13.07.2015 Views

b - rencontres de blois - IN2P3

b - rencontres de blois - IN2P3

b - rencontres de blois - IN2P3

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CP violation and Rare Decays(a selected list of topics)Gaia Lanfranchi (INFN & CERN)on behalf of the LHCb Collaborationincluding ATLAS,Babar, Belle, CDF, CMS, D0 resultsLes Rencontres <strong>de</strong> Blois -2012


Brief history of the Blois castle:1) X th century: birth of the Blois castle- physics mo<strong>de</strong>l: Aristotle’s mo<strong>de</strong>l with the Sun, the Moon, the planets andthe sphere of fixed stars rotating around the Earth- anomalies: Ptolemy’s epicycles to <strong>de</strong>scribe the motions of planetsTour du Foix1


Brief history of the Blois castle:1) X th century: birth of the Blois castle- physics mo<strong>de</strong>l: Aristotle’s mo<strong>de</strong>l with the Sun, the Moon, the planets andthe sphere of fixed stars rotating around the Earth- anomalies: Ptolemy’s epicycles to <strong>de</strong>scribe the motions of planets2) 17 th century: end of the construction of the Blois castle- solution: Galileo <strong>de</strong>monstrated that the observed motions of celestial objectscan be explained without putting the Earth at rest in the center of the universe.Gaston d’Orleans’s wing1


Brief history of the Blois castle:1) X th century: birth of the Blois castle- physics mo<strong>de</strong>l: Aristotle’s mo<strong>de</strong>l with the Sun, the Moon, the planets andthe sphere of fixed stars rotating around the Earth- anomalies: Ptolemy’s epicycles to <strong>de</strong>scribe the motions of planets2) 17 th century: end of the construction of the Blois castle- solution: Galileo <strong>de</strong>monstrated that the observed motions of celestial objectscan be explained without putting the Earth at rest in the center of the universe.3) End of 19 th century: renovation of the Blois castle- physics mo<strong>de</strong>l: Newton’s classical physics, Maxwell’s electromagnetic theory,Clausius’s thermodynamics- anomalies: black body spectrum1


Brief history of the Blois castle:1) X th century: birth of the Blois castle- physics mo<strong>de</strong>l: Aristotle’s mo<strong>de</strong>l with the Sun, the Moon, the planets andthe sphere of fixed stars rotating around the Earth- anomalies: Ptolemy’s epicycles to <strong>de</strong>scribe the motions of planets2) 17 th century: end of the construction of the Blois castle- solution: Galileo <strong>de</strong>monstrated that the observed motions of celestial objectscan be explained without putting the Earth at rest in the center of the universe.3) End of 19 th century: renovation of the Blois castle- physics mo<strong>de</strong>l: Newton’s classical physics, Maxwell’s electromagnetic theory,Clausius’s thermodynamics- anomalies: black body spectrum- solution: 1901: Planck <strong>de</strong>scribes the black body spectrum as a system ofoscillators each of them with energy ε = h ν the birth of quantum mechanics1


Brief history of the Blois castle:4) XXI st century: Les <strong>rencontres</strong> <strong>de</strong> Blois 2012- physics mo<strong>de</strong>l: the Standard Mo<strong>de</strong>l with the CKM mechanism controllingthe weak interactions between quarks- anomalies: the content of this talk1


Evolution of the CKM picture in the last 10 yearsWinter 2012Update this plot with a more Recent one The impressive success of CKM mechanism as the main source of flavor and CPV(the legacy of Belle, Babar, CDF and D0)2


A world wi<strong>de</strong> effort(some of the main players in the heavy quark sector)550 /fb(2000-2008)RunII: 2001-201112/fb each2010+2011:LHCb: 1 /fbATLAS/CMS: 5 /fb>1/ab(2000-2010)3


A world wi<strong>de</strong> effort(some of the main players in the heavy quark sector)…That is keeping going….3


A world wi<strong>de</strong> effort(some of the main players in the heavy quark sector)But still a lot of open questions: The CP violation is too small to account for the matter anti-matter asymmetry The reason of CPV & hierarchy of the couplings of the quarks is unknownIt is clear that we are missing important pieces of the whole picture3


Strategies for indirect NP search Improve measurement precision of CKM elements— Compare measurements of same quantity,which may or may not be sensitive to NP— Extract all CKM angles and si<strong>de</strong>s in many different ways• any inconsistency will be a sign of New PhysicsPrecision CKM metrology,including NP-free<strong>de</strong>terminations of CKMangle γ€ Measure FCNC transitions, where New Physics is more likely to emerge,and compare to predictions— e.g. OPE expansion for b→s transitions:H eff= − 4G F2 V V *∑ tb tsC i(µ)O i(µ)+— New Physics may• modify C i(’)short-distance Wilson coefficients• add new long-distance operators O i(’)i[left -han<strong>de</strong>d partC ʹ′ (µ) O ʹ′ (µ)i i]right -han<strong>de</strong>d partsuppressed in SM€Single B <strong>de</strong>caymeasurements withNP discoverypotentiali =1,2i = 3 − 6,8i = 7i = 9,10i = Si = PTreeGluon penguinPhoton penguinElectroweak penguinHiggs (scalar) penguinPseudoscalar penguin4


Outline1) BR(Bτν) or sin(2β)?2) The “strange” brother: CPV in B s3) New physics in B s &/or B d mixing?4) The angle γ5) CPV in charm6) EW penguins: latest results7) BR(B s µµ): status of the art


1) BR(Bτν) or sin2β ?sin(2β)Chateau <strong>de</strong> Blois:Louis XII roi <strong>de</strong> FranceBR(Bτν)


The CKM matrix: the first unitarity triangleMultiplying the 1st and 3 rd column of the CKM matrix we have the first triangleof unitarity with the well known angles (α,β,γ) (or ϕ1,ϕ2,ϕ3)http://ckmfitter.in2p3.fr/5


The first anomaly in CKM:sin(2β) vs BR(Bτν)☐ The indirect <strong>de</strong>termination of sin2β <strong>de</strong>viates by 2.7 σ from the currentWA for direct <strong>de</strong>termination.☐ The BR(Bτν) and the resulting value of |V ub | (BR(Bτν)~f B2 |V ub | 2 ) differ by 2.8 σfrom the predictions of global fit (which is dominated by sin(2β) value)Belle: Phys. Rev. D 82, 071101 (2010),Babar: Phys. Rev. D 82, 073012 (2010).CKM fit w/o BR(Bτν)& sin(2β) vsdirect measurements6


