13.07.2015 Views

Counting Subgraphs in Regular Graphs - Rob Beezer - University of ...

Counting Subgraphs in Regular Graphs - Rob Beezer - University of ...

Counting Subgraphs in Regular Graphs - Rob Beezer - University of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong><strong>Rob</strong> <strong>Beezer</strong>beezer@ups.eduDepartment <strong>of</strong> Mathematics and Computer Science<strong>University</strong> <strong>of</strong> Puget SoundDiscrete Mathematics Workshop<strong>University</strong> <strong>of</strong> Wash<strong>in</strong>gton, TacomaOctober 14, 2006


ProblemProblem StatementFor a regular graph on n vertices, <strong>of</strong> degree r,determ<strong>in</strong>e the number <strong>of</strong> match<strong>in</strong>gs with m edges.A match<strong>in</strong>g is a subgraph <strong>of</strong> disjo<strong>in</strong>t edges.<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 2 / 21


ProblemProblem StatementFor a regular graph on n vertices, <strong>of</strong> degree r,determ<strong>in</strong>e the number <strong>of</strong> match<strong>in</strong>gs with m edges.A match<strong>in</strong>g is a subgraph <strong>of</strong> disjo<strong>in</strong>t edges.<strong>Regular</strong>ity is key!<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 2 / 21


ProblemProblem StatementFor a regular graph on n vertices, <strong>of</strong> degree r,determ<strong>in</strong>e the number <strong>of</strong> match<strong>in</strong>gs with m edges.A match<strong>in</strong>g is a subgraph <strong>of</strong> disjo<strong>in</strong>t edges.<strong>Regular</strong>ity is key!Notation:{ }is the number <strong>of</strong> subgraphs that are 2-match<strong>in</strong>gs.<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 2 / 21


Quick and Dirty1-Match<strong>in</strong>gsEZ{ }= nr2Depends only on n and r.Independent <strong>of</strong> the particular graph.<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 3 / 21


Quick and Dirty2-Match<strong>in</strong>gsChoose a vertex, choose two <strong>in</strong>cident edges:{ } ( ) r − 1= n2<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 4 / 21


Quick and Dirty2-Match<strong>in</strong>gsChoose a vertex, choose two <strong>in</strong>cident edges:{ } ( ) r − 1= n2Total <strong>of</strong> all 2-edge subgraphs:( nr) { } { }2=+2<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 4 / 21


Quick and Dirty2-Match<strong>in</strong>gsChoose a vertex, choose two <strong>in</strong>cident edges:{ } ( ) r − 1= n2Total <strong>of</strong> all 2-edge subgraphs:( nr) { } { }2=+2Solve:{ }= 1 n r (nr − 4r + 2)8Depends only on n and r.Independent <strong>of</strong> the particular graph.<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 4 / 21


Quick and Dirty3-Match<strong>in</strong>gsFive possible subgraphs on three edges. How many <strong>of</strong> each?We are after the number <strong>of</strong> 3-match<strong>in</strong>gs. Eventually.<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 5 / 21


Quick and Dirty3-Match<strong>in</strong>gs, Part IChoose a vertex, choose three <strong>in</strong>cident edges:{ } ( ) r − 1= n3<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 6 / 21


Quick and Dirty3-Match<strong>in</strong>gs, Part IChoose a vertex, choose three <strong>in</strong>cident edges:{ } ( ) r − 1= n3Start with a 2-match<strong>in</strong>g, choose one <strong>of</strong> 4 vertices, add one <strong>of</strong> r − 1<strong>in</strong>cident edges. Builds paths <strong>of</strong> length 3, and subgraphs with a path <strong>of</strong>length 2 and a disjo<strong>in</strong>t edge.Double-counts each <strong>of</strong> these though!{ } { }4(r − 1)= 2+ 2{ }<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 6 / 21


