13.07.2015 Views

PV Technical Series No.53 - Soft sediment benthos - Parks Victoria

PV Technical Series No.53 - Soft sediment benthos - Parks Victoria

PV Technical Series No.53 - Soft sediment benthos - Parks Victoria

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

parks victoria technical seriesNumber 53Species diversity and composition of benthicinfaunal communities found in Marine National<strong>Parks</strong> along the outer <strong>Victoria</strong>n coastS. Heislers and G.D. ParryNovember 2007


© <strong>Parks</strong> <strong>Victoria</strong>All rights reserved. This document is subject to the Copyright Act 1968, no part of thispublication may be reproduced, stored in a retrieval system, or transmitted in any form, or byany means, electronic, mechanical, photocopying or otherwise without the prior permission ofthe publisher.First published 2007Published by <strong>Parks</strong> <strong>Victoria</strong>Level 10, 535 Bourke Street, Melbourne <strong>Victoria</strong> 3000Opinions expressed by the Authors of this publication are not necessarily those of <strong>Parks</strong><strong>Victoria</strong>, unless expressly stated. <strong>Parks</strong> <strong>Victoria</strong> and all persons involved in the preparation anddistribution of this publication do not accept any responsibility for the accuracy of any of theopinions or information contained in the publication.Authors:Simon Heislers – Science Officer, DPI QueenscliffGregory D. Parry – Senior Science Officer, DPI QueenscliffNational Library of AustraliaCataloguing-in-publication dataIncludes bibliographyISSN 1448-4935CitationHeislers S, and Parry, G.D. (2007). Species diversity and composition of benthic infaunalcommunities found in Marine National <strong>Parks</strong> along the outer <strong>Victoria</strong>n coast.<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53. <strong>Parks</strong> <strong>Victoria</strong>, Melbourne.Printed on environmentally friendly paper


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> Paper <strong>Series</strong> No. 53Species diversity and composition ofbenthic infaunal communities found inMarine National <strong>Parks</strong> along the outer<strong>Victoria</strong>n coastS. Heislers and G.D. ParryFisheries <strong>Victoria</strong> (Fisheries Research Branch), DPI, QueenscliffDecember 2007


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>EXECUTIVE SUMMARYIn 1998 the Department of Natural Resources and Environment commissioned a survey of<strong>sediment</strong> and infauna along the entire length of the open <strong>Victoria</strong>n coast. This study, knownas the “<strong>Victoria</strong>n coastal <strong>benthos</strong> study” (VCBS), sampled sites at 3 depths (10 m, 20 m and40 m) on 50 transects running perpendicular to the coast. Infauna was initially analysed fromonly 58 of the 441 samples taken (Coleman et al. 2007), but following the declaration of 13new Marine National <strong>Parks</strong> along the <strong>Victoria</strong>n coast in 2002, <strong>Parks</strong> <strong>Victoria</strong> commissionedthe identification of benthic infauna from a further 46 samples from the VCBS, all of whichwere located in or near Marine National <strong>Parks</strong>. This report summarises the results of theanalysis of these additional samples.Data from both phases of the VCBS provide only weak support for the existence ofbioregions along the <strong>Victoria</strong> coast, but provide evidence of a region of elevated speciesdiversity in East Gippsland. Benthic species diversity in Bass Strait was compared withdiversity found in other benthic studies. While benthic species diversity has only beenmeasured in a small fraction of the world’s benthic communities, benthic diversity in BassStrait was higher than that recorded in any other region. In particular, Bass Strait has ahigher diversity of infauna than the deep sea, which many authors have claimed has thehighest benthic species diversity so far recorded. Two factors that may contribute to this highdiversity — historic-evolutionary factors, and temporal climatic variability resulting from the ElNino Southern Oscillation (ENSO) — are discussed.This study also identified very high densities of the invasive New Zealand screw shell,Maoricolpus roseus, at 40 m depth in the Pt Hicks Marine National Park. Where this invasivespecies was most abundant, the diversity of infauna was reduced, suggesting that this exoticspecies poses a serious threat to the high diversity of infauna that is characteristic of much ofBass Strait.II


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>CONTENTSEXECUTIVE SUMMARY............................................................................................ IICONTENTS............................................................................................................... IIIINDEX OF FIGURES AND TABLES......................................................................... IV1 INTRODUCTION .................................................................................................... 12 METHODS.............................................................................................................. 22.1 SAMPLE COLLECTION..................................................................................................................22.2 SELECTION OF SAMPLES FOR INFAUNAL ANALYSIS..............................................................32.3 ANALYTICAL METHODS ...............................................................................................................43 RESULTS............................................................................................................... 63.1 SEDIMENT......................................................................................................................................63.2 INFAUNA.........................................................................................................................................73.3 INTRODUCED SPECIES - N.Z. Screw Shell................................................................................124 DISCUSSION ....................................................................................................... 164.1 GEOGRAPHIC VARIATION IN SOFT SEDIMENT BENTHIC COMMUNITIES..........................164.2 SPECIES DIVERSITY IN SOFT SEDIMENT BENTHIC COMMUNITIES ....................................164.3 N.Z. SCREW SHELL....................................................................................................................20ACKNOWLEDGMENTS........................................................................................... 20REFERENCES ......................................................................................................... 21APPENDIX 1 .........................................................................................................A1.1<strong>Victoria</strong>n Coastal Benthic Survey site/sample locations and <strong>sediment</strong> characteristics.............................................................. A1.1APPENDIX 2 .........................................................................................................A2.1Faunal characteristics of <strong>Victoria</strong>n coastal benthic samples ...................................................................................................... A2.1APPENDIX 3A.......................................................................................................A3.1Mean number of species identified of each family identified from <strong>Victoria</strong>n Coastal Benthic Survey sites collected from 10 mdepths................................................................................................................................................................................ A3.1APPENDIX 3B.......................................................................................................A3.3Mean number of species identified of each family identified from <strong>Victoria</strong>n Coastal Benthic Survey sites collected from 20 mdepths................................................................................................................................................................................ A3.3APPENDIX 3C.......................................................................................................A3.6Mean number of species identified of each family identified from <strong>Victoria</strong>n Coastal Benthic Survey sites collected from 40 mdepths................................................................................................................................................................................ A3.6APPENDIX 4A.......................................................................................................A4.1Mean number of individuals identified for each family identified from <strong>Victoria</strong>n Coastal Benthic Survey sites collected from 10 mdepths................................................................................................................................................................................ A4.1APPENDIX 4B.......................................................................................................A4.3Mean number of individuals identified for each family identified from <strong>Victoria</strong>n Coastal Benthic Survey sites collected from 20 mdepths................................................................................................................................................................................ A4.3APPENDIX 4C.......................................................................................................A4.6Mean number of individuals identified for each family identified from <strong>Victoria</strong>n Coastal Benthic Survey sites collected from 40 mdepths................................................................................................................................................................................ A4.6APPENDIX 5. ........................................................................................................A5.1Maoricolpus roseus sampled off Point Hicks at 40 m depth....................................................................................................... A5.1III


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>INDEX OF FIGURES AND TABLESFIGURESFigure 1. Map of the western and eastern coastline of <strong>Victoria</strong> showing the locations of transects (numbered 0-49) and sitessampled during the <strong>Victoria</strong>n Coastal Benthic Survey and the Orbost pulp mill study. The location of Marine National<strong>Parks</strong> and the four IMCRA bioregions are also shown. The number of replicate samples analysed at each site is shown.................................................................................................................................................................................................2Figure 2. Plot of median grain size of <strong>sediment</strong>s from VCBS sites (distinguished by transect number and depth). Transectswere located along the length of the <strong>Victoria</strong>n coastline and numbered from west to east as shown in Figure 1. Error barsindicate one standard error. Black dots indicate sites located within MNPs. Dotted horizontal lines indicate the boundariesbetween fine and medium (0.25 mm), and medium and coarse (0.50mm) sands as defined by Roob et al (1999). ...........6Figure 3. Plot of % carbonate of <strong>sediment</strong>s from VCBS sites (distinguished by transect number and depth). Transects werelocated along the length of the <strong>Victoria</strong>n coastline and numbered from west to east as shown in Figure 1. Black dotsindicate sites located within MNPs. ......................................................................................................................................7Figure 4. Plot of mean number of species per 0.1m 2 sample analysed during the VCBS (sites distinguished by transect numberand depth) and Orbost Pulp Mill Study. Transects were located along the length of the <strong>Victoria</strong>n coastline and numberedfrom west to east as shown in Figure 1. Error bars indicate one standard error. Black dots indicate sites located withinMNPs. The shaded area represents the stretch of coastline sampled during the Orbost Pulp Mill study..........................11Figure 5. Plot of mean number of individuals per 0.1m 2 sample analysed during the VCBS (sites distinguished by transectnumber and depth) and Orbost Pulp Mill Study. Transects were located along the length of the <strong>Victoria</strong>n coastline andnumbered from west to east as shown in Figure 1. Error bars indicate one standard error. Black dots indicate siteslocated within MNPs. The shaded area represents the stretch of coastline sampled during the Orbost Pulp Mill study. ..11TABLESTable 1. Number of replicate samples analysed for benthic infauna from each transect and depth during Phase 1 (Coleman etal. 2000, 2007) and Phase 2 (this study, bold font) of the <strong>Victoria</strong>n coastal <strong>benthos</strong> study. Shaded cells indicate siteslocated within Marine National Park (MNP) boundaries. NS indicates sites not sampled....................................................3Table 2. Number of sites and replicates sampled per depth class and per season (ie. month) during the Orbost Pulp Mill Study................................................................................................................................................................................................5Table 3. Mean number of individuals per site of the top 20 most abundant families in 10, 20 and 40 m depth classes of theVCBS. Ranks are based on the overall mean number of individuals across all sites sampled in each depth class.Transects are grouped by bioregion (as defined by IMCRA, 1998). Blank cells indicate sites not sampled. Sites withinMNP boundaries are shaded................................................................................................................................................8Table 4. Mean number of species per site of the top 20 most abundant families in 10, 20 and 40 m depth classes of the VCBS.Ranks are based on the overall mean number of species across all sites sampled in each depth class. Transects aregrouped by bioregion (as defined by IMCRA, 1998). Blank cells indicate sites not sampled. Sites within MP / MNPboundaries are shaded.........................................................................................................................................................9Table 5. Number of families identified per major taxa within 10, 20 and 40 m depth classes of the VCBS. ‘+’ indicates taxawhere family level identifications weren’t made and were given a value of 1 in the totals. Numbers of replicate samplesare indictaed in parentheses.. ............................................................................................................................................10Table 6. Total number of species and individuals, and number and biomass of Maoricolpus roseus identified from threereplicate samples collected off Point Hicks (transect 46) at 40 m depth during the VCBS.. ..............................................13Table 7. Comparison of species diversity of benthic infaunal communities found in different geographic areas in coastal anddeep sea regions.. ..............................................................................................................................................................18IV


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>1 INTRODUCTIONEnvironmental studies undertaken in the late 1980s and the mid 1990s, when a new pulp millwas proposed for the Orbost region, showed that the diversity of infauna off eastern <strong>Victoria</strong>was exceptionally high (Parry et al. 1989, Coleman et al. 1997). Coleman et al. (1997) founda total of 803 species in a sampled area of only 10.4 m 2 along a 50 km stretch of coastline.This diversity of infauna, in sandy <strong>sediment</strong>s from depths 11–51 m, was higher than hadbeen measured in all previous studies of benthic communities, including those in the deepsea and Norwegian fiords, which had previously been considered the world’s most diversesoft <strong>sediment</strong> habitats (Coleman et al. 1997).The very high diversity of infaunal species found in eastern <strong>Victoria</strong>, and plans to establish arepresentative series of Marine National <strong>Parks</strong> (MNPs) along the <strong>Victoria</strong>n coast, lead in1998 to the former Department of Natural Resources and Environment commissioning asurvey of <strong>sediment</strong> and infauna along the entire length of the open <strong>Victoria</strong>n coast. Thissurvey was intended to determine whether the high diversity found in eastern <strong>Victoria</strong>extended along the entire <strong>Victoria</strong>n coastline. This study, known as the “<strong>Victoria</strong>n coastal<strong>benthos</strong> study” (VCBS), sampled sites at 3 depths (10 m, 20 m and 40 m) on 50 transectsrunning perpendicular to the coast. The <strong>sediment</strong> composition of essentially all samples wasanalysed by Roob et al (1999), but infauna were analysed from only 58 of the 441 samplestaken. The results of this analysis of benthic infauna were reported by Coleman et al. (2000,2007) and have been termed the ‘Phase 1 study’ throughout this report.Following the declaration of 13 new Marine National <strong>Parks</strong> (MNP) along the <strong>Victoria</strong>n coastin 2002, <strong>Parks</strong> <strong>Victoria</strong> commissioned the identification of benthic infauna from a further 46samples from the VCBS. These samples had been stored since the field sampling in 1998.The examination of these additional samples has been termed the ‘Phase 2 study’throughout this report, but all analyses have included data from both phases of the study.Phase 2 samples were mostly located in, or adjacent to, Marine National <strong>Parks</strong> including:Discovery Bay MNP, Twelve Apostles MNP, Point Addis MNP, Wilsons Promontory MP andMNP, Point Hicks MNP and Cape Howe MNP. However, as the VCBS sampling pre-datedthe declaration of most of <strong>Victoria</strong>’s MNPs, the Port Phillip Heads MNP, Bunurong MNP andNinety Mile Beach MNP were not sampled.This study aimed to: (1) document the fauna from the Marine National <strong>Parks</strong> to assist withthe design of on-going monitoring; (2) determine whether the larger data set now availablefor <strong>benthos</strong> along the <strong>Victoria</strong>n coast identified any <strong>Victoria</strong>-wide patterns in species diversitynot detected in the smaller data set analysed by Coleman et al. (2000, 2007); and, (3) wherepossible, identify any threatening processes to <strong>Victoria</strong>’s Marine National <strong>Parks</strong>.1


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>2 METHODS2.1 SAMPLE COLLECTIONBenthic <strong>sediment</strong> samples were collected during May 1998, along transects runningperpendicular to the coastline for the length of the entire <strong>Victoria</strong>n coastline (Roob et al.,1999). Fifty transects were spaced at intervals of approximately 20 km along the coast.Sampling sites were located at depths of 10, 20 and 40 m along each transect, and threereplicates taken at each site.Samples were collected with a Smith-McIntyre grab which sampled an area of 0.1 m 2 . Asmall sub-sample (core) of <strong>sediment</strong> was taken from each grab sample, placed in a Whirl-Pak ® sample bag and retained for grain-size analysis. The remaining portion of eachreplicate sample was preserved in 10% neutral-buffered formalin for analysis of infauna.Samples could not be collected from a small number of sites which occurred on rocky reef.Figure 1. Map of the western and eastern coastline of <strong>Victoria</strong> showing the locations of transects(numbered 0–49) and sites sampled during the <strong>Victoria</strong>n Coastal Benthic Survey and the Orbost pulpmill study. The location of Marine National <strong>Parks</strong> and the four IMCRA bioregions are also shown. Thenumber of replicate samples analysed at each site is shown.2


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>2.2 SELECTION OF SAMPLES FOR INFAUNAL ANALYSISDuring the Phase 1 study infauna were sorted from 58 grab samples from 36 sites (25transects) by Coleman et al. (2000, 2007) (Table 1). Samples were chosen from the four<strong>Victoria</strong>n coastal IMCRA (1998) bioregions, and from each depth and <strong>sediment</strong> type. A singlereplicate was analysed from most sites to maximise spatial coverage, while two or threereplicates were analysed from a small number of sites to measure small-scale variability.Table 1. Number of replicate samples analysed for benthic infauna from each transect and depthduring Phase 1 (Coleman et al. 2000, 2007) and Phase 2 (this study, bold font) of the <strong>Victoria</strong>n coastal<strong>benthos</strong> study. Shaded cells indicate sites located within Marine National Park (MNP) boundaries. NSindicates sites not sampled.Transect Depth (m)Number 10 20 40Marine National Park2 2 2 NS Discovery Bay MNP3 - - 14 - - 18 2 - 112 2 2 2 Twelve Apostles MNP14 - - 115 2 - 117 - - 118 3 3 3 Point Addis MNP19 3 3 -20 3 3 -- NS NS NS Port Phillip Heads MNP21 - - 122 2 NS NS23 NS NS 126 NS NS 127 - - 1- NS NS NS Bunurong MNP28 2 - -30 2 1 1 Wilsons Promontory MP31 2 2 1 + 1 Wilsons Promontory MNP32 2 2 2 Wilsons Promontory MNP33 1 1 134 3 - 1- NS NS NS Ninety Mile Beach MNP37 2 - 138 1 - -39 - - 140 1 - 141 3 3 345 1 - -46 2 2 3 Point Hicks MNP48 2 1 149 2 2 - Cape Howe MNPTotal 45 27 323


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>During the Phase 2 study infauna were sorted from a further 46 samples from 23 sites (11transects) located within (31) or adjacent to (15) MNPs (Table 1).The geographic coordinates of each sample and (where present) the occurrence of reef arenoted in Appendix 1.2.3 ANALYTICAL METHODS2.3.1 Infaunal AnalysisSamples retained for faunal analysis were sieved through a 0.5 mm mesh. All animalsretained on the sieve were identified and counted at the Marine and Freshwater FisheriesResearch Institute of Department of Primary Industries, or at Museum <strong>Victoria</strong>.Taxonomic identifications were made by the senior author (S. Heislers) during Phase 1 (inpart) and Phase 2 (in full), assuring consistency in identifications between the two phases ofthis study.During the Phase 1 analysis of benthic infauna, the majority of polychaetes, molluscs,crustaceans, cnidarians, pycnogonids and echinoderms were identified to species, whilehigher-level identifications were made for other groups. Nematodes and epifaunal groups(e.g. sponges, hydroids, bryozoa, ascidians) were not identified or recorded.During the Phase 2 analysis, infauna were identified to family level, but the number ofspecies in each family was also counted. Counting the number of species present, withoutdetermining their identity (i.e. their scientific name), enabled species abundance to becompared with samples from the Phase 1 study, at minimal cost. Because species-levelidentifications were not made during Phase 2, estimates of species abundance of some ofthe more taxonomically-challenging and species-rich families may have been underestimatedby 1 or 2 species per sample. We consider it very unlikely that the number of species in asample was under-estimated by more than 5%.2.3.2 Sediment AnalysisSediment sub-samples (cores) from the two most visually similar replicate samples (i.e.based on <strong>sediment</strong> texture) from each site were combined to provide a composite sample for<strong>sediment</strong> analysis (Roob et al. 1999).Sediment mean grain size was determined by settling-tube analysis, and percentagecarbonate content was determined by gravimetric determination (Roob et al. 1999). Details ofanalytical method for the determination of <strong>sediment</strong> particle size and for carbonate contentare given in Appendices 1 and 2 of Roob et al. (1999).2.3.3 Statistical AnalysisMean numbers of individuals and species and standard errors were calculated for eachfamily at all sites analysed during Phase 1 and 2 of the VCBS. In addition, mean numbers ofindividuals and species were calculated for each site for the twenty most abundant familieswithin each of the 10, 20 and 40 m depth classes.The number of species in a sample may be overestimated when specimens are identified ata taxonomic level higher than species level (e.g. in the case of damaged or incompletespecimens) and counted as unique species when the same species has already beenidentified from other specimens. This error may be further compounded when calculatingspecies richness across multiple samples (e.g. through the production of speciesaccumulation curves) where the same species is counted multiple times from partiallyidentified specimens from a number of different samples.All records of taxa (i.e. polychaetes, molluscs, crustaceans, cnidarians, pycnogonids andechinoderms) that were not positively identified to species were excluded from the analysisof Phase 1 data by Coleman et al. (2000, 2007) to avoid overestimating species richness.4


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>However, as a consequence they underestimated the numbers of species and individuals inmany samples. In most cases this error was insignificant, but in a small number of cases itwas as much as 10 or more species in a sample (i.e. up to 10% of the total) or 100 or moreindividuals (i.e. up to 50% of the total). In this study, only those records of partially identifiedtaxa were excluded where there was a possibility that the taxa had already been identifiedfrom other specimens in the sample. Partially identified taxa were only excluded where thesample contained other specimens from the same taxonomic group as the partially identifiedspecimen.In addition to the VCBS, data on benthic species diversity were collected along 50 km ofcoastline in East Gippsland by Coleman et al. (1997) to assess potential impacts of aproposed pulp mill near Orbost. Sampling and data analysis were identical to those in Phase1 of the VCBS. Samples were collected from 38 sites located within three study areas(Figure 1) at depths ranging from 11 m to 51 m, and on three separate occasions(September 1990, February and June 1991). To enable comparison with the VCBS data,Orbost Pulp Mill study sites were placed into one of 5 depth classes including 10 m (one siteat 11 m), 20 m (16–25 m), 30 m (26–35 m), 40 m (36–45 m) and 50 m (46–55 m), and datawas pooled over the three sampling events. The number of sites and the number ofreplicates included in each of these depth classes are shown in Table 2. As the speciesrichness/site in the Orbost study was much higher than in the VCBS these differences werefurther explored by examining temporal differences in species richness in the Orbost study.Mean species richness/site was plotted against depth for three seasons in which samplingoccurred.Table 2. Number of sites and replicates sampled per depth class and per season (ie. month) duringthe Orbost Pulp Mill Study.September 1990 February 1991 June 1991 TotalDepth (m) N sites N replicates N sites N replicates N sites N replicates N sites N replicates10 1 3 1 3 1 3 1 920 6 6 2 6 2 6 6 1830 12 20 2 6 2 6 12 3240 11 11 3 9 3 9 11 2950 8 10 1 3 1 3 8 16Coleman et al. (2000, 2007) calculated diversity (Shannon Wiener) and evenness (Pielou)values for samples analysed during Phase 1 of the VCBS. However, neither species diversitynor evenness could be calculated for samples analysed during Phase 2 because the numberof individuals of each species present in each sample were not determined.Families from each depth class were ranked by their abundance across the entire zone, andthe distribution patterns of the more abundant taxa were summarised.5


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>3 RESULTS3.1 SEDIMENT3.1.1 Particle SizeMedian <strong>sediment</strong> grain size analysis classified the <strong>sediment</strong>s from all sites sampled duringthe VCBS as fine, medium or coarse sand (Figure 2, Appendix 1).Sediments from sites within the 10 m depth class from the western and central coasts wereconsistently classed as fine. However, there was considerable variation in <strong>sediment</strong> particlesize between 10 m sites from the east coast which were classed as fine, medium or (at onesite) coarse.There was a large amount of variation in grain size between sites from the 20 and 40 mdepth classes across the entire coastline with fine, medium and coarse sand <strong>sediment</strong>classes represented. Despite this variation, sites within 20 and 40 m depth classes sampledfrom the east coast generally had a larger grain size than those from the western and centralcoasts.1.00.90.80.7Vict Coast 40mVict Coast 20mVict Coast 10mM NPMedian Grain Size (mm)0.60.50.40.30.20.10.00 10 20 30 40 50Transect NumberFigure 2. Plot of median grain size of <strong>sediment</strong>s from VCBS sites (distinguished by transectnumber and depth). Transects were located along the length of the <strong>Victoria</strong>n coastline andnumbered from west to east as shown in Figure 1. Error bars indicate one standard error. Blackdots indicate sites located within MNPs. Dotted horizontal lines indicate the boundaries betweenfine and medium (0.25 mm), and medium and coarse (0.50mm) sands as defined by Roob et al(1999).3.1.2 % CarbonateThe proportion of carbonate in <strong>sediment</strong>s appears to be strongly related to geographiclocation with percentage carbonate greatest in <strong>sediment</strong>s from the far west of the state (morethan 90%) and smallest (approximately 10%) in those from the far east of the state (Figure 3,Appendix 1). Though there was a considerable variation in <strong>sediment</strong> % carbonate betweenneighbouring sites, particularly for sites from the 40 m depth class, the pattern of decreasing<strong>sediment</strong> % carbonate from west to east was apparent in all depth classes.6