The first anomaly in CKM:sin(2β) vs BR(Bτν)☐ The indirect <strong>de</strong>termination of sin2β <strong>de</strong>viates by 2.7 σ from the currentWA for direct <strong>de</strong>termination.☐ The BR(Bτν) and the resulting value of |V ub | (BR(Bτν)~f B2 |V ub | 2 ) differ by 2.8 σfrom the predictions of global fit (which is dominated by sin(2β) value)Belle: Phys. Rev. D 82, 071101 (2010),Babar: Phys. Rev. D 82, 073012 (2010).CKM fit w/o BR(Bτν)& sin(2β) vsdirect measurementsBR(Bτν) too high or sin(2β) too lowThe BR(Bτν) enhancement cannot be explained by the <strong>de</strong>cay constant(known at 10% level in LQCD) 6


The first anomaly in CKM:sin(2β) vs BR(Bτν)☐ The indirect <strong>de</strong>termination of sin2β <strong>de</strong>viates by 2.7 σ from the currentWA for direct <strong>de</strong>termination.☐ The BR(Bτν) and the resulting value of |V ub | (BR(Bτν)~f B2 |V ub | 2 ) differ by 2.8 σfrom the predictions of global fit (which is dominated by sin(2β) value)sin(2β) ≡ sin(2φ 1)BaBarPRD 79 (2009) 072009BaBar χ c0K SPRD 80 (2009) 112001BaBar J/ψ (hadronic) K SPRD 69 (2004) 052001BellePRL 108 (2012) 171802ALEPHPLB 492, 259 (2000)OPALEPJ C5, 379 (1998)CDFPRD 61, 072005 (2000)LHCbLHCb-CONF-2011-004Belle5SPRL 108 (2012) 171801AverageHFAGHFAGMoriond 2012PRELIMINARY0.69 ± 0.03 ± 0.010.69 ± 0.52 ± 0.04 ± 0.071.56 ± 0.42 ± 0.210.67 ± 0.02 ± 0.010.84 + -0.821.04 ± 0.163.20 + - 1 2 . . 8 0 0 0 ± 0.500.53 + -0.79 + -0.280.2-2 -1 0 1 2 30.410.449 ± 0.050.57 ± 0.58 ± 0.060.68 ± 0.02New sin(2β) result from Belle based on full dataset [arXiv 1201.0238]sin2β = 0.667± 0.023(stat)± 0.012(syst) confirms with unprece<strong>de</strong>ntedaccuracy previous measurements6


The first anomaly in CKM:sin(2β) vs BR(Bτν)☐ The indirect <strong>de</strong>termination of sin2β <strong>de</strong>viates by 2.7 σ from the currentWA for direct <strong>de</strong>termination.☐ The BR(Bτν) and the resulting value of |V ub | (BR(Bτν)~f B2 |V ub | 2 ) differ by 2.8 σfrom the predictions of global fit (which is dominated by sin(2β) value)CKM fit w/o BR(Bτν)& sin(2β) vsdirect measurements1) Charged Higgs contribution (sensitive to H-b-u) in BR(Bτν)?2) New Physics is <strong>de</strong>cays with a τ lepton in the final state?also 3.4 σ excess seen in BD(*) τ ν (H-b-c) over SM predictions [ Babar: 1205.5442] 3) New phases in B d mixing? Let’s see the “strange” brother of sin(2β) 6


2) The “strange” brother:the mixing-induced CPV phase in B s systemchateau <strong>de</strong> Blois: gargouille


Mixing-induced CPV phase in B s systemGol<strong>de</strong>n channel for studying CPV in B s system is B s J/ψ ϕ,the “strange” brother of B 0 → J/ψK 0ϕ s = phase difference between the B s → J/ψφ<strong>de</strong>cay amplitu<strong>de</strong>s without or with oscillationϕ s is the equivalent of the phase 2β for B 0 → J/ψK S7


Mixing-induced CPV phase in B s systemGol<strong>de</strong>n channel for studying CPV in B s system is B s J/ψ ϕ,the “strange” brother of B 0 → J/ψK 0ϕ s = phase difference between the B s → J/ψϕ<strong>de</strong>cay amplitu<strong>de</strong>s without or with oscillationϕ s is the equivalent of the phase 2β for B 0 → J/ψK SThe SM contribution to the mixing-induced phase is:Lenz,Nierste,CKMFitterarXiv:1203.0238Which is phase of the “squashed” triangle obtained bymultiplying the 2 nd and 3 rd columns of CKM matrix7


Mixing-induced CPV phase in B s systemGol<strong>de</strong>n channel for studying CPV in B s system is B s J/ψ ϕ,the “strange” brother of B 0 → J/ψK 0ϕ s = phase difference between the B s → J/ψϕ<strong>de</strong>cay amplitu<strong>de</strong>s without or with oscillationϕ s is the equivalent of the phase 2β for B 0 → J/ψK SThe SM contribution to the mixing-induced phase is:Lenz,Nierste,CKMFitterarXiv:1203.0238ϕs is very sensitive to New Physics contributionsin B s mixing and provi<strong>de</strong>s an excellent lab to lookfor new sources of CPV:NP?12 7


A bit of history• 2007: first tagged analysis by CDF, followed by D0• 2009: 2.1σ <strong>de</strong>viations from SM in CDF+D0 combination [DØ Note 5928-CONF]• 2010: D0 same-sign dimuon asymmetry A b sl in 6.1fb-1 showed 3.2σ from SM,implying large ϕ s (assuming NP in B s in M 12 only ) [PRD82 (2010) 032001]• 2011: D0 update of A b sl with 9 fb-1 showed 3.9σ <strong>de</strong>viation from SM [PRD84(2011) 052007]• a lot of excitement……22Asymmetrysymmetry0.0150.010.00500.0150.01DØ, 6.1 fb -1(a)- Observed asymmetry- Expected asymmetryfor A b sl = 010 20 30 40 50M(µµ) [GeV]DØ, 6.1 fb -1(b)D0 a s sl from Ab sl23 8


