13.07.2015 Views

Effect of Viscous Stress on Cavitation Flow in Nozzles - Cham

Effect of Viscous Stress on Cavitation Flow in Nozzles - Cham

Effect of Viscous Stress on Cavitation Flow in Nozzles - Cham

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Viscous</str<strong>on</strong>g> <str<strong>on</strong>g>Stress</str<strong>on</strong>g> <strong>on</strong> Cavitati<strong>on</strong> <strong>Flow</strong> <strong>in</strong> <strong>Nozzles</strong>S. B. Martynov*, D. J. Mas<strong>on</strong>, and M. R. HeikalEng<strong>in</strong>eer<strong>in</strong>g Research Centre, School <str<strong>on</strong>g>of</str<strong>on</strong>g> Eng<strong>in</strong>eer<strong>in</strong>g, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Bright<strong>on</strong>, BN24GJ, Bright<strong>on</strong>, U.K.* Corresp<strong>on</strong>d<strong>in</strong>g author. Tel.: +44 1273 642331; fax: +44 1273 642301;e-mail address: S.Martynov@bt<strong>on</strong>.ac.ukSubmitted for publicati<strong>on</strong> <strong>in</strong> the Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Fluids Eng<strong>in</strong>eer<strong>in</strong>g, Trans. ASME, 09 August, 2006Abstract: A s<strong>in</strong>gle-fluid approach was applied to study the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> viscousshear stresses <strong>in</strong> a cavitat<strong>in</strong>g flow. A model <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong>, based up<strong>on</strong> the void fracti<strong>on</strong>transport equati<strong>on</strong> was developed and implemented <strong>in</strong>to the PHOENICScomputati<strong>on</strong>al fluid dynamics code. This model takes <strong>in</strong>to account the variati<strong>on</strong> <strong>in</strong> therates <str<strong>on</strong>g>of</str<strong>on</strong>g> evaporati<strong>on</strong> and c<strong>on</strong>densati<strong>on</strong> with the average viscous shear stresses <strong>in</strong> fluid.These are calculated us<strong>in</strong>g the renormalisati<strong>on</strong>-group (RNG) turbulence model. Thecavitati<strong>on</strong> model was adjusted to predict steady flows <strong>in</strong> models <str<strong>on</strong>g>of</str<strong>on</strong>g> life-size Diesel<strong>in</strong>jecti<strong>on</strong> nozzles. It is c<strong>on</strong>cluded that high shear stresses <strong>in</strong> the liquid delay thecollapse <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong> structures, and have significant effect <strong>on</strong> the predicted pattern <str<strong>on</strong>g>of</str<strong>on</strong>g>cavitati<strong>on</strong> flow.Keywords: cavitati<strong>on</strong>, model<strong>in</strong>g, bubbles, scal<strong>in</strong>g, shear stress, tensile strength.


1. Introducti<strong>on</strong>1.1. C<strong>on</strong>venti<strong>on</strong>al c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong>Cavitati<strong>on</strong> is comm<strong>on</strong>ly known as the process <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> voids <strong>in</strong> a liquiddue to a sudden pressure drop, when the local tensi<strong>on</strong>p v− p exceeds the tensilestrength <str<strong>on</strong>g>of</str<strong>on</strong>g> the liquidp − p [1]. The tensile strength <str<strong>on</strong>g>of</str<strong>on</strong>g> real liquids, which c<strong>on</strong>ta<strong>in</strong>vcrimpurities <strong>in</strong> a form <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tam<strong>in</strong>at<strong>in</strong>g particles and small bubbles, is small <strong>in</strong>comparis<strong>on</strong> to the tensile strength <str<strong>on</strong>g>of</str<strong>on</strong>g> specially purified liquids. Therefore, <strong>in</strong> practice,when the cavitati<strong>on</strong> <strong>on</strong>set is not <str<strong>on</strong>g>of</str<strong>on</strong>g> a special <strong>in</strong>terest, the cavitati<strong>on</strong> thresholdp cr canbe associated with the saturati<strong>on</strong> pressurep v . In flow<strong>in</strong>g liquids, cavitati<strong>on</strong> bubblesformed <strong>in</strong> a regi<strong>on</strong> at low static pressure p < p cr ≈ p tend to collapse be<strong>in</strong>gvc<strong>on</strong>vected <strong>in</strong>to regi<strong>on</strong>s at high pressurep >pcr. The process <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> andc<strong>on</strong>sequent collapse <str<strong>on</strong>g>of</str<strong>on</strong>g> bubbles <strong>in</strong> a liquid is known as the hydrodynamic cavitati<strong>on</strong>[2].1.2. Similarity and scale effectsIn experimental practice the hypothesis about hydrodynamic similarity <str<strong>on</strong>g>of</str<strong>on</strong>g>cavitati<strong>on</strong> flows is applied when attempt<strong>in</strong>g to transfer observati<strong>on</strong>s from a model to areal-scale flow. This hypothesis becomes useful <strong>in</strong> design <str<strong>on</strong>g>of</str<strong>on</strong>g> large ship propellers [2]and m<strong>in</strong>iature Diesel <strong>in</strong>jecti<strong>on</strong> nozzles <str<strong>on</strong>g>of</str<strong>on</strong>g> a sub-millimeter scale [3]. Classical scal<strong>in</strong>gtheory [4] states that necessary c<strong>on</strong>diti<strong>on</strong>s for the hydrodynamic similarity <str<strong>on</strong>g>of</str<strong>on</strong>g> tw<str<strong>on</strong>g>of</str<strong>on</strong>g>lows are geometrical similarity <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow doma<strong>in</strong>s, equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> thedimensi<strong>on</strong>less govern<strong>in</strong>g parameters, and <strong>in</strong>itial and boundary c<strong>on</strong>diti<strong>on</strong>s for the flow.Experimental studies [5, 6] have c<strong>on</strong>firmed that the Reynolds number Re and


cavitati<strong>on</strong> number CN are the most important criteria, which describe similarity <str<strong>on</strong>g>of</str<strong>on</strong>g>cavitati<strong>on</strong> flows <strong>in</strong> nozzles. The present study uses the def<strong>in</strong>iti<strong>on</strong> for cavitati<strong>on</strong>number <strong>in</strong>troduced by Bergwerk [5] and applied by Nurick [6] and Soteriou et al. [7]:p1− p2CN = , (1)p −2p vwhere p 1 and p 2 are pressures at the <strong>in</strong>let and outlet <str<strong>on</strong>g>of</str<strong>on</strong>g> nozzle andp v is the vaporpressure, usually associated with the saturati<strong>on</strong> pressure <strong>in</strong> the liquid.Any deviati<strong>on</strong>s from the similarity can be <strong>in</strong>terpreted as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> scale effects.Thus, experiments have shown that real flows do not always obey the classical scal<strong>in</strong>gtheory due to scale effects caused by the liquid quality, bubble dynamics, geometricaldifferences due to manufactur<strong>in</strong>g and wall roughness, particular flow regime andturbulent moti<strong>on</strong> [3, 5, 6, 8].The liquid quality effects are associated with the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> dissolved gases <strong>in</strong>the liquid, small particles and gas-vapor nuclei <strong>in</strong> the liquid.The flow effects depend <strong>on</strong> the geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow doma<strong>in</strong> (geometry effects),cavitati<strong>on</strong> number, Reynolds number and parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulent moti<strong>on</strong> (viscouseffects). They determ<strong>in</strong>e the structure <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong>-free flow (lam<strong>in</strong>ar or turbulent,locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> separati<strong>on</strong> po<strong>in</strong>t and extent <str<strong>on</strong>g>of</str<strong>on</strong>g> the recirculati<strong>on</strong> regi<strong>on</strong>) and govern the<strong>on</strong>set and development <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong> flow.In practice, to make two cavitati<strong>on</strong> flows similar, the scale effects associatedwith the liquid quality and viscous nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow should be m<strong>in</strong>imized. From thepo<strong>in</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> view <str<strong>on</strong>g>of</str<strong>on</strong>g> accurate and reliable predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong> flows it becomesimportant to identify and model the scale effects, which determ<strong>in</strong>e the particular