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>100908070Vict Coast 40mVict Coast 20mVict Coast 10mM NP% Carbonate60504030201000 10 20 30 40 50TransectSite NumbernumberFigure 3. Plot of % carbonate of <strong>sediment</strong>s from VCBS sites (distinguished by transect numberand depth). Transects were located along the length of the <strong>Victoria</strong>n coastline and numberedfrom west to east as shown in Figure 1. Black dots indicate sites located within MNPs.3.2 INFAUNA3.2.1 Community CompositionThe number of species, families and individuals identified from each sample analysed duringPhase 1 and 2, and evenness and diversity for samples analysed during Phase 1 aredetailed in Appendix 2. The mean number of species and individuals identified in each familyat each site analysed during Phases 1 and 2 are shown in Appendices 3 and 4.The number of individuals in the 20 most abundant families in each depth class along the<strong>Victoria</strong>n coast is shown in Table 3, and the number of species in each of these families isshown in Table 4. There were no clear differences in representation of families betweenbioregions within the 10, 20 or 40 m depth classes.Representation of major taxa was relatively consistent between depth classes. Crustaceanswere the dominant taxa in each depth class in each bioregion, representing more than half(i.e. 11–14) of the twenty most abundant families. The majority of these were amphipods andcumaceans, while isopods and ostracods were also common in all depth classes.Polychaetes represented the bulk (ie. 5–9) of the remaining families while molluscs werepoorly represented (ie. 0-1 families). Nemertea were common to all depth classes.Nine families were common in all depth classes, including four amphipod families(Phoxocephalidae, Caprellidae, Urohaustoriidae and Ampeliscidae), three polychaetefamilies (Spionidae, Syllidae and Paraonidae) and two cumacean families (Gynodiastylidaeand Diastylidae).The total number of families identified in each major taxon for each of the 10, 20 and 40 mdepth classes of the VCBS is summarised in Table 5. The 40 m depth class was representedby the highest number of families, and the 10 m depth class was represented by the least.Approximately one quarter of all families identified during the VCBS were represented in alldepth classes, while more than half were common to just one depth class. The 20 and 40 m7


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>depth classes were most similar sharing 59% families in common, and the 10 and 40 mclasses were least similar with just 41% of families in common.Table 3. Mean number of individuals per site of the top 20 most abundant families in 10, 20 and 40m depth classes of the VCBS. Ranks are based on the overall mean number of individuals across allsites sampled in each depth class. Transects are grouped by bioregion (as defined by IMCRA, 1998).Blank cells indicate sites not sampled. Sites within MNP boundaries are shaded. Dots represent zeros.Depth Rank Phylum FamilyOtway Central <strong>Victoria</strong> Flinders Two-fold shelf2 3 4 8 12 14151718 19 20 21 22 23 26 27283031 32 33 34 37 38394041 45 46 48 491 Polychaeta Spionidae 3 8 6 95 8 20 51 379 6 16 10 6 32 1 35 21 1 29 1 11 . 42 Crustacea Urohaustoriidae 8 41 56 2 15 36 57 4 16 12 4 21 18 15 50 31 5 77 2 19 29 103 Crustacea Platyischnopidae 6 42 18 31 4 16 71 6 1 3 5 5 . 2 122 7 13 39 . . 79 84 Polychaeta Syllidae 2 60 6 2 5 10 20 1 . 8 9 64 2 . 5 3 2 1 136 13 2 375 Polychaeta Cirratulidae 35 5 150 2 . . . . 9 9 . 60 . 1 2 . . 3 . 6 12 .6 Mollusca Trochidae . . . . . . . . . . . 1 . 1 . . . . . . 285 .7 Crustacea Phoxocephalidae 14 38 4 8 3 4 3 6 2 2 14 62 21 3 18 . 1 4 2 7 15 108 Crustacea Gynodiastylidae 1 . . . . 7 5 . . . 3 1 158 . 1 4 2 2 . 1 1 19 Crustacea Diastylidae . 2 2 3 9 4 2 1 1 . 1 . 158 . 2 . . . . . . .10 Crustacea Corophiidae . 27 4 . 28 1 2 2 3 . 8 11 3 . 1 . . . 3 6 . 511 Crustacea Philomedidae 9 8 2 . 23 5 10 3 3 3 1 . . 3 13 10 . 6 . 3 . .12 Polychaeta Lumbrineridae 3 1 . 1 1 . 1 . 11 7 . 40 1 2 . 2 . 1 . 11 3 1313 Polychaeta Opheliidae 1 37 4 16 2 1 3 1 . 1 1 5 . . 5 1 . 16 1 1 . 214 Crustacea Paranthuridae 1 1 . 60 3 . . 2 1 2 . . . 1 12 . 1 1 . 2 . .15 Crustacea Callianassidae . . . . 7 1 . . . . . . 18 . 1 . . 43 . . . .16 Crustacea Leptanthuridae . . . . . 15 6 . . . . 40 3 . . . . . . . . 517 Nemertea Nemertea 10 2 3 2 . . 2 6 2 5 . 2 5 1 1 8 3 3 . 3 6 .18 Crustacea Lysianassidae 1 2 2 9 4 3 1 5 3 1 3 3 8 . 3 . . 6 . 3 4 119 Polychaeta Paraonidae . 11 5 1 2 3 5 4 . 6 2 2 2 . 7 . 5 . . 1 . 220 Crustacea Ampeliscidae 1 . 5 1 8 5 4 11 . . . 13 8 . 1 . . . . . . .1 Polychaeta Syllidae 90 2 24 11 1 1 12 116 13 91 292 1 212 Polychaeta Spionidae 9 16 57 128197 21 53 51 16 3 3 1 13 Polychaeta Cirratulidae 318 8 1 . 1 . 1 3 4 3 . 9 .4 Crustacea Urohaustoriidae 8 16 33 48 57 8 13 22 1 . 3 41 135 Crustacea Platyischnopidae 2 58 1 27 88 1 27 . . 3 3 31 96 Crustacea Phoxocephalidae 50 8 6 8 23 4 17 12 30 7 6 14 187 Crustacea Corophiidae . . 6 1 27 55 26 16 17 1 . 8 48 Crustacea Ampeliscidae 18 80 4 . 2 1 14 3 36 . . . 19 Crustacea Gynodiastylidae . . 5 11 88 3 13 8 5 . . 10 310 Crustacea Cylindroleberididae 10 1 1 1 29 . 2 3 68 . . 4 311 Polychaeta Dorvilleidae . . 3 . . . . 22 1 22 29 . .11 Polychaeta Paraonidae 2 . 2 1 2 1 3 16 18 19 . 4 913 Crustacea Philomedidae 4 6 5 25 16 2 1 1 2 2 1 . .14 Crustacea Apseudidae . . 1 . . . . 58 . . . . .15 Nemertea Nemertea 4 . 6 1 3 2 3 9 10 15 3 3 .16 Polychaeta Orbiniidae 1 . 1 4 5 . 1 16 19 3 6 . .17 Polychaeta Hesionidae . . 47 . . . . . . 3 . . .18 Crustacea Diastylidae . . 2 4 34 1 4 . 1 . 1 . .19 Crustacea Lysianassidae 6 4 1 6 4 3 9 . 11 . . 1 120 Polychaeta Nereididae 4 . 9 . . . . . . 30 . . 11 Polychaeta Spionidae 1 1 5 10 20 . 27 5 34 1 107 14 38 53 11 34 113 22 16 11 6 70 172 Polychaeta Paraonidae . 1 . 1 . . 6 10 . . . 7 22 66 18 146 51 10 11 45 51 18 343 Polychaeta Syllidae 1 1 25 2 . . 2 28 . 1 2 14 9 41 1 38 31 44 12 21 34 94 454 Crustacea Kalliapseudidae . . . . . . . 3 . 5 . . 3 10 . 4 78 7 25 14 . 5 .5 Crustacea Phoxocephalidae 2 8 8 9 9 3 9 6 . . 10 11 1613 . 2 1 18 8 7 4 6 16 Crustacea Corophiidae 1 3 40 1 6 . . 3 4 13 6 4 1 21 1 7 11 8 5 3 2 5 .7 Mollusca Turritellidae . . . . . . . . . . . . . . . . . . . . . 140 .8 Crustacea Pagurapseudidae . . . . . . . . . . . 1 . . . . . . . . . 126 .9 Crustacea Paranthuridae 1 . 1 . 1 . . 4 . 10 10 2 6 6 . 26 7 6 17 20 4 . .10 Crustacea Ischyroceridae 3 . 24 . 1 1 . 2 . 86 . 1 . . . . 1 . . . 1 1 .11 Crustacea Urohaustoriidae 9 19 1 17 14 . 3 . 1 . 23 . 16 1 . . . 3 . . . . 212 Nemertea Nemertea . 1 . 1 2 . 1 3 . . 1 4 1 8 1 14 5 3 8 8 9 16 813 Polychaeta Orbiniidae . 1 . . . 1 3 1 . . 2 . 1 1 3 5 . 1 30 40 1 1 .14 Crustacea Aoridae 50 2 . . . . . 2 . 12 . . 1 6 . . 1 . . . 3 . .15 Crustacea Janiridae . . . . . . . 5 . 5 . 6 . . . . 8 . . . 4 42 116 Polychaeta Capitellidae . . . . . . 1 3 . . . 3 2 18 7 7 1 1 . 3 9 9 617 Crustacea Ampeliscidae 1 . . 35 . . . 1 . . 1 . 6 7 1 3 . 1 8 1 . . .18 Crustacea Bairdiidae . . . . . . . 1 . . . 1 . . . . 1 7 . . 6 41 619 Crustacea Apseudidae . . . . . . . 32 . 6 . 1 . 1 1 . 3 15 . . 1 . .19 Crustacea Gynodiastylidae 1410 2 1 1 . 4 2 2 1 6 2 6 3 . 2 . . 3 . . 1 .10 m20 m40 m8


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>Table 4. Mean number of species per site of the top 20 most abundant families in 10, 20 and 40 mdepth classes of the VCBS. Ranks are based on the overall mean number of species across all sitessampled in each depth class. Transects are grouped by bioregion (as defined by IMCRA, 1998). Blankcells indicate sites not sampled. Sites within MP / MNP boundaries are shaded. Dots represent zeros.Depth Rank Phylum FamilyOtway Central <strong>Victoria</strong> Flinders Two-fold shelf2 3 4 8 12 14 15 17 18 19 20 21 22 23 26 27 28 30 31 32 33 34 37 38 39 40 41 45 46 48 491 Crustacea Phoxocephalid 3 4 2 3 2 2 1 2 2 1 4 4 3 2 3 . 1 1 2 2 4 32 Polychaeta Spionidae 2 3 2 3 3 3 2 2 1 2 2 2 5 1 2 3 1 2 1 2 . 23 Crustacea Caprellidae . . . . . . . . . . 2 . . . . . . . . . . .4 Crustacea Urohaustoriida 1 2 1 2 3 1 1 1 3 3 1 1 1 2 3 4 4 3 1 1 3 15 Polychaeta Paraonidae . 2 1 1 2 1 2 2 . 3 2 1 2 . 2 . 2 . . 1 . 15 Polychaeta Syllidae 1 2 2 1 1 3 2 1 . 1 3 3 1 . 1 1 1 1 2 3 1 37 Crustacea Bodotriidae 1 1 2 . 2 2 1 2 1 1 1 . . 1 3 2 2 1 . 2 . .8 Crustacea Lysianassidae 1 1 2 2 1 2 1 2 2 1 2 1 2 . 1 . . 1 . 1 2 19 Polychaeta Nephtyidae . . . . . 1 . . . . . . 2 . . . . 1 . . . .10 Crustacea Gynodiastylida 1 . . . . 1 1 . . . 1 1 3 . 1 2 2 1 . 1 1 111 Crustacea Platyischnopid 2 1 2 1 1 1 1 1 1 1 1 2 . 1 1 1 2 1 . . 1 212 Polychaeta Capitellidae . 1 . . . . . . . 1 . 1 1 . 2 2 . . . 1 . .13 Crustacea Leptanthuridae . . . . . 1 1 . . . . 1 2 . . . . . . . . 114 Mollusca Thraciidae . . . . . . . . 1 . . . 1 . . 1 . 1 . 2 . .15 Crustacea Diastylidae . 1 1 1 1 1 1 1 1 . 1 . 3 . 1 . . . . . . .16 Crustacea Corophiidae . 1 1 . 1 1 1 2 1 . 1 1 1 . 1 . . . 3 1 . 117 Crustacea Oedicerotidae . 1 1 . 1 . 1 2 1 2 1 1 . . 1 1 . 2 . . 2 118 Polychaeta Orbiniidae . . . . 1 . . . . . 1 1 2 . 1 . 1 . . 1 1 119 Crustacea Ampeliscidae 1 . 1 1 1 1 1 1 . . . 1 2 . 1 . . . . . . .19 Crustacea Paracalliopiida 2 . . . . 1 1 1 . . . 1 1 . 1 . . . . 1 2 119 Crustacea Sarsiellidae . . . . 1 . . . . 1 1 . . 1 1 2 . 1 . 1 1 11 Crustacea Phoxocephalid 3 3 3 3 4 2 4 2 4 3 2 4 32 Polychaeta Syllidae 2 1 3 2 1 1 3 4 2 5 3 1 23 Polychaeta Spionidae 3 2 2 2 3 2 2 3 4 2 2 1 14 Crustacea Ischyroceridae . . 2 . . . . . . . . . 05 Crustacea Bodotriidae 2 2 1 3 2 . 1 . . . 2 2 06 Crustacea Corophiidae . . 2 1 2 1 2 2 2 1 . 3 27 Crustacea Melitidae . . 4 . . . 1 1 . 1 . . 08 Polychaeta Phyllodocidae . . 3 . 1 . . 1 2 1 . . 09 Crustacea Arcturidae . . . . . . 2 . . . . . 09 Crustacea Caprellidea . . . . 1 . 2 . . . . . 09 Polychaeta Nephtyidae . . 1 . . . . 2 2 . . . 012 Polychaeta Paraonidae 1 . 1 1 1 1 2 3 1 4 . 1 113 Crustacea Gynodiastylida . . 2 1 3 1 2 1 1 . . 1 214 Crustacea Lysianassidae 2 2 1 1 2 1 2 . 2 . . 1 115 Crustacea Diastylidae . . 1 1 3 1 2 . 1 . 1 . 016 Crustacea Eusiridae . . 2 . . . . 1 . 1 . . 016 Crustacea Leptanthuridae 1 1 . . . . 1 2 2 . . . 116 Crustacea Liljeborgiidae . . . 1 1 . . . . 2 . . 016 Crustacea Urohaustoriida 1 1 5 1 1 1 1 2 1 . 1 1 116 Platyhelminth Turbellaria . . . . . . . . 2 . 1 1 01 Polychaeta Paraonidae . 1 . 1 . . 4 3 . . . 1 4 4 3 3 6 3 4 7 5 2 52 Crustacea Phoxocephalid 2 5 5 3 4 3 4 3 . . 4 7 6 5 . 2 1 5 2 2 2 3 13 Polychaeta Syllidae 1 1 8 1 . . 1 6 . 1 1 3 1 3 1 4 3 6 4 4 4 4 44 Polychaeta Spionidae 1 1 3 2 2 . 1 3 2 1 5 2 4 4 5 5 2 5 1 3 3 3 45 Crustacea Melitidae . . 1 . . . . 4 . 2 . 1 . 2 . . 2 4 . . 3 3 .6 Crustacea Corophiidae 1 2 8 1 3 . . 2 1 5 1 3 1 3 1 3 4 3 1 2 2 1 .7 Crustacea Diastylidae 1 . . . . . . 3 . . . . . . . . . . . . . . .7 Crustacea Rutidermatidae . . . . . . . . . . . . . . . . 2 2 . . . . .9 Crustacea Urohaustoriida 4 3 1 1 1 . 1 . 1 . 4 . 3 1 . . . 2 . . . . 110 Crustacea Janiridae . . . . . . . 2 . 2 . 2 . . . . 2 . . . 3 2 111 Polychaeta Terebellidae . . 2 . . . . 2 . 1 . 2 . 3 1 3 3 1 1 1 2 1 .12 Crustacea Paranthuridae 1 . 1 . 1 . . 1 . 1 2 1 3 3 . 2 3 2 2 2 1 . .13 Crustacea Kalliapseudida . . . . . . . 1 . 2 . . 1 2 . 2 2 2 2 1 . 1 .14 Polychaeta Onuphidae . . 1 . 2 . 1 1 . 1 . 4 2 2 . . 2 1 1 . 1 1 215 Polychaeta Nereididae . . 1 . . . . 2 . 1 . 1 . 2 2 1 1 . 2 1 2 2 .16 Polychaeta Dorvilleidae . . . . . . . 1 . 2 . . . 1 . 1 2 1 . . 2 1 .17 Crustacea Gynodiastylida 1 1 2 1 1 . 1 2 1 1 1 2 2 2 . 1 . . 3 . . 1 .18 Crustacea Joeropsidae . . . . . . . 1 . 2 . . . . . . 2 1 . . 1 . .19 Polychaeta Orbiniidae . 1 . . . 1 2 1 . . 1 . 1 1 2 1 . 1 3 3 1 1 .20 Crustacea Aoridae 1 1 . . . . . 1 . 2 . . 1 3 . . 1 . . . 1 . .20 Polychaeta Lumbrineridae . . . . . . 2 . . . . . 1 1 1 . . 2 2 1 2 .10 m20 m40 m9


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>Table 5. Number of families identified per major taxa within 10, 20 and 40 m depth classes of theVCBS. ‘+’ indicates taxa where family level identifications weren’t made and were given a value of 1 inthe totals. Numbers of replicate samples are indicated in parentheses.Taxa10 m(n=45)20 m(n=27)40 m(n=32)Crustacea 50 64 86Polychaeta 23 34 41Mollusca 22 24 32Echinodermata 5 5 10Pycnogonida 1 3 3Cnidaria + + +Hemichordata + + +Nematoda + + +Nemertea + + +Platyhelminthes + + +Sipuncula + + +Ascidacea . + +Oligochaeta . + +Chaetognatha . + .Chelicerata . . +Chordata . . +Echiura . . +Phoronida . . +Porifera . . +Total 107 139 1853.2.2 Trends in Species Diversity along the <strong>Victoria</strong>n CoastThe total number of species per site increased with depth. There were more species at 40 mthan at 20 m and more at 20 m than at 10 m. But variation between replicates within a siteshowed considerable overlap in species richness between sites from different depths (Figure4). The variation in species richness between sites was considerably higher within the 40 mdepth class than for either of the 10 or 20 m depth classes.Variation in species richness at each depth along the <strong>Victoria</strong>n coast showed considerableoverlap, but at all depths species richness appeared higher between transects 32 (WilsonsPromontory) and 37 (Seaspray) in eastern <strong>Victoria</strong>. Samples collected from the east coastgenerally exhibited higher total numbers of species than samples collected from the centralor west coasts.The total number of species from samples analysed during the Orbost Pulp Mill study washigher than found in the VCBS at all depths. The number of species recorded per site duringthe Orbost study was twice that found during the VCBS at depths of 10 m and 40 m, but onlymarginally higher at a depth of 20 m. Only one site (11 m depth, 9 replicate samples) wassampled within the 10 m depth class for the Orbost study, but eleven sites (29 replicatesamples) were sampled within the 40 m depth class (Table 2).The total number of individuals in samples collected during the VCBS was generally highestfor samples within the 20 m depth class, though there was strong overlap between all depthclasses across the entire state (Figure 5). There was no strong relationship between the10


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>number of individuals and the geographic location of samples, though within the 40 m depthclass there were more individuals per sample from the east of the state versus the west.Number of Species20019018017016015014013012011010090807060504030201000 10 20 30 40 50Transect NumberOrbost 50mOrbost 40mOrbost 30mOrbost 20mOrbost 10mVict. Coast 40mVict. Coast 20mVict. Coast 10mMNPFigure 4. Plot of mean number of species per 0.1m 2 sample analysed during the VCBS (sitesdistinguished by transect number and depth) and Orbost Pulp Mill Study. Transects werelocated along the length of the <strong>Victoria</strong>n coastline and numbered from west to east as shown inFigure 1. Error bars indicate one standard error. Black dots indicate sites located within MNPs.The shaded area represents the stretch of coastline sampled during the Orbost Pulp Mill study.1400Number of Individuals1300120011001000900800700600500Orbost 50mOrbost 40mOrbost 30mOrbost 20mOrbost 10mVict. Coast 40mVict. Coast 20mVict. Coast 10mMNP40030020010000 10 20 30 40 50Transect NumberFigure 5. Plot of mean number of individuals per 0.1m 2 sample analysed during the VCBS(sites distinguished by transect number and depth) and Orbost Pulp Mill Study. Transects werelocated along the length of the <strong>Victoria</strong>n coastline and numbered from west to east as shown inFigure 1. Error bars indicate one standard error. Black dots indicate sites located within MNPs.The shaded area represents the stretch of coastline sampled during the Orbost Pulp Mill study.11


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>There was no clear difference in the mean number of individuals per sample for sites withineach depth class from the VCBS and the Orbost Pulp Mill study.3.2.3 Seasonal Variation – Orbost Pulp Mill studyThe mean number of species per 0.1m 2 sample was generally highest in samples collectedduring February 1991 and lowest in September 1990 across all depth ranges sampled (11–51 m). Differences between number of species collected in September 1990 and June 1991were generally not significant. The most significant differences occurred between samplescollected during February 1991 and September 1990 from depths ranging from 29–43 m.The mean number of species in samples collected during February was on averageapproximately 50% greater than those collected during September, and up to 120% greater.Number of Species20019018017016015014013012011010090807060504030201000 5 10 15 20 25 30 35 40 45 50 55Depth (m)Feb. 1991June 1991Sept. 1990Figure 6. Seasonal variation in mean number of species of infauna per 0.1 m 2 grab sampleversus depth collected during the Orbost Pulp Mill study, from September 1990 – June 1991.Error bars represent one standard error.3.3 INTRODUCED SPECIES - N.Z. Screw ShellAn unusually high abundance of the invasive New Zealand screw shell, Maoricolpus roseus,was identified in all three replicate samples collected off Point Hicks (transect 46) in 40 m ofwater.The N.Z. screw shell accounted for more than 90% of the total biomass of infauna in thesesamples (Table 6, Appendix 5). Replicate 2 had by far the highest biomass of NZ screwshells, the lowest number of individuals and fewer species of infauna than the other tworeplicate samples.12


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>Table 6. Total number of species and individuals, and number and biomass of Maoricolpus roseusidentified from three replicate samples collected off Point Hicks (transect 46) at 40 m depth during theVCBS.VCBS transect 46, 40m depth Replicate 1 Replicate 2 Replicate 3Total number of infaunal species 62 37 71Total no. of individuals (per m 2 ) 9740 2350 12550Number of M. roseus individuals (per m 2 ) 1620 680 1930Wet weight of M. roseus (gm / m 2 ) 290 1800 40013


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>■■■Figure 7a. Probablity of presence of NZ screw shells near Pt Hicks based on mapping during2006 (from Holmes et al. 2007) and observations of distribution during this study in 1998 (Red=NZ screw shells abundant, green= NZ screw shells absent).14


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>■■■Figure 7b. Observations of NZ screw shells near Pt Hicks based on ground truthing during2006 (diamonds, from Holmes et al. 2007) and observations from this study in 1998 (Red= NZscrew shells abundant, green= NZ screw shells absent).15