Figure 10: Left: HFAG 2012 [88] combination of φ c¯css]A bit of history• 2007: first tagged analysis by CDF, followed by D0• 2009: 2.1σ <strong>de</strong>viations from SM in CDF+D0 combination [DØ Note 5928-CONF]• 2010: D0 same-sign dimuon asymmetry A b sl in 6.1fb-1 showed 3.2σ from SM,implying large ϕ s (assuming NP in B s in M 12 only ) [PRD82 (2010) 032001]• 2011: D0 update of A b sl with 9 fb-1 showed 3.9σ <strong>de</strong>viation from SM [PRD84(2011) 052007]….but then larger dataset allowed to pin down the error on ϕs……Summer 2011:first LHCb tagged analysis result, 0.34 fb -1[PRL 108 (2012) 101803],CDF update with 5.2 fb -1 [PRD85 (2012) 07002]D0 update with 8 fb -1 [PRD85 (2012) 032006]8 -1#" s [ps0.20.180.160.140.120.10.080.060.040.020


Figure 10: Left: HFAG 2012 [88] combination of φ c¯css]A bit of history• 2007: first tagged analysis by CDF, followed by D0• 2009: 2.1σ <strong>de</strong>viations from SM in CDF+D0 combination [DØ Note 5928-CONF]• 2010: D0 same-sign dimuon asymmetry A b sl in 6.1fb-1 showed 3.2σ from SM,implying large ϕ s (assuming NP in B s in M 12 only ) [PRD82 (2010) 032001]• 2011: D0 update of A b sl with 9 fb-1 showed 3.9σ <strong>de</strong>viation from SM [PRD84(2011) 052007]….but then larger dataset allowed to pin down the error on ϕs……Summer 2011:first LHCb tagged analysis result, 0.34 fb -1[PRL 108 (2012) 101803],CDF update with 5.2 fb -1 [PRD85 (2012) 07002]D0 update with 8 fb -1 [PRD85 (2012) 032006]… more and more:Moriond 2012:CDF update with full Run II data (9/fb) [CDF Note 10778]LHCb update with 1/fb [LHCb-CONF-2012-002]-1#" s [ps0.20.180.160.140.120.10.080.060.040.020


Events / 2 MeVB s → J/ψφ: LHCb latest result [1fb -1 ]Full fit of tagged and untagged rates as a function of B s mass, proper time andtransversity angles:datasig. componentB s → J/ψ KK final state is a mixture1400LHCb PreliminaryLHCb Preliminarycp-even sig. component1 = –1 cp-odd sig. componentof CP-even and CP-odd eigenstates120031200 10s-wave componentCP+bkg. componentso angular analysis nee<strong>de</strong>d10002500data2000150010005000sig. componentbkg. component1 fb -1~21200eventsEvents / 0.2 ps21010B S CP–complete pdf2 4 6 8Proper time t [ps]200: Reconstructed invariant mass distribution of selected Bs 0 → J/ψφ candidates. A0ss constraint is applied in the vertex fit. The Bs 0 mass resolution is 6.0MeV/c -1 2 . -0.5 0 0.5 1cos !Events / 0.31 radLHCb Preliminary10008006004002005300 5350 5400 5450mass [MeV]0Events / 0.11600140012001000800600400CP+CP–the previous analysis, in or<strong>de</strong>r to remove the majority of the prompt backgroundtion, only events with <strong>de</strong>cay time t>0.3 psareused. Atotalofabout21, 200/ψφ <strong>de</strong>cays are left after the full selection. The remaining background in theis of the or<strong>de</strong>r of a few percent. The invariant mass distribution of the selectedtes is shown in Fig. 1. The CP violating phase φ s is extracted from the dataunbinned maximum likelihood fit to the candidate invariant mass m, the <strong>de</strong>cay0B sLHCb Preliminary-2 0 2B Events / 0.1Events / 0.31 radCP+ : B s → J/ψφ signal withCP-even final stateS : Bs → J/ψKK signal withJ KK = 0 (S-wave, CP-odd)S ! [rad]LHCb-CONF-2012-002, 1/fb1400 LHCb Preliminary80060040020012001000800600400200CP+CP–0-1 -0.5 0 0.5 1cos !1400 LHCb Preliminary0CP+CP–B B S S -2 0 2! [rad]CP– : B s → J/ψφ signal withCP-odd final stateB : combinatorialbackground9


Full fit of tagged and untagged rates as a function of B s mass, proper time andtransversity angles:Preliminary results: B s → J/ψφ: LHCb latest result [1fb -1 ]Events / 0.31 radEvents / 0.2 ps1400LHCb PreliminaryLHCb Preliminary12001000800Parameter Value Stat. Syst.600Γ s [ps −1 ] 0.6580 0.0054 0.0066∆Γ s [ps −1 ] 0.116 0.018 0.006400|A ⊥ (0)| 2 0.246 0.010 0.013 200|A 0 (0)| 2 0.523 0.007 0.024 0F S 0.022 0.012 0.007δ ⊥ [rad] 2.90 0.36 0.07δ [rad] [2.81, 3.47] 0.13δ s [rad] 2.90 0.36 0.08φ s [rad] -0.001 0.101 0.027Events / 0.1310210101600140012001000800600400200CP+B CP+CP–S CP–datasig. componentcp-even sig. componentcp-odd sig. components-wave componentbkg. componentcomplete pdf2 4 6 8Proper time t [ps]LHCb Preliminary1 = –1 -2 0 20-1 -0.5 0 0.5 1cos !for the physics parameters and their statistical and systematic uncerea 68% C.L. interval for δ , as <strong>de</strong>scribed in the text.Γ s ∆Γ s |A ⊥ | 2 |A 0 | 2 φ sΓ s 1.00 −0.38 0.39 0.20 −0.01∆Γ s 1.00 −0.67 0.63 −0.01B S ! [rad]Events / 0.1Events / 0.31 rad1400 LHCb Preliminary1200100080060040020012001000800600400200CP+CP–0-1 -0.5 0 0.5 1cos !1400 LHCb Preliminary- ϕ s measurement in agreement with SM predictions- First( >5σ) observation of non-zero ΔΓ sLHCb-CONF-2012-002, 1/fb0CP+CP–B B S S -2 0 2! [rad]9