egime and properties <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong> flow. A quantitative descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow scaleeffects requires three-dimensi<strong>on</strong>al and transient model <str<strong>on</strong>g>of</str<strong>on</strong>g> viscous two-phase flow, anda local model <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong>, which may be <strong>in</strong>corporated <strong>in</strong> an appropriate CFD code.In the turn, reliable and similarity c<strong>on</strong>sistent model <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong> would requiredescripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the liquid quality scale effects. Recent progress <strong>in</strong> understand<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g>mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydrodynamic cavitati<strong>on</strong> and numerous measurements <str<strong>on</strong>g>of</str<strong>on</strong>g>cavitati<strong>on</strong> flows published <strong>in</strong> the literature provide a good basis for development andvalidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> such model.In our previous study [9] we have addressed a problem <str<strong>on</strong>g>of</str<strong>on</strong>g> descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>similarity <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong> flows <strong>in</strong> liquids with <strong>in</strong>itially present cavitati<strong>on</strong> bubbles. In thepresent paper we c<strong>on</strong>sider the viscous stress scale effect <strong>on</strong> cavitati<strong>on</strong> flow. Thiseffect arises <strong>in</strong> high-speed flows, such as flows <strong>in</strong> Diesel <strong>in</strong>jectors, where shearstresses can c<strong>on</strong>tribute to the mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> the fracture formati<strong>on</strong> <strong>in</strong> liquid.Experimental evidences to this phenomen<strong>on</strong> are rear. In order to clarify the effect <str<strong>on</strong>g>of</str<strong>on</strong>g>viscous stresses <strong>on</strong> cavitati<strong>on</strong> flow, we apply measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong> <strong>in</strong> liquids <str<strong>on</strong>g>of</str<strong>on</strong>g>different viscosity. Then we suggest a model for the critical pressure <strong>in</strong> liquid thattakes <strong>in</strong>to account the viscous shear stresses. Prelim<strong>in</strong>ary results <str<strong>on</strong>g>of</str<strong>on</strong>g> this study weresubmitted to the 13 th Internati<strong>on</strong>al Heat Transfer C<strong>on</strong>ference [10].1.3. Cavitati<strong>on</strong> <strong>in</strong> a flow<strong>in</strong>g liquid and viscous stress scale effectThe above c<strong>on</strong>venti<strong>on</strong>al def<strong>in</strong>iti<strong>on</strong> for the cavitati<strong>on</strong> [1] is based up<strong>on</strong> theobservati<strong>on</strong>s <strong>on</strong> liquid ruptur<strong>in</strong>g at static or quasi-static c<strong>on</strong>diti<strong>on</strong>s, when thehydrostatic pressure <strong>in</strong> major part <str<strong>on</strong>g>of</str<strong>on</strong>g> the liquid volume is much higher than theviscous stresses caused by the liquid moti<strong>on</strong>, as, for example, <strong>in</strong> classical experiment<strong>on</strong> the tensile strength <str<strong>on</strong>g>of</str<strong>on</strong>g> liquids [11]. Though this def<strong>in</strong>iti<strong>on</strong> is widely used <strong>in</strong>


C<strong>on</strong>diti<strong>on</strong>s (2) and (3) show that the liquid may start cavitat<strong>in</strong>g even when localstatic pressures are above the saturati<strong>on</strong> pressurep >pv, but viscous stresses are highenough. The criteri<strong>on</strong> (2) generalises the c<strong>on</strong>venti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong> p


slightly different (0.2 mm <strong>in</strong> [14], and 0.3 mm <strong>in</strong> [16]), the nozzle heights H werevery similar (0.28 mm <strong>in</strong> [14], and 0.299 mm <strong>in</strong> [16]), and the nozzle lengths L wereexactly the same (1 mm). Also, the roundness <str<strong>on</strong>g>of</str<strong>on</strong>g> the nozzle entry r <strong>in</strong> , which resultsfrom the imperfecti<strong>on</strong>s <strong>in</strong> the manufactur<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the nozzles, was estimated <strong>in</strong> bothcases to be <str<strong>on</strong>g>of</str<strong>on</strong>g> the same order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude (30 µ m <strong>in</strong> [14], and 20 µ m <strong>in</strong> [16]).C<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the images <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong> flows reported by Roosen et al. [14]and W<strong>in</strong>klh<str<strong>on</strong>g>of</str<strong>on</strong>g>er et al. [16] (Table 1) reveals very similar cavitati<strong>on</strong> vapor structures.Thus, under pressure difference around 5.8 MPa both authors have observed a vaporpocket at the nozzle entry (<strong>in</strong>let cavitati<strong>on</strong>). For the pressure drop about 6.9 MPa,Roosen et al. [14] have observed super-cavitati<strong>on</strong> flow, and W<strong>in</strong>klh<str<strong>on</strong>g>of</str<strong>on</strong>g>er et al. [16]have reported critical cavitati<strong>on</strong> with the transiti<strong>on</strong> to super-cavitati<strong>on</strong> flow at 6.6MPa. Remarkably, the system pressures (downstream <str<strong>on</strong>g>of</str<strong>on</strong>g> the nozzle exit) werecompletely different <strong>in</strong> these studies (1.1 and 2.1 MPa <strong>in</strong> [14], and 3.4 and 4.3 MPa asreported <strong>in</strong> [16]).Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow patterns <strong>in</strong> Table 1 shows that cavitati<strong>on</strong> structureseffectively depend up<strong>on</strong> the pressure difference p1 − p2, that means that thecavitati<strong>on</strong> number CN is not a sufficient criteri<strong>on</strong> to describe the development <str<strong>on</strong>g>of</str<strong>on</strong>g>cavitati<strong>on</strong>. Assum<strong>in</strong>g the liquid quality and the pressure and velocity fields are similarfor both flows (Reynolds numbersRe H <strong>in</strong> Table 1 <strong>in</strong>dicate that the flows are highlyturbulent<strong>in</strong> all the cases), the difference <strong>in</strong> pressure levels required to produce similarcavitati<strong>on</strong> structures can be attributed to the viscous effects. While the density <str<strong>on</strong>g>of</str<strong>on</strong>g>Diesel fuel3ρl= 840 kg/m is <str<strong>on</strong>g>of</str<strong>on</strong>g> the same order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the density <str<strong>on</strong>g>of</str<strong>on</strong>g> water3ρl= 1000 kg/m , the dynamic viscosity <str<strong>on</strong>g>of</str<strong>on</strong>g> Diesel fuell≈ 0.003 Pa ⋅sµ is nearlythree times bigger than the viscosity <str<strong>on</strong>g>of</str<strong>on</strong>g> waterµ ≈ 0.001Pa⋅ s . This may cause shearl


stresses that are three times higher <strong>in</strong> the flow <str<strong>on</strong>g>of</str<strong>on</strong>g> Diesel fuel compared to water flowat the same stra<strong>in</strong> rates. Accord<strong>in</strong>g to hypothesis (2), the viscous stress can <strong>in</strong>fluencethe critical pressure threshold for the cavitati<strong>on</strong> <strong>on</strong>set. This hypothesis can expla<strong>in</strong>why the cavitati<strong>on</strong> starts at lower system pressures <strong>in</strong> the flow <str<strong>on</strong>g>of</str<strong>on</strong>g> Diesel fuel, than <strong>in</strong>the water flow case.1.5. Objectives <str<strong>on</strong>g>of</str<strong>on</strong>g> the studyIn order to predict the steady-state patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong> flows experimentallyestablished <strong>in</strong> [14] and [16], we perform numerical simulati<strong>on</strong>s us<strong>in</strong>g CFD method.Many observati<strong>on</strong>s have proved that the hydrodynamic cavitati<strong>on</strong> occurs <strong>in</strong> the bulkliquid [1], where the vapor-gas bubbles provide the ma<strong>in</strong> c<strong>on</strong>tributi<strong>on</strong> to thenucleati<strong>on</strong> process. Therefore we decided to use a model <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong> flow based <strong>on</strong>the bubble-dynamics theory. Apply<strong>in</strong>g a c<strong>on</strong>venti<strong>on</strong>al c<strong>on</strong>ceptp ≈ p to thecrvrelatively low-pressure cavitati<strong>on</strong> flow <str<strong>on</strong>g>of</str<strong>on</strong>g> water [14] and relatively high-pressure flow<str<strong>on</strong>g>of</str<strong>on</strong>g> Diesel fuel [16], we identify the problem <str<strong>on</strong>g>of</str<strong>on</strong>g> describ<strong>in</strong>g cavitati<strong>on</strong> flows at highsystem pressures, when cavitati<strong>on</strong> can be affected by viscous stress. To resolve thisproblem, a cavitati<strong>on</strong> model, which accounts for the viscous-stress scale effect, issuggested and applied to describe the measurements. It is worth not<strong>in</strong>g that theliterature survey has not revealed any models <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong> which account for theshear stress mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong>.