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>4 DISCUSSION4.1 GEOGRAPHIC VARIATION IN SOFT SEDIMENT BENTHICCOMMUNITIESColeman et al. (2000, 2007) detected no clear geographic variation in the taxonomiccomposition of benthic communities along the <strong>Victoria</strong>n coast, providing only weak evidencesupporting the subdivision of the <strong>Victoria</strong>n coast into bioregions. Similarly, O’Hara (2001)found no evidence of a geographical gradient from west to east in <strong>Victoria</strong>n subtidal rockyreef communities. In contrast, Coleman et al. (2007) found strong evidence for the influenceof <strong>sediment</strong> type and depth on community composition.A distinctive feature of benthic <strong>sediment</strong>s (i.e. sand) along the <strong>Victoria</strong>n coast is the markedreduction in carbonate content east of Wilsons Promontory and the relatively low carbonatefractions in East Gippsland. Sands of the west coast are of a biogenic origin (produced fromliving organisms or biological processes), consisting of foraminifera, bryozoans and molluscswith minimal terrigenous (derived from terrestrial environments) contribution, andconsequenty have a high calcareous component (Bird, 1993; Wass et al., 1970). Sands fromthe east coast have been derived from the weathering of quartzose mantles and nearshoregranite outcrops and have a low carbonate content. The contrasting biological productivity ofeastern and western <strong>Victoria</strong> waters may also influence the carbonate content of <strong>sediment</strong>s.The warm, nutrient poor East Australian current may contribute less carbonate than thecooler and biologically rich waters to the west (Bird, 1993).Roob et al. (1999) also suggested that rocky reefs may contribute higher levels of calciumcarbonate since they are capable of supporting greater biomass of marine fauna from whichcalcium carbonate is derived, and noted that a greater proportion of rocky reefs occur alongthe west and central <strong>Victoria</strong>n coasts than on the east coast.4.2 SPECIES DIVERSITY IN SOFT SEDIMENT BENTHICCOMMUNITIESColeman et al. (1997) and Etter and Grassle (1992) found that species richness increasedwith <strong>sediment</strong> heterogeneity, suggesting that resource partitioning of <strong>sediment</strong>s with respectto grain size occurs, enabling more species to coexist (Levin et al. 2001). Although thedegree of sorting was shown to be associated with depth, Coleman et al. (1997) concludedthat sorting rather than depth was the major factor controlling species richness. They alsosuggested that because well-sorted <strong>sediment</strong>s are in shallower water, reduced speciesrichness in shallower water may be due to increased physical disturbance, through increasedwave action.The Phase 2 study suggests that the diversity of species may be higher in at least sometransects in eastern, although not in far eastern, <strong>Victoria</strong>. The reason that diversity may behigher in this region is uncertain, but differences in wave energy may be important. Theregion with elevated species diversity occurs in eastern Bass Strait, far enough east to havereduced influence from the large swells entering western Bass Strait, but not far enough eastto have the full influence from swells from the Pacific Ocean. Regionally lower wave energymay cause <strong>sediment</strong>s characteristic of deeper water elsewhere on the coast to be foundcloser inshore. As there is a clear relationship between <strong>sediment</strong> type, depth and diversity(Coleman et al. 1997, Figure 6) this may result in higher diversity at specific depths in thoseparts of East Gippsland subject to reduced wave energy. Analysis of additional samples fromeastern <strong>Victoria</strong> would be helpful to confirm this apparent regional variation.Coleman et al. (1997) concluded that the species diversity found in East Gippsland was thehighest yet found in any marine <strong>sediment</strong>s, including those in the deep sea. This conclusion16


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>was supported by Gray et al. (1997) and Poore and O’Hara (2007), both of whomemphasised the lack of strong evidence for species diversity in the deep sea being clearlyhigher than that in shelf <strong>sediment</strong>s, and the paucity of data upon which generalisations onpatterns in benthic species diversity have been based.Species diversity is usually compared in one of two ways: on a unit area basis, or usingrarefaction techniques to estimate the number of species expected for a particular number ofindividuals collected. The latter technique is the only possible basis when benthic samplesare collected using qualitative sampling techniques such as deep sea sleds, and has oftenbeen considered more appropriate when comparing shallow and deep sea diversity, as thelower density of biota in the deep sea means that diversity per unit area in this region willnecessarily be lower. Levin et al. (2001) further argue that it is inadequate to comparespecies diversity based on the number of individuals collected, but that species diversityshould only be based on the asymptote of curves of the number of species vs no ofindividuals. If comparisons of species diversity between different regions are restricted assuggested by Levin et al. (2001), there are virtually no suitable data for regionalcomparisons, and for the deep sea there are no data for any region that suggests anasymptote has yet been reached. Indeed, as the deep sea may show a high degree ofconnectedness over very large areas, to restrict comparisons of diversity based just onasymptotic values of species number vs individuals may result in comparions of the numberof species in very large (deep sea) areas with much smaller shallower regions. This conceptof diversity seems at odds with the more usual concept that asks why some areas supportmore species than others (e.g. Connell and Orias 1964), which imply comparisons based onsimilar areas of sampling. We take the view that comparisons of species diversity on an areabasis, on a per number of individuals basis, and as the asymptote of species vs number ofindividuals curves are all of interest, at least until we better understand the causes ofdiversity.Large-scale marine biogeography is still in a descriptive phase, where establishing pattern isa primary objective (Rex et al. 2005). It therefore remains of interest whether the diversity ofspecies in Bass Strait is unusually high. Species diversity has not been measured in soft<strong>sediment</strong>s in most regions of the world, so benthic diversity in Bass Strait may yet prove tobe unexceptional (Gray et al. 1997). However, there remains a view that the deep sea isexceptionally diverse (Levin et al. 2001), despite the diversity in Bass Strait beingcomparable or higher than that measured in the deep sea, based on a unit area and pernumber of individuals basis (Table 7).Why should the East Gippsland area have high diversity? In a recent review Levin et al.(2001) outline a range of factors that may contribute to high benthic species diversity, but wewill focus on two factors they did not consider; in particular, the contribution of historicalevolutionaryfactors and of temporal variation to the origin and maintenance of high speciesdiversity in Bass Strait.Levin et al. (2001) specifically excluded discussion of the role of historic factors leading tohigher speciation in particular areas, as they were primarily concerned with “ecologicalstructuring agents that function on a generational rather than evolutionary time scales.” Butecological and evolutionary factors that contribute to species diversity cannot be separated,and contemporary patterns in species diversity may originate in part from the unique historyand biogeography of each region (Rickleffs and Schluter 1997). We support the view of Levinet al. (2001) that depth gradients in diversity, such as those between Georges Bank andACSAR (Table 7), are more likely to be caused by contemporary ecological forces than byevolutionary-historical processes, due to the relatively small spatial scales involved (Rex etal. 2005). But, in contrast, the higher diversity apparent in Bass Strait compared to theAtlantic may reflect an important role for evolutionary-historical differences between thesewidely-separated geographic areas. A partial test of the importance of evolutionary history ofan area would be an analysis of species richness off the continental slope near Bass Strait.17


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>This area may support even greater species richness than Bass Strait or the north Atlantic,but such data are not available.Table 7. Comparison of species diversity of benthic infaunal communities found in differentgeographic areas in coastal and deep sea regions.RegionDepthrange (m)Total areaNo of/m 2 (m 2 )species sampledTotal no.ofspeciesTotal no.ofindividualsReferenceOrbost,Bass StraitVCBS Phase 1study, <strong>Victoria</strong>ncoast (10m depth)VCBS Phase 1study, <strong>Victoria</strong>ncoast (40 m depth)Delaware,North AtlanticGeorges Bank,North AtlanticACSAR † North,North Atlantic11–51 >400 10.2 803 60,258 Coleman et al. 1997,Gray et al. 199710 96 2.8 160 4822 Coleman et al. 200740 285 2.4 454 4458 Coleman et al. 20071500–2100 220-300 21 798 90,677 Grassle & Maciolek(1992)38–167 165 46 ~650 550,000 Levin et al. 20011220–1350 319 5.7 ~600 27,906 Levin et al. 2001†ACSAR, Atlantic Continental Slope and RiseRickleffs and Schluter (1997) suggest that “particular geographical configurations of islands,or of ecological barriers to dispersal, might result in different rates of species production anddifferent levels of regional and local diversity.” The unusual geography and geological historyof Bass Strait has at least the potential to create periodic geographic isolation that cangenerate allopatric speciation and contribute to a high regional diversity. The geographicarea that currently forms Bass Strait extends in an east–west direction, where, depending onthe prevailing sea level, it creates two geographically well-separated biotas or joins twobiotas at the same latitude. Many authors (O’Hara and Poore 2000 and references therein)have speculated that this may contribute to high rates of speciation in the Bass Strait region.On a broader scale the climate across southern Australia over the past 40 million years hasremained relatively stable, as global cooling during this period was largely compensated bythe drift of the Australian continent northwards (Flannery 1994, p76). At a minimum thisprevented large-scale glaciation and the likelihood of mass extinctions. O’Hara and Poore(2001) note that there is no clear trend in species diversity of echinoderms or decapodsacross southern Australia, suggesting that diversity in Bass Strait may be no higher thanoccurs across all of southern Australia. Coleman et al. (1997) noted the very high diversity ofphoxocephalid amphipods in southern Australia first recognised by Barnard and Drummond(1978), and the globally high diversity and the high levels of endemism of macroalgae,especially Rhodophyta (Phillips 2001), and Phaeophyta (Bolton 1994, 1996) in southernAustralia. The high diversity of these taxonomic groups suggests evolutionary conditionshave at least been suitable for atypical radiation of these groups in southern Australia.Similarly, the diversity of <strong>benthos</strong> elsewhere in <strong>Victoria</strong>, especially Port Phillip Bay (713species in 43 m 2 of <strong>sediment</strong> sampled, Poore et al. 1975) and Western Port (572 species in12.3 m 2 , Coleman et al. 1978) is also high, although not as high as Bass Strait, furthersuggesting that regional historical-evolutionary factors may be of importance.18


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>Studies of benthic species diversity recognise that spatial differences in habitats, includingdifferences in grain size, contribute to coexistence of species (e.g. Levin et al. 2001), butthere are far fewer discussions of the contribution of temporal environmental variation to thecoexistence of benthic species. While the role of intermediate levels of disturbance inmaintaining species diversity is widely recognised (Connell 1978), temporal differences inbenthic species diversity have not been widely reported. Grassle and Maciolek (1992) foundonly small temporal differences in species diversity in the deep North Atlantic. Their studymonitored species richness at 9 stations at 2100 m depth every three months for two years,and they found a maximum of 20–30% variation in species diversity (per 500 individuals)over this period. In contrast, at depths >25 m, differences in Bass Strait species diversityvaried by 100% over a 9 month period (Figure 6). There were approximately twice as manyspecies collected at the same sites off Orbost during February 1991 as were collected thereduring September 1990 (Figure 6). Poore and Rainer (1979) also showed that speciesrichness at three sites in Port Phillip Bay varied by a factor of 100% over a three year period,and that interannual differences in diversity were greater than any seasonal differences.Similarly, Stephenson et al. (1974) found that annual changes in species composition inMoreton Bay, Queensland, were greater than seasonal changes, and suggested that floodsand droughts may have been important influencing factors. In contrast, in the north Atlanticdifferences in species diversity have been found to be small between years (Lie and Evans1973, Levings 1975) or strongly seasonal (Watling 1975). The irregular fluctuations inspecies composition and diversity in coastal Australian <strong>benthos</strong> may result from large-scaleinfluences on the Australian climate. Australia is the only continent where the overwhelminginfluence is a non-annual climatic change (Flannery 1994, p81). The El Nino SouthernOscillation drives these irregular changes that affect both the terrestrial and marine ecologyof the Australian continent.A factor likely to contribute to high species diversity in Bass Strait is “resource partitioning”that may occur on a temporal basis, with particular species favoured in some years andothers favoured by different conditions (temperature, insolation and productivity, etc) in otheryears. The unpredictably changeable conditions between years may cause changes to thespecies composition of communities over time, and are also likely to lead to higher diversityat any point in time, as at any time the community will consist of a mixture of species whosepopulations are in decline while others are increasing as conditions become more favourablefor them. This effect will be reduced where conditions are less variable between years, whereconditions are repeated more regularly (e.g. seasonally), and possibly when conditionsbecome extremely harsh regularly (e.g. seasonally low temperatures and low productivity).There is also a pertinent corollary to this argument: where there is greater temporal variationin species diversity, global comparisons should be based on the number of species found ata site over a standardised time period of at least a few years. Otherwise the contribution ofirregular, but benign, temporal variation in environmental conditions on species diversity maybe underestimated.The species richness found in the Orbost region during 1990/91 was markedly (typically100%) higher than found at any site in the VCBS during 1998. The reason that diversityshould be so much higher in this study is unclear, but there is significant temporal variation inthe species richness near Orbost. As the Orbost region was sampled for less than one yearthe contribution of seasonality to temporal differences in species diversity is uncertain, but asthe VCBS sampling occurred during May, close to June when the lowest species richnesswas recorded in the Orbost study, the time of sampling may be the reason species diversitywas lower during 1998.We agree with Rex et al (2005) that marine invertebrate communities offer tremendouspotential to determine the relative importance of history and ecological opportunity in shapinglarge-scale patterns in species diversity. But, many more data sets are required to determinethe patterns of species diversity with depth and with latitude to realise this potential (Gray etal. 1997, Rex et al. 2005). The current study also suggests that these additional data sets19


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>should also be collected over several years so that the contribution of temporalenvironmental changes to species diversity can be assessed more adequately.4.3 N.Z. SCREW SHELLThe New Zealand screw shell, Maoricolpus roseus, is a large (up to 90 mm long and 25 mmwide) filter-feeding gastropod that was unintentionally introduced to south-eastern Tasmaniain the 1920s and has now become established in vast beds in northern Bass Strait and offthe coasts of eastern Tasmania, <strong>Victoria</strong> and New South Wales. It is found from the intertidalto 150 m deep, can withstand low salinities, and has colonised more habitat than any otherhigh-impact benthic marine pest in Australia. Its wide temperature and depth tolerancemakes further spread likely (Gunasekera et al., 2005; NIMPIS, 2002).There are few known predators of the N.Z. screw shell in Australia and most predationseems to occur on small juveniles (NIMPIS, 2002). It is highly competitive with other species,and builds substantial beds to the detriment of other animals on the sea floor (CSIRO, 2000).It may lead to a reduction in numbers of native screwshells and scallops through directcompetition for food and space as they are all filter feeding species with overlapping habitatrequirements (NIMPIS, 2002). In Tasmania, native screwshells (primarily Gazameda gunnii)and commercial scallop species have declined in abundance since the appearance of M.roseus (Allmon et al 1994, Caton and McLoughlin 2000 both cited in NIMPIS, 2002).This study has identified very high densities of the invasive New Zealand screw shell, withinthe Point Hicks MNP. This species was only found at a depth of 40 m, where it was abundantin all three replicates. Densities recorded in this study (680–1930 m –2 , Table 6) are similar tovery high densities recorded in Otago Harbour (2240 m –2 , Rainer 1981). Densities weresimilar, but the mean size and biomass of this invasive mollusc varied between replicates.While infaunal diversity at the invaded site (40 m transect 46, Figure 4) was not significantlylower than that in adjacent (uninvaded) sites, it is of concern that species diversity wasclearly lower in the replicate sample with the highest biomass of NZ screw shell. Thissuggests that this abundant invasive species may pose a significant threat to the biodiversityof the Pt Hicks Marine National Park, as well as much of eastern Bass Strait, including otherMarine National <strong>Parks</strong>.5 MANAGEMENT IMPLICATIONSLarge differences noted in species diversity measured during the Orbost study in 1990/01and the coastal <strong>benthos</strong> study in 1998 indicate that there is much we still do not understandabout the processes that maintain this high diversity. The role of temporal (both seasonaland interannual) environmental changes in maintaining this diversity needs furtherinvestigation. That there appear to be large natural temporal variations in species diversitysuggests that long times series of infaunal data will be required to detect the effects of anyhuman influences on diversity. That high densities of exotic species such as NZ screw shellscan establish even in remote areas means that targeted monitoring, with possible activemanagement of MNPs, is likely to be required to understand their long-term impact on theconservation of biodiversity in MNPs.ACKNOWLEDGMENTSThis study was funded by <strong>Parks</strong> <strong>Victoria</strong>. Thanks to Dr Anthony Boxshall, <strong>Parks</strong> <strong>Victoria</strong> forhis support, and to Ms Julia Koburg who assisted with the sorting and identification of thesamples during Phase 2 study of the VCBS.20


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>REFERENCESAllmon, W.D., Jones, D., Aiello, R.L., Gowlett-Holmes, K., and Probert, P.K. (1994)Observations on the biology of Maoricolpus roseus (Quoy and Gaimard) (Prosobranchia:Turritellidae) from New Zealand and Tasmania. Veliger 37: 267-279.Barnard J.L. and Drummond M.L. (1978) Gammaridean Amphipoda of Australia. Part III, thePhoxocephalidae. Smithonian Contributions to Zoology No. 245. Smithsonian InstitutionPress, Washington, DC.Bird E.C.F. (1993) The Coast of <strong>Victoria</strong>. Melbourne University Press.Bolton J. (1994) Global seaweed diversity: patterns and anomalies. Botanica Marina 37:241–245.Bolton J. (1996). Patterns of species diversity and endemism in comparable temperatebrown algal floras. Hydrobiologica 326/327: 173–178.Caton, A., and McLoughlin, K. (2000). Fishery Status Reports 1999. Bureau of RuralSciences, Agriculture, Fisheries and Forestry – Australia. CanberraColeman N., Cuff W., Drummond M., and Kudenov J.D. (1978) A quantitative survey of themacro<strong>benthos</strong> of Western Port, <strong>Victoria</strong>. Australian Journal of Marine and freshwaterResearch 29: 445–466.Coleman N., Gason A., Moverley J. & Heislers S. (2000) Depth, <strong>sediment</strong> type and thedistribution of ingfauna along the coast of <strong>Victoria</strong>. Final report to <strong>Parks</strong>, Flora and FaunaDivision of the Department of Natural Resources and Environment.Coleman N., Gason A. S. H. and Poore G. C. B. (1997) High species richness in the shallowmarine waters of south-east Australia Marine Ecology Progress <strong>Series</strong> 154: 17–26.Coleman N., Cuff W., Moverley J., Gason A. S. H. & Heislers S. (2007) Depth, <strong>sediment</strong>type, biogeography and high species richness in shallow-water <strong>benthos</strong>. Marine andFreshwater Research. 58: 293-305.Connell J.H. (1978) Diversity in troprical rain forests and coral reefs. Science 199:1302–1310.Connell J.H. and Orias E. (1964) The ecological regulation of species diversity. AmericanNaturalist 98:399–414.CSIRO (2000) Media Release- Screw shell's marine marathon. Ref 2000/287 - Nov 01, 2000.Etter R.J. and Grassle J.F. (1992) Patterns of species diversity in the deep sea as a functionof <strong>sediment</strong> particle size diversity. Nature 360: 576–578.Flannery T.F. (1994) The future eaters. Reed Books, Chatswood, NSW.Gray J.S., Poore G.C.B., Ugland K.I., Wilson R.S., Olsgard F., & Johannessen O. (1997)Coastal and deep-sea benthic diversities compared. Marine Ecology Progress <strong>Series</strong> 159:97–103.Gunasekera R. M., Patil J. G., McEnnulty F. R. and Bax N. J. (2005) Specific amplification ofmt-COI gene of the invasive gastropod Maoriculpus roseus in planktonic samples reveals afree-living larval life-history stage. Marine and Freshwater Research 56: 901–912.Holmes, K.W., Radford, B., Van Niel, K.P., Kendrick, G.A. and Grove, S.L. (2007) Mappingthe Benthos in <strong>Victoria</strong>’s Marine National <strong>Parks</strong>, Volume 2: Point Hicks. <strong>Parks</strong> <strong>Victoria</strong><strong>Technical</strong> <strong>Series</strong> No. 41. <strong>Parks</strong> <strong>Victoria</strong>, Melbourne.21


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>IMCRA (Interim Marine and Coastal Regionalisation for Australia <strong>Technical</strong> Group) (1998)Interim Marine and Coastal Regionalisation for Australia: an Ecosystem-Based Classificationfor Marine and Coastal Environments.’Version 3.3. (Environment Australia: Canberra.).Levings C.D. (1975) Analyses of temporal variation in the structure of a shallow waterbenthic community in Novia Scotia. Internationale Revue der Gesamten Hydrobiologie 60:449–493.Lie U. and Evans R.A. (1973) Long term variability in the structure of subtidal benthiccommunities in Puget Sound, Washington, USA. Marine Biology 21:122–126.NIMPIS (2002) Maoricolpus roseus general notes. National Introduced Marine PestInformation System (Eds: Hewitt C.L., Martin R.B., Sliwa C., McEnnulty, F.R., Murphy, N.E.,Jones T. & Cooper, S.). Web publication , Date ofaccess: 10/5/2007O’Hara T. D. (2001) Consistency of faunal and floral assemblages within temperate subtidalrocky reef habitats. Marine and Freshwater Research 52: 853–863.O’Hara T.D. and Poore G.C.F. (2000) Patterns of distribution for southern Australian marineechinoderms and decpods. Journal of Biogeography 27: 1321–1335.Parry G. D., Campbell, S.J. and Hobday, D.K. (1989) Marine resources off East Gippsland,southeastern Australia. Marine Science Laboratories, Queenscliff. <strong>Technical</strong> Report No. 72,166 pp.Phillips J.A. (2001) Marine macroalgal biodiversity hotspots: why is there high speciesrichness and endemism in southern Australian marine benthic flora? Biodiversity andConservation 10: 1555–1577.Poore G.C.B. and O’Hara T.J. (2007) Marine biogeography and biodiversity of Australia. In:Marine Ecology (Eds, S.D. Connell and B.M. Gillanders), pp.175–198 Oxford UniversityPress, South Melbourne, <strong>Victoria</strong>.Poore G.C.F., Rainer, S.F., Spies, R.B. and Ward E. (1975) The zoobenthis program in PortPhillip Bay, 1969-73. Fisheries and Wildlife Paper, <strong>Victoria</strong> 7:1–78.Poore, G. C. B. and Rainer, S. F. (1979) A three-year study of <strong>benthos</strong> of muddyenvironments in Port Phillip Bay, <strong>Victoria</strong>, Australia. Estuarine and Coastal Marine Science 9:477–497.Rainer S.F. (1981) <strong>Soft</strong>-bottom benthic communitiesin Otago Harbour and Blueskin Bay,New Zealand. New Zealand Oceanographic Institute Memoir 80: 1–18.Rex M.A., Crame J.A., Stuart C.T., Clarke A. (2005) Large-scale biogeographic patterns inmarine molluscs: A confluence of history and productivity. Ecology 86: 2288–2297.Rickleffs R.E. and Schluter D. (1997) Species diversity: regional and historical influences. In:Species diversity in ecological communities: Historical and Geographical Perspectives (Eds.R.E. Rickleffs and D. Schluter, pp. 350–363 University of Chicago Press, Chicago.Roob R., Gunthorpe L. and Turnbull J. (1999) Collection and physical classification of<strong>sediment</strong>s. In: Environmental Inventory of <strong>Victoria</strong>’s Marine Ecosystems Stage 4 (Part 1)(Ed. L.W. Ferns) pp. 2.1–2.13, maps 2.1a–2.3c. Department of Natural Resources andEnvironment: East Melbourne.Stephenson W., Williams W.T. and Cook S.D. (1974) The benthic fauna of soft bottoms,southern Moreton Bay. Memoirs of the Queensland Museum 17: 73–123.Wass, R. E., Conolly, J. R. and MacIntyre, R. J. (1970) Bryozoan carbonate sand continuousalong southern Australia. Marine Geology 9: 63–73.22