∆-0.2yL = 9.6 fb−1CDF Note 10778B s → J/ψφ: CDF latest result [10 fb -1 ]A. Lenz and U. Nierste, arXiv:1102.4274v1 (2011)2Candidates per 1 MeV/c80070060050040030020010005.3 5.35 5.4 5.45+ -2 -1CDF Run II Preliminary L = 9.6 fbJ/ψ KK20 2 -1 4 6 8 10CDF Run II Preliminary L = 9.6 fb10950 ± 111Signal EventsMass [GeV/c22Figure 1. Mass distribution 0.68% C.L.of our final dataset. 68% CLBlue lines show the signal region, and red lines the si<strong>de</strong>bands.95% CL5% C.L.1SM expectationon−gaussian errors0.4Symmetry I. INTRODUCTIONlineystematic uncertainties2Mixing Induced CP ViolationThe un<strong>de</strong>rstanding of CP 0.2 violation in the Bs 0 sector is far from being established and still offers room for possiblenon-SM contributions, as possibly indicated by the anomaly in the dimuon charge asymmetry reported by the D0Collaboration [2]. We present an update on the full Run II dataset of the measurement of the CP –violating phaseβsJ/ψφ in Bs 0 → J/ψ(→ µ + µ − )φ(→ 0 K + K − ) <strong>de</strong>cays. The previous CDF measurement, based on 5.2fb −1 of data, is inagreement with the prediction from the CKM hierarchy [1]. The present measurement follows closely the techniquesand strategy of the previous tagged analysis [1] and is based on the full dataset collected by the CDF di-muon triggerbetween February 2002 and -0.2 September 2011. The reconstructed signal candidates are selected via an artificial neuralnetwork (ANN). A fit to their time-evolution that uses information on production flavor, mass, <strong>de</strong>cay time, and <strong>de</strong>cayangles <strong>de</strong>termines the observables of interest. The only major difference with respect to the previous iteration ofthe analysis is the use of an-0.4updated calibration for the Opposite-Si<strong>de</strong>-Tagging algorithm. The information from theSame-Si<strong>de</strong>-Kaon-Tagging is instead restricted to only half of the sample.1A. Lenz and U. Nierste, arXiv:1102.4274v1 (2011)2-1-0.6 2|Γ 12 |= (0.087 ± 0.021) ps6 8 10II. DATA SELECTION AND RECONSTRUCTIONogL-1.5 -1 -0.5 0 0.5 1 1.5J/ψφThe reconstruction begins with searching for J/ψ candidates β [rad]s by kinematically fitting to a common vertex the twooppositely-charged See I. muon Bertram’sfit iscandidates thatalkpresented in Table I.fired the online di-muon trigger [3]. All pairs of oppositely-curved tracksin the event (except the di-muons) are then fitted to a common (b) vertex with kaon mass hypothesis for each. If theirkinematics is consistent with a φ meson <strong>de</strong>cay, the four tracks are combined in a kinematic fit to a common threedimensional<strong>de</strong>cay point, constraining also the di-muon mass to the known J/ψ mass [4]. The surviving events areistributionthen with subjected two <strong>de</strong>grees to a loose of freedom initial selection (βsJ/ψφ to, suppress ∆Γ s ) observed backgroundin followed pseudoexperiments by an ANN selection, mim-both of which are]-1[ps∆Γ s]2∆LogL(a)9~11000 signal events-0.4-0.612-12|Γ 12|= (0.087 ± 0.021) ps-1.5 -1 -0.5 0 0.5J/ψφβ [rad]Figure 7. Profile-likelihood ratio distribution with two <strong>de</strong>grees of freedom (βsJ/ψφ , ∆Γ s ) observed in picking our data (a) and corresponding confi<strong>de</strong>nce regions (b) the (βs J/ψφ , ∆Γ s ) plane. The 2D LOpposite si<strong>de</strong> tagging andbeen updated since the Winter 2012 conferences, using a finer binning and excluding failed fits fromprofile-likelihood ratios.Results: same si<strong>de</strong> tagging (first half of Run II data)Gaussian. Hence, we provi<strong>de</strong> measurements for the following quantities:τ(B 0 s)=1.528 ± 0.019 (stat) ± 0.009 (syst) ps,∆Γ s =0.068 ± 0.026 (stat) ± 0.007 (syst) ps −1 ,|A 0 (0)| 2 =0.512 ± 0.012 (stat) ± 0.014 (syst),|A (0)| 2 =0.229 ± 0.010 (stat) ± 0.017 (syst),δ ⊥ =2.79 ± 0.53 (stat) ± 0.15 (syst) rad.We do not quote a result for δ since the estimate of this parameter is approximately at the boin a irregular likelihood shape around the minimum. The correlation matrix for the main phy∆Γ s α ⊥ α δ ⊥s10 (b)


CPV in B s → J/ψφ: latest results• Representation of latest results (pictorial view for illustration only):#$ s (ps -1 )0.40.20.0-0.2Standard Mo<strong>de</strong>l68% CL95% CLD0 8 fb -1 PRD 85 (2012) 032006CDF 10 fb -1 CDF note 10778LHCb 0.3 fb -1arXiv:1112.3183LHCb 1 fb -1 LHCb-CONF-2012-002-0.4-3 -2 -1 0 1 2 3! sJ/"! (rad)Good agreement with SM predictionsAmbiguity removedby LHCb11