2. Model <str<strong>on</strong>g>of</str<strong>on</strong>g> Cavitati<strong>on</strong> <strong>Flow</strong>2.1. Model for liquid-vapor flowIn our study it has been assumed that the liquid-vapor mixture can be described<strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> two <strong>in</strong>ter-penetrat<strong>in</strong>g c<strong>on</strong>t<strong>in</strong>ua. Thus, the flow may be simulated as either a“multi-phase” (separate velocity vectors for the liquid and vapor), or a “s<strong>in</strong>gle phase”(<strong>on</strong>e velocity vector) flow. The follow<strong>in</strong>g simplify<strong>in</strong>g assumpti<strong>on</strong>s have been made,there is no slip between the c<strong>on</strong>t<strong>in</strong>ua, and the c<strong>on</strong>t<strong>in</strong>ua are <strong>in</strong> thermal equilibrium.Thus the mixture can be c<strong>on</strong>sidered as a “s<strong>in</strong>gle phase” with its physical propertiesvary<strong>in</strong>g accord<strong>in</strong>g to the local c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> liquid and vapor. The set <str<strong>on</strong>g>of</str<strong>on</strong>g> govern<strong>in</strong>gequati<strong>on</strong>s, which describes steady-state flow <str<strong>on</strong>g>of</str<strong>on</strong>g> the mixture <strong>in</strong> Cartesian coord<strong>in</strong>ates isas follows:∂ρu∂xjj= 0, (4)∂ρuui∂xjj∂p= −∂xi∂τij+∂xj, (5)where τ = ( µ + µ )ijt∂u⋅∂xij∂uj+∂xi2− δ ij3∂u∂xkk .The flow is c<strong>on</strong>sidered to be <strong>in</strong>compressible, with the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the liquidand vapor be<strong>in</strong>g c<strong>on</strong>stant. The mixture properties are taken to be [15]:ρ = αρ + ( 1−α), (6)v ρ lµ = αµ + ( 1−α). (7)v µ l


where α is the volume fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the vapor.Equati<strong>on</strong>s (4) and (5) should be completed by the <strong>in</strong>itial and boundaryc<strong>on</strong>diti<strong>on</strong>s, and equati<strong>on</strong>s for calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the turbulent viscosity µ t <str<strong>on</strong>g>of</str<strong>on</strong>g> the mixtureand the void fracti<strong>on</strong> α . The model for calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the void fracti<strong>on</strong> <strong>in</strong> cavitati<strong>on</strong>flow is described <strong>in</strong> the follow<strong>in</strong>g secti<strong>on</strong>.RNGFor accurate predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulent flow <strong>in</strong> nozzles with flow separati<strong>on</strong>, thek − ε model by Yakhot and Orzag [17] was applied <strong>in</strong> our study.2.2. Model for cavitati<strong>on</strong>The present study is based <strong>on</strong> a s<strong>in</strong>gle-fluid cavitati<strong>on</strong> model [15], which hasbeen developed under several assumpti<strong>on</strong>s about the nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the cavitati<strong>on</strong>phenomen<strong>on</strong>. First, the flow is described assum<strong>in</strong>g a local homogeneous mixture <str<strong>on</strong>g>of</str<strong>on</strong>g>the vapor and liquid phases. This c<strong>on</strong>cept neglects the actual shape <str<strong>on</strong>g>of</str<strong>on</strong>g> the cavitati<strong>on</strong>pockets and uses the void fracti<strong>on</strong> to quantify the local c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> vapor <strong>in</strong> the flow.Sec<strong>on</strong>d, to calculate the void fracti<strong>on</strong>, a transport equati<strong>on</strong> is <strong>in</strong>troduced [15]. In thisequati<strong>on</strong> the rates <str<strong>on</strong>g>of</str<strong>on</strong>g> evaporati<strong>on</strong> and c<strong>on</strong>densati<strong>on</strong> are derived us<strong>in</strong>g an analogy withthe growth and decay <str<strong>on</strong>g>of</str<strong>on</strong>g> spherical bubbles <strong>in</strong> liquid. To make the homogeneousc<strong>on</strong>cept valid, these bubbles should be small, so that their moti<strong>on</strong> relative to the liquidcan be neglected.2.2.1. Void fracti<strong>on</strong>The current approach assumes that cavitati<strong>on</strong> can be described locally forbubbles <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e sort, characterized by size and number density per volume <str<strong>on</strong>g>of</str<strong>on</strong>g> liquid.The volume fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the vapor can then be computed from the number density andradius <str<strong>on</strong>g>of</str<strong>on</strong>g> these virtual bubbles:


43n433n πRα = . (8)31+πR2.2.2. Bubble radiusTo estimate the rates <str<strong>on</strong>g>of</str<strong>on</strong>g> growth and collapse <str<strong>on</strong>g>of</str<strong>on</strong>g> bubbles, the l<strong>in</strong>ear model byRayleigh [8], is applied:dRdt=23pv− pρll⋅ sign( p − p )vl, (9)wherep v – is vapor pressure, associated with the pressure <strong>in</strong>side the bubble, andp lis pressure <strong>in</strong> the surround<strong>in</strong>g liquid, approximately equal to pressure <strong>in</strong> the mixturep l ≈p . This model can be c<strong>on</strong>sidered as a limit<strong>in</strong>g case <str<strong>on</strong>g>of</str<strong>on</strong>g> the Rayleigh-Plessetequati<strong>on</strong>, when the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> surface tensi<strong>on</strong>, liquid viscosity and <strong>in</strong>ertia <str<strong>on</strong>g>of</str<strong>on</strong>g> the bubbleare neglected.the liquid.To <strong>in</strong>itiate cavitati<strong>on</strong>, bubble nuclei <str<strong>on</strong>g>of</str<strong>on</strong>g> radiusR o are assumed to be present <strong>in</strong>2.2.3. Transport equati<strong>on</strong> for the void fracti<strong>on</strong>Follow<strong>in</strong>g [15], the transport equati<strong>on</strong> for the void fracti<strong>on</strong> α is derived fromEq. (8) under the assumpti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stant densities <str<strong>on</strong>g>of</str<strong>on</strong>g> the vapor and the liquid andfixed number density <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong> bubbles <strong>in</strong> the flow doma<strong>in</strong>:


∂α∂ujα+ = S∂t∂xjα, (10)where the source term is given by the equati<strong>on</strong>:(1 −α)ρln d 4 3 Sα = ⋅⋅ 31+⋅4 3 πR. (11)ρ n πRdt 32.2.4. Parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> the modelA comm<strong>on</strong> strategy <strong>in</strong> computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong> flows is to tune parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> amodel us<strong>in</strong>g some reference measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong>, and then apply these set <str<strong>on</strong>g>of</str<strong>on</strong>g>c<strong>on</strong>stants for a range <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow c<strong>on</strong>diti<strong>on</strong>s. Thus, the model <str<strong>on</strong>g>of</str<strong>on</strong>g> Yaun et al. [15]c<strong>on</strong>ta<strong>in</strong>s two adjustable parametersR o and n , which describe the liquid qualityeffects <strong>on</strong> a cavitati<strong>on</strong> flow. The number density n plays a role <str<strong>on</strong>g>of</str<strong>on</strong>g> tunable parameterfor match<strong>in</strong>g reference measurements, while the <strong>in</strong>itial bubble radius is aimed toactivate the source term <strong>in</strong> Eq. (10).A weakness <str<strong>on</strong>g>of</str<strong>on</strong>g> this approach is that the number density is not a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> theliquid quality <strong>on</strong>ly, but depends also <strong>on</strong> the hydrodynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow [9]. In order todecouple these two effects a model for the c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong> nuclei has beendeveloped [9]. This model was aimed to predict cavitati<strong>on</strong> flows <str<strong>on</strong>g>of</str<strong>on</strong>g> a given liquid forarbitrary flow c<strong>on</strong>figurati<strong>on</strong>. In the current study we apply the orig<strong>in</strong>al model by Yuanet al. [15] to study cavitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different liquids <strong>in</strong> similar flow c<strong>on</strong>diti<strong>on</strong>s.In our study the number density parameter n and the vapor pressurepv<strong>in</strong> thesource term (11) are c<strong>on</strong>sidered as fixed parameters, which depend <strong>on</strong> the liquidquality and can not be affected by the cavitati<strong>on</strong> number. The vapor pressurepvis set


to 2340 Pa for water and 300 Pa for Diesel fuel. The <strong>in</strong>itial radius <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong>bubbles is specified through the number density n and <strong>in</strong>itial volume facti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> thevapor phase, which is setup to a small numberα o= 10 −8 . This value was found tohave no effect <strong>on</strong> the resultant flow field, but is needed to activate the source term Eq.(11).2.3. Numerical methodIn this study the PHOENICS CFD code [19] is employed as an <strong>in</strong>strument tosolve the set <str<strong>on</strong>g>of</str<strong>on</strong>g> govern<strong>in</strong>g Eqs. (4 – 10) completed by boundary flow c<strong>on</strong>diti<strong>on</strong>s andequati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a turbulent model, us<strong>in</strong>g the f<strong>in</strong>ite-volume method [20]. The model <str<strong>on</strong>g>of</str<strong>on</strong>g>cavitati<strong>on</strong> described <strong>in</strong> the previous secti<strong>on</strong> was <strong>in</strong>corporated <strong>in</strong>to the package.In order to improve the accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> computati<strong>on</strong>s <strong>on</strong> coarse meshes, high-orderc<strong>on</strong>vecti<strong>on</strong> discretizati<strong>on</strong> schemes were applied when solv<strong>in</strong>g the mass fracti<strong>on</strong>equati<strong>on</strong> (super-bee scheme) and the momentum equati<strong>on</strong> (SMART scheme) [21]. Topromote c<strong>on</strong>vergence <str<strong>on</strong>g>of</str<strong>on</strong>g> pressure-soluti<strong>on</strong> algorithm for computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flows withlarge density gradients, an artificial compressibility factor was <strong>in</strong>troduced <strong>in</strong> thecalculati<strong>on</strong>s.2.4. Mesh and boundary c<strong>on</strong>diti<strong>on</strong>sDiscretizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the differential equati<strong>on</strong>s is performed <strong>on</strong> a body-fitted gridbuilt for <strong>on</strong>e quarter <str<strong>on</strong>g>of</str<strong>on</strong>g> the nozzle <strong>in</strong> between the symmetry planes, back plane walland curvil<strong>in</strong>ear nozzle side wall (Fig. 3). For the straight part <str<strong>on</strong>g>of</str<strong>on</strong>g> the nozzle, start<strong>in</strong>gfrom its <strong>in</strong>let corners, a Cartesian grid was used. In the calculati<strong>on</strong>s meshes with about2500 cells <strong>in</strong> computati<strong>on</strong>al doma<strong>in</strong> were applied.


The velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow is specified and the turbulent <strong>in</strong>tensity is set to zero atthe <strong>in</strong>let <str<strong>on</strong>g>of</str<strong>on</strong>g> the doma<strong>in</strong> (Fig. 2). At the outlet <str<strong>on</strong>g>of</str<strong>on</strong>g> the nozzle, a c<strong>on</strong>stant pressureboundary c<strong>on</strong>diti<strong>on</strong> is applied. At the nozzle walls the no slip boundary c<strong>on</strong>diti<strong>on</strong> wasapplied for the velocity comp<strong>on</strong>ents. The boundary c<strong>on</strong>diti<strong>on</strong>s for the momentumequati<strong>on</strong> were formulated us<strong>in</strong>g the standard equilibrium wall functi<strong>on</strong>s.2.5. C<strong>on</strong>vergence <str<strong>on</strong>g>of</str<strong>on</strong>g> iterati<strong>on</strong>sNumerical tests revealed that <strong>in</strong> order to m<strong>in</strong>imize the residuals and achieve theflow fields, which have virtually stopped vary<strong>in</strong>g with the iterati<strong>on</strong>s,410 globaliterati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong> algorithm were sufficient for computati<strong>on</strong>s <strong>on</strong> a coarse mesh(Fig. 3). Calculati<strong>on</strong>s for <strong>on</strong>e flow regime <strong>on</strong> a pers<strong>on</strong>al computer with Pentium 4processor with operat<strong>in</strong>g frequency 2.66 GHz took approximately <strong>on</strong>e hour. Mostsimulati<strong>on</strong>s were started with <strong>in</strong>itial flow fields based up<strong>on</strong> the c<strong>on</strong>verged soluti<strong>on</strong>when cavitati<strong>on</strong> is neglected. Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>itial flow fields was found to have noeffect <strong>on</strong> the f<strong>in</strong>al flow field (as would be expected for a steady state flow), but didsignificantly reduce computati<strong>on</strong> time. The results <str<strong>on</strong>g>of</str<strong>on</strong>g> a mesh dependence studyshowed that the use <str<strong>on</strong>g>of</str<strong>on</strong>g> high-order spatial discretizati<strong>on</strong> schemes applied forapproximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> advecti<strong>on</strong> terms <strong>in</strong> the mass fracti<strong>on</strong> and momentum equati<strong>on</strong>s,allowed accurate results to be obta<strong>in</strong>ed us<strong>in</strong>g coarse meshes (Fig. 3).3. ResultsIn order to clarify the nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the shear-stress-assisted cavitati<strong>on</strong>, themeasurements by Roosen et al. [14] and W<strong>in</strong>klh<str<strong>on</strong>g>of</str<strong>on</strong>g>er et al. [16] were c<strong>on</strong>sidered. Inthis part, by comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the numerical results with the measurements, the problem<strong>in</strong> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>venti<strong>on</strong>al model <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong> is identified. Then, the method


to account for the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> viscous shear stresses <strong>on</strong> cavitati<strong>on</strong> flow is <strong>in</strong>troduced andapplied to describe the experimental data.3.1. C<strong>on</strong>venti<strong>on</strong>al c<strong>on</strong>cept3.1.1. Cavitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tap water <strong>in</strong> Roosen’s nozzleIn order to describe cavitati<strong>on</strong> flows <str<strong>on</strong>g>of</str<strong>on</strong>g> tap water [14], the parameter n wastuned for the reference regimes from Table 1. This was d<strong>on</strong>e follow<strong>in</strong>g the proceduredescribed by Yaun et al. [15], us<strong>in</strong>g the c<strong>on</strong>venti<strong>on</strong>al def<strong>in</strong>iti<strong>on</strong> for the cavitati<strong>on</strong>pressure threshold ( p = p ).crvInlet cavitati<strong>on</strong>. First, adjustment <str<strong>on</strong>g>of</str<strong>on</strong>g> n was performed for the <strong>in</strong>let cavitati<strong>on</strong>flow. After a number <str<strong>on</strong>g>of</str<strong>on</strong>g> trials, it was found that number densities from13 −315 −3n = 1.6 ⋅10(m ) to n = 2 ⋅10(m ) produce vapor pockets at the nozzle entrance,which can be associated with the cavitati<strong>on</strong> bubble photographed by Roosen et al.14 −3[14]. The follow<strong>in</strong>g results are discussed for the value n = 4.4 ⋅10(m ) , which waschosen as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the model adjustments to achieve best agreement with themeasurements for both the <strong>in</strong>let and super-cavitati<strong>on</strong> flows.Fig. 4 shows the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the volume fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vapor, predicted us<strong>in</strong>gn = 4.4 ⋅10(m14 −3) , <strong>in</strong> comparis<strong>on</strong> with the image <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow from the report byRoosen et al. [14]. The void fracti<strong>on</strong> field shows high c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> vapor (morethan 50%) <strong>in</strong> the cavitati<strong>on</strong> regi<strong>on</strong> and steep gradients <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>, which<strong>in</strong>dicates a small numerical diffusi<strong>on</strong> effect.Fig. 5 shows results <str<strong>on</strong>g>of</str<strong>on</strong>g> the calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the velocity field <strong>in</strong> the middle X-plane<str<strong>on</strong>g>of</str<strong>on</strong>g> the nozzle <strong>in</strong> comparis<strong>on</strong> with the velocity measurements performed by Roosen etal. [14]. The shape <str<strong>on</strong>g>of</str<strong>on</strong>g> the vapor pockets predicted by the model are <strong>in</strong>dicated <strong>in</strong> this


figure by iso-surfaces <str<strong>on</strong>g>of</str<strong>on</strong>g> the void fracti<strong>on</strong> α = 20%. Though the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> the vaporpocket predicted numerically does not match precisely the measurements, it capturesthe phenomena <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>let cavitati<strong>on</strong>. The numerical study have revealed that to describecorrectly the regime <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>let cavitati<strong>on</strong>, c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong> bubbles n must14 −3not exceed 4.4 ⋅ 10 (m ) . Further <strong>in</strong>crease <strong>in</strong> n resulted <strong>in</strong> a shift <str<strong>on</strong>g>of</str<strong>on</strong>g> thereattachment po<strong>in</strong>t downstream the flow, which is typical for transiti<strong>on</strong>al cavitati<strong>on</strong>and does not corresp<strong>on</strong>d to the sub-cavitati<strong>on</strong> regime [22] with steady-state <strong>in</strong>letvapor pocket reported by Roosen et al. [14].Supercavitati<strong>on</strong>. As already menti<strong>on</strong>ed, the number density parameter n wasadjusted with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> the measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> supercavitati<strong>on</strong> flow (CN = 6.27, Table1). This was d<strong>on</strong>e to identify the value <str<strong>on</strong>g>of</str<strong>on</strong>g> n more precisely. When apply<strong>in</strong>g themeasurements <str<strong>on</strong>g>of</str<strong>on</strong>g> the super-cavitati<strong>on</strong> flow regime, we assumed that it can beassociated with “critical” cavitati<strong>on</strong>, when the length <str<strong>on</strong>g>of</str<strong>on</strong>g> the vapor pocket just reachesthe nozzle outlet.The results <str<strong>on</strong>g>of</str<strong>on</strong>g> calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the void fracti<strong>on</strong> are shown <strong>in</strong> Fig. 6 for the14 −3number density n = 4.4 ⋅10(m ) , which was found to be the m<strong>in</strong>imal value that canpredict the super-cavitati<strong>on</strong> shape <str<strong>on</strong>g>of</str<strong>on</strong>g> the vapor pocket.3.1.2. Cavitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Diesel fuel <strong>in</strong> W<strong>in</strong>klh<str<strong>on</strong>g>of</str<strong>on</strong>g>er’s nozzleThe model <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong> developed by Yaun et al. [15] was able to predict boththe <strong>in</strong>let and developed (super-cavitati<strong>on</strong>) flows, such as those experimentallyobserved by Roosen et al. [14], us<strong>in</strong>g <strong>on</strong>e value for the number density <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong>bubbles n . In order to describe the regimes <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Diesel fuel <strong>in</strong>W<strong>in</strong>klh<str<strong>on</strong>g>of</str<strong>on</strong>g>er’s nozzle (Table 1), the parameter n has been adjusted <strong>on</strong>ce aga<strong>in</strong>.