Quick and Dirty3-Match<strong>in</strong>gs, Part IIStart with a path <strong>of</strong> length 2, choose one <strong>of</strong> 2 end vertices, add one <strong>of</strong>r − 1 <strong>in</strong>cident edges. Builds paths <strong>of</strong> length 3, and triangles.Double-counts paths, overcounts triangles by a factor <strong>of</strong> 6.{ } { } { }2(r − 1)= 2+ 6<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 7 / 21


Quick and Dirty3-Match<strong>in</strong>gs, Part IIStart with a path <strong>of</strong> length 2, choose one <strong>of</strong> 2 end vertices, add one <strong>of</strong>r − 1 <strong>in</strong>cident edges. Builds paths <strong>of</strong> length 3, and triangles.Double-counts paths, overcounts triangles by a factor <strong>of</strong> 6.{ } { } { }2(r − 1)= 2+ 6Sum all subgraphs on 3 edges:( nr) { } { } { } { } { }2=++++3<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 7 / 21


Quick and Dirty3-Match<strong>in</strong>gs, SolutionSolve 4 l<strong>in</strong>ear equations <strong>in</strong> 5 unknowns:{ }= 148 nr ( n 2 r 2 − 12nr 2 + 40r 2 + 6nr − 48r + 16 ) { }−Depends on n and r and the number <strong>of</strong> triangles.Independent <strong>of</strong> the particular graph.<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 8 / 21


<strong>Graphs</strong>General ApproachCan’t keep this up. Need a systematic approach.Beg<strong>in</strong> with a subgraph with m edges and a vertex <strong>of</strong> degree 1.<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 9 / 21


<strong>Graphs</strong>General ApproachCan’t keep this up. Need a systematic approach.Beg<strong>in</strong> with a subgraph with m edges and a vertex <strong>of</strong> degree 1.Remove edge <strong>in</strong>cident to degree 1 vertex. Call other endpo<strong>in</strong>t w.Identify vertices “isomorphic” to w.<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 9 / 21


<strong>Graphs</strong>General ApproachCan’t keep this up. Need a systematic approach.Beg<strong>in</strong> with a subgraph with m edges and a vertex <strong>of</strong> degree 1.Remove edge <strong>in</strong>cident to degree 1 vertex. Call other endpo<strong>in</strong>t w.Identify vertices “isomorphic” to w.Add back a s<strong>in</strong>gle edge, attach<strong>in</strong>g one end at vertices like w.<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 9 / 21


<strong>Graphs</strong>General ApproachCan’t keep this up. Need a systematic approach.Beg<strong>in</strong> with a subgraph with m edges and a vertex <strong>of</strong> degree 1.Remove edge <strong>in</strong>cident to degree 1 vertex. Call other endpo<strong>in</strong>t w.Identify vertices “isomorphic” to w.Add back a s<strong>in</strong>gle edge, attach<strong>in</strong>g one end at vertices like w.Determ<strong>in</strong>e the types <strong>of</strong> subgraphs formed.Determ<strong>in</strong>e the amount <strong>of</strong> overcount<strong>in</strong>g.<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 9 / 21


<strong>Graphs</strong>Example, 4 EdgesBeg<strong>in</strong> with a path hav<strong>in</strong>g 4 edges.Remove an edge <strong>in</strong>cident to a vertex <strong>of</strong> degree 1. Label other endpo<strong>in</strong>t w.In the path on 3 edges that rema<strong>in</strong>s, there is one other vertex like w.Add back an edge at w, consider<strong>in</strong>g all vertices as possibilities for theother end <strong>of</strong> the new edge.<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 10 / 21


<strong>Graphs</strong>Example, 4 EdgesWhat subgraphs result? How many <strong>of</strong> each? Overcount<strong>in</strong>g factor?TypeOvercountTriangle w/Pendant2xPath2xCircuit8x<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 11 / 21


<strong>Graphs</strong>Example, 4 Edges2 vertices like w.r − 1 ways to attach back an edge.<strong>Count<strong>in</strong>g</strong> a set <strong>of</strong> subgraphs (each with a labeled vertex at w) <strong>in</strong> twodifferent ways yields:{ } { } { } { }2(r − 1)= 2+ 2+ 8<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 12 / 21


