45”,90”), but should be <strong>use</strong>ful for solid FRPm~e lam<strong>in</strong>ates.Figure 6-4 Test Fixture for CompressionTest<strong>in</strong>g <strong>of</strong> Composites with Holes [SACMA 3-206


Chapter SixTESTINGM8~.<strong>of</strong>~ C!!.This test corresponds to ASTM D 3039, Test for Tensile Properties <strong>of</strong> Oriented FiberComposites. The major difference between ASTM D 3039 and SRM 4-88 is specification <strong>of</strong><strong>the</strong> specimen tabs. SRM 4-88 specties tabs with a more gradual taper (15”) than ASTM D3039, thus it should yield more consistent strength data. The major difficulty with this test, aswith ASTM D 3039, is that <strong>the</strong> testis a uniaxial test, and while it works well for unidirectionaland (0,90) lam<strong>in</strong>ates, it does not work well for multi-axial lam<strong>in</strong>ates conta<strong>in</strong><strong>in</strong>g bias <strong>fiber</strong>s.for ~e.Prop-.<strong>of</strong> ~co-This test has no comespond<strong>in</strong>g ASTM test The method <strong>in</strong>volves determ<strong>in</strong>ation <strong>of</strong> <strong>the</strong> tensileproperties <strong>of</strong> <strong>fiber</strong>-res<strong>in</strong> composites reimforcd by oriented high modulus <strong>fiber</strong>s conta<strong>in</strong><strong>in</strong>g a circularhole. The recommended specimen size is 1.5 <strong>in</strong>ches wide by 12 <strong>in</strong>ches long with a 0.25 <strong>in</strong>ch hole.The test method does not allow test<strong>in</strong>g <strong>of</strong> sandwich lam<strong>in</strong>ates, and specifies a quasi-isotropiclam<strong>in</strong>ate (+45”,0’,45”, 90’’)s,but should be <strong>use</strong>ful for solid FRP mar<strong>in</strong>e lam<strong>in</strong>ates.Stress-Slud.UProperties qffh-iented Fiber-Res<strong>in</strong> Composite~This test corresponds to ASTM D 3518, Test for In-plane Shear Stress-Stra<strong>in</strong> Response <strong>of</strong>Unidirectional Re<strong>in</strong>forced Plastics. The method <strong>in</strong>volves determ<strong>in</strong>ation <strong>of</strong> <strong>the</strong> <strong>in</strong>-plane sheaxstress-stra<strong>in</strong> properties <strong>of</strong> <strong>fiber</strong>-res<strong>in</strong> composites <strong>re<strong>in</strong>forced</strong> by oriented cont<strong>in</strong>uous highmodulus <strong>fiber</strong>s. The method is based on <strong>the</strong> uniaxial tensile stress-stra<strong>in</strong> response <strong>of</strong> a i45°lam<strong>in</strong>ate, which is symmetrically lam<strong>in</strong>ated about a mid-plane. There does not appear to beany signiilcant enhancement over ASTM D 3518.R.~~:TestM:(A,~:k~=sv@<strong>of</strong>This test ~~sponds tomASTM D2344, Standard Test Method forApparent Interlam<strong>in</strong>arStrength <strong>of</strong> ParallelComposites by Short-Beam Shear ~mmlmllmMethod. SRM 8-88 does notI~~appear to conta<strong>in</strong> any significant ~9’EumMmcenhsmcement over ASTM D 2344, (y&c5TaTm ~ ~“however <strong>the</strong> discussion on failure mmmodes, shown <strong>in</strong> Figure 6-5, is Figure 6-5 Typical Load-Deflection Curvesvery <strong>use</strong>ful. and Failure Modes [SACMA 8+8]SW 10-88 sACMA Recomme nded Method for Calculation <strong>of</strong> Fiber Volume <strong>of</strong> ConmositeLam<strong>in</strong>atesThere is no ASTM test cmrespond<strong>in</strong>g to SRM 10-88. This method sets procedures forcalculation <strong>of</strong> <strong>fiber</strong> volume content as a percentage <strong>of</strong> re<strong>in</strong>forc<strong>in</strong>g <strong>fiber</strong> volume versus <strong>the</strong> totallam<strong>in</strong>ate volume. This is a simple procedure, but it will not be accurate for most mar<strong>in</strong>elam<strong>in</strong>ates as <strong>the</strong>re is no allowance for air trapped <strong>in</strong> <strong>the</strong> lam<strong>in</strong>ate. The errors depend on <strong>the</strong>amount <strong>of</strong> trapped air (more air, larger errors), <strong>the</strong> ratio <strong>of</strong> <strong>the</strong> <strong>fiber</strong> density to <strong>the</strong> res<strong>in</strong> density(lower ratios, larger emrs), and <strong>the</strong> <strong>fiber</strong> content (lower <strong>fiber</strong> content, larger errors). Thiscalculation method is not likely to be <strong>use</strong>ful for mar<strong>in</strong>e lam<strong>in</strong>ates.207


Mechanical Test<strong>in</strong>gMar<strong>in</strong>e CompositesSandwichPanel Test<strong>in</strong>gBackgroundFiite elermmtmodels can be <strong>use</strong>d to calculate panel deflections for various hm<strong>in</strong>ates under worst caseloads [61, 6-2], but <strong>the</strong> accuracy uf <strong>the</strong>se prdcdom is highly dependent on test data for <strong>the</strong> lam<strong>in</strong>ates.Ttitional test methods [6-3] <strong>in</strong>volve test<strong>in</strong>g narrow stips, us<strong>in</strong>g ASTM standards outl<strong>in</strong>ed above.UsE <strong>of</strong> <strong>the</strong>se tests assumes that hull panels can be amurately modeled as a beanz thus ignor<strong>in</strong>g <strong>the</strong>membrane effec~ which is particularly impmtant <strong>in</strong> sandwich panels [6-4]. The traditional tests alsoca<strong>use</strong> much higher stresses<strong>in</strong> <strong>the</strong> core, thus lead<strong>in</strong>g to pmnatwe failure [651.A student project at <strong>the</strong> Florida Institute <strong>of</strong> Technology <strong>in</strong>vestigated three po<strong>in</strong>t bend<strong>in</strong>g failure stresslevels for sandwich panels <strong>of</strong> various lam<strong>in</strong>ates and span to width ratios. The results were ffilyconsistent for biaxial ((T, W) hm<strong>in</strong>ates, but considerable variation <strong>in</strong> deflection and failure stress fordouble bias (m4Y) lam<strong>in</strong>aies was observed as <strong>the</strong> aspct ratio was changed TIWSwhile <strong>the</strong> traditionaltests yield mnsistent results for biaxial lam<strong>in</strong>ates, <strong>the</strong> test pmprties may b significantly lower thanactual properties, and test results for double bias and trimial lam<strong>in</strong>ates are generally <strong>in</strong>accurate.Riley and Isley [&51 addmsed <strong>the</strong>se problems by us<strong>in</strong>g a new test prmdrte. They pressure loadedsandwich panels, which wem clamped to a rigid frame. Ilffemt panel aspect ratios we~ <strong>in</strong>vestigatedfor both biaxial and double b~ sandwich lam<strong>in</strong>ates. The results showed tit <strong>the</strong> double bias lam<strong>in</strong>ateswere favmwl for asp ratios less than two, while biaxial lam<strong>in</strong>ates @ornMl bettm with aspect ratiosgreater than three. F<strong>in</strong>ite element models <strong>of</strong> three tests <strong>in</strong>dicated similar results, however, <strong>the</strong>magnitude <strong>of</strong> <strong>the</strong> deflections and <strong>the</strong> pressure at failure was quite difikrent. This was probably due to<strong>the</strong> method <strong>of</strong> fasten<strong>in</strong>g <strong>the</strong> edge <strong>of</strong> <strong>the</strong> paneL The nwhod <strong>of</strong> clamp<strong>in</strong>g <strong>of</strong> <strong>the</strong> edges probably ca<strong>use</strong>dlocal stress concentmtionsand could not be modeled by ei<strong>the</strong>r p<strong>in</strong>ned-or fied-end conditions.Pressure Table DesignThe basic concept <strong>of</strong> pressure load<strong>in</strong>g test panels is sound, however, <strong>the</strong> edges or boundaryconditions need to be treated more realistically. In an actual hull, a cont<strong>in</strong>uous outer sk<strong>in</strong> issupported by longitud<strong>in</strong>al and transverse fram<strong>in</strong>g, which def<strong>in</strong>es <strong>the</strong> liull panels. Theappropriate panel boundary condition is one which reflects <strong>the</strong> cont<strong>in</strong>uous nature <strong>of</strong> <strong>the</strong> outersk<strong>in</strong>, while provid<strong>in</strong>g for <strong>the</strong> added stiffness and strength <strong>of</strong> <strong>the</strong> frames. One possible solutionto this problem is to <strong>in</strong>clude <strong>the</strong> frame with <strong>the</strong> panel, and restra<strong>in</strong> <strong>the</strong> panel from <strong>the</strong> frame,ra<strong>the</strong>r than <strong>the</strong> panel edges. Also, extend<strong>in</strong>g <strong>the</strong> panel beyond <strong>the</strong> frame can approximate <strong>the</strong>cont<strong>in</strong>uous nature <strong>of</strong> <strong>the</strong> outer sk<strong>in</strong>.A test apparatus, consist<strong>in</strong>g <strong>of</strong> a table, a water bladder for pressuriz<strong>in</strong>g <strong>the</strong> panel, a frame toconstra<strong>in</strong> <strong>the</strong> si&s <strong>of</strong> <strong>the</strong> water bladdm, and fram<strong>in</strong>g to rwra<strong>in</strong> <strong>the</strong> test panel, was developed andis shown <strong>in</strong> Figure 6-6. The test panel is loaded on <strong>the</strong> “outside,” while it is restra<strong>in</strong>ed by means<strong>of</strong> <strong>the</strong> <strong>in</strong>tegral frame system The pressurization system can be operated ei<strong>the</strong>r manually or undercomputer control, for pressure load<strong>in</strong>g to failure or for pressure cycl<strong>in</strong>g to study fatigue.Test ResultsSandwich lam<strong>in</strong>ates us<strong>in</strong>g four different re<strong>in</strong>forcements and three aspect ratios were constructedfor test<strong>in</strong>g. All panels <strong>use</strong>d non-woven E-glass, v<strong>in</strong>yl ester res<strong>in</strong> and cross-l<strong>in</strong>ked PVC foamcores over fm frames and str<strong>in</strong>gers. The panels were loaded slowly (approximately 1 psi perm<strong>in</strong>ute) until failure.208


Ch@er SixTESTINGApplledPrsssursLoad W7 4Figure 6-6Schematic Diagram <strong>of</strong> Panel Test<strong>in</strong>g Pressure Table [Reichard]MSC/NASTRAN, a f<strong>in</strong>ite element structural analysis program, was <strong>use</strong>d to model <strong>the</strong> paneltests. The models were run us<strong>in</strong>g two different boundary conditions, p<strong>in</strong>ned edges and fixededges. The predicted deflections for freed- and p<strong>in</strong>ned-edge conditions along with measuredresults are shown <strong>in</strong> Figure 6-7.The p<strong>in</strong>ned-edge predictions most closely model <strong>the</strong> test results.made as a result <strong>of</strong> early pressure table test<strong>in</strong>g <strong>in</strong>clude:O<strong>the</strong>r conclusions that can be●Quasi-isotropic lam<strong>in</strong>ates are favored for square panels.. Triaxial lam<strong>in</strong>ates are favored for panels <strong>of</strong> aspect ratios greater than two.. Deflection <strong>in</strong>crease with aspect ratio until asymptotic values are obta<strong>in</strong>edAsymptotic values <strong>of</strong> deflection are reached at aspect ratios between 2.0 and3.5.Material Test<strong>in</strong>g ConclusionsIn <strong>the</strong>previous text <strong>the</strong>re is a review <strong>of</strong> ASTM and SACMA test procedures for determ<strong>in</strong><strong>in</strong>gphysicaJ and mechanical properties <strong>of</strong> various lam<strong>in</strong>ates.In order to properly design a boat or a ship, <strong>the</strong> designer must have accurate mechanicalproperties. The properties important to <strong>the</strong> designer are <strong>the</strong> tensile strength and modulus, <strong>the</strong>compressive strength and modulus, <strong>the</strong> shear strength and modulus, <strong>the</strong> <strong>in</strong>terply shear strength,and <strong>the</strong> flexural strength and modulus.The ASTM and SACMA tests are all uniaxial tests. There are some p<strong>in</strong>ts <strong>of</strong> a boat’s structurethat are loaded uniaxially, however, much <strong>of</strong> <strong>the</strong> structure, <strong>the</strong> hull, parts <strong>of</strong> <strong>the</strong> deck andbulkheads, etc., receive multiaxial loads. One factor which is very important to determ<strong>in</strong>e <strong>in</strong>209


.Mechanical Test<strong>in</strong>gMar<strong>in</strong>e CompositesIIm lY by 128# 12’ by z#n12’ by4Y1 1I I i I Io 60 100 160 200 260 300 S60 400 460 500~ P<strong>in</strong>ned-End _ F<strong>in</strong>d-End ~ MeasuredFigure 6-7 Theoretical and Measured Deflections (roils) <strong>of</strong> PVC Foam Core PanelsSubjected to a 10 psi Load [Reichard]composite materials is <strong>the</strong> <strong>in</strong>teraction between loads <strong>in</strong> more than one axis. Poisson’s ratio isnot someth<strong>in</strong>g which is easily &tema<strong>in</strong>ed. The effects <strong>of</strong> stress <strong>in</strong> <strong>the</strong> x and y directionscomb<strong>in</strong>ed are difficult to detemn<strong>in</strong>e for composites, although <strong>the</strong>y me relatively easy todeterm<strong>in</strong>e for isotropic materials. Therefore, one th<strong>in</strong>g that really needs to be done before adesigner can design with confluence snd us<strong>in</strong>g reasonable factors <strong>of</strong> safety is to determ<strong>in</strong>e <strong>the</strong><strong>in</strong>teraction between muhiaxial stresses for given lam<strong>in</strong>ates. This is not possible us<strong>in</strong>g <strong>the</strong>sestandard tests, s<strong>in</strong>ce <strong>the</strong>y are all uniaxial <strong>in</strong> nature.It’s go<strong>in</strong>g to be very important for <strong>the</strong> mar<strong>in</strong>e <strong>in</strong>dustry to develop a set <strong>of</strong> tests which yield <strong>the</strong>right type <strong>of</strong> data for <strong>the</strong> mar<strong>in</strong>e designer. Once this has been accomplished and an <strong>in</strong>dustrywide set <strong>of</strong> accepted tests has been developed, <strong>the</strong>n a comprehensive test<strong>in</strong>g program, test<strong>in</strong>g all<strong>the</strong> materials that are cornmordy <strong>use</strong>d <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e <strong>in</strong>dustry, would be very beneficial to <strong>the</strong>designers to try to yield some common data. Meanwhile, until <strong>the</strong>se tests sre developed, andthis development could take a number <strong>of</strong> years, <strong>the</strong>re is still a need for some corntnon test<strong>in</strong>g.In particular, <strong>the</strong> tests recommended to be performed on lam<strong>in</strong>ates are <strong>the</strong> ASTM D3039 tensiletest or <strong>the</strong> appropriate SACMA variation <strong>of</strong> that, SRM 4-88. The ASTM compressive tests, all<strong>of</strong> <strong>the</strong>m, leave someth<strong>in</strong>g to be desired for mar<strong>in</strong>e lam<strong>in</strong>ates. However, <strong>the</strong> SACMAcompression test looks like it might yield some <strong>use</strong>ful uniaxial compressive load data formar<strong>in</strong>e lam<strong>in</strong>ates, and <strong>the</strong>refore, at this time would probably be <strong>the</strong> reconunended test forcompression data. Flexural data should be determ<strong>in</strong>ed us<strong>in</strong>g ASTM D790. This is a fairlygood test. As far as shear is concerned, <strong>the</strong>re is really no good test for determ<strong>in</strong><strong>in</strong>g <strong>the</strong> <strong>in</strong>plane210


Chapter SixTESTINGshear properties. The ASTM test (D35 18) is basically a 3039 tensile test performed on a fabricthat has been laid up at a bias so that all <strong>the</strong> <strong>fiber</strong>s are at *45”. This has a number <strong>of</strong> problems,s<strong>in</strong>ce <strong>the</strong> <strong>fiber</strong>s are not cont<strong>in</strong>uous, and <strong>the</strong> results are heavily dependent on <strong>the</strong> res<strong>in</strong>, muchmore so than would be <strong>in</strong> a cont<strong>in</strong>uous lam<strong>in</strong>ate. So this test isn’t particularly good. Currently,<strong>the</strong>re is not a test that would yield <strong>the</strong> right type <strong>of</strong> data for <strong>the</strong> <strong>in</strong>plane shear properties. For<strong>the</strong> <strong>in</strong>terply shear, about <strong>the</strong> only test that’s available is <strong>the</strong> short beam shear test (ASTMD2344). The data yielded <strong>the</strong>re is more <strong>use</strong>ful <strong>in</strong> a quality control situation. It may be,however, that some <strong>of</strong> <strong>the</strong> o<strong>the</strong>r tests might yield some <strong>use</strong>ful <strong>in</strong>formation. There’s a shear testwhere slots are cut half way through <strong>the</strong> lam<strong>in</strong>ate on opposite sides <strong>of</strong> <strong>the</strong> lam<strong>in</strong>ate (ASTMD3846). This one might yield some <strong>use</strong>ful <strong>in</strong>formation, but beca<strong>use</strong> <strong>the</strong>y’re cutt<strong>in</strong>g <strong>in</strong>to <strong>the</strong>lam<strong>in</strong>ate and <strong>the</strong>re’s some variability <strong>in</strong>volved <strong>in</strong> that it’s difficult to come up with consistentdata.In summary, what is recommended as a comprehensive lam<strong>in</strong>ate test program is <strong>the</strong> AST’MD3039 tensile tes~ <strong>the</strong> SACMA compressive test, ASTM D790 flexural test and a panel testus<strong>in</strong>g <strong>the</strong> method developed at FIT. It’s not clear whe<strong>the</strong>r or not this will become an <strong>in</strong>dustrystandard, but at this po<strong>in</strong>t it’s <strong>the</strong> best test that’s available for look<strong>in</strong>g at <strong>the</strong> out <strong>of</strong> planeload<strong>in</strong>g and muhkxial load<strong>in</strong>g.Accelerated Test<strong>in</strong>gThere are two mechanisms to accelerate tests for water absorption over normal speeds. One isto elevak <strong>the</strong> temperature <strong>of</strong> <strong>the</strong> water, <strong>the</strong> o<strong>the</strong>r is to <strong>in</strong>crease <strong>the</strong> pressure <strong>of</strong> <strong>the</strong> water.Nei<strong>the</strong>r <strong>of</strong> <strong>the</strong>se methods work particularly well. Increas<strong>in</strong>g <strong>the</strong> temperature is unrealistic andaffects <strong>the</strong> res<strong>in</strong>, s<strong>of</strong>ten<strong>in</strong>g it and mak<strong>in</strong>g it more susceptible to hydrolysis or water attack,<strong>the</strong>refore, more water will be absorbed than would normally occur with a regular lam<strong>in</strong>ate.Res<strong>in</strong>s which may be highly resistant to absorption may become very susceptible to it fromrais<strong>in</strong>g <strong>the</strong> temperature. Increas<strong>in</strong>g <strong>the</strong> pressure <strong>of</strong> <strong>the</strong> water will ca<strong>use</strong> water absorption <strong>in</strong>lam<strong>in</strong>ates that would not normally absorb water beca<strong>use</strong> <strong>of</strong> <strong>the</strong> high pressure. The ma<strong>in</strong> issuehere, however, is not so much absolute data but relative data, and it may be that <strong>in</strong>creas<strong>in</strong>g <strong>the</strong>pressure could give fairly good relative data between <strong>the</strong> different res<strong>in</strong>s, s<strong>in</strong>ce a res<strong>in</strong> that ismore porous, with <strong>the</strong> higher pressure, would tend to take on even more water than a lam<strong>in</strong>ate,which is not quite so porous.The second type <strong>of</strong> accelerated test<strong>in</strong>g that’s <strong>of</strong>ten done perta<strong>in</strong>s to blister<strong>in</strong>g. The commentshere are very sirailar to those above for <strong>the</strong> accelerated water absorption tests, except thathigher pressure is not an issue, s<strong>in</strong>ce <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> pressure tends to mihimize <strong>the</strong> effects <strong>of</strong> <strong>the</strong>osmotic pressure, which ca<strong>use</strong>s <strong>the</strong> blister<strong>in</strong>g. By us<strong>in</strong>g higher pressure to try to acceleratewater absorption, which one might th<strong>in</strong>k would accelerate blister<strong>in</strong>g, <strong>the</strong> formation <strong>of</strong> blisters isactually reduced or elim<strong>in</strong>ated . It appears that <strong>the</strong> only viable method for accelerated blistertest<strong>in</strong>g is to elevate <strong>the</strong> temperature <strong>of</strong> <strong>the</strong> water, which is a common method throughout <strong>the</strong><strong>in</strong>dustry. There are some problems with do<strong>in</strong>g this, but it might yield reasonable relativeresults. One <strong>of</strong> <strong>the</strong> th<strong>in</strong>gs that has been a problem <strong>in</strong> <strong>the</strong> past is <strong>the</strong> <strong>use</strong> <strong>of</strong> differenttemperatures. It’s relatively easy to hold <strong>the</strong> water at boil<strong>in</strong>g temperatures, but boil<strong>in</strong>g is 212”F,which is well above <strong>the</strong> heat distortion temperature <strong>of</strong> all <strong>the</strong> polyester res<strong>in</strong>s. Therefore, youwill see a si~cant breakdown <strong>of</strong> <strong>the</strong> res<strong>in</strong> and blister<strong>in</strong>g is much more likely to occur <strong>in</strong> <strong>the</strong>lam<strong>in</strong>ate. Recently, <strong>the</strong> <strong>in</strong>dustry seems to have settled on 65°C (149”F) for this test<strong>in</strong>g, and <strong>the</strong>results seem to be more reasonable at 65”C.211


—.Fire Test<strong>in</strong>gMar<strong>in</strong>e CompositesComposite materials based on organic matrices are flammable elements that should beevaluated to determ<strong>in</strong>e <strong>the</strong> potential risk associated with <strong>the</strong>ir <strong>use</strong>. In a iire, general purposeres<strong>in</strong>s will burn <strong>of</strong>f, leav<strong>in</strong>g only <strong>the</strong> re<strong>in</strong>forcement, which has no <strong>in</strong>herent structural strength.Vessels <strong>in</strong>spected by <strong>the</strong> U.S. Coast Guard must be fabricated us<strong>in</strong>g ilre retardant res<strong>in</strong>s. Theseres<strong>in</strong>s usually have additives such as chlor<strong>in</strong>e, brom<strong>in</strong>e or antimony. Physical properdes <strong>of</strong> <strong>the</strong>res<strong>in</strong>s are usually reduced when <strong>the</strong>se compounds are added to <strong>the</strong> formulation. There is alsosome concern about <strong>the</strong> toxicity <strong>of</strong> <strong>the</strong> gases emitted when <strong>the</strong>se res<strong>in</strong>s are burned.The fire resistance <strong>of</strong> <strong>in</strong>dividual composite components can be improved if <strong>the</strong>y are coated with<strong>in</strong>tumescent pa<strong>in</strong>ts or foam<strong>in</strong>g agents that will char and protect <strong>the</strong> component dur<strong>in</strong>g m<strong>in</strong>orfwes. This consideration is generally only relevant to rnilitsry projects where composites maybe <strong>in</strong>tegrated <strong>in</strong>to larger steel structures. The commercial designer is primarily concerned with<strong>the</strong> follow<strong>in</strong>g general restrictions (see appropriate Code <strong>of</strong> Federal Regulation for detail):...Subchapter T - Small Passenger Vessels: Use <strong>of</strong> fire retardant res<strong>in</strong>sSubchapter I - Cargo Vessels: Use <strong>of</strong> <strong>in</strong>combustible materials - constructionis to be <strong>of</strong> steel or o<strong>the</strong>r equivalent materialSubchapter H - Passenger Vessels: SOLAS requires non-combustiblestructural materials or materials <strong>in</strong>sulated with approved non-combustiblematerials so that <strong>the</strong> average temperature will not rise above a designatedtemperatureMore detail will be given on SOLAS requirements later <strong>in</strong> this section. The <strong>in</strong>dustry iscurrently <strong>in</strong> <strong>the</strong> process <strong>of</strong> standardiz<strong>in</strong>g tests that can quantify <strong>the</strong> performance <strong>of</strong> variouscomposite material systems <strong>in</strong> a fm. The U.S. Navy has taken <strong>the</strong> lead <strong>in</strong> an effort to certifymaterials for <strong>use</strong> on submar<strong>in</strong>es. Table 6-7 at <strong>the</strong> end <strong>of</strong> <strong>the</strong> section presents some compositematerial test data compiled for <strong>the</strong> Navy. The relevant properties and associated test methodsare outl<strong>in</strong>ed <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g topics. No s<strong>in</strong>gle test method is adequate to evaluate <strong>the</strong> firehazard <strong>of</strong> a particular composite material system. The behavior <strong>of</strong> a given material system <strong>in</strong> afm is dependent not only on <strong>the</strong> properties <strong>of</strong> <strong>the</strong> fuel, but also on <strong>the</strong> fme environment towhich <strong>the</strong> material system may be exposed. ,The proposed standardized test methods [6-7] forflammability and toxicity characteristics cover <strong>the</strong> spectrum from small scale to large scaletests.Small Scale TestsSmall scale tests are quick repeatable ways to determ<strong>in</strong>e <strong>the</strong> flammability characteristics <strong>of</strong>organic matetiik. Usually, a lot <strong>of</strong> <strong>in</strong>formation can be obta<strong>in</strong>ed, us<strong>in</strong>g relatively snxdl testspecimens.Oxygen-Temperature Limit<strong>in</strong>g Index (LOI) Test - ASTM D 2863 (Modified)The Oxygen Temperature Index ProFde method determ<strong>in</strong>es <strong>the</strong> m<strong>in</strong>imum oxygen concentrationneeded to susta<strong>in</strong> combustion <strong>in</strong> a materiil at temperatures from ambient to 570”F. Dur<strong>in</strong>g afm, <strong>the</strong> temperature <strong>of</strong> <strong>the</strong> materials <strong>in</strong> a compartment will <strong>in</strong>crease due to radiative and212


Chapter SixTESTINGconductive heat<strong>in</strong>g. As <strong>the</strong> temperature <strong>of</strong> amaterial <strong>in</strong>creases, <strong>the</strong> oxygen level requiredfor ignition decreases. This test assesses <strong>the</strong>relative resistance <strong>of</strong> <strong>the</strong> material to ignitionover a range <strong>of</strong> temperatures. The -testappsratus is shown <strong>in</strong> Figure 6-8.Apprmdmately (40) V4° to ~“ x lA” x 6“ ,samples are needed for <strong>the</strong> test Testapparatus consists <strong>of</strong> an OxygenfNitrogenmix<strong>in</strong>g system and anslysis equipment. Thetest is good for compar<strong>in</strong>g similar res<strong>in</strong>systems, but may be mislead<strong>in</strong>g when vastlydifferent materials are compared.N.B.S. Smoke Chamber - ASTM E662This test is <strong>use</strong>d to determ<strong>in</strong>e <strong>the</strong> visualobscuration due to fue. The saraple isheated by a small furnace <strong>in</strong> a lsrge charribersnd a photocell arrangement is <strong>use</strong>d todeterm<strong>in</strong>e <strong>the</strong> visual obscuration due tosmoke from <strong>the</strong> sample.(33--. .-..- Piloi flameBurn<strong>in</strong>gSvecimenThe test is performed <strong>in</strong> flam<strong>in</strong>g andnon-flam<strong>in</strong>g modes, requir<strong>in</strong>g a total <strong>of</strong> (6)~!, x 3!1 x M“ samples. Specific OpticalDensi~, which is a dimensionless number, isrecorded. The presence <strong>of</strong> toxic gases, suchas CO, COZ, HCN and HC1 can also berecorded at this time. Table 6-1 shows sometypical values recorded us<strong>in</strong>g this testFigure 6-8 Sketch <strong>of</strong> <strong>the</strong> FunctionalParts <strong>of</strong> <strong>the</strong> Limit<strong>in</strong>g Oxygen Index Apparatus[Rollha<strong>use</strong>r, Fire Tests <strong>of</strong> Jo<strong>in</strong>erBulkhead Panels]Table 6-1.Results <strong>of</strong> Smoke Chamber Tests (E-662) for Several Materials[Rollha<strong>use</strong>r, Fire Tests <strong>of</strong> Jo<strong>in</strong>er Bulkhead Pane/s]MaterialPhenolic Composite -ExposursFlam<strong>in</strong>g 7Nonflam<strong>in</strong>g 1Optical Density Optlca] Density20 m<strong>in</strong>utes 5 m<strong>in</strong>utesPolyester Flam<strong>in</strong>g 660 321CompositeNonflam<strong>in</strong>g 22Plywood Flam<strong>in</strong>g 45Nylon Carpet Flam<strong>in</strong>g 270Red Oak Floor<strong>in</strong>g Flam<strong>in</strong>g 300213


Fire Test<strong>in</strong>gMar<strong>in</strong>e CompositesCone Calorimeter - ASTM P 190This is an oxygen consumption calorimeter that measures <strong>the</strong> heat output <strong>of</strong> a burn<strong>in</strong>g sample bydeterm<strong>in</strong><strong>in</strong>g <strong>the</strong> amount <strong>of</strong> oxygen consumed dur<strong>in</strong>g <strong>the</strong> burn and calculat<strong>in</strong>g <strong>the</strong> amount <strong>of</strong> enmgy<strong>in</strong>volved <strong>in</strong> <strong>the</strong> process. The shape <strong>of</strong> <strong>the</strong> heat<strong>in</strong>g coil resembles a truncated cone. The testapparatus may be configured ei<strong>the</strong>r vertically m hcrrizmtally, as shown <strong>in</strong> Figure 6-9. The device is<strong>use</strong>d to dmmn<strong>in</strong>e <strong>the</strong> hmt flux needed to ignite a sample, <strong>the</strong> mass loss <strong>of</strong> <strong>the</strong> sample, <strong>the</strong> sample’sheat loss generation and smoke and toxic gas generation. This is a new test procedure that <strong>use</strong>srelatively small (4” x 4“) test specimens, usually m@r<strong>in</strong>g (24) for a full series <strong>of</strong> tests.laBI ri=7-TOPOFFURNACEOPENTO----- -.. .— / AUOWGASESTOPASSTHROUBIMilr‘E”n’4””R”cETlzzisk4 COILEOELI%-- 4 RESIHANCEWIm ’“2:12-..-UERTEMmosuREliORIZONTAL EKPOSUREFigure 6-9 Sketch <strong>of</strong> <strong>the</strong> Functional Parts <strong>of</strong> a Cone Calorimeter [Rollha<strong>use</strong>r, FkeTests <strong>of</strong> Jo<strong>in</strong>er Bulkhead Panels]Radiant Panel - ASTM E 162This test procedure is <strong>in</strong>tended to quantify <strong>the</strong>L21ExhauSlho~~surface flammability <strong>of</strong> a material as a function<strong>of</strong> flame spread and heat contribution. Theability <strong>of</strong> a panel to stop <strong>the</strong> spread <strong>of</strong> fm andlimit heat generated by <strong>the</strong> material is measured.A 6’ x 18“ specimen is exposed to heat from a— Radimtl psnGI12” x 18” radiant heater. The specimen is heldSpecimenat a 45” angle, as shown <strong>in</strong> Figure 6-10.The test parameters measured <strong>in</strong>clude <strong>the</strong> timerequired for a flame front to travel down <strong>the</strong>sample’s surface, and <strong>the</strong> temperature rise <strong>in</strong> <strong>the</strong>stack. The Flame Spread Index is calculatedfrom <strong>the</strong>se factors. The Flame Spread Index forRed Oak is 100 and Ofor asbestos.Fi9UW6-10 Sketch <strong>of</strong> <strong>the</strong>Functional Parts <strong>of</strong> <strong>the</strong> NBS RadiantPanel Test Configuration [Rollha<strong>use</strong>r,Fire Tests <strong>of</strong> Jo<strong>in</strong>er Bulkhead Panels]214


Chapter SixTESTINGIntermediate Scale TestsIntermediate scale tests help span <strong>the</strong> gap between <strong>the</strong> uncerta<strong>in</strong>ties associated with small scaletests and <strong>the</strong> cost <strong>of</strong> full scale test<strong>in</strong>g. Three tests <strong>use</strong>d by <strong>the</strong> U.S. Navy sre described <strong>in</strong> <strong>the</strong>follow<strong>in</strong>g.DTRC Burn Through TestThis test determ<strong>in</strong>es <strong>the</strong> timerequired to burn throughmaterials subjected to 200WFunder a controlled laboratoryfii condition. This is atemperature that may resultfrom fluid hydrocarbon fueledfues and can simulate <strong>the</strong>ability <strong>of</strong> a material to contisuch a h to a comparbnen~Figure 6-11 shows <strong>the</strong>mrangement <strong>of</strong> specimen andflame source for this test (2)24” x 24” samples are neededfor this test. Burn throughtimes for selected material ispresented <strong>in</strong> Table 6-2.Figure 6-11 Sketch <strong>of</strong> <strong>the</strong> DTRC Burn ThroughSample and Holder [Rollha<strong>use</strong>r, Fire Tests <strong>of</strong> Jo<strong>in</strong>erBulkhead Panels]Table 6-2.Plywood 1Plywood 2DTRC Burnthrough Times for Selected Materials [Rollha<strong>use</strong>r, F..reTests <strong>of</strong> Jo<strong>in</strong>er Bulkhead Panels]❑Burn~.


