13.07.2015 Views

Aziridines: Overview and Recent Advancements - The Stoltz Group

Aziridines: Overview and Recent Advancements - The Stoltz Group

Aziridines: Overview and Recent Advancements - The Stoltz Group

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Aziridines</strong>- <strong>Overview</strong> <strong>and</strong> <strong>Recent</strong> <strong>Advancements</strong> -Jan Streuff<strong>Stoltz</strong>group - Literature Seminar01-26-2009, 8pm147 Noyes


Some Properties of AziridinePhysical Properties:HNbp = 57°CpKa (of conjug. acid) = 7.98possibly carcinogenicabsorbed through skinpotential mutagen: interacts with DNA nucleobasesStrain energy:HNOSexperimental :(calculated) :26.7 kcal/mol(26.2 kcal/mol)27.5 kcal/mol(27.3 kcal/mol)26.3 kcal/mol(24.6 kcal/mol)-(18.9 kcal/mol)J. B. Sweeney, Chem. Soc. Rev. 2002, 31, 247.R. D. Bach, O. Dmitrenko, J. Org. Chem. 2002, 67, 3884.


Inversion BarrierNHHNHHΔG = 26.8 kcal/mol(diastereomers isolable at 25°C)HΔG = 16.7 kcal/mol(inversion at 25°C)ClN NClHOMeONClONHMeno inversion at 50°CJ. B. Sweeney, Chem. Soc. Rev. 2002, 31, 247.


DNA Interaction of <strong>Aziridines</strong>OONH 2OR 1OR 2OR 1OR 2NNR 3 N N CH 3OOMitomycin AMitomycin BMitomycin CPorfiromycinR 1 = OMe, R 2 = Me, R 3 = HR 1 = OMe, R 2 = H, R 3 = MeR 1 = NH 2 , R 2 = Me, R 3 = HR 1 = NH 2 , R 2 = Me, R 3 = MeMitomycin GMitomycin HMitomycin KR 1 = NH 2 , R 2 = MeR 1 = OMe, R 2 = HR 1 = OMe, R 2 = MeR 1OR 2NOC(O)NH 2OR 3O N R 4FR-900482FR-66979FR-70496FK-973FK-317R 1 = CHO, R 2 = R 3 = R 4 = HR 1 = CH 2 OH, R 2 = R 3 = R 4 = HR 1 = CHO, R 2 = Me, R 3 = H, R 4 = AcR 1 = CHO, R 2 = R 3 = R 4 = AcR 1 = CHO, R 2 = Me, R 3 = AcOJ. B. Sweeney, Chem. Soc. Rev. 2002, 31, 247.


DNA Interaction of <strong>Aziridines</strong>OONH 2R 1OR 2OR 1OOHN+ 2e , + 2H− HOR 2NOHON R 3NH 2N R 3R 1OHORNOOHNNH 2HNNHR 3NON ONOO P OOORDNAR 1HOO NH 2OHN N R 3ORJ. B. Sweeney, Chem. Soc. Rev. 2002, 31, 247.R 1HOORNOONHNH 2R3 DNA


Other Natural Products Containing <strong>Aziridines</strong>MiraziridineHOONHONHOHNOHONHOHNNHNHNH 2CO 2 HAzinomycin AHOMeOMeOOOMeOHOH OH OOOOHHHHOOOOHNHONRONHONHOONHH 2 NFicellomycinHNH 2 NHOOOOH OH H OONHClCO 2 HNHNOOHAzicemicin A: R = HAzicemicin B: R = MeMaduropeptinMeO


Classic Aziridine SynthesesWenker's Synthesis (1935):HONH 2 H 2 SO 4250°C− H 2 OOSO2ONH 31) NaOH, Δ2) KOH3) Na, ΔHN610 g71%27%H. Wenker, J. Am. Chem. Soc. 1935, 57, 2328.Hoch-Campbell Synthesis (1934):PhN OHPhMgBr− C 6 H 6PhN OMgBrPhMgBrBrMgPhN OMgBrPhHH 2 O− 2 MgBrOHPhHNPhJ. Hoch, Compt. Rend. 1934, 198, 1865K. N. Campbell, B. K. Campbell, J. F. McKenna, E. P. Chaput, J.Org. Chem. 1943, 8, 103.