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>Watling L. (1975) Analysis of structural variations in a shallow estuarine deposit-feedingcommunity. Journal of Experimental Marine Biology and Ecology 19:275–313.Wilson, R. S., Heislers, S. and Poore, G. C. B. (1998) Changes in benthic communities ofPort Phillip Bay, Australia, between 1969 and 1995. Marine and Freshwater Research 49:847–861.23


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53 <strong>Victoria</strong>n MNP coastal <strong>benthos</strong>APPENDIX 1<strong>Victoria</strong>n Coastal Benthic Survey site/sample locations and <strong>sediment</strong> characteristics.Adapted from Table 2.1 of Roob et. al. (1999). Latitude and Longitude coordinates are in AGD 66 datum.Median MedianDepthComments – Grain Size% % % %Transect Latitute Longitude Comments – FieldGrain Size Grain Size(m)Testing(mm) Class † Gravel Sand Silt Clay0A 0 10 38°03'31" 141°02'10" Sand Clean fine sand 0.16 fine 0.00 99.77 0.23 0.00 99.77SampleCode0B 0 20 38°04'08" 141°01'50" Reef,craypots everywhere N/A N/A N/A N/A N/A N/A N/A0C 0 40 38°07'12" 140°35'59"Reef, scraping taken for carbonateanalysis%CarbonateN/A N/A N/A N/A N/A N/A N/A1A 1 10 38°07'19" 141°09'16" Sand Clean fine sand 0.21 fine 0.00 99.86 0.14 0.00 N/A1B 1 20 38°07'21" 141°09'04" Sand Clean fine sand 0.19 fine 0.09 99.91 0.00 0.00 N/A1C 1 40 38°08'13" 141°08'13"Reef, scrapings taken forcarbonate analysisCoarse sand, broken shell.Removed larger pieces.0.52 coarse 0.00 100.00 0.00 0.00 91.382A 2 10 38°12'24" 141°14'04" Sand Clean fine sand 0.19 fine 0.12 99.72 0.16 0.00 76.442B 2 20 38°12'29" 141°13'23" Sand Clean fine sand 0.18 fine 0.64 99.33 0.03 0.00 75.492C 2 40 38°12'34" 141°12'49" Reef, no sample N/A N/A N/A N/A N/A N/A N/A3A 3 10 38°13'34" 141°16'22" Clean fine sand 0.18 fine 0.00 100.00 0.00 0.00 94.353B 3 20 38°14'07" 141°16'16" Clean fine sand 0.17 fine 0.00 100.00 0.00 0.00 87.713C 3 40 38°15'00" 141°16'04" Clean fine sand 0.19 fine 9.79 90.21 0.00 0.00 66.624A 4 10 38°14'24" 141°21'05" Clean fine sand 0.17 fine 0.07 99.93 0.00 0.00 92.834B 4 20 38°14'49" 141°21'21" Clean fine sand 0.16 fine 0.00 100.00 0.00 0.00 87.334C 4 40 38°15'35" 141°22'08" Clean fine sand 0.16 fine 0.00 99.90 0.10 0.00 82.037A 7 10 Reef – no samples N/A N/A N/A N/A N/A N/A N/A7B 7 20 38°11'02" 141°34'26"Limited sample, sand taken forcarbonate and grain sizeCoarse sand or shell 0.77 coarse 0.00 100.00 0.00 0.00 92.967C 7 40 38°15'40" 141°34'53" Reef, no sample taken N/A N/A N/A N/A N/A N/A N/A8A 8 10 38°13'33" 142°09'08" Fine sand & broken shell 0.17 fine 0.00 99.80 0.20 0.00 90.23A1.1


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53 <strong>Victoria</strong>n MNP coastal <strong>benthos</strong>SampleCodeTransectDepth(m)Latitute Longitude Comments – FieldComments – Grain SizeTestingMedianGrain Size(mm)MedianGrain SizeClass † %Gravel%Sand%Silt%Clay%Carbonate8B 8 20 38°13'55" 142°09'36" Fine sand & broken shell 0.16 fine 0.00 100.00 0.00 0.00 90.338C 8 40 38°14'36" 142°10'11" Reef – patchy with sand Coarse sand & shell 0.48 medium 0.00 99.74 0.26 0.00 95.689A 9 10 38°15'56" 142°18'12" Reef N/A N/A N/A N/A N/A N/A N/A9B 9 20 38°15'56" 142°18'12" Reef N/A N/A N/A N/A N/A N/A N/A9C 9 40 38°15'56" 142°18'12"Unable to get grab sample butsome <strong>sediment</strong> taken for whirl Coarse shell & coral 0.62 coarse 0.00 100.00 0.00 0.00 88.47packs. Seems to be patchy reef.10A 10 10 38°19'00" 142°25'13" Reef no sample taken N/A N/A N/A N/A N/A N/A N/A10B 10 20 38°19'07" 142°25'39" Reef no sample taken N/A N/A N/A N/A N/A N/A N/A10C 10 40 38°20'09" 142°25'11" Reef no sample taken N/A N/A N/A N/A N/A N/A N/A11A 11 10 38°22'19" 142°32'38" Reef no sample taken N/A N/A N/A N/A N/A N/A N/A11B 11 20 38°22'24" 142°32'36" Reef no sample taken N/A N/A N/A N/A N/A N/A N/A11C 11 40 38°23'25" 142°32'31" Reef no sample taken N/A N/A N/A N/A N/A N/A N/A12A 12 10 38°24'18" 143°03'57" Fine sand Clean fine sand 0.21 fine 0.23 99.65 0.12 0.00 82.7812B 12 20 38°24'27" 143°03'38" Fine sand Clean fine sand 0.16 fine 0.11 99.63 0.26 0.00 86.4212C 12 40 38°24'39" 143°03'07" Sand Clean medium sand 0.33 medium 0.18 99.82 0.00 0.00 68.3914A 14 10 38°27'19" 143°12'33" Clean fine sand 0.19 fine 0.00 100.00 0.00 0.00 78.0014B 14 20 38°27'40" 143°12'28" Clean fine sand 0.16 fine 0.10 99.90 0.00 0.00 70.8514C 14 40 38°28'17" 143°12'26"Fine sand, shell pieces.Removed larger pieces.0.20 fine 0.08 99.80 0.12 0.00 44.7315A 15 10 38°30'58" 143°19'40" Clean fine sand 0.19 fine 0.00 100.00 0.00 0.00 72.5615B 15 20 38°31'05" 143°19'38" Coarse sand & shell 0.42 medium 0.00 100.00 0.00 0.00 81.0415C 15 40 38°31'41" 143°19'45" Coarse sand & shell 0.54 coarse 0.12 99.88 0.00 0.00 17.9016A 16 10 38°26'37" 143°24'47" Fine sand Fine sand 0.15 fine 0.00 99.38 0.62 0.00 66.5916B 16 20 38°27'10" 143°25'02" Fine sand Fine sand 0.19 fine 0.00 99.92 0.08 0.00 68.5216C 16 40 38°28'07" 143°25'36" Fine sand Fine to medium sand 0.28 medium 0.00 100.00 0.00 0.00 18.7017A 17 10 38°23'00" 143°32'53" Fine sand Fine sand 0.16 fine 0.00 100.00 0.00 0.00 71.4517B 17 20 38°23'09" 143°32'25" Fine sand 0.18 fine 0.00 100.00 0.00 0.00 73.3617C 17 40 38°23'34" 143°32'50" Fine sand and shell Fine sand & broken shell 0.15 fine 0.00 98.94 1.06 0.00 78.01A1.2


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53 <strong>Victoria</strong>n MNP coastal <strong>benthos</strong>SampleCodeTransectDepth(m)Latitute Longitude Comments – FieldComments – Grain SizeTestingMedianGrain Size(mm)MedianGrain SizeClass † %Gravel%Sand%Silt%Clay%Carbonate18A 18 10 38°17'04" 144°02'12" Clean fine sand 0.15 fine 0.00 99.29 0.71 0.00 75.0718B 18 20 38°17'20" 144°02'24" Shell grit - in depression ? Clean fine sand 0.14 fine 0.09 96.97 2.94 0.00 72.7118C 18 40 38°30'12" 144°15'02" Coral, broken shell & sand 0.68 coarse 0.00 100.00 0.00 0.00 88.2219A 19 10 38°13'59" 144°09'29" Clean fine sand 0.15 fine 0.10 99.28 0.62 0.00 74.0419B 19 20 38°14'08" 144°09'43" Clean fine sand 0.14 fine 0.30 99.37 0.33 0.00 91.1319C 19 40 38°14'39" 144°10'18" Much cobble - some <strong>sediment</strong>Some silt, fine sand, coral,broken shell. Removedlarger pieces.0.37 medium 0.38 98.90 0.72 0.00 89.5020A 20 10 38°10'39" 144°14'45" Clean fine sand 0.14 fine 0.00 99.81 0.19 0.00 53.2320B 20 20 38°11'03" 144°14'55"Clean, very fine sand. Smallamount plant matter, wormtube.0.14 fine 0.00 99.85 0.15 0.00 41.0420C 20 40 38°12'06" 144°15'25" Clean medium sand 0.28 medium 0.00 100.00 0.00 0.00 99.3821A 21 10 38°12'21" 144°25'24"Samples taken at 12 mClean fine sand, somebroken shell0.18 fine 0.00 99.91 0.09 0.00 68.2121B 21 20 38°12'35" 144°25'07" Clean fine sand 0.19 fine 0.08 99.92 0.00 0.00 53.0421C 21 40 38°13'29" 144°24'16" Clean fine sand 0.17 fine 0.00 99.92 0.08 0.00 62.4722A 22 10 38°16'03" 144°30'21" Fine sandClean fine sand, some fineshell grit.0.16 fine 0.00 99.97 0.03 0.00 51.6522B 22 20 38°16'03" 144°30'05" Reef N/A N/A N/A N/A N/A N/A N/A22C 22 40 38°16'49" 144°29'21" Reef N/A N/A N/A N/A N/A N/A N/A23A 23 10 Reef N/A N/A N/A N/A N/A N/A N/A23B 23 20 38°17'51" 144°34'31" Reef N/A N/A N/A N/A N/A N/A N/A23C 23 40 38°19'11" 144°34'37"Reef and sand - small sampletaken Coarse shell grit & stones.0.73 coarse 1.47 98.53 0.00 0.00 83.4524B 24 20 38°18'49" 145°05'26" Reef N/A N/A N/A N/A N/A N/A N/A24C 24 40 38°19'30" 145°05'20" Fine sand and silt25 25No transect exists – due todiscontinuity in numbering systemSediment, fine sand, wormtubes, vegetation.0.14 fine 0.07 98.53 1.40 0.00 50.11N/A N/A N/A N/A N/A N/A N/AA1.3


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53 <strong>Victoria</strong>n MNP coastal <strong>benthos</strong>SampleCodeTransectDepth(m)26A 26 1026B 26 20 38°19'01" 145°11'11"Latitute Longitude Comments – FieldNo samples taken due to oceanconditions – breaking waves.Reef at 20 m, A and B taken asone at 15 mComments – Grain SizeTestingMedianGrain Size(mm)MedianGrain SizeClass † %Gravel%Sand%Silt%Clay%CarbonateN/A N/A N/A N/A N/A N/A N/ACoarse sand & shell 0.33 medium 0.00 99.86 0.14 0.00 36.7426C 26 40 38°19'41" 145°10'48" Fine sand Clean fine sand 0.16 fine 0.09 99.79 0.12 0.00 7.3426Ci 26 40 38°19'41" 145°10'47"Very coarse sand – close inCoarse shell & sand, samplelocation to 26C but samples verytaken immediately after 26C.different.0.97 coarse 0.18 99.82 0.00 0.00 N/A27C 27 40 38°23'55" 145°18'26" Coarse shell & sand. 0.61 coarse 0.00 100.00 0.00 0.00 93.5628A 28 10 38°28'33" 145°31'10" Fine sand Clean fine sand 0.19 fine 0.00 100.00 0.00 0.00 39.8228B 28 20 38°28'14" 145°31'51" Rock, additional sample taken Clean fine sand N/A N/A N/A N/A N/A N/A 47.3028C 28 40 38°28'37" 145°29'25" Fine sandClean fine sand & somebroken shell0.23 fine 0.00 100.00 0.00 0.00 30.6029A 29 10 38°29'25" 146°02'17" Fine sand Fine sand, shell, calcium. 0.16 fine 0.00 99.66 0.34 0.00 41.4029B 29 20 38°30'39" 146°02'26" Coarse sandFine sand, coarse sand,shell & pebbles. Removedlarge shell & pebbles.0.52 coarse 0.00 100.00 0.00 0.00 23.1829C 29 40 38°35'22" 146°02'21" Fine sand Fine sand, broken shell 0.16 fine 0.08 99.86 0.06 0.00 57.8730A 30 10 38°35'31" 146°09'13" Clean fine sand 0.15 fine 0.05 99.95 0.00 0.00 48.9130B 30 20 38°35'36" 146°08'48" Clean fine sand 0.17 fine 0.00 100.00 0.00 0.00 53.3030C 30 40 38°35'32" 146°07'31" Clean fine sand 0.18 fine 0.00 99.91 0.09 0.00 59.9231A 31 10 39°02'30" 146°11'53" Clean fine sand 0.15 fine 0.05 99.83 0.12 0.00 60.5431B 31 20 39°02'30" 146°11'36" Clean fine sand 0.15 fine 0.00 100.00 0.00 0.00 51.9931C 31 40 39°02'31" 146°10'28" Fine sand & broken shell 0.24 fine 0.10 99.69 0.21 0.00 34.0432A 32 10 39°02'30" 146°15'33" Clean fine white sand 0.22 fine 0.00 100.00 0.00 0.00 1.6132B 32 20 39°02'35" 146°15'42"Half coarse and half finesand - mixed together fortest0.48 medium 0.00 99.76 0.24 0.00 2.8832C 32 40 39°02'59" 146°16'30" Sediment, fine sand, mica 0.13 fine 0.00 87.19 12.81 0.00 57.0933A 33 10 38°33'55" 146°17'02" Fine sand Silt & fine sand, 1 allionasa. 0.16 fine 0.20 99.64 0.16 0.00 12.6433B 33 20 38°34'18" 146°19'01" Fine sand Silt & fine sand, mica 0.14 fine 0.10 99.10 0.80 0.00 28.6333C 33 40 38°34'54" 146°22'58" Fine sand and silt Silt & fine sand, broken shell 0.16 fine 0.00 97.11 2.89 0.00 58.65A1.4


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53 <strong>Victoria</strong>n MNP coastal <strong>benthos</strong>SampleCodeTransectDepth(m)Latitute Longitude Comments – FieldComments – Grain SizeTestingMedianGrain Size(mm)MedianGrain SizeClass † %Gravel34A 34 10 38°27'50 146°24'51" Clean medium sand 0.24 fine 0.00 100.00 0.00 0.00 3.8334B 34 20 38°28'46" 146°25'25" Clean medium sand 0.24 fine 0.00 99.79 0.21 0.00 5.2934Bi 34 20 38°28'46" 146°25'28" Clean medium sand 0.23 fine 0.00 100.00 0.00 0.00 N/A%Sand%Silt%Clay%Carbonate34C 34 40 38°32'25" 146°29'41" Clean coarse sand & shell 0.49 medium 0.00 99.84 0.16 0.00 69.9635A 35 10 38°24'00" 146°31'54" Clean fine sand 0.25 fine 0.00 99.93 0.07 0.00 11.6735B 35 20 38°25'15" 146°33'03"Clean coarse sand & brokenshell0.39 medium 0.00 100.00 0.00 0.00 63.2435C 35 40 38°29'12" 147°00'14" Coarse sand & broken shell 0.53 coarse 0.00 100.00 0.00 0.00 71.4936A 36 10 38°18'44" 147°01'16"Silt & fine sand. Dated8/5/98.0.17 fine 0.05 99.93 0.02 0.00 13.6836Ai 36 10 38°18'46" 147°01'16" Silt & fine sand 0.16 fine 0.00 99.77 0.23 0.00 N/A36B 36 20 38°19'32" 147°03'38"Clean medium sand. Dated8/5/98.0.28 medium 0.00 100.00 0.00 0.00 19.3136Bi 36 20 38°19'32" 147°03'38" Coarse sand & shell 0.25 fine 0.00 100.00 0.00 0.00 N/A36Bii 36 20 38°19'35" 147°03'40" Clean coarse sand 0.32 medium 0.13 99.85 0.02 0.00 N/A36Biii 36 20 38°19'35" 147°03'41"36C 36 40 38°22'05" 147°07'33"Coarse sand & shell, wormtube, veg matter. Dated10/5/98.Medium-coarse sand, someshell grit.0.27 medium 0.00 100.00 0.00 0.00 N/A0.24 fine 0.00 100.00 0.00 0.00 20.5437A 37 10 38°12'26" 147°08'49" Clean fine sand 0.16 fine 0.04 99.82 0.14 0.00 13.0637B 37 20 38°13'30" 147°01'55" Clean medium sand 0.20 fine 0.00 100.00 0.00 0.00 10.7037C 37 40 38°18'04" 147°15'28" Coarse sand & broken shell 0.37 medium 0.13 99.87 0.00 0.00 23.8338A 38 10 38°07'45" 147°14'46" Coarse sand & shell 0.29 medium 0.05 99.95 0.00 0.00 30.1138B 38 20 38°09'03" 147°16'52" Rubble38C 38 40 38°11'13" 147°19'43"Very coarse sand & shell.Removed larger rocks &shell.Some <strong>sediment</strong>, coarsesand & shell0.74 coarse 0.05 99.95 0.00 0.00 32.40.25 fine 0.05 99.80 0.15 0.00 43.2139A 39 10 38°02'03" 147°22'27" Clean fine sand 0.21 fine 0.00 100.00 0.00 0.00 16.2439B 39 20 38°02'32" 147°23'14"Very coarse sand & shell.Removed large shell & rock.0.74 coarse 0.03 99.97 0.00 0.00 17.93A1.5


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53 <strong>Victoria</strong>n MNP coastal <strong>benthos</strong>SampleCodeTransectDepth(m)Latitute Longitude Comments – FieldComments – Grain SizeTestingMedianGrain Size(mm)MedianGrain SizeClass † %Gravel%Sand%Silt%Clay%Carbonate39C 39 40 38°04'36" 147°25'18" Silt & fine sand 0.16 fine 0.00 99.33 0.67 0.00 50.7340A 40 10 37°33'51" 147°30'09" Clean medium sand 0.32 medium 0.00 100.00 0.00 0.00 5.5640B 40 20 37°34'29" 147°30'07"Coarse sand & shell, largerpieces of shell.0.36 medium 0.00 100.00 0.00 0.00 7.5440C 40 40 37°35'25" 147°31'53" Silty fine sand 0.15 fine 0.00 97.50 2.50 0.00 59.4841A 41 10 37°31'16" 148°02'49" Fine sand 0.18 fine 0.00 100.00 0.00 0.00 10.2441B 41 20 37°31'47" 148°03'09"41C 41 40 37°32'55" 148°03'42"Coarse sand & shell.Removed large shells.Coarse sand & shell.Removed large shell &stones.0.73 coarse 0.00 100.00 0.00 0.00 8.840.85 coarse 0.38 99.62 0.00 0.00 6.7442A 42 10 37°29'16" 148°11'20" Clean medium sand 0.30 medium 0.00 100.00 0.00 0.00 3.0242B 42 20 37°29'34" 148°11'22" Clean coarse sand 0.52 coarse 0.00 100.00 0.00 0.00 3.7042C 42 40 37°30'44" 148°11'24"43A 43 10 37°29'02" 148°24'15"43Ai 43 10 37°29'02" 148°24'15"Coarse sand & shell, silt,coral. Removed large shell& stones.Coarse sand. Sample dated8/5/98.Medium sand. Sample dated10/598.0.69 coarse 0.00 100.00 0.00 0.00 13.680.49 medium 0.00 100.00 0.00 0.00 2.310.30 medium 0.00 100.00 0.00 0.00 N/A43C 43 40 37°30'06" 148°24'02" Sand & shell 0.34 medium 0.00 100.00 0.00 0.00 18.6044A 44 10 37°28'32" 148°31'04"44B 44 20 37°28'45" 148°31'12"Clean medium sand & someshell.Coarse sand & shell, stones& large shell pieces,removed some.0.51 coarse 0.00 100.00 0.00 0.00 5.380.96 coarse 0.59 99.41 0.00 0.00 8.3844C 44 40 37°30'03" 148°31'16" Coarse sand & broken shell. 0.49 medium 0.00 100.00 0.00 0.00 21.4045A 45 10 37°28'18" 149°02'34" Clean medium sand 0.45 medium 0.00 100.00 0.00 0.00 9.0745B 45 20 37°28'36" 149°02'36"Clean coarse sand, shell.Removed large shells.0.70 coarse 0.00 100.00 0.00 0.00 6.3845C 45 40 37°29'24" 149°02'45" Very coarse sand & shell. 0.89 coarse 0.00 100.00 0.00 0.00 10.3346A 46 10 37°28'17" 149°08'36" Clean fine sand 0.22 fine 0.00 100.00 0.00 0.00 8.3146B 46 20 37°28'36" 149°08'42" Clean medium sand 0.47 medium 0.00 100.00 0.00 0.00 12.57A1.6


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53 <strong>Victoria</strong>n MNP coastal <strong>benthos</strong>SampleCodeTransectDepth(m)46C 46 40 37°29'17" 149°08'52"Latitute Longitude Comments – FieldComments – Grain SizeTestingVery coarse sand & shell.Removed pebbles.MedianGrain Size(mm)MedianGrain SizeClass † %Gravel%Sand%Silt%Clay%Carbonate0.97 coarse 2.66 97.34 0.00 0.00 N/A47A 47 10 37°27'56" 149°16'50" Clean fine sand 0.23 fine 0.00 100.00 0.00 0.00 5.1847B 47 20 37°28'04" 149°16'50" Clean fine sand 0.24 fine 0.00 100.00 0.00 0.00 6.4047C 47 40 37°28'11" 149°16'48" Sand & broken shell 0.30 medium 0.00 99.93 0.07 0.00 6.6848A 48 10 37°19'54" 149°29'00" Clean fine sand 0.20 fine 0.00 99.92 0.08 0.00 13.2148B 48 20 37°20'06" 149°29'02" Clean fine sand 0.21 fine 0.00 100.00 0.00 0.00 9.0448C 48 40 37°21'26" 149°29'34" Clean coarse sand 0.68 coarse 0.84 99.16 0.00 0.00 7.6749A 49 10 37°19'11" 149°33'26" Clean fine sand & shell 0.22 fine 0.00 99.86 0.14 0.00 N/A49B 49 20 37°19'24 149°33'28" Clean fine sand & shell 0.22 fine 0.00 100.00 0.00 0.00 9.4749C 49 40 37°20'18" 149°33'55"† Grain size classes: fine= 0.125-0.25mm; medium= 0.25-0.5; coarse= 0.5-1mmClean medium sand.Removed worm tubes.0.48 medium 0.00 100.00 0.00 0.00 5.86A1.7