However, first attempts to f<strong>in</strong>d an appropriate value <str<strong>on</strong>g>of</str<strong>on</strong>g> n showed that for both <str<strong>on</strong>g>of</str<strong>on</strong>g> theregimes (<strong>in</strong>let cavitati<strong>on</strong> and super-cavitati<strong>on</strong>), the model predicted very t<strong>in</strong>ycavitati<strong>on</strong> areas located at the nozzle <strong>in</strong>let corner, even when very high c<strong>on</strong>centrati<strong>on</strong>s20 −3<str<strong>on</strong>g>of</str<strong>on</strong>g> nuclei n ~ 10 (m ) were specified. Thus, for the super-cavitati<strong>on</strong> flow, thelength <str<strong>on</strong>g>of</str<strong>on</strong>g> the vapor pocket does not exceed a length <str<strong>on</strong>g>of</str<strong>on</strong>g> a nozzle height, irrespective <str<strong>on</strong>g>of</str<strong>on</strong>g>the number density n (Fig. 7). Calculati<strong>on</strong>s us<strong>in</strong>g f<strong>in</strong>er mesh did not change theresults. The reas<strong>on</strong> for such discrepancy between the numerical predicti<strong>on</strong>s and themeasurements could be the shear stress mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong>, which was notc<strong>on</strong>sidered <strong>in</strong> the c<strong>on</strong>venti<strong>on</strong>al c<strong>on</strong>ceptp = p , adopted <strong>in</strong> the model <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong>.crvThe follow<strong>in</strong>g analysis is aimed to clarify this issue.3.2. Pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong>-free flowIn order to reveal the differences <strong>in</strong> flows <str<strong>on</strong>g>of</str<strong>on</strong>g> tap water <strong>in</strong> Roosen’s nozzle andDiesel fuel <strong>in</strong> W<strong>in</strong>klh<str<strong>on</strong>g>of</str<strong>on</strong>g>er’s nozzle, the calculati<strong>on</strong>s were performed neglect<strong>in</strong>g thecavitati<strong>on</strong> process for the pressure drops across the nozzle around 5.8 MPa (<strong>in</strong>letcavitati<strong>on</strong>, Table 1). Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the liquid flow fields results with a model for thecritical pressure <strong>in</strong>fluenced by the viscous shear stress.Fig. 8 shows the pressure distributi<strong>on</strong>s al<strong>on</strong>g the nozzles. Though the shapes <str<strong>on</strong>g>of</str<strong>on</strong>g>the pressure curves are different, the overall pressure drop p1 − p2and maximumpressure reducti<strong>on</strong> at the nozzle entryp2 − pm<strong>in</strong>are similar for the two nozzles. Thiscan be expla<strong>in</strong>ed by the similar geometry scales and negligible viscous losses underthe turbulent flow c<strong>on</strong>diti<strong>on</strong>s (Table 1).Figs. 9 – 13 and 15 show spatial distributi<strong>on</strong>s for the flow variables undercavitati<strong>on</strong>-free flows, for the middle cross-secti<strong>on</strong>s ( X = 0 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> the nozzles.


Fig. 9 shows that the mean flow velocity scales were similar <strong>in</strong> both nozzles, asthey were determ<strong>in</strong>ed by the pressure drop, although the flow fields were different <strong>in</strong>detail.The blank spots at the nozzle <strong>in</strong>let corners <strong>in</strong> Fig. 10 show the area <str<strong>on</strong>g>of</str<strong>on</strong>g> the flowwhere pressure becomes negative (the relative pressure p − p2drops below the level−p 2), see also Fig. 8). These regi<strong>on</strong>s <strong>in</strong>dicate the volume <str<strong>on</strong>g>of</str<strong>on</strong>g> liquid subjected undertensi<strong>on</strong> − p > 0 . Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Fig. 10 (a) and (b) reveals a larger volume <str<strong>on</strong>g>of</str<strong>on</strong>g>p vliquid under tensi<strong>on</strong> for the Roosen’s nozzle, where the flow is characterized by alower exit pressure p 2 .stra<strong>in</strong>Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Figs. 11 (a) and (b) shows similar distributi<strong>on</strong>s for the rates <str<strong>on</strong>g>of</str<strong>on</strong>g>Syz1 ∂uz=2 ∂y∂uy+∂z. (12)and approximately the same maximum level <str<strong>on</strong>g>of</str<strong>on</strong>g> stra<strong>in</strong>s achieved for both nozzles. Atthe same time, the higher viscosity <str<strong>on</strong>g>of</str<strong>on</strong>g> the Diesel fuel results <strong>in</strong> higher shear stresses(Fig. 12, b). In the turn, accord<strong>in</strong>g to the hypothesis (2), higher stresses can result <strong>in</strong>lower critical pressures for the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong>.Fields <str<strong>on</strong>g>of</str<strong>on</strong>g> the turbulent viscosity (Fig. 13) show that the average turbulentstresses prevail over the lam<strong>in</strong>ar stresses near the wall downstream the nozzleentrance, i.e. <strong>in</strong> those regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow where the cavitati<strong>on</strong> is expected to happen.In order to apply criteri<strong>on</strong> (2) <strong>in</strong> the framework <str<strong>on</strong>g>of</str<strong>on</strong>g> the Reynolds-averaged Navier-Stokes equati<strong>on</strong>s, the c<strong>on</strong>tributi<strong>on</strong> from the averaged turbulent stresses have to beappreciated <strong>in</strong> (2). Tak<strong>in</strong>g <strong>in</strong>to account that flows <strong>in</strong> the nozzles are effectively two-


dimensi<strong>on</strong>al, the cavitati<strong>on</strong> criteri<strong>on</strong> can be formulated <strong>in</strong> a form (3), with the criticalpressure def<strong>in</strong>ed as:pcrvmax( + ) ⋅ S= p + µ µ , (13)2 ⋅ t ijwheremaxS ij is the maximum comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the stra<strong>in</strong>-rate tensor.Fig. 12 (b) <strong>in</strong>dicates that the local maximum <strong>in</strong> shear stress takes place at about<strong>on</strong>e half <str<strong>on</strong>g>of</str<strong>on</strong>g> the nozzle height downstream the nozzle <strong>in</strong>let where the pressure alreadyrecovers to positive values ( p − p 2 > − p2, Fig. 10, b). However, the level <str<strong>on</strong>g>of</str<strong>on</strong>g> theshear stresses <strong>in</strong> the flow is not sufficient to overcome the hydrostatic pressure p andthus <strong>in</strong>itiate the cavitati<strong>on</strong>. This is schematically shown <strong>in</strong> Fig. 14.To complete the analysis, it is <strong>in</strong>terest<strong>in</strong>g to compare the current method <str<strong>on</strong>g>of</str<strong>on</strong>g>def<strong>in</strong>iti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the critical pressure (13) to the model developed by S<strong>in</strong>ghal et al. [23]that accounts for the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the turbulent pressure fluctuati<strong>on</strong>s <strong>in</strong> the follow<strong>in</strong>g way:pcr= p + 0.39 1 ρk. (14)v2Equati<strong>on</strong> (14) has an empirical nature and c<strong>on</strong>ta<strong>in</strong>s tunable c<strong>on</strong>stant 0.39.Inspecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the turbulence k<strong>in</strong>etic energy k fields <strong>in</strong> cavitati<strong>on</strong>-free flows <strong>in</strong> thenozzles (Fig. 15) reveals higher level <str<strong>on</strong>g>of</str<strong>on</strong>g> k reached <strong>in</strong> the flow separati<strong>on</strong> regi<strong>on</strong> <strong>in</strong> theW<strong>in</strong>klh<str<strong>on</strong>g>of</str<strong>on</strong>g>er’s nozzle (Fig. 15, b). The k<strong>in</strong>etic energy <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulence k is formed underthe effect <str<strong>on</strong>g>of</str<strong>on</strong>g> stresses <strong>in</strong> liquid, and therefore correlati<strong>on</strong> (14) can be expla<strong>in</strong>ed <strong>on</strong> thebasis <str<strong>on</strong>g>of</str<strong>on</strong>g> the model (13).