Aziridine Synthesis - <strong>Overview</strong>X N R2 X N R2ML nX N R2R 1R 1 BrR 1 YXR 1NR 1 R 2 PhI=NXH 2 NXR 2Ti(IV)BrR 1 R 2H 2 NXR 4 PXSOCl 2 ,R 1 SOCl 2 , [O]RSO 2 ClR 1OHMN 3 NaOHNHXHOPPh 3 HOR 2ONHXR 2R 1 R 2 R 1I. D. G. Watson, L. Yu, A. K. Yudin, Acc. Chem. Res. 2006, 39, 194.T. Ibuka, Chem. Soc. Rev. 1998, 27, 145.O


A Brief Introduction to NitrenesTriplet nitrene:X N Singlet nitrene: X NEnergyLUMOEnergyp LUMOsp 2 HOMOsp HOMOnon bondingnon bondingslightly higher energystabilized by electrondonating substituentsCommon nitrene precursors:RN 3hνor Δ−N 2RNH 2 N X ROxidantN X SOR2 RX = CO, SO 2PhI NW. Schoeller, A. B. Rozhenko, Eur. J. Org. Chem. 2001, 845.W. Lwowski in Nitrenes (Ed.: W. Lwowski), Interscience, New York, 1970, pp. 1-11.


Selected Examples for the Synthesis of <strong>Aziridines</strong> from AlkenesXXNNXNR 1HH R 2R 1HH R 2R 1HH R 2XNXXNXR 1 NR 2R 1R 2R 1 R 2R 1NR 2Singlet Nitrene(stereoselective)Triplet Nitrene(not stereoselective)J. B. Sweeney, Chem. Soc. Rev. 2002, 31, 247.


Copper Catalyzed AziridinationsMeMeOOPhCO 2 RPhNN(6 mol%)PhCuOTf (5 mol%)PhI=NTs (2.0 equiv)C 6 H 6 , 21°CPhTsNCO 2 RR = MeR = Ph63% i.y., 94% ee64% i.y., 97%eeD. A. Evans, M. M. Faul, M. T. Bilodeau, B. A. Anderson, D. M. Barnes, J. Am. Chem. Soc. 1993, 115, 5328.D. A. Evans, M. M. Faul, M. T. Bilodeau, J. Am. Chem. Soc. 1994, 116, 2742.NCOClNNCl Cl(11 mol%)CuOTf (10 mol%)PhI=NTs (1.5 equiv)CH 2 Cl 2 , -78°CClNCONTs75% i.y., >98% eeZ. Li, K. R. Conser, E. N. Jacobsen, J. Am. Chem. Soc. 1993, 115, 5326.Z. Li, R. W. Quan, E. N. Jacobsen, J. Am. Chem. Soc. 1995, 117, 5889.Via copper nitrene species:L*CuNTs OTfDrawbacks: Limited substrate scopeOften an excess of the alkene required


Copper Catalyzed Aziridination - Catalytic CycleL*Cu PF 6PhI NTsR 1 R 2 R 3NTsR 1PhIR 2 R 3 L*Cu NTsPF 6Z. Li, R. W. Quan, E. N. Jacobsen, J. Am. Chem. Soc. 1995, 117, 5889.


Aziridinations with Ruthenium <strong>and</strong> RhodiumPhCatalyst (1 mol%)N 3(1.0 equiv) TMS (1.0 equiv)0°C, 12hPhCatalyst (0.1 mol%)(1.0 equiv) NsN 3 (1.0 equiv)room temp., 36hSESNPh99% i.y., 92%eeNsNPh70% i.y., 81% eeCatalyst:NOCO NRuAr ArOAr = 3,5-Cl 2 -4-(CH 3 ) 3 SiC 6 H 2H. Kawabata, K. Omura, T. Katsuki, Tetrahedron Lett. 2006, 47, 1571.NsCatalyst:PhR(20 equiv.)Catalyst (2 mol%)PhI=NNs (1.0 equiv)CH 2 Cl 2 , room temp.1.0 − 1.5 hPhNRO OO PO Rh 2R = H:R = Me:74% i.y., 55% ee80% i.y., 73% ee4P. Müller, C. Baud, Y. Jacquier, Can. J. Chem. 1998, 76, 738.M. C. Pirrung, J. Zhang, Tetrahedron Lett. 1992, 33, 5987.P. Müller, C. Fruit, Chem. Rev. 2003, 103, 2905.