of m KK is exten<strong>de</strong>d to 988–1050 MeV. Figure 1 showsthe µ + µ − K + K − mass distribution where the mass of theµ + µ − pair is constrained to the nominal J/ψ mass. Weperform an unbinned maximum likelihood fit to the invariantmass distribution of the selected Bs 0 candidates.Sign of ΔΓ5200 5250 5300 5350 5400 5450 5500 5550sAccepted by PRLThe probability <strong>de</strong>nsity function (PDF) for the signalBs 0 invariant mass m J/ψKK is mo<strong>de</strong>lled by two Gaus- Decaysianratesfunctionshavewith aan commonintrinsicmean. The2-fold fraction ofambiguitythe wi<strong>de</strong> Gaussian and its width relative to that of theground subtraction. The signal weight, <strong>de</strong>noted by Repeat the analysis in larger m(KK) range,W s (m J/ψKK ), is obtained using m J/ψKK as the discriminatingaround variable. mass The correlations of ϕ(1020) between m J/ψKK and €€ not justother variables used in the analysis, including m KK ,<strong>de</strong>caytime t and the angular variables Ω <strong>de</strong>fined in Ref. [3],2 10— expectare found to be negligible for both the signal and backgroundP-wave components phases in the to data. increase Figure 2 shows the m KK•distribution where the background is subtracted statisticallyusing the sWeight technique. The range of m KKrapidly with m(KK)10is divi<strong>de</strong>d into four intervals: 988–1008 MeV, 1008–1020• S-wave phase to vary slowlyMeV, 1020–1032 MeV and 1032–1050 MeV. Table I gives3• the hence numberδofS⊥=Bs 0 δsignal S− δand background⊥to <strong>de</strong>crease candidates ineach interval.2— observe:• solution with ΔΓ s > 0 behaves asexpected€( )narrow Gaussian are fixed to values obtained from sim-( φ s,ΔΓ s,δ //,δ ⊥,δ S ) ⇔ π − φ s,−ΔΓ s,− δ //,π − δ ⊥,−δ Sulated events. A linear function <strong>de</strong>scribes the m J/ψKKdistribution of the background, which is dominated bycombinatorial background.This analysis uses the sWeight technique [10] for back-TABLE I. Numbers of signal and background events andstatistical power per signal event in four intervals of m KK .k m KK interval (MeV) N sig;k N bkg;k W p;k1 988–1008 251 ± 21 1675 ± 43 0.7002 1008–1020 4569 ± 70 2002 ± 49 0.952Solution ΔΓ3 s = Γ1020–1032 L –Γ H > 03952 selected ± 66 2244 ± with 51 0.938 a4 1032–1050 726 ± 34 3442 ± 62 0.764significance of 4.7σHeavy state lives longer than light state !In this analysis we perform an unbinned maximumlikelihood fit to the data using the sFit method [11], anextension of the sWeight technique, that simplifies fit-(rad)lines1separate LHCbthe four intervals.! S0-1solution Ifour intervals of m KK by maximizing the log-likelihoodfunctionwith ΔΓ-2s > 0 solution II-34 N kln L(Θ P , Θ S )= W p;k W s (mwith J/ψKK;i ΔΓ) s < × 0 -4k=1 i=1-5-60.37 = –1 LHCb, arXiv:1202.4717m J/!KK(MeV)FIG. 1. Invariant mass distribution for Bs0 → µ + µ − K + K −candidates with the mass of the µ + µ − pair constrained to thenominal J/ψ mass. The result of the fit is shown with signal(dashed curve) and combinatorial background (dotted curve)components and their sum (solid curve).Events / 2 MeV310 LHCb€δ S⊥⇔ −π − δ S⊥where δ S⊥= δ S− δ ⊥990 1000 1010 1020 1030 1040 1050(MeV)m KKFIG. 2. Background subtracted K + K − invariant mass distributionfor Bs 0 → J/ψ K + K − candidates. The vertical dottedln P sig (t i , Ω i ,q i , ω i ; Θ P , Θ S )12 where N k 1000 = N sig;k 1010+ N bkg;k 1020 . Θ1030 P represents 1040 the 1050 physicsparameters in<strong>de</strong>pen<strong>de</strong>nt of mm KK(MeV)KK ,includingφ s , ∆Γ s andthe magnitu<strong>de</strong>s and phases of the P-wave amplitu<strong>de</strong>s.Note that the P-wave amplitu<strong>de</strong>s for different polariza-


Events / ( 5 MeV )CPV in B s → J/ψπ + π – + combined• LHCb has measured ϕs also in B s → J/ψπ + π –– consi<strong>de</strong>r 775 < m(ππ) 97.7% at 95% CL2000180016001400120010008006004002000– measure ϕ s = –0.02 ± 0.17 ± 0.021 = –1 LHCb800Preliminary 700B 0 600B s → J/ψπ + π –500f 0 (980)7421±105 signal evts400↓ ↓300f 0 (1370)200f 2 (1270)5300 5400 5500m J/ + -(MeV)Events / 15 MeV1000See T. Latham’s talkLHCb-PAPER-2012-006arXiv 1204.5675submitted to PLBLHCb500 1000 1500 2000+ -m(π π ) (MeV)Combined preliminary LHCb J/ψϕ +J/ψππ result (1 fb –1 ):ϕ s = –0.002 ± 0.083 ± 0.02713


B s system: status-of-the-artEverything in good agreement with SM preditions..SM predictions[Lenz & Nierste,1106.6308]ΔM s [ps -1 ] 17.3±2.6 17.70±0.08[CDF]Status before 2011 status after 2011ΔΓ s [ps -1 ] 0.087±0.021 0.154 +0.054 -0.070 (0.9σ)[CDF & D0]ϕ J/ψ ϕ [°] -2.1 ± 0.1 -44 +17 -21 (2.3σ)[CDF & D0]17.73±0.05[CDF+ LHCb]0.116±0.019 (1σ)[LHCb, 1fb -1 ]-0.06±6[LHCb]14


B s system: status-of-the-art….. But A sl that (still) shows 3.9 σ <strong>de</strong>viations from SM predictions:SM predictions[Lenz & Nierste,1106.6308]ΔM s [ps -1 ] 17.3±2.6 17.70±0.08[CDF]Status before 2011 Status after 2011ΔΓ s [ps -1 ] 0.087±0.021 0.154 +0.054 -0.070 (0.9σ)[CDF & D0]ϕ J/ψ [°] -2.1 ± 0.1 -44 +17 -21 (2.3σ)[CDF & D0]A sl [10 -4 ] -2.8 ± 0.5 -85±28 (3.0 σ)[D0]17.73±0.05[CDF+ LHCb]0.116±0.019 (1σ)[LHCb, 1fb -1 ]-0.06±6[LHCb]-79 ± 20 (3.9 σ)[D0,PRD84 (2011) 052007]a fs(s)[10 -5 ] -1.9 ± 0.3 -1200 ± 700 (1.7 σ) -1300 ± 800 (1.5σ)a fs(s)calculated from measured A sl & a fs(d)= (-4.7 ± 4.6) x 10 -3 from Babar&Belle[HFAG,arXiv:1010.1589]14


See I. Bertram’s talkThe semi-leptonic asymmetryThe D0 semileptonic asymmetry:D q+µ −ν€µ€€€€€ €€- C d ~0.6 and C s ~ 0.4 <strong>de</strong>pend € on the production rate of B d,,s- a sl is the CP_asymmetry in flavor-specific mo<strong>de</strong>s:0BqB q00BqD q+µ −ν µ[HFAG, 1010.1589 and updates athttp://www.slac.stanford.edu/xorg/hfag with Lenz, Nierste ‘11This phase contains is still related to the box diagram as βsbut it is a different quantity (10 times smaller in fact).However, if NP modifies M 12 , it modifies also βs.15


The semi-leptonic asymmetryPRD 84 (2011) 052007The D0 semileptonic asymmetry:€€-€€D q+µ −0Bqν µ€€€€ €€D0, 9 fb -1 , finds 3.9 σ discrepancy with SM:bA SLB q00Bq= (−0.787 ± 0.172(stat) ± 0.093(syst))%A b SL(SM)= (−0.028 +0.005 −0.006)%Asl links together Bd and Bs sectors: D q+µ −ν µ20 See I. Bertram’s talk16