3.3. Model for the critical vapor pressureIn order to activate the shear-stress mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong> described <strong>in</strong> Eq.(13), the shear stress term <strong>in</strong> this equati<strong>on</strong> can be magnified by an empirical c<strong>on</strong>stantC > 1:tpcr µ t = pv+ 2 µ ⋅ 1+ Ct ⋅ S . (15) µ Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the liquid flow patterns <strong>in</strong> Roosen’s and W<strong>in</strong>klh<str<strong>on</strong>g>of</str<strong>on</strong>g>er’s nozzles haverevealed that the hypothesis expressed <strong>in</strong> Eq. (13) can be applied to expla<strong>in</strong> the effect<str<strong>on</strong>g>of</str<strong>on</strong>g> the viscous shear stress <strong>on</strong> the cavitati<strong>on</strong> <strong>on</strong>set. In the present study this idea, <strong>in</strong> aform <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (15), is used to def<strong>in</strong>e the critical pressure threshold for both theevaporati<strong>on</strong> and c<strong>on</strong>densati<strong>on</strong> stages <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong>.In the follow<strong>in</strong>g secti<strong>on</strong>s the coefficientC t is adjusted us<strong>in</strong>g the measurements<str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong> flows from Table 1. The study is completed by an analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> thesensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the results <str<strong>on</strong>g>of</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong> flows to variati<strong>on</strong>s <strong>in</strong>C t .3.3.1. Cavitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water flow <strong>in</strong> Roosen’s nozzleFirst, the model for the critical pressure (15) was applied to describe cavitati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> tap water (Table 1). The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this step was to determ<strong>in</strong>e the maximum value<str<strong>on</strong>g>of</str<strong>on</strong>g>C t , which would not affect the cavitati<strong>on</strong> structures predicted assum<strong>in</strong>gp = p .crvAs a result <str<strong>on</strong>g>of</str<strong>on</strong>g> several computati<strong>on</strong>al trials, it was found that applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (15)with a c<strong>on</strong>stant C ≤ 10 , does not change the soluti<strong>on</strong>s for the <strong>in</strong>let and developedtcavitati<strong>on</strong> <strong>in</strong> the Roosen’s nozzle (Table 1). This is shown <strong>in</strong> Fig. 16, which gives the


void fracti<strong>on</strong> fields predicted for the <strong>in</strong>let and super-cavitati<strong>on</strong> flows <strong>in</strong> Roosen’snozzle. Then,(Table 1).C t =10 was applied to predict the flow regimes <strong>in</strong> W<strong>in</strong>klh<str<strong>on</strong>g>of</str<strong>on</strong>g>er’s nozzle3.3.2. Cavitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Diesel fuel <strong>in</strong> W<strong>in</strong>klh<str<strong>on</strong>g>of</str<strong>on</strong>g>er’s nozzleThe results <str<strong>on</strong>g>of</str<strong>on</strong>g> adjustments <str<strong>on</strong>g>of</str<strong>on</strong>g> the number density n for <strong>in</strong>let and criticalcavitati<strong>on</strong>s <strong>in</strong> W<strong>in</strong>klh<str<strong>on</strong>g>of</str<strong>on</strong>g>er’s nozzle (Table 1) us<strong>in</strong>gthe <strong>in</strong>let cavitati<strong>on</strong> calculati<strong>on</strong>s have revealed thatC t =10, are shown <strong>in</strong> Fig. 17. ForC t =10 does not have a noticeableeffect <strong>on</strong> the dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the vapor regi<strong>on</strong>, so that the vapor regi<strong>on</strong> (Fig. 17, a) keptthe same as it was predicted by assum<strong>in</strong>gp = p . Under super-cavitati<strong>on</strong> flowcrvc<strong>on</strong>diti<strong>on</strong>s the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the number density <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong> bubbles became moreobvious (Fig. 17, b – d). An <strong>in</strong>crease <strong>in</strong> the number density <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong> bubblesresulted <strong>in</strong> an el<strong>on</strong>gati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the vapor regi<strong>on</strong> and higher c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the vaporphase. Us<strong>in</strong>g18n = 2 ⋅10 (m –3 ) andn = 1.6⋅1019(m –3 ) the model predicted thecavitati<strong>on</strong> pocket, which occupied about <strong>on</strong>e half <str<strong>on</strong>g>of</str<strong>on</strong>g> the nozzle length (Fig. 17, c andd). This shape is <strong>in</strong> good agreement with experimental observati<strong>on</strong>s for the criticalcavitati<strong>on</strong> (Table 1). An <strong>in</strong>crease <strong>in</strong>produced <strong>in</strong> the nozzle. Thus, when us<strong>in</strong>gC t resulted <strong>in</strong> a greater amount <str<strong>on</strong>g>of</str<strong>on</strong>g> vapor be<strong>in</strong>gC t = 20, the model predicted the supercavitati<strong>on</strong>flow pattern, similar to the <strong>on</strong>e reported by W<strong>in</strong>klh<str<strong>on</strong>g>of</str<strong>on</strong>g>er et al. [16] (Table 1).At the same time, unique number C = 10 allowed to describe both the <strong>in</strong>cipient andtcritical cavitati<strong>on</strong> flows from experiments [14] and [16]. The difference <strong>in</strong> values <str<strong>on</strong>g>of</str<strong>on</strong>g>parameter n used to predict cavitati<strong>on</strong> <strong>in</strong> Roosen’s and W<strong>in</strong>klh<str<strong>on</strong>g>of</str<strong>on</strong>g>er’s nozzles can beexpla<strong>in</strong>ed by dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> n <strong>on</strong> the liquid tensi<strong>on</strong>p cr − p [9], which accord<strong>in</strong>g to


c<strong>on</strong>cept (3) can be much affected by viscous shear stresses. This issue is above thescope <str<strong>on</strong>g>of</str<strong>on</strong>g> the present study and requires further <strong>in</strong>vestigati<strong>on</strong>s.3.3.3. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> tensi<strong>on</strong>s <strong>in</strong> the liquidIn order to identify the area <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong> flow <strong>in</strong>fluenced by the shear stresses,µt µ2 µ 1 and the localthe spatial distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the sec<strong>on</strong>d term <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (15) ⋅ ( + C ) t ⋅ Spressure p are compared <strong>in</strong> Fig. 18. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the pressure field shows that positivetensi<strong>on</strong>s p v − p > 0 and p cr − p > 0 appear at the nozzle wall downstream the <strong>in</strong>letcorner (Fig. 18, a, b). However, applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the criteri<strong>on</strong> (15), results <strong>in</strong> largervolume <str<strong>on</strong>g>of</str<strong>on</strong>g> liquid where the pressure is reduced below the critical levelp < pcr(Fig.18, b). Also, comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> p − pvand p − pcrtlocal pressure recovers much faster than the variable p − ⋅ ( + C ) ⋅ S, shows that theµt µ2 µ 1 <strong>in</strong> themean flow directi<strong>on</strong> (Fig. 18, c, d). This leads to the lower rates <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>densati<strong>on</strong> andthe l<strong>on</strong>ger vapor pockets predicted by the model (15) (Fig. 17, c, d) compared to thepredicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>venti<strong>on</strong>al c<strong>on</strong>ceptp = p (Fig. 7, b, c).crv4. C<strong>on</strong>clusi<strong>on</strong>sThe effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the shear-stress mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong> was clarified fromanalysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong> flows <str<strong>on</strong>g>of</str<strong>on</strong>g> tap water [14] and Diesel fuel [16] <strong>in</strong>planar nozzles.The results <str<strong>on</strong>g>of</str<strong>on</strong>g> calculati<strong>on</strong>s showed that the c<strong>on</strong>venti<strong>on</strong>al c<strong>on</strong>ceptp = p failscrvto predict regimes <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Diesel fuel, experimentally observed <strong>in</strong> [16].


In order to account for the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> shear stresses <strong>on</strong> cavitati<strong>on</strong> flow, themodel<strong>in</strong>g equati<strong>on</strong> (15) for the critical pressure was <strong>in</strong>troduced. This critical pressurewas used to calculate the rates <str<strong>on</strong>g>of</str<strong>on</strong>g> evaporati<strong>on</strong> and c<strong>on</strong>densati<strong>on</strong> <strong>in</strong> the flow. Anempirical c<strong>on</strong>stantC t <strong>in</strong> the correlati<strong>on</strong> (15) was adjusted to describe the <strong>in</strong>let andcritical cavitati<strong>on</strong> flows observed <strong>in</strong> the experiments [14] and [16].Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow variables showed that regi<strong>on</strong>s where thestatic pressure reaches its m<strong>in</strong>imum and where the shear stress achieves its maximumare located <strong>in</strong> different parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow. The calculati<strong>on</strong>s showed that larger amount<str<strong>on</strong>g>of</str<strong>on</strong>g> vapor predicted us<strong>in</strong>g Eq. (15), compar<strong>in</strong>g to the c<strong>on</strong>venti<strong>on</strong>al modelp = p , iscrva result <str<strong>on</strong>g>of</str<strong>on</strong>g> two effects: 1) an <strong>in</strong>crease <strong>in</strong> the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> evaporati<strong>on</strong> at the nozzle <strong>in</strong>let, and2) a decrease <strong>in</strong> the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>densati<strong>on</strong> downstream the <strong>in</strong>let.5. AcknowledgementsThe authors are grateful to the European Regi<strong>on</strong>al Development Fund Franco-British INTERREG IIIa (Project Ref. 162/025/247) for partial f<strong>in</strong>ancial support <str<strong>on</strong>g>of</str<strong>on</strong>g> theproject, and Dr. Tao Bo from Ricardo UK for the <strong>in</strong>itiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this study.