Iron Catalyzed AziridinationOTMSR 1 R 2(2 equiv)R 1 = aryl, alkylR 2 = H, alkylFe(OTf) 2 (2.5 mol%)PhI=NTs (1.0 equiv)TsMS 4Å, CH 3 CNTMSOroom temp., 1h R 1 R 2NOR 1 R 2HN46-72% i.y.TsFe(OTf) 2 (5 mol%)Lig<strong>and</strong> (30 mol%)PhI=NTs (1.0 equiv)TsNLig<strong>and</strong>:ONO(20 equiv)MS 4Å ,CH 3 CNroom temp., 1h72% i.y., 40% eeNNM. Nakanishi, A.-F. Salit, C. Bolm, Adv. Synth. Catal. 2008, 350, 1835.


Main <strong>Group</strong> Element Catalyzed AziridinationR 1 R 2 PTAB (10 mol%)Chloramine-T (1.1 equiv)orCH 3 CN, 25°C12hR 1 (30-95% i.y.)R 2R 1 , R 2 = H, alkyl, aryl, CH 2 OHTsNR 1 R 2orTsNR 1 R 2PTAB:PhBrNBrBrPhenyltrimethylammoniumtribromideTsNNTsNTsTsNOH93% 51% 76%TsTsNNPh868% 54%TsN73%OH94%HO30%TsNJ. U. Jeong, B. Tao, I. Sagasser, H. Henniges, K. B. Sharpless, J. Am. Chem. Soc. 1998, 120, 6844.J. U. Jeong, K. B. Sharpless, U.S. Patent number 5,929,252, 1999.


Main <strong>Group</strong> Element Catalyzed AziridinationPhMe"Br ": Br-X (X = Cl, TsNCl, Br, etc...)Br"Br "PhMeHPhNTsBrHMePhHNHMe+ BrHPhClNBrHMeTsTsN ClTsJ. U. Jeong, B. Tao, I. Sagasser, H. Henniges, K. B. Sharpless, J. Am. Chem. Soc. 1998, 120, 6844.


Main <strong>Group</strong> Element Catalyzed AziridinationOHPTAB (10 mol%)Chloramine-T (1.1 equiv)TsN(63%)OH(E/Z mix)OHPTAB (10 mol%)Chloramine-T (1.1 equiv)(64%)TsNOHJ. U. Jeong, B. Tao, I. Sagasser, H. Henniges, K. B. Sharpless, J. Am. Chem. Soc. 1998, 120, 6844.J. U. Jeong, K. B. Sharpless, U.S. Patent number 5,929,252, 1999.AcOAcOOAcOChloramine-T (2.3 equiv)I 2 (15 mol%)CH 3 CN, 0°C14hAcOAcOOAcONAcOAcOOAcONHTsNHTsTs69%V. Kumar, N. G. Ramesh, Chem. Commun. 2006, 4952.


With Pb(OAc) 4 as oxidant:ON NH 2 +OAziridination with HydrazinesRPb(OAc) 4-20°CPhthNHR+100 : 0PhthN highly diastereoselective(singlet state nitrene)RH(R = Ph, CO 2 Me)R. S. Atkinson, M. J. Grimshire, B. J. Kelly, Tetrahedron 1989, 45, 2875.R. S. Atkinson, D. W. Jones, B. J. Kelly, J. Chem. Soc., Perkin Trans. 1 1991, 1344.Electrochemically (platinum electrodes):OONNH 2+ R 1 R 2T. Siu, A. K. Yudin, J. Am. Chem. Soc. 2002, 124, 530.+ 1.8V (vs. Ag)HNEt 3 OAcroom temperaturePhthNR 1 R 2(R 1 , R 2 = alkyl, aryl, allyl, EWG)With PhI(OAc) 2 as oxidant:OPhthNONH 2+ R 1 PhI(OAc) 2 (2.0 equiv)R 2 room temperatureNR 1 R 2(R 1 , R 2 = alkyl, aryl, allyl, EWG)L. B. Krasnova, R. M. Hili, O. V. Chernoloz, A. K. Yudin, ARKIVOC 2005, 4, 26.