3) New physics in B d &/or B s mixing?B dB sBlois castle, Louis XII fireplace


New Physics in M 12s? 2010 vs 2012Use parameterization of NP in: M 12s= M 12(SM,s)x Δ s with Δ s = |Δ s | e iφ(NP )[Lenz, Nierste and CKMFitter, arXiv 1203.0238]2010 today ΔMs,CDF & LHCbΦs, LHCbA sl from D0Tension in the B s system (~2.7 σ in 2010) is gone thanks to the latest ϕ s resultsbut the discrepancy with A sl is larger17


New Physics in M 12d? 2010 vs 2012Use parameterization of NP in: M 12d= M 12(SM,d)x Δ d with Δ d = |Δ d | e iφ(NP )[Lenz, Nierste and CKMFitter, arXiv 1203.0238]2010 today sin(2)B-factoriesA sl from D0Tension in the B d system augmented (2.7σ 3.6 σ) but overall tension with SM <strong>de</strong>creasedtoday3.0 σAllowing for a new phase in B d mixing could solve also the sin2β vs BR(Bτν) tension[Lenz, Nierste et CKMFitter, arXiv 1203.0238]2.4 σ18


4) The angle γBlois castle, <strong>de</strong>tail


The CKM matrix: γ angleThe tension in the ρ-η plane can profit by an accurate measurement of the angle γDespite the heroic efforts at the B-factoriesand CDF , γ error is still dominatedby experimental uncertainties:(direct) = (66 ± 12)°(indirect) =( 67.2 +4.4 -4.6 )°CKMFitter 2012, preliminary19


Measuring γ via tree-level dominated processesTree level dominated processes allow clean extraction of gamma: access interference effects involving the phase between V ub and V cbTime-integrated analysis uses B ± D (*) K ± with:- D CP eigenstates (GLW)- D (*) flavour specific states (ADS)- D multi-body states (GGSZ):Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW),Gronau, London Phys.Lett.B253:483-488,1991 (GLW)Atwood, Dunietz and Soni Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS)Giri,Grossman, Solfer,Zupan, Phys.Rev.D 68,0504018 (2003) (GGSZ/"The interference between color-suppressed and color-favored diagramsallows to extract the CP-violating phase gamma.20


Measuring γ via tree-level dominated processesTree level dominated processes allow clean extraction of gamma: access interference effects involving the phase between V ub and V cbTime-integrated analysis uses B ± D (*) K ± with:- D CP eigenstates (GLW)- D (*) flavour specific states (ADS)- D multi-body states (GGSZ):> Combined “ADS+GLW” strategy:— Measure 16 rates: B – → DK – (π - ) and B + → DK + (π + ) with D→ K – π + , K + π – , π + π – , K + K –and build up 6 CPV asymmetries and 3 ratios of partial widths and 4 charged separatedpartial widths of ADS suppressed-to-favoured mo<strong>de</strong>> Counting experiment. All parameters ( r B ,δ B =ratio and phase between suppressed& allowed amplitu<strong>de</strong>s, r D , δ D = ratio and phase between doubly Cabibbo suppressed andCabibbo-favoured amplitu<strong>de</strong>s)can be extracted simultaneously analyzing several <strong>de</strong>cay channels (althoughCLEO-c input for δ D helps).20


LHCb, 1 fb -1 , Phys. Lett. B 712 (2012), 203Suppressed FavouredEvents / ( 5 MeV/cEvents / ( 5 MeV/cEvents / ( 5 MeV/cEvents / ( 5 MeV/c2222)3002001000)))40040002000015105040302010B – ADS-B "[K5200 5400 56002m(B) (MeV/c)-B "[K-B "[! - KLHCb+D5200 5400 56002m(B) (MeV/c)--B "[! - KLHCb-! + ] K! + ]5200 5400 56002m(B) (MeV/c)-DLHCb! -D-] KLHCb+] ! -DEvents / ( 5 MeV/cEvents / ( 5 MeV/cEvents / ( 5 MeV/cEvents / ( 5 MeV/c2222))))400300200100040002000015105040302010B + ADSB "[K ! - ] K5200 5400 56002m(B) (MeV/c)+ - +DB "[! K ] K5200 5400 56002m(B) (MeV/c)++++B "[! KLHCb5200 5400 56002m(B) (MeV/c)++DB "[K ! - ]+LHCb+!DLHCbLHCb+ - +] !DEvents / ( 5 MeV/cEvents / ( 5 MeV/cEvents / ( 5 MeV/cEvents / ( 5 MeV/c2222))))80604020080060040020003020100200100B – GLWB ![K K ] K5200 5400 56002m(B) (MeV/c)B "[! + ! - ] K5200 5400 56002m(B) (MeV/c)---+ - -DLHCbDB "[! + ! - ]LHCb5200 5400 56002m(B) (MeV/c)-B ![K KLHCb+ -] " -D-LHCb! -DEvents / ( 5 MeV/cEvents / ( 5 MeV/cEvents / ( 5 MeV/cEvents / ( 5 MeV/c2222))))80604020080060040020003020100200100–B + GLWB ![K K ] K5200 5400 56002m(B) (MeV/c)B "[! ! - ] K5200 5400 56002m(B) (MeV/c)++++ - +D++LHCbDB "[! ! - ]LHCb5200 5400 56002m(B) (MeV/c)+B ![K KLHCb+ - +] "D+LHCb+!DK + K – π + π – 05200 5400 5600m(B) (MeV/c05200 5400 5600m(B) (MeV/c05200 5400 5600m(B) (MeV/c0B ± → DK ± and B ± → Dπ ± 435200 5400 5600m(B) (MeV/c22 2)2)2))2