<strong>Graphs</strong>System <strong>of</strong> L<strong>in</strong>ear EquationsCreate a system <strong>of</strong> l<strong>in</strong>ear equations <strong>in</strong> subgraph counts.Coefficients are constants, functions <strong>of</strong> n and r.<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 13 / 21


<strong>Graphs</strong>System <strong>of</strong> L<strong>in</strong>ear EquationsCreate a system <strong>of</strong> l<strong>in</strong>ear equations <strong>in</strong> subgraph counts.Coefficients are constants, functions <strong>of</strong> n and r.Apply to any regular graph.<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 13 / 21


<strong>Graphs</strong>System <strong>of</strong> L<strong>in</strong>ear EquationsCreate a system <strong>of</strong> l<strong>in</strong>ear equations <strong>in</strong> subgraph counts.Coefficients are constants, functions <strong>of</strong> n and r.Apply to any regular graph.<strong>Subgraphs</strong> with no degree 1 vertices are “free” variables.<strong>Subgraphs</strong> with degree 1 vertices are dependent variables.<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 13 / 21


<strong>Graphs</strong>System <strong>of</strong> L<strong>in</strong>ear EquationsCreate a system <strong>of</strong> l<strong>in</strong>ear equations <strong>in</strong> subgraph counts.Coefficients are constants, functions <strong>of</strong> n and r.Apply to any regular graph.<strong>Subgraphs</strong> with no degree 1 vertices are “free” variables.<strong>Subgraphs</strong> with degree 1 vertices are dependent variables.Order subgraph types on edges, then number <strong>of</strong> degree 1 vertices.System has lower-triangular coefficient matrix, nearly homogeneous.<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 13 / 21


4-Match<strong>in</strong>gs4-Match<strong>in</strong>gsAll subgraphs on 4 edges or less. w is adjacent to open-circle vertex.G 0,0,1 G 1,2,1 G 2,2,1 G 2,4,1 G 3,0,1G 3,2,1 G 3,3,1 G 3,4,1 G 3,6,1 G 4,0,1G 4,1,1 G 4,2,1 G 4,2,2 G 4,3,1 G 4,4,1G 4,4,2 G 4,4,3 G 4,5,1 G 4,6,1 G 4,8,1<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 14 / 21


4-Match<strong>in</strong>gsg 0,0,1 = 1n r g 0,0,1 = 2 g 1,2,12(r − 1) g 1,2,1 = 2 g 2,2,1(n − 2) r g 1,2,1 = 2 g 2,2,1 + 4 g 2,4,12(r − 1) g 2,2,1 = 6 g 3,0,1 + 2 g 3,2,11(r − 2) g 2,2,1 = 3 g 3,3,14(r − 1) g 2,4,1 = 2 g 3,2,1 + 2 g 3,4,1(n − 4) r g 2,4,1 = 2 g 3,4,1 + 6 g 3,6,13(r − 2) g 3,0,1 = 1 g 4,1,1(n − 3) r g 3,0,1 = 1 g 4,1,1 + 2 g 4,2,12(r − 1) g 3,2,1 = 8 g 4,0,1 + 2 g 4,1,1 + 2 g 4,2,22(r − 2) g 3,2,1 = 2 g 4,1,1 + 2 g 4,3,12(r − 1) g 3,4,1 = 6 g 4,2,1 + 2 g 4,2,2 + 2 g 4,4,11(r − 3) g 3,3,1 = 4 g 4,4,22(r − 1) g 3,4,1 = 2 g 4,2,2 + 1 g 4,3,1 + 4 g 4,4,31(r − 2) g 3,4,1 = 1 g 4,3,1 + 3 g 4,5,16(r − 1) g 3,6,1 = 2 g 4,4,1 + 2 g 4,6,1(n − 6) r g 3,6,1 = 2 g 4,6,1 + 8 g 4,8,1<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 15 / 21