Aziridination with HydrazinesOPb(OAc) 4NO or+1.8 V (vs Ag)NHHNEt 3 OAc2OONNHO− PhIOPhINNHOPhI(OAc) 2− HOAc ONNH 2OProblematic substrates:MeOBrnOMeO 2 COOCO 2 MeOOAziridinating reagentR 1 R 2OH ONNOO R 1 R 2OAcONONR 1 R 2Observed sidereaction (electrochemically <strong>and</strong> with Pb(OAc) 4 ):O[O]H2 PhthN NHPhthN N[O]PhthN N2NH NPhth N NPhth[O]− N 22NHL. Hoesch, A. S. Dreiding, Chimia, 1969, 23, 405.I. D. G. Watson, L. Yu, A. K. Yudin, Acc. Chem. Res. 2006, 39, 194.O


Aziridine Transformations - Ring OpeningDiaminesβ-AminosulfidesR 1 NHR 4R 2 NHR 3R 1 NHR 3R 2 SR 4R 1 OR 4 β-AminoalcoholsR 2 NHR 3COR 4R 1 NHR 3R 2 COR 4R 1 NHR 3R 2 R 2NR 1 R 1Dimerization productsNR 3 R 2PolymersR 3NN R27 kcal / molAminesR 1 CH 2 R 4NHR 3R 2OR 1 P(OR) 2AminophosphonatesR 2 NHR 3I. D. G. Watson, L. Yu, A. K. Yudin, Acc. Chem. Res. 2006, 39, 194.T. Ibuka, Chem. Soc. Rev. 1998, 27, 145.


Concepts for the Activation of <strong>Aziridines</strong>Activation by protonation:N + Nuc HHH HNuc NHNNNuc2(basic)NucActivation by alkylation:ClCO 2 EtHN1)2) LDANHCO 2 EtCO 2 EtN CO 2 Et NClIsolable aziridinium compounds:Ph 3 PPhPhPh OCBr 4N OH PPh 3 N − O PPh 3tBuO 2 CtBuO 2 CtBuOCO 2 tBu2 CCO 2 tBuH. A. Song, M. Dadwal, Y. Lee, E. Mick, H.-S. Chong, Angew. Chem. Int. Ed. 2009, early view.NBrCO 2 tBu


Activation with substituents:OORSR 1NORSR 1NR 1 OORConcepts for the Activation of <strong>Aziridines</strong>POR 1NR 1ORPR 1NOROR 1NORR 1NO R 1NRweak amide resonance(increased ring strain)Activation with Lewis acids:LAOR 1NLAOR 1X LANLAOXR 1NRR(R 1 = H, alkyl)RR(indirect interaction)Kinetic activation:<strong>The</strong>rmodynamic activation:R 1ONR(polarization)ORR 1NNucRNucNORR 1Nuc(stabilization)NOR 1


Enantioselective Opening of <strong>Aziridines</strong>LiO N SO 2 -t-BunBuLi (3.0 equiv)(−)-Sparteine (3.0 equiv)Et 2 O-78°C to 0°CONLiSO 2 -t-BuHOSO 2 -t-BuNH30% i.y., 25% eeD. M. Hodgson, B. Stefane, T. J. Miles, J. Witherington, Chem. Commun. 2004, 2234.O 2 NNO 2Catalyst (10 mol%)TMSN 3 (1.05 equiv)ArHN N 3Catalyst:PhNMS 4Å, acetone-30°C, 48h95% i.y., 94% eeNOCrON 3Ph MeZ. Li, M. Fernández, E. N. Jacobsen, Org. Lett. 1999, 1, 1611.Catalyst:PhNTsCatalyst (30 mol%)MeMgBr (10 equiv)THF, 0°C1.5 hNHTsMe52% i.y., 91% eeOPhONO CuOCuNOOP. Müller, P. Nury, Org. Lett. 1999, 1, 439.