B ± → DK ± and B ± → Dπ ± 44Suppressed FavouredEvents / ( 5 MeV/cEvents / ( 5 MeV/cEvents / ( 5 MeV/cEvents / ( 5 MeV/c2222)3002001000)))40040002000015105040302010B – ADS-B "[K5200 5400 56002m(B) (MeV/c)-B "[KLHCbB – → [π – K + -]+ -B "[! - K D K – ] KD5200 5400 56002m(B) (MeV/c)-LHCb-! + ] K! + ]5200 5400 56002m(B) (MeV/c)23 ± 7 -DLHCb! -DLHCbEvents / ( 5 MeV/cEvents / ( 5 MeV/cEvents / ( 5 MeV/cEvents / ( 5 MeV/c2222))))40030020010004000200001510504030LHCb-K"[!+ K ]B B+ → [π + K – ] DD K + 5200 5400 56002m(B) (MeV/c)B - +"[! - K ] ! -- +] !DD20B + +"[! KB -"[! + ! - ] ! -DFirst observaPon of suppressed ADS mo<strong>de</strong> B ± → DK ± 10B + ADSB "[K ! - ] K5200 5400 56002m(B) (MeV/c)++LHCb5200 5400 56002m(B) (MeV/c)++DB "[K ! - ]+LHCb+!D73 ± 11 LHCbEvents / ( 5 MeV/cEvents / ( 5 MeV/cEvents / ( 5 MeV/cEvents / ( 5 MeV/c2222))))8060402008006004002003020100200100LHCb, 1 fb -1 , Phys. Lett. B 712 (2012), 2030B – GLWB ![K K ] K5200 5400 56002m(B) (MeV/c)B "[! + ! - ] K5200 5400 56002m(B) (MeV/c)--LHCb+ - -D5200 5400 56002m(B) (MeV/c)-B ![K KLHCb+ -] " -DLHCbD-LHCbEvents / ( 5 MeV/cEvents / ( 5 MeV/cEvents / ( 5 MeV/cEvents / ( 5 MeV/c2222))))80604020080060040020003020100200100–B + GLWB ![K K ] K5200 5400 56002m(B) (MeV/c)B "[! ! - ] K5200 5400 56002m(B) (MeV/c)++++ - +D++LHCbDB "[! ! - ]LHCb5200 5400 56002m(B) (MeV/c)+B ![K KLHCb+ - +] "D+LHCb+!DK + K – π + π – 05200 5400 5600m(B) (MeV/c05200 5400 5600m(B) (MeV/c05200 5400 5600m(B) (MeV/c05200 5400 5600m(B) (MeV/c22 2)2)2))2


FavouredSuppressedEvents / ( 5 MeV/cEvents / ( 5 MeV/cEvents / ( 5 MeV/cEvents / ( 5 MeV/c2222))))400300200100015105040302010B – ADS5200 5400 56002m(B) (MeV/c)5200 5400 56002m(B) (MeV/c)B ± → DK ± and B ± → Dπ ± 45-B "[K--B "[! - K-B "[! - KLHCbLHCb+D-! + ] KD-] KLHCb+] ! -DEvents / ( 5 MeV/cEvents / ( 5 MeV/cEvents / ( 5 MeV/c2222))))400300200100015105040302010B "[K ! - ] K5200 5400 56002m(B) (MeV/c)LHCbLHCb80040004000600- -! + ! -+ +B "[K ]+B "[K ! - ] !DD40020002000Evi<strong>de</strong>nce of a large negative asymmetry in DK:200A ADS 0 (K) = (-52 ± 15 ± 2)% 0 [4 σ]05200 5400 56005200 5400 56002m(B) (MeV/c)2m(B) (MeV/c)Events / ( 5 MeV/cB + ADS+ - +DB "[! K ] K5200 5400 56002m(B) (MeV/c)++++B "[! KLHCbD+LHCbLHCb+ - +] !DEvents / ( 5 MeV/cEvents / ( 5 MeV/cEvents / ( 5 MeV/cEvents / ( 5 MeV/cLHCb, 1 fb -1 , Phys. Lett. B 712 (2012), 2032222))))8060402003020100200100B – GLWB ![K K ] K5200 5400 56002m(B) (MeV/c)B "[! + ! - ] K5200 5400 56002m(B) (MeV/c)---+ - -DLHCbDB "[! + ! - ]LHCb5200 5400 56002m(B) (MeV/c)-B ![K KLHCb+ -] " -D-LHCb! -DEvents / ( 5 MeV/cEvents / ( 5 MeV/cEvents / ( 5 MeV/cEvents / ( 5 MeV/c2222))))80604020080060040020003020100200100–B + GLWB ![K K ] K5200 5400 56002m(B) (MeV/c)B "[! ! - ] K5200 5400 56002m(B) (MeV/c)++++ - +D++LHCbDB "[! ! - ]LHCb5200 5400 56002m(B) (MeV/c)+B ![K KLHCb+ - +] "D+LHCb+!DK + K – π + π – 05200 5400 5600m(B) (MeV/c)05200 5400 5600m(B) (MeV/c)05200 5400 5600m(B) (MeV/c)05200 5400 5600m(B) (MeV/c)2222Hint of positive asymmetry in Dπ:A ADS (π) = (14.3 ± 6.2 ± 1.1)% [2.4 σ]22


LHCb, 1 fb -1 , Phys. Lett. B 712 (2012), 203Suppressed FavouredEvents / ( 5 MeV/cEvents / ( 5 MeV/cEvents / ( 5 MeV/cEvents / ( 5 MeV/c2222)3002001000)))40040002000015105040302010B – ADS- -B "[K ! + ]5200 5400 56002m(B) (MeV/c)-B "[K-B "[! - K-! + ]LHCb+D5200 5400 56002m(B) (MeV/c)-B "[! - KLHCb5200 5400 56002m(B) (MeV/c)DK-LHCb! -D-] KLHCb+] ! -DEvents / ( 5 MeV/cEvents / ( 5 MeV/cEvents / ( 5 MeV/cEvents / ( 5 MeV/c2222))))400300200100040002000015105040302010B + ADSB "[K ! - ] K5200 5400 56002m(B) (MeV/c)+ - +DB "[! K ] K5200 5400 56002m(B) (MeV/c)++++B "[! KLHCb5200 5400 56002m(B) (MeV/c)++DB "[K ! - ]+LHCb+!DLHCbLHCb+ - +] !DEvents / ( 5 MeV/cEvents / ( 5 MeV/cEvents / ( 5 MeV/cEvents / ( 5 MeV/c2222))))8060402003020100200100B – GLWB ![K K ] K5200 5400 56002m(B) (MeV/c)B "[! + ! - ] K5200 5400 56002m(B) (MeV/c)---+ - -DLHCbDB "[! + ! - ]LHCb-LHCb! -DEvents / ( 5 MeV/cEvents / ( 5 MeV/cEvents / ( 5 MeV/c222)))8060402003020100200100–B ![K K ] K5200 5400 56002m(B) (MeV/c)B "[! ! - ] K5200 5400 56002m(B) (MeV/c)++++ - +D++LHCbDB "[! ! - ]LHCb800LHCb800LHCbpositive 600 asymmetries in 600CP+ mo<strong>de</strong>s:400B - +K -" -+ + - +![K ]![K ] "D400A B KCP (D(KK)K) = (0.148 ± 0.037 ± 0.010)D200200A CP (D(ππ)K) = (0.135 ± 0.066 ± 0.010)005200 5400 56005200 5400 56002m(B) (MeV/c)2m(B) (MeV/c)Events / ( 5 MeV/c2)B + GLW+LHCb+!DK + K – π + π – 05200 5400 56002m(B) (MeV/c)05200 5400 56002m(B) (MeV/c)05200 5400 56002m(B) (MeV/c)0B ± → DK ± and B ± → Dπ ± 465200 5400 56002m(B) (MeV/c)22