Figure capti<strong>on</strong>sFig. 1. Couette flow between two flat plates.Fig. 2. Planar nozzles used <strong>in</strong> studies <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong> flows by Roosen et al. [14], (a),and W<strong>in</strong>klh<str<strong>on</strong>g>of</str<strong>on</strong>g>er et al. [16], (b).Fig. 3. The structure <str<strong>on</strong>g>of</str<strong>on</strong>g> body-fitted meshes <strong>in</strong> the Y-Z plane <str<strong>on</strong>g>of</str<strong>on</strong>g> the computati<strong>on</strong>aldoma<strong>in</strong> for Roosen’s (a) and W<strong>in</strong>klh<str<strong>on</strong>g>of</str<strong>on</strong>g>er’s (b) nozzles (Fig. 2).Fig. 4. Pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitat<strong>in</strong>g flow <strong>in</strong> Roosen’s nozzle at CN = 2.81 (Table 1) (a) <strong>in</strong>comparis<strong>on</strong> with the results <str<strong>on</strong>g>of</str<strong>on</strong>g> numerical predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the vapor field us<strong>in</strong>g14 −3n = 4.4 ⋅10(m ) (b).Fig. 5. Measured velocity field and shape <str<strong>on</strong>g>of</str<strong>on</strong>g> the vapor pocket <strong>in</strong> cavitat<strong>in</strong>g nozzle [14]at CN = 2.81 (a) <strong>in</strong> comparis<strong>on</strong> with the results <str<strong>on</strong>g>of</str<strong>on</strong>g> numerical calculati<strong>on</strong>s us<strong>in</strong>g14 −3n = 4.4 ⋅10(m ) (b). The volume <str<strong>on</strong>g>of</str<strong>on</strong>g> calculated cavitati<strong>on</strong> regi<strong>on</strong> is <strong>in</strong>dicated byiso-surface where the void fracti<strong>on</strong> is α = 20%.Fig. 6. Pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong> flow <strong>in</strong> Roosen’s nozzle at CN=6.27 (Table 1) <strong>in</strong>comparis<strong>on</strong> with the results <str<strong>on</strong>g>of</str<strong>on</strong>g> numerical predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the vapor volume fracti<strong>on</strong>field us<strong>in</strong>g n =144.4⋅ 10 (m –3 ) (b).Fig. 7. The void fracti<strong>on</strong> distributi<strong>on</strong>s predicted for the supercavitati<strong>on</strong> flow <strong>in</strong>W<strong>in</strong>klh<str<strong>on</strong>g>of</str<strong>on</strong>g>er’s nozzle (Table 1) us<strong>in</strong>g the model <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong> by Yuan et al. [15]. (a)16n = 1.6⋅ 10 (m –3 ), (b) n =182 ⋅ 10 (m –3 ) , (c) n =(m –3 ). (Figures show <strong>on</strong>ly the right half <str<strong>on</strong>g>of</str<strong>on</strong>g> the nozzle).191.6⋅ 10 (m –3 ), (d) n = 1.6⋅ 10Fig. 8. Pressure distributi<strong>on</strong>s <strong>in</strong> liquid estimated neglect<strong>in</strong>g cavitati<strong>on</strong> for the <strong>in</strong>letcavitati<strong>on</strong> regimes <strong>in</strong> Roosen’s and W<strong>in</strong>klh<str<strong>on</strong>g>of</str<strong>on</strong>g>er’s nozzles (Table 1). C<strong>on</strong>t<strong>in</strong>uous andstroke l<strong>in</strong>es show pressure distributi<strong>on</strong> al<strong>on</strong>g near the wall and al<strong>on</strong>g the center-l<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g>nozzles, respectively.Fig. 9. Velocity fields <strong>in</strong> Roosen’s (a) and W<strong>in</strong>klh<str<strong>on</strong>g>of</str<strong>on</strong>g>er’s (b) nozzles predictedneglect<strong>in</strong>g the cavitati<strong>on</strong> process. (Figures show <strong>on</strong>ly the right half <str<strong>on</strong>g>of</str<strong>on</strong>g> the nozzles).22


Fig. 10. Fields <str<strong>on</strong>g>of</str<strong>on</strong>g> relative pressure p − p2predicted for Roosen’s (a) andW<strong>in</strong>klh<str<strong>on</strong>g>of</str<strong>on</strong>g>er’s (b) nozzles neglect<strong>in</strong>g the cavitati<strong>on</strong> process.Fig. 11. Distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> stra<strong>in</strong>W<strong>in</strong>klh<str<strong>on</strong>g>of</str<strong>on</strong>g>er’s (b) nozzles predicted neglect<strong>in</strong>g the cavitati<strong>on</strong> process.S yz <strong>in</strong> Roosen’s (a) andFig. 12. Distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the shear stressesτ = 2 ( µ + µ ) S <strong>in</strong> Roosen’s (a) andyztyzW<strong>in</strong>klh<str<strong>on</strong>g>of</str<strong>on</strong>g>er’s (b) nozzles predicted neglect<strong>in</strong>g the cavitati<strong>on</strong> process.Fig. 13. Distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> the turbulent viscosity <strong>in</strong> Roosen’s (a) andW<strong>in</strong>klh<str<strong>on</strong>g>of</str<strong>on</strong>g>er’s (b) nozzles predicted neglect<strong>in</strong>g the cavitati<strong>on</strong> process.Fig. 14. Variati<strong>on</strong>s <strong>in</strong> absolute pressure and the turbulent comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> shear stressesal<strong>on</strong>g the nozzle (schematically).Fig. 15. Distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the k<strong>in</strong>etic energy <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulence <strong>in</strong> Roosen’s (a) andW<strong>in</strong>klh<str<strong>on</strong>g>of</str<strong>on</strong>g>er’s (b) nozzles predicted neglect<strong>in</strong>g the cavitati<strong>on</strong> process.Fig. 16. Distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the void fracti<strong>on</strong> <strong>in</strong> the Roosen’s nozzle under <strong>in</strong>let (a, b) andsuper-cavitati<strong>on</strong> (c, d) flow regimes (Table 1), predicted us<strong>in</strong>g n =(a, c) –p = p ; (b, d) – equati<strong>on</strong> (15) with C = 10 .crvt144.4⋅ 10 (m –3 ).Fig. 17. Distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the void fracti<strong>on</strong> at the nozzle throat for the <strong>in</strong>let cavitati<strong>on</strong>(a) and supercavitati<strong>on</strong> flows (b - d) <strong>in</strong> W<strong>in</strong>klh<str<strong>on</strong>g>of</str<strong>on</strong>g>er’s nozzle (Table 1), predicted us<strong>in</strong>gequati<strong>on</strong> (15) with a c<strong>on</strong>stant C = 10 and various number densities <str<strong>on</strong>g>of</str<strong>on</strong>g> cavitati<strong>on</strong>bubbles n (m –3 ): (a), (c) –182 ⋅ 10 , (b) –t13191.6⋅ 10 , (d) – 1.6⋅ 10 .Fig. 18. Iso-surfaces for the tensi<strong>on</strong>p − pv(a, c) and local variable pcrp − (b, d),predicted us<strong>in</strong>g equati<strong>on</strong> (15) with C = 10 andt18n = 2 ⋅10 (m –3 ). (a) p − p < 0v; (b)p −p cr< 0 ; (c) p −p v5< 4 ⋅10left around the nozzle <strong>in</strong>let corner).(Pa); (d) p −p cr5< 4 ⋅10(Pa). (<strong>Flow</strong> from right to


FiguresFig. 1Fig. 2Fig. 3


Fig. 4Fig. 5


Fig. 6Fig. 7


Fig. 8Fig. 9


Fig. 10Fig. 11


Fig. 12Fig. 13Fig. 14


Fig. 15Fig. 16


Fig. 17Fig. 18


p<strong>Flow</strong> Authors Liquid Images <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow1 ,MPaInlet cavitati<strong>on</strong>Roosen etal, (1996)W<strong>in</strong>klh<str<strong>on</strong>g>of</str<strong>on</strong>g>er,et al. (2001)p 2 ,MPap1 − p 2 ,MPaCNRe HWater 8 2.1 5.9 2.81 30 400Dieselfuel10 4.3 5.7 1.33 9 800Super-cavitati<strong>on</strong>Roosen etal, (1996)W<strong>in</strong>klh<str<strong>on</strong>g>of</str<strong>on</strong>g>er,et al. (2001)Water 8 1.1 6.9 6.27 32 820Critical cavitati<strong>on</strong>Diesel10 3.5 6.5 1.86 10 450fuelTransiti<strong>on</strong> to super-cavitati<strong>on</strong>10 3.4 6.6 1.95 10 540Table 1. Develop<strong>in</strong>g and super-cavitati<strong>on</strong> flows <strong>in</strong> rectangular models <str<strong>on</strong>g>of</str<strong>on</strong>g>Diesel <strong>in</strong>jectors. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the measurements by Roosen et al. [14] andW<strong>in</strong>klh<str<strong>on</strong>g>of</str<strong>on</strong>g>er et al. [16]. Reynolds numberρUHH = µRe is def<strong>in</strong>ed us<strong>in</strong>g the Bernoulli= ρ .velocity scale U 2( p1 − p2)/l