Catalytic Enantioselective Opening of <strong>Aziridines</strong>HNRCNR = 4-Nitrobenzoyl85% i.y., 82% eeGd(O i Pr) 3 (10 mol%)Lig<strong>and</strong> (20 mol%)TFA (5 mol%)2,6-Dimethylphenol (1 equiv)TMSCN (3 equiv)CH 3 CH 2 CNroom temp., 95hNRY(O i Pr) 3 (2 mol%)A (4 mol%)TMSN 3 (1.5 equiv)CH 3 CH 2 CNroom temp., 48hHNRN 3R = 3,5-Dinitrobenzoyl96% i.y., 91% eeLig<strong>and</strong>:PhPhPOHOOOFONHAcHOFEtO 2 CNH 2 •H 3 PO 4TamifluY. Fukuta, T. Mita, N. Fukuda, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2006, 128, 6312.T. Mita, I. Fujimori, R. Wada, J. Wen, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2005, 127, 11252.


Enantioselective Opening of <strong>Aziridines</strong>OTMSCN (1.0 equiv)Conditions25°COSiMe 3CN2 mol% Catalyst, CH 2 Cl 2 :0.01 mol% Catalyst, neat :100% conv., 77% ee (2h)100% conv., 56%ee (4h)RRCatalyst (dimer):NNOYONORNO 2RNH(CO)ArTMSN 3 (3.0 equiv)Catalyst (10 mol%)TMSCN (3.0 equiv)Catalyst (10 mol%)NH(CO)ArN 399% i.y., 97% eeDCE, 25°C72hNODCE, 25°C72hCN87% i.y., 94% eeB. Saha, M.-H. Lin, T. V. RajanBabu, J. Org. Chem. 2007, 72, 8648.B. Wu, J. C. Gallucci, J. R. Parquette, T. V. RajanBabu, Angew. Chem. Int. Ed. 2009, early view.


Asymmetric Opening of <strong>Aziridines</strong> with chiral AcidsRRNOCF 3Acid (10 mol%)TMSN 3 (1.0 equiv)DCE, room temp21-91hHR N ArOR N 3Acid:PhPhO OO POHF 3 C(1.5 equiv)12 examples49-97% yield (70-95% ee)E. B. Rowl<strong>and</strong>, G. B. Rowl<strong>and</strong>, E. Rivera-Otero, J. C. Antilla, J. Am. Chem. Soc. 2007, 129, 12084.PhPhClR 1NR 2R 3 -OH (4.0 equiv)Acid (15 mol%)Ag 2 CO 3 (0.6 equiv)4Å MS, PhCH 3 , 50°C24-36hPhNPh(meso)R 1R 2RROR 3R 1NR 211 examples56-95% yield (90-99% ee)Acid:i Pri Pri Pri PrO OO P i OHPri PrG. L. Hamilton, T. kanai, F. D. Toste, J. Am. Chem. Soc. 2008, 130, 14984.


N-Functionalization of <strong>Aziridines</strong>Reactivity of Amines:OR 1 H R 3NR 2HR 1 + H 2 ONOHR 3 − H 2 OR 2R 1 N R 3 NaCNBH 3 R 1 N R 3R 2R 2Reactivity of <strong>Aziridines</strong>:R 1R 1NHR 3 OHR 1OHNR 1 R 3R 1NR 1 R 3isolable(highly strained)I. D. G. Watson, L. Yu, A. K. Yudin, Acc. Chem. Res. 2006, 39, 194.


Palladium Catalyzed Allylation of <strong>Aziridines</strong>NH+PhOAcPhPd ClCl Pd(1 mol%)(R)-BINAP (4 mol%)THF, room temp.NPhPh97% i.y., 97% eeResults obtained with PPh 3 as lig<strong>and</strong> (ratio = linear : branched) :N45 %PhNNNPhO80% (12:88)99% (92:8) 79%MeO 2 CCO 2 MeNNNPh89% i.y. (0:100)64%84%I. D. G. Watson, S. A. Styler, A. K. Yudin, J. Am. Chem. Soc. 2004, 126, 5086.