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>APPENDIX 2Faunal characteristics of <strong>Victoria</strong>n coastal benthic samplesNumbers of families, species and individuals for benthic infaunal samples analysed as part of the<strong>Victoria</strong>n Coastal Benthic Survey. Diversity and Evenness values are as calculated by Coleman et al.(2007). Sediment (sand) grain size classes are as defined by Roob et al (1999). Samples taken fromwithin MNPs are shaded. Table adapted from Table 3 of Coleman et al. (2007).SamplecodeTransectDepth(m)Replicateno.YearsortedSedimentclassA2.1Families spp nDiversity(H')Evenness(J')S02A2 02 10 2 2000 Fine sand 19 23 120 2.06 0.67S02A3 02 10 3 2000 Fine sand 19 23 113 2.59 0.83S02B1 02 20 1 2007 Fine sand 26 35 412 N/A N/AS02B2 02 20 2 2007 Fine sand 24 30 688 N/A N/AS03C1 03 40 1 2000 Fine sand 29 34 142 2.54 0.723S04C3 04 40 3 2000 Fine sand 26 36 85 3.12 0.88S08A1 08 10 1 2000 Fine sand 17 24 263 2.43 0.78S08A3 08 10 3 2000 Fine sand 22 29 349 2.6 0.78S08C1 08 40 1 2000 Medium 42 66 193 3.52 0.86sandS12A1 12 10 1 2007 Fine sand 15 19 184 N/A N/AS12A2 12 10 2 2007 Fine sand 23 27 403 N/A N/AS12B1 12 20 1 2007 Fine sand 19 25 239 N/A N/AS12B3 12 20 3 2007 Fine sand 18 21 118 N/A N/AS12C1 12 40 1 2007 Medium 20 26 121 N/A N/AsandS12C2 12 40 2 2007 Medium 20 21 93 N/A N/AsandS14C1 14 40 1 2000 Fine sand 26 34 98 2.86 0.84S15A2 15 10 2 2000 Fine sand 18 24 208 2.18 0.71S15A3 15 10 3 2000 Fine sand 17 23 252 2 0.66S15C3 15 40 3 2000 Coarse sand 7 9 10 1.95 1S17C1 17 40 1 2000 Fine sand 13 20 63 2.04 0.72S18A1 18 10 1 2000 Fine sand 27 34 251 2.25 0.64S18A2 18 10 2 2000 Fine sand 20 24 110 2.36 0.76S18A3 18 10 3 2000 Fine sand 15 18 114 2.29 0.81S18B1 18 20 1 2000 Fine sand 38 52 286 3.1 0.79S18B2 18 20 2 2000 Fine sand 25 44 249 2.28 0.61S18B3 18 20 3 2000 Fine sand 16 25 141 2.5 0.79S18C1 18 40 1 2000 Coarse sand 29 41 157 2.97 0.84S18C2 18 40 2 2000 Coarse sand 55 86 259 3.6 0.83S18C3 18 40 3 2000 Coarse sand 56 75 189 3.97 0.93S19A1 19 10 1 2007 Fine sand 18 24 150 N/A N/AS19A2 19 10 2 2007 Fine sand 13 17 121 N/A N/AS19A3 19 10 3 2007 Fine sand 16 22 119 N/A N/AS19B1 19 20 1 2007 Fine sand 25 29 371 N/A N/AS19B2 19 20 2 2007 Fine sand 23 33 305 N/A N/AS19B3 19 20 3 2007 Fine sand 20 27 288 N/A N/AS20A1 20 10 1 2007 Fine sand 24 28 349 N/A N/AS20A2 20 10 2 2007 Fine sand 21 24 301 N/A N/AS20A3 20 10 3 2007 Fine sand 14 15 151 N/A N/AS20B1 20 20 1 2007 Fine sand 31 47 824 N/A N/AS20B2 20 20 2 2007 Fine sand 32 44 501 N/A N/AS20B3 20 20 3 2007 Fine sand 37 53 679 N/A N/AS21C1 21 40 1 2000 Fine sand 14 16 82 2.02 0.73S22A1 22 10 1 2000 Fine sand 14 17 619 2.51 0.91S22A3 22 10 3 2000 Fine sand 20 25 251 2.72 0.86S23C1 23 40 1 2000 Coarse sand 43 56 263 3.24 0.82S26C1 26 40 1 2000 Fine sand 18 30 212 2.29 0.68S27C1 27 40 1 2000 Mediumsand40 62 137 3.6 0.9


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>SamplecodeTransectDepth(m)Replicateno.YearsortedSedimentclassFamilies spp nDiversity(H')Evenness(J')S28A2 28 10 2 2000 Fine sand 17 19 61 2.58 0.88S28A3 28 10 3 2000 Fine sand 19 23 71 2.63 0.85S30A2 30 10 2 2000 Fine sand 21 28 97 2.88 0.87S30A3 30 10 3 2000 Fine sand 18 22 66 2.66 0.87S30B1 30 20 1 2007 Fine sand 24 26 132 N/A N/AS30C1 30 40 1 2000 Fine sand 34 52 194 3.39 0.87S31A1 31 10 1 2007 Fine sand 27 34 179 N/A N/AS31A2 31 10 2 2007 Fine sand 20 27 80 N/A N/AS31B1 31 20 1 2007 Fine sand 37 44 181 N/A N/AS31B2 31 20 2 2007 Fine sand 29 46 334 N/A N/AS31C1 31 40 1 2000 Fine sand 46 71 370 3.48 0.82S31C3 31 40 3 2007 Fine sand 35 53 388 N/A N/AS32A1 32 10 1 2007 Fine sand 33 39 440 N/A N/AS32A2 32 10 2 2007 Fine sand 25 32 394 N/A N/AS32B1 32 20 1 2007 Medium 31 39 299 N/A N/AsandS32B2 32 20 2 2007 Medium 40 61 734 N/A N/AsandS32C1 32 40 1 2007 Fine sand 14 16 39 N/A N/AS32C3 32 40 3 2007 Fine sand 26 38 191 N/A N/AS33A2 33 10 2 2007 Fine sand 38 54 559 N/A N/AS33B2 33 20 2 2007 Fine sand 52 66 537 N/A N/AS33C1 33 40 1 2000 Fine sand 45 70 406 3.17 0.76S34A1 34 10 1 2000 Fine sand 15 16 51 2.04 0.74S34A2 34 10 2 2000 Fine sand 12 13 13 2.48 1S34A3 34 10 3 2000 Fine sand 21 23 52 2.75 0.89S34C1 34 40 1 2000 Medium 50 78 455 3.01 0.7sandS37A2 37 10 2 2000 Fine sand 30 36 353 2.48 0.69S37A3 37 10 3 2000 Fine sand 34 43 430 2.58 0.69S37C1 37 40 1 2000 Medium 52 78 303 3.89 0.91sandS38A1 38 10 1 2000 Medium 20 29 117 2.83 0.85sandS39C1 39 40 1 2000 Fine sand 35 52 275 3.35 0.85S40A1 40 10 1 2000 Medium 14 21 51 2.66 0.87sandS40C1 40 40 1 2000 Fine sand 34 53 311 3.24 0.83S41A1 41 10 1 2000 Fine sand 21 25 389 2.4 0.76S41A2 41 10 2 2000 Fine sand 22 23 214 2.16 0.7S41A3 41 10 3 2000 Fine sand 29 33 153 2.84 0.82S41B1 41 20 1 2000 Coarse sand 31 42 273 3.04 0.82S41B2 41 20 2 2000 Coarse sand 40 60 544 3 0.79S41B3 41 20 3 2000 Coarse sand 22 33 228 2.67 0.76S41C1 41 40 1 2000 Coarse sand 37 56 228 3.36 0.85S41C2 41 40 2 2000 Coarse sand 44 60 247 3.31 0.82S41C3 41 40 3 2000 Coarse sand 32 54 208 3.45 0.88S45A1 45 10 1 2000 Medium 8 12 167 0.4 0.17sandS46A1 46 10 1 2007 Fine sand 27 35 137 N/A N/AS46A2 46 10 2 2007 Fine sand 14 16 100 N/A N/AS46B1 46 20 1 2007 Medium 20 26 323 N/A N/AsandS46B3 46 20 3 2007 Medium 19 23 504 N/A N/AsandS46C1 46 40 1 2007 Coarse sand 50 62 877 N/A N/AS46C2 46 40 2 2007 Coarse sand 32 37 212 N/A N/AS46C3 46 40 3 2007 Coarse sand 52 71 1130 N/A N/AS48A2 48 10 2 2000 Fine sand 21 26 760 1.04 0.32S48A3 48 10 3 2000 Fine sand 17 24 135 2.45 0.77S48B1 48 20 1 2007 Fine sand 28 35 243 N/A N/AS48C1 48 40 1 2000 Coarse sand 27 39 253 3.14 0.88S49A1 49 10 1 2007 Fine sand 21 26 103 N/A N/AS49A2 49 10 2 2007 Fine sand 20 24 149 N/A N/AS49B1 49 20 1 2007 Fine sand 16 17 68 N/A N/AS49B2 49 20 2 2007 Fine sand 26 32 207 N/A N/AA2.2


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>APPENDIX 3A.Mean number of species in each family identified fromthe<strong>Victoria</strong>n Coastal Benthic Survey sites collected from 10m depth.Phylum FamilyTransect number2 8 12 15 18 19 20 22 28 30 31 32 33 34 37 38 40 41 45 46 48 49Crustacea Phoxocephalidae 3 4 2 3 2 2 1 2 2 1 4 4 3 2 3 . 1 1 2 2 4 3Polychaeta Spionidae 2 3 2 3 3 3 2 2 1 2 2 2 5 1 2 3 1 2 1 2 . 2Crustacea Caprellidae . . . . . . . . . . 2 . . . . . . . . . . .Crustacea Urohaustoriidae 1 2 1 2 3 1 1 1 3 3 1 1 1 2 3 4 4 3 1 1 3 1Polychaeta Paraonidae . 2 1 1 2 1 2 2 . 3 2 1 2 . 2 . 2 . . 1 . 1Polychaeta Syllidae 1 2 2 1 1 3 2 1 . 1 3 3 1 . 1 1 1 1 2 3 1 3Crustacea Bodotriidae 1 1 2 . 2 2 1 2 1 1 1 . . 1 3 2 2 1 . 2 . .Mollusca Gastropoda . . . . . . . . 2 2 . . . . . . . . . 1 1 .Crustacea Lysianassidae 1 1 2 2 1 2 1 2 2 1 2 1 2 . 1 . . 1 . 1 2 1Polychaeta Nephtyidae . . . . . 1 . . . . . . 2 . . . . 1 . . . .Crustacea Gynodiastylidae 1 . . . . 1 1 . . . 1 1 3 . 1 2 2 1 . 1 1 1Crustacea Platyischnopidae 2 1 2 1 1 1 1 1 1 1 1 2 . 1 1 1 2 1 . . 1 2Polychaeta Capitellidae . 1 . . . . . . . 1 . 1 1 . 2 2 . . . 1 . .Crustacea Leptanthuridae . . . . . 1 1 . . . . 1 2 . . . . . . . . 1Mollusca Thraciidae . . . . . . . . 1 . . . 1 . . 1 . 1 . 2 . .Crustacea Diastylidae . 1 1 1 1 1 1 1 1 . 1 . 3 . 1 . . . . . . .Crustacea Corophiidae . 1 1 . 1 1 1 2 1 . 1 1 1 . 1 . . . 3 1 . 1Crustacea Oedicerotidae . 1 1 . 1 . 1 2 1 2 1 1 . . 1 1 . 2 . . 2 1Mollusca Bivalvia . . . 1 1 . . . . . . 2 1 . 1 . . 1 . 1 . .Polychaeta Orbiniidae . . . . 1 . . . . . 1 1 2 . 1 . 1 . . 1 1 1Crustacea Ampeliscidae 1 . 1 1 1 1 1 1 . . . 1 2 . 1 . . . . . . .Crustacea Paracalliopiidae 2 . . . . 1 1 1 . . . 1 1 . 1 . . . . 1 2 1Crustacea Sarsiellidae . . . . 1 . . . . 1 1 . . 1 1 2 . 1 . 1 1 1Crustacea Paranthuridae 1 1 . 2 1 . . 1 1 1 . . . 1 2 . 1 1 . 1 . .Echinodermata Amphiuridae . . . . 1 . . . . 1 . . 1 1 2 . . . . . 1 .Crustacea Cirolanidae . 1 1 1 1 1 1 . 1 2 1 1 1 1 1 . . 1 . 1 . 1Crustacea Cylindroleberidida 1 . 1 . 1 . 1 . . 1 . 1 1 1 . . . 1 . 2 1 1Crustacea Philomedidae 1 1 1 . 1 1 1 1 1 1 1 . . 1 1 1 . 1 . 1 . .Cf Nemertea Cf Nemertea . 1 . . . . . . . 1 . . . . 1 1 1 1 . . 1 .Cnidaria Edwardsiidae . . . . . . . . . . . . . . 1 . . . . . . .Crustacea Amphipoda- . . . . . . . . . . . . . 1 . . . . . . . .Crustacea Ampithoidae . . . . . . . . . . 1 . . . . . . . . . . .Crustacea Anthuridae 1 1 . 1 1 1 1 1 . 1 1 1 . 1 1 . . . . . . 1Crustacea Arcturidae . . . . . . . . . . 1 . . . . . . . . . . .Crustacea Callianassidae . . . . 1 1 . . . . . . 1 . 1 . . 1 . . . .Crustacea Caprellidea . . . . . . . . . . 1 . . . . . . . . . . .Crustacea Chaetiliidae . . . . . . . . . . . 1 1 . . . . . . . . .Crustacea Cypridinidae . . . . . 1 . . . . 1 . . . . . . . 1 . . 1Crustacea Dexaminidae . . . . . . 1 . 1 . 1 . . . . . . . . . . .Crustacea Euphausidae . . . . . 1 . . . . . . . . . . . . . . . .Crustacea Eusiridae . . . . . . . . . . 1 1 . . . . . . . . . .Crustacea Exoedicerotidae . . . . . . . . . . . 1 . . . . . . . . . .Crustacea Goneplacidae . . . . . . . . . . . . . . . . . 1 . . . .Crustacea Idoteidae . 1 . . . . . . . . . . . 1 . . . . . . . .Crustacea Joeropsidae . . . . . . . . . . . 1 . . . . . . . . . .Crustacea Kalliapseudidae . . . . . . . . . . . 1 1 . . . . . . 1 . .Crustacea Leptognathiidae . . . . . . 1 . . . . . . . . . . . . . . 1Crustacea Leucosiidae . . . . . . . . . . . 1 . . . . . . . . . .Crustacea Liljeborgiidae . . . . 1 . . . . . . 1 1 . 1 . . . . . . .Crustacea Mysida . . 1 . . 1 . . . . . . . . . . . . . . . .Crustacea Mysidae 1 1 . . 1 . 1 . . 1 . . . . . 1 . 1 . . 1 .Crustacea Nebaliidae . . . 1 1 . . 1 1 . . . 1 . 1 . . . . . . .Crustacea Ogyrididae . . 1 . 1 1 . 1 . . . . . . . . . . . . 1 .Crustacea Pasiphaeidae . . . . . 1 1 1 . . 1 . 1 . . . . . . . . .Crustacea Podoceridae . . . . . . . . . . 1 . . . . . . . . . . .A3.1


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>Phylum FamilyTransect number2 8 12 15 18 19 20 22 28 30 31 32 33 34 37 38 40 41 45 46 48 49Crustacea Podocopida . . . . . . . . . . . . . . 1 . . . . . . .Crustacea Portunidae 1 . . . . . . . . . . . . . . . . . . . . .Crustacea Rutidermatidae . . . . 1 . . . . . . . . . . . . . . . . .Crustacea Serolidae . . . . . . 1 1 . . 1 . . . . . . . . . . .Crustacea Synopiidae . . . . . . . . 1 1 . . . . . . . . . . . .Crustacea Tanaidacea . . . . 1 . . . . . . . . 1 . . . . . . . .Crustacea Urothoidae . . . . . . . . . . . . 1 . . . . . . . . .Echinodermata Chiridotidae . . . 1 1 . . . . . . . . . . . . . . . . .Echinodermata Holothuroidea . . . . . . . . . . . . . . . . . . . . . 1Echinodermata Loveniidae . . . . . . . . . . . . . . . . . 1 . . . .Echinodermata Ophiuridae . . . . . . . . . . . . . 1 . . . 1 . . . .Hemichordata Enteropneusta . . . . . . . . . . 1 . . . . . . . . . . .Mollusca Cyamiidae . . . 1 1 . . . . . . . . . . . . 1 . . . .Mollusca Dentaliidae . . . . . . . . . . . . . . 1 . . . . . . .Mollusca Donacidae 1 . . . . . . . . . . . . . . . . . . . . .Mollusca Galeommatidae . . . . . . . . 1 1 . . . 1 1 . . 1 . . 1 .Mollusca Glycymerididae . . . . . . . . . . . . . . . . . . . . . 1Mollusca Marginellidae . . . . 1 . . . . . . . . . . . . . . . 1 .Mollusca Mytilidae . . 1 . . . . . . . . . . . . . . . . . . .Mollusca Naticidae . . . . . . . . . . . . . . . 1 . 1 . . 1 .Mollusca Nuculanidae . . . . . . . . . . . . 1 . 1 . . 1 . . . .Mollusca Olividae . . . . 1 . . . . . 1 . . . 1 1 . . . 1 1 .Mollusca Philinidae . . . . . . . . . . . 1 . . . . . . . . . .Mollusca Psammobiidae . . . . . . . . . . . . 1 . . 1 . . . 1 . .Mollusca Pyramidellidae . . . . . . 1 . . . . . . . 1 . . . . 1 . .Mollusca Rissoidea . . . . . . . . . . . . . . . . . . . . . 1Mollusca Scaphopoda . . . . . . . . . . . 1 . . . . . . . . . .Mollusca Siphonodentaliida . . . . 1 . . . . . 1 1 1 . . . . . . . . .Mollusca Solenidae . . . . . . . . . . . 1 . . . . . . . . . .Mollusca Tellinidae . . . . . . . . . . . . . . 1 . . . . . . .Mollusca Trochidae . . . . . . . . . . . 1 . 1 . . . . . . 1 .Nematoda Nematoda . . 1 . . 1 1 . . . 1 1 1 . . . . . . 1 . 1Nemertea Nemertea 1 1 1 1 . . 1 1 1 1 . 1 1 1 1 1 1 1 . 1 1 .Platyhelminthe Turbellaria . . . . . . 1 . . . . . . . . . . 1 . . . 1Polychaeta Cf Polygordiidae . . 1 . . . 1 . . . 1 1 . . . . . . . 1 . 1Polychaeta Cirratulidae 1 1 1 1 . . . . 1 1 . 1 . 1 1 . . 1 . 1 1 .Polychaeta Dorvilleidae . . . . . . . . . . . . . . . 1 1 . . 1 . .Polychaeta Flabelligeridae . . . . . . . . . . . . . . . . . . 1 . . .Polychaeta Glyceridae 1 . . . . . . . . . . . . 1 . . . . . . . .Polychaeta Lumbrineridae 1 1 . 1 1 . 1 . 1 1 . 1 1 1 . 1 . 1 . 1 1 1Polychaeta Magelonidae 1 . 1 1 . . . . 1 1 . . . 1 . . . . . . . .Polychaeta Maldanidae . . . 1 . . . . . . 1 . . . . . 1 . . . . .Polychaeta Nereididae 1 . . . . . . 1 . . . 1 1 1 . . . . . . . 1Polychaeta Onuphidae 1 . . . . . . . . . . . . . . . . . . 1 . .Polychaeta Opheliidae 1 1 1 1 1 1 1 1 . 1 1 1 . . 1 1 . 1 1 1 . 1Polychaeta Oweniidae . . . . . 1 . . . . . . 1 . 1 . . 1 . . . .Polychaeta Phyllodocidae . . . 1 . . . . . . 1 1 1 . . . . . . . . 1Polychaeta Polynoidae . . . . . . . . . . . . . . . . . 1 . . . .Polychaeta Sabellidae . . . . . . . . . . . 1 1 . . . . . . . . .Polychaeta Sigalionidae 1 1 . . 1 . 1 . 1 . . . . 1 1 . . 1 . . . .Polychaeta Terebellidae . . . . 1 . . . . . . . . . . . . . . . . .Pycnogonida Pycnogonida . . 1 . . . . . . . . . . . . . . . . . . .Sipuncula Sipunculida . . . . . . . . . . . . 1 1 1 . . 1 . . . .TOTAL 31 32 31 30 44 34 35 30 28 35 44 48 54 28 52 29 21 40 12 39 32 35A3.2


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>APPENDIX 3B.Mean number of species in each family identified from the<strong>Victoria</strong>n Coastal Benthic Survey sites collected from 20 mdepthPhylum FamilyTransect number2 12 18 19 20 30 31 32 33 41 46 48 49Crustacea Phoxocephalidae 3 3 3 3 4 2 4 2 4 3 2 4 3Polychaeta Syllidae 2 1 3 2 1 1 3 4 2 5 3 1 2Polychaeta Spionidae 3 2 2 2 3 2 2 3 4 2 2 1 1Crustacea Ischyroceridae . . 2 . . . . . . . . . .Crustacea Bodotriidae 2 2 1 3 2 . 1 . . . 2 2 .Crustacea Corophiidae . . 2 1 2 1 2 2 2 1 . 3 2Crustacea Melitidae . . 4 . . . 1 1 . 1 . . .Crustacea Tanaidacea . . . 2 . . . . . 2 . . .Polychaeta Phyllodocidae . . 3 . 1 . . 1 2 1 . . .Crustacea Arcturidae . . . . . . 2 . . . . . .Crustacea Caprellidea . . . . 1 . 2 . . . . . .Polychaeta Nephtyidae . . 1 . . . . 2 2 . . . .Polychaeta Paraonidae 1 . 1 1 1 1 2 3 1 4 . 1 1Crustacea Gynodiastylidae . . 2 1 3 1 2 1 1 . . 1 2Crustacea Lysianassidae 2 2 1 1 2 1 2 . 2 . . 1 1Crustacea Diastylidae . . 1 1 3 1 2 . 1 . 1 . .Crustacea Eusiridae . . 2 . . . . 1 . 1 . . .Crustacea Leptanthuridae 1 1 . . . . 1 2 2 . . . 1Crustacea Liljeborgiidae . . . 1 1 . . . . 2 . . .Platyhelminthes Turbellaria . . . . . . . . 2 . 1 1 .Crustacea Urohaustoriidae 1 1 5 1 1 1 1 2 1 . 1 1 1Polychaeta Cirratulidae 2 1 1 . 1 . 1 2 1 1 . 2 .Crustacea Cypridinidae . . 1 . 2 1 . 2 1 2 1 1 1Polychaeta Capitellidae 1 . 2 1 1 . 1 2 1 2 1 1 .Crustacea Cylindroleberididae 1 1 1 1 2 . 2 2 1 . . 1 1Polychaeta Terebellidae . . . . . . . 1 1 1 2 . .Polychaeta Orbiniidae 1 . 1 1 1 . 1 2 1 1 2 . .Crustacea Kalliapseudidae . . . . . . . 2 1 1 1 . .Crustacea Philomedidae 1 1 2 2 1 1 1 1 1 2 1 . .Crustacea Platyischnopidae 1 1 1 1 1 1 1 . . 2 1 1 2Mollusca Bivalvia . . . . 1 . 1 1 2 . . 1 1Crustacea Sarsiellidae 1 . . . 1 . . 1 . 2 1 . 1Echinodermata Amphiuridae . . 1 . . . . . . 1 . . .Crustacea Oedicerotidae 2 1 1 1 . . 1 1 1 . . . 1Polychaeta Dorvilleidae . . 1 . . . . 1 1 2 1 . .Polychaeta Sabellidae . . . . . . . 2 1 1 1 . .Crustacea Ampeliscidae 1 1 2 . 1 1 1 1 1 . . . 1Polychaeta Lumbrineridae 1 . . 1 . . . 2 1 1 . . 1Nemertea Nemertea 2 . 1 1 1 1 1 1 1 1 1 1 .Crustacea Cirolanidae 1 . . 1 1 1 2 1 1 . . . .Crustacea Anthuridae 1 1 1 1 2 1 1 . . 1 . . 1Crustacea Dexaminidae 1 . 1 . 1 . 1 . . 1 . 1 .Mollusca Psammobiidae . . . 1 1 . . 1 . 1 1 . 1Cnidaria Actiniaria . . . . . . . 1 1 . . . .Pycnogonida Ammotheidae 1 . . . . . . . . . . . .Polychaeta Amphinomidae . . . . . . . . . 1 . . .Crustacea Ampithoidae . . . . . . 1 . . . . . .Crustacea Aoridae . . 1 . . . . . . . . . .Crustacea Apseudidae . . 1 . . . . 1 . . . . .Echinodermata Asterinidae . . . . . . . . . 1 . . .Pycnogonida Austrodecidae . 1 . . . . . . . . . . .Crustacea Bairdiidae . . 1 . . . . 1 . . . . .A3.3