NomenclatureC t – empirical c<strong>on</strong>stant <strong>in</strong> Eq. (15);CN – cavitati<strong>on</strong> number def<strong>in</strong>ed <strong>in</strong> Eq. (1);H – nozzle height, m;k – k<strong>in</strong>etic energy <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulence, m 2 /s 2 ;L – nozzle lengths, m;n – number density <str<strong>on</strong>g>of</str<strong>on</strong>g> bubbles <strong>in</strong> liquid, m –3 ;p – hydrostatic pressure, Pa;p cr – cavitati<strong>on</strong> pressure threshold, Pa;p v – saturati<strong>on</strong> pressure <strong>in</strong> liquid, Pa;R – bubble radius, m;r <strong>in</strong> – roundness <str<strong>on</strong>g>of</str<strong>on</strong>g> the nozzle entry, m;Re – Reynolds number;S jk – the rate-<str<strong>on</strong>g>of</str<strong>on</strong>g>-stra<strong>in</strong> tensor, s –1 ;S α – the source term <strong>in</strong> Eq. (10), s –1 ;t – time, s;u i – velocity comp<strong>on</strong>ents, m/s;W – nozzle width, m;X , Y,Z – coord<strong>in</strong>ates, m;Greek letters35


α – volume fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the vapor;δ ij – Kr<strong>on</strong>eker delta tensor;ε – rate <str<strong>on</strong>g>of</str<strong>on</strong>g> dissipati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the k<strong>in</strong>etic energy <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulence, m 2 /s 3 ;µ – dynamic coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> viscosity, Pa s;ρ – density, kg/m 3 ;τ jk – stress tensor, Pa;Subscriptsi , j,k – <strong>in</strong>dexes <str<strong>on</strong>g>of</str<strong>on</strong>g> coord<strong>in</strong>ates (1,2,3);cr – cavitati<strong>on</strong> threshold;l – liquid phase;o – bubble nuclei;t – turbulent;v – vapor phase;1 – nozzle <strong>in</strong>let;2 – nozzle outlet.References[1] Brennen, C.E., 1995. Cavitati<strong>on</strong> and Bubble Dynamics. Oxford UniversityPress, Oxford.[2] Knapp, R.T., Daily, J.W., and Hammitt, F.G., 1970. Cavitati<strong>on</strong>. McGraw-Hill, New York.36


[3] Arcoumanis, C., Badami, M., Flora, H. and Gavaises, M., 2000. “Cavitati<strong>on</strong><strong>in</strong> Real-size Multi-hole Diesel Injector <strong>Nozzles</strong>”. SAE paper 2000-01-1249.[4] Batchelor, G.K., 1980. An Introducti<strong>on</strong> to Fluid Dynamics. Cambridge Univ.Press, Cambridge.[5] Bergwerk, W., 1959. “<strong>Flow</strong> Pattern <strong>in</strong> Diesel Nozzle Spray Holes”. Proc.Inst. Mech. Eng<strong>in</strong>eers, 173 (25), pp. 655 – 660.[6] Nurick, W.H., 1976. “Orifice Cavitati<strong>on</strong> and Its effect <strong>on</strong> Spray Mix<strong>in</strong>g”.ASME, J. Fluids Eng<strong>in</strong>eer<strong>in</strong>g, 98, pp. 681 – 687.[7] Soteriou, C., Andrews, R., and Smith, M., 1995. “Direct Injecti<strong>on</strong> DieselSprays and the <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cavitati<strong>on</strong> and Hydraulic Flip <strong>on</strong> Atomisati<strong>on</strong>”. SAEpaper 950080.[8] St<strong>in</strong>ebr<strong>in</strong>g, D.R., Billet, M.L., L<strong>in</strong>dau, J.W. and Kunz, R.F., 2001.”Developed Cavitati<strong>on</strong> – Cavity Dynamics”.VKI Lecture Series <strong>on</strong>Supercavitat<strong>in</strong>g <strong>Flow</strong>s. VKI Press, Brussels.[9] Martynov, S.B., Mas<strong>on</strong>, D.J., and Heikal, M.R. 2006. “NumericalSimulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cavitati<strong>on</strong> <strong>Flow</strong>s Based <strong>on</strong> Their Hydrodynamic Similarity”.Int. J. <str<strong>on</strong>g>of</str<strong>on</strong>g> Eng<strong>in</strong>e Research, 7 (3), pp. 283 – 296.[10] Martynov, S, Mas<strong>on</strong>, D, Heikal, M, Sazh<strong>in</strong>, S. and Gorokhovski, M. (2006)“Modell<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> Cavitati<strong>on</strong> <strong>Flow</strong> <strong>in</strong> a Nozzle and Its <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <strong>on</strong> SprayDevelopment.” Proc. <str<strong>on</strong>g>of</str<strong>on</strong>g> the 13 th Internati<strong>on</strong>al Heat Transfer C<strong>on</strong>ference,Australia, Sydney.[11] Berthelot, M., 1850. “Sur quelques phenomenes de dilati<strong>on</strong> forcee deliquides”. Ann. De Chimie et de Physique, 30, pp. 232 – 237.37


[12] Joseph, D.D., 1995. “Cavitati<strong>on</strong> <strong>in</strong> a <strong>Flow</strong><strong>in</strong>g Liquid”. Phys. Review, E., 51(3), pp. 1649 – 1650.[13] Joseph, D.D., 1998. “Cavitati<strong>on</strong> and the State <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Stress</str<strong>on</strong>g> <strong>in</strong> a <strong>Flow</strong><strong>in</strong>gLiquid”, J. Fluid Mech., 366, pp. 367 – 378.[14] Roosen, P, Unruh, O., and Behmann M., 1996. “Untersuchung undModeleirung des transienten Verhaltens v<strong>on</strong> Kavitati<strong>on</strong>sersche<strong>in</strong>ungen beie<strong>in</strong>- und mehrkomp<strong>on</strong>entigen Kraftst<str<strong>on</strong>g>of</str<strong>on</strong>g>fen <strong>in</strong> schnell durchstromtenDusen”. Report <str<strong>on</strong>g>of</str<strong>on</strong>g> the Institute for Technical Termodynamics. RWTHAachen (Univ. <str<strong>on</strong>g>of</str<strong>on</strong>g> Tech.), Germany.[15] Yuan, W., Sauer, J., and Schnerr, G.H., 2001. “Modell<strong>in</strong>g and Computati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> Unsteady Cavitati<strong>on</strong> <strong>Flow</strong>s <strong>in</strong> Injecti<strong>on</strong> <strong>Nozzles</strong>”. Mécanique andIndustries, 2 (5), pp. 383 – 394.[16] W<strong>in</strong>klh<str<strong>on</strong>g>of</str<strong>on</strong>g>er, E., Kull, E., Kelz, E., Morozov, A., 2001. “ComprehensiveHydraulic and <strong>Flow</strong> Field Documentati<strong>on</strong> <strong>in</strong> Model Throttle ExperimentsUnder Cavitati<strong>on</strong> C<strong>on</strong>diti<strong>on</strong>s”. Proceed<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the ILASS-EuropeC<strong>on</strong>ference, Zurich, pp. 574 – 579.[17] Yakhot, V., Orszag, S. A., Thangham, S., Gatski., T.B. and Speziale, C.G.,1992. “Development <str<strong>on</strong>g>of</str<strong>on</strong>g> Turbulence Models for Shear <strong>Flow</strong>s by a Double-Expansi<strong>on</strong> Technique”. Physics <str<strong>on</strong>g>of</str<strong>on</strong>g> Fluids, A, 4 (7), pp. 1510 – 1520.[18] Rayleigh, Lord, 1917. “On the Pressure Developed <strong>in</strong> a Liquid Dur<strong>in</strong>g theCollapse <str<strong>on</strong>g>of</str<strong>on</strong>g> a Spherical Cavity”. Phil. Mag., 34, pp. 94 – 98.[19] Rosten, H.I. and Spald<strong>in</strong>g, D.B., 1986. Phoenics – Beg<strong>in</strong>ner’s Guide andUser Manual. CHAM TR-100.[20] Versteeg, H.K. and Malalasekera, W., 1995. An <strong>in</strong>troducti<strong>on</strong> tocomputati<strong>on</strong>al fluid dynamics: the f<strong>in</strong>ite volume method. Harlow, L<strong>on</strong>gman.38


[21] Mal<strong>in</strong>, M.R. and Waters<strong>on</strong>, N.P., 1999, “Schemes for C<strong>on</strong>vecti<strong>on</strong>Discretisati<strong>on</strong> <strong>in</strong> Phoenics”. Phoenics J., 12 (2), pp. 173 – 201.[22] Sato, K. and Saito, Y., 2001. “Unstable Cavitati<strong>on</strong> Behaviour <strong>in</strong> Circular-Cyl<strong>in</strong>drical Orifice <strong>Flow</strong>”. Proc. <str<strong>on</strong>g>of</str<strong>on</strong>g> the 4 th Int. Symposium <strong>on</strong> Cavitati<strong>on</strong>CAV2001, paper 318.[23] S<strong>in</strong>ghal, A.K., Athavale, M.M., Li, H., and Jiang Yu., 2002. “MathematicalBasis and Validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Full Cavitati<strong>on</strong> Model”. ASME, J. Fluid Eng.124 (3), pp. 617 – 624.39

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!