..-Fire Test<strong>in</strong>g /Wne CompositesU.S. Navy Quatter Scale Room Fire TestThis test determ<strong>in</strong>es <strong>the</strong> flashover potential <strong>of</strong> materials <strong>in</strong> a mom when subjected to fueexposure. The test reduces <strong>the</strong> cost and time associated with full scale test<strong>in</strong>g. A 10’ x 10’ x8’ room with a 30” x 80” doorway is modeled. (1) 36” x 36” and (3) 36” x 30” samples arerequired.One Meter Furnace Test - ASTM E 119 (Modified)This test subjects one side <strong>of</strong> a specimen to a small Class A h. The samples are about 40square feet, which yields more realistic results than small scale tests, but at a greater cost. Thistest is not widely <strong>use</strong>d outside <strong>of</strong> <strong>the</strong> Navy.Large Scale TestsThese tests are designed to be <strong>the</strong> most realistic simulation <strong>of</strong> a shipboard fm scenmio. Testsare generally not standardized, <strong>in</strong>stead designed to comptwe several material systems for aspecific application.Corner TestsCornertests are <strong>use</strong>d to observe flame spread, structural response and fue ext<strong>in</strong>guishment <strong>of</strong> <strong>the</strong>tested materials. The test was developed to test jo<strong>in</strong>er systems. The geomelry <strong>of</strong> <strong>the</strong> <strong>in</strong>sidecorner creates what might be a worst case scenario where <strong>the</strong> draft from each wall converges.7’ high by 4’ wide panels are jo<strong>in</strong>ed with whatever connect<strong>in</strong>g system is part <strong>of</strong> <strong>the</strong> jo<strong>in</strong>ery.Approximately two gallons <strong>of</strong> hexane fuel is <strong>use</strong>d as <strong>the</strong> source fwe burn<strong>in</strong>g <strong>in</strong> a 1‘ x 1‘ pan.Room TestsThis type <strong>of</strong> test is obviously <strong>the</strong> most costly and time consum<strong>in</strong>g procedure. Approximately98 square feet <strong>of</strong> material is required to construct an 8’ x 6’ room, Parameters measured<strong>in</strong>clude: temperature evolution, smoke emission, structural response, flame spread and heatpenetration through walls. Instrumentation <strong>in</strong>cludes: <strong>the</strong>rmocouples and temperatures recorders,<strong>the</strong>rmal imag<strong>in</strong>g video cameras and regular video cameras.Summary <strong>of</strong> Proposed MIL-STD-2202 (SH) RequirementsAlthough MIL-STD-X108 (SH), ‘Tire and Toxicity Test Methods and Qualification Procedurefor Composite Materkd Systems <strong>use</strong>d <strong>in</strong> Hull, Mach<strong>in</strong>ery, and Structural Applications <strong>in</strong>sideNaval Submar<strong>in</strong>es” is still <strong>in</strong> draft form, it is <strong>in</strong>structive to look at <strong>the</strong> requirements proposedby this standard. The foreword states:“The purpose <strong>of</strong> this standard is to establish <strong>the</strong> fire and toxicity test methods,requirements snd <strong>the</strong> qualification procedure for composite material systems toallow <strong>the</strong>ir <strong>use</strong> <strong>in</strong> hull, mach<strong>in</strong>ery, and structural applications <strong>in</strong>side navalsubmar<strong>in</strong>es. This standard is needed to evaluate composite material systems notpreviously <strong>use</strong>d for <strong>the</strong>se applications.”Table 6-3 summarizes <strong>the</strong> requirements outl<strong>in</strong>ed <strong>in</strong> <strong>the</strong> new military standard.216


Chapter SixTESTINGTable6-3. ProposedGeneralRequirements<strong>of</strong> MIL-STD-2202(SH), FWaand ToxicityTest Methods and Qualiiiation Procedure for Composite il&teriai Systems Used <strong>in</strong>Huii, il&wh<strong>in</strong>ery and structural Applications-<strong>in</strong>side iWvai Submar<strong>in</strong>es~~~FireTest/Characterlstlcak~gw~-The m<strong>in</strong>imumconcentration <strong>of</strong> oxygen<strong>in</strong> a flow<strong>in</strong>g oxygennitrogen mixture capablem- <strong>of</strong> support<strong>in</strong>g flam<strong>in</strong>gk combustion <strong>of</strong> a material.RequirementMlnlmum‘A oxygen @ 25°C 35YO oxygen @ 75°C 30YO oxygen @ 300°C 21Test MethodASTM D 2863(modified)A number orclassifica~on <strong>in</strong>dicat<strong>in</strong>g aa=~ comparative measureE~~a derived from~ ~= observations madedur<strong>in</strong>g <strong>the</strong> progress <strong>of</strong><strong>the</strong> boundary <strong>of</strong> a zone<strong>of</strong> flame under def<strong>in</strong>edtest condfiions.%-~w=Q The ease <strong>of</strong> ignition, assemeasured by <strong>the</strong> time to~ ~ ignite <strong>in</strong> seconds, at ag~ specified heat flux with apilot flame.Maximum20Mlnlmum100 kW/m2 irradiance 6075 kW/m2 irradiance 9050 kW/m2 irradiance 15025 kW/m2 irradiance 300ASTM E 162ASTM P 190Maximum100 kW/m2 irradiancePeak150Average 300 sees120f8tzaHeat produced by amaterial, expressed perunit <strong>of</strong> exposed area, perunit <strong>of</strong> time.75 kW/m2 irradiancePeakAverage 300 sees50 kW/m2 irradiance100100ASTM P 190Peak65Average 300 sees5025 kW)m2 irradiancePeak50Average 300 sees50217


Fire Test<strong>in</strong>gMar<strong>in</strong>e CompositesFire Test/Characterlstlc Requirement Test MethodMaximum~g~Reduction<strong>of</strong> light DSdur<strong>in</strong>g300 sees 100 ASTM E 662transmission by smokeE~ as measured by light Dmm occurrence2240 seesWgattenuation.o25 kW/m2 irradiance: Maximum~ ~ Rate <strong>of</strong> production <strong>of</strong>Z$!lcombustion ases (e.g.co200 ppmco, C02, H!?1,HCN, ASTM P 190g~:C024% (Vol)NOX, SOX, halogen, acidses and total HCN 30 ppmg U fl~drocarbons.HCL100 ppmc m Test method to determ<strong>in</strong>ea % <strong>the</strong> time for a flame tokl- burn through a compositel-a) material system underGk&ii controlled fire exposure: conditions.No burn through <strong>in</strong> 30 m<strong>in</strong>utesDTRC BurnThrough Fire Test~Test method to determ<strong>in</strong>el?lh-<strong>the</strong> flashover potential <strong>of</strong>materials <strong>in</strong> a room whenNaNo flashover <strong>in</strong> 10 m<strong>in</strong>utes{f subjected to a fireProceYureexposure.a:g Method to test materialsat full size <strong>of</strong> <strong>the</strong>irtig~~ <strong>in</strong>tended applicationunder controlled firego.: + exposure to determ<strong>in</strong>e95 fire tolerance <strong>of</strong> ease <strong>of</strong>ext<strong>in</strong>guishment.~~ Method to test materials~~gus<strong>in</strong>g an enclosedm~+ compartment <strong>in</strong> asimulated environment~~ “g :;;:::re. controlled fireY&’PassPassNavProceJureNavProceJurea 5~ ~ ~~ Test method to determ<strong>in</strong>e- ~ <strong>the</strong> potential toxic effects,- -<strong>of</strong> combustion products~ 6 ~ ~ (smokeand fire gases)+ $! ‘S’ng ‘aboratow ‘ats”PassNavyProcedure218


Chapter SixTESTINGReview <strong>of</strong> SOLAS Requirements for Structural Materials <strong>in</strong> FiresSOLAS is <strong>the</strong> standard that all passenger ships built or converted after 1984 must meet.Chapter II-2 Fire Protection, Fire Detection and Fire Ext<strong>in</strong>ction def<strong>in</strong>es m<strong>in</strong>imum fire standardsfor <strong>the</strong> <strong>in</strong>dustry. SOLAS divides ships <strong>in</strong>to three class divisions and requires different levels <strong>of</strong>fire protection, detection and ext<strong>in</strong>ction. Each class division is measured aga<strong>in</strong>st a standard firetest. This test is one <strong>in</strong> which specimens <strong>of</strong> <strong>the</strong> relevant bulkheads or decks are exposed <strong>in</strong> afm test furnace to temperatures correspond<strong>in</strong>g approximately to <strong>the</strong> StandardTime-Temperature Curve <strong>of</strong> ASTM El 19, which is shown <strong>in</strong> Figure 6-11 along with o<strong>the</strong>rstsndards. The standard time-temperature curve for this purpose is developed by a smoothcurve drawn through <strong>the</strong> follow<strong>in</strong>g temperature po<strong>in</strong>ts measured above <strong>the</strong> <strong>in</strong>itial furnacetemperature:. at <strong>the</strong> end <strong>of</strong> <strong>the</strong> first 5 m<strong>in</strong>utes 556°C (1032T). at <strong>the</strong> end <strong>of</strong> <strong>the</strong> frost 10 m<strong>in</strong>utes 659°C (1218”F)* at <strong>the</strong> end <strong>of</strong> <strong>the</strong> first 15 m<strong>in</strong>utes 7 18°C (1324”F). at <strong>the</strong> end <strong>of</strong> <strong>the</strong> first 30 m<strong>in</strong>utes 821“C (1509”F)●at <strong>the</strong> end <strong>of</strong> <strong>the</strong> first 60 m<strong>in</strong>utes 925-C (1697”F)— ASTME 119(SOLAS) + lJL 1709 (Proposed)m :.,,:,,,,,,,.,.,.,., ##~~ ASTMP 191RangeFigure 6-11 Comparison <strong>of</strong> Three Fire Tests [Rollha<strong>use</strong>r, Integrated TechnologyDeckho<strong>use</strong>]219


Fire Test<strong>in</strong>gMar<strong>in</strong>eCompositesNon-combustible materials are identified for <strong>use</strong> <strong>in</strong> construction and <strong>in</strong>sulation <strong>in</strong> all three classdivisions. Non-combustible material is a material which nei<strong>the</strong>r burns nor gives <strong>of</strong>f flammablevapors <strong>in</strong> sufllcient quantity for se~-ignition when heated to approximately 750*C (1382T), thisbe<strong>in</strong>g determ<strong>in</strong>ed to <strong>the</strong> satisfaction <strong>of</strong> <strong>the</strong> adm<strong>in</strong>is~tion by an established test procedure. AnYo<strong>the</strong>r material is a combustible material.The actual class divisions are A, B, and C.bulkheads and decks which:a. shall be constructed <strong>of</strong> steel“A” class divisions are those divisions formed byor o<strong>the</strong>r equivalent materi~b. shall be suitably stiffene@c. shall be so constructed as to be capable <strong>of</strong> prevent<strong>in</strong>g <strong>the</strong> passage <strong>of</strong> smokeand flame to <strong>the</strong> end <strong>of</strong> <strong>the</strong> one-hour standard fue tes~d. shall be <strong>in</strong>sulated with approved non-combustiblematerials such that <strong>the</strong> averagetemperature <strong>of</strong> <strong>the</strong> unexposed side will not rise more ti 13YC (282T) above <strong>the</strong>orig<strong>in</strong>al temperatum,nur will <strong>the</strong> temperature, at any one po<strong>in</strong>~ <strong>in</strong>clud<strong>in</strong>g any jo<strong>in</strong>6 risemo~ than 18(YC(356T) above <strong>the</strong> orig<strong>in</strong>al temperature,with<strong>in</strong> <strong>the</strong> time listed below.●●●Class “A-60” 60 m<strong>in</strong>utesClass “A-30” 30 tiutesClass “A-15” 15 m<strong>in</strong>utes. Class “A-O” Om<strong>in</strong>utes“B” class divisions are those divisions formed by bulkheads, decks, ceil<strong>in</strong>gs or l<strong>in</strong><strong>in</strong>gs whichcomply with <strong>the</strong> follow<strong>in</strong>g:a. shall be constructed as to be capable <strong>of</strong> prevent<strong>in</strong>g <strong>the</strong> passage <strong>of</strong> smoke andflame to <strong>the</strong> end <strong>of</strong> <strong>the</strong> first half hour standard ilre tests;b. shall have an <strong>in</strong>sulation value such that <strong>the</strong> average temperature <strong>of</strong> <strong>the</strong>unexposed side will not rise more than 130’C (282”F) above <strong>the</strong> orig<strong>in</strong>altemperature, nor will <strong>the</strong> temperature at any po<strong>in</strong>t, <strong>in</strong>clud<strong>in</strong>g any jo<strong>in</strong>t, rise morethan 225*C (437”F) above <strong>the</strong> orig<strong>in</strong>al temperature, with<strong>in</strong> <strong>the</strong> time listed below:. Class “B-15” 15 m<strong>in</strong>utes●Class “B-O” Orrrhmtesc. <strong>the</strong>y shall be constructed <strong>of</strong> approved non-combustible materials and allmaterials enter<strong>in</strong>g <strong>in</strong>to <strong>the</strong> construction and erection <strong>of</strong> “B” class divisions shallbe non-combustible, with <strong>the</strong> exception that combustible veneers may bepermitted provided <strong>the</strong>y meet o<strong>the</strong>r requirements <strong>of</strong> <strong>the</strong> chapter.220


Chapter SixTESTINGTable 6-4. Heat Release Rates and Ignition Fire Test Data for CompositeMaterials [Hughes Associates, Heat Release Rates and Ignition FireTest Data for Representative Build<strong>in</strong>g and Composite Materiais]Material/ReferenceA IledAverage Heat Release Rate -1? eat Peak HRR HRR (kW/m2)(kW/m2)(k%#2) 1 mln 2 mln 5 mlnEpoxy/<strong>fiber</strong>glass A 25,50,75 32,8,5. . . .Epoxy/<strong>fiber</strong>glass B 25,50,75 30,8,6Epoxy/<strong>fiber</strong>glass7mm C 25,50,75 158,271,304Epoxy/<strong>fiber</strong>glass7mm D 25,50,75 168,238,279Epoxy/filwglass 7mm E 26,39,61 100,150,171EWxy/<strong>fiber</strong>glass7mm F 25,37 117,125Epxy/<strong>fiber</strong>glass 7mm G 25,50,75 50,154,117E~xy/fiMglass 7mm H 25,50,75 42,71,71Epoxy/<strong>fiber</strong>glass7mm I 35 92Phenolic/<strong>fiber</strong>glass A 25,50,75 28,8,4Phenolic/<strong>fiber</strong>glass B 25,50,75 NI,8,6Phenolic/FRP7mm C 25,50,75 4,140,204Phenolic/FRP 7mm D 25,50,75 4,121,171. . .Phenolic/FRP 7mm E 26,39,61 154,146,229PhenoIic/FRP 7mm F 25,37 4,125Phenolic/FRP 7mm G 25,50,75 4,83.71 . .Phenolic/FRP7mm H 25,50,75 4,50,63Phenolic/FRP 7mm I 35 58Polyester/<strong>fiber</strong>glass J 20 138FRP J 20,34,49 40,66,80GRP J 33.5 81Epoxy/Kevlar@ 7mm A 25,50,75 33,9,4Epoxy/Kevlar@ 7mm B 25,50,75 36,7,6Epoxy/Kevlar@ 7mm C 25,50,75 108,138,200Epoxy/Kevlarw 7mm D 25,50,75 100,125,175Epoxy/Kevla~ 7mm E 26,39,61 113,150,229Epoxy/Kevlar@ 7mm F 20,25,27 142,75,133Epoxy/Kevla~ 7mm G 25,50,75 20,83,83Epoxy/Kevla~ 7mm H 25,50,75 20,54,71Epoxy/Kevla~ 7mm I 35 71Phenoli@Kevi~ 7mm A 25,50,75 NI,12,6221


Fire Test<strong>in</strong>g A&he CompositesMaterial/ReferenceA liedAverage Heat Release Rate -F eat Peak HRR HRR (kW/m2) I ;l&n(kW/m2) %(k~;2)1 m<strong>in</strong> 2 mln 5 mln3henoliiKevi# 7mm B 25,50,75 NI,9,6~henolidKevia~7mm C 25,50,75 0,242,333‘henolidKevia~ 7mm D 25,50,75 0,200,250ahenoli~evia~ 7mm E 26,39,64 100,217,300‘henolidKevl@7mm F 30,37 147,1253henolidKevl~ 7mm G 25,50,75 13,92,1173henolidKetifl 7rnrn H 25,50,75 13,75,92ahenolidKevifl 7mm I 35 83%ermWGraphiie7mm C 25,50,75 4,183,233WerdWGraphiie7mm D 25,50,75 0,196,200TmdidGt@iie 7mm E 39,61 138,200%erdidGraphiie 7mm F 20,30,37 63,100,142YwmWG&ie 7mm G 25,50,75 13,75,1083herdidGmphiie 7mm H 25,50,75 13,63,88%enoWGraphiie7mm I 35 71WenolidGmphiie7mm A 25,50,75NI,12,6WerdidGraphiie 7mm B 25,50,75 NI,1O,6Epoxy K 35,50,75 150,185,210155,170,190 75,85,100 116,76,40@xy/Nexiel-Prepreg K 35,50,75 215,235,255195,205,240 95,105,140 107,62,31Bismaleimide (BMI) K 35,50,75 105,120,140130,145,170 105,110,125 211,126,54BMl/Nextel-Prepreg K 35,50,75 100,120,165125,135,280 120,125,130 174,102,57BM1/Netiel-Dry K 35,50,75 145,140,150150,150.165 110.120{ 125 196,115,52Koppers 6692T L 25,50,75 263,60,21


ChapterSixTESTINGMaterial/ReferenceA +fdAverageHeat ReleaseRatel?Peak HRR HRR (kW/m2) 1 ~lgn(kW/m2) %(k%;2) 1 mln 2 mkt 5 mln~~b Epoxy/Graphite L 35,50,75 150,185,210155,170,190 75,85,100Lab BMI 3mm L 35,50,75 211,126,54Lab BM1/Graphite L 35,50,75 105,120,140130,145,170 105,110,125Glass/V<strong>in</strong>ylester M 25,75,100377,498,557 290,240,330 180,220,— 281,22,11Graphite/Epoxy M 25,75,100 0,197,241 0,160,160 o,90,— NI,53,28Graphite/BMl M 25,75,100 0,172,168 0,110,130 0,130,130 NI,66,37Graphite/Phenolic M 25,75,100 0,159,— 0,80,— 0,80,— Nl,79,—Designation Furnace ReferenceA Cone - H Babrauskas, V. and Parker, W.J., “lgnitabili!y Measurementswith <strong>the</strong> Cone Calorimeter,” Fire and Ma.tmds , Vol. 11, 1987,B Cone - V pp. 31-43.cDCone - VCone - HE FMRC - H Babrauskas, V., “Comparative Rates <strong>of</strong> Heat Release f~~ FiveDifferent Types <strong>of</strong> Test Apparat<strong>use</strong>s,” Journal <strong>of</strong> Fire Sc e ces,F FlaMsHeig~ - V Vol. 4, March/April 1986, pp. 146-159.G 0SW02 - vHIJOSU - V (a)OSU - V (b)Osu “ vSmith, E.E., ‘Transit Vehicle Material Specification Us<strong>in</strong>gRelease Rate Tests for Flammability and Smoke,”Re ort No.IH-5-76-I, American Public Transit Association, Was 1! <strong>in</strong>gton,DC, Oct. 1976.Brown, J , E ., “Combustion Characteristics <strong>of</strong> Fiber Re<strong>in</strong>forcedK Cone Res<strong>in</strong> Panels,” Reporl No. FR3970, U.S.Department <strong>of</strong>Commerce, N.B.S,, April 1987.LH = horizontalV = verticalConeBrown, J . E., Braun, E. and Twilley, W.H., “Cone CalorimeterEvaluation <strong>of</strong> <strong>the</strong> Flammability <strong>of</strong> Composite Materials,” USDe artment <strong>of</strong> <strong>the</strong> Navy, NAVSEA 05R25,Wash<strong>in</strong>gton, DC,Fe E.1988,Sorathia, U., “Sutvey <strong>of</strong> Res<strong>in</strong> Matrices for IntegratedM Cone Deckho<strong>use</strong> Technology,” DTRC SME-88-52, David TaylorResearch Center, August 1968.NI = not ignited(a) = <strong>in</strong>itial test procedure(b) = revised test procedure223


Nondestructive Test<strong>in</strong>gMar<strong>in</strong>e CompositesUnlike metallic structures, composites may have a variety <strong>of</strong> different defects that are ei<strong>the</strong>r dueto fabrication <strong>in</strong>consistencies or from <strong>in</strong>-semice damage. A variety <strong>of</strong> specializednondestructive test<strong>in</strong>g (NDT) techniques have evolved that can characterize defects present <strong>in</strong>composite structures. The U.S. Coast Guard Research Center <strong>in</strong> New London, CT is currently<strong>in</strong>vestigat<strong>in</strong>g a range <strong>of</strong> NDT techniques as applied to typical mar<strong>in</strong>e lam<strong>in</strong>ates for detection <strong>of</strong><strong>the</strong> follow<strong>in</strong>g defects:. Res<strong>in</strong> rich/poor areas. Excessive moisture*Voids●Delam<strong>in</strong>ation*Impact Damage. Shear FailureA total <strong>of</strong> (40) panels are be<strong>in</strong>g fabricated for <strong>the</strong> effort. The report should be available to <strong>the</strong>public through <strong>the</strong> National Technical Information Service <strong>in</strong> <strong>the</strong> Spr<strong>in</strong>g <strong>of</strong> 1991. This sectionwill briefly describe some <strong>of</strong> NDT techniques <strong>in</strong> <strong>use</strong> today.RadiographyTechniquesRadiography <strong>in</strong>cludes a number <strong>of</strong> different techniques such as X-rays, gamma rays, neutrons,radiation backscatter and flouroscopy. Each method <strong>use</strong>s a radiation beam that passes through<strong>the</strong> material, whereby vary<strong>in</strong>g amounts <strong>of</strong> radiation are absorbed by different sections <strong>of</strong> <strong>the</strong>lam<strong>in</strong>ate and discont<strong>in</strong>uities with<strong>in</strong> <strong>the</strong> lam<strong>in</strong>ate.Radiography is primarily <strong>use</strong>d to determ<strong>in</strong>e <strong>fiber</strong> alignment, bond <strong>in</strong>tegrity and defects <strong>in</strong>sandwich structures, [6-8] X-ray radiography is unable to detect <strong>fiber</strong> breaks <strong>in</strong> graphite oraramid <strong>fiber</strong>. Very low-energy sources <strong>of</strong> about 15 to 25 kV must be <strong>use</strong>d with graphitecomposites, o<strong>the</strong>rwise <strong>the</strong> material would appear completely transparent. Often imageenhanc<strong>in</strong>g penetrants are <strong>use</strong>d to obta<strong>in</strong> good <strong>in</strong>formation about <strong>in</strong>terior damage, [6-9]Ultrasonic InspectionUltrasonic techniques are <strong>the</strong> most common form <strong>of</strong> NDT <strong>use</strong>d with composites. In ultrasonic<strong>in</strong>spection, a beam <strong>of</strong> ultrasonic energy is directed <strong>in</strong>to <strong>the</strong> lam<strong>in</strong>ate, and <strong>the</strong> energy is ei<strong>the</strong>rtransmitted or reflected. The lam<strong>in</strong>ate is usually immersed <strong>in</strong> water to direct sound waves.Ultrasonic transducers are placed on each side <strong>of</strong> <strong>the</strong> lam<strong>in</strong>ate that convert electric energy <strong>in</strong>tomechanical vibrations, which are <strong>the</strong>n transmitted through <strong>the</strong> lam<strong>in</strong>ate, Table 6-5 shows <strong>the</strong>applications <strong>of</strong> various types <strong>of</strong> ultrasonic techniques.224


Chapter SixTESTINGTable 6-5. Ultrasonic Inspection Techniques[M.M. Schwartz, International Product News]Ultrasonic TechniquePulse EchoPulse Echo Refleotor PlateThrough TransmissionApplicationFiberglass-<strong>fiber</strong>glass bonds; delam<strong>in</strong>ation<strong>in</strong> <strong>fiber</strong>glass lam<strong>in</strong>ates up to %!4”thick;and fac<strong>in</strong>g to core unbendsDelam<strong>in</strong>ation <strong>in</strong> th<strong>in</strong> <strong>fiber</strong>glass or boronI lam<strong>in</strong>atesInspect sandwich constructions and thick<strong>fiber</strong>glass lam<strong>in</strong>atesIDeteetunbends <strong>in</strong> <strong>fiber</strong>glass-metal bondsResonant Frequency and <strong>fiber</strong>glass-<strong>fiber</strong>glass bonds where <strong>the</strong>exposed layer is not too thickAcousticEmissionThe acoustic emission from composites under load is a research tool under development forassess<strong>in</strong>g damage. Researchers have postulated that acoustic emission signals can becategorized by energy levels <strong>in</strong>dicat<strong>in</strong>g <strong>fiber</strong> breakage, matrix crack<strong>in</strong>g and delam<strong>in</strong>ation. Thetechnique is most widely accepted <strong>in</strong> <strong>the</strong> tlkunent wound pressure vessel <strong>in</strong>dustry.ThermographyThermographic analysis <strong>of</strong> composite materials <strong>use</strong>s <strong>the</strong>rmal gradients <strong>in</strong> ei<strong>the</strong>r a passive oractive mode, to del<strong>in</strong>eate defects or damage. In <strong>the</strong> passive method, an external heat source isapplied to <strong>the</strong> lam<strong>in</strong>ate. Heat may be conducted ei<strong>the</strong>r <strong>in</strong>to or away from <strong>the</strong> lam<strong>in</strong>ate by anexternal heat source <strong>of</strong> ei<strong>the</strong>r higher or lower temperature. In <strong>the</strong> active method, meehanicd orelectrical energy is applied, Video-<strong>the</strong>nnographic cameras are <strong>the</strong> most efficient way <strong>of</strong>record<strong>in</strong>g <strong>the</strong>rrnographic phenomena. Vibrothmnography <strong>use</strong>s mechanical vibrational energythat is applied to <strong>the</strong> lam<strong>in</strong>ate, which is transformed <strong>in</strong>to heat at damage sites.225


NondestructiveTestlnaMar<strong>in</strong>e CompositesThis page <strong>in</strong>tentionally Iefi blank226


ChapterSevenREFERENCEThe U.S. Coast Guard is statutorily charged with adm<strong>in</strong>ister<strong>in</strong>g maritime safety on behalf <strong>of</strong> <strong>the</strong>people <strong>of</strong> <strong>the</strong> United States. In carry<strong>in</strong>g out this function, <strong>the</strong> Coast Guard monitors safetyaspects <strong>of</strong> commercial vessels from design stages throughout <strong>the</strong> vessel’s <strong>use</strong>ful life. Oftendesign standards such as those developed by <strong>the</strong> American Bureau <strong>of</strong> Shipp<strong>in</strong>g are <strong>use</strong>d. Codesare referenced directly by <strong>the</strong> U.S: Code <strong>of</strong> Federal Regulations (CFR) [7-1]. O<strong>the</strong>r countries,such as England, France, Germany, Norway, Italy and Japan have <strong>the</strong>ir own standards that areanalogous to those developed by ABS. Treatment <strong>of</strong> FRP materials is handled differently byeach country. This section will only describe <strong>the</strong> U.S. agencies.U.S. Coast GuardThe Coast Guard operates on both a local and national level to accomplish <strong>the</strong>ir mission. On<strong>the</strong> local level, 42 Mar<strong>in</strong>e Safety Offices (MSOS) are located throughout <strong>the</strong> country. These<strong>of</strong>fices are responsible for <strong>in</strong>spect<strong>in</strong>g vessels dur<strong>in</strong>g construction, <strong>in</strong>spect<strong>in</strong>g exist<strong>in</strong>g vessels,licens<strong>in</strong>g personnel and <strong>in</strong>vestigat<strong>in</strong>g accidents. The Office <strong>of</strong> Mar<strong>in</strong>e Safety, Security andEnvirontnent Protection is located <strong>in</strong> Wash<strong>in</strong>gton, DC. This <strong>of</strong>llce primfilydissem<strong>in</strong>atespolicy, directs mar<strong>in</strong>e safety tra<strong>in</strong><strong>in</strong>g, oversees port security and responds to <strong>the</strong> environmentalneed <strong>of</strong> <strong>the</strong> country. The Mar<strong>in</strong>e Safety Center, also located <strong>in</strong> Wash<strong>in</strong>gton, is <strong>the</strong> <strong>of</strong>fice wherevessel plans are reviewed. The Coast Guard’s technical staff revieyw mach<strong>in</strong>ery, electricalarrangement, structural and stability plans, calculations and <strong>in</strong>structions for new constructionand conversions for approximately 18,000 vessels a year.The Coast Guard has authorized ABS for plan review <strong>of</strong> certa<strong>in</strong> types <strong>of</strong> vessels. These do not<strong>in</strong>clude Subchapter T vessels and novel craft. The follow<strong>in</strong>g section will attempt to describe<strong>the</strong> various classifications <strong>of</strong> vessels, as def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> CFR. Table 7-1 summarizes some <strong>of</strong><strong>the</strong>se designations. Structural requirements for each class <strong>of</strong> vessel wiU also be highlighted.Subchapter C - Un<strong>in</strong>spected VesselsThe CFR regulations that cover un<strong>in</strong>spected vessels are primarily concerned with safety, ra<strong>the</strong>rthan structural items. The areas covered <strong>in</strong>clude:●●●Life presemers and o<strong>the</strong>r lifesav<strong>in</strong>g equipmentEmergency position <strong>in</strong>dicat<strong>in</strong>g radio beacons (fish<strong>in</strong>g vessels)Fire ext<strong>in</strong>guish<strong>in</strong>g equipment. Bacldre flame control●●VentilationCook<strong>in</strong>g, heat<strong>in</strong>g and light<strong>in</strong>g systems. Garbage retention.227


Rules and RegulationsMar<strong>in</strong>e ComposlesOrganizations that sre cited for reference:American Boat and Yacht CouncilP.O. Box 747Millersville, MD 21108-0747National Fire Protection Association (NFPA)60 Batterymsrch ParkQu<strong>in</strong>cy, MA 02260Table 7-1. Summary <strong>of</strong> CFR Vessel Classiflcatlons[46 CFR, Part 2.01- 7(a)]Subchapter H - Subchapter T -S$@&h~~~; ISize or O<strong>the</strong>r Passenger Small PassengerMlsce7IaneousLlmltatlons46 $FO~8%ahS 46 ~~~&tS46 CFR, Part 175 .Vessels over 100 Vessels under~~~;~~over 9~ss tons 100 gross tonsSubchapter CUnlnspected46 CFR, Parts24-26All vessels carry<strong>in</strong>g more than 12tons exceptpassengers on an mtemational voyage,~~t~<strong>in</strong>gexcept yachts.vessels <strong>of</strong>All vesselsAll vessels not over 65 feet <strong>in</strong> lengthk 300 gross carry<strong>in</strong>g freight All vesselswhich carry more than 6 passengers.tons andfor hire except except those# over.those covered covered b H, TAll o<strong>the</strong>r vessels <strong>of</strong> over 65 feet <strong>in</strong> by Hor T or I vessesrlength carty<strong>in</strong>g passengers for hire. vessels=r!!~o~~<strong>in</strong>g All vessels carty<strong>in</strong>g more than 12passengers on an <strong>in</strong>ternational voyage,vessels <strong>of</strong> except yachts.300 grosstons and All o<strong>the</strong>r vessels carv<strong>in</strong>g passengersover.except yachts.Vessels over 100 Vessels underVessels not gross tons100 gross tonsover 700gross tons. All vessels carry<strong>in</strong>g more than 6None Nonepassengers.Vessels over700 gross All vessels carry<strong>in</strong>g passengers for hire, None Nonetons.Part 72 <strong>of</strong> CFR 46 is tid-d Construction and Arrangement. Subpsrt ~72.01-15 StructuralStandards StateS:In general, compliance with <strong>the</strong> stamiards established by ABS will be consideredsatisfactory evidence <strong>of</strong> structural efficiency <strong>of</strong> <strong>the</strong> vessel. However, <strong>in</strong> specialcases, a detailed analysis <strong>of</strong> <strong>the</strong> entire structure or some <strong>in</strong>tegral psrt may bemade by <strong>the</strong> Coast Guard to determ<strong>in</strong>e <strong>the</strong> structural requirements.228