Palladium Catalyzed Allylation of <strong>Aziridines</strong>N BnBnNH 2PdLNHNthermodynamic productL = (rac)-BINAPkinetic productPossible explanations:NHN• pKa difference• product inhibitionNPdthermodynamic productMonitoring the reaction over time:NHOAcPd 0 / BINAPNkinetic productPd 0 / BINAPre-insertionNthermodynamic productI. D. G. Watson, S. A. Styler, A. K. Yudin, J. Am. Chem. Soc. 2004, 126, 5086.I. D. G. Watson, A. K. Yudin, J. Am. Chem. Soc. 2005, 127, 17516.


Palladium Catalyzed Allylic AminationPhN[(allyl)PdCl] 2 (1 mol%)P(OEt) 3 (4 mol%)no baseTHF, room temp.Ph NH 2+OAc[(allyl)PdCl] 2 (1 mol%)P(OEt) 3 (4 mol%)DBU (1 equiv)THF, room temp.Ph NHno isomerization !XHN RHthermodynamic product(linear)RNH 2− Pd 0 L 2LPdRR XLLPdXLPdL 2RN− RNH 2H H− Pd 0 L 2RNPd 0 L 2RNH 2R RHRHRXkinetic product(branched)I. Dubovyk, I. D. G. Watson, A. K. Yudin, J. Am. Chem. Soc. 2007, 129, 14172.


Cycloamination Reactions of <strong>Aziridines</strong>MeOOOHOOOOHNHOHONNHOH 2 NHNH 2 NONHCO 2 HNHAzinomycin AFicellomycinConcept: CycloaminationBrHN NBS KOHNNG. Chen, M. Sasaki, X. Li, A. K. Yudin, J. Org. Chem. 2006, 71, 6067I. D. G. Watson, L. Yu, A. K. Yudin, Acc. Chem. Res. 2006, 39, 194.


Cycloamination Reactions of <strong>Aziridines</strong>NHR 1 R 2 DME/H 2 O, 0°C2hNBS (1.2 equiv)orNBS (1.1 equiv)CH 2 Cl 2 , 40°C24hBrR 1HR 2N HR 1 = H, alkylorBrR 1HNR 1 = arylR 2HHCOPhHHHCOPhNHNCOPhBrNHBrBrPh98% (d.r.: 74:26)68% (d.r.: > 99:1)67% (d.r.: 81:19)HCOPhHCOPhHNBrH51% (d.r.: 67:33)HHOH 2 CNBrH51% (d.r.: 67:33)G. Chen, M. Sasaki, X. Li, A. K. Yudin, J. Org. Chem. 2006, 71, 6067


Cycloamination Reactions Transition StateNHCOPhHCOPhN HBr98% (d.r.: 74:26)NHCOPhHHN COPhBr68% (d.r.: > 99:1)BrHHNHCOPhBrHHN HCOPh1,3-interactionRHCOPhN HBrR = H, MeKOH1% MeOH in THFroom temp., 30 minRNH99%COPhHG. Chen, M. Sasaki, X. Li, A. K. Yudin, J. Org. Chem. 2006, 71, 6067


Cycloamination Reactions <strong>and</strong> Follow-Up ChemistryRHNHHPhDIBAL-HRNHPhRNHOPhNH 2 NH 2KOHPd, H 2RNHOPh1) NBS2) KOHR = H, Me1) NBS2) KOHR = ArBrRHNHHNHOPhOPhNuH1) DebrominationRNHNuOPh2) NuH, Acid Ar N PhHHOArNuNH 2 NH 2KOH"Aziridine relay"HNPhOC HI. D. G. Watson, L. Yu, A. K. Yudin, Acc. Chem. Res. 2006, 39, 194.Ph