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>Phylum FamilyTransect number2 12 18 19 20 30 31 32 33 41 46 48 49Crustacea Callianassidae . . . . 1 . 1 . . . . . .Pycnogonida Callipallenidae . . . . . . . . 1 . . . .Mollusca Calyptraeidae . . . . . . . . . 1 . . .Crustacea Caprellidae . . . . . . 1 . . . . . .Cf Nemertea Cf Nemertea . . 1 . . . . . . 1 . . .Polychaeta Cf Polygordiidae . 1 . 1 1 1 1 1 1 . 1 1 1Crustacea Chaetiliidae 1 . . . . . . . . . . . .Chaetognatha Chaetognatha . . . . . . . . . . . 1 .Polychaeta Chaetopteridae . . . . . . . 1 . . . . .Mollusca Cylichnidae . . . . . . . . 1 . . . .Mollusca Dentaliidae . . . . . . 1 . . . . . .Cnidaria Edwardsiidae . . 1 . . . . . 1 . . . .Hemichordata Enteropneusta . . . . . . . . 1 . . . .Crustacea Expanthuridae 1 . . . . . . . . . . . .Crustacea Galatheidae . . 1 . . . . . . . . . .Mollusca Galeommatidae . . . . . . . . 1 . . . .Mollusca Gastropoda . . . . 1 . . . . . . . .Polychaeta Glyceridae . . 1 . . . . . . . . . .Mollusca Glycymerididae . . . . . . . . . 1 . . .Crustacea Gnathiidae . . . . . . . . . 1 . . .Crustacea Goneplacidae . . 1 . . . . . . . . . .Polychaeta Goniadidae . . . . . . . 1 . 1 . . .Polychaeta Hesionidae . . 1 . . . . . . 1 . . .Ascidacea Holozoidae . . . . . . . . 1 . 1 . .Cnidaria Hydroida . . . . . . . . 1 . . . .Crustacea Iphimediidae . . 1 . . . . . . . . . .Mollusca Ischnochitonidae . . . . . . . . . 1 . . .Crustacea Janiridae . . . . . . . 1 . 1 . . .Crustacea Joeropsidae . . 1 . . . . . . . . . .Mollusca Lepidopleuridae . . . . . . . . . 1 . . .Crustacea Leptognathiidae . 1 . 1 . . . . . . . 1 .Crustacea Leucosiidae . . . . . 1 . . . . . . .Crustacea Leucothoidae . . . . . . . . . 1 . . .Mollusca Limidae . . . . . . . . . 1 . . .Mollusca Limopsidae . . . . . . 1 . . . . . 1Polychaeta Magelonidae 1 1 . 1 . . . . . . . . .Polychaeta Maldanidae . . . . 1 . 1 . 1 . . . .Mollusca Marginellidae . . . . . . . . 1 . . . .Crustacea Melphidippidae . . 1 . . . . . . . . . .Crustacea Microparasellidae . . . . . . . . . . 1 . .Crustacea Munnidae . . . . 1 . . . . . . . .Crustacea Mysida 1 . . . . . 1 . . . . . .Crustacea Mysidae . . . . . . . . . . . . 1Mollusca Mytilidae . . 1 . . . . . . . . . .Crustacea Nannastacidae . . . . 1 . . . . . . . .Mollusca Nassariidae . . . . . . . 1 . . . . .Mollusca Naticidae . . . . 1 . . . . . . . .Crustacea Nebaliidae 1 1 . 1 1 . 1 1 1 . . . 1Nematoda Nematoda 1 1 . 1 1 1 1 1 1 . 1 1 1Polychaeta Nereididae 1 . 1 . . . . . . 1 . . 1Mollusca Nuculanidae . . 1 . 1 . . 1 1 . . . .Polychaeta Oenonidae . . . . . . . . . 1 . . .Oligochaeta Oligochaeta . . 1 . . . . . . 1 . . .Polychaeta Onuphidae . . . . . . . 1 . . 1 . .Polychaeta Opheliidae 1 1 1 1 1 . 1 1 1 1 1 1 1Echinodermata Ophiuroidae . . . . 1 . . . . . . 1 1Echinodermata Ophiuroidea . . . 1 1 . 1 . . . 1 . 1Crustacea Ostracoda . . . 1 1 . . . . . . . .Polychaeta Oweniidae . 1 . . 1 . . . . . . . .Crustacea Paracalliopiidae . 1 . . 1 . . . 1 . . . 1A3.4


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>Phylum FamilyTransect number2 12 18 19 20 30 31 32 33 41 46 48 49Polychaeta Paralacydonidae . . . . . . . 1 1 . . . .Crustacea Paranthuridae . . 1 . . . . . 1 . . . .Crustacea Paratanaidae . . . . . . . 1 . . . . .Crustacea Pasiphaeidae . . . . . 1 1 . . . . . .Polychaeta Pectinariidae . . 1 . . . . . . . . . .Mollusca Philinidae . . . . . . . 1 1 . . . .Crustacea Phtisicidae . . . . . . . 1 . . . . .Polychaeta Pisionidae . . . . . . . . . 1 . . .Crustacea Plakarthriidae . . . . . 1 . . . . . 1 1Crustacea Podoceridae . . . . . . . . 1 . . . .Polychaeta Poecilochaetidae . . . 1 . . . . . . . . .Polychaeta Polychaeta . . . . . . . . . 1 . . .Polychaeta Polynoidae . . . . . . . . . 1 . . .Polychaeta Scalibregmatidae . . . . . . . . . 1 . . .Crustacea Sebidae . . 1 . . . . . . . . . .Crustacea Serolidae 1 . . 1 1 1 . . . . . 1 .Polychaeta Serpulidae . . 1 . . . . . . . . . .Polychaeta Sigalionidae . 1 . . 1 1 1 . 1 . . 1 .Mollusca Siphonodentaliidae . . . 1 . 1 1 . . . . . .Sipuncula Sipunculida 1 . 1 . . . . . . . . . .Crustacea Sphaeromatidae . . 1 . . . 1 1 . 1 . . .Echinodermata Strongylocentrotidae . . 1 . . . . . . . . . .Crustacea Synopiidae . . . . 1 . . . . . . . .Mollusca Thraciidae . . . . . . . 1 1 . . . .Mollusca Trochidae . . . . . . . 1 . 1 . . .Mollusca Turbinidae . . . . . . . 1 . . . . .Crustacea Urothoidae . . . . . . . 1 1 . . . .Mollusca Veneridae 1 . . . . . . . . . . . .Mollusca Volutidae . . . . . . . . . . . 1 .Crustacea Whiteleggiidae . . . . . . . 1 . . . . .TOTAL 44 29 74 42 62 26 58 73 66 68 33 35 36A3.5


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>APPENDIX 3C.Mean number of species in each family identified from the<strong>Victoria</strong>n Coastal Benthic Survey sites collected from 40 mdepth.Phylum FamilyTransect number3 4 8 12 14 15 17 18 21 23 26 27 30 31 32 33 34 37 39 40 41 46 48Polychaeta Paraonidae . 1 . 1 . . 4 3 . . . 1 4 4 3 3 6 3 4 7 5 2 5Crustacea Phoxocephalidae 2 5 5 3 4 3 4 3 . . 4 7 6 5 . 2 1 5 2 2 2 3 1Polychaeta Syllidae 1 1 8 1 . . 1 6 . 1 1 3 1 3 1 4 3 6 4 4 4 4 4Polychaeta Spionidae 1 1 3 2 2 . 1 3 2 1 5 2 4 4 5 5 2 5 1 3 3 3 4Crustacea Melitidae . . 1 . . . . 4 . 2 . 1 . 2 . . 2 4 . . 3 3 .Crustacea Corophiidae 1 2 8 1 3 . . 2 1 5 1 3 1 3 1 3 4 3 1 2 2 1 .Crustacea Diastylidae 1 . . . . . . 3 . . . . . . . . . . . . . . .Crustacea Rutidermatidae . . . . . . . . . . . . . . . . 2 2 . . . . .Crustacea Tanaidacea . 1 . . . 1 . 2 . 1 . 4 1 1 . 2 2 3 3 3 2 . 2Crustacea Urohaustoriidae 4 3 1 1 1 . 1 . 1 . 4 . 3 1 . . . 2 . . . . 1Crustacea Janiridae . . . . . . . 2 . 2 . 2 . . . . 2 . . . 3 2 1Polychaeta Terebellidae . . 2 . . . . 2 . 1 . 2 . 3 1 3 3 1 1 1 2 1 .Crustacea Paranthuridae 1 . 1 . 1 . . 1 . 1 2 1 3 3 . 2 3 2 2 2 1 . .Crustacea Kalliapseudidae . . . . . . . 1 . 2 . . 1 2 . 2 2 2 2 1 . 1 .Polychaeta Onuphidae . . 1 . 2 . 1 1 . 1 . 4 2 2 . . 2 1 1 . 1 1 2Polychaeta Nereididae . . 1 . . . . 2 . 1 . 1 . 2 2 1 1 . 2 1 2 2 .Polychaeta Dorvilleidae . . . . . . . 1 . 2 . . . 1 . 1 2 1 . . 2 1 .Crustacea Gynodiastylidae 1 1 2 1 1 . 1 2 1 1 1 2 2 2 . 1 . . 3 . . 1 .Crustacea Joeropsidae . . . . . . . 1 . 2 . . . . . . 2 1 . . 1 . .Polychaeta Orbiniidae . 1 . . . 1 2 1 . . 1 . 1 1 2 1 . 1 3 3 1 1 .Crustacea Aoridae 1 1 . . . . . 1 . 2 . . 1 3 . . 1 . . . 1 . .Polychaeta Lumbrineridae . . . . . . . 2 . . . . . 1 1 1 . . 2 2 1 2 .Polychaeta Capitellidae . . . . . . 1 2 . . . 2 1 2 2 2 1 1 . 1 1 1 1Crustacea Cylindroleberididae 1 1 . . . . . . . . . 1 . . . 3 . 1 1 . . . .Crustacea Oedicerotidae . . . 2 . . . . . 1 . . . 1 . . . . . . . . .Mollusca Marginellidae . 2 . . 1 . . . . . . . . . . 1 . . . . . . .Crustacea Lysianassidae 2 1 1 1 1 . . 1 2 2 2 . 1 . . 1 2 . 1 . 1 1 1Polychaeta Hesionidae . . 1 . . . . 2 . . . . . . . . . . . . 2 1 1Polychaeta Maldanidae . . 1 . . . . . . 1 . . 2 2 1 2 . . . 1 1 1 1Crustacea Bodotriidae 1 . 2 1 2 . 1 2 1 . . . 1 1 . . . . . . . . .Crustacea Philomedidae 1 3 1 1 1 . . 1 . . 1 2 . . . . 1 1 . . 1 1 .Polychaeta Sabellidae . . . . . . . 2 . 1 . 1 1 2 . 2 1 1 . 1 1 . 1Crustacea Ischyroceridae 1 . 1 . 1 1 . 1 . 3 . 1 . . . . 1 . . . 1 1 .Polychaeta Eunicidae . . 2 . . . . 2 . . . . . 1 1 1 1 . . . 1 1 1Crustacea Ampeliscidae 1 . . 1 . . . 1 . . 1 . 1 1 1 3 . 1 1 1 . . .Polychaeta Nephtyidae . . . . . . . 1 . . . . 1 2 1 2 . 1 1 1 1 . .Crustacea Apseudidae . . . . . . . 1 . 1 . 1 . 1 1 . 2 1 . . 1 . .Crustacea Melphidippidae . . . . . . . 2 . . . 1 . . . . . 1 . . 1 . .Polychaeta Oenonidae . . . . . . 1 . . . . . . . . 1 . . . 1 2 . .Crustacea Cypridinidae 1 1 1 . . . . . . . . 1 1 1 . . 2 1 . . . . 1Crustacea Urothoidae . . 1 . 1 . . 1 . . . . 1 1 . . 2 1 1 . 1 . 1Echinodermata Amphiuridae 1 . 1 . 1 . . 1 . 1 . 1 . 1 . . . . . 1 2 1 .Crustacea Nebaliidae 1 1 . . . . . 1 . 1 1 . 1 1 . 1 2 1 1 . . . .Mollusca Ischnochitonidae . . . . . . . 1 . . . . . 1 . . 1 1 . . 2 1 .Crustacea Bairdiidae . . . . . . . 1 . . . 1 . . . . 1 1 . . 1 2 1Polychaeta Cirratulidae 1 1 1 1 . . . 1 . 1 . . 1 2 2 1 1 1 1 . 1 1 1Polychaeta Poecilochaetidae . . . . . . . 2 . . . 1 . 1 . . . 1 . 1 1 1 1Polychaeta Opheliidae 1 . . . 1 . . 1 . 1 1 . 1 1 1 1 . 1 1 1 1 1 .Ascidacea Holozoidae . . . . . . . . . . . . . . 1 . . . . . . . .Cf Nemertea Cf Nemertea 1 1 . . 1 . 1 1 1 . 1 . 1 . . . 1 1 1 . 1 . 1Chelicerata Acarina . . . . . . . . . . . . . . . . . . . . . 1 .Chordata Ascidiacea . . . . . . . 1 . . . . . . . . . . . . . . .Cnidaria Actiniaria . . . . . . . . . . . . . . . . . . . . . 1 .A3.6


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>Phylum FamilyTransect number3 4 8 12 14 15 17 18 21 23 26 27 30 31 32 33 34 37 39 40 41 46 48Cnidaria Edwardsiidae 1 . 1 . . . . . . . . 1 . . . . 1 . . . . 1 .Crustacea Actaeciidae 1 . . . . . . 1 . . . . . 1 . . . . . . . . 1Crustacea Alpheidae . . . . . . . 1 . . . . . . . . . . . . 1 1 .Crustacea Amphilochidae . . . . . . . . . . . . . . . . 1 . . . . . .Crustacea Ampithoidae . . . . . . . . . . . . . . . . . . . . . 1 .Crustacea Anthuridae 1 1 . 1 . . . 1 . . 1 1 . . 1 1 . 1 1 1 . 1 1Crustacea Brachyura . . . . . . . . . . . . . 1 . 1 . . 1 . . . .Crustacea Callianassidae . . . . . . . . . . . . . . 1 1 . . . 1 . . .Crustacea Caprellidea . . . . . . . . . 1 . . . 1 . 1 . . . . . . .Crustacea Caridea . . . . . . . 1 . . . . . . . . . . . . . . .Crustacea Chaetiliidae 1 1 . . . . . . . . . . . . . . . . . . . . .Crustacea Cirolanidae . . . 1 . . . . . . . . . . . . . . . . . . .Crustacea Colomastigidae . . 1 . . . . . . . . . . 1 . . . . . . . . .Crustacea Cyproideidae . . 1 . . . . 1 . 1 . . . . . . . . . . . . .Crustacea Cytheridae . . . . . . . . . . . . . . . . . . . . 1 . .Crustacea Dexaminidae . . . . 1 . . . . . . . . 1 . . 1 . . . . 1 .Crustacea Diogenidae . . . . . . . . . 1 . . 1 1 . . . 1 . . 1 . .Crustacea Eusiridae . . 1 . . . . . . . . . . . . . . . . . . . .Crustacea Exoedicerotidae . . . . . . . . . 1 . . . . . . . . . . . . .Crustacea Galatheidae . . 1 . . . . 1 . . . . . . . . . . . . 1 1 .Crustacea Gnathiidae . . . . 1 . . 1 . 1 . 1 . . . . . . . . 1 1 1Crustacea Goneplacidae . . . . . . . . . . . . . . . . . . 1 1 1 . .Crustacea Hymenosomatidae . . 1 . . . . 1 . . . . . . . . . . . . . . .Crustacea Hyssuridae . . . . . . . 1 . . . 1 . . . . . . . . 1 . .Crustacea Idoteidae . . . . . . . . . . . . . . . . . . . . . 1 .Crustacea Iphimediidae . . . . . . . 1 . . . . . . . . . . . . . 1 .Crustacea Leptanthuridae . . . . . . . . . . . . . 1 1 . . . . . . 1 .Crustacea Leptognathiidae . . 1 . . . . . . . . . . . . . 1 . 1 1 . . .Crustacea Leuconidae . . . . . . . . . . . . . . . . . . 1 . . . .Crustacea Leucosiidae . . . . . . . . . . . . 1 1 . 1 . . . . . . .Crustacea Leucothoidae . . . . . . . . . . . . . 1 . . . . . . 1 . .Crustacea Liljeborgiidae . . . . 1 . . 1 . . . . . . . . 1 . . . . . .Crustacea Luciferidae . . . . . . . . . . . . . . . . . . . . . 1 .Crustacea Majiidae . . . . . . . 1 . . . . . 1 . . . . . . . . .Crustacea Microparasellidae . . . . . . . 1 . . . . . . . . . . . . . . .Crustacea Munnidae . . . . . . . 1 . 1 . 1 . . 1 . . . . . . . .Crustacea Mysida . . . . . . . . . . . . . . . . . . . . 1 . .Crustacea Mysidae . . 1 . . . . . . . . . . . . . . . . . . . .Crustacea Nannastacidae . . 1 1 . . . 1 . 1 . 1 . . . . . 1 . . . . 1Crustacea Nebaliacaea . . . 1 . . . . . . . . . . . . . . . . . . .Crustacea Pagurapseudidae . . . . . . . . . . . 1 . . . . . . . . . 1 .Crustacea Paguridae . . . . . . . . . . . . . . . . . . . . . 1 .Crustacea Palaemonidae . . . . . . . . . . . . . . . . . . . . 1 . .Crustacea Paracalliopiidae . . . . . . . . . . . . . . . . . . 1 . . . .Crustacea Paramunnidae . . . . . . . . . . . . . . . . . . . . 1 . .Crustacea Paratanaidae . . . . . . . 1 . 1 . . . 1 1 1 1 . 1 . 1 . .Crustacea Pariambidae . . 1 . . . . . . . . . . . . 1 . . . . . . .Crustacea Pasiphaeidae . . . 1 . . . . . . . . . . . . . . . . . . .Crustacea Phtisicidae . . . . 1 . . . . 1 . 1 . . . . . . . . . . .Crustacea Plakarthriidae . . . . . . . . . 1 . . . . . . . . . . . . .Crustacea Platyischnopidae . 1 . 1 1 . . 1 1 . . . 1 . . . . . . . . . .Crustacea Podoceridae . . 1 . . . . . . 1 . 1 . . . . . . . . . . .Crustacea Santiidae . . . . . . . . . 1 . . . . . . . . . . . . .Crustacea Sarsiellidae . . 1 1 . . . 1 . . . . . . . . . 1 . . . . .Crustacea Sebidae . . 1 . . . . 1 . . . . . . . . . . 1 . 1 1 .Crustacea Serolidae . . . . . . . . . . . 1 . . . . 1 . . . . . .Crustacea Sphaeromatidae 1 . 1 . . . . 1 . 1 . . . . . . . 1 . . 1 1 .Crustacea Stegocephalidae . . 1 . . . . . . . . . . . . . . . . . . . .Crustacea Stenetriidae . . 1 . . . . 1 . 1 . . . 1 . . . . . . . 1 .Crustacea Synopiidae . . . . . . . . . 1 . 1 1 1 . . . 1 . . . . .Crustacea Whiteleggiidae . . . . . . . . . . . . . . . . . . . . . 1 .A3.7


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>Phylum FamilyTransect number3 4 8 12 14 15 17 18 21 23 26 27 30 31 32 33 34 37 39 40 41 46 48Echinodermata Asterinidae . . . . . . . . . . . . . . . . . . . . 1 . .Echinodermata Echinoidea . . . . . . . . . . . . . . . . . . . . 1 . .Echinodermata Holothuroidea . . . 1 . . . . 1 . . . . . . . . . . . . . .Echinodermata Loveniidae . . . . . . . . . . . . . . . . . . . . 1 . .Echinodermata Ophiactidae . . . 1 . . . 1 . . . . . . . . . . . . . . .Echinodermata Ophiotrichidae . . . . . . . . . . . . . . . . . . . . 1 . .Echinodermata Ophiuridae . . 1 . 1 . . . 1 . . . . . . . . 1 . . 1 . .Echinodermata Ophiuroidea . . . . . . . . . . . . . 1 . . . . . . . 1 .Echinodermata Strongylocentrotidae . . . . . . . 1 . . . . . . . . . . . . . . .Echiura Thalassematidae . . . . . . . . . . . . . . 1 . . . . . . . .Hemichordata Enteropneusta . . . . . 1 . . . . . 1 . . . . 1 . . . 1 1 .Mollusca Arcidae . . . . . . . . . . 1 . . . . . . . . . . . .Mollusca Calyptraeidae . . . . . . . . . . . . . . . . 1 . . . . . .Mollusca Carditidae . . . . . . . . . . . . . . . . 1 . . . . 1 .Mollusca Corbulidae . . . . . . . . . . . . . . . . . . . . . 1 .Mollusca Cylichnidae . . . . . . . . . . . . . . . . . . . 1 . . .Mollusca Dendrodorididae . . . . . . . . . 1 . . . . . . . . . . . . .Mollusca Fissurellidae . . . . . . . . . . . . . . . . . . . . . 1 .Mollusca Galeommatidae . . . . . . . . . . . . . . . . . . . 1 . . .Mollusca Glycymerididae . . . . . . . . . . . . . . . . . . . . . 1 .Mollusca Hiatellidae . . 1 . . . . . . . . . . . . . . . . . . . .Mollusca Lepidopleuridae . . . . . . . . . . . . . . . . . . . . . 1 .Mollusca Leptonidae . . . . . . . . . . . . . . . . . 1 . . . . .Mollusca Limidae . . . . . . . 1 . . . . . . . . . . . . . 1 .Mollusca Lucinidae . . . . . . . . . . . . . . . . . . . 1 . . .Mollusca Mytilidae . . . . . . . . . . . . . . 1 . 1 1 1 . . . .Mollusca Nuculanidae . . . 1 . . . . 1 . . . . . . . . 1 . . . . .Mollusca Nuculidae . . . . . . . . . . . . . . 1 . . . . 1 . . .Mollusca Opistobranchia . . . . . . . . . . . . . . . . . . . . . 1 .Mollusca Philinidae . . . . . 1 . . . . . . 1 . . . . . . 1 . 1 .Mollusca Philobryidae . . . . . . . . . . . . . 1 . . . . . . . . .Mollusca Propeamussiidae . . . . . . . 1 . . . . . . . . . . . . . . 1Mollusca Psammobiidae . 1 . . . . . . . . . . . . . . . . . . . 1 .Mollusca Pseudococculinidae . . . . . . . . . . . . . . . . . . . . 1 . .Mollusca Pyramidellidae 1 . . . . . . . . . . . . . . . . . . . . . .Mollusca Tellinidae . . . . . . . . 1 . . . 1 . . . . . . . . . .Mollusca Trochidae . . . . . . . . . . . . . . . . . . . . . 1 .Mollusca Turbinidae . 1 . . 1 . . . . . . 1 . . . . . . . . . . .Mollusca Turritellidae . . . . . . . . . . . . . . . . . . . . . 1 .Mollusca Ungulinidae . . . . . . . . . 1 . . . . . . . . . . . . .Mollusca Veneridae . . . . . . . . . . . . . 1 . . . 1 . . . . .Nematoda Nematoda . . . 1 . . . . . . . . . 1 1 . . . . . . 1 .Nemertea Nemertea . 1 . 1 1 . 1 1 . . 1 1 1 1 1 1 1 1 1 1 1 1 1Oligochaeta Oligochaeta . . . . . . . 1 . . . 1 . 1 . 1 1 1 1 . . 1 .Phoronida Phoronida . . . . . . . . . . . . 1 . . . . 1 . . . . .Platyhelminthes Turbellaria . . . . . . . . . . . . . . . . . 1 . . . 1 .Polychaeta Ampharetidae . . 1 . . . . . . . . . . . . 1 . . . . . . .Polychaeta Amphinomidae . . . . . . . 1 . 1 . . . . . . 1 . . . 1 . .Polychaeta Cf Polygordiidae . . . 1 . . . . . . . . . . . . . . . . . 1 .Polychaeta Chaetopteridae . . . . . . . . . . . . . . . . 1 . . 1 1 . .Polychaeta Chrysopetalidae . . . . . . . . . . . . . . 1 . . . . . . 1 .Polychaeta Flabelligeridae . . . . . . . 1 . . . . . . 1 1 . . . . 1 1 .Polychaeta Glyceridae . . . . . . . . . . . . . . . 1 . . . . . . .Polychaeta Goniadidae . . . . . . . . . . . . . 1 1 1 . . . . . . .Polychaeta Lacydonidae . . . . . . . . . . . . . . . . . . . . . 1 .Polychaeta Magelonidae . . . . . . . . . . . . . . . . 1 . . . . . .Polychaeta Oweniidae . . . 1 1 . . . 1 . . . . . . . . . . . 1 . .Polychaeta Pectinariidae . . . . . . . . . . . . . 1 . . . 1 . . 1 . .Polychaeta Phyllodocidae . . . . . . . 1 . . . . . 1 . 1 1 . . . 1 1 .Polychaeta Pisionidae . . . . . . . 1 . . . . . . . . . . . . . 1 .Polychaeta Polynoidae . . 1 . . . . 1 . . . . . . . 1 . . . . . . .A3.8