Chapter SevenREFERENCELook<strong>in</strong>g at Subpart 72.05 - Structural Fire Protection, under ~72.05-10 Type, location andconstruction <strong>of</strong> f~e control bulkheads and decks, it is notedThe hull, structural bulkheads, decks, and deckho<strong>use</strong>s shall be constructed <strong>of</strong>steel or o<strong>the</strong>r equivalent metal construction <strong>of</strong> appropriate scantl<strong>in</strong>gs.The section goes onto def<strong>in</strong>e different types <strong>of</strong> bulkheads, based fm performance.Subchapter I - Cargo and Miscellaneous VesselsThe requirements for “I” vessels is slightly different than for “H”. Under Subpart 92.07 -Structural Fire Protection, $92.07-10 Construction states:The hull, superstructure, structural bulkheads, decks and deckho<strong>use</strong>s shall beconstructed <strong>of</strong> steel. Alternately, <strong>the</strong> Commandant may permit <strong>the</strong> <strong>use</strong> <strong>of</strong> o<strong>the</strong>rsuitable materials <strong>in</strong> special cases, hav<strong>in</strong>g <strong>in</strong> m<strong>in</strong>d <strong>the</strong> risk <strong>of</strong> fire.Subchapter T - Small Passenger VesselsSubpart 177.10- Hull Structure is reproduced here<strong>in</strong> its entirety:5177.10-1 Structural standardsS177.1O-5Fire Protection(a) In general, compliance with <strong>the</strong> standards established by a recognizedclassification society (Lloyds’ “Rules for <strong>the</strong> Construction and Classiilcation <strong>of</strong>Composite and Steel Yachts” and Lloyds’ “Rules for <strong>the</strong> Construction andClassification <strong>of</strong> Wood Yachts” are acceptable for this purpose.) will beconsidered satisfactory evidence <strong>of</strong> <strong>the</strong> structural adequacy <strong>of</strong> a vessel. Whenscantl<strong>in</strong>gs differ from such standards and it can be demonstrated that craftapproximat<strong>in</strong>g <strong>the</strong> same size, power tmd displacement have been built to suchscantl<strong>in</strong>gs and have been <strong>in</strong> satisfacto~ service <strong>in</strong>s<strong>of</strong>ar as structural adequacy isconcerned for a period <strong>of</strong> at least 5 years, such scantl<strong>in</strong>gs may be approved Adetailed structural analysis may be required for specialized types or <strong>in</strong>tegral parts<strong>the</strong>re<strong>of</strong>.(b) Special consideration will be given to:(1) The structural requirements <strong>of</strong> vessels not contemplated by <strong>the</strong> standards <strong>of</strong> arecognized classiilcation society; or(2) The <strong>use</strong> <strong>of</strong> materials not spec~lcally <strong>in</strong>cluded <strong>in</strong> <strong>the</strong>se standards.(a) The general constmction <strong>of</strong> <strong>the</strong> vessel shall be such as to m<strong>in</strong>imize firehazards <strong>in</strong>s<strong>of</strong>ar as reasonable and practicable. Vessels contracted for on or afterJuly 1, 1961, which carry more than 150 passengers shall meet <strong>the</strong> requirements<strong>of</strong> Subpart 72.05 <strong>of</strong> Subchapter H (Passenger Vessels) <strong>of</strong> <strong>the</strong> chapter. The229,,,,, ,--,.,,,, ‘,,’;,,,


Rules and RegulationsManhe Compositesapplication <strong>of</strong> <strong>the</strong>se requirements to specific vessels shall be as determ<strong>in</strong>ed by<strong>the</strong> Officer <strong>in</strong> Charge, Mtu<strong>in</strong>e Inspection.(a-1) Except for a vessel comply<strong>in</strong>g with <strong>the</strong> requirements conta<strong>in</strong>ed <strong>in</strong>paragraph (a-2) <strong>of</strong> this section, each hull, structural bulkhead, deck, or deckho<strong>use</strong>made <strong>of</strong> fibrous glass <strong>re<strong>in</strong>forced</strong> plastic on each vessel that carries 150passengers or less must be constructed with fm retardant res<strong>in</strong>s, lam<strong>in</strong>ates <strong>of</strong>which have been demonstrated to meet rnilitmy specification MIL-R-21607 afterl-year exposure to wea<strong>the</strong>r. Military specification MIL-R-21607 may beobta<strong>in</strong>ed from <strong>the</strong> Command<strong>in</strong>g Officer, Naval Supply Depot, 5801 TaborAvenue, Philadelphia, PA 19120.(a-2) Each hull, structural bulkhead, deck, or deckho<strong>use</strong>, made <strong>of</strong> fibrous<strong>re<strong>in</strong>forced</strong> plastic on a vessel that cmries 150 passengers or less, that wascertificated on July 11, 1973, and rema<strong>in</strong>s certificated may cont<strong>in</strong>ue <strong>in</strong> service.Any repairs must be as follows:(1) M<strong>in</strong>or repairs and alterations must be made to <strong>the</strong> same standard as <strong>the</strong>orig<strong>in</strong>al construction or a higher standa@ and(2) Major alterations and conversions must comply with <strong>the</strong> requirements <strong>of</strong> thissubpart.(b) Internal combustion eng<strong>in</strong>e exhausts, boiler and galley uptakes, and similarsources <strong>of</strong> ignition shall be kept clesr <strong>of</strong> and suitably <strong>in</strong>sulated from snywoodwork or o<strong>the</strong>r combustible matter.(c) Lamp, pa<strong>in</strong>t, snd oil lockers and similar compartments shall be constructed <strong>of</strong>metal or l<strong>in</strong>ed with metal.AmericanBureau <strong>of</strong> Shipp<strong>in</strong>gThe American Bureau <strong>of</strong> Shipp<strong>in</strong>g (ABS) is a nonpr<strong>of</strong>it organization that develops rules for <strong>the</strong>classification <strong>of</strong> ship structures and equipment. Although ABS is primarily associated withlarge, steel ships, <strong>the</strong>ir <strong>in</strong>volvement with small craft dates back to <strong>the</strong> 1920’s, when a set <strong>of</strong>rules for wood sail<strong>in</strong>g ship construction was published. The recent volume <strong>of</strong> work done forFRP yachts is summarized <strong>in</strong> Table 7-2. The publications and services <strong>of</strong>fered by ABS aredetailed below. [7-2]Rules for Build<strong>in</strong>g and Class<strong>in</strong>g Re<strong>in</strong>forced Plastic Vessels 1978These give hull structure, mach<strong>in</strong>ery and eng<strong>in</strong>eer<strong>in</strong>g systim requirements for commercialdisplacement craft up to 200 feet <strong>in</strong> length, and special requirements for limited service craftsuch as yachts and ferries etc. They conta<strong>in</strong> comp~hensive sections on materials andmanufacture and are essentially for E-glass chopped strand mat and woven rov<strong>in</strong>g lam<strong>in</strong>ateswith a means <strong>of</strong> approv<strong>in</strong>g o<strong>the</strong>r lam<strong>in</strong>ates given.230


Chapter SevenREFERENCEThesegeneral Rules have served and condrme to semice <strong>in</strong>dustry and AIM ve~ well - <strong>the</strong>y areadopted as AustrsJisnGovmnment Regulations aud sre <strong>use</strong>d by <strong>the</strong> USCG. They are applied currentlyby ABStoall mmmercd displacement crall <strong>in</strong> unrwmictedocesn service, and to limited service cr<strong>of</strong>tsuch as ssillng yachts ova 100 fmt <strong>in</strong> len~ faries, passenger vessels, and fib<strong>in</strong>g vessels.Table 7-2. Statistics on ABS Services for FRP Yachts Dur<strong>in</strong>g<strong>the</strong> Past Decade[Curry, AmericanBureau <strong>of</strong> Shipp<strong>in</strong>g] -ABS Service Saillng MotorYachts YachtsCompleted or contracted for class orhull certification as <strong>of</strong> 1989336 94Plan approval service only as <strong>of</strong> 1989 160 9Currently <strong>in</strong> class 121 164Plan approval service from 1980 to1989390 35Guide for Buiid<strong>in</strong>g and Ciass<strong>in</strong>g Offshore Rac<strong>in</strong>g Yachts, 1986These were devel~ by ABS at <strong>the</strong> ~uest <strong>of</strong> <strong>the</strong> OHshm-Rac<strong>in</strong>g C&ncil (ORC) 1978-1980out <strong>of</strong><strong>the</strong>ir concern for ever lighter advanced cornposim boats snd <strong>the</strong> lack <strong>of</strong> suitable standards. At thatlime, several boats and lives had been lost ABS staff mfemedto <strong>the</strong> design and construction practicefor <strong>of</strong>fshore rac<strong>in</strong>g yachts, reflected <strong>in</strong> designws’ and builders’ practice and to limited full scslemeasured load data d ref<strong>in</strong>ed <strong>the</strong> results by tWdySiS<strong>of</strong> Illatly exist<strong>in</strong>g pen boats, and @ySiS ufdarnaged boat stmcturm. Advice and @dance on <strong>the</strong> scope, &tad and needs <strong>of</strong> <strong>the</strong> standmds weregiven by <strong>the</strong> Chahman aud two membtm <strong>of</strong> <strong>the</strong> International Technical Committee <strong>of</strong> <strong>the</strong> ORC,rwpmtively Ol<strong>in</strong> Stephens,Gary Mull and Hans Steffensen.As <strong>the</strong> Guide was to provide fm sll possible hull materials, <strong>in</strong>clud<strong>in</strong>g advsnced cornposims, it wasessential that it be given <strong>in</strong> a direct eng<strong>in</strong>tig furmat <strong>of</strong> design loads and design stresses, based onply, lam<strong>in</strong>ate and COIEmaterhd mechmical propmties. Such a forrrwtpermits <strong>the</strong> designer to -ysee <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> design loads, matmial mechanical propwties and structural arrangement on <strong>the</strong>requirements,<strong>the</strong>reby giv<strong>in</strong>g as much freedom as possible to achieve optimum <strong>use</strong> <strong>of</strong> rnatmials.The Guide gives hull structural design and construction stamkuds for tishore rac<strong>in</strong>g yachts and forcruis<strong>in</strong>g yachts. Boats that am to receive <strong>the</strong> ABS classification ~Al Yacht<strong>in</strong>g Semite, are m@rml tohave eng<strong>in</strong>ew<strong>in</strong>g systems such as bilge system fuel oil system electrical system frm protection <strong>in</strong>wordance with <strong>the</strong> ABYC rwomrnendations. For sail<strong>in</strong>g yachts over 100 feet <strong>in</strong> length <strong>the</strong> Guideand <strong>the</strong> ABYC standmds am augmented by parts <strong>of</strong> <strong>the</strong> Rules for Build<strong>in</strong>g snd Class<strong>in</strong>g Re<strong>in</strong>forcedPlastic vessels.All Rules and Guides m <strong>in</strong> a cont<strong>in</strong>uous state <strong>of</strong> development to reflect exp-ience, advances <strong>in</strong>technology, new mataiak, changes <strong>in</strong> build<strong>in</strong>g pmcdurw and occasionally to curtail exploitation <strong>of</strong>loopholes. This is nowhtzt mm true than <strong>in</strong> <strong>the</strong> <strong>use</strong> <strong>of</strong> advanced composites for <strong>of</strong>fshore rac<strong>in</strong>gyachts - slrwdy <strong>the</strong> development <strong>of</strong> additional <strong>in</strong>-ho<strong>use</strong> guidance to augment <strong>the</strong> Guide, suggests athird edition <strong>in</strong> <strong>the</strong> near future. It should be noted that <strong>the</strong> Coast Gusrd does not yet recognize <strong>the</strong>Guide as sn acceptable standard for a vessel to meet <strong>the</strong> requirements <strong>of</strong> Subchapter T.231 #~, , ,,.,-.,,. .


Rules andRegulationsMar<strong>in</strong>e CompositesProposed Guide for Build<strong>in</strong>g and Class<strong>in</strong>g High Speed Craft (Commercial,Patrol and Utility Craft)S<strong>in</strong>ce 1980, ABS has had specflc <strong>in</strong>-ho<strong>use</strong> guidance for <strong>the</strong> hull structure <strong>of</strong> plan<strong>in</strong>g sndsemi-plan<strong>in</strong>g crtit <strong>in</strong> commercial and governrmmt service.This Guide, for vessels up to 200 ft. <strong>in</strong> length, covers glass <strong>fiber</strong> <strong>re<strong>in</strong>forced</strong> plastic, advancedcomposite, ihwn<strong>in</strong>um and steel hulls. Requirements are given <strong>in</strong> a direct eng<strong>in</strong>eer<strong>in</strong>g formatexpressed <strong>in</strong> terms <strong>of</strong> design pressures, design stresses, and material mechanical properties.Design plan<strong>in</strong>g slamm<strong>in</strong>g pressures for <strong>the</strong> bottom structure have been deve~oped for <strong>the</strong> work<strong>of</strong> Heller and Jasper [7-3] Savitsky and Brown, [7-4] Allen and Jones [7-5], and Spencer [7-6].Those for <strong>the</strong> side structure are based on a comb<strong>in</strong>ation <strong>of</strong> hydrostatic Wd speed <strong>in</strong>ducedhydrodynamic pressures. In establish<strong>in</strong>g <strong>the</strong> bottom design pressures and dynamic components<strong>of</strong> side structure, dist<strong>in</strong>ction is made for example between passenger-carry<strong>in</strong>g craft, generalcorrunercial craft, and mission type craft such as patrol boats. Design pressures for deckssuperstructures, ho<strong>use</strong>s and bulkheads are from ABS and <strong>in</strong>dustry practice.Design stresses, have been obta<strong>in</strong>ed from <strong>the</strong> ABS <strong>in</strong>-ho<strong>use</strong> guidance and from apply<strong>in</strong>g <strong>the</strong>various design pressures to many exist<strong>in</strong>g, proven vessels processed over <strong>the</strong> years by AIM. Inprovid<strong>in</strong>g requirements for advanced composites, criteria are given for strength <strong>in</strong> both 0° and9W axes <strong>of</strong> structural panels.Anticipat<strong>in</strong>g <strong>the</strong> desirability <strong>of</strong> extend<strong>in</strong>g <strong>the</strong> length <strong>of</strong> boats us<strong>in</strong>g standard or advancedcomposites, <strong>the</strong> Guide conta<strong>in</strong>s hull-girder strength requirements for vessels <strong>in</strong> both <strong>the</strong>displacement and plan<strong>in</strong>g modes. The former comes from current ABS Rules. The latter fromHeller and Jasper bend<strong>in</strong>g moments toge<strong>the</strong>r with hull-girder bend<strong>in</strong>g stresses obta<strong>in</strong>ed byapply<strong>in</strong>g <strong>the</strong>se moments to many exist<strong>in</strong>g, proven plan<strong>in</strong>g craft designs. As might be expected,design stresses for <strong>the</strong> plan<strong>in</strong>g mode bend<strong>in</strong>g moments are datively low, reflect<strong>in</strong>g design forfatigue strength. Particularly for <strong>fiber</strong> <strong>re<strong>in</strong>forced</strong> plastic boats, criteria were established forhull-girder stiffness, by which, one <strong>of</strong> <strong>the</strong> potential limitations <strong>of</strong> <strong>fiber</strong> <strong>re<strong>in</strong>forced</strong> plastic, lowtensile snd compressive modulii, can be avoided by proper design.Aga<strong>in</strong>, primarily for <strong>fiber</strong> <strong>re<strong>in</strong>forced</strong> plastic construction, <strong>the</strong>re are extensive sections onmaterials and manufactur<strong>in</strong>g.Requirements for structural detail consider<strong>in</strong>g local structural stability and local shear strengthare also <strong>in</strong>cluded. For <strong>the</strong> frost time <strong>in</strong> any set <strong>of</strong> ABS standards, <strong>the</strong> Guide conta<strong>in</strong>s proposedcriteria for pordights and w<strong>in</strong>dows - for which, bma<strong>use</strong> <strong>of</strong> <strong>the</strong> empirical nature <strong>of</strong> development,we are seek<strong>in</strong>g a comprehensive ~view and comment participation by <strong>in</strong>dustry. Distribution <strong>of</strong><strong>the</strong> Guide for <strong>in</strong>dustry rwiew is imm<strong>in</strong>ent.Although <strong>the</strong> Guide conta<strong>in</strong>s speciiic, detailed stsndards for plan<strong>in</strong>g craft hull structures, it isnot conf<strong>in</strong>ed to <strong>the</strong>se form hulls and operational modes. Brief, general requirements for surfaceeffect, air cushion and hydr<strong>of</strong>oil craft are also <strong>in</strong>cluded and will be developed <strong>in</strong>to morespecfic detailed criteria over <strong>the</strong> next few years.232


Chapter SevenREFERENCEProposed Guide for High Speed and Displacement Motor YachtsAs with high speed commercial and government service craft, ABS has had <strong>in</strong>-ho<strong>use</strong> guidancefor many years for plan<strong>in</strong>g motor yachts. This has also been developed over <strong>the</strong> last few years<strong>in</strong>to <strong>the</strong> Guide for High Speed and Displacement Motor Yachts.The standards for high speed motor yachts parallel those for high speed commercial andgovernment service craft and <strong>the</strong> preced<strong>in</strong>g description <strong>of</strong> <strong>the</strong> Guide for <strong>the</strong> high speedcommercial, patrol, and utility craft is equally applicable with <strong>the</strong> qualification that <strong>the</strong> designpressures for motor yachts reflect <strong>the</strong> less rigorous demands <strong>of</strong> this service.Probably, 80% to 90%, <strong>of</strong> <strong>the</strong> motor yachts today are, by dellnition <strong>of</strong> this Guide, high speed.However to provide complete standards, <strong>the</strong> Guide also <strong>in</strong>cludes requirements for displacementmotor yachts. Design loads and design stresses for <strong>the</strong>se standards are essentially developedfrom ABS Rules for Re<strong>in</strong>forced Plastic Vessels, modified appropriately for advancedcomposite, alum<strong>in</strong>um and steel hulls and f<strong>in</strong>e-tuned by review <strong>of</strong> a substantial number <strong>of</strong>exist<strong>in</strong>g proven, displacement hull motor yacht designs.In addition to hull structural standards, this Guide <strong>in</strong>cludes requirements for propulsion systemsand essential eng<strong>in</strong>eer<strong>in</strong>g systems. The hull part <strong>of</strong> this Guide is now complete and distributionfor <strong>in</strong>dustry review is imm<strong>in</strong>ent.ClassificationThis entails plan approval <strong>of</strong> <strong>the</strong> hull structural plans, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> build<strong>in</strong>g processdescriptions, essential eng<strong>in</strong>eer<strong>in</strong>g systems for both sail and power craft, and for power craft,plan approval <strong>of</strong> <strong>the</strong> ma<strong>in</strong> propulsion system.Follow<strong>in</strong>g plan approval, <strong>the</strong> ABS surveyor <strong>in</strong>spects <strong>the</strong> boat dur<strong>in</strong>g construction to verifycompliance with <strong>the</strong>se approved plans, and with <strong>the</strong> appropriate ABS Rules or Guide. TheSurveyor also witnesses material tests, <strong>in</strong>stallation and test<strong>in</strong>g <strong>of</strong> <strong>the</strong> propulsion system (formotor craft) and eng<strong>in</strong>eer<strong>in</strong>g systems (for sail and motor craft). The symbol ~ <strong>in</strong> front <strong>of</strong> AMSis required for commercial craft but is optional for recreational and certa<strong>in</strong> government servicecraft. The symbol m <strong>in</strong>dicates that <strong>the</strong> ma<strong>in</strong> propulsion eng<strong>in</strong>e, reduction gear, shaft<strong>in</strong>g,propellers and generators (over 100 kw) have been <strong>in</strong>spected by <strong>the</strong> ABS surveyor dur<strong>in</strong>g <strong>the</strong>irconstruction, and certificates for <strong>the</strong>ir construction have been issued by ABS, On completion<strong>of</strong> <strong>the</strong> boat and compliance with all <strong>of</strong> <strong>the</strong> conditions <strong>of</strong> classification <strong>the</strong> boat is issued with aClassiilcation Certificate and bronze plaque. The boat is also <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> ABS Record <strong>of</strong>Classed Vessels.In service, vessels are required to have ABS annual and special periodic surveys, as well assumeys after damage, to reta<strong>in</strong> classification,Table 7-3 shows basic ABS classification symbols and various ABS classification notations.Figure 7-1 shows a flow chart outl<strong>in</strong><strong>in</strong>g <strong>the</strong> classtilcation process.233


Rules and RegulationsMar<strong>in</strong>e CompositesTable 7-3.SymbolKAlAl~ AMSAMSo EABS Classification Symbols [ABS]DeflnltlonHullplanapproval;hullconstructionandhullmaterialtest<strong>in</strong>gunderABS surveyHull plan a proval; special ABS survey <strong>of</strong>completed \ uIIPropulsion and essential eng<strong>in</strong>eer<strong>in</strong>g systemsapproval; repulsion system units manufacturedunder AB!survey, propulsion and eng<strong>in</strong>eer<strong>in</strong>gsystems <strong>in</strong>stalled and tested under ABS surveyPropulsion and essential eng<strong>in</strong>eer<strong>in</strong>g systemsapproval; propulsion and en <strong>in</strong>eer<strong>in</strong>g systems<strong>in</strong>stalled and tested under A%S surveyEquipment <strong>of</strong> anchors, cables and w<strong>in</strong>dlassesapproved <strong>in</strong> accordance with ABS Rules orGuide; materialand equipmenttested and<strong>in</strong>stalledunder ABS surveyApptOVadDesignerCODie8 GI [LHull& oo 3opieaPABS Technical StaffBuilder~4 Performanceo 7 ABS Survey StaffApproved1 Mach<strong>in</strong>ery Plans <strong>of</strong> Plan*9“ApprovedCopies<strong>of</strong> PlansBoat Dur<strong>in</strong>gConstruction““7ln*pectlOn Dur<strong>in</strong>gConstruction &ITests and Trialsro 4[+ Eng<strong>in</strong>e Builder, etc. 1.v~gure 7-IShipp<strong>in</strong>g]Flow Chart for ABSClassificationProcess [Curry, American Bureau <strong>of</strong>,,.234,’J/ ,i” ;, .,.”!


Chapter SevenREFERENCEHull CertificationHull certification comprises plan approval <strong>of</strong> <strong>the</strong> hull structural plans, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> build<strong>in</strong>gprocess description and <strong>in</strong>spection <strong>of</strong> <strong>the</strong> hull dur<strong>in</strong>g construction to verify compliance with<strong>the</strong>se approved plans, and with <strong>the</strong> appropriate Rules or Gujde. The Smrveyor also witnessesrequired hull material tests.On completion <strong>of</strong> <strong>the</strong> boat and compliance with all <strong>of</strong> <strong>the</strong> requirements for hull certification, <strong>the</strong>boat is issued with a Hull Construction Certificate and bronze plaque.Hull certification is conf<strong>in</strong>ed to <strong>the</strong> hull construction and <strong>the</strong>re are no ABS surveys <strong>of</strong> <strong>the</strong>vessel <strong>in</strong> service. Figure 7-2 shows <strong>the</strong> hull certdlcation procedure.Plan ApprovalPlan approval entails approval <strong>of</strong> hull structural plans and if desired, plan approval <strong>of</strong> <strong>the</strong>propulsion system (for motor vessels) and eng<strong>in</strong>eer<strong>in</strong>g systems (for sail and motor vessels).There is no <strong>in</strong>spection by an ABS Surveyor dur<strong>in</strong>g construction.IApprovedcopies<strong>of</strong> PlansIDesignerABS Technical Staff 1l“ ‘d o2’Lam<strong>in</strong>ate MaterialTo&t ReportsApnrovedCopies<strong>of</strong> Plan*I3o~>Approvedo Hull Construction, Opiee1 Sea Cock, Eng<strong>in</strong>e<strong>of</strong> PlansExhaust system plansITBuildero4InspectionDur<strong>in</strong>gI Boat <strong>in</strong> Service IFigure 7-2Shipp<strong>in</strong>g]Flow Chart for ABS Hull Certification Process [Curry, American Bureau <strong>of</strong>,,.,235, ,+”!~,,=.


Conversion FactorsMar<strong>in</strong>e CompositesLENGTHMultlply: By: To Obta<strong>in</strong>:Centimeters 0.0328 FeetCentimeters 0.3937 InchesFeet 30.4801 CentimetersFeet 0.30480 MetersInches 2,54 CentimetersMeters 3.28083 FeetMeters 39,37 InchesMeters 1.09361 YardsMils 0.001 InchesMils 25.40 MicronsMultiply:GramsGramsKilogramsKilogramsKilogramsKilogramsLongTons’Long Tons*Metric TonsOunces*Pounds*Pounds*Pounds*Pounds*Pounds*Tons*Tons*MASSBy:0.035272,205 X 10-335,272.2051.102 XI O-39.839 X 10-4101622402204,628.35453.60.45<strong>360</strong>.00054.464X 10-44.536 X 10-4907.22000Ounces*Pounds*Ounces*Pounds*Tons*Long Tons*KilogramsPounds*Pounds*GramsGramsKilogramsTons*Long Tons*Metric TonsKilogramsPounds’To Obta<strong>in</strong>:* These quantities are not mass units, but are <strong>of</strong>ten2<strong>use</strong>d as such. Theconversion factors are based on o = 32.174 ftkec .236


Chapter SevenREFERENCEAREAMultlply: By: To Obta<strong>in</strong>:Squarecentimeters 1.0764 x 10-3 SquarefeetSquarecentimeters 0,15499 Square<strong>in</strong>chesSquare centimeters 0.02403Square <strong>in</strong>ches2(moment <strong>of</strong> area)(moment <strong>of</strong> area)Square feet 0.09290 Square metersSquare feet 929.034 Square centimetersSquare feet2 Square <strong>in</strong>ches220736(moment <strong>of</strong> area)(moment <strong>of</strong> area)Square meters 10.76387 Square feetSquare meters 1550 Square <strong>in</strong>chesSquare meters 1.196 Square yardsSquare yards 1296 Square <strong>in</strong>chesSquare yards 0.8361 Square metersVOLUMEMultlply: By: To Obta<strong>in</strong>:Cubiccentimeters 3.5314 x 10-5 CubicfeetCubic centimeters z.~17 x 10-4 GallonsCubic centimeters 0.03381 OuncesCubic feet 28317.016 Cubic cmtirnetersCubic feet 1728 Cubic <strong>in</strong>chesCubic feet 7.48052 GallonsCubic feet 28,31625 L<strong>in</strong>ersCubic <strong>in</strong>ches 16.38716 Cubic centimetersCubic <strong>in</strong>ches 0.55441 OuncesCubic meters 358314 Cubic feetCubic meters 61023 Cubic <strong>in</strong>chesCubic meters 1,308 Cubic yardsCubic meters 264.17 GallonsCubic meters 999,973 LitersCubic yards 27 Cubic feetCubic yards 0.76456 Cubic meters237 ,“


Conversion FactorsMar<strong>in</strong>e CompositesIMultlply:Gramsper centimetersGrams per centimetersKilograms per meters3Kilograms per meters3Pounds per <strong>in</strong>ches3Pounds per <strong>in</strong>chessPounds per feetaPounds per feet3DENSITYBy:0.0361362.4283.613 X 10-50,062432.768 X 104172816.025.787 X 10-4To Obta<strong>in</strong>:Poundsper <strong>in</strong>ches3Pounds per feet3Pounds per<strong>in</strong>ches3Pounds perfeet3Kilograms per meters3Pounds perfeet3Kilograms per meters3Pounds per<strong>in</strong>ches3IFORCEMultiply: By: To Obta<strong>in</strong>:Kilograms-force 9.807 NewtonsKilograms-force 2.205 PoundsNewtons 0,10197 Kilograms-forceNewtons 0.22481 PoundsPounds 4.448 NewtonsPounds 0.4536 Kilograms-forcePRESSUREMultlply:Feet<strong>of</strong> saltwater(head)Feet<strong>of</strong> saltwater(head)Feet<strong>of</strong> saltwater(head)Inches<strong>of</strong>waterInches<strong>of</strong>waterInches<strong>of</strong>waterPascalsPascalsPoundsperfeet2Poundsper feet2Pounds per <strong>in</strong>ches2Pounds per<strong>in</strong>ches2By:3064,32640.44444249,0825.2020.036130.020891.4504X 10-447.886.944 X 10-36895144To Obta<strong>in</strong>:PascalsPoundsperfeet2Poundsper<strong>in</strong>ches2PascalsPoundsperfeet2Poundsper<strong>in</strong>ches2Poundsperfeet2Poundsper<strong>in</strong>ches2PascalsPounds per<strong>in</strong>ches2PascalsPounds perfeet2Pascals= Newtons permeters2238


Chapter SevenREFERENCEWeights and Conversion Factors [Prhc@es<strong>of</strong> Naval Architecture]QuantityWatersalt Fresh Fuel I)lesel LubeoilGasollneCubicfeet perlongton 35 36 38 41.5 43 501I Gallons per long ton — 269,28 284.24 310.42 321,64 374.00Pounds per gallon — — 7.881 7.216 6.964 5.989Pounds per cubic feet 64 62.222 58.947 53.976 52.093 44.800Pounds per barrel — — 331 303 292.5 251.5Gallons605550454036302520151050— Verticalto Bottom ~ Vwticalto Top‘----’Horizontalto Bottom– - Horizontalto TopFigure 7-3 Volume Rema<strong>in</strong><strong>in</strong>g <strong>in</strong> 55 Gallon Drums Based on Ruler Measurementsfrom <strong>the</strong> Top and Bottom for Drums <strong>in</strong> Vertical and Horizontal Positions [Cook, %’ycorPolyester Gel Coats and Res<strong>in</strong>s]239


Conversion FactorsMar<strong>in</strong>e CompositesPolyester Res<strong>in</strong> Conversion Factors[Cook, Po/ycor Polyester Gel Coats and Reshw]Multiply: By: To Obta<strong>in</strong>:Fluidounces MEK Peroxide* 32.2 Grams MEK Peroxide*Grams MEK Peroxide* .0309 Fluid ounces MEK Peroxide*Cubic centimetersMEK Peroxide*Grams MEK Peroxide’ 0.901.11 Grams MEK Peroxide*Cubic centimetersMEK Peroxide*Fluid ounces cobalt”” 30.15 Grams cobalt**Grams cobalt** 0,033 Fluid ounces cobalt**Grams cobalt** 0.98 Cubic centimeters cobalt**Gallon polyester res<strong>in</strong>+ 9.2 PoundsGallon polyester res<strong>in</strong>t 13.89 Fluid ouncesGallon polyester res<strong>in</strong>+ 411 Cubic centimeters* 9% Active Oxygen** 6~0 Solution+ UnpigmentedMaterial Coverage Assum<strong>in</strong>g No Loss[Cook, Polycor Polyester Gel Coats and l?eslns].00111600,00.63.0033534.01.90.0055320.03.10.01010160.06.30.01515107,09.40.0181889.011.20.0202080.012.50.0252564.015.60,.0303053.019.00,0313151.019.50.0606027.038.00,0626226.039.00240, “,.,, .,,. ., ,:‘!. . .


Chapter SevenREFERENCENon-woven E“Glass Re<strong>in</strong>forcement Designation ComparisonAdvance&Textlles, Brunswick. Technologies, Inc.Hexcel KnytexFiber OrlentatlonProduct %& Product %GF Product %&NEMP090 9.5 DB 090 9.3 *45°~ NEMP 120 12.4 DB 120 12.0 *45”~ NEWF 120 12.1 c 1200 1280 o“, 90”mNEMP 170 17,6 X 1800 18.0 DB 170 18.0 *45”I , INEWF 180 17.7 C 1800 18.0 0’,90”I NEMP240 24,2 I X 2400 24.0 I DB 240 25,2 I h45”NEWMP 230 22.8 CDB 200 22.7 ()”,*45”~ NEFMP230 22,8 DDB 222 22.5 90”, &45”g NEWMp 340 33,1 l-v 3400 34.0 CDB 340 33,9 l)”, ?45”+ NEFMP 340 33.1 DDB 340 34.7 90”, *45°I NEMPC 1208 19.2 I I DBM 1208 19.7 I *45”, 3/4 oz. matI NEWFC 1208 I CM 1208 18.8 I I 0“, 90”, 3/402, matI NEMPC 1708 24.4 I XM 1808 24.8 I DBM 1768 25.7 I +45”, 3/4 oz. mat1 I 1* NEMPC 1715 31.1 XM 1815 31,5 DBM 1715 31.2 I +45”, 11A oz. matI 1~ I N~wFc 1808 24.4 i CM 180824.8 CDM 1808 26.6 I 0°, 90°, 3/4oz. mat, 1 1gNEWFC 1810 26.6 I CM 1810 27.0 CDM 1810 28.8 0“, 90”, 1 oz. matI 1 1~. NEWFC 1815 31.2 CM 1815 31,5 I CDM 1815 33.4 O“, 90’, 1 Vz oz. matI , I~ NEMPC 2408 31.0 I XM 2408 30.8 I DBM2408 32.8 ~45”, 3/4oz. matI NEMPC 2415 37.8 I XM 2415 37.5 I DBM 2415 38.3 I A45”, 1M oz. matI NEWFC 2308 29.0 I CM 2408 30.8 I CDM 2408 33.6 t 0“, 90°, 3/4 oz. matNEWFC 2310 32.2 CM 2410 33,0 CDM 2410 35.9 0“, 90”, 1 oz. matI NEWFC 2315 36.7 I CM 2415 37,5 I CDM 2415 40.4 I 0°,90°, 114 oz. mat1 I 1NEWMPC 2308 29,5 CDBM 2008 30.4 I O“,+45”, %4oz. mat, 1 INEWMPC3408 40.2 I TVM 3408 40.8 I CDBM3408 42.1 0°,+45”, 3/4oz. mat241,,~,.