4-Match<strong>in</strong>gsg0,0,1 = 1g1,2,1 = nr2n (−1 + r) rg2,2,1 =2nr (2 − 4r + nr)g2,4,1 =8g3,2,1 = n(−1 + r)2 r− 3g3,0,12n (−2 + r) (−1 + r) rg3,3,1 =6n (−1 + r) r (4 − 6r + nr)g3,4,1 = + 3g3,0,14g3,6,1 = nr ( 16 − 48r + 6nr + 40r 2 − 12nr 2 + n 2 r 2)− g3,0,148g4,1,1 = (−6 + 3r) g3,0,1(g4,2,1 = 3 − 3r + nr )g3,0,12g4,2,2 = n(−1 + r)3 r+ (9 − 6r) g3,0,1 − 4g4,0,12g4,3,1 = n (−2 + r) (−1 + r)2 r2g4,4,1 = n(−1 + r)2 r (6 − 8r + nr)4+ (12 − 6r) g3,0,1+(−21 + 18r − 3nr )g3,0,1 + 4g4,0,12n (−3 + r) (−2 + r) (−1 + r) rg4,4,2 =24g4,4,3 = n(−1 + r)2 r (8 − 9r + nr)+ (−9 + 6r) g3,0,1 + 2g4,0,18n (−2 + r) (−1 + r) r (6 − 8r + nr)g4,5,1 = + (−6 + 3r) g3,0,112g4,6,1 = n (−1 + r) r ( 40 − 104r + 10nr + 72r 2 − 16nr 2 + n 2 r 2) (+ 24 − 21r + 3nr )g3,0,1 − 4g4,0,1162g4,8,1 = nr (240 − 960r + 76nr + 1344r 2 − 240nr 2 + 12n 2 r 2 − 672r 3 + 208nr 3 − 24n 2 r 3 + n 3 r 3) +(−6 + 6r − nr )g3,0,1 + g4,0,13842<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 16 / 21


4-Match<strong>in</strong>gs4-Match<strong>in</strong>gs Solution{ }= nr (240 − 960r + 76nr + 1344r 2 − 240nr 2 +384Applys to any regular graph.12n 2 r 2 − 672r 3 + 208nr 3 − 24n 2 r 3 + n 3 r 3) +(−6 + 6r − nr ) { } { }+2Depends on n, r, and the number <strong>of</strong> triangles and squares.<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 17 / 21


DesignsDesignsThe pair (V , B) is a t-(v, k, λ) design if V is a set <strong>of</strong> v elements calledpo<strong>in</strong>ts (or vertices) and B is a set <strong>of</strong> k element subsets <strong>of</strong> V called blocks(or l<strong>in</strong>es) with the property that every t-element subset <strong>of</strong> V is a subset <strong>of</strong>exactly λ blocks from B.<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 18 / 21


DesignsDesignsThe pair (V , B) is a t-(v, k, λ) design if V is a set <strong>of</strong> v elements calledpo<strong>in</strong>ts (or vertices) and B is a set <strong>of</strong> k element subsets <strong>of</strong> V called blocks(or l<strong>in</strong>es) with the property that every t-element subset <strong>of</strong> V is a subset <strong>of</strong>exactly λ blocks from B.Fano PlaneProjective Plane <strong>of</strong> Order 2Ste<strong>in</strong>er Triple System2-(7, 3, 1) DesignBlocks:123 345 567 257 147 367 246<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 18 / 21


DesignsGeneralize to DesignsHorak, et al; results for Ste<strong>in</strong>er Triple Systems, 2-(v, 3, 1) designs.<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 19 / 21


DesignsGeneralize to DesignsHorak, et al; results for Ste<strong>in</strong>er Triple Systems, 2-(v, 3, 1) designs.A regular graph is just a 1-(n, 2, r) design.<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 19 / 21


