13.07.2015 Views

Tb3+ Luminescence as a Tool to Study Clustering of Lanthanide ...

Tb3+ Luminescence as a Tool to Study Clustering of Lanthanide ...

Tb3+ Luminescence as a Tool to Study Clustering of Lanthanide ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Journal <strong>of</strong> Non-Crystalline Solids 325 (2003) 29–33www.elsevier.com/locate/jnoncrysolTb 3þ luminescence <strong>as</strong> a <strong>to</strong>ol <strong>to</strong> study clustering<strong>of</strong> lanthanide ions in oxynitride gl<strong>as</strong>sesD. de Graaf * , S.J. Stelwagen, H.T. Hintzen, G. de WithLabora<strong>to</strong>ry <strong>of</strong> Solid-State and Materials Chemistry, Eindhoven University <strong>of</strong> Technology,P.O. Box 513, 5600 MB Eindhoven, The NetherlandsReceived 30 September 2002; received in revised form 26 May 2003AbstractThe 5 D 3 and 5 D 4 emission <strong>of</strong> Tb 3þ under UV-excitation in the 4f 7 5d band h<strong>as</strong> been me<strong>as</strong>ured <strong>as</strong> a function <strong>of</strong> the Tbcontent in Y–Si–Al–O–N gl<strong>as</strong>ses. A strong incre<strong>as</strong>e <strong>of</strong> the 5 D 4 emission over the 5 D 3 emission w<strong>as</strong> observed at highTb 3þ contents. This incre<strong>as</strong>e can be attributed <strong>to</strong> cross-relaxation between two neighbouring Tb 3þ ions. The feedingratio <strong>of</strong> the 5 D 3 and 5 D 4 levels (0.11) and the interaction distance for cross-relaxation (1.43 nm) excludes thepresence <strong>of</strong> Tb 3þ clusters, pairs or other abnormalities (like ph<strong>as</strong>e separation) in the Tb 3þ activated materials.Ó 2003 Elsevier B.V. All rights reserved.1. IntroductionRare-earth containing Si–Al–O–N gl<strong>as</strong>ses havebeen extensively studied with respect <strong>to</strong> their mechanicalproperties. It is shown that the presence<strong>of</strong> chemically incorporated nitrogen in these gl<strong>as</strong>sesleads <strong>to</strong> a considerable improvement <strong>of</strong> thechemical and mechanical durability. The hardness[1], el<strong>as</strong>tic modulus [2] and slow crack growth resistance[3] are higher than for the correspondingoxide gl<strong>as</strong>s. The choice <strong>of</strong> a small trivalent lanthanideion <strong>as</strong> a modifier cation further improves themechanical resistance <strong>of</strong> these gl<strong>as</strong>ses [4,5].A number <strong>of</strong> attempts have been made <strong>to</strong> explainthese properties from the structure <strong>of</strong> the* Corresponding author. Tel.: +31-40 247 5031; fax: +31-40244 5619.E-mail address: d.de.graaf@tue.nl (D. de Graaf).gl<strong>as</strong>s. Using <strong>to</strong>ols such <strong>as</strong> XPS [6] and 27 Al/ 28 SiNMR [7,8] a clearer picture h<strong>as</strong> been produced <strong>of</strong>the network structure and the location and role <strong>of</strong>nitrogen in that structure. There is, however, littledetailed information available on how the modifiercations are incorporated in the gl<strong>as</strong>s matrix.Recent investigations have shown that bystudying the luminescence <strong>of</strong> lanthanides in thesegl<strong>as</strong>ses, valuable information on the local coordination<strong>of</strong> the lanthanide ion can be obtained [9].These studies have stressed the issue <strong>of</strong> possiblelanthanide pair formation or clustering in thegl<strong>as</strong>ses. <strong>Lanthanide</strong> clustering h<strong>as</strong> been suspected<strong>to</strong> play a role in many lanthanide-containinggl<strong>as</strong>ses [10], although it is experimentally hard <strong>to</strong>verify.The luminescence characteristics <strong>of</strong> Tb 3þ canprovide an elegant solution for this problem. It ispossible <strong>to</strong> evaluate lanthanide clustering in thesegl<strong>as</strong>ses by studying the luminescence properties <strong>of</strong>0022-3093/$ - see front matter Ó 2003 Elsevier B.V. All rights reserved.doi:10.1016/S0022-3093(03)00324-7