GlossatyMar<strong>in</strong>e Compositesablation Tl_Edegradation,decompositionanderosion<strong>of</strong> materialca<strong>use</strong>dby high temperature,pressure, time, percent oxidiz<strong>in</strong>g species andvelocity<strong>of</strong> gas flow, A controlledloss<strong>of</strong> mater<strong>in</strong>ltoprotect<strong>the</strong>underly<strong>in</strong>gstructure.ablative plastic A materialthat absorbsheat(witha lowmateriallossandcharrate)throughadecompositionprocess (pyrolysis) that takesplaceat or near<strong>the</strong>surfaceexposedto <strong>the</strong>heat.absorption The penetration<strong>in</strong>to <strong>the</strong> mass <strong>of</strong>onesubstanceby ano<strong>the</strong>r.Thecapillaryor cellularattmction<strong>of</strong>adherendsurfacesto draw<strong>of</strong>f <strong>the</strong>liquidadhesivefilm<strong>in</strong>to<strong>the</strong>substrate,accelerated test A test procedure <strong>in</strong> Whichconditionsare <strong>in</strong>creased<strong>in</strong> magnitudeto reduce<strong>the</strong> time requiredto obta<strong>in</strong>a result, To reproduce<strong>in</strong> a short time <strong>the</strong> deteriorat<strong>in</strong>geffect obta<strong>in</strong>edundernormalserviceconditions.accelerator A materialthat, when mixed with acatalystor res<strong>in</strong>, will speed up <strong>the</strong> chemicalreactionbetween <strong>the</strong> catalyst and <strong>the</strong> res<strong>in</strong> (ei<strong>the</strong>rpolymeriz<strong>in</strong>g <strong>of</strong> res<strong>in</strong>s or vukanization <strong>of</strong> robbers).Alsocalledpromoter.acceptance test A test, or series <strong>of</strong> tests, conductedby <strong>the</strong> procur<strong>in</strong>g agency upon receipt <strong>of</strong>an <strong>in</strong>dividual lot <strong>of</strong> materials to determ<strong>in</strong>ewhe<strong>the</strong>r<strong>the</strong> lot conformsto <strong>the</strong> purchaseorder orcontractor to determ<strong>in</strong>e<strong>the</strong> degree <strong>of</strong> uniformity<strong>of</strong> <strong>the</strong> materialsuppliedby <strong>the</strong> vendor,or both.acetone In anFRPcontex~acetoneis primarily<strong>use</strong>ful as a clean<strong>in</strong>g solvent for removal <strong>of</strong> uncuredres<strong>in</strong> from applicatorequipmentand cloth<strong>in</strong>g.This is a very flammableliquid.acoustic emission A measure<strong>of</strong> <strong>in</strong>tegrity <strong>of</strong> amaterial,as determ<strong>in</strong>edby sound emission whena material is stressed. Ideally, emissions can becorrelatedwith defectsand/or<strong>in</strong>cipientfailure.activator Anadditive <strong>use</strong>d to promote and reduce<strong>the</strong> cur<strong>in</strong>gtime <strong>of</strong> res<strong>in</strong>s. See also accelerator.additive Any substance added to ano<strong>the</strong>r substance,usually to improve properties, such asplasticizers,<strong>in</strong>itiators, light stabilizersand flameretardants.adherend A body that is held to ano<strong>the</strong>r body,usuallyby an adhesive. A detail or part preparedfor bond<strong>in</strong>g.advanced composites Strong,tough materialscreatedby comb<strong>in</strong><strong>in</strong>gone or more stiff, highstrengthre<strong>in</strong>forc<strong>in</strong>g <strong>fiber</strong> with compatible res<strong>in</strong>system, Advancedcompositescan be substitutedfor metals <strong>in</strong> many structural applications withphysical properties comparable or better thanalum<strong>in</strong>um.air-<strong>in</strong>hibited res<strong>in</strong> A res<strong>in</strong> by which surfacecures will be <strong>in</strong>hibitedor stopped<strong>in</strong> <strong>the</strong> presence<strong>of</strong> air.ag<strong>in</strong>g The effect on materials <strong>of</strong> exposure to anenvironmentfor an <strong>in</strong>terval <strong>of</strong> time. The process<strong>of</strong> expos<strong>in</strong>gmaterialsto an environmentfor a <strong>in</strong>terval<strong>of</strong> time.air-bubble void h entrapment with<strong>in</strong> andbetween <strong>the</strong> plies <strong>of</strong> re<strong>in</strong>forcement or with<strong>in</strong> abondl<strong>in</strong>e or encapsulatedarm, localized, non<strong>in</strong>terconnected,spherical<strong>in</strong>shape.allowable Propertyvalues<strong>use</strong>d for designwitha 95 percentconfidence<strong>in</strong>tervak <strong>the</strong> “A” aUowableis <strong>the</strong> m<strong>in</strong>imum value for 99 percent <strong>of</strong> <strong>the</strong>population;and <strong>the</strong> “B” allowable,90 percent.alternat<strong>in</strong>g stress A stress vary<strong>in</strong>g betweentwo maximum valuw which are equal but withopposite signs, accord<strong>in</strong>g to a law determ<strong>in</strong>ed<strong>in</strong>terms<strong>of</strong> <strong>the</strong> tie.alternat<strong>in</strong>g stress amplitude A test paramekr<strong>of</strong> a dynamic fatigue tEZLone-half <strong>the</strong>algebraic difference between <strong>the</strong> maximum andm<strong>in</strong>imumstress<strong>in</strong> one cycle.ambient conditions Prevail<strong>in</strong>g environmentalconditions such as <strong>the</strong> surround<strong>in</strong>g temperature,pressureand relativehumidity,anisotropic Not isotropic. Exhibit<strong>in</strong>g differentproperties when tested along axes <strong>in</strong> differentdirections,antioxidant A substance tha~ when added <strong>in</strong>small quantities to <strong>the</strong> res<strong>in</strong> dur<strong>in</strong>g mix<strong>in</strong>g, preventsits oxidativedegradationand contributesto<strong>the</strong> ma<strong>in</strong>tenance<strong>of</strong> its properties.aramid A type <strong>of</strong> highly orientedorganic materialderived from polyamide (nylon) but <strong>in</strong>corporat<strong>in</strong>garomaticr<strong>in</strong>g structure. Used prirnmil~as a high-strengthhigh-modulusfik. Kevlarand Nomex@are examples<strong>of</strong> ararnids.areal weight The weight <strong>of</strong> <strong>fiber</strong> per unit ar~(widthx length)<strong>of</strong> tape or fabric.artificial wea<strong>the</strong>r<strong>in</strong>g !rh~exposure <strong>of</strong> plssticsto cyclic, laboratoryconditions,consist<strong>in</strong>g<strong>of</strong>high and low temperatures,high and low relativehumidities,and tdtmvioletradiantenergy,with or242 .,. -’.“* -’”;.,.,,..”,. .,,.,,


Chapter SevenREFERENCEwithout direct water sp<strong>in</strong>y and mov<strong>in</strong>g air(w<strong>in</strong>d),<strong>in</strong> an attempt to produce changes<strong>in</strong> <strong>the</strong>irproperties similar to those observed<strong>in</strong> long-termcont<strong>in</strong>uous exposure outdoors, The laboratoryexposure conditions are usually <strong>in</strong>tens$led beyondthose encountered <strong>in</strong> actual outdoor exposure,<strong>in</strong> an attempt to achieve an acceleratedeffect.aspect ratio The ratio <strong>of</strong> length to diameter <strong>of</strong>a <strong>fiber</strong> or <strong>the</strong> ratio <strong>of</strong> length to width <strong>in</strong> a structuralpanel.autoclave A closed vessel for conduct<strong>in</strong>g andcomplet<strong>in</strong>g a chemical reaction or o<strong>the</strong>r operation,such as cool<strong>in</strong>g,underpressureand heat.bagg<strong>in</strong>g Apply<strong>in</strong>gan impermeablelayer <strong>of</strong> fdmover an uncured part and seal<strong>in</strong>g <strong>the</strong> edges wthat a vacuumcan be drawn.balanced construction Equal parts <strong>of</strong> warpand fill <strong>in</strong> <strong>fiber</strong> fabric. Construction<strong>in</strong> which reactionstotensionand compressionloads result <strong>in</strong>extension or compressiondeformationsonly and<strong>in</strong> which flexuml loads produce pure bend<strong>in</strong>g <strong>of</strong>equalmagnitude<strong>in</strong> axial and lateml directions.balanced larnhate A composite <strong>in</strong> which alllam<strong>in</strong>ae at angles o<strong>the</strong>r than 0° and 90° occuronly <strong>in</strong> + pairs (not necessarilyadjacent)and aresymmetricalaround<strong>the</strong> centerl<strong>in</strong>e.Barcol hardness A hardness value obta<strong>in</strong>edby measur<strong>in</strong>g <strong>the</strong> resistance to penetmtion <strong>of</strong> asharp steel po<strong>in</strong>t under a spr<strong>in</strong>g load. The <strong>in</strong>strument,called a Barcol impresser, gives a directread<strong>in</strong>g on a scale <strong>of</strong> O to 100. The hardnessvalue is <strong>of</strong>ten <strong>use</strong>d as a measure<strong>of</strong> <strong>the</strong> degree<strong>of</strong>cure <strong>of</strong> a plastic.barrier film Thelayer <strong>of</strong> film <strong>use</strong>d to permitremoval <strong>of</strong> air and volatiles from a compositelay-updur<strong>in</strong>g cure while m<strong>in</strong>imiz<strong>in</strong>gres<strong>in</strong> loss.bedd<strong>in</strong>g compound White lead or one <strong>of</strong> anumber <strong>of</strong> commerciallyavailableres<strong>in</strong> compounds<strong>use</strong>dt<strong>of</strong>orma flexible,waterpro<strong>of</strong>baseto setfitt<strong>in</strong>gs,bias fabric Warpand fill <strong>fiber</strong>sat an angleto<strong>the</strong>length<strong>of</strong> <strong>the</strong>fabric,biaxial load A load<strong>in</strong>g condition<strong>in</strong> which alam<strong>in</strong>ateis stressed<strong>in</strong> twodifferentdirections<strong>in</strong>itsplane,bidirectional lam<strong>in</strong>ate A <strong>re<strong>in</strong>forced</strong>~lasticlam<strong>in</strong>ate with <strong>the</strong> <strong>fiber</strong>s oriented <strong>in</strong> two-directions<strong>in</strong> its plane. A cross lam<strong>in</strong>ate.b<strong>in</strong>der me res<strong>in</strong>or cement<strong>in</strong>gconstituent (<strong>of</strong> aplastic compound) that holds <strong>the</strong> o<strong>the</strong>r componentstoge<strong>the</strong>r. The agent applied to <strong>fiber</strong> mator preforms to bond <strong>the</strong> <strong>fiber</strong>s before lam<strong>in</strong>at<strong>in</strong>gor mold<strong>in</strong>g.bleeder cloth A woven or nonwoven layer <strong>of</strong>material <strong>use</strong>d <strong>in</strong> <strong>the</strong> manufacture <strong>of</strong> compositeparts to allow <strong>the</strong> escape <strong>of</strong> excess gas and res<strong>in</strong>dur<strong>in</strong>g cure. The bkder cloth is removed after<strong>the</strong> cur<strong>in</strong>g process and is not part <strong>of</strong> <strong>the</strong> ~alcomposite.blister &I elevation on <strong>the</strong> surface <strong>of</strong> an adherendconta<strong>in</strong><strong>in</strong>gair or water vapor, somewhatresembl<strong>in</strong>g<strong>in</strong> sha~ a blister on <strong>the</strong> human sk<strong>in</strong>.IWboundaries may be <strong>in</strong>def<strong>in</strong>itely outl<strong>in</strong>ed, andit may haveburst and becomeflattened.bond Theadhesion at <strong>the</strong> <strong>in</strong>terfacebetween twosurfaces. To attach materials toge<strong>the</strong>rby means<strong>of</strong> adhesives.bond strength The amount <strong>of</strong> adhesion betweenbonded surfaces. The stress required toseparate a layer <strong>of</strong> material from <strong>the</strong> base towhich it is bonded as measured by load/bondarea. See also peel strength.bond<strong>in</strong>g angles An additional FRP lam<strong>in</strong>ate,or an extension<strong>of</strong> <strong>the</strong> lam<strong>in</strong>ate <strong>use</strong>d to make up<strong>the</strong> jo<strong>in</strong>ed member, which extends onto <strong>the</strong> exist<strong>in</strong>glam<strong>in</strong>ate to attach additionalitems such asM<strong>in</strong><strong>in</strong>g, bulkheadsand shelves to <strong>the</strong> shell or toeach o<strong>the</strong>r.boundary conditions Load and environmentalconditionsthat exist at <strong>the</strong> boundaries. Conditionsmust be specifiedto perform stress analysis.buckl<strong>in</strong>g A mode <strong>of</strong> failure generally characterizedby an unstable lateral material deflectiondue to compressiveaction on <strong>the</strong> structural element<strong>in</strong>volved.bulk mold<strong>in</strong>g compound (BMC) Thermosett<strong>in</strong>gres<strong>in</strong>mixed with strand re<strong>in</strong>forcement,fillers, etc. <strong>in</strong>to a viscouscompoundfor compressionor <strong>in</strong>jectionmold<strong>in</strong>g.butt jo<strong>in</strong>t A type <strong>of</strong> edge jo<strong>in</strong>t <strong>in</strong> which <strong>the</strong>edge faces <strong>of</strong> <strong>the</strong> two adherendsare at right anglesto <strong>the</strong> o<strong>the</strong>r faces<strong>of</strong> <strong>the</strong> adherends.carbon Theelement that provides <strong>the</strong> backbonefor all organic polymers. Graphite is a moreordered form <strong>of</strong> carbon, Diamondis <strong>the</strong> densestcrystall<strong>in</strong>eform <strong>of</strong> carbon.“,.-.243#J - .,.> .$,


GlossaryMar<strong>in</strong>e Compositescarbon <strong>fiber</strong> Fiber produced by <strong>the</strong> pyrolysis<strong>of</strong> organic precursor <strong>fiber</strong>s, such as rayon,polyacrylonitrile (PAN), and pitch, <strong>in</strong> an <strong>in</strong>ertenvironment. The term is <strong>of</strong>ten <strong>use</strong>d <strong>in</strong>terchangeablywith <strong>the</strong> term graphite; howevercarbon <strong>fiber</strong>s and graphite <strong>fiber</strong>s differ. Thebasic differences lie <strong>in</strong> <strong>the</strong> temperature atwhich <strong>the</strong> <strong>fiber</strong>s are made and heat treated,and <strong>in</strong> <strong>the</strong> amount <strong>of</strong> elemental carbon produced.Carbon <strong>fiber</strong>s typically are carbonized<strong>in</strong> <strong>the</strong> region <strong>of</strong> 2400’F and assay at 93 to95% carbon, while graphite <strong>fiber</strong>s are graphitizedbetween 3450° and 4500”F and assay tomore than 99Voelemental carbon.carpet plot A design chart show<strong>in</strong>g <strong>the</strong> uniaxialstiffnessor strength as a function <strong>of</strong> arbitraryratios <strong>of</strong> O,90, and k 45 degreeplies.catalyst A substance that changes <strong>the</strong> rate <strong>of</strong>a chemical reaction without itself undergo<strong>in</strong>gpermanent change <strong>in</strong> composition or becom<strong>in</strong>ga part <strong>of</strong> <strong>the</strong> molecular structure <strong>of</strong> <strong>the</strong>product. A substance that markedly speedsup <strong>the</strong> cure <strong>of</strong> a compound when added <strong>in</strong>m<strong>in</strong>or quantity.cell In honeycombcore, a cell is a s<strong>in</strong>gle honeycombuni~ usually<strong>in</strong> a hexagonalshape.Cd Size The diameter <strong>of</strong> an <strong>in</strong>scribed circlewith<strong>in</strong> <strong>the</strong> cell <strong>of</strong> a honeycombcore.Charpy impact test A test for shock load<strong>in</strong>g<strong>in</strong> which a centrallynotchedsamplebar is held atboth ends and brokenby strik<strong>in</strong>g <strong>the</strong> back face <strong>in</strong><strong>the</strong> sameplane as <strong>the</strong> notch.cha<strong>in</strong> plates Themetallic plates, emkdded <strong>in</strong>or attached to <strong>the</strong> hull or bulkhead, <strong>use</strong>d toevenly distributeloads from shroudsand stays to<strong>the</strong> hull <strong>of</strong> sail<strong>in</strong>g vessels.chopped strand Cont<strong>in</strong>uous strand yam orrov<strong>in</strong>g cut up <strong>in</strong>to uniformlengths, usually fromW2 <strong>in</strong>ch long. Lengths up to M <strong>in</strong>ch are calledmilled <strong>fiber</strong>s,closed cell foam Cellularplastic <strong>in</strong> which <strong>in</strong>dividualcells are completelysealed <strong>of</strong>f from adjacentcells.cocurirtg The act <strong>of</strong> cur<strong>in</strong>g a composite lam<strong>in</strong>ateand simultaneouslybond<strong>in</strong>g it to some o<strong>the</strong>rpreptyedsurface, See also secondarybond<strong>in</strong>g,co<strong>in</strong> test Us<strong>in</strong>g a co<strong>in</strong> to test a lam<strong>in</strong>ate <strong>in</strong>different spots, listen<strong>in</strong>g for a change <strong>in</strong> sound,which would<strong>in</strong>dicate<strong>the</strong> presence<strong>of</strong> a defect. Asurpris<strong>in</strong>gly accurate test <strong>in</strong> <strong>the</strong> hands <strong>of</strong> experiencedpersonnel.compaction The application <strong>of</strong> a temporaryvacuum bag and vacuum to remove trapped airand compact<strong>the</strong> lay-up.compliance Measurement <strong>of</strong> s<strong>of</strong>tness as opposedto stiffne+w<strong>of</strong> a material. It is a reciprocal<strong>of</strong> <strong>the</strong> Young’s modulus, or an <strong>in</strong>verse <strong>of</strong> <strong>the</strong>stiffnessmatrix.composite material A comb<strong>in</strong>ation <strong>of</strong> twoor more materials (re<strong>in</strong>forc<strong>in</strong>g elements,fillers and composite matrix b<strong>in</strong>der), differ<strong>in</strong>g<strong>in</strong> form or composition on a macroscale. Theconstituents reta<strong>in</strong> <strong>the</strong>ir identities; that is,<strong>the</strong>y do not dissolve or merge completely <strong>in</strong>toone ano<strong>the</strong>r although <strong>the</strong>y act <strong>in</strong> concert.Normally, <strong>the</strong> components can be physicallyidentified and exhibit an <strong>in</strong>terface betweenone ano<strong>the</strong>r.compression mold<strong>in</strong>g A mold that is openwhen <strong>the</strong> material is <strong>in</strong>troduced and that shapes<strong>the</strong> materialby <strong>the</strong> presence<strong>of</strong> clos<strong>in</strong>g and heat.compressive strength The ability <strong>of</strong> a material@resist a force that tends to crush or buckle.The maximum compressive load susta<strong>in</strong>ed by aspecimen divided by <strong>the</strong> orig<strong>in</strong>al cross-sectionalarea <strong>of</strong> <strong>the</strong> specimen.compressive stress The normal stress ca<strong>use</strong>dby forces dired.ed toward <strong>the</strong> plane on which<strong>the</strong>y act.contact mold<strong>in</strong>g A process for mold<strong>in</strong>g <strong>re<strong>in</strong>forced</strong><strong>plastics</strong> <strong>in</strong> which re<strong>in</strong>forcementand res<strong>in</strong>are placed on a mold, Cure is ei<strong>the</strong>r at roomtemperatureus<strong>in</strong>g a catalyst-promotersystem orby heat<strong>in</strong>g <strong>in</strong> an oven, without additional pressure.constittIent materials Individual materialsthat make up <strong>the</strong> composim mate~a.L e.g.,graphite and epoxy are <strong>the</strong> constituent materials<strong>of</strong> a graphite/epoxycompositematerial.copolynler A long cha<strong>in</strong> molecule formed by<strong>the</strong> reaction<strong>of</strong> two or more dissimilarmonomers.core The central member <strong>of</strong> a sandwich constructionto which tbe faces <strong>of</strong> <strong>the</strong> sandwichareattached. A charmel<strong>in</strong> a mold for circulation<strong>of</strong>heat-transfermedia. Male part <strong>of</strong> a mold whichshapes<strong>the</strong> <strong>in</strong>side <strong>of</strong> <strong>the</strong> mold.corrosion resistance The ability <strong>of</strong> a materialto withstand contact with ambient naturalfactors or those <strong>of</strong> a particular artificiallycreated atmosphere, without degra&tion orchange <strong>in</strong> properties. For metals, this couldbe pitt<strong>in</strong>g or rust<strong>in</strong>g; for organic materials, itcould be craz<strong>in</strong>g.Count For fabric, number <strong>of</strong> warp and fall<strong>in</strong>gyarns per <strong>in</strong>ch <strong>in</strong> woven cloth. For yam sizebased on relation<strong>of</strong> lengthandweight.244 ,,


Chapter SevenREFERENCEcoupl<strong>in</strong>g agent Any chemical agent designedto react with b“oth<strong>the</strong> re<strong>in</strong>forcementand matrixphases <strong>of</strong> a composite material to form or promotea strongerbond at <strong>the</strong> <strong>in</strong>terface.craz<strong>in</strong>g Region <strong>of</strong> uhraf<strong>in</strong>e cracks, which mayextend <strong>in</strong> a network on or under <strong>the</strong> surface<strong>of</strong> ares<strong>in</strong> or plastic material. May appear as a whi~band,creep The change <strong>in</strong> dimension <strong>of</strong> a materialunder load over a period <strong>of</strong> time, not <strong>in</strong>clud<strong>in</strong>g<strong>the</strong> <strong>in</strong>itial <strong>in</strong>stantaneous elastic deformation.(Creep at room temperatureis called cmldflow.)The time dependentpart <strong>of</strong> stra<strong>in</strong> result<strong>in</strong>g froman appliedstress.cross-l<strong>in</strong>k<strong>in</strong>g Applied to polymer molecules,<strong>the</strong> sett<strong>in</strong>g-up <strong>of</strong> chemical l<strong>in</strong>ks between <strong>the</strong>molecular cha<strong>in</strong>s. When extensive, as <strong>in</strong> mostthmrnosett<strong>in</strong>gres<strong>in</strong>s, cross-l<strong>in</strong>k<strong>in</strong>gmakes one <strong>in</strong>fusiblesupermolecule<strong>of</strong> all <strong>the</strong> cha<strong>in</strong>s,C-scan The back-and-forthscann<strong>in</strong>g <strong>of</strong> a specimenwith ultrasonics. A nondestructivetest<strong>in</strong>gtechnique for f<strong>in</strong>d<strong>in</strong>g voids, delam<strong>in</strong>ation, defects<strong>in</strong> <strong>fiber</strong> distribution,and so forth.cure To irreversibly change <strong>the</strong> properties <strong>of</strong> a<strong>the</strong>rmosett<strong>in</strong>g res<strong>in</strong> by chemical reaction, i.e.condensation, r<strong>in</strong>g closure or addition. Cur<strong>in</strong>gmay be accomplished by addition <strong>of</strong> cur<strong>in</strong>g(crossl<strong>in</strong>k<strong>in</strong>g)agents,with or withou<strong>the</strong>at.cur<strong>in</strong>g agent A catalyticor reactive agent that,when added to a res<strong>in</strong>, ca<strong>use</strong>s polymerization.Also called a hardener,damage tolerance A design measure <strong>of</strong> crackgrowthrate. Cracks<strong>in</strong> darnagetolerant designedstructures are not permitted to grow to criticalsize dur<strong>in</strong>gexpectedserviceMe.delam<strong>in</strong>ation Separation<strong>of</strong> <strong>the</strong> layers <strong>of</strong> material<strong>in</strong> a lam<strong>in</strong>ate,ei<strong>the</strong>r local or cover<strong>in</strong>ga wi&area. Can occur <strong>in</strong> <strong>the</strong> cure or subsequentlife,debond Area <strong>of</strong> separation with<strong>in</strong> or betweenplies <strong>in</strong> a lam<strong>in</strong>ate, or with<strong>in</strong> a bonded jo<strong>in</strong>t,ca<strong>use</strong>d by contam<strong>in</strong>ation, improper adhesiondur<strong>in</strong>g process<strong>in</strong>g or damag<strong>in</strong>g <strong>in</strong>terlam<strong>in</strong>arstresses.denier A yarn and filamentnumber<strong>in</strong>gsystem<strong>in</strong>which <strong>the</strong> yarn number is numerically equal to<strong>the</strong> weight <strong>in</strong> grams <strong>of</strong> 9000 mews. Used forcont<strong>in</strong>uousfilaments where <strong>the</strong> lower <strong>the</strong> denier,<strong>the</strong> f<strong>in</strong>er <strong>the</strong> yamdimensional stability Ability <strong>of</strong> a plastic partto reta<strong>in</strong> <strong>the</strong> precise shape to which it wasmolded,cast or o<strong>the</strong>rwisefabricated,dimples Small sunken dots <strong>in</strong> <strong>the</strong> gel coat surface,generallyca<strong>use</strong>dby a foreignparticle<strong>in</strong> <strong>the</strong>lam<strong>in</strong>ate.draft angle The angle <strong>of</strong> a taper on a mandrelor mold that facilitates removal <strong>of</strong> <strong>the</strong> f<strong>in</strong>ishedpart.drape The ability <strong>of</strong> a fabric or a prepreg toconformto a contouredsurface.dry lam<strong>in</strong>ate A larn<strong>in</strong>aw conta<strong>in</strong><strong>in</strong>g <strong>in</strong>sufficientres<strong>in</strong> for completebond<strong>in</strong>g <strong>of</strong> <strong>the</strong> re<strong>in</strong>forcement.See also res<strong>in</strong>-starvedarea.ductility The amount <strong>of</strong> plastic stra<strong>in</strong> that amaterial can withstandbefore fracture. Also, <strong>the</strong>ability <strong>of</strong> a material to &form plastically beforefractur<strong>in</strong>g.E-glass A family <strong>of</strong> glasses with a calciumalum<strong>in</strong>olmrosilicatecompositionand a maximumalkali content <strong>of</strong> 2.0%. A general-purpose<strong>fiber</strong>that is most <strong>of</strong>ten <strong>use</strong>d <strong>in</strong> re<strong>in</strong>forcd <strong>plastics</strong>, andis suitable for electrical lam<strong>in</strong>ates beca<strong>use</strong> <strong>of</strong> itshigh resistivity. Also calledelectricglass.elastic deformation The part <strong>of</strong> <strong>the</strong> totalstra<strong>in</strong> <strong>in</strong> a stressedbody that disappearsupon removal<strong>of</strong> <strong>the</strong> stress.elasticity That property<strong>of</strong> materialsby virtue <strong>of</strong>which <strong>the</strong>y tend to recover<strong>the</strong>ir orig<strong>in</strong>al size andshape after removal <strong>of</strong> a fome caus<strong>in</strong>g deformation.elastic limit The greatest shess a material iscapable <strong>of</strong> susta<strong>in</strong><strong>in</strong>g without permanent stra<strong>in</strong>rema<strong>in</strong><strong>in</strong>gafter <strong>the</strong> completerelease<strong>of</strong> <strong>the</strong> stress.A material is said to have passed its elastic limitwhen <strong>the</strong> load is sufficient to <strong>in</strong>itiate plastic, ornonrecoverable,deformation.elastomer A materialthat substantiallyrecoversits orig<strong>in</strong>al shape and size at room temperatureafterremoval<strong>of</strong> a deform<strong>in</strong>gforce.elongation Deformation ca<strong>use</strong>d by stretch<strong>in</strong>g.The fractional <strong>in</strong>crease <strong>in</strong> length <strong>of</strong> a materialstressed<strong>in</strong> tension. (Whenexpressedas percentage<strong>of</strong> <strong>the</strong> orig<strong>in</strong>al gage length, it is called percentageelongation.)encapsulation The enclosure <strong>of</strong> an item <strong>in</strong>plastic. Sometimes<strong>use</strong>d spcciiically<strong>in</strong> referenceto <strong>the</strong> enclosure <strong>of</strong> capacitors or circuit boardmodules.,--”,245 ,.*” “’1,