DesignsGeneralize to DesignsHorak, et al; results for Ste<strong>in</strong>er Triple Systems, 2-(v, 3, 1) designs.A regular graph is just a 1-(n, 2, r) design.In a design, subgraphs are just subsets <strong>of</strong> blocks, “configurations.”<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 19 / 21


DesignsGeneralize to DesignsHorak, et al; results for Ste<strong>in</strong>er Triple Systems, 2-(v, 3, 1) designs.A regular graph is just a 1-(n, 2, r) design.In a design, subgraphs are just subsets <strong>of</strong> blocks, “configurations.”Same types <strong>of</strong> l<strong>in</strong>ear equations.Coefficients depend on v and λ (for a fixed choice <strong>of</strong> t and k).<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 19 / 21


DesignsGeneralize to DesignsHorak, et al; results for Ste<strong>in</strong>er Triple Systems, 2-(v, 3, 1) designs.A regular graph is just a 1-(n, 2, r) design.In a design, subgraphs are just subsets <strong>of</strong> blocks, “configurations.”Same types <strong>of</strong> l<strong>in</strong>ear equations.Coefficients depend on v and λ (for a fixed choice <strong>of</strong> t and k).“Free” variables are configuration counts for configurations whereevery block has more than t po<strong>in</strong>ts that occur <strong>in</strong> two or more blocks<strong>of</strong> the configuration.<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 19 / 21


DesignsGeneralize to DesignsHorak, et al; results for Ste<strong>in</strong>er Triple Systems, 2-(v, 3, 1) designs.A regular graph is just a 1-(n, 2, r) design.In a design, subgraphs are just subsets <strong>of</strong> blocks, “configurations.”Same types <strong>of</strong> l<strong>in</strong>ear equations.Coefficients depend on v and λ (for a fixed choice <strong>of</strong> t and k).“Free” variables are configuration counts for configurations whereevery block has more than t po<strong>in</strong>ts that occur <strong>in</strong> two or more blocks<strong>of</strong> the configuration.For graphs, this is “every edge has 2 vertices <strong>of</strong> degree 2 or more.”i.e. no vertices <strong>of</strong> degree 1.<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 19 / 21


ApplicationsApplications<strong>Graphs</strong> <strong>of</strong> high girth lack small cycles.Small subgraphs are acyclic.“Free” variables are all zero.Counts for small subgraphs are determ<strong>in</strong>ed just by n and r.<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 20 / 21


ApplicationsApplications<strong>Graphs</strong> <strong>of</strong> high girth lack small cycles.Small subgraphs are acyclic.“Free” variables are all zero.Counts for small subgraphs are determ<strong>in</strong>ed just by n and r.Existence <strong>of</strong> designs?Conclude that configuration counts are negative or fractional?<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 20 / 21


BibliographyBibliographyR.A. <strong>Beezer</strong>, The number <strong>of</strong> subgraphs <strong>of</strong> a regular graphCongressus Numerantium, 100:89–96, 1994P. Horak, N.K.C. Phillips, W.D. Wallis, and J.L. Yucas<strong>Count<strong>in</strong>g</strong> frequencies <strong>of</strong> configurations <strong>in</strong> Ste<strong>in</strong>er triple systemsArs Comb<strong>in</strong>atoria, 46:65–75, 1997M.J. Grannell, T. S. Griggs, Configurations <strong>in</strong> Ste<strong>in</strong>er triple systemsResearch Notes <strong>in</strong> Math. 403, 103–126, 1999R.A. <strong>Beezer</strong>, <strong>Count<strong>in</strong>g</strong> configurations <strong>in</strong> designsJournal <strong>of</strong> Comb<strong>in</strong>atorial Theory, Series A, 96:341-357, 2001<strong>Rob</strong> <strong>Beezer</strong> (U Puget Sound) <strong>Count<strong>in</strong>g</strong> <strong>Subgraphs</strong> <strong>in</strong> <strong>Regular</strong> <strong>Graphs</strong> UWT Workshop Oct 14 ‘06 21 / 21

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!