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>Phylum FamilyTransect number3 4 8 12 14 15 17 18 21 23 26 27 30 31 32 33 34 37 39 40 41 46 48Polychaeta Saccocirridae . . . . . . . . . . . . . . . . . . . . . 1 .Polychaeta Scalibregmatidae . . . . . . . 1 . . . . . 1 . . 1 . . 1 1 . .Polychaeta Serpulidae . . . . . . . 1 . . . . . . . . . . . . 1 1 .Polychaeta Sigalionidae 1 1 . 1 1 . . 1 1 . . . . . . 1 . . 1 . . 1 .Polychaeta Sphaerodoridae . . . . . . . 1 . . . . . . . . 1 . . . . . .Polychaeta Spirorbidae . . . . . . . . . . . . . . . . . . . . 1 . .Polychaeta Trichobranchidae . . . . . . . 1 . . . . . 1 . 1 . 1 . . . . .Porifera Porifera . . . . . . . 1 . . . . . . . . . . . . . . .Pycnogonida Ammotheidae . . . . . . . 1 . . 1 . . . . 1 . 1 . . . . .Pycnogonida Austrodecidae . . . . . . . . . . . . . . . . . . . . . 1 .Pycnogonida Callipallenidae 1 . . . . . . 1 . . . . . . . . . . . . . . .Sipuncula Sipunculida . 1 . . . . . 1 . . . 1 . . . . . . . 1 1 . 1TOTAL 34 36 66 32 34 8 20 113 16 56 30 62 52 89 40 70 78 77 52 53 92 88 39A3.9


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>APPENDIX 4A.Mean number of individuals in each family identified fromthe<strong>Victoria</strong>n Coastal Benthic Survey sites collected from 10m depth.Phylum FamilyTransect number2 8 12 15 18 19 20 22 28 30 31 32 33 34 37 38 40 41 45 46 48 49Polychaeta Spionidae 3 8 6 95 8 20 51 379 6 16 10 6 32 1 35 21 1 29 1 11 . 4Crustacea Urohaustoriidae 8 41 56 2 15 36 57 4 16 12 4 21 18 15 50 31 5 77 2 19 29 10Crustacea Platyischnopidae 6 42 18 31 4 16 71 6 1 3 5 5 . 2 122 7 13 39 . . 79 8Polychaeta Syllidae 2 60 6 2 5 10 20 1 . 8 9 64 2 . 5 3 2 1 136 13 2 37Polychaeta Cirratulidae 35 5 150 2 . . . . 9 9 . 60 . 1 2 . . 3 . 6 12 .Mollusca Trochidae . . . . . . . . . . . 1 . 1 . . . . . . 285 .Crustacea Phoxocephalidae 14 38 4 8 3 4 3 6 2 2 14 62 21 3 18 . 1 4 2 7 15 10Nematoda Nematoda . . 21 . . 7 26 . . . 16 44 29 . . . . . . 34 . 19Crustacea Gynodiastylidae 1 . . . . 7 5 . . . 3 1 158 . 1 4 2 2 . 1 1 1Crustacea Diastylidae . 2 2 3 9 4 2 1 1 . 1 . 158 . 2 . . . . . . .Mollusca Bivalvia . . . 1 117 . . . . . . 3 2 . 1 . . 2 . 1 . .Crustacea Corophiidae . 27 4 . 28 1 2 2 3 . 8 11 3 . 1 . . . 3 6 . 5Crustacea Philomedidae 9 8 2 . 23 5 10 3 3 3 1 . . 3 13 10 . 6 . 3 . .Polychaeta Lumbrineridae 3 1 . 1 1 . 1 . 11 7 . 40 1 2 . 2 . 1 . 11 3 13Polychaeta Opheliidae 1 37 4 16 2 1 3 1 . 1 1 5 . . 5 1 . 16 1 1 . 2Cf Nemertea Cf Nemertea . 11 . . . . . . . 2 . . . . 55 10 2 4 . . 4 .Crustacea Paranthuridae 1 1 . 60 3 . . 2 1 2 . . . 1 12 . 1 1 . 2 . .Crustacea Callianassidae . . . . 7 1 . . . . . . 18 . 1 . . 43 . . . .Crustacea Leptanthuridae . . . . . 15 6 . . . . 40 3 . . . . . . . . 5Nemertea Nemertea 10 2 3 2 . . 2 6 2 5 . 2 5 1 1 8 3 3 . 3 6 .Crustacea Lysianassidae 1 2 2 9 4 3 1 5 3 1 3 3 8 . 3 . . 6 . 3 4 1Polychaeta Paraonidae . 11 5 1 2 3 5 4 . 6 2 2 2 . 7 . 5 . . 1 . 2Crustacea Ampeliscidae 1 . 5 1 8 5 4 11 . . . 13 8 . 1 . . . . . . .Crustacea Cirolanidae . 2 2 1 16 1 2 . 2 3 1 1 9 1 1 . . 4 . 1 . 3Crustacea Ampithoidae . . . . . . . . . . 46 . . . . . . . . . . .Crustacea Anthuridae 2 14 . 2 3 1 2 4 . 2 3 11 . 1 2 . . . . . . 1Crustacea Bodotriidae 2 1 3 . 4 3 2 3 4 2 1 . . 1 8 3 3 4 . 2 . .Mollusca Galeommatidae . . . . . . . . 1 2 . . . 2 23 . . 9 . . 2 .Crustacea Sarsiellidae . . . . 8 . . . . 2 1 . . 2 1 2 . 3 . 12 1 5Crustacea Paracalliopiidae 3 . . . . 4 7 1 . . . 1 8 . 1 . . . . 2 3 1Polychaeta Magelonidae 17 . 9 1 . . . . 1 1 . . . 1 . . . . . . . .Crustacea Oedicerotidae . 1 1 . 2 . 2 3 1 3 2 1 . . 4 2 . 2 . . 2 2Crustacea Cylindroleberididae 1 . 1 . 4 . 1 . . 1 . 1 2 5 . . . 3 . 3 1 2Mollusca Thraciidae . . . . . . . . 1 . . . 14 . . 1 . 4 . 2 . .Polychaeta Cf Polygordiidae . . 2 . . . 2 . . . 5 9 . . . . . . . 2 . 1Mollusca Nuculanidae . . . . . . . . . . . . 12 . 2 . . 6 . . . .Polychaeta Capitellidae . 1 . . . . . . . 1 . 4 5 . 3 4 . . . 1 . .Polychaeta Oweniidae . . . . . 4 . . . . . . 1 . 7 . . 6 . . . .Crustacea Podoceridae . . . . . . . . . . 17 . . . . . . . . . . .Echinodermata Loveniidae . . . . . . . . . . . . . . . . . 16 . . . .Crustacea Kalliapseudidae . . . . . . . . . . . 9 4 . . . . . . 2 . .Crustacea Liljeborgiidae . . . . 5 . . . . . . 1 6 . 1 . . . . . . .Crustacea Caprellidea . . . . . . . . . . 12 . . . . . . . . . . .Crustacea Mysidae 1 3 . . 2 . 2 . . 2 . . . . . 1 . 1 . . 1 .Polychaeta Nereididae 3 . . . . . . 1 . . . 3 1 3 . . . . . . . 1Polychaeta Maldanidae . . . 10 . . . . . . 1 . . . . . 1 . . . . .Polychaeta Orbiniidae . . . . 1 . . . . . 1 1 2 . 1 . 1 . . 2 2 1Sipuncula Sipunculida . . . . . . . . . . . . 1 1 7 . . 3 . . . .Polychaeta Sigalionidae 1 1 . . 1 . 1 . 2 . . . . 1 2 . . 2 . . . .Crustacea Nebaliidae . . . 1 2 . . 1 1 . . . 4 . 1 . . . . . . .Crustacea Ogyrididae . . 4 . 1 1 . 3 . . . . . . . . . . . . 1 .Polychaeta Sabellidae . . . . . . . . . . . 2 7 . . . . . . . . .A4.1


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>Phylum FamilyTransect number2 8 12 15 18 19 20 22 28 30 31 32 33 34 37 38 40 41 45 46 48 49Mollusca Olividae . . . . 1 . . . . . 2 . . . 2 1 . . . 1 1 .Polychaeta Phyllodocidae . . . 1 . . . . . . 1 2 3 . . . . . . . . 1Echinodermata Amphiuridae . . . . 1 . . . . 1 . . 1 2 2 . . . . . 1 .Crustacea Dexaminidae . . . . . . 1 . 1 . 5 . . . . . . . . . . .Crustacea Tanaidacea . . . . 3 . . . . . . . . 4 . . . . . . . .Crustacea Serolidae . . . . . . 1 4 . . 1 . . . . . . . . . . .Polychaeta Nephtyidae . . . . . 1 . . . . . . 4 . . . . 1 . . . .Mollusca Gastropoda . . . . . . . . 2 2 . . . . . . . . . 1 1 .Crustacea Cypridinidae . . . . . 2 . . . . 1 . . . . . . . 1 . . 1Crustacea Goneplacidae . . . . . . . . . . . . . . . . . 5 . . . .Crustacea Pasiphaeidae . . . . . 1 1 1 . . 1 . 1 . . . . . . . . .Mollusca Cyamiidae . . . 1 3 . . . . . . . . . . . . 1 . . . .Mollusca Philinidae . . . . . . . . . . . 5 . . . . . . . . . .Mollusca Tellinidae . . . . . . . . . . . . . . 5 . . . . . . .Polychaeta Dorvilleidae . . . . . . . . . . . . . . . 1 3 . . 1 . .Crustacea Caprellidae . . . . . . . . . . 4 . . . . . . . . . . .Crustacea Leptognathiidae . . . . . . 3 . . . . . . . . . . . . . . 1Crustacea Mysida . . 2 . . 2 . . . . . . . . . . . . . . . .Echinodermata Chiridotidae . . . 2 2 . . . . . . . . . . . . . . . . .Mollusca Psammobiidae . . . . . . . . . . . . 2 . . 1 . . . 1 . .Mollusca Siphonodentaliidae . . . . 1 . . . . . 1 1 1 . . . . . . . . .Platyhelminthes Turbellaria . . . . . . 1 . . . . . . . . . . 2 . . . 1Mollusca Naticidae . . . . . . . . . . . . . . . 1 . 2 . . 1 .Crustacea Euphausidae . . . . . 3 . . . . . . . . . . . . . . . .Crustacea Eusiridae . . . . . . . . . . 1 2 . . . . . . . . . .Crustacea Idoteidae . 2 . . . . . . . . . . . 1 . . . . . . . .Mollusca Pyramidellidae . . . . . . 1 . . . . . . . 1 . . . . 1 . .Polychaeta Glyceridae 2 . . . . . . . . . . . . 1 . . . . . . . .Polychaeta Onuphidae 1 . . . . . . . . . . . . . . . . . . 2 . .Crustacea Amphipoda- a . . . . . . . . . . . . 2 . . . . . . . .Crustacea Chaetiliidae . . . . . . . . . . . 1 1 . . . . . . . . .Crustacea Exoedicerotidae . . . . . . . . . . . 2 . . . . . . . . . .Crustacea Rutidermatidae . . . . 2 . . . . . . . . . . . . . . . . .Crustacea Synopiidae . . . . . . . . 1 1 . . . . . . . . . . . .Crustacea Urothoidae . . . . . . . . . . . . 2 . . . . . . . . .Echinodermata Ophiuridae . . . . . . . . . . . . . 1 . . . 1 . . . .Mollusca Glycymerididae . . . . . . . . . . . . . . . . . . . . . 2Mollusca Marginellidae . . . . 1 . . . . . . . . . . . . . . . 1 .Cnidaria Edwardsiidae . . . . . . . . . . . . . . 1 . . . . . . .Crustacea Arcturidae . . . . . . . . . . 1 . . . . . . . . . . .Crustacea Joeropsidae . . . . . . . . . . . 1 . . . . . . . . . .Crustacea Leucosiidae . . . . . . . . . . . 1 . . . . . . . . . .Crustacea Podocopida . . . . . . . . . . . . . . 1 . . . . . . .Crustacea Portunidae 1 . . . . . . . . . . . . . . . . . . . . .Echinodermata Holothuroidea . . . . . . . . . . . . . . . . . . . . . 1Hemichordata Enteropneusta . . . . . . . . . . 1 . . . . . . . . . . .Mollusca Dentaliidae . . . . . . . . . . . . . . 1 . . . . . . .Mollusca Donacidae 1 . . . . . . . . . . . . . . . . . . . . .Mollusca Mytilidae . . 1 . . . . . . . . . . . . . . . . . . .Mollusca Rissoidea . . . . . . . . . . . . . . . . . . . . . 1Mollusca Scaphopoda . . . . . . . . . . . 1 . . . . . . . . . .Mollusca Solenidae . . . . . . . . . . . 1 . . . . . . . . . .Polychaeta Flabelligeridae . . . . . . . . . . . . . . . . . . 1 . . .Polychaeta Polynoidae . . . . . . . . . . . . . . . . . 1 . . . .Polychaeta Terebellidae . . . . 1 . . . . . . . . . . . . . . . . .Pycnogonida Pycnogonida . . 1 . . . . . . . . . . . . . . . . . . .TOTAL 130 321 314 253 303 161 298 452 75 100 186 444 559 59 412 114 43 313 147 158 458 142A4.2


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>APPENDIX 4B.Mean number of individuals in each family identified fromthe <strong>Victoria</strong>n Coastal Benthic Survey sites collected from20 m depth.PhylumFamilyTransect number2 12 18 19 20 30 31 32 33 41 46 48 49Polychaeta Syllidae 90 2 24 11 1 1 12 116 13 91 292 1 21Polychaeta Spionidae 9 16 57 128 197 21 53 51 16 3 3 1 1Polychaeta Cirratulidae 318 8 1 . 1 . 1 3 4 3 . 9 .Nematoda Nematoda 4 3 . 19 18 9 11 125 43 . 52 31 14Crustacea Urohaustoriidae 8 16 33 48 57 8 13 22 1 . 3 41 13Crustacea Platyischnopidae 2 58 1 27 88 1 27 . . 3 3 31 9Crustacea Phoxocephalidae 50 8 6 8 23 4 17 12 30 7 6 14 18Crustacea Corophiidae . . 6 1 27 55 26 16 17 1 . 8 4Polychaeta Cf Polygordiidae . 1 . 9 25 4 20 9 2 . 2 67 22Crustacea Ampeliscidae 18 80 4 . 2 1 14 3 36 . . . 1Crustacea Gynodiastylidae . . 5 11 88 3 13 8 5 . . 10 3Crustacea Cylindroleberididae 10 1 1 1 29 . 2 3 68 . . 4 3Polychaeta Dorvilleidae . . 3 . . . . 22 1 22 29 . .Polychaeta Paraonidae 2 . 2 1 2 1 3 16 18 19 . 4 9Cf Nemertea Cf Nemertea . . 3 . . . . . . 62 . . .Crustacea Philomedidae 4 6 5 25 16 2 1 1 2 2 1 . .Crustacea Apseudidae . . 1 . . . . 58 . . . . .Nemertea Nemertea 4 . 6 1 3 2 3 9 10 15 3 3 .Polychaeta Orbiniidae 1 . 1 4 5 . 1 16 19 3 6 . .Polychaeta Hesionidae . . 47 . . . . . . 3 . . .Crustacea Diastylidae . . 2 4 34 1 4 . 1 . 1 . .Crustacea Lysianassidae 6 4 1 6 4 3 9 . 11 . . 1 1Polychaeta Nereididae 4 . 9 . . . . . . 30 . . 1Crustacea Leptanthuridae 5 2 . . . . 2 12 16 . . . 8Mollusca Cylichnidae . . . . . . . . 43 . . . .Crustacea Bodotriidae 6 8 4 8 7 . 2 . . . 2 2 .Hemichordata Enteropneusta . . . . . . . . 34 . . . .Crustacea Urothoidae . . . . . . . 7 25 . . . .Polychaeta Nephtyidae . . 5 . . . . 10 17 . . . .Crustacea Cypridinidae . . 4 . 2 1 . 2 3 9 2 1 4Crustacea Kalliapseudidae . . . . . . . 9 4 13 1 . .Polychaeta Capitellidae 1 . 4 1 2 . 2 8 1 3 4 2 .Polychaeta Sabellidae . . . . . . . 9 11 2 5 . .Polychaeta Opheliidae 1 4 2 3 4 . 1 1 1 2 1 1 1Polychaeta Phyllodocidae . . 5 . 1 . . 4 7 3 . . .Crustacea Sebidae . . 20 . . . . . . . . . .Crustacea Anthuridae 3 1 1 3 2 1 4 . . 2 . . 3Mollusca Philinidae . . . . . . . 9 10 . . . .Mollusca Nuculanidae . . 1 . 11 . . 1 6 . . . .Crustacea Oedicerotidae 3 1 2 2 . . 3 1 1 . . . 4Crustacea Nebaliidae 2 3 . 1 1 . 2 1 5 . . . 1Crustacea Sarsiellidae 2 . . . 1 . . 1 . 10 1 . 1Crustacea Paranthuridae . . 3 . . . . . 12 . . . .Polychaeta Polychaeta . . . . . . . . . 15 . . .Crustacea Melitidae . . 11 . . . 1 1 . 1 . . .Echinodermata Ophiuroidea . . . 1 8 . 2 . . . 1 . 2Oligochaeta Oligochaeta . . 8 . . . . . . 6 . . .Polychaeta Lumbrineridae 1 . . 1 . . . 3 1 3 . . 5Crustacea Ampithoidae . . . . . . 13 . . . . . .Crustacea Plakarthriidae . . . . . 8 . . . . . 2 3Mollusca Thraciidae . . . . . . . 1 11 . . . .Polychaeta Terebellidae . . . . . . . 1 7 1 3 . .A4.3


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>PhylumFamilyTransect number2 12 18 19 20 30 31 32 33 41 46 48 49Echinodermata Ophiuroidae . . . . 10 . . . . . . 1 1Mollusca Psammobiidae . . . 1 2 . . 5 . 1 1 . 1Mollusca Bivalvia . . . . 1 . 1 4 2 . . 1 1Crustacea Cirolanidae 1 . . 2 2 1 2 1 1 . . . .Polychaeta Pisionidae . . . . . . . . . 8 . . .Crustacea Paracalliopiidae . 1 . . 2 . . . 1 . . . 4Crustacea Dexaminidae 1 . 1 . 1 . 2 . . 1 . 1 .Crustacea Sphaeromatidae . . 1 . . . 1 4 . 1 . . .Crustacea Serolidae 2 . . 1 2 1 . . . . . 1 .Crustacea Microparasellidae . . . . . . . . . . 6 . .Crustacea Tanaidacea . . . 3 . . . . . 3 . . .Platyhelminthes Turbellaria . . . . . . . . 2 . 2 2 .Polychaeta Sigalionidae . 1 . . 1 1 1 . 1 . . 1 .Crustacea Bairdiidae . . 3 . . . . 2 . . . . .Crustacea Eusiridae . . 2 . . . . 1 . 2 . . .Crustacea Janiridae . . . . . . . 2 . 3 . . .Crustacea Leptognathiidae . 2 . 2 . . . . . . . 1 .Crustacea Nannastacidae . . . . 5 . . . . . . . .Polychaeta Oweniidae . 1 . . 4 . . . . . . . .Cnidaria Hydroida . . . . . . . . 4 . . . .Crustacea Expanthuridae 4 . . . . . . . . . . . .Crustacea Ischyroceridae . . 4 . . . . . . . . . .Crustacea Liljeborgiidae . . . 1 1 . . . . 2 . . .Crustacea Mysida 3 . . . . . 1 . . . . . .Crustacea Phtisicidae . . . . . . . 4 . . . . .Crustacea Whiteleggiidae . . . . . . . 4 . . . . .Mollusca Glycymerididae . . . . . . . . . 4 . . .Polychaeta Goniadidae . . . . . . . 3 . 1 . . .Polychaeta Maldanidae . . . . 1 . 1 . 2 . . . .Polychaeta Magelonidae 1 1 . 2 . . . . . . . . .Crustacea Aoridae . . 3 . . . . . . . . . .Crustacea Caprellidea . . . . 1 . 2 . . . . . .Crustacea Chaetiliidae 3 . . . . . . . . . . . .Crustacea Paratanaidae . . . . . . . 3 . . . . .Echinodermata Amphiuridae . . 1 . . . . . . 2 . . .Mollusca Galeommatidae . . . . . . . . 3 . . . .Mollusca Ischnochitonidae . . . . . . . . . 3 . . .Mollusca Marginellidae . . . . . . . . 3 . . . .Mollusca Siphonodentaliidae . . . 1 . 1 1 . . . . . .Mollusca Trochidae . . . . . . . 1 . 2 . . .Crustacea Callianassidae . . . . 1 . 1 . . . . . .Ascidacea Holozoidae . . . . . . . . 1 . 1 . .Cnidaria Actiniaria . . . . . . . 1 1 . . . .Cnidaria Edwardsiidae . . 1 . . . . . 1 . . . .Crustacea Munnidae . . . . 2 . . . . . . . .Crustacea Mysidae . . . . . . . . . . . . 2Crustacea Ostracoda . . . 1 1 . . . . . . . .Crustacea Pasiphaeidae . . . . . 1 1 . . . . . .Mollusca Lepidopleuridae . . . . . . . . . 2 . . .Mollusca Limopsidae . . . . . . 1 . . . . . 1Mollusca Nassariidae . . . . . . . 2 . . . . .Polychaeta Onuphidae . . . . . . . 1 . . 1 . .Polychaeta Paralacydonidae . . . . . . . 1 1 . . . .Pycnogonida Austrodecidae . 2 . . . . . . . . . . .Sipuncula Sipunculida 1 . 1 . . . . . . . . . .Crustacea Arcturidae . . . . . . 2 . . . . . .Mollusca Calyptraeidae . . . . . . . . . 2 . . .Mollusca Gastropoda . . . . 2 . . . . . . . .Pycnogonida Ammotheidae 2 . . . . . . . . . . . .Chaetognatha Chaetognatha . . . . . . . . . . . 1 .A4.4