GlossaryMar<strong>in</strong>e Compositesepoxy plastic A polymerizable<strong>the</strong>m-nosetpolymerconta<strong>in</strong><strong>in</strong>gone or more epoxick groups andcurable by reaction with am<strong>in</strong>es, alcohols,phenols, carboxylic acids, acid anhydrides, andmercaptans. An important matrix res<strong>in</strong> <strong>in</strong> compositesand structuraladhesive.exo<strong>the</strong>rm heat The heat given <strong>of</strong>f us <strong>the</strong> result<strong>of</strong> <strong>the</strong> action <strong>of</strong> a catalyston a res<strong>in</strong>,f~hre criterion Empirical description <strong>of</strong> <strong>the</strong>failure <strong>of</strong> composite materials subjected to complexstate <strong>of</strong> stresses or stra<strong>in</strong>s. The most commonly<strong>use</strong>d are <strong>the</strong> maximum stress, <strong>the</strong> maximumstra<strong>in</strong>,and <strong>the</strong> quadraticcriteria.failure envelope Ultimate limit <strong>in</strong> comb<strong>in</strong>edstress or stra<strong>in</strong> state dei?medby a failurecriterion.fair<strong>in</strong>g A member or structure, <strong>the</strong> primaryfunction <strong>of</strong> which is to streaml<strong>in</strong>e<strong>the</strong> flow <strong>of</strong> afluid by produc<strong>in</strong>g a smooth outl<strong>in</strong>e and to reducedrag,as <strong>in</strong> aircraftframesand boat hulls,fatigue The failureor decay <strong>of</strong> mechanicalpropertiesafter repeated applications <strong>of</strong> stress,Fatigue tests give <strong>in</strong>formationon <strong>the</strong> ability <strong>of</strong> amaterial to resist <strong>the</strong> development <strong>of</strong> cracks,which eventuallybr<strong>in</strong>g about failureas a result <strong>of</strong>a large number<strong>of</strong> cycles,fatigue life The number <strong>of</strong> cycles <strong>of</strong> deformationrequired to br<strong>in</strong>g about failures <strong>of</strong> <strong>the</strong> testspecimen under a given set <strong>of</strong> oscillat<strong>in</strong>g conditions(stressesor stra<strong>in</strong>s).fatigue limit The stress limit below which amaterial can be stressed cyclicallyfor an <strong>in</strong>f<strong>in</strong>itenumber<strong>of</strong> times withoutfailure,fatigue strength The maximumcyclicaIsmessa material can withstand for a given number <strong>of</strong>cycles before failure occurs. The residualstrengthafterbe<strong>in</strong>g subjectedto fatigue.fay<strong>in</strong>g surface The surfaces <strong>of</strong> materials <strong>in</strong>contact with each o<strong>the</strong>r and jo<strong>in</strong>ed or about to bejo<strong>in</strong>ed toge<strong>the</strong>r.felt A fibrous material made up <strong>of</strong> <strong>in</strong>terlock<strong>in</strong>g<strong>fiber</strong>s by mechanicalor chemicalaction,pressureor heat, Felts may be made <strong>of</strong> cotton, glass oro<strong>the</strong>r <strong>fiber</strong>s.<strong>fiber</strong> A general term <strong>use</strong>d to refer to filamentarymaterials. Often, <strong>fiber</strong> is <strong>use</strong>d synonymouslywith filament,It is a general term for a filamentwith a f<strong>in</strong>ite length that is at least 100 times itsdiameter, which is typically 0,004 tQ 0.005 <strong>in</strong>ches,In most cases it is prepared by draw<strong>in</strong>gfrom a molten bath, sp<strong>in</strong>n<strong>in</strong>g, or depsition on asubstrate. A whisker, on <strong>the</strong> o<strong>the</strong>r han~ is ashort s<strong>in</strong>gle-crystal<strong>fiber</strong> or fhrnent made from avariety<strong>of</strong> materials,with diametersrang<strong>in</strong>g tlom40 to 1400 micro <strong>in</strong>ches and aspect ratios between100 and 15000. Fibers can be cont<strong>in</strong>uousor specific short lengths (discont<strong>in</strong>uous), normallyless than % <strong>in</strong>ch.<strong>fiber</strong> content The amount <strong>of</strong> <strong>fiber</strong> present <strong>in</strong> acomposite. This is usually expressed as a percentagevolumefractionor weight fraction<strong>of</strong> <strong>the</strong>composite.<strong>fiber</strong> courtt fie number <strong>of</strong> <strong>fiber</strong>s per unitwidth <strong>of</strong> ply present <strong>in</strong> a speciiled section <strong>of</strong> acomposite,<strong>fiber</strong> direction The orientationor alignment<strong>of</strong><strong>the</strong> longitud<strong>in</strong>alaxis <strong>of</strong> <strong>the</strong> <strong>fiber</strong> with respectto astatedreferenceaxis.<strong>fiber</strong>glass An <strong>in</strong>dividual filament made bydraw<strong>in</strong>gmoltenglass. A cont<strong>in</strong>uousHament is aglass <strong>fiber</strong> <strong>of</strong> great or <strong>in</strong>def<strong>in</strong>itelength. A staple<strong>fiber</strong> is a glass <strong>fiber</strong> <strong>of</strong> relatively short length,generally less than 17 <strong>in</strong>ches, <strong>the</strong> length relatedto <strong>the</strong> form<strong>in</strong>gor sp<strong>in</strong>n<strong>in</strong>gprocess<strong>use</strong>d.<strong>fiber</strong>glass re<strong>in</strong>forcement Major material<strong>use</strong>d to re<strong>in</strong>force plastic. Available as mat,rov<strong>in</strong>g, fabric,and so forth, it is <strong>in</strong>corporated<strong>in</strong>toboth <strong>the</strong>rmoses and <strong>the</strong>rmo<strong>plastics</strong>,<strong>fiber</strong>-<strong>re<strong>in</strong>forced</strong> plastic (FRP) A generalterm for a compositethat is <strong>re<strong>in</strong>forced</strong>with cloth,mat, strandsor any o<strong>the</strong>r<strong>fiber</strong> form.<strong>fiber</strong>glass chopper Chopper guns, long cuttersand rov<strong>in</strong>g cutters cut glass <strong>in</strong>to strands and<strong>fiber</strong>s to be <strong>use</strong>d as re<strong>in</strong>forcement<strong>in</strong> <strong>plastics</strong>.Fick’s equation Diffusion equation for moisturemigration. This is analogousto <strong>the</strong> Fourier’sequation<strong>of</strong> heat conduction.filament Thesmallest unit <strong>of</strong> fibrous material.The basic units formed dur<strong>in</strong>g draw<strong>in</strong>gand sp<strong>in</strong>n<strong>in</strong>g,which are ga<strong>the</strong>red <strong>in</strong>to strands <strong>of</strong> <strong>fiber</strong> for<strong>use</strong> <strong>in</strong> composites. Filaments usually are <strong>of</strong> ex-@emelength and very small diameter, usuallyless than 1 roil. Normally,Wunents are not <strong>use</strong>d<strong>in</strong>dividually. Some textile filamentscan functionas a yarn when <strong>the</strong>y are <strong>of</strong> sufficientstrengthandflexibility.filament w<strong>in</strong>d<strong>in</strong>g A process for fabricat<strong>in</strong>g acomposite structure <strong>in</strong> which cont<strong>in</strong>uous re<strong>in</strong>forcements(filament, wire, yarn, tape or o<strong>the</strong>r)ei<strong>the</strong>r previously impregnated with a matrixmaterial or impregnateddur<strong>in</strong>g <strong>the</strong> w<strong>in</strong>d<strong>in</strong>g, areplaced over a rotat<strong>in</strong>g and removable form ormandrel <strong>in</strong> a prescribed way to meet certa<strong>in</strong>246


Chapter SevenREFERENCEstress conditions. Generally, <strong>the</strong> shape is a surface<strong>of</strong> revolution and may or may not <strong>in</strong>cludeend closures, When <strong>the</strong> required number <strong>of</strong> layersis applied, <strong>the</strong> wound form is cured and <strong>the</strong>mandrelis removed.f“l]l Yarn oriented at right angles to <strong>the</strong> warp <strong>in</strong> awovenfabric.filler A relatively <strong>in</strong>ert substance added to amaterialto alter its physical,mechanical,<strong>the</strong>rmal,electricaland o<strong>the</strong>r properdes or to lower cost ordensi~. Sometimes<strong>the</strong> term is <strong>use</strong>d specticallyto meanparticulateadditives.filk?t A rounded fill<strong>in</strong>g or adhesive that fills <strong>the</strong>corneror angle wheretwo adherendsarejo<strong>in</strong>ed.fill<strong>in</strong>g yarn The mnsverse threads or <strong>fiber</strong>s <strong>in</strong>a woven fabric, Those <strong>fiber</strong>s mnn<strong>in</strong>g perpendicularto <strong>the</strong> warp, Also calledweft.f<strong>in</strong>ish A mixture <strong>of</strong> materials for treat<strong>in</strong>g glassor o<strong>the</strong>r <strong>fiber</strong>s, It conta<strong>in</strong>s a coupl<strong>in</strong>g agent toimprove <strong>the</strong> bond <strong>of</strong> res<strong>in</strong> to <strong>the</strong> <strong>fiber</strong>, and usually<strong>in</strong>cludes a lubricant to prevent abrasion, aswell as a b<strong>in</strong>der to promote strand <strong>in</strong>tegrity.With graphite or o<strong>the</strong>r filaments, it may performany or all <strong>of</strong> <strong>the</strong> abovefunctions.first-ply-failure First ply or ply group thatfails <strong>in</strong> a multidirectional lam<strong>in</strong>ate. The loadcorrespond<strong>in</strong>g to this failure can be <strong>the</strong> designlimit load.flame retardants Certa<strong>in</strong> chemicals that are<strong>use</strong>d to reduce or elim<strong>in</strong>ate <strong>the</strong> tendency <strong>of</strong> ares<strong>in</strong> to bum.fish eye A circularseparation<strong>in</strong> a gel coat filmgenerally ca<strong>use</strong>d by contam<strong>in</strong>ationsuch as silicone,oil, dust or water,flammability Measure<strong>of</strong> <strong>the</strong> extent to which amaterialwill supportcombustion,flexural modulus TIIeratio, with<strong>in</strong> <strong>the</strong> ekwticlimit, <strong>of</strong> <strong>the</strong> applied stress on a test specimen <strong>in</strong>flexure to <strong>the</strong> correspond<strong>in</strong>gstra<strong>in</strong> <strong>in</strong> <strong>the</strong> outermost<strong>fiber</strong>s<strong>of</strong> <strong>the</strong> specimen.flexural strertgth The maximum stiess thatcan be borne by <strong>the</strong> surface <strong>fiber</strong>s <strong>in</strong> a beam <strong>in</strong>bend<strong>in</strong>g, The flexural strength is <strong>the</strong> unit resistanceto <strong>the</strong> maximum load before failure bybend<strong>in</strong>g,usually expressed<strong>in</strong> forceper unit area.flOW The movement <strong>of</strong> res<strong>in</strong> under pressure, allow<strong>in</strong>git to fdl all parts <strong>of</strong> <strong>the</strong> mold. Thegradual but cont<strong>in</strong>uous distortion <strong>of</strong> a materialunder cont<strong>in</strong>ued load, usually at high temperatures;alsocalledcreep.foam-<strong>in</strong>-place Refers to <strong>the</strong> deposition <strong>of</strong>foams when <strong>the</strong> foam<strong>in</strong>g mach<strong>in</strong>e must bebrought to <strong>the</strong> work that is “<strong>in</strong> place: as opposedto br<strong>in</strong>g<strong>in</strong>g <strong>the</strong> work to <strong>the</strong> foam<strong>in</strong>g mach<strong>in</strong>e.Also, foam mixed <strong>in</strong> a conta<strong>in</strong>erand poured <strong>in</strong> amold, whereit rises to fill <strong>the</strong> cavity.fracture toughness A measure<strong>of</strong> <strong>the</strong> damagetolerance<strong>of</strong> a materialconti<strong>in</strong>g <strong>in</strong>itial flaws orcracks, Used <strong>in</strong> akcraft structural design andanalysis.gel The <strong>in</strong>itial jellylike solid phase that developsdur<strong>in</strong>g <strong>the</strong> formation<strong>of</strong> a res<strong>in</strong> from a liquicL Asemisolidsystem consist<strong>in</strong>g<strong>of</strong> a network<strong>of</strong> solidaggregates<strong>in</strong> which liquid is held.gelation time That <strong>in</strong>terval <strong>of</strong> time, <strong>in</strong> connectionwith <strong>the</strong> <strong>use</strong> <strong>of</strong> syn<strong>the</strong>tic <strong>the</strong>rmosett<strong>in</strong>gres<strong>in</strong>s,extend<strong>in</strong>gtim <strong>the</strong> <strong>in</strong>troduction<strong>of</strong> a catalyst<strong>in</strong>to a liquid adhesivesystemuntil <strong>the</strong> start <strong>of</strong> gelformation, Also, <strong>the</strong> time under application <strong>of</strong>load for a res<strong>in</strong> to reach a solid state.gel coat A quick sett<strong>in</strong>gres<strong>in</strong> appliedto <strong>the</strong> surface<strong>of</strong> a mold and gelled before lay-up. The gelcoat becomes an <strong>in</strong>tegral part <strong>of</strong> <strong>the</strong> ftih larrr<strong>in</strong>ate,and is usually <strong>use</strong>d to improve surface appearanceandbond<strong>in</strong>g.glass f<strong>in</strong>ish A materialappliedto <strong>the</strong> surface<strong>of</strong>a glass re<strong>in</strong>forcement to improve <strong>the</strong> bond between<strong>the</strong>glass and <strong>the</strong> plastic res<strong>in</strong> matrix.glass transition The reversible change <strong>in</strong> anamorphouspolymer or <strong>in</strong> an amorphousregions<strong>of</strong> a partially crystall<strong>in</strong>e polymer horn, or to, aviscous or rubbery condition to, or from, a hardto a relativelybrittle one,graphite To crystall<strong>in</strong>e allotropic form <strong>of</strong> carb-.Gr~n strength The ability <strong>of</strong> a material,whilenot completelycured,set or s<strong>in</strong>tered,to undergoremoval from <strong>the</strong> mold and handl<strong>in</strong>gwithoutdistortion.h~d lay-up llw process<strong>of</strong> plac<strong>in</strong>g(andwork<strong>in</strong>g)successiveplies <strong>of</strong> re<strong>in</strong>forc<strong>in</strong>gmaterial<strong>of</strong>res<strong>in</strong>-impregnatedre<strong>in</strong>forcement<strong>in</strong> positionon amoldby hand.hardener A substanceor mixtureadded to aplastic compositionto promote or control <strong>the</strong>cur<strong>in</strong>gactionby tak<strong>in</strong>gpm <strong>in</strong> it.harness sat<strong>in</strong> Weav<strong>in</strong>g pattern produc<strong>in</strong>g asat<strong>in</strong> appearance. ‘Eight-harness”means <strong>the</strong>247/,~ .”.’,.,‘i ~.’.. ..,.+, ,--


GlossaryMar<strong>in</strong>e Compositeswarp tow crosses over seven fill tows and under<strong>the</strong> eighth(repeatedly).heat build-up The temperaturerise <strong>in</strong> part result<strong>in</strong>gfrom <strong>the</strong> dissipation <strong>of</strong> applied stra<strong>in</strong>energyas heat.heat resistance The propertyor ability <strong>of</strong> <strong>plastics</strong>and elastomers to resist <strong>the</strong> deteriorat<strong>in</strong>geffects<strong>of</strong> elevat<strong>in</strong>gtemperatures.homogeneous Descriptive term for a material<strong>of</strong> uniform compositionthroughout, A mediumthat has no <strong>in</strong>tmal physicalboundaries, A matirialwhose properties are constant at every po<strong>in</strong>t,that is, constant with respect to spatial coord<strong>in</strong>ates(but not necessarily with respect todirectionalcoord<strong>in</strong>ates).honeycomb Manufacturedproduct <strong>of</strong> res<strong>in</strong> impregnatedsheet material (paper, glass fabric andso on) or metal foil, formed <strong>in</strong>to hexagonalshapedcells. Used as a core material <strong>in</strong> sandwichconstructions,hoop stress The circumferential stress <strong>in</strong> amaterial <strong>of</strong> cyl<strong>in</strong>dricalform subjectedto <strong>in</strong>ternalor externalpressure.hull l<strong>in</strong>er A separate <strong>in</strong>terior hull unit withbunks, berths, bulkheads, and o<strong>the</strong>r items <strong>of</strong> outfitpreassembled<strong>the</strong>n <strong>in</strong>serted<strong>in</strong>to <strong>the</strong> hull shell,A l<strong>in</strong>er can contribute vary<strong>in</strong>g degrees <strong>of</strong> stiffnessto <strong>the</strong> hull through careful arrangement<strong>of</strong><strong>the</strong> berths and bulkheads.hybrid A composite lam<strong>in</strong>ate consist<strong>in</strong>g <strong>of</strong>larn<strong>in</strong>ae<strong>of</strong> two or more composite material systems.A comb<strong>in</strong>ation <strong>of</strong> two or more different<strong>fiber</strong>s, such as carbon and glass or carbon andaramid,<strong>in</strong>to a structure. Tapes, fabricsand o<strong>the</strong>rforms may be comb<strong>in</strong>e@usually only <strong>the</strong> fikersdiffer,hydro<strong>the</strong>rmal effect Change <strong>in</strong> propertiesdue to moisture absorption and temperaturechange.hysteresis The energy absorbed <strong>in</strong> a completecycle <strong>of</strong> load<strong>in</strong>g and unload<strong>in</strong>g. This energy isconverted horn mechanical to frictional energy(heat),under shockload<strong>in</strong>g.illlpact test Measure<strong>of</strong> <strong>the</strong> energynecessaryt<strong>of</strong>racture a standard notched bar by an impulseload.impregnate In <strong>re<strong>in</strong>forced</strong> <strong>plastics</strong>, to satumte<strong>the</strong> re<strong>in</strong>forcementwith a res<strong>in</strong>.<strong>in</strong>clusion A physical and mechanical discont<strong>in</strong>uityoccurr<strong>in</strong>g with<strong>in</strong> a mataial or parL usuallyconsistig <strong>of</strong> solid, encapsulated foreignmaterial. Inclusions are <strong>of</strong>ten capable <strong>of</strong> transmitt<strong>in</strong>gsome structuralstressesand energyfields,but <strong>in</strong> a noticeably different degree from <strong>the</strong>parentmaterial.<strong>in</strong>hibitor A material added to a res<strong>in</strong> to slowdown cur<strong>in</strong>g. It also retards polymerhtion,<strong>the</strong>reby<strong>in</strong>creas<strong>in</strong>gshelf life <strong>of</strong> a monomer.<strong>in</strong>jection mold<strong>in</strong>g Method <strong>of</strong> form<strong>in</strong>g a plasticto <strong>the</strong> desired shape by forc<strong>in</strong>g <strong>the</strong> heat-s<strong>of</strong>tenedplastic <strong>in</strong>to a relatively cool cavity underpressure.<strong>in</strong>terlatn<strong>in</strong>ar Descriptiveterm perta<strong>in</strong><strong>in</strong>g to anobject (for example, voids), event (for example,fracture), or potential field (for example, shearstress) referenced as exist<strong>in</strong>g or occurr<strong>in</strong>g betweentwoor more adjacentIam<strong>in</strong>ae.i~terlam<strong>in</strong>ar shear Shear<strong>in</strong>gforcetend<strong>in</strong>gtoproduce a relative displacementbetween twolwn<strong>in</strong>ae<strong>in</strong> a lam<strong>in</strong>atealong<strong>the</strong>plane<strong>of</strong> <strong>the</strong>ir<strong>in</strong>terface.<strong>in</strong>tralam<strong>in</strong>ar Descriptivetermperta<strong>in</strong><strong>in</strong>gto anobject(for example,voids),event(for example,hcture), or potmtial field (for example,temperatm gradient)exist<strong>in</strong>gentirelywith<strong>in</strong> as<strong>in</strong>glelarn<strong>in</strong>awithoutreferenceto any adjacentlamirlae.isotropic Hav<strong>in</strong>guniformproperties<strong>in</strong> all dirwtions,The measuredproperties<strong>of</strong> an isotropicmaterialare<strong>in</strong>dependent<strong>of</strong> <strong>the</strong>axis<strong>of</strong> test<strong>in</strong>g.Izod impact test A test for shockload<strong>in</strong>g<strong>in</strong>whicha notchedspecimenbar is heldat oneendandbrokenby strik<strong>in</strong>g,and <strong>the</strong> energyabsorbedis measured.ignition loss The difference <strong>in</strong> weight beforeand after burn<strong>in</strong>g, As with glass, <strong>the</strong> burn<strong>in</strong>g <strong>of</strong>f<strong>of</strong> <strong>the</strong> b<strong>in</strong>der or size.impact strertgth The ability <strong>of</strong> a material towithstand shock load<strong>in</strong>g. The work done onfractur<strong>in</strong>ga test specimen <strong>in</strong> a spec~led mannerkerf Thewidth <strong>of</strong> a cut made by a saw blade,torch, waterjet, laser beam and so forth.Kevlar@ An organic polymer composed <strong>of</strong> ar~matic polyamides hav<strong>in</strong>g a para-type orientation(parallel cha<strong>in</strong> extend<strong>in</strong>g trends from each aromaticnucleus).


Chapter SevenREFERENCEknitted fabrics Fabrics producedby <strong>in</strong>terlop<strong>in</strong>gcha<strong>in</strong>s<strong>of</strong> yarn.lam<strong>in</strong>a A s<strong>in</strong>gleply or layer <strong>in</strong> a lam<strong>in</strong>atema&up <strong>of</strong> a series <strong>of</strong> layers (organiccomposite). Aflat or curvedsurfaceconta<strong>in</strong><strong>in</strong>gunidirectional<strong>fiber</strong>s or woven<strong>fiber</strong>s embedded<strong>in</strong> a matrix.lam<strong>in</strong>ae Plural <strong>of</strong> lam<strong>in</strong>alam<strong>in</strong>ate To unite lam<strong>in</strong>ae with a bond<strong>in</strong>gmaterial, uswdly with pressure and heat (normally<strong>use</strong>d with referenceto flat sheets, but alsorods and tubes). A product ma& by such bond<strong>in</strong>g.lap jo<strong>in</strong>t A jo<strong>in</strong>t made by plac<strong>in</strong>g one adherendpartly over ano<strong>the</strong>r and bond<strong>in</strong>g <strong>the</strong> overlappedportions.lay-up The re<strong>in</strong>forc<strong>in</strong>g material placed <strong>in</strong> position<strong>in</strong> <strong>the</strong> mold, The process<strong>of</strong> plac<strong>in</strong>g <strong>the</strong> re<strong>in</strong>forc<strong>in</strong>gmaterial <strong>in</strong> a position <strong>in</strong> <strong>the</strong> mold. Theres<strong>in</strong>-impregnatedre<strong>in</strong>forcement. A description<strong>of</strong> <strong>the</strong> component materials, gametry, and s<strong>of</strong>orth, <strong>of</strong> a lam<strong>in</strong>ate.load-deflection curve A curve <strong>in</strong> which <strong>the</strong><strong>in</strong>creas<strong>in</strong>gtension, compression,or flexuralloadsare plotted on <strong>the</strong> ord<strong>in</strong>ate axis and <strong>the</strong> deflectionsca<strong>use</strong>dby those loads are plotted on <strong>the</strong> abscissaaxis,loss on ignition Weightloss, usuallyexpressedas percent <strong>of</strong> total, after burn<strong>in</strong>g <strong>of</strong>f an organicsiz<strong>in</strong>g from glass films, or an organicres<strong>in</strong> froma glass <strong>fiber</strong> lam<strong>in</strong>ate,10W-pI’6’SSUre ktdlI@W In general,lam<strong>in</strong>atesmolded and cured <strong>in</strong> <strong>the</strong> range <strong>of</strong> pressuresfrom 400 psi down to and <strong>in</strong>clud<strong>in</strong>gpressureobta<strong>in</strong>edby<strong>the</strong> mere contact<strong>of</strong> <strong>the</strong> plies.macromechanics Structural behavior <strong>of</strong> compositelam<strong>in</strong>atesus<strong>in</strong>g <strong>the</strong> lam<strong>in</strong>atedplate <strong>the</strong>ory.The <strong>fiber</strong> and matrix with<strong>in</strong> eachply are smearedand no longer identifiable,mat A fibrous material for <strong>re<strong>in</strong>forced</strong> plasticconsist<strong>in</strong>g <strong>of</strong> randomly oriented chopped tllamems,short <strong>fiber</strong>s (with or without a carrierfabric),or swirled filaments loosely held toget.lwwith a b<strong>in</strong>der. Available <strong>in</strong> blankets <strong>of</strong> v~ouswidths, weights and lengths, Also, a sheetformed by filament w<strong>in</strong>d<strong>in</strong>g a s<strong>in</strong>gle-hoopply <strong>of</strong>249<strong>fiber</strong> on a mandrel, cutt<strong>in</strong>g across its width andlay<strong>in</strong>g out a flat sheet.matrix The essentially homogeneous res<strong>in</strong> orpolymer material <strong>in</strong> which <strong>the</strong> <strong>fiber</strong> system <strong>of</strong> acompositeis embeddecLBoth <strong>the</strong>rmoplasticand<strong>the</strong>rmosetres<strong>in</strong>s maybe <strong>use</strong>d, as well as metals,ceramicsand glass.mechanical adhesion Adhesion between swfaces <strong>in</strong> which <strong>the</strong> adhesive holds <strong>the</strong> parts toge<strong>the</strong>rby<strong>in</strong>terlock<strong>in</strong>gaction.mechanical properties The properties <strong>of</strong> amaterial,such as compressiveor tensile strength,and modulus,thatare associatedwi<strong>the</strong>lasticand<strong>in</strong>elastic reaction when force is applied. The <strong>in</strong>dividualrelationshipbetweenstressandma<strong>in</strong>.mek peroxide (MEKP) Abbreviation forMethyl Ethyl Ketone PeroxiW, a strong oxidiz<strong>in</strong>gagent (freeradical source)commonly<strong>use</strong>d as<strong>the</strong> catalystfor polyesters<strong>in</strong> <strong>the</strong> FRP <strong>in</strong>dustry.micromechanics Calculation <strong>of</strong> <strong>the</strong> effectiveply propertiesas functions<strong>of</strong> <strong>the</strong> <strong>fiber</strong> and matrixproperties. Some numericalapproachesalso provide<strong>the</strong> stress and stra<strong>in</strong> with<strong>in</strong> each constituentand those at <strong>the</strong> <strong>in</strong>terface.mil The unit <strong>use</strong>d <strong>in</strong> measm<strong>in</strong>g <strong>the</strong> diameter <strong>of</strong>glass <strong>fiber</strong> strands, wire, etc. (1 mil = 0.001<strong>in</strong>ch).milled <strong>fiber</strong> Cont<strong>in</strong>uous glass strands hammermilted <strong>in</strong>to very short glass <strong>fiber</strong>s. Useful as <strong>in</strong>expensiveffler or anticraz<strong>in</strong>gre<strong>in</strong>forc<strong>in</strong>g fillersfor adhesives,modulus <strong>of</strong> elasticity TIE ratio <strong>of</strong> stress orload applied to <strong>the</strong> stra<strong>in</strong> or deformation produced<strong>in</strong> a materialthat is elasticitydeformed. Ifa tensile strength <strong>of</strong> 2 hi results <strong>in</strong> an elongation<strong>of</strong> l%, <strong>the</strong> modulus<strong>of</strong> elastici~ is 2,0 ksi dividedby 0.01 or 200 ksi. Also called Young’s modulus.moisture absorption The pickup <strong>of</strong> watervapor from air by a material, It relates only tovapor withdrawnfrom <strong>the</strong> air by a material andmust be dist<strong>in</strong>guished tiom watm absorption,which is <strong>the</strong> ga<strong>in</strong> <strong>in</strong> weight due to <strong>the</strong> take-up <strong>of</strong>watmby immersion.moisture content The amount <strong>of</strong> moisture <strong>in</strong>a material determ<strong>in</strong>ed under prescribed conditionsand expressedas a percentage<strong>of</strong> <strong>the</strong> mass<strong>of</strong> <strong>the</strong> moist specimen, that is, <strong>the</strong> mass <strong>of</strong> <strong>the</strong>dry substanceplus <strong>the</strong> moisturepresent,mold The cavity or matrix <strong>in</strong>to or on which <strong>the</strong>plastic composition is placed and from which ittakes form, To shapeplastic pmls or i<strong>in</strong>ished articlesby heat and pressure. The assembly<strong>of</strong> all“,... ..~.,/’ .“


GlossaryMar<strong>in</strong>e Compositesparts that function collectively <strong>in</strong> <strong>the</strong> mold<strong>in</strong>gprocess.mold-release agent A lubrican~ liquid orpowder (<strong>of</strong>ten silicone oils and waxes), <strong>use</strong>d toprevent<strong>the</strong> stick<strong>in</strong>g<strong>of</strong> moldedarticles<strong>in</strong> <strong>the</strong> cavity,monomer A s<strong>in</strong>gle moleculethat can react withlike or unlike moleculesto fonma polymer. Thesmallest repeat<strong>in</strong>g structure <strong>of</strong> a polymer (mer).For additionalpolymers,this repmsemts<strong>the</strong> orig<strong>in</strong>alunpolymerizedcompound.sensitivityis usually associatedwith brittle materisls.orange peel Backside <strong>of</strong> <strong>the</strong> gel coatod surfacethat takes on <strong>the</strong> rough wavy texture<strong>of</strong> an orangepeel,orthotropic Hav<strong>in</strong>g three mutually perpendicularplaues <strong>of</strong> elasticsymmetry,nett<strong>in</strong>g analysis Treat<strong>in</strong>gcompositm like<strong>fiber</strong>s without matrix, It is not a mechanicalanalysis,and is not applicableto composites.non-air-<strong>in</strong>hibited res<strong>in</strong> A res<strong>in</strong> <strong>in</strong> which <strong>the</strong>surface cure will not be <strong>in</strong>hibited or stopped by<strong>the</strong> presence <strong>of</strong> air. A surfac<strong>in</strong>gagent has beenadded to exclude air from <strong>the</strong> surface <strong>of</strong> <strong>the</strong>res<strong>in</strong>.nondestructive evaluation (NDE) Broadlyconsidered synonymous with nondestructive <strong>in</strong>spection(NIX). More specifically,<strong>the</strong> analysis<strong>of</strong> NDI f<strong>in</strong>d<strong>in</strong>gs to determ<strong>in</strong>ewhe<strong>the</strong>r <strong>the</strong> materialwill be acceptablefor its function.nondestructive <strong>in</strong>spection (NDI) Aprocessor procedure,such as ultrasonicor radiographic<strong>in</strong>spection,for determ<strong>in</strong><strong>in</strong>g<strong>the</strong> quality <strong>of</strong>characteristics <strong>of</strong> a material, part or assembly,without permanently alter<strong>in</strong>g <strong>the</strong> subject or itsproperties, Used to f<strong>in</strong>d <strong>in</strong>ternal anomalies <strong>in</strong> astmcturewithoutdegrad<strong>in</strong>gita properties,nonwoven fabric A planar textile structureproducedby loosely compress<strong>in</strong>gtoge<strong>the</strong>r<strong>fiber</strong>s,yarns, rov<strong>in</strong>gs, etc. with or without a scrirnclothcarrier. Accomplishedby mechanical,chemical,<strong>the</strong>rmal, or solvent means and comb<strong>in</strong>ations<strong>the</strong>re<strong>of</strong>,non-volatile material Portion rema<strong>in</strong><strong>in</strong>g assolid under specific conditions short <strong>of</strong> decomposition,normal stress The stress component that isperpendicularto <strong>the</strong> plane on which <strong>the</strong> forcesact.notch sensitivity The extent to which <strong>the</strong> sensitivity<strong>of</strong> a material to fracture is <strong>in</strong>creased by<strong>the</strong> presence <strong>of</strong> a surface nonhomogeneity,suchas a notch, a stiddenchange<strong>in</strong> section,a crackora scratch. Low notch sensitivity is usually associatedwith ductile materkds, and high notch250PWM1 The designation<strong>of</strong> a section <strong>of</strong> FRP shellplat<strong>in</strong>g, <strong>of</strong> ei<strong>the</strong>r s<strong>in</strong>gle-sk<strong>in</strong> or sandwich consmuction,bondedby longitud<strong>in</strong>al and transversestiffenersor o<strong>the</strong>r support<strong>in</strong>gstructures.peel ply A layer <strong>of</strong> res<strong>in</strong>-bee material <strong>use</strong>d toprokct a lam<strong>in</strong>atefor later secondarybond<strong>in</strong>g.peel strength Adhesive bond strength, as <strong>in</strong>pounds per <strong>in</strong>ch <strong>of</strong> width, obta<strong>in</strong>ed by a slressapplied<strong>in</strong> a peel<strong>in</strong>gmode.permanent set The deformation rema<strong>in</strong><strong>in</strong>gafter a specimen has been stressed a prescribedamount<strong>in</strong> tension,compressionor shearfor a def<strong>in</strong>itetime period. For creep tests, <strong>the</strong> residualunrecoverabledeformationafter <strong>the</strong> load caus<strong>in</strong>g<strong>the</strong> creep has been removed for a substantialanddeftite Wriod <strong>of</strong> time, Also, <strong>the</strong> <strong>in</strong>crease <strong>in</strong>length,by which an elastic materialfails to retarnto orig<strong>in</strong>al length afterbe<strong>in</strong>g stressedfor a standardperiod <strong>of</strong> time.permeability The passage or diffusion (or rate<strong>of</strong> passage)<strong>of</strong> gas, vapor, liquid or solid througha barrier without physicallyor chemictdlyaffect<strong>in</strong>git.phe~olic (phenolic resht) A <strong>the</strong>rrnosett<strong>in</strong>gres<strong>in</strong> produced by <strong>the</strong> condensation <strong>of</strong> an aromaticalcohol with an aldehyde, particularly <strong>of</strong>phenol with formaldehyde, Used <strong>in</strong> hightemperatumapplicationswith various tiers andre<strong>in</strong>forcements,pitch A high molecularweight material left as aresidue from <strong>the</strong> destructive distillation <strong>of</strong> coaland petroleumproducts, Pitches are <strong>use</strong>d as basematerials for <strong>the</strong> manufacture <strong>of</strong> certa<strong>in</strong> highmoduluscarbon <strong>fiber</strong>s and as matrix precursorsfor carbon-carboncomposites.plasticity A property <strong>of</strong> adhesives that allows<strong>the</strong> material to be deformed cont<strong>in</strong>uously andpermanentlywithoutrupture upon <strong>the</strong> application.-.“ < ., ..> J., j, “,+’