D. de Graaf et al. / Journal <strong>of</strong> Non-Crystalline Solids 325 (2003) 29–33 31then allowed <strong>to</strong> cool down <strong>to</strong> room temperaturein air.The oxide scale, which had formed duringcooling, w<strong>as</strong> removed by grinding the surface. Thedensity <strong>of</strong> the gl<strong>as</strong>ses w<strong>as</strong> me<strong>as</strong>ured using the Archimedesmethod in distilled water. From thedensity the average volume per Tb ion (V Tb )andthe number <strong>of</strong> Tb ions per unit volume (1=V Tb ) canbe calculated using Eq. (1):V Tb ¼ 1 M gl<strong>as</strong>s;ð1ÞN Av x Tb q gl<strong>as</strong>swherein N Av is the number <strong>of</strong> Avogadro, x Tb is thefraction <strong>of</strong> Tb, M gl<strong>as</strong>s is the molar weight <strong>of</strong> thegl<strong>as</strong>s, q gl<strong>as</strong>s is the me<strong>as</strong>ured density <strong>of</strong> the gl<strong>as</strong>s.The gl<strong>as</strong>s w<strong>as</strong> crushed <strong>to</strong> a fine powder prior <strong>to</strong>the spectroscopic analysis. The luminescencecharacteristics <strong>of</strong> the gl<strong>as</strong>ses were me<strong>as</strong>ured usinga fluoropho<strong>to</strong>spectrometer equipped with a Xefl<strong>as</strong>hlamp.The gl<strong>as</strong>ses were me<strong>as</strong>ured in reflection,excitation and emission mode. For reflection thespectra were corrected for lamp and detec<strong>to</strong>rcharacteristics and system transmission using theknown spectra <strong>of</strong> BaSO 4 and black felt <strong>as</strong> standards.The emission spectrum w<strong>as</strong> calibrated usinga tungsten lamp <strong>as</strong> standard. For calibration <strong>of</strong> theexcitation spectra rhodamine w<strong>as</strong> used <strong>as</strong> a standardin combination with a second pho<strong>to</strong>multiplier.3. ResultsThe me<strong>as</strong>ured density incre<strong>as</strong>es with the Tbcontent (Fig. 2), which can be expected from thesignificantly larger a<strong>to</strong>mic m<strong>as</strong>s and the somewhatlarger ionic radius <strong>of</strong> Tb <strong>as</strong> compared <strong>to</strong> Y.The reflection me<strong>as</strong>urements for low Tb contents(Fig. 3) show a strong absorption at lowwavelengths, which can be attributed <strong>to</strong> the gl<strong>as</strong>smatrix absorption. With an incre<strong>as</strong>ing Tb concentrationadditional regions <strong>of</strong> enhanced absorptioncan be discriminated. These Tb 3þabsorption bands also show up in the excitationspectrum (Fig. 4) and can be attributed <strong>to</strong> thevarious transitions from the 7 F 6 ground state <strong>to</strong>higher states (f ! d and f ! f transitions). In thisspectrum it can be clearly seen that the gl<strong>as</strong>sρ gl <strong>as</strong>s [g cm -3 ]65.554.543.530 5 10 15x [-]Fig. 2. Density <strong>of</strong> Y 15:2 x Tb x Si 14:7 Al 8:7 O 54:1 N 7:38 gl<strong>as</strong>ses <strong>as</strong> afunction <strong>of</strong> the Tb content (x).Reflection [-]f-d transitionf-f transitionsx = 0.025x = 15.2250 300 350 400 450Wavelength [nm]Fig. 3. Reflection spectra <strong>of</strong> Y 15:2 x Tb x Si 14:7 Al 8:7 O 54:1 N 7:38gl<strong>as</strong>ses (x ¼ 0:025 and x ¼ 15:2). Arrows denote terbium absorption.Host4f 7 5d5 D 15 D 2 , 5 L 9, 5 L 10, 5 D 35 D 4200 250 300 350 400 450 500wavelength [nm]Fig. 4. Excitation spectrum <strong>of</strong> Tb 15:2 Si 14:7 Al 8:7 O 54:1 N 7:38 gl<strong>as</strong>s(k mon ¼ 545 nm, 5 D 4 ! 7 F 5 ).