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>PhylumFamilyTransect number2 12 18 19 20 30 31 32 33 41 46 48 49Crustacea Caprellidae . . . . . . 1 . . . . . .Crustacea Galatheidae . . 1 . . . . . . . . . .Crustacea Gnathiidae . . . . . . . . . 1 . . .Crustacea Goneplacidae . . 1 . . . . . . . . . .Crustacea Iphimediidae . . 1 . . . . . . . . . .Crustacea Joeropsidae . . 1 . . . . . . . . . .Crustacea Leucosiidae . . . . . 1 . . . . . . .Crustacea Leucothoidae . . . . . . . . . 1 . . .Crustacea Melphidippidae . . 1 . . . . . . . . . .Crustacea Podoceridae . . . . . . . . 1 . . . .Crustacea Synopiidae . . . . 1 . . . . . . . .Echinodermata Asterinidae . . . . . . . . . 1 . . .Echinodermata Strongylocentrotidae . . 1 . . . . . . . . . .Mollusca Dentaliidae . . . . . . 1 . . . . . .Mollusca Limidae . . . . . . . . . 1 . . .Mollusca Mytilidae . . 1 . . . . . . . . . .Mollusca Naticidae . . . . 1 . . . . . . . .Mollusca Turbinidae . . . . . . . 1 . . . . .Mollusca Veneridae 1 . . . . . . . . . . . .Mollusca Volutidae . . . . . . . . . . . 1 .Polychaeta Amphinomidae . . . . . . . . . 1 . . .Polychaeta Chaetopteridae . . . . . . . 1 . . . . .Polychaeta Glyceridae . . 1 . . . . . . . . . .Polychaeta Oenonidae . . . . . . . . . 1 . . .Polychaeta Pectinariidae . . 1 . . . . . . . . . .Polychaeta Poecilochaetidae . . . 1 . . . . . . . . .Polychaeta Polynoidae . . . . . . . . . 1 . . .Polychaeta Scalibregmatidae . . . . . . . . . 1 . . .Polychaeta Serpulidae . . 1 . . . . . . . . . .Pycnogonida Callipallenidae . . . . . . . . 1 . . . .TOTAL 573 230 315 339 700 132 281 612 537 379 432 243 162A4.5


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>APPENDIX 4C.Mean number of individuals in each family identified fromthe <strong>Victoria</strong>n Coastal Benthic Survey sites collected from40 m depth.Phylum FamilyTransect number3 4 8 12 14 15 17 18 21 23 26 27 30 31 32 33 34 37 39 40 41 46 48Polychaeta Spionidae 1 1 5 10 20 . 27 5 34 1 107 14 38 53 11 34 113 22 16 11 6 70 17Polychaeta Paraonidae . 1 . 1 . . 6 10 . . . 7 22 66 18 146 51 10 11 45 51 18 34Polychaeta Syllidae 1 1 25 2 . . 2 28 . 1 2 14 9 41 1 38 31 44 12 21 34 94 45Crustacea Tanaidacea . 1 . . . 1 . 5 . 11 . 6 1 21 . 7 10 13 48 24 3 . 4Crustacea Kalliapseudidae . . . . . . . 3 . 5 . . 3 10 . 4 78 7 25 14 . 5 .Crustacea Phoxocephalidae 2 8 8 9 9 3 9 6 . . 10 11 16 13 . 2 1 18 8 7 4 6 1Crustacea Corophiidae 1 3 40 1 6 . . 3 4 13 6 4 1 21 1 7 11 8 5 3 2 5 .Mollusca Turritellidae . . . . . . . . . . . . . . . . . . . . . 140 .Nematoda Nematoda . . . 1 . . . . . . . . . 24 42 . . . . . . 64 .Crustacea Pagurapseudidae . . . . . . . . . . . 1 . . . . . . . . . 126 .Cf Nemertea Cf Nemertea 16 3 . . 17 . 4 2 17 . 21 . 17 . . . 1 7 3 . 5 . 8Crustacea Paranthuridae 1 . 1 . 1 . . 4 . 10 10 2 6 6 . 26 7 6 17 20 4 . .Crustacea Ischyroceridae 3 . 24 . 1 1 . 2 . 86 . 1 . . . . 1 . . . 1 1 .Crustacea Urohaustoriidae 9 19 1 17 14 . 3 . 1 . 23 . 16 1 . . . 3 . . . . 2Nemertea Nemertea . 1 . 1 2 . 1 3 . . 1 4 1 8 1 14 5 3 8 8 9 16 8Polychaeta Orbiniidae . 1 . . . 1 3 1 . . 2 . 1 1 3 5 . 1 30 40 1 1 .Crustacea Aoridae 50 2 . . . . . 2 . 12 . . 1 6 . . 1 . . . 3 . .Crustacea Janiridae . . . . . . . 5 . 5 . 6 . . . . 8 . . . 4 42 1Polychaeta Capitellidae . . . . . . 1 3 . . . 3 2 18 7 7 1 1 . 3 9 9 6Crustacea Ampeliscidae 1 . . 35 . . . 1 . . 1 . 6 7 1 3 . 1 8 1 . . .Crustacea Bairdiidae . . . . . . . 1 . . . 1 . . . . 1 7 . . 6 41 6Crustacea Apseudidae . . . . . . . 32 . 6 . 1 . 1 1 . 3 15 . . 1 . .Crustacea Gynodiastylidae 14 10 2 1 1 . 4 2 2 1 6 2 6 3 . 2 . . 3 . . 1 .Polychaeta Sabellidae . . . . . . . 2 . 1 . 1 2 23 . 11 1 2 . 2 1 . 14Crustacea Melitidae . . 1 . . . . 5 . 2 . 1 . 2 . . 8 7 . . 15 15 .Polychaeta Terebellidae . . 2 . . . . 4 . 7 . 2 . 6 1 10 6 3 2 3 4 3 .Polychaeta Onuphidae . . 1 . 2 . 1 1 . 1 . 4 3 6 . . 4 1 1 . 1 2 19Crustacea Lysianassidae 3 1 1 3 1 . . 2 9 3 8 . 1 . . 1 4 . 2 . 2 1 2Crustacea Philomedidae 2 9 1 12 4 . . 1 . . 2 4 . . . . 1 6 . . 1 1 .Polychaeta Cirratulidae 2 3 1 3 . . . 3 . 1 . . 3 4 10 2 4 2 1 . 1 2 2Polychaeta Nereididae . . 1 . . . . 4 . 1 . 1 . 3 4 4 1 . 6 1 6 9 .Oligochaeta Oligochaeta . . . . . . . 5 . . . 1 . 10 . 6 1 11 4 . . 3 .Crustacea Anthuridae 1 1 . 3 . . . 1 . . 4 1 . . 3 1 . 2 2 10 . 3 6Polychaeta Dorvilleidae . . . . . . . 3 . 2 . . . 2 . 1 3 2 . . 9 13 .Polychaeta Nephtyidae . . . . . . . 1 . . . . 1 4 4 7 . 1 3 8 4 . .Polychaeta Cf Polygordiidae . . . 20 . . . . . . . . . . . . . . . . . 12 .Polychaeta Opheliidae 1 . . . 3 . . 1 . 1 2 . 2 4 1 1 . 2 1 1 1 9 .Crustacea Nebaliidae 4 3 . . . . . 4 . 3 1 . 1 1 . 1 9 1 1 . . . .Crustacea Paratanaidae . . . . . . . 2 . 9 . . . 7 1 1 3 . 1 . 5 . .Polychaeta Poecilochaetidae . . . . . . . 2 . . . 10 . 3 . . . 6 . 1 4 2 1Crustacea Sphaeromatidae 8 . 1 . . . . 2 . 2 . . . . . . . 3 . . 3 9 .Crustacea Rutidermatidae . . . . . . . . . . . . . . . . 3 23 . . . . .Polychaeta Lumbrineridae . . . . . . . 2 . . . . . 2 4 4 . . 2 4 1 4 .Mollusca Ischnochitonidae . . . . . . . 4 . . . . . 1 . . 2 3 . . 8 2 .Polychaeta Hesionidae . . 2 . . . . 3 . . . . . . . . . . . . 2 3 9Echinoderma Amphiuridae 1 . 1 . 1 . . 1 . 1 . 1 . 2 . . . . . 1 2 7 .Polychaeta Maldanidae . . 1 . . . . . . 2 . . 4 2 1 2 . . . 1 3 1 1Crustacea Sebidae . . 1 . . . . 7 . . . . . . . . . . 1 . 4 5 .Crustacea Galatheidae . . 2 . . . . 6 . . . . . . . . . . . . 5 4 .Polychaeta Flabelligeridae . . . . . . . 1 . . . . . . 3 1 . . . . 1 11 .Crustacea Bodotriidae 2 . 3 1 2 . 1 2 2 . . . 1 3 . . . . . . . . .Crustacea Synopiidae . . . . . . . . . 1 . 8 5 1 . . . 1 . . . . .Crustacea Cypridinidae 1 1 1 . . . . . . . . 3 1 3 . . 2 2 . . . . 2Crustacea Urothoidae . . 1 . 1 . . 1 . . . . 1 1 . . 3 3 1 . 1 . 1A4.6


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>Phylum FamilyTransect number3 4 8 12 14 15 17 18 21 23 26 27 30 31 32 33 34 37 39 40 41 46 48Crustacea Joeropsidae . . . . . . . 1 . 7 . . . . . . 3 1 . . 1 . .Polychaeta Eunicidae . . 2 . . . . 2 . . . . . 2 1 1 2 . . . 1 1 1Crustacea Leptanthuridae . . . . . . . . . . . . . 7 3 . . . . . . 3 .Polychaeta Amphinomidae . . . . . . . 2 . 6 . . . . . . 1 . . . 3 . .Polychaeta Chrysopetalidae . . . . . . . . . . . . . . 1 . . . . . . 11 .Crustacea Cylindroleberidid e 3 . . . . . . . . . 1 . . . 4 . 1 1 . . . .Crustacea Gnathiidae . . . . 1 . . 1 . 1 . 2 . . . . . . . . 2 3 1Polychaeta Serpulidae . . . . . . . 5 . . . . . . . . . . . . 2 4 .Crustacea Diogenidae . . . . . . . . . 1 . . 2 1 . . . 3 . . 3 . .Crustacea Podoceridae . . 1 . . . . . . 8 . 1 . . . . . . . . . . .Crustacea Stenetriidae . . 1 . . . . 1 . 5 . . . 1 . . . . . . . 2 .Polychaeta Sigalionidae 1 1 . 1 2 . . 1 1 . . . . . . 1 . . 1 . . 1 .Crustacea Hyssuridae . . . . . . . 3 . . . 1 . . . . . . . . 5 . .Crustacea Leptognathiidae . . 4 . . . . . . . . . . . . . 3 . 1 1 . . .Crustacea Nannastacidae . . 2 1 . . . 1 . 1 . 2 . . . . . 1 . . . . 1Crustacea Platyischnopidae . 1 . 3 2 . . 1 1 . . . 1 . . . . . . . . . .Pycnogonida Callipallenidae 4 . . . . . . 5 . . . . . . . . . . . . . . .Polychaeta Phyllodocidae . . . . . . . 2 . . . . . 1 . 2 1 . . . 2 2 .Polychaeta Trichobranchidae . . . . . . . 4 . . . . . 1 . 1 . 2 . . . . .Polychaeta Oweniidae . . . 2 1 . . . 4 . . . . . . . . . . . 1 . .Crustacea Sarsiellidae . . 1 1 . . . 2 . . . . . . . . . 3 . . . . .Platyhelminth Turbellaria . . . . . . . . . . . . . . . . . 1 . . . 6 .Polychaeta Chaetopteridae . . . . . . . . . . . . . . . . 1 . . 4 2 . .Polychaeta Pisionidae . . . . . . . 2 . . . . . . . . . . . . . 5 .Polychaeta Scalibregmatidae . . . . . . . 1 . . . . . 2 . . 1 . . 1 2 . .Sipuncula Sipunculida . 1 . . . . . 2 . . . 1 . . . . . . . 1 1 . 1Crustacea Callianassidae . . . . . . . . . . . . . . 4 1 . . . 1 . . .Crustacea Exoedicerotidae . . . . . . . . . 6 . . . . . . . . . . . . .Crustacea Goneplacidae . . . . . . . . . . . . . . . . . . 2 3 1 . .Crustacea Pariambidae . . 1 . . . . . . . . . . . . 5 . . . . . . .Echinoderma Ophiuridae . . 1 . 1 . . . 2 . . . . . . . . 1 . . 1 . .Mollusca Lepidopleuridae . . . . . . . . . . . . . . . . . . . . . 6 .Mollusca Nuculanidae . . . 2 . . . . 3 . . . . . . . . 1 . . . . .Mollusca Fissurellidae . . . . . . . . . . . . . . . . . . . . . 6 .Cnidaria Edwardsiidae 1 . 1 . . . . . . . . 1 . . . . 1 . . . . 1 .Crustacea Actaeciidae 1 . . . . . . 1 . . . . . 1 . . . . . . . . 2Crustacea Colomastigidae . . 3 . . . . . . . . . . 2 . . . . . . . . .Crustacea Cyproideidae . . 1 . . . . 1 . 3 . . . . . . . . . . . . .Crustacea Diastylidae 2 . . . . . . 3 . . . . . . . . . . . . . . .Crustacea Munnidae . . . . . . . 1 . 2 . 1 . . 1 . . . . . . . .Hemichordat Enteropneusta . . . . . 1 . . . . . 1 . . . . 1 . . . 1 1 .Mollusca Marginellidae . 3 . . 1 . . . . . . . . . . 1 . . . . . . .Mollusca Mytilidae . . . . . . . . . . . . . . 1 . 2 1 1 . . . .Polychaeta Oenonidae . . . . . . 1 . . . . . . . . 1 . . . 1 2 . .Polychaeta Pectinariidae . . . . . . . . . . . . . 1 . . . 3 . . 1 . .Pycnogonida Ammotheidae . . . . . . . 2 . . 1 . . . . 1 . 1 . . . . .Crustacea Melphidippidae . . . . . . . 2 . . . 1 . . . . . 1 . . 1 . .Crustacea Alpheidae . . . . . . . 1 . . . . . . . . . . . . 2 1 .Crustacea Caprellidea . . . . . . . . . 2 . . . 1 . 1 . . . . . . .Crustacea Chaetiliidae 3 1 . . . . . . . . . . . . . . . . . . . . .Crustacea Dexaminidae . . . . 1 . . . . . . . . 1 . . 1 . . . . 1 .Crustacea Liljeborgiidae . . . . 2 . . 1 . . . . . . . . 1 . . . . . .Crustacea Oedicerotidae . . . 2 . . . . . 1 . . . 1 . . . . . . . . .Crustacea Whiteleggiidae . . . . . . . . . . . . . . . . . . . . . 4 .Echinoderma Ophiuroidea . . . . . . . . . . . . . 1 . . . . . . . 3 .Mollusca Philinidae . . . . . 1 . . . . . . 1 . . . . . . 1 . 1 .Mollusca Pseudococculinid . . . . . . . . . . . . . . . . . . . . 4 . .Mollusca Veneridae . . . . . . . . . . . . . 2 . . . 2 . . . . .Polychaeta Goniadidae . . . . . . . . . . . . . 1 1 2 . . . . . . .Polychaeta Polynoidae . . 1 . . . . 2 . . . . . . . 1 . . . . . . .Crustacea Brachyura . . . . . . . . . . . . . 1 . 1 . . 1 . . . .Crustacea Eusiridae . . 3 . . . . . . . . . . . . . . . . . . . .Crustacea Iphimediidae . . . . . . . 2 . . . . . . . . . . . . . 1 .Crustacea Leucosiidae . . . . . . . . . . . . 1 1 . 1 . . . . . . .A4.7


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>Phylum FamilyTransect number3 4 8 12 14 15 17 18 21 23 26 27 30 31 32 33 34 37 39 40 41 46 48Crustacea Paguridae . . . . . . . . . . . . . . . . . . . . . 3 .Crustacea Phtisicidae . . . . 1 . . . . 1 . 1 . . . . . . . . . . .Crustacea Stegocephalidae . . 3 . . . . . . . . . . . . . . . . . . . .Mollusca Carditidae . . . . . . . . . . . . . . . . 1 . . . . 2 .Mollusca Limidae . . . . . . . 1 . . . . . . . . . . . . . 2 .Mollusca Philobryidae . . . . . . . . . . . . . 3 . . . . . . . . .Mollusca Tellinidae . . . . . . . . 1 . . . 2 . . . . . . . . . .Mollusca Turbinidae . 1 . . 1 . . . . . . 1 . . . . . . . . . . .Crustacea Cirolanidae . . . 2 . . . . . . . . . . . . . . . . . . .Crustacea Hymenosomatida . . 1 . . . . 1 . . . . . . . . . . . . . . .Crustacea Leucothoidae . . . . . . . . . . . . . 1 . . . . . . 1 . .Crustacea Majiidae . . . . . . . 1 . . . . . 1 . . . . . . . . .Crustacea Serolidae . . . . . . . . . . . 1 . . . . 1 . . . . . .Echinoderma Holothuroidea . . . 1 . . . . 1 . . . . . . . . . . . . . .Echinoderma Ophiactidae . . . 1 . . . 1 . . . . . . . . . . . . . . .Mollusca Dendrodorididae . . . . . . . . . 2 . . . . . . . . . . . . .Mollusca Glycymerididae . . . . . . . . . . . . . . . . . . . . . 2 .Mollusca Hiatellidae . . 2 . . . . . . . . . . . . . . . . . . . .Mollusca Lucinidae . . . . . . . . . . . . . . . . . . . 2 . . .Mollusca Nuculidae . . . . . . . . . . . . . . 1 . . . . 1 . . .Mollusca Propeamussiidae . . . . . . . 1 . . . . . . . . . . . . . . 1Mollusca Psammobiidae . 1 . . . . . . . . . . . . . . . . . . . 1 .Mollusca Trochidae . . . . . . . . . . . . . . . . . . . . . 2 .Phoronida Phoronida . . . . . . . . . . . . 1 . . . . 1 . . . . .Polychaeta Ampharetidae . . 1 . . . . . . . . . . . . 1 . . . . . . .Polychaeta Sphaerodoridae . . . . . . . 1 . . . . . . . . 1 . . . . . .Chordata Ascidiacea . . . . . . . 2 . . . . . . . . . . . . . . .Polychaeta Saccocirridae . . . . . . . . . . . . . . . . . . . . . 2 .Polychaeta Lacydonidae . . . . . . . . . . . . . . . . . . . . . 1 .Ascidacea Holozoidae . . . . . . . . . . . . . . 1 . . . . . . . .Chelicerata Acarina . . . . . . . . . . . . . . . . . . . . . 1 .Cnidaria Actiniaria . . . . . . . . . . . . . . . . . . . . . 1 .Crustacea Amphilochidae . . . . . . . . . . . . . . . . 1 . . . . . .Crustacea Ampithoidae . . . . . . . . . . . . . . . . . . . . . 1 .Crustacea Caridea . . . . . . . 1 . . . . . . . . . . . . . . .Crustacea Cytheridae . . . . . . . . . . . . . . . . . . . . 1 . .Crustacea Idoteidae . . . . . . . . . . . . . . . . . . . . . 1 .Crustacea Leuconidae . . . . . . . . . . . . . . . . . . 1 . . . .Crustacea Luciferidae . . . . . . . . . . . . . . . . . . . . . 1 .Crustacea Microparasellidae . . . . . . . 1 . . . . . . . . . . . . . . .Crustacea Mysida . . . . . . . . . . . . . . . . . . . . 1 . .Crustacea Mysidae . . 1 . . . . . . . . . . . . . . . . . . . .Crustacea Nebaliacaea . . . 1 . . . . . . . . . . . . . . . . . . .Crustacea Palaemonidae . . . . . . . . . . . . . . . . . . . . 1 . .Crustacea Paracalliopiidae . . . . . . . . . . . . . . . . . . 1 . . . .Crustacea Paramunnidae . . . . . . . . . . . . . . . . . . . . 1 . .Crustacea Pasiphaeidae . . . 1 . . . . . . . . . . . . . . . . . . .Crustacea Plakarthriidae . . . . . . . . . 1 . . . . . . . . . . . . .Crustacea Santiidae . . . . . . . . . 1 . . . . . . . . . . . . .Echinoderma Asterinidae . . . . . . . . . . . . . . . . . . . . 1 . .Echinoderma Echinoidea . . . . . . . . . . . . . . . . . . . . 1 . .Echinoderma Loveniidae . . . . . . . . . . . . . . . . . . . . 1 . .Echinoderma Ophiotrichidae . . . . . . . . . . . . . . . . . . . . 1 . .Echinoderma Strongylocentroti . . . . . . . 1 . . . . . . . . . . . . . . .Echiura Thalassematidae . . . . . . . . . . . . . . 1 . . . . . . . .Mollusca Arcidae . . . . . . . . . . 1 . . . . . . . . . . . .Mollusca Calyptraeidae . . . . . . . . . . . . . . . . 1 . . . . . .Mollusca Corbulidae . . . . . . . . . . . . . . . . . . . . . 1 .Mollusca Cylichnidae . . . . . . . . . . . . . . . . . . . 1 . . .Mollusca Galeommatidae . . . . . . . . . . . . . . . . . . . 1 . . .Mollusca Leptonidae . . . . . . . . . . . . . . . . . 1 . . . . .Mollusca Opistobranchia . . . . . . . . . . . . . . . . . . . . . 1 .Mollusca Pyramidellidae 1 . . . . . . . . . . . . . . . . . . . . . .Mollusca Ungulinidae . . . . . . . . . 1 . . . . . . . . . . . . .A4.8


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>Phylum FamilyTransect number3 4 8 12 14 15 17 18 21 23 26 27 30 31 32 33 34 37 39 40 41 46 48Polychaeta Glyceridae . . . . . . . . . . . . . . . 1 . . . . . . .Polychaeta Magelonidae . . . . . . . . . . . . . . . . 1 . . . . . .Polychaeta Spirorbidae . . . . . . . . . . . . . . . . . . . . 1 . .Porifera Porifera . . . . . . . 1 . . . . . . . . . . . . . . .Pycnogonida Austrodecidae . . . . . . . . . . . . . . . . . . . . . 1 .TOTAL 137 81 157 138 98 8 63 252 82 237 208 129 179 423 133 374 402 271 231 247 275 846 196A4.9


<strong>Parks</strong> <strong>Victoria</strong> <strong>Technical</strong> <strong>Series</strong> No. 53<strong>Victoria</strong>n MNP coastal <strong>benthos</strong>APPENDIX 5.Maoricolpus roseus sampled off Point Hicks at 40 m depthPhotographs showing all infauna identified from replicate samples 1-3 (top to bottom) collected from40 m depth on Transect 46 during the VCBS showing the high abundance and biomass of the M.roseus (upper right in each photo). Each family is contained in a separate recess or container.Recesses with green discs contain no animals. Scale bars = 10 cm.


<strong>Parks</strong> <strong>Victoria</strong> is responsible for managing the <strong>Victoria</strong>n protectedarea network, which ranges from wilderness areas to metropolitanparks and includes both marine and terrestrial components.Our role is to protect the natural and cultural values of the parksand other assets we manage, while providing a great range ofoutdoor opportunities for all <strong>Victoria</strong>ns and visitors.A broad range of environmental research and monitoring activitiessupported by <strong>Parks</strong> <strong>Victoria</strong> provides information to enhance parkmanagement decisions. This <strong>Technical</strong> <strong>Series</strong> highlights some ofthe environmental research and monitoring activities done within<strong>Victoria</strong>’s protected area network.Healthy <strong>Parks</strong> Healthy PeopleFor more information contact the <strong>Parks</strong> <strong>Victoria</strong> Information Centreon 13 1963, or visit www.parkweb.vic.gov.au

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!