Chapter SevenREFERENCE<strong>of</strong> a force that exceeds <strong>the</strong> yield value <strong>of</strong> <strong>the</strong>material,pla<strong>in</strong> weave A weav<strong>in</strong>g pattmn <strong>in</strong> which <strong>the</strong>warp and fdl <strong>fiber</strong>s alternate; that is, <strong>the</strong> reptpattern is warp/fwwarp/13JL Both faces <strong>of</strong> apla<strong>in</strong> weave are identical. Propertiesare significantlyreducedrelative to a weav<strong>in</strong>gpat~m withfewercrossovers,p]y In general, fabrics or felts consist<strong>in</strong>g <strong>of</strong> oneor more layers (lam<strong>in</strong>ates). The layers that makeup a stack. A s<strong>in</strong>glelayer <strong>of</strong> prepreg.PoiSSOrl’s ratio The ratio <strong>of</strong> <strong>the</strong> change <strong>in</strong>lateral width per unit width to change <strong>in</strong> axiallengthper unit length ca<strong>use</strong>dby <strong>the</strong> axial stretch<strong>in</strong>gor stress<strong>in</strong>g <strong>of</strong> <strong>the</strong> matahl. The ratio <strong>of</strong>tmnsversestra<strong>in</strong> to <strong>the</strong> correspond<strong>in</strong>gaxial stra<strong>in</strong>below <strong>the</strong> proportionallimit.polye<strong>the</strong>r e<strong>the</strong>rketone (PEEK) A l<strong>in</strong>eararomatic crystall<strong>in</strong>e <strong>the</strong>rmoplastic. A compositewith a PEEK matrix may have a cont<strong>in</strong>uous<strong>use</strong>temperatureas high as 480!F.polymer A high molecularweight organiccompound,natural or syn<strong>the</strong>tic, whose structure canbe representedby a repeated small unit, <strong>the</strong> mer,Examples <strong>in</strong>clude polyethylene,rubber and cellulose.Syn<strong>the</strong>tic polymers are formed by additionor condensation polymerization <strong>of</strong> monomers,Some polymers are elastomem,some are<strong>plastics</strong> and some are <strong>fiber</strong>s. When two or moredissimilarmonomersare <strong>in</strong>volved,<strong>the</strong> product iscalled a copolymer. The cha<strong>in</strong> lengths <strong>of</strong> commercial<strong>the</strong>rmo<strong>plastics</strong>varyfrom near a thousandto over one hundred thousand repeat<strong>in</strong>g units,Thermosett<strong>in</strong>g polymers approach <strong>in</strong>f<strong>in</strong>ity aftercur<strong>in</strong>g, but <strong>the</strong>ir res<strong>in</strong> precursors, <strong>of</strong>ten calledprepolymers,maybe a relativelyshort six to onehundred repeat<strong>in</strong>g units before cur<strong>in</strong>g. Thelengths <strong>of</strong> polymer cha<strong>in</strong>s, usually measuredbymolectdar weight, have very signiibnt effectson <strong>the</strong> performance properties <strong>of</strong> <strong>plastics</strong> andpr<strong>of</strong>oundeffectson processibility,polymerization A chemical reaction <strong>in</strong> which<strong>the</strong> molecules <strong>of</strong> a monomer are l<strong>in</strong>ked toge<strong>the</strong>rto form large moleculw whose molecularweightis a multiple <strong>of</strong> that <strong>of</strong> <strong>the</strong> orig<strong>in</strong>al substance.When two or more monomers are <strong>in</strong>volved, <strong>the</strong>processis calledcopolymerization.polyurethane A <strong>the</strong>rmosett<strong>in</strong>g res<strong>in</strong> preparedby <strong>the</strong> reaction<strong>of</strong> disocyanatcswith polola,polyamides,alkydpolymersandplye<strong>the</strong>rpolymers,porosity Hav<strong>in</strong>g voids; i,e., conta<strong>in</strong><strong>in</strong>g pwkets<strong>of</strong> trapped air and gas after cure. Its measurementis <strong>the</strong> same as void content, It is commonlyassumedthat porosityis freelyand uniformlydis-tributedthroughout<strong>the</strong> lam<strong>in</strong>ate.postcure Additional elevated-temperaturecure,usuallywithoutpressure,to improvef<strong>in</strong>al propertiesand/or complete <strong>the</strong> cure, or decrease <strong>the</strong>percentage<strong>of</strong> volatiles <strong>in</strong> <strong>the</strong> compound. In certa<strong>in</strong>res<strong>in</strong>s, complete cure and ultimate mechanicalproperties are atta<strong>in</strong>ed only by exposure <strong>of</strong><strong>the</strong> cured res<strong>in</strong> to higher mmperaturesthan those<strong>of</strong> cur<strong>in</strong>g.pOtlife Thelength <strong>of</strong> time that a catalyzed<strong>the</strong>rmosett<strong>in</strong>gres<strong>in</strong> system reta<strong>in</strong>s a viscosity lowenough to be <strong>use</strong>d <strong>in</strong> process<strong>in</strong>g. Also calledwork<strong>in</strong>glife.prepreg Ei<strong>the</strong>r ready-to-mold material <strong>in</strong> sheetform or ready-to-w<strong>in</strong>dmaterial <strong>in</strong> rov<strong>in</strong>g form,which may be cloth, mat, unitiectional <strong>fiber</strong>, orpaper impregnatedwith res<strong>in</strong> and stored for <strong>use</strong>.The res<strong>in</strong> is partially cured to a B-stage and suppliedto <strong>the</strong> fabricator, who lays up <strong>the</strong> f<strong>in</strong>ishedshape and completes<strong>the</strong> cure with heat and pressure,The two dist<strong>in</strong>ct types <strong>of</strong> prepregavailableare (1) commercialprepregs, where <strong>the</strong> rov<strong>in</strong>g iscoated with a hot melt or solvent system to producea specfic product to meet specificcustomerrequirements; and (2) wet prepreg, where <strong>the</strong>basic res<strong>in</strong> is <strong>in</strong>stalled without solvents or preservativesbutbaa limitedroom-temperatureshelflife.pressure bag mold<strong>in</strong>g A process for mold<strong>in</strong>g<strong>re<strong>in</strong>forced</strong><strong>plastics</strong> <strong>in</strong> which a tailor@ flexiblebag is placed over <strong>the</strong> contact lay-up on <strong>the</strong>mold, sealed, and clamped <strong>in</strong> place. Fluid pressure,usually provided by compressed air orwater, is placed aga<strong>in</strong>st <strong>the</strong> bag, and <strong>the</strong> part iscured,pultrusion A cont<strong>in</strong>uous process for manufactur<strong>in</strong>gcomposites that have a constant crosssectionalshape. The process consists <strong>of</strong> pull<strong>in</strong>ga <strong>fiber</strong>-re<strong>in</strong>forc<strong>in</strong>gmaterial through a res<strong>in</strong> impregnationbath and through a shap<strong>in</strong>gdie, where<strong>the</strong> res<strong>in</strong> is subsequentlycured.quasi-isotropic lam<strong>in</strong>ate A lam<strong>in</strong>ate approximat<strong>in</strong>gisotropy by orientation <strong>of</strong> plies <strong>in</strong>severalor moredirections.251,,“”.,.-. .......~,, ‘>.~~ ./,,,f+~’ k ,,


GlossaryMarjne Compositesrank<strong>in</strong>g Order<strong>in</strong>g<strong>of</strong> lam<strong>in</strong>atesby strength,stiffnessor o<strong>the</strong>rs.reaction <strong>in</strong>jection moldhtg (RIM) Aprocess for mold<strong>in</strong>g polyurethane, epoxy, ando<strong>the</strong>r liquid chemicalsystems. Mix<strong>in</strong>g <strong>of</strong> two t<strong>of</strong>our components<strong>in</strong> <strong>the</strong> proper chemical ratio isaccomplished by a high-pressure imp<strong>in</strong>gementtypemix<strong>in</strong>g head,tlom which <strong>the</strong> mixed materialis delivered<strong>in</strong>to <strong>the</strong> mold at low pressure,whereit reacts (cures).<strong>re<strong>in</strong>forced</strong> <strong>plastics</strong> Molded, formed filamentwound,tape-wrapped, or shaped plastic partsconsist<strong>in</strong>g <strong>of</strong> res<strong>in</strong>s to which re<strong>in</strong>forc<strong>in</strong>g <strong>fiber</strong>s,mats, fabrics, and so forth, have bem addedbefore <strong>the</strong> form<strong>in</strong>g operation to provide somestrength properties greatly superior to those <strong>of</strong><strong>the</strong> base res<strong>in</strong>,res<strong>in</strong> A solid or pseudosolid organic material,usually <strong>of</strong> high molecularweight, that exhibits atendency to flow when subjected to stress. Itusually has a s<strong>of</strong>ten<strong>in</strong>g or melt<strong>in</strong>g range, andfractures conchoidally. Most res<strong>in</strong>s are poly.mers. In <strong>re<strong>in</strong>forced</strong><strong>plastics</strong>, <strong>the</strong> material<strong>use</strong>d tob<strong>in</strong>d toge<strong>the</strong>r <strong>the</strong> re<strong>in</strong>forcement materia~ <strong>the</strong>matrix, See also polymer,res<strong>in</strong> content The amount <strong>of</strong> res<strong>in</strong> <strong>in</strong> a lam<strong>in</strong>ateexpressed as ei<strong>the</strong>r a percentage <strong>of</strong> totalweightor total volume.res<strong>in</strong>-rich area Locrdizedareafilled with res<strong>in</strong>and lack<strong>in</strong>gre<strong>in</strong>forc<strong>in</strong>gmaterial.res<strong>in</strong>+tarved area Locdized area <strong>of</strong> <strong>in</strong>sufficientres<strong>in</strong>, usually identit%d by low gloss, dryspots, or <strong>fiber</strong> show<strong>in</strong>gon <strong>the</strong> surface.res<strong>in</strong> transfer mold<strong>in</strong>g (RTM) A processwherebycatalyzedres<strong>in</strong> is transferredor <strong>in</strong>jected<strong>in</strong>to an enclosed mold <strong>in</strong> which <strong>the</strong> <strong>fiber</strong>glassre<strong>in</strong>forcementhasbeen placed,rov<strong>in</strong>g A number <strong>of</strong> yarns, strands, tows, orends collected<strong>in</strong>to a padlel bundle with little orno twist.sandwich constructions panels composed<strong>of</strong>a lightweightcore material, such as honeycomb,fOSrned@tiC, and SOforth,to whichtwo relativelyth<strong>in</strong>, dense, high-strengthor high-stiffnessfacesor sk<strong>in</strong>s are adhered.252scantl<strong>in</strong>g Thesize or weight dimensions<strong>of</strong> <strong>the</strong>memberswhich make up <strong>the</strong> structure<strong>of</strong> <strong>the</strong> vessel,secondary bond<strong>in</strong>g The jo<strong>in</strong><strong>in</strong>g toge<strong>the</strong>r, by<strong>the</strong> process <strong>of</strong> adhesivebond<strong>in</strong>g, <strong>of</strong> two or morealready cured composite parts, dur<strong>in</strong>g which <strong>the</strong>only chemical or <strong>the</strong>rmal reaction occurr<strong>in</strong>g is<strong>the</strong> cur<strong>in</strong>g<strong>of</strong> <strong>the</strong> adhesiveitself.secondary structure Secondary structure isconsideredthat which is not <strong>in</strong>volved <strong>in</strong> primarybend<strong>in</strong>g <strong>of</strong> <strong>the</strong> hull girder, such as &ames,girders, webs and bulkheads that are attachedbysecondarybonds.self-ext<strong>in</strong>guish<strong>in</strong>g res<strong>in</strong> A res<strong>in</strong> formulationthat will burn <strong>in</strong> <strong>the</strong> presence<strong>of</strong> a flame but willext<strong>in</strong>guishitself with<strong>in</strong> a specilkl time after <strong>the</strong>flameis removed.set The irrecoverableor pecmanentdeformationor creep *r complete release <strong>of</strong> <strong>the</strong> force produc<strong>in</strong>g<strong>the</strong>deformation.set up To harden, as <strong>in</strong> cur<strong>in</strong>g <strong>of</strong> a polymerres<strong>in</strong>.S-glass A magnesium alurn<strong>in</strong>osilicatecompositionthat is especially designed to provide veryhigh tensile strengthglass filaments. S-glassandS-2 glass <strong>fiber</strong>s have <strong>the</strong> same glass compositionbut differentf<strong>in</strong>ishes (coat<strong>in</strong>gs). S-glass is madeto more &mand<strong>in</strong>g specifications, and S-2 isconsidered<strong>the</strong> commercialgrade.shear h action or stress result<strong>in</strong>g from appliedforces that ca<strong>use</strong>s or tends to ca<strong>use</strong> two contiguousparts <strong>of</strong> a body to slide relative to each o<strong>the</strong>r<strong>in</strong> a direction parallel to <strong>the</strong>ir plane <strong>of</strong> contact.In <strong>in</strong>terlarn<strong>in</strong>ar shear, <strong>the</strong> plane <strong>of</strong> contact iscomposedprimarily<strong>of</strong> res<strong>in</strong>.shell The watertightboundary<strong>of</strong> a vessel’shull.skht Generally,a term <strong>use</strong>d to describeall <strong>of</strong> <strong>the</strong>hull shell. Forsandwichconstruction,<strong>the</strong>re is animer and outer sk<strong>in</strong> which toge<strong>the</strong>r are th<strong>in</strong>nerthan <strong>the</strong> s<strong>in</strong>gle-sk<strong>in</strong>lam<strong>in</strong>atethat <strong>the</strong>yreplace.sk<strong>in</strong> coat A special layer <strong>of</strong> res<strong>in</strong> applied justunder <strong>the</strong> gel coat to prevent blister<strong>in</strong>g. Itissometimes applied with a layer <strong>of</strong> mat or lightcloth.shear moduIus The ratio <strong>of</strong> shear<strong>in</strong>g stress toshear<strong>in</strong>g stra<strong>in</strong> with<strong>in</strong> <strong>the</strong> proportional limit <strong>of</strong><strong>the</strong> material,shear stra<strong>in</strong> The tangent <strong>of</strong> <strong>the</strong> angularchange, ca<strong>use</strong>d by a force between two l<strong>in</strong>esorig<strong>in</strong>ally perpendicularto each o<strong>the</strong>r through apo<strong>in</strong>t <strong>in</strong> a body, Also called angularstra<strong>in</strong>.shear strength The maximumshear stress thata material is capable <strong>of</strong> susta<strong>in</strong><strong>in</strong>g. Shear.+..-’”; ““/’:, “’”*”’” + ., ‘


Chapter SevenREFERENCEstrength is calculated from <strong>the</strong> maximum loaddur<strong>in</strong>g a shear or torsion test and is based on <strong>the</strong>orig<strong>in</strong>alcross-sectionalarea<strong>of</strong> <strong>the</strong> specimen,shear stress me component <strong>of</strong> stress tangentto <strong>the</strong> plane on which <strong>the</strong> forcesact.sheet moldhtg compound (S~C) A composite<strong>of</strong> <strong>fiber</strong>s, usually a polyester res<strong>in</strong>, andpigments, fillers, and o<strong>the</strong>r additives that havebeen compoundedand processed<strong>in</strong>to sheet formto facilitatehandl<strong>in</strong>g<strong>in</strong> <strong>the</strong> mold<strong>in</strong>goperation.shelf life The length <strong>of</strong> time a material, substance,product, or reagent can be stored underspecified environmentalconditions and cont<strong>in</strong>ueto meet all applicable specificationrequirementsand/orrema<strong>in</strong> suitablefor its <strong>in</strong>tendedfunction.short beam shear (SBS) A flexura.1 test <strong>of</strong> aspecimen hav<strong>in</strong>g a low test span-to-thicknessratio (for example, 41), such that failure is primarily<strong>in</strong>shear,size Any treatment consist<strong>in</strong>g <strong>of</strong> starch, gelat<strong>in</strong>,oil, wax, or o<strong>the</strong>r suitable <strong>in</strong>gredient applied toyarn or <strong>fiber</strong>s at <strong>the</strong> time <strong>of</strong> formationto protect<strong>the</strong> surface and aid <strong>the</strong> process <strong>of</strong> hancil<strong>in</strong>gandfabricationor to control <strong>the</strong> <strong>fiber</strong> characteristics.The treatment conta<strong>in</strong>s <strong>in</strong>gredients that providesurfacelubricity and b<strong>in</strong>d<strong>in</strong>g action, but unlike aftish, conta<strong>in</strong>s no coupl<strong>in</strong>g agen~ Before f<strong>in</strong>alfabrication <strong>in</strong>to a composite, <strong>the</strong> size is usuallyremovedby heat clean<strong>in</strong>g,and a f<strong>in</strong>ish is applied.sk<strong>in</strong> Therelativelydense materialthat may form<strong>the</strong> surface<strong>of</strong> a cellularplastic or <strong>of</strong> a sandwich.S-N diagram A plot <strong>of</strong> stress (S) aga<strong>in</strong>st <strong>the</strong>number <strong>of</strong> cycles to failure (N) <strong>in</strong> fatigue test<strong>in</strong>g.A log scale is normally <strong>use</strong>d for N, For S, al<strong>in</strong>ear scale is <strong>of</strong>ten <strong>use</strong>d, but sometimes a logscale is <strong>use</strong>d here, too. Also, a representation<strong>of</strong><strong>the</strong> number <strong>of</strong> alternat<strong>in</strong>gstress cycles a materialcan susta<strong>in</strong> without failure at various maximumstresses.specific gravity The density (mass per unitvolume)<strong>of</strong> any material dividedby that <strong>of</strong> waterat a standardtemperature,spray-up Technique <strong>in</strong> which a spray gun is<strong>use</strong>d as an applicatortool, In <strong>re<strong>in</strong>forced</strong><strong>plastics</strong>,for example, fibrous glass and res<strong>in</strong> can bsimultaneouslydeposited <strong>in</strong> a mold In essence,rov<strong>in</strong>g is fed through a chopper and ejected <strong>in</strong>toa res<strong>in</strong> stream that is directed at <strong>the</strong> mold byei<strong>the</strong>r <strong>of</strong> two spray systems. In foamed <strong>plastics</strong>,fast-matt<strong>in</strong>g urethanefoams or epoxy foams arefed <strong>in</strong> liquid streams to <strong>the</strong> gun and sprayed on<strong>the</strong> surface,On contact,<strong>the</strong> liquid starts to foam.Spun rov<strong>in</strong>g A heavy, low-cost glass <strong>fiber</strong>strand consist<strong>in</strong>g<strong>of</strong> fdaments that are cont<strong>in</strong>uousbut doubledback on each o<strong>the</strong>r.starved area An area<strong>in</strong> a plastic part whichhas an <strong>in</strong>sufilcientamount <strong>of</strong> res<strong>in</strong> to wet out <strong>the</strong>re<strong>in</strong>forcement completely. This condition maybe due to improper wett<strong>in</strong>g or impregnation orexcessivemold<strong>in</strong>gpressure.storage life The period <strong>of</strong> time dur<strong>in</strong>g which aliquid res<strong>in</strong>, packaged adhesive, or prepreg canbe stored under specified temperatureconditionsand rema<strong>in</strong> suitable for <strong>use</strong>. AIso called shelflife.stra<strong>in</strong> Elastic deformation due to stress.Measured as <strong>the</strong> change <strong>in</strong> length per unit <strong>of</strong>length <strong>in</strong> a given direction,and expressed<strong>in</strong> percentageor<strong>in</strong>./<strong>in</strong>.stress The <strong>in</strong>ternal forceper unit area that resistsa change <strong>in</strong> size or shape <strong>of</strong> a body. Expressed<strong>in</strong> forceper unit area.stress concentration On a macromechanica.1level, <strong>the</strong> magnblcation<strong>of</strong> <strong>the</strong> level <strong>of</strong> an appliedstress <strong>in</strong> <strong>the</strong> region <strong>of</strong> a notch, void, hole, or <strong>in</strong>clusion.stress corrosion Preferential attack <strong>of</strong> areasunder stress <strong>in</strong> a corrosive environmen~ wheresuch an environment alone would not haveca<strong>use</strong>dcorrosion,stress crack<strong>in</strong>g The failure <strong>of</strong> a material bycrack<strong>in</strong>g or craz<strong>in</strong>g some tie after it has beenplaced under load, Time-to-failuremay rangefrom m<strong>in</strong>utesto years. Ca<strong>use</strong>s<strong>in</strong>cludemolded-<strong>in</strong>stresses, post fabrication shr<strong>in</strong>kage or warpage,and hostile environment,stress-stra<strong>in</strong> curve Simultaneous read<strong>in</strong>gs Ofload and deformation, converted to stress andstra<strong>in</strong>, plotted as ord<strong>in</strong>ates and abscissae,respwtively,to obta<strong>in</strong>a stress-stra<strong>in</strong>diagram.structural adhesive Adhesive <strong>use</strong>d for t.ELTlSferr<strong>in</strong>grequired loads between adherends exposedto service environments typical for <strong>the</strong>structure<strong>in</strong>volved,surfac<strong>in</strong>g mat A very th<strong>in</strong> ma~ usually 7 to 20roils thick, <strong>of</strong> highly fikunentized<strong>fiber</strong>glass,<strong>use</strong>dprimarily to produce a smooth surfaceon a <strong>re<strong>in</strong>forced</strong>plastic lam<strong>in</strong>a~, or for precise mach<strong>in</strong><strong>in</strong>gor gr<strong>in</strong>d<strong>in</strong>g,symmetrical lam<strong>in</strong>ate A composite lam<strong>in</strong>ate<strong>in</strong> which <strong>the</strong> sequence <strong>of</strong> plies below <strong>the</strong> lam<strong>in</strong>atemidplane is a mirror image <strong>of</strong> <strong>the</strong> stack<strong>in</strong>gsequenceabove<strong>the</strong> midplane.253 ,/~.,,..-.,.


GlossaryMar<strong>in</strong>e Compositestack Stick<strong>in</strong>ess<strong>of</strong> a prepreg; an important handl<strong>in</strong>gcharacteristic.titp~ A composite ribbon consisdng<strong>of</strong> cont<strong>in</strong>uousor discont<strong>in</strong>uous<strong>fiber</strong>s that are alignedalong<strong>the</strong> tape axis parallel to each o<strong>the</strong>r and bondedtoge<strong>the</strong>rby a cont<strong>in</strong>uousmatrixphase.tensile strength The maximum load or forceper unit cross-sectionalarea, with<strong>in</strong> <strong>the</strong> gagelength, <strong>of</strong> <strong>the</strong> specimen. The pull<strong>in</strong>g stress requiredtobreak a given specimen,tensile stress The normal stress ca<strong>use</strong>d byforces directed away from <strong>the</strong> plane on which<strong>the</strong>y act.<strong>the</strong>rm<strong>of</strong>ormhtg Form<strong>in</strong>g a <strong>the</strong>rmoplasticmaterial after heat<strong>in</strong>g it to <strong>the</strong> po<strong>in</strong>t where it ishot enough to be formed without crack<strong>in</strong>g orbreak<strong>in</strong>gre<strong>in</strong>forc<strong>in</strong>g<strong>fiber</strong>s.<strong>the</strong>rmoplastic polyesters A class <strong>of</strong> <strong>the</strong>rmoplasticpolymers <strong>in</strong> which <strong>the</strong> repeat<strong>in</strong>g units arejo<strong>in</strong>ed by ester groups, The two importanttypesare (1) polyethyleneterphthalate(PET), which iswidely <strong>use</strong>d as fihn, <strong>fiber</strong>, and soda bottles; and(2) polybutyleneterephthalate(PBT),primarily amold<strong>in</strong>gcompound.<strong>the</strong>rmoset A plastic that, when cured by application<strong>of</strong> heat or chemicalmeans, changes<strong>in</strong>to asubstantially<strong>in</strong>fusibleand <strong>in</strong>solublematerial.<strong>the</strong>rmosett<strong>in</strong>g polyesters A class <strong>of</strong> res<strong>in</strong>sproduced by dissolv<strong>in</strong>g unsaturated, generallyl<strong>in</strong>ear, alkyd res<strong>in</strong>s <strong>in</strong> a v<strong>in</strong>yl-typeactive monomersuch as styrene, methyl styrene, or diallylphthalate. Cure is effected through v<strong>in</strong>yl polymerizationus<strong>in</strong>g peroxide catalysts and promotersor heat to accelerate <strong>the</strong> reaction. Thetwo importantcommercialtypes are (1) liquid res<strong>in</strong>sthat are cross-l<strong>in</strong>kedwith styrene and <strong>use</strong>dei<strong>the</strong>r as impregnanwfor glass or carbon<strong>fiber</strong>re<strong>in</strong>forcements<strong>in</strong>lam<strong>in</strong>ates,filament-woundstructures,and o<strong>the</strong>r built-up constructions, or asb<strong>in</strong>ders for chopped-<strong>fiber</strong> re<strong>in</strong>forcements <strong>in</strong>mold<strong>in</strong>gcompounds,such as sheet mold<strong>in</strong>g compound(SMC), bulk mold<strong>in</strong>g compound (BMC),and thick mold<strong>in</strong>g compound(TMC] and (2) liquidor solid res<strong>in</strong>s cross-l<strong>in</strong>kedwith o<strong>the</strong>r esters<strong>in</strong> chopped-<strong>fiber</strong>and m<strong>in</strong>eral-filledmold<strong>in</strong>gcompounds,forexample,alkyd and diallylphthalate,thixotropic (thixotropy) Concern<strong>in</strong>g materialsthat are gel-like at rest but fluid when agitated.Hav<strong>in</strong>g high static shear strengthand lowdynamicshear strengthat <strong>the</strong> sametime. To loseviscosityunder stress,tool<strong>in</strong>g res<strong>in</strong> Res<strong>in</strong>s that have applications astool<strong>in</strong>g aids, coreboxes, prototypes, hammerforms, stretch forms, foundry patterns, and s<strong>of</strong>orth, Epoxy and siliconeare commonexamples.torsion Twist<strong>in</strong>gstresstorsional stress The shear stress on a h-ansversecrosssectionca<strong>use</strong>dby a twist<strong>in</strong>gaction.toughness A pro~~ <strong>of</strong> a materialfor absorb<strong>in</strong>gwork. The actualworkper unit volumeorunit mass<strong>of</strong> materialthat is requiredto ruptrueit, Toughnessis proportionalto <strong>the</strong> area under<strong>the</strong> load-elongationcurvefrom<strong>the</strong> orig<strong>in</strong>to <strong>the</strong>break<strong>in</strong>gpo<strong>in</strong>t.tow An untwistedbundle <strong>of</strong> cont<strong>in</strong>uous~ments.Commonly<strong>use</strong>d<strong>in</strong> referr<strong>in</strong>gto mamnade<strong>fiber</strong>s,particularlycarbonand graphite,but alsoglassandaramid. A towdesignatedas 140Khas140,000fflaments,tracer A <strong>fiber</strong>,tow,or yarn addedto a prepregfor verify<strong>in</strong>g<strong>fiber</strong>alignmentand,<strong>in</strong> <strong>the</strong> case<strong>of</strong>wovenmaterials,for dist<strong>in</strong>guish<strong>in</strong>gwarp filmshornM <strong>fiber</strong>s.transfer mold<strong>in</strong>g Method <strong>of</strong> mold<strong>in</strong>g <strong>the</strong>rmosett<strong>in</strong>gmaterials<strong>in</strong>which<strong>the</strong> plasticis fists<strong>of</strong>tenedby heatandpressure<strong>in</strong> a transferchamberand<strong>the</strong>nforcedby highpressurethroughsuitablesprues,runners,and gates <strong>in</strong>to <strong>the</strong> closedmoldforf<strong>in</strong>alshap<strong>in</strong>gandcur<strong>in</strong>g.transition temperature The temperatureatwhich<strong>the</strong> properties<strong>of</strong> a materialchange. Depend<strong>in</strong>gon <strong>the</strong> material,<strong>the</strong> transitionchangemayor maynotbereversible.ultimate tensile strength The ultimate orf<strong>in</strong>al (highest)stress susta<strong>in</strong>edby a spmirnen<strong>in</strong> atension test. Rupture and ultimate stress may ormay not be <strong>the</strong> same.ultrasonic test<strong>in</strong>g A nondestructive test applied to materials for <strong>the</strong> purpose <strong>of</strong> locat<strong>in</strong>g <strong>in</strong>ternalflaws or structural discontimritiesby <strong>the</strong><strong>use</strong> <strong>of</strong> high-frequencyreflection or attenuation(ultrasonicbeam).uniaxial load A condition whereby a materialis stressed<strong>in</strong> only one directionalong <strong>the</strong> axis orcenterl<strong>in</strong>e<strong>of</strong> componentparts.unidirectional <strong>fiber</strong>s Fiber re<strong>in</strong>forcementarrangedprimarily<strong>in</strong>one directionto achievemaximumstrength<strong>in</strong> that direction,urethane <strong>plastics</strong> Plastics based on res<strong>in</strong>smade by condensation <strong>of</strong> organic isocyanates254 .“i,,; !+”” !, .,,. .,.


Chapter SevenREFERENCEwith com~unds or res<strong>in</strong>s that conta<strong>in</strong> hydroxylgroups, The res<strong>in</strong> is famished as two componentliquid monomers or prepolymers that are mixed<strong>in</strong> <strong>the</strong> field immediately before application. Agreat variety <strong>of</strong> materials axe available, depend<strong>in</strong>gupon <strong>the</strong> monomers<strong>use</strong>d <strong>in</strong> <strong>the</strong> prepolyrners,polyols, and <strong>the</strong> type <strong>of</strong> diisocyanateemployed.Exwemely abrasion and impact resistan~ Seealsopolyurethane.transmitt<strong>in</strong>g structural stresses or nonradiativeenergyfields.volatile content The percent <strong>of</strong> volatiles thatare driven <strong>of</strong>f as a vapor horn a plastic or animpregnatedre<strong>in</strong>forcement.volatiles Materials, such as water and alcohol,<strong>in</strong> a siz<strong>in</strong>gor a res<strong>in</strong> formulation,that are capable<strong>of</strong> be<strong>in</strong>g driven <strong>of</strong>f as a vapor at room tempemtureor at a slightlyelevatedtemperature.vacuum bag mold<strong>in</strong>g A process<strong>in</strong> whichasheet<strong>of</strong> flexibletransparentmaterialplusbleederclothandreleasefilmare placedover<strong>the</strong> lay-upon <strong>the</strong> moldand sealedat <strong>the</strong> edges. A vacuumis appliedbetween<strong>the</strong> sheetand<strong>the</strong> lay:up. Theentrappedair is mechanicallyworkedout <strong>of</strong> <strong>the</strong>lay-upandremovedby <strong>the</strong> vacuum,and<strong>the</strong>partis cured with temperature,pressure,and time.Alsocalledbagmold<strong>in</strong>g,veil An ultrath<strong>in</strong>mat similarto a surfacemat,<strong>of</strong>tencomposed<strong>of</strong> organic<strong>fiber</strong>sas wellas glass<strong>fiber</strong>s,v<strong>in</strong>yl esters A class <strong>of</strong> <strong>the</strong>rmosett<strong>in</strong>gres<strong>in</strong>sconta<strong>in</strong><strong>in</strong>gesters <strong>of</strong> acrylic and/or methacrylicacids, many <strong>of</strong> which have been made ftomepoxyres<strong>in</strong>. Cureis accomplishedas withunsaturatedpolyestersbycopolymerizationwitho<strong>the</strong>rv<strong>in</strong>ylmonomers,suchas styrene.viscosity Theproperty<strong>of</strong> resistanceto flowexhibitedwith<strong>in</strong><strong>the</strong>body <strong>of</strong> a material,expressed<strong>in</strong> terms<strong>of</strong> relationshipbetweenappliedshear<strong>in</strong>gstressand result<strong>in</strong>grate <strong>of</strong> stra<strong>in</strong><strong>in</strong> shear. Viscosityisusuallytakento meanNewtonianviscosity,<strong>in</strong>whichcase<strong>the</strong> ratio<strong>of</strong> shear<strong>in</strong>gstressto <strong>the</strong>rate <strong>of</strong> shear<strong>in</strong>gslm<strong>in</strong>is constant,In non-Newtonianbehavior,whichis <strong>the</strong>usualcasewith<strong>plastics</strong>,<strong>the</strong> ratiovarieswith<strong>the</strong> shear<strong>in</strong>gstress,Suchratiosare <strong>of</strong>tencalled<strong>the</strong> apparentviscositiesat <strong>the</strong> correspond<strong>in</strong>gshear<strong>in</strong>gstresses. Viscosityismeasured<strong>in</strong> terms<strong>of</strong> flow<strong>in</strong> Pa. s (P),with water as <strong>the</strong> base standard(value<strong>of</strong> 1.0).Thehigher<strong>the</strong>number,<strong>the</strong>lessflow.void content Volumepercentage<strong>of</strong> voids,usuallylessthan 170<strong>in</strong> a properlycuredcomposite.The experimentaldeterm<strong>in</strong>ationis <strong>in</strong>direct thatis, calculatedfrom <strong>the</strong> measureddensity <strong>of</strong> acured lam<strong>in</strong>ateand <strong>the</strong> “<strong>the</strong>oretical”density<strong>of</strong><strong>the</strong>start<strong>in</strong>gmaterial.voids #Jr or gas thathasbemitrappedandcured<strong>in</strong>toa lam<strong>in</strong>ate.Porosityis an aggregation<strong>of</strong> microvoids.Voids are essentially<strong>in</strong>capable <strong>of</strong>warp The yarn runn<strong>in</strong>g lengthwise <strong>in</strong> a wovenfabric. A group <strong>of</strong> yarns <strong>in</strong> long lengths and approximatelyparallel.A change<strong>in</strong> dimension<strong>of</strong> acuredlam<strong>in</strong>atefrom its orig<strong>in</strong>almoldedshape.water absorption Ratio <strong>of</strong> <strong>the</strong> weight <strong>of</strong>water absorbedby a materialto <strong>the</strong> weight <strong>of</strong> <strong>the</strong>dry matmial.wea<strong>the</strong>r<strong>in</strong>g The exposure <strong>of</strong> <strong>plastics</strong> outdoors.Comparewith artificialwea<strong>the</strong>r<strong>in</strong>g.weave The particular manner <strong>in</strong> which a fabricis formed by <strong>in</strong>terlac<strong>in</strong>gyarns. Usually assigneda style number.wefi The transversethreads or <strong>fiber</strong>s <strong>in</strong> a wovenfabric, Those runn<strong>in</strong>g perpndicuhr to <strong>the</strong> warp.Also calledfill, fill<strong>in</strong>g yarn, or wo<strong>of</strong>.wet lay-up A method <strong>of</strong> mak<strong>in</strong>g a <strong>re<strong>in</strong>forced</strong>product by apply<strong>in</strong>g <strong>the</strong> res<strong>in</strong> system as a liquidwhen<strong>the</strong> re<strong>in</strong>forcementis put <strong>in</strong> place.wet-out The condition<strong>of</strong> an impregnatedrov<strong>in</strong>gor yam <strong>in</strong> which substantiallyall voids between<strong>the</strong> sized strands and fdaments are tilled withres<strong>in</strong>,wet strength The strength<strong>of</strong> an organicmatrixcompositewhen <strong>the</strong> matrixresk is saturatedwithabsorbed moistare, or is at a defied percentage<strong>of</strong> absorbedmoisture less than saturation. (Saturationis an equilibrium condition <strong>in</strong> which <strong>the</strong>net rate <strong>of</strong> absorptionunder prescribedconditionsfalls essentiallyto zero.)woven rov<strong>in</strong>g A heavy @ss <strong>fiber</strong> fabricmadeby weav<strong>in</strong>grov<strong>in</strong>g or yarn bundles.yield po<strong>in</strong>t !f’k fust stress <strong>in</strong> a material, lessthan <strong>the</strong> maximum atta<strong>in</strong>ablestress, at which <strong>the</strong>stm<strong>in</strong> <strong>in</strong>creases at a higher rate than <strong>the</strong> stress.The po<strong>in</strong>t at which permanent deformation <strong>of</strong> astressed specimen beg<strong>in</strong>s to take place. Only255


GlossaryMar<strong>in</strong>e Compositesmaterialsthat exhibityield<strong>in</strong>g havea yield po<strong>in</strong>t. material is viscous, Often def<strong>in</strong>ed as <strong>the</strong> stressyield strength The stress at <strong>the</strong> yield po<strong>in</strong>t, needed to produce a spwifmd amount <strong>of</strong> plasticThe stressat which a materialexhibitsa specified deformation(usuallya 0,2% change<strong>in</strong> length),limit<strong>in</strong>g deviation from <strong>the</strong> proportionality <strong>of</strong> Young’s modulus The ratio <strong>of</strong> normal stressstress to stra<strong>in</strong>. The lowest stress at which a to correspond<strong>in</strong>gstra<strong>in</strong> for tensileor compressivematerial undergoes plastic deformation, Below stresses less than <strong>the</strong> proportional limit <strong>of</strong> <strong>the</strong>this stress, <strong>the</strong> material is elastic; above it, <strong>the</strong> material, See also modulus<strong>of</strong> elasticity.256/. .-,,..~”r..