Cycloamination Reactions <strong>and</strong> Follow-Up ChemistryRHNHHPhDIBAL-HRNHPhRNHOPhNH 2 NH 2KOHPd, H 2RNHOPh1) NBS2) KOHR = H, Me1) NBS2) KOHR = ArBrRHNHHNHOPhOPhNuH1) DebrominationRNHNuOPh2) NuH, Acid Ar N PhHHOHNNHArNH 2 NH 2KOH"Aziridine relay"NuBrNHPhHArNPhOC HI. D. G. Watson, L. Yu, A. K. Yudin, Acc. Chem. Res. 2006, 39, 194.Ph


Aziridinoaldehydes - Kinetic AmphotersNHOOMeDIBAL-H-78°C, TolueneNHOHH +NOHNHONH 3OHNOHNOHHNHOHorthogonal reactivitythermodynamicamphoter(zwitterionic)76% i.y.• stable to racemization• water-solublekineticamphoterR. Hili, A. K. Yudin, J. Am. Chem. Soc. 2006, 128, 14772.A. K. Yudin, R. Hili, Chem. Eur. J. 2007, 13, 6538.


Aziridinoaldehydes - Kinetic AmphotersR 1HHNHOEtODIBAL-H (2 equiv)-78°C, TolueneHNR 1HOHOHHN HR 1OHOHOHHN N HOPhHPhHHN NPhPh83% OH81%OHHN N HHHSHNSTBDMSO92%R. Hili, A. K. Yudin, J. Am. Chem. Soc. 2006, 128, 14772.OHOHHN NH76%OHOHN HHOTBDMSH94%


Aziridinoaldehydes - ReactivityOHHNHNaBH 4HPhOHNHHPhOHHN HPhOHNHHPhHAnilineNaCNBH 3HN99%HNHPhPh H99%R. Hili, A. K. Yudin, J. Am. Chem. Soc. 2006, 128, 14772.


Aziridinoaldehydes - Polyheterocycle SynthesisHO HHN(Dimer)HPhNHTFE0°C, 3hNHBn(1 equiv)N H HHPhNHBn(syn)HNΔor cat. H 2 ON H HHPhNHBnH(anti)N0°C:−20°C:97%, (syn/anti = 8:1)94%, (syn/anti = 20:1)BnBnBnN H PhN H HN H HHOTBDMSNHNNH NHNH N HH81%, (syn/anti = 2:1) 74%, (syn/anti = 1.5:1) 94%, (syn/anti = 3:1)R. Hili, A. K. Yudin, J. Am. Chem. Soc. 2006, 128, 14772.


Polyheterocycle Formation - MechanismNHNHBnHNPhH HOHNHHPhNHHNPhNNHPhHHHPhNHBnN H HHPhNHHNN H HHPhNHBnR. Hili, A. K. Yudin, J. Am. Chem. Soc. 2006, 128, 14772.A. K. Yudin, R. Hili, Chem. Eur. J. 2007, 13, 6538.HNPhSH5 mol% Zn(OTf) 2CH 2 Cl 2 , 23°C, 1hNNHBnHHNHPhSPh


Conclusion• <strong>The</strong> direct aziridination of olefins is more difficult than the corresponding epoxidation• A general solution towards an enantioselective ring-opening of aziridines does not exist• Partial solutions have been discovered over the past 10 years but they are very specific• <strong>Aziridines</strong> react different than amines in N-allylation reactions (under the same conditions)• Cycloamination of aziridines leads to building blocks for heterocycle chemistry <strong>and</strong> natural products• Aziridinoaldehydes are kinetic amphoters with unique reactivityLiterature:<strong>Aziridines</strong> <strong>and</strong> Epoxides in Organic Synthesis (Ed.: A. K. Yudin),Wiley-VCH, Weinheim, 2006.A. K. Yudin, R. Hili, Chem. Eur. J. 2007, 13, 6538.I. D. G. Watson, L. Yu, A. K. Yudin, Acc. Chem. Res. 2006, 39, 194.M. Pineschi, Eur. J. Org. Chem. 2006, 4979.A. Padwa, S. S. Murphree, ARKIVOC 2006, 3, 6.J. B. Sweeney, Chem. Soc. Rev. 2002, 31, 247.H. M. I. Osborn, J. Sweeney, Tetrahedron: Asymmetry 1997, 8, 1693.D. Tanner, Angew. Chem., Int. Ed. Engl. 1994, 33, 599.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!