D. de Graaf et al. / Journal <strong>of</strong> Non-Crystalline Solids 325 (2003) 29–33 33<strong>of</strong> 1.43 nm, which is roughly the same <strong>as</strong> the valuesreported for YAG:Tb 3þ (1.15 [14], 1.34 [15]). Boththe feeding ratio and the interaction distance correspond<strong>to</strong> an ideal dispersion <strong>of</strong> Tb 3þ in the gl<strong>as</strong>s.It is apparent that over the whole me<strong>as</strong>ured rangethe behaviour <strong>of</strong> the (Tb,Y)–Si–Al–O–N gl<strong>as</strong>s issomewhat different from that <strong>of</strong> YAG:Tb, i.e.lower values at low Tb concentrations and highervalues at high Tb concentrations. It must howeverbe noted that this effect is relatively insignificant <strong>to</strong>that caused by cluster or pair formation, whichenhances the green emission by a few orders <strong>of</strong>magnitude over the whole Tb concentration range[11]. These effects are clearly absent, showing thatthe distribution <strong>of</strong> the terbium ions is normal.This raises the question whether these observationscan be extended <strong>to</strong> predict the distribution<strong>of</strong> other lanthanides in Si–Al–O–N gl<strong>as</strong>ses. For thesmall trivalent lanthanides (high-Z) this seemslikely because <strong>of</strong> the chemical similarity betweenthese ions. However, for the large ions (low-Z) itisrecommended <strong>to</strong> be determined independently.5. ConclusionsThe strong incre<strong>as</strong>e <strong>of</strong> the Tb 3þ 5 D 3 emissionover the 5 D 4 emission in Y–Si–Al–O–N:Tb gl<strong>as</strong>seswhen lowering the Tb concentration h<strong>as</strong> shownbeyond doubt that Tb 3þ pair formation, clustering,and ph<strong>as</strong>e separation are absent in thesegl<strong>as</strong>ses. Both the interaction distance for 5 D 4 / 5 D 3cross-relaxation <strong>as</strong> well <strong>as</strong> the feeding ratio ( 5 D 4 /5 D 3 ) corresponds <strong>to</strong> an ideal Tb 3þ dispersion.References[1] D. de Graaf, M. Bracisiewicz, H.T. Hintzen, M. Sopicka-Lizer, G. de With, J. Mater. Sci., submitted for publication.[2] R.E. Loehman, in: Treatise on Materials Science andTechnology, vol. 26 gl<strong>as</strong>s IV, Academic Press, 1985, p. 119.[3] D.N. Coon, J. Non-Cryst. Solids 226 (1998) 281.[4] R. Ramesh, E. Nes<strong>to</strong>r, M.J. Pomeroy, S. Hampshire,J. Eur. Ceram. Soc. 17 (1997) 1933.[5] Y. Menke, V. Peltier-Baron, S. Hampshire, Preparationand characterisation <strong>of</strong> rare-earth sialon gl<strong>as</strong>ses and gl<strong>as</strong>sceramics, in: Conf. and Exh. <strong>of</strong> the Eur. Ceram. Soc. Proc.,2000, p. 363.[6] T. Hanada, N. Ueda, N. Soga, J. Ceram. Soc. Jpn. Int. Ed.96 (1988) 281.[7] S. Sakka, J. Non-Cryst. Solids 181 (1995) 215.[8] A. Nordmann, Y.-B. Cheng, M.E. Smith, Chem. Mater. 8(1996) 2516.[9] D. de Graaf, H.T. Hintzen, S. Hampshire, G. de With,J. Eur. Ceram. Soc. 23 (2003) 1093.[10] M.C. Wilding, A. Navrotsky, J. Non-Cryst. Solids 265(2000) 238.[11] A.M.A. van Dongen, J. Non-Cryst. Solids 139 (1992) 271.[12] C. Armellini, M. Ferrari, M. Montagna, G. Pucker, C.Bernard, A. Monteil, J. Non-Cryst. Solids 245 (1999) 115.[13] L.G. van Uitert, L.F. Johnson, J. Chem. Phys. 44 (9)(1966) 3514.[14] W.F. van der Weg, Th.J.A. Popma, A.T. Vink, J. Appl.Phys. 57 (12) (1985) 5450.[15] D.J. Robbins, B. Cockayne, B. Lent, J.L. Gl<strong>as</strong>per, SolidState Commun. 20 (1976) 673.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!