Chapter SevenREFERENCE1-11-21-31-41-51-61-71-81-91-101-111-12“Aerospace Composites Technology is F<strong>in</strong>d<strong>in</strong>g New Applications.” R@forced PlaslimVol. 27 (No. 8), Aug. 1983, p. 243-248, <strong>in</strong> Eng<strong>in</strong>eered ~ , vol. 1, ‘Composites, ASM International, 1987.“GRP Proves Its Worth <strong>in</strong> Tough-Go<strong>in</strong>g Powerboat Race.” mforced P- Vol. 29(No. 4), April 1985, p. 106-107, <strong>in</strong> Eng<strong>in</strong>eer<strong>in</strong>g College, “Mar<strong>in</strong>e Applications;’ <strong>in</strong>. .~, Vol. 1, Composites, ASM International, 1987,“Composite Material Study: Maturity <strong>of</strong> Technology Materials and Fabrication;’ F.I.T.Structural Composites Laboratory technical report prepared for UNISYS Corporation andU.S. Navy, March 1988, Distribution Limited,for Bu . . ~, American Bureau <strong>of</strong> Shipp<strong>in</strong>g,1986, Paramus, New Jersey.Shuttleworth, J. “Spectrum 42 Production Catamaran~’ Mrdtihull Int., Vol. 18 (No. 207),April 1985, p. 91-94, <strong>in</strong> Enw ~ k, Vol. 1, Composites, ASMInternational, 1987.Doyle, J.F. and L. Hadley-Coates. “Distortion <strong>of</strong> Th<strong>in</strong> Shells Due to Rapid TemperatureChanges,” Qcean Eng., Vol. 13 (no. 2), 1986, p. 121-129, <strong>in</strong> -red MaterialsHandbook, Vol. 1, Composites, ASM International, 1987.Pittman, L,L. “Break<strong>in</strong>g <strong>the</strong> C)ldMoulds,” W, Jan. 1985, P. 76-81, <strong>in</strong> En@neeredMaterials Hand book, Vol. 1, Composites, ASM International, 1987.Florida Tod W, November 7, 1989, article by Ca<strong>the</strong>r<strong>in</strong>e Liden.Summerscales, John. Royal Naval Eng<strong>in</strong>eer<strong>in</strong>g College, “Mar<strong>in</strong>e Applications,” <strong>in</strong>.~, Vol. 1, Composites, ASM International, 1987.Second International Conference on Mar<strong>in</strong>e Applications <strong>of</strong> Composite Materials,1988; Invited Pape~ “The High Speed Passenger Ferry SES Jet Rider.” S. Hellbratt andO. Gullberg, Karlskronavarvet AB, Karlskrona, Sweden.March“Italcraft M78.” Boat InL No. 7, 1985, p. 91, <strong>in</strong> ~n~<strong>in</strong>eere d Materials Handb ook, Vol. 1,Composites, ASM International, 1987.“Extensive Use <strong>of</strong> GRP for Tomorrow’s Undersea Craft.” Re<strong>in</strong>forced Plastic% Vol. 27,.No. 9 (Sept. 1983), p. 276, <strong>in</strong> E@neered Matermls Handbo ok, Vol. 1, Composites,ASM International 1987.257


Chapter ReferencesMar<strong>in</strong>e Composites1-131-141-151-161-171-181-191-201-211-221-231-24“Composite Hull Increases Submar<strong>in</strong>e’s Range <strong>of</strong> Action.” Corn-, Vol. 14, No. 3.(July 1983) p. 314, <strong>in</strong> ~, Vol. 1, Composites, ASMInternational, 1987.IBID ref. [1-9].Heller, S.R. Jr. “The Use <strong>of</strong> Composite Materials In Naval Ships.” Mdardcd, Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> Fifth Symposium on Structural Mechanics, 8-10May, 1967, Phil., PA.Landford, Benjam<strong>in</strong> W; Jr. and J. Angerer. “Glass Re<strong>in</strong>forced Plastic Developments forApplication to M<strong>in</strong>esweeper Construction.” Naval Eng<strong>in</strong>eers Journal, (Oct. 1971) p,13-26.Olsson, Karl-Axel. “GRP Sandwich Design and Production <strong>in</strong> Sweden Development andEvaluation.” The Royal Institute <strong>of</strong> Technology, Stockholm, Sweden, Report 86-6, 1986.Ellis, R.W. and Sridharan, N.S. General Dynamics Land Systems Division, Troy, MI,“Combat Vehicles for New Design Environment for Composites.” AdvancedCom~osites Conference Proceed<strong>in</strong>gs, 2-4 Dec. 1985, Dearborn, MI, 1985.Kariy4 B. and J. Hill, FMC Corporation, San Jose, CA. “Implementation <strong>of</strong> CompositeMaterials <strong>in</strong> Ground Combat Vehicles.” Adunced Composites III Ex~and<strong>in</strong>~ <strong>the</strong>Technology , Proceed<strong>in</strong>gs, Third Annual Conference on Adv~nced Composites, 15-17September 1987, Detroit, MI.Ostberg, Donald T., U.S. Army Tank Automotive Command, Warren, MI. “MilitaryVehicles Composite Applications.” Advanced Composites III Expand<strong>in</strong>g <strong>the</strong>Technology, Proceed<strong>in</strong>gs, Third Annual Conference on Advanced Composites, 15-17September 1987, Detroit, MI.Fishman, N, “Structural Composites: a 1995 Outlook.” Modern P1asti (July 1989), p.72-73.Margolis, J.M. “Advanced Thermoset Composites Industrial and CommercialApplications.” Van Nostrand Re<strong>in</strong>hold Company, N.Y., 1986.Koster, J., MOBIK GmbH, Gerl<strong>in</strong>gen, West Germany. “The Composite Intensive Vehicle- A Third Generation <strong>of</strong> Automobiles! A Bio-Cybernetical Approach to AutomotiveEng<strong>in</strong>eer<strong>in</strong>g?” May, 1989.Eruz<strong>in</strong>eers’ Guide to Composite Materials . American Society for Metals, 1987, Abstractedfrom “Composite Driveshafts - Dream or Reality.” D.R. Sidwell, M. Fisk and D. Oeser.Merl<strong>in</strong> Technologies, Inc., Campbell, CA. New Compos”te Materials and Technoloq,The American Institute <strong>of</strong> Chemical Eng<strong>in</strong>eers, p. 8-11, ~982.258,“,.. . . ‘),{”.!... .,!%,+ “


Chapter SevenREFERENCE1-251-261-271-281-291-301-311-321-331-341-35ers 3 . .e to Co_te Mated .American Society for Metals, 1987, Abstractedfrom “A Composite Rear Floor Pan.” N.G. Chavka and C*F. Johnson, Ford Motor Co.Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> 40th Annual Conference, Re<strong>in</strong>forced Plastics/Composites Institute, 28Jan. -l Feb. 1985, Session 14-D. ~eSociety <strong>of</strong>tie PIastics hdus~, Inc., p. l-6.~, April 1989, Plastiscope feature article.rnP -, September 1989, various articles.“f ~, American Society for Metals SourceBook, 1986.Dickason, Richard T., Ford Motor Company, Redford, MI. “HSMC Radiator Support.”.lC~, American Society for Metals: MetalsPark, OH, 1986.Johnson, Carl F., et al. Ford Motor Company, Dearborn, MI and Babb<strong>in</strong>gton, Dorothy A.,Dow Chwnical Company, Freeport, TX. “Design and Fabrication <strong>of</strong> a HSRTMCrossmember Module.” Advanced Com~* III Expandiruz <strong>the</strong> TechndctgyProceed<strong>in</strong>gs, Third Annual Conference on Advanced Composites, 15-17 Septehber1987, Detroit, MI.“Materials Substitution <strong>in</strong> Automotive Exterior Panels (1989- 1994).” Philip TownsendAssociates, Inc., Marblehead, MA.Fsmis, Robert D., Shell Development Center, Houston, TX. “Composite Front.Crossmember for <strong>the</strong> Chrysler T-115 M<strong>in</strong>i-Van.” Adyanced Co DOStes m Expandl“ng<strong>the</strong> Technolo ~, Proceed<strong>in</strong>gs, Third Annual Conference on Adv~cedlComposites, 15-17September 1987, Detroit, MI.Eng<strong>in</strong>eers’ Guide to Comr)osite Materials. American Society for Metals, 1987. Abstractedfrom “Design and Development <strong>of</strong> Composite Elliptic Spr<strong>in</strong>gs for AutomotiveSuspensions.” P,D. Mallick, University <strong>of</strong> Michigan-Dearborn, Dearborn, MI.Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> 40th Annual Conference, Re<strong>in</strong>forced Plastics/Composites Institute, 28Jan.-1 Feb. 1985, Session 14-c, The ‘Society <strong>of</strong> <strong>the</strong> Plastics Industry, Inc., p. 1-5.En~<strong>in</strong>eers’ Guide to Comnosite Nlaterials. American Society for Metals, 1987. Abstractedfrom “Composite Leaf Spr<strong>in</strong>gs <strong>in</strong> Heavy Truck Applications.” L.R. Daugherty, ExxonEnterprises, Greer, SC. ~~ si M ri “Fabricati on. Proceed<strong>in</strong>gs <strong>of</strong> Japan-U.S. Conference, 1981, Tokyo, Japan: The JapanSociety for Composite Materials, p. 529-538, 1981.Eng<strong>in</strong>eers’ Guide to Com~osite Materials, American Society for Metals, 1987. Abstractedfrom “Composite Truck Frame Rails.” Gerald L. May, GM Truck and Coach Division,and Curtis Tanner, Convair Division <strong>of</strong> General Dyn~cs. Automotive Eng<strong>in</strong>eer<strong>in</strong>g, p.77-79, Nov. 1979.259.,,.+’.,,., ,-...” ,.


Chapter ReferencesMar<strong>in</strong>e Conmosites1-36Sea, M.R., Kutz, J. and Corriveau, G., Vehicle Research Institute, Western Wash<strong>in</strong>gtonUniversity, Bell<strong>in</strong>gham, WA. “Development <strong>of</strong> an Advanced Composite MonocoqueChassis for a limited Production Sports Car.” ~ .Devel~ Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> Second Conference on Advanced Composites, 18-20Nov. 1986, Dearborn, MI, 1986.1-37Modern Plastics, July 1989, article by A. Stuart Wood.1-38Shook, G.D. ~American Society for Metals, 1986.., Metals Park, OH:2-11987 ed.als, Metals Park, OH American Society for Metals,2-22-32-42-52-62-7Feicht<strong>in</strong>ger, K.A. bkdmds <strong>of</strong> Fvamon ti Perf~ce <strong>of</strong> Strucmal Core ~Used <strong>in</strong> Sandw~ ,Proc. <strong>of</strong> <strong>the</strong> 42nd Annual Conference SPI Re<strong>in</strong>forcedPlastics/Composites Institute. 2-6 Feb., 1987.Joharmsen, Thomas J. One-<strong>of</strong>f Airex Fiberglass Sandwich Construcu“on. Buffalo, NY:Chemacryl, Inc., 1973.Hexcel. HRH-78 Nomex Commerc ial Grade Honevcomb Data Sbeet 4400. Dubl<strong>in</strong>, CA.,1989.Rules for Buw and Class<strong>in</strong>g Re<strong>in</strong>forced Plastic Vesse1s. By <strong>the</strong> American Bureau <strong>of</strong>Shipp<strong>in</strong>g. New York, 1978.Guide for Build<strong>in</strong>g and Class<strong>in</strong>g Offtie Rac<strong>in</strong>g Yachts. By <strong>the</strong> American Bureau <strong>of</strong>Shipp<strong>in</strong>g. Paramus, New Jersey, 1986.Chammis, C.C. “Mechanics <strong>of</strong> Composite Materials: Pas~ Present, and Future.” Journal <strong>of</strong>s Techrmlwv & Researth, JCTRER, Vol. 11, No. 1 (Spr<strong>in</strong>g 1989), pp. 3-14.3-1ties <strong>of</strong> Naval ~Eng<strong>in</strong>eers. New York, 1967.By <strong>the</strong> Society <strong>of</strong> Naval Architects and Mar<strong>in</strong>e3-2Eng<strong>in</strong>eers’ Guide to Comnosite Materia 1s. By <strong>the</strong> American Society for Metals.Park, OH, 1987.Metals3-33-4Evans, J. Harvey. ship Structural Des im~Concerns. Cambridge, MD: Cornell MaritimePress, 1975.Noonan, Edward F. Shi~ JLbmtim i Desire Guide. Wash<strong>in</strong>gton, D,C.: Ship StructureCommittee, 1989.3-5Guide for Build<strong>in</strong>~ and Class<strong>in</strong>~ Offshore Rac<strong>in</strong>g Yachts.Shipp<strong>in</strong>g. Paramus, NJ, 1986.By <strong>the</strong> American Bureau <strong>of</strong>260 ,, ,.‘.


Chapter SevenREFERENCE3-63-7Speed and 13is~MotorBy <strong>the</strong> American Bureau <strong>of</strong> Shipp<strong>in</strong>g. New York, 1989.Heller, S.R. and N.H, Jasper. “On<strong>the</strong>S tructuralD esign<strong>of</strong>P lan<strong>in</strong>gC raft.” ~,Royal Institution <strong>of</strong> Naval Architects, (1960) p.49-65.Yachts .3-83-93-1oSmith, C.S. ``BucWng Roblems k<strong>the</strong> Design <strong>of</strong> Fiberglass-Retiorced Plastic Stips.''Jourrlal <strong>of</strong> ~, ( S~pt. 1972) p.174-190.Schwartz, Mel M. ~ . New York: McGraw Hill, 1984.Tsai, Stephen W. Co-es J@.@. Third ed. Tokyo: Th<strong>in</strong>k Composites, 1987.3“11Owens-Corn<strong>in</strong>g Fiberglas Corp. ‘The Hand Lay-Up Spray-Up Guide.”1988.Toledo, OH,3-123-133-143-153-163-173-183-193-20Owens-Corn<strong>in</strong>g Fiberglas Corp. “Design Properties <strong>of</strong> Mar<strong>in</strong>e Grade FiberglassLam<strong>in</strong>ates.” Toledo, OH, 1978.Gibbs & Cox, Inc. “Mar<strong>in</strong>e Design Manual for Fiberglass Re<strong>in</strong>forced Plastics,” NewYork: McGraw Hill, 1960.“Guide for Selection <strong>of</strong> Fiberglass Re<strong>in</strong>forced Plastics for Mar<strong>in</strong>e Structures.” Society <strong>of</strong>Naval Architects and Mar<strong>in</strong>e Eng<strong>in</strong>eers, Hull Structure Committee, Panel HS-6, Bullet<strong>in</strong>2-12, 1965.Owens-Com<strong>in</strong>g Fiberglas Corp. Repoti “Feasibility Study for Application <strong>of</strong> Re<strong>in</strong>forcedPlastic Construction to M<strong>in</strong>esweepers.” Navy Dept. - Bureau <strong>of</strong> Ships, ContractNObs-4671 - Materials Test Program - Phase 1.“An Analysis <strong>of</strong> <strong>the</strong> Ca<strong>use</strong>s <strong>of</strong> Variability <strong>in</strong> <strong>the</strong> Hand Lay-Up Process.” OCF ReportTC/RPL/67/24.“Effect <strong>of</strong> Fill-Warp Ratio on Woven Rov<strong>in</strong>g Lam<strong>in</strong>ate Flexural Properties.” OCF ReportTR/RPL/68/22.“optimum Lam<strong>in</strong>ate Study <strong>of</strong> Typical Mar<strong>in</strong>e Constructions,” OCF Report TC/lWL/65/11.Lam<strong>in</strong>ate property data on panels cut from boat hulls <strong>in</strong> conjunction with <strong>the</strong> Survey <strong>of</strong>U.S. Navy Glass Re<strong>in</strong>forced Plastic Small Craft conducted by Gibbs & Cox, Inc.“Woven Rov<strong>in</strong>g and Glass Fiber Mat Re<strong>in</strong>forced Plastic Lam<strong>in</strong>ates - Basic StrengthProperties.” V.S Ristic, 26th Annual Conference <strong>of</strong> <strong>the</strong> SPI (Canada) June, 1968.261


Chapter ReferenceMar<strong>in</strong>e Composites3-213-223-233-24.Reichard, Ronmd P. ~ “.Proc.<strong>of</strong> <strong>the</strong> 17th AIAA/SNAME Symposium on <strong>the</strong> Aero/Hydronautics <strong>of</strong> Sail<strong>in</strong>g: TheAncient Interface. Vol. 34. 31 Oct.-1 Nov. 1987.Owens-Corn<strong>in</strong>g Fiberglas Corp. “Jo<strong>in</strong>t Conilrguration and Surface Preparation Effect onBond Jo<strong>in</strong>t Fatigue <strong>in</strong> Mar<strong>in</strong>e Application.” Toledo, OH, 1973.Della Rocca, R.J. & R.J. Scott. “Materials Test program for Application <strong>of</strong> FiberglassRe<strong>in</strong>forced Plastics to U.S. Navy M<strong>in</strong>esweepers.” 22nd Annual Technical Conference,The $ocie~ <strong>of</strong> <strong>the</strong> Plastics Industry, Inc.USCG NVIC No. 8-87. “Notes on Design, Construction, Inspection and Repair <strong>of</strong> FiberRe<strong>in</strong>forced Plastic (FRP) Vessels.” 6 Nov. 1987.3-25Shipp<strong>in</strong>g. New York, 1978.Vea. By <strong>the</strong> American Bureau <strong>of</strong>4-1Hash<strong>in</strong>, Z. “Fatigue Failure Criteria for Unidirectiomil Fiber Composites.”Applied Mechanics, Vol. 38, (Dec. 1981), p. 846-852.Journal <strong>of</strong>4-2Kim, R.Y. ‘Tatigue Behavior.” Comp@te DesireTh<strong>in</strong>k Composites: Dayton, Ohio, 1986.1986, Section 19, S.W. Tsai, Ed.,4-34-44-54-64-7Goetchius, G.M. “Fatigue <strong>of</strong> Composite Materials.” Advanced Comnosites III Exmrd<strong>in</strong>ghe T~, Third Anmd Conference on Advanced Composites, Detroit, Michigan,15-17 September 1987, p.289-298.Salk<strong>in</strong>d, M.J. “Fatigue <strong>of</strong> Composites.” Composite Materials: Test<strong>in</strong>g and Design (SecondConference), ASTM STP 497, 1972, p. 143-169.Chang, F.H., Gordon, D.E., and Gardner, A.H. “A Study <strong>of</strong> Fatigue Damage <strong>in</strong>Composites by Nondestructive Test<strong>in</strong>g Techniques.” Etkigue <strong>of</strong> Filamentary Canpw.tĖIkIataW, ASTM STP 636, K.L. Reifsnider snd K.N. Lauraitis, Eds., American Societyfor Test<strong>in</strong>g and Materials, 1977, p. 57-72.Kasen, M.B., SChramm, RX., and Read, D.T. “Fatigue <strong>of</strong> Composites at Cryogenic.Temperatures.” F-o f Filamentary Co poslte Maten alq, ASTM STP 636, K.L.Reifsnider and K.N. Lauraitis, Eds., Ameri~a Society for Tesdng and Materials, 1977,p. 141-151.Porter, T.R. “Evaluation <strong>of</strong> Flawed Composite Structure Under Static and Cyclic Load<strong>in</strong>g.”~os ite Materi~ , ASTM STP 636, K.L. Reifsnider and K.N.Lauraitis, Eds., American Society for Test<strong>in</strong>g and Materials, 1977, p. 152-170.,.”262,. .,,.1*P i .“~. , ,,,,.. .,!’ ‘,,.. .


Cha~ter SevenREFERENCE4-84-94-1o4-114-124-134-144-154-164-174-18Ryder, J.T., and Walker, E.K. “Effects <strong>of</strong> Compression on Fatigue Properties <strong>of</strong> a.Quasi-Isotropic Graphite/Epoxy Composite.” ~~, ASTM STP 636, K*L. Reifsnider and K.N. Lauraitis, Eds., American Societyfor Test<strong>in</strong>g and Materials, 1977, p. 3-26.Sendeckyj, G.P., Stalnaker, H.D., and Kleismit, R.A. “Effect <strong>of</strong> Temperature on FatigueResponse on Surface- Notched [(0/+45/0~]3 Graphite/Epoxy Lam<strong>in</strong>ate.” me <strong>of</strong>c ~,ASTM STP 636, K.L. Reifsnider and K.N. Lauraitis,Eds., American Society for Test<strong>in</strong>g and Materials, 1977, p. 123-140.Sims, D.F., and Brogdon, V.H. “Fatigue Behavior <strong>of</strong> Composites Under Different Load<strong>in</strong>g.Modes.” _ <strong>of</strong> F~ C-site Malwials, ASTM STP 636, K,L. Reifsniderand K.N. Lauraitis, Eds., American Society for Test<strong>in</strong>g and Materials, 1977, p. 185-205.Sun, C.T,, and Roderick, G.L. “Improvements <strong>of</strong> Fatigue Life <strong>of</strong> Boror@poxy Lam<strong>in</strong>atesBy Heat Treatment Under Load.” -e <strong>of</strong> Filame~ Composite MatW, ASTMSTP 636, K.L. Reifsnider and K.N. Lauraitis, Eds., American Society for Test<strong>in</strong>g andMaterials, 1977, p. 89-102.Sun, C.T,, and Chen, J.K. “On <strong>the</strong> Impact <strong>of</strong> Initially Stressed Composite Lam<strong>in</strong>ates.”Journal <strong>of</strong> Com~osite Materials, Vol. 19 (Nov. 1985).Roderick, G.L., and Whitcomb, J.D. “Fatigue Damage <strong>of</strong> Notched Boron/EpoxyLam<strong>in</strong>ates Under Constant-Amplitude Load<strong>in</strong>g.” Fatizne <strong>of</strong> Filamentm co t)oslte~, ASTM STP 636, K.L. Reifsnider and K.N. Lauraitis, Eds., Ameri~~ Societyfor Test<strong>in</strong>g and Materials, 1977, p. 73-88.Highsmith, A.L., and Reifsnider, K.L. “Internal Load Distribution Effects Dur<strong>in</strong>g FatigueLoad<strong>in</strong>g <strong>of</strong> Composite Lam<strong>in</strong>ates.” comnosite Materials: Fatiae and Frac we, ASTMSTP 907, H.T. Hahn, Ed., American Society for Test<strong>in</strong>g and Materials, Philadelphia, PA,1986, p.233-251.Reifsnider, K.L., St<strong>in</strong>chcomb, W.W,, and O’Brien, T,K. “Frequency Effects on aStiffness-Based Fatigue Failure Criterion <strong>in</strong> Flawed Composite Specimens.” ~I?ilamentan Com~wte Materials, ASTM STP 636, K.L. Reifsnider and K.N. Lauraitis,Eds., American Society for Test<strong>in</strong>g and Materials, 1977, p. 171-184.Hahn, H.T. “Fatigue <strong>of</strong> Composites.” Composites Guide. University <strong>of</strong> Delaware, 1981.Kundrat, R,J., Joneja, S,K,, and Broutman, L,J. “Fatigue Damage <strong>of</strong> Hybrid CompositeMaterials.” National Technical Conference On Polymer Alloys, Blends, and Composites,The Society <strong>of</strong> Plastics Eng<strong>in</strong>eer<strong>in</strong>g, Bal Harbour, Fl, Oct. 1982.Kim, R.Y. “Fatigue Strength.” Eng<strong>in</strong>ee red Materials Handb ook ,Volume 1, Composites,ASM International, Materials Park, Ohio, 1987..s’263.,.,’,.“


Chapter ReferencesMar<strong>in</strong>e Composites4-194-204-214-224-234-244-254-264-274-284-294-30Talreja, R. “Estimation <strong>of</strong> Weibull Parameters for Composite Material Strength andFatigue Life Data.” IZiit@e <strong>of</strong> C~, Technomic Publish<strong>in</strong>g :Lancaster, PA, 1987.Sims, D.F., and Brogdon, V.H. “Fatigue Behavior <strong>of</strong> Composites Under DifferentLoad<strong>in</strong>g Modes.” Ea@ue <strong>of</strong> F~ Co ~, ASTM STP 636, KL.Reifsnider and K.N. Lauraitis, Eds., American Soci~ty for Test<strong>in</strong>g and Materials, 1977,p. 185-205.eers to Comn~ . * By <strong>the</strong> American Society for Metals. MetalsPark, OH, 1987,Bumel, et al. “Cycle Test Evaluation <strong>of</strong> Various Polyester Types and a Ma<strong>the</strong>maticalModel for Project<strong>in</strong>g Flexural Fatigue Endurance,” Repr<strong>in</strong>ted from 41st Annual, 1986,SPI Conference, Section Mar<strong>in</strong>e I, Session 7-D.Konur, O. and L, Ma<strong>the</strong>ws. “Effect <strong>of</strong> <strong>the</strong> Properties <strong>of</strong> <strong>the</strong> Constituents on <strong>the</strong> FatiguePerformance <strong>of</strong> Composites: A Review,” ~, VO1. 20, No. 4 (July, 1989), p.317-328.Jones, David E. “Dynamic Load<strong>in</strong>g Analysis and Advanced Composites.” SNAME SESection, May 1983.O’Brien, T. Kev<strong>in</strong>. Deltiation Durability <strong>of</strong> CO Dosite Material s for Rotorcrafl. U.S.Army Research and Technology Activity, Langley,~A. LAR-13753.Spr<strong>in</strong>ger, (3,S. Environ~ ental Effects on Cornr)osite Mate@, Technomic Publish<strong>in</strong>g:Lancaster, PA, 1984.Leung, C.L. and D.H. Kaelble. Moisture 13iffusion Analvsis for Comnosite Micro-Proc. <strong>of</strong> <strong>the</strong> 29th Meet<strong>in</strong>g <strong>of</strong> <strong>the</strong> Mechanical Failures Prevention Group. 23-25 May1979, Gai<strong>the</strong>rsburg, MD.Pritchard, G. and S.D, Speake. “The Use <strong>of</strong> water Absorption K<strong>in</strong>etic Data to PredictLam<strong>in</strong>ate Property Changes.” Composites, Vol. 18 No. 3 (July 1987), p. 227-232.Crwmp, Scott. A Study <strong>of</strong> BlistE r Formation <strong>in</strong> Gel Coate d Lam<strong>in</strong>aLeS. Proc, <strong>of</strong> <strong>the</strong>International Conference Mar<strong>in</strong>e Applications <strong>of</strong> Composite Materials. 24-26 Mar. 1986.Melbourne,FL: Florida Institute <strong>of</strong> Florida.Mar<strong>in</strong>e, R., et al. l’he Effect <strong>of</strong> COat<strong>in</strong>m on Blister Formation. Proc, <strong>of</strong> <strong>the</strong> ~~rnationalConference Mar<strong>in</strong>e Applications <strong>of</strong> Composite Materials. 24-26 Mar. 1986. Melbourne,FL: Florida Institute <strong>of</strong> Technology..264‘i,,.,-.,,>,.”‘>‘ . ..I,., ...,t’ “:,“.,


ChapterSevenREFERENCE4-314-324-334-344-354-364-375-1. . . .Kokarakis, J. and Taylor, R. lleore~Proc. <strong>of</strong> <strong>the</strong> Third International Conference on Mar<strong>in</strong>e Application <strong>of</strong>Composite Materials. 19-21 Mar. 1990. Melbourne, FL Florida Institute <strong>of</strong> Technology..Smith, James W. _ <strong>of</strong> Gel C- Co~ 1. .“ .~=. Proc. Of <strong>the</strong> 43rd ~u~ Conference <strong>of</strong> <strong>the</strong> Composites Institute, The Society<strong>of</strong> <strong>the</strong> Plastics Industry, Inc. 1-5 February, 1988..Blackwell, E., et al. ~. “Proc. <strong>of</strong> <strong>the</strong>Atlantic Mar<strong>in</strong>e Surveyors, Inc. Blister<strong>in</strong>g and Lam<strong>in</strong>ate Failures <strong>in</strong> Fiberglass BoatHulls. 9-10 Feb. 1988. Miami, FL.USCG NVIC No. 8-87. “Notes on Design, Construction, Inspection and Repair <strong>of</strong> FiberRe<strong>in</strong>forced Plastic (FRP) Vessels.” 6 Nov. 1987.Owens-Corn<strong>in</strong>g Fiberglas. “Fiber Glass Repairability: A Guide and Directory to <strong>the</strong>Repair <strong>of</strong> Fiber Glass Commercial Fish<strong>in</strong>g Boats.” No. 5-BO-12658. Toledo, OH, 1984.~~ and o<strong>the</strong>r Fiber Glass Re<strong>in</strong>fti Surfaces . PPG Industries:Pittsburgh, PA.Proc. <strong>of</strong> Atlantic Mar<strong>in</strong>e Surveyors, Inc. Two Day Sem<strong>in</strong>ar Blister<strong>in</strong>g and Lwm<strong>in</strong>ateFailures <strong>in</strong> Fiberglass Boat Hulls. 9-10 Feb. 1988. Miami, FL.“HOWto Build a Mold.” Mar<strong>in</strong>e Res<strong>in</strong> New. Reichhold Chemicals, Inc. ResearchTriangle Park, NC, 1990.5-25-3Reichard, R. and S. LewiL The Use <strong>of</strong> Polyeste r Fabric to Reduc e Pr<strong>in</strong>t-Thro I@.<strong>the</strong> SNAME Powerboat Symposium. 15 Feb. 1989. Miami, FL.“JIT Delivery Plan Set for RP Fabricators.” ~ “Cs,(1989), p. 18.Proc. <strong>of</strong>5-45-5Zenkert D. snd Groth H.L. “Sandwich Constructions l.” Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> 1st Intl.Conference on Sandwich Constructions, edited by K.A. Olsson, et d., EMAS, 1989, p.363-381.Gusmer Ca~ . 5th Ed. KenL WA, 1988.5-6Health. Safety and.J@u“ onmetianualVA, 1989.. FRP Supply. Ashland Chemical, Richmond,5-7Safe Handl<strong>in</strong>~ <strong>of</strong> Advanced Comnosite Materials Com~o e ts: Health Information.Suppliers <strong>of</strong> Advanced Composite Materials Association,n~l<strong>in</strong>gton, VA, 1989.5-8“FFA Considers OSHA Proposed Agreement”1989), p. 12-13.Fabrication News, Vol. 11, No. 11 (Nov.265,d’”j, “.’ ; ,,’T~...‘\.


Chapter References Ma<strong>the</strong> Composites5-9 Madmen, S. and C. Madsen. ~ Develo_ <strong>in</strong> GRP ~Proc. <strong>of</strong> <strong>the</strong>3rd International Conference on Mtie Applications <strong>of</strong> ComposimMaterials. 19-21 March 1990. Melbourne, FL: Florida Institute <strong>of</strong> Technology, 1990..5-10 Walewski L. and S. Stockton. %ow-styrene Emission Lam<strong>in</strong>at<strong>in</strong>g Res<strong>in</strong>s Prove it <strong>in</strong> <strong>the</strong>Workplace.” ~ (Aug. 1985), p. 78-79.5-11 Seemann, Bill. Letter to Eric Greene. 11 April, 1990. Smnann Composites, Inc.,Gulfport, MS.5-12 Miller B. “Hybrid Process Launches New Wave <strong>in</strong> Boat-Build<strong>in</strong>g.” ~, “ (Feb.1989), p. 40-42.5-13 Gougeon Bro<strong>the</strong>rs Inc. GT,-oxy Re~eon J.~ . .Epmy. Bay City, MI, 1987.5-14 Thomas, Ronald and Christopher Cable. “Quality Assessment <strong>of</strong> Glass Re<strong>in</strong>forced PlasticShip Hulls In Naval Applications.” Diss. MIT 1985. Alexandria, VA:DefenseTechnical Information Center, 1985.5-15 U.S. Navy. MIL-C-9084C. Military Specificau“on Cloth. Glass. F<strong>in</strong>ished. for Res<strong>in</strong>Larn<strong>in</strong>ateS Eng<strong>in</strong>eer<strong>in</strong>g Specifications & Standards Department Code 93, Lakehurst, NJ.9 June 19~0..5-16 Proposed Gude for Buildirw and Class<strong>in</strong>v Il@-St)eed and DisnJacement Motor Yachts.By <strong>the</strong> American Bureau <strong>of</strong> Shipp<strong>in</strong>g. Paramus, NJ, Nov. 1989 Draft.6-1 Reichard, R.P. and T. Gaspam<strong>in</strong>i. “Structural Analysis <strong>of</strong> a Power Plan<strong>in</strong>g Boat.”SNAME Powerboat Symposium, Miami Beach, FL, Feb. 1984.6-2 Reichard, R.P. “Structural Design <strong>of</strong> Multihull Sailboats.” First International Conferenceon Mar<strong>in</strong>e Applications <strong>of</strong> Composite Materials. Melbourne, FL Florida kstitLIte <strong>of</strong>Technology, March 1986.6-3 1988Annual Book <strong>of</strong> ASTM Standards, Vols. 8.01,8.02, 8.03, 15.03, ASTM, 1916 RaceSt., Philadelphia, PA 19103.6-4 Weissman-Berman, D. “A Prelim<strong>in</strong>ary Design Method for Sandwich-Cored Panels.”Proceed<strong>in</strong>gs 10th Ship Technology and Research (STAR) Symposium, SNAME SY-19,Norfolk, VA, May 1985.6-5 Sponberg, E.W. “Carbon Fiber Sailboat Hulls: How to Optimize <strong>the</strong> Use <strong>of</strong> an ExpensiveMat.mial.” J. Mar<strong>in</strong>e TeclL, 23(2) (April 1986).266


ChapterSevenREFERENCE6-66-76-86-97-17-27-37-47-5Riley, Craig and F. Isley. “Application<strong>of</strong>BiasFabricR e<strong>in</strong>forcedH ullPanels.” FirstInternational Conference on Mar<strong>in</strong>e Applications <strong>of</strong> Composite Materials. Melbourne,FL Florida Institute <strong>of</strong> Technology, March 1986.. . .Naval Sea System Command (NAVSEA). ~ Fue amLlbaclty Tesl. .Qu~ti for ~ms TJsed<strong>in</strong> ~,.~, MIL-STD-X108(SH).Dept. <strong>of</strong> <strong>the</strong> Navy, Wash<strong>in</strong>gton, D.C. 11, July 1989.Schwartz, M.M. “Nondestructive Composites Tesdng.” ImmatimdaLuct News9(Sept./Ott., 1989), p. 28.~Vol..1, Composites. By <strong>the</strong> American Society <strong>of</strong> MetalsInternational. Metals Park, OH, 1987.Watson, James A. and William Hayden. “Ovefiew <strong>of</strong> Coast Guard Plan Review forHigh-Tech Ship Design.” Mar<strong>in</strong>e Teclmolo m, Vol. 27, No. 1 (Jan. 1990) p. 47-55.Curry, Robert. ~. . YProc. <strong>of</strong> <strong>the</strong> Third International Conference on Mar<strong>in</strong>e Applications <strong>of</strong> CompositeMaterials. 19-21 March, 1990. Melbourne, FL: Florida Institute <strong>of</strong> Technology, 1990.Heller, S.R. & Jasper, N.H., “On <strong>the</strong> Structural Design <strong>of</strong> Plan<strong>in</strong>g Craft.” Transactions,RINA, 1960.Savitsky, D. and Brown, P. W., “Procedures for Hydrodymunic Evaluation <strong>of</strong> Plan<strong>in</strong>gHulls, <strong>in</strong> Smooth and Rough Water.” MadnLkQhnolo ~, (October 1976).Allen, R.G. and Jones, RR., “A $implifl~d Method for Deterr<strong>in</strong>g StructuralDesign-Limit Pressures on High Performance Mar<strong>in</strong>e Vehicles.” AIAA 1987.7-6Spencer, J.S., “Structural Design <strong>of</strong> Alumm<strong>in</strong>um Crewboats.”~ New York, (1975).pp 267-274, Mari.tE267


IndexMar<strong>in</strong>e Compositesablation....................................................................242ablativeplastic........................................................242absorption................................................................N2acceleratedtest........................................................242acceleratedtest<strong>in</strong>g...................................................211acceleratoṙ........................................................48,242acceptancetest........................................................242acetone....................................................................242acid number............................................................ 192acousticemission............................................225,242xtivamr .....................................8.............................242additive....................................................................242adherend..................................................................242advancedcomposite................................................242fiChIICd tactical fighter (ATT)...............................35advsncedtdmology bomber(B-2).........................36Xrospxe ...................................................................34&g ........................................................................242aircushionvehiclė...................................................11air<strong>in</strong>hibiteḋ..............................................................47AirRideCraft........................................................... 12air-bubblevoid........................................................242W-<strong>in</strong>hibitedres<strong>in</strong>....................................................242Airbus........................................................................35aircrafṫ......................................................................35Arex@.......................................................................51allowable.....................,,.,,,,,,,.,.............................242alternat<strong>in</strong>gstress.....................................................242alternat<strong>in</strong>gstressamplitudė...................................242ambientconditionṡ.................................................242American13ureau<strong>of</strong> Shipp<strong>in</strong>g(ABS)................1.230AnericanSocietyforTest<strong>in</strong>gMaterMs(ASTM).197AMTMar& ...............................................................8anisotropic.........................................................86,242antioxidant. ..............................................................242ararnid.....................................................................242aramid<strong>fiber</strong>...............................................................41wealweighṫ............................................................242artiilcialwea<strong>the</strong>r<strong>in</strong>ġ...............................................242aspectratio..............................................................M3ASTM~StS.............................................................197autoclave.................................................................243autoclavemold<strong>in</strong>ġ..................................................182automotive~fications ............................................2lbagg<strong>in</strong>g................................................................... 243balancedcmstruction............................................. 243balancedlam<strong>in</strong>ate...................................................243ballistic...................................................................... 19balsa..........................................................................49Barcolhardness.............................................. 193,243Barcolhardnesstest ............................................... 202barrierfilm.............................................................. 243basket weave............................................................ 45&am, sandwich...................................................... 109beam, solid ............................................................. 109bedd<strong>in</strong>gcompound................................................. 243BeechStarship.......................................................... 35bend<strong>in</strong>gmomen~still............................................... 75bend<strong>in</strong>gmomen~wave............................................ 76Bertrarn....................................................................... 4bias fabric............................................................... 243biaxialload...........................1................................, 243bidirectionallam<strong>in</strong>ate............................................. 243b<strong>in</strong>der......................................................................243blade,comWtiw....................................................... 18bleedercloth........................................................... 243blister......................................................................243blisters..................................................................... 149blisters,repair......................................................... 164Block Island40 .......................................................... 3block<strong>in</strong>gload............................................................ 77BlountMar<strong>in</strong>e.......................................................... 11Boe<strong>in</strong>g....................................................................... 35bolts, through-........................................................ 126bond........................................................................ 243bond strength.......................................................... 243bond, iiber/matrix..................................................... 87bond<strong>in</strong>gangles........................................................ 243BostonWhalW......................................................2,10boundaryconditions............................................... 243buckl<strong>in</strong>g............................................................82,243bulk mold<strong>in</strong>gcompound(BMC)...........................243bulkheads................................................................ 121buoy ....................................................................,...,. 13burn throughtes~ DTRC.......................................215butt jo<strong>in</strong>t ................................................................. 243C-Flex@..................................................................... 52c-scan ..................................................................... 245268,-,. ,,,/ ,-—! ,,, ‘1Iy: -,:-.,. . . t,’., ,$,,,~ ,, ,.


ChapterSevenREFERENCEcanoes..........................................................................5mhn ......8...............................................................M3carbon<strong>fiber</strong>.......................................................43. 244cargovessel.......................s....................................... 12cargovessels...........................................................229carpetplot .........................................................94,244catalyst..............................................................48,244cell...........................................................................244cell size...................................................................244centerl<strong>in</strong>ejo<strong>in</strong>t ...................................................,,.,,118cha<strong>in</strong> @teS ... .... ..... ... . ... .... .... .... .... .... .... .... ... .. .. . .. .... 244cha<strong>in</strong>plateṣ.............................................................. 130chalk<strong>in</strong>g................................................................... 159Charpyimpacttest..................................................244choppedstrand..................................................44,244choppergun ............................................................ 169ChristensenMotorYacht ....................................,,.....4Chrysler.....................................................................23classification,AES .................................................233closedcell fom ......................................................244cloth...........................................................................44Cocul<strong>in</strong>g...................................................................M4co<strong>in</strong> test...................................................................244compaction..............................................................244COMPE~ ................................................................43compliance..............................................................244components............................................................... 18compositem. ..................................................Mcompressionafterimpact test<strong>in</strong>g...........................205compm.ssionmold<strong>in</strong>g......................................180,244compressiontest, sandwich....................................204compressiontest, sandwichcore............................200compressiontest<strong>in</strong>g................................................202compressiontest<strong>in</strong>g,open-hole,.,...........................206compressivepropwtiestest<strong>in</strong>g............................,.,203compressiveslrength..............................................244compressivemess ..................................................244compressivetest<strong>in</strong>g.................................................205computerlam<strong>in</strong>ateanalysis......................................96cone calorimeter.....................................................214constituentmaterials...............................................244construction,cored.................................................. 167construction,s<strong>in</strong>glesk<strong>in</strong>......................................... 166contactmold<strong>in</strong>g......................................................Wconta<strong>in</strong>er,shipp<strong>in</strong>g....................................................27cont<strong>in</strong>uousstrand......................................................44conversionfactors...................................................236copolymeT...............................................................244core..........................................................................244corematerial.....................................................49,106core matmialdensity,test method......................... 199core materialwaterabsorption,test method.......... 199core separation........................................................ 157Coremat.................................................................... 52corrosionresistance................................................ 244mum ....................................................................... 245coupl<strong>in</strong>gagent........................................................ 245crack<strong>in</strong>g,gel coat................................................... 156craz<strong>in</strong>g.................... .creep........................................................................ 245cross-l<strong>in</strong>k<strong>in</strong>g........................................................... 245cure......................................................................... 245cur<strong>in</strong>gagent............................................................ 245. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24513aedaluṣ................................................................., 38damagetolerance.................................................... 245damage,wmdwich.................................................. 162damage,s<strong>in</strong>gle-sk<strong>in</strong>................................................ 161DavidTaylorReseamhCenter (DTRC).................. 18debond.................................................................... 245debond<strong>in</strong>g............................................................... 157debond<strong>in</strong>g,core...................................................... 163deck edge connection............................................. 115delam<strong>in</strong>ation................................................... 143,245Delta Mar<strong>in</strong>e................................................................8denier......................................................................z5details...................................................................... 114dimensionalstability.............................................. 245dimples................................................................... 245draft angle...............................................................245drape....................................................................... 245driveshaft..................................................................dry Mk ............................................................ zductility................................................................... 245ductwork................................................................... 32dynamicphenomena................................................ 76E-glass..............................................................41. 245elastic constants........................................................ 89elastic deformation................................................. 245elasticlimit............................................................. 245elasticity.................................................................. 245elasticity,modulus<strong>of</strong>............................................. 249elastomeṛ................................................................ 245elongation............................................................... 245encapsulation.......................................................... 246eng<strong>in</strong>ebeds............................................................. 126epoxy........................................................................ 48epOXy Pl=tiC ... .... .... .... .... .... .... .... .... .... ... .... .... ...... .. . 246equipment,manufactur<strong>in</strong>g..................................... 169exo<strong>the</strong>rmheat......................................................... 246,,


Index Ma<strong>in</strong>e Compositesexo<strong>the</strong>rm,peak........................................................ 193exo<strong>the</strong>rm,test methodfor peak.............................. 198failurecriteria............................................................97failurecriterion.......................................................246failureenvelope......................................................U6f@g ......................................................................M6fak<strong>in</strong>gs,periacop ..................................................... 15fairwater,submar<strong>in</strong>e............................................... 155fans............................................................................32fasteners,self-tapp<strong>in</strong>g............................................. 126fatigue..............................................................133,246fatiguelife...............................................................246fatiguelimit.............................................................246fatiguestrength.......................................................246fatigue test &ti ....................................................... 137fatigue<strong>the</strong>ory..........................................................136fatigue,tension-tensiontest<strong>in</strong>g...............................204fay<strong>in</strong>g surface..........................................................246felt ...........................................................................246ferry,pmsengm......................................................... 11<strong>fiber</strong>.........................................................................246<strong>fiber</strong> content....................................,,,,,,..................246<strong>fiber</strong>contenttest<strong>in</strong>g................................................203<strong>fiber</strong> comt ...............................................................M6<strong>fiber</strong> direction..........................................................246<strong>fiber</strong> volume..............................................................55<strong>fiber</strong> volumeratio.....................................................89<strong>fiber</strong> volumetest<strong>in</strong>g................................................207<strong>fiber</strong>glass...........................................................41,246<strong>fiber</strong>gla<strong>ssc</strong>hoppm...................................................M6<strong>fiber</strong>glass<strong>re<strong>in</strong>forced</strong>palstic @W) ........................246<strong>fiber</strong>glassre<strong>in</strong>forcement.........................................246Fick’s equation........................................................246Fickiandiffusion..................................................... 146fdament.............................................................U. 246fdarnentw<strong>in</strong>~g .............................................l8l. 246fill............................................................................247filler.........................................................................u7fflet .........................................................................247fill<strong>in</strong>gyarn ..............................................................247f<strong>in</strong>ish........................................................................247f<strong>in</strong>ishes,glass.......................................................,,..,41fimiteelementmethod (FEM)................................. 110fire test<strong>in</strong>g...............................................................212fret-ply-failure........................................................247fish eye....................................................................247fish<strong>in</strong>g<strong>in</strong>dustry...........................................................8fitt<strong>in</strong>gs,through-hulḷ.............................................. 129flameretardants.....................a................................u7flammability............................................................247flexuralfatiguetest<strong>in</strong>g........................................... 202flexural modtius..................................................... 247flexurzdstiffness,sandwichbeam.......................... 108flexuralstiffness,sandwichpanel.......................... 110flexuralstiffness,solidbeam................................. 107flexuralstrength...................................................... 247flexumlstrength,beam.......................................... 109flexuraltest<strong>in</strong>g........................................................ 202flexurecreeptesg sandwich................................... 205flexuretest, sandwich............................................. 204flow......................................................................... 247foam-<strong>in</strong>-placẹ......................................................... 247Ford........................................................................... 22foundation,composite.............................................. 18fracturetoughness.................................................. 247gel ....................................................,,,,,,.,.,,............ 247gel coat ........................................................... 156,247gel tie ................................................................... 192gel time, test metiti .............................................. 198gelationtime........................................................... 247GeneralMotom......................................................... 23girders.......c............................................................. 126glass f<strong>in</strong>ish.............................................................. 247glass transition ...................................................... 247~tik .............................................................43. 247Greenstrength........................................................247Hahn,H.T................................................................. 96hand by.UP ..... ... ....... ..... .... .... .... .... .... .... .... ..... 180,247hardener.................................................................. 248hardware,mount<strong>in</strong>g................................................ 126harnesssat<strong>in</strong>........................................................... 248Harrier‘~mnpjet?’(AV-88)..................................... 36hatches.................................................................... 129haul<strong>in</strong>gload.............................................................. 77hazard...................................................................... 173healthconsiderations.............................................. 173heatbuild-up........................................................... 248heatresistance........................................................ 248heticopkr .................................................................. 37Holler,S.R................................................................ 79holes, smallnon-penetrat<strong>in</strong>g.................................. 163homogenwus.......................................................... 248honeycomb.......................................................51,248hoop StIeSS ... .... .... ... ..... .... .... .... .... .... .... .... . .... ... ... ... . 248hove~ .................................................................. 18hfl ............................................................................ ‘-270., .,,,,.;.i.,,,’. :‘,,,. ,..’“, [,,{ “’,!.. -., ,, . . . . . . .


ChapterSevenREFERENCEhull cetication, ABS............................................235hull response.............................................................81hybrid......................................................................248hydr<strong>of</strong>oil.................................................................... 18hygro<strong>the</strong>rrnaleffect.................................................248hysteresis.................................................................248ignitionloss.............................................................248impact...................................................................... 139impactstrength.......................................................248impacttit ...............................................................M8impregnatė..............................................................248impregnator............................................................. 172<strong>in</strong>clusion.................................................................,248<strong>in</strong>hibitor...................................................................248<strong>in</strong>jectionmold<strong>in</strong>g....................................................248kmMti .............................................................X8<strong>in</strong>terlam<strong>in</strong>arshear...................................................M8htimhm .............................................................248isophthalic................................................................,47isotropic...................................................................248Itakraft ...................................................................... 12Izod impacttest.......................................................248J/24..............................................................................3Jasper,N.H................................................................79JY 15....................................................................... 178Karlslmonavawe~AB...............................................11kayaks.........................................................................5keel attachment....................................................... 119kerf..........................................................................249Kevlar@.............................................................41,249k<strong>in</strong>etic energy......................................................... 139knitted fabrics.........................................................249knittedre<strong>in</strong>forcemenṭ...............................................46ladder.........................................................................33lam<strong>in</strong>a......................................................................249lam<strong>in</strong>ae....................................................................249lam<strong>in</strong>ate.............................................................93, M9lap jo<strong>in</strong>t ...................................................................249Laser............................................................................3lay-up....................................................................,.249leafspr<strong>in</strong>gṣ................................................................ 24Lear Fan 2100.......................................................... 35LeComte................................................................... 10Lequerq........................................................................8lifeboats.......................................................................9l<strong>in</strong>er, hull ................................................................ 248load factor,dynamic................................................. 79load, preSSUE ... .... .... .... .... .... .... ... .. ... .... ... ..... .... .... .... . 79load-deflectioncurve..............................................249loads,hydrodynamic................................................ 79loads,out-<strong>of</strong>-planẹ................................................... 78loads,po<strong>in</strong>t ............................................................... 81loss on ignition....................................................... 249low-pressurelam<strong>in</strong>ates........................................... 249low-pr<strong>of</strong>ile................................................................ 48macromechanicṡ..............................................86,249mat .......................................................................... 249ma~ choppedstrand.................................................46mat surfac<strong>in</strong>g........................................................... 44matrix......................................................................249matrixcrack<strong>in</strong>g....................................................... 135mechanicaladhesion.............................................. 249mechanicalproperties............................................ 249mekperoxide(MEKP)........................................... 249micromechanicṡ...............................................86,249mil........................................................................... 249MIL-STD-224)2(SHj ............................................. 216milled<strong>fiber</strong>.......................................................44,249m<strong>in</strong>e countermeasure(MCM)vessel..................... 16m<strong>in</strong>esweepeṛ............................................................ 15MOBIK..................................................................... 21moisturecontent..................................................... 146molds...................................................................... 166moment<strong>of</strong> <strong>in</strong>ertia sandwichbeam ....................... 107moment<strong>of</strong> <strong>in</strong>erii%sandwichbeam core ...............107moment<strong>of</strong> <strong>in</strong>ertia,solid beam............................... 106Navy fighteraimraft(Fi8A) .................................. 37nett<strong>in</strong>ganalysis....................................................... 250Nomex@.................................................................... 51non-airr-<strong>in</strong>hibitedres<strong>in</strong> .......................................... 250nondestructiveevaluation(NDE).......................... 250nondestructive<strong>in</strong>spection(NIX)............................ 250nondestructivetest<strong>in</strong>g ($J13T)................................ 224nonwovenfabric..................................................... 250nonwovenfabrics..................................................... 44271


.IndexMar<strong>in</strong>e Compositesorientation.................................................................87orthophthalic.............................................................47oscillationforces.......................................................76OSHA......................................................................174osmosis .................................................................,, , 149Osprey tilt rotor (V-22) ....................................,,,,,,,, 37oxygen temperature <strong>in</strong>dex ......................................212pressurebag mold<strong>in</strong>g............................................. 251pressuretable test Ware................................,,.... 208pr<strong>in</strong>t through........................................................... 159Pr@ler .................................................................... 15pultrusion........................................................ 181,251PVC foam,cross lioked........................................... 50Pvc foam, lhw ...................................................... 51qualityassuranceprogram(QAP)......................... 188quasi-isotropiclam<strong>in</strong>ate......................................... 252panel........................................................................250panel test<strong>in</strong>g,sandwich...........................................207partial volumes..........................................................88passengervessels....................................................228passengervessels,small.........................................229patrol boats................................................................ 16patrol boats,USCG................................................. 154peel ply....................................................................250peel strength............................................................250permanentset..........................................................250permeability............................................................250permissibleexposurelimit (PEL)..........................174phenolic...................................................................251pil<strong>in</strong>gs, formsandjackets for................................... 14pipel<strong>in</strong>es,submar<strong>in</strong>e................................................. 14pip<strong>in</strong>g systems..........................................................28pitch.........................................................................251pla<strong>in</strong> weave..........................................,,.,.,,,.,,,.45,251plan approval,ABS ................................................235plasticity..................................................................25lplugs........................................................................ 166ply......................................................................93.251ply density...............................................mm ................89plywood.............................................................53,160Pm foam..................................................................52Poission’smti ........................................................251polyester....................................................................47polyester,unsaturated...............................................47polye<strong>the</strong>re<strong>the</strong>rketone(PEEK)...............................251polymer...................................................................251polymer<strong>fiber</strong> ............................................................4lpolpetiation ........................................................25lpolywtie ............................................................25lporosity....................................................................251portlights................................................................. 129post cur<strong>in</strong>g..............................................................179postcure...................................................................251pot life.....................................................................251powerboats,rac<strong>in</strong>g...................................................... 1prepreg....................................................................251radiantpanel h test ............................................. 214radiography............................................................. 224rank<strong>in</strong>g.................................................................... 252reaction<strong>in</strong>jectionmold<strong>in</strong>g (RIM).......................... 252<strong>re<strong>in</strong>forced</strong><strong>plastics</strong>.................................................. 252re<strong>in</strong>forcementmaterial............................................. 41re<strong>in</strong>forc<strong>in</strong>gmat.........................................................44repair....................................................................... 161res<strong>in</strong> .................................................................,47,252res<strong>in</strong> content........................................................... 252res<strong>in</strong> transfermold<strong>in</strong>g(RTMj.,........lO. 177, 182,252res<strong>in</strong> volumeratio..................................................... 89res<strong>in</strong>-richarea......................................................... 252res<strong>in</strong>-starvedarea ................................................... 252rigg<strong>in</strong>glM& ............................................................. 78risers,drill<strong>in</strong>g ........................................................... 14rotor, helicopter........................................................ 37rov<strong>in</strong>g................................................................M. 252rudders.................................................................... 130s-glasṣ..............................................................4l. 252S-N diagram........................................................... 253SACMA material tests........................................... 205sailboats,rac<strong>in</strong>g.......................................................... 1sandwichbeam....................................................... 108sandwichcons~ction ............................................ 106sandwichconstructions.......................................... 252sandwichlm<strong>in</strong>ate test<strong>in</strong>g...................................... 204sat<strong>in</strong> weave............................................................... 45Scantl<strong>in</strong>g.................................................................. 252Schat-Ivfar<strong>in</strong>eSafety................................................. 10Scott,Robfi ............................................................. 12screws,mach<strong>in</strong>e..................................................... 128screws,self-tapp<strong>in</strong>g................................................ 128secondarybond<strong>in</strong>g......................................... 114,252272,“””.-’ ‘“ “-” . ,.,’, ., .’ ,., ,,#!l; ‘\, ,, $.$.‘;,. ,., ,, ,{,., ,5,’..-,,. ,, ““-.,’., ,-,~.~1


ChapterSevenREFERENCEsecondarysmcti .................................................252self-ext<strong>in</strong>guish<strong>in</strong>g res<strong>in</strong> ..........................................252set ............................................................................252set up...............................................................,.,,,,,,252shaft,propulsion.............................................,.,,,,,...18shear...............................................................,.,,.,,,.252shearfatiguetest, sandwichcore...........................200shearmodulus.........................................................253shearstra<strong>in</strong>..............................................................253shearstrength..........................................................253shearstrength,<strong>in</strong>terlam<strong>in</strong>ar....................................207shearstrength,parallel<strong>fiber</strong> <strong>in</strong>terlam<strong>in</strong>ar..............202shearstrength,punch tool ......................................202shearStIeSS..............................................................253shearstress test <strong>in</strong>-pkme........................................2O6shearstress,<strong>in</strong>-planetest<strong>in</strong>g...................................204shearteS~sandwichCOIE......................................,.200sheetmold<strong>in</strong>gcompound(SMC).....................22. 253shelflife ..................................................................253shell.........................................................................252shockload<strong>in</strong>g............................................................ 16shortbeam shear(SBS)..........................................253shroudattachmenṭ.................................................. 130silane...............................................................,.,,,,,.,42size..........................................................................253siz<strong>in</strong>g.........................................................................41ti ................................................................ 252-253sk<strong>in</strong> mti ..................................................................252smokechamber,NBS........................................,.,,.213SOLAS....................................................................219solid lam<strong>in</strong>atetest<strong>in</strong>g..............................................201spec~c gravity.......................................................253specfic#vitY, test method.................................. 197spectra ....................................................................43spraygun, gel coat.................................................. 169spraygun,res<strong>in</strong>....................................................... 169Sp~y.Up.................................................. 169, 180,253spunrov<strong>in</strong>g.......................................................44,253stacks,Ship................................................................ 18starvedarea.............................................................253s~eners .................................................................. 122storagelife ..............................................................253stxa<strong>in</strong>........................................................................253stia<strong>in</strong> entigy releaserate.................................... 143stress.,.”..,.,,.............................................................253stxe<strong>ssc</strong>oncentratioṇ................................................253stre<strong>ssc</strong>orrosion.......................................................253stre<strong>ssc</strong>rack<strong>in</strong>g.........................................................253stress-stra<strong>in</strong>curve...................................................253struc~ adhesive..................................................253styrene.....................................................................173submhe .................................................................. 15submersible............................................................... 13Sunf~h.........................................................................2surfaceeffectship.................................................... 11surfac<strong>in</strong>gmat.......................................................... 254symmetricallam<strong>in</strong>ate............................................. 254syntacticfoam.......................................................... 50tack.......................................................................... 254tanks .......................................................................... 32@ .......................................................................... 254temperatureeffects................................................. 158tensileproperties,test method............................... 197tensilest<strong>in</strong>gti ........................................................ 254tensilestrength,ultimate........................................ 254tensiles&ss ............................................................ 254tensiletest<strong>in</strong>g..................................................201,206tensiletest<strong>in</strong>g,open-hole....................................... 206tensiontest, sandwich............................................ 204TextronMar<strong>in</strong>eSystems.......................................... 11<strong>the</strong>rm<strong>of</strong>ornhg ........................................................ 254<strong>the</strong>rmographỵ.........................................................225<strong>the</strong>rmoplastic............................................................ 48<strong>the</strong>rmoplasticpolyesters......................................... 254<strong>the</strong>rmoset................................................................ 254<strong>the</strong>rmosctfoam......................................................... 49tlwrmosett<strong>in</strong>gpolyesters........................................ 254thiclmesstransition................................................. 129tiobpic .........................................................48. 254tool<strong>in</strong>gres<strong>in</strong>............................................................ 254...............................................................,.,,,., 15torsion..................................................................... 254torsionalstress...............j........................................ 254toughness......................................................,,,,,,.,..254tow...............................................................,,,.,,,,...254tower,aerial.............................................................. 33toxicity.................................................................... 173tracer....................................................................... 254transfermold<strong>in</strong>g..................................................... 254tmnsitiontempertati.u-e ........................................... 254trawlers........................................................................8Treveria@............................................................43,52Tsai, S.W.................................................................. 96U.S. CoastGuard................................................... 227ultrasonic<strong>in</strong>spection............................................... 224ultrasonictest<strong>in</strong>g...........................................,,.,.,,,, 254ultraviolet rays........................................................ 158uniaxialload........................................................... 255uniaxialstrength,<strong>in</strong>-plane........................................ 90,.,,.,?..,.273


IndexMar<strong>in</strong>e Compositesuniaxialstrength,through-thickness........................91unidirectional............................................................46unidirectional<strong>fiber</strong>s................................................255un<strong>in</strong>spectedvessels.................................................227urethane<strong>plastics</strong>.............................................,,,,,,,,255USCG NVICNo. 8-87........................................... 122utility vessels............................................................ 10vacuumbag mold<strong>in</strong>g......................................181,255veil...........................................................................255ventilation............................................................... 175vessel,pressure......................................................... 18v<strong>in</strong>yl ester..........................................................48,255viseometer............................................................... 192viscosity..................................................................255void content............................................................255voida..................................................................,,,,,,255volan@...............................................................,,,,,..42volatilecontent.......................................................255Volatileṣ..................................................................255Voyager.....................................................................38warp........................................................................ 255waterabsorption............................................. 146,255waterabsorption,test method................................ 197WatercraftAmeriea.................................................... 9wea<strong>the</strong>r<strong>in</strong>g.............................................................. 255weave...................................................................... 255weft. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255WestPortShipyard...................................................... 4wet lay-up........................................................i...... 255wet strength............................................................ 255wet-out.................................................................... 255wovenfabric............................................................. 44wovenrov<strong>in</strong>g.................................88i8 ...............44,256yarn........................................................................... 44yieldpo<strong>in</strong>t............................................................... 256yield strength.......................................................... 256YoungBro<strong>the</strong>rs.......................................................... 9Young’smodulus................................................... 256,,,\ i274


.+‘:,/,- .._-...—....~..COMMITTEE ON MARINE STRUCTURESCommission on Eng<strong>in</strong>eer<strong>in</strong>g and Technical SystemsNational Academy <strong>of</strong> Sciences - National Research CouncilThe COMMITTEE ON MARINE STRUCTURES has technical cognizance over<strong>the</strong> <strong>in</strong>teragency Ship Structure Committee’s research program.Stanley G. Stians@n (Chairman)r Riverh~ad, NYMark Y. Berman, Amoco Production Company, Tulsar OKPeter A. Gale, Webb Institute <strong>of</strong> Naval Architecture, Glen Cover NYRolf D. Glasfeld, General Dynamics Corporation, Groton, CTWilliam H. Hartt, Florida Atlantic University, Boca RatOn, FLPaul H. Wirsch<strong>in</strong>g, University <strong>of</strong> Arj.zona, Tucson, AZAlexander B. Stavovy, National Research Council, Wash<strong>in</strong>gton, DCMichael K. parrnelee, secretary, Ship Structure Committee,Wash<strong>in</strong>gton, DCLOADS WORK GROUPPaul H. Wirsch<strong>in</strong>g (Chairman), University <strong>of</strong> Arizona, Tucson, AZSubrata K. Chakrabarti, Chicago Bridge and Iron Company, Pla<strong>in</strong>field, ILKeith D. Hjelmstad, University <strong>of</strong> Ill<strong>in</strong>ois, Urbana, ILHsien Yun Jan, Martech Incorporated, Neshanic Station, NJJack Y. K. “Lou, Texas A & M University, College Station, TXNaresh Maniar, M. Rosenblatt ~ Son, Incorporated, New York, NYSOloman C. S. Yim, Oregon State University, Corvallis, ORMATERIALS WORK GROUPWilliam H. Hartt, Florida Atlantic University, Boca Raton, FLFereshteh Ebrahimi, University <strong>of</strong> Florida, Ga<strong>in</strong>esville, FLSantiago Ibarra, Jr., Amoco Corporation, Nape~ville, ILPaul A. Lagace, Massach<strong>use</strong>tts Institute <strong>of</strong> Technology, Cambridge, MAJohn Landes, University <strong>of</strong> Tennessee, Knoxville, TNMamdouh M. Salama, Conoco Incorporated, Ponca City, OKJames M. Sawhill, Jr., Newport News Shipbuild<strong>in</strong>g, Newport News, VA

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!