A ADS and R ADS : HFAG averagesD_Kπ KD*_Dγ_Kπ KD*_Dπ 0 _Kπ KD_Kπ K*A ADSAveragesBaBarPRD 82 (2010) 072006BellePRL 106 (2011) 231803CDFPRD 84 (2011) 091504LHCbarXiv:1203.3662AverageHFAGBaBarPRD 82 (2010) 072006BelleLP 2011 preliminaryAverageHFAGBaBarPRD 82 (2010) 072006BelleLP 2011 preliminaryAverageHFAGBaBarPRD 80 (2009) 092001AverageHFAGHFAGMoriond 2012HFAGHFAGMoriond 2012Moriond 2012HFAGHFAGMoriond 2012PRELIMINARY-0.86 ± 0.47 + - 0 0 . . 1 1 2 6-0.39 + - 0 0 . . 2 2 6 8 + - 0 0 . . 0 0 4 3-0.82 ± 0.44 ± 0.09-0.52 ± 0.15 ± 0.02-2 -1 0 1-0.54 ± 0.120.77 ± 0.35 ± 0.12Moriond 20120.40 + - 1 0 . . 1 7 0 0 + - 0 0 . . 2 1 0 00.72 ± 0.340.36 ± 0.94 + - 0 0 . . 2 4 5 1-0.51 + - 0 0 . . 3 2 3 9 ± 0.08-0.43 ± 0.31-0.34 ± 0.43 ± 0.16-0.34 ± 0.46D_Kπ KD*_Dγ_Kπ KD_Kππ 0 KD*_Dπ 0 _Kπ KD_Kπ K*R ADSAveragesBaBarPRD 82 (2010) 072006BellePRL 106 (2011) 231803CDFPRD 84 (2011) 091504LHCbarXiv:1203.3662AverageHFAGBaBarPRD 82 (2010) 072006BelleLP 2011 preliminaryAverageHFAGBaBarPRD 82 (2010) 072006BelleLP 2011 preliminaryAverageHFAGBaBarPRD 80 (2009) 092001AverageHFAGBaBarPRD 84 (2011) 012002AverageHFAGMoriond HFAG 2012HFAGMoriond 2012HFAGMoriond 2012HFAGMoriond 2012HFAGHFAGMoriond 2012PRELIMINARY0.011 ± 0.006 ± 0.0020.016 ± 0.004 ± 0.0010.022 ± 0.009 ± 0.0030.015 ± 0.002 ± 0.0000.015 ± 0.0020.018 ± 0.009 ± 0.0040.010 + - 0 0 . . 0 0 0 0 8 7 + - 0 0 . . 0 0 0 0 1 20.013 ± 0.0060.013 ± 0.014 ± 0.0080.036 + - 0 0 . . 0 0 1 1 4 2 ± 0.0020.027 ± 0.010-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1Moriond 20120.066 ± 0.031 ± 0.0100.066 ± 0.0330.009 ± 0.008 + - 0 0 . . 0 0 0 0 1 40.009 ± 0.008Where available, LHCb results are the most precise measurements.B-factories dominate the other mo<strong>de</strong>s23


A CP and R CP : HFAG averagesD CPKD* CPKD CPK*A CP+AveragesBaBarPRD 82 (2010) 072004BelleLP 2011 preliminaryCDFPRD 81 (2010) 031105(R)LHCbarXiv:1203.3662AverageHFAGBaBarPRD 78, 092002 (2008)BellePRD 73, 051106 (2006)AverageHFAGBaBarPRD 80 (2009) 092001AverageHFAGHFAGMoriond 2012HFAGMoriond HFAG 2012-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2Moriond 2012HFAGMoriond 2012PRELIMINARY0.25 ± 0.06 ± 0.020.29 ± 0.06 ± 0.020.39 ± 0.17 ± 0.040.14 ± 0.03 ± 0.010.19 ± 0.03-0.11 ± 0.09 ± 0.01-0.20 ± 0.22 ± 0.04-0.12 ± 0.080.09 ± 0.13 ± 0.060.09 ± 0.14D CPKD* CPKD CPK*R CP+AveragesBaBarPRD 82 (2010) 072004BelleLP 2011 preliminaryCDFMoriond HFAG 2012PRD 81 (2010) 031105(R)LHCbarXiv:1203.3662AverageHFAGBaBarPRD 78, 092002 (2008)BellePRD 73, 051106 (2006)AverageHFAGBaBarPRD 80 (2009) 092001AverageHFAGHFAGMoriond 2012HFAG-1 0 1 2 3Moriond 2012HFAGMoriond 2012PRELIMINARY1.18 ± 0.09 ± 0.051.03 ± 0.07 ± 0.031.30 ± 0.24 ± 0.121.01 ± 0.04 ± 0.011.03 ± 0.031.31 ± 0.13 ± 0.031.41 ± 0.25 ± 0.061.33 ± 0.122.17 ± 0.35 ± 0.092.17 ± 0.36Where available, LHCb results are the most precise measurements.B-factories dominate the other mo<strong>de</strong>s24


γ via tree-level dominated processes: combinationMost precise <strong>de</strong>termination of ADS/GLWobservables does not translatedirectly into most precise γ measurement. need input from many methods to pindown γ.See A. Gomez’s talk for a reviewof other methods to extract γ(time-<strong>de</strong>pen<strong>de</strong>nt methods with Bs Ds Kand with B hh’ <strong>de</strong>cays)25


γ via tree-level dominated processes: combinationMost precise <strong>de</strong>termination of ADS/GLWobservables does not translatedirectly into most precise γ measurement. need input from many methods to pindown γ.See A. Gomez’s talk for a reviewof other methods to extract γ(time-<strong>de</strong>pen<strong>de</strong>nt methods with Bs Ds Kand with B hh’ <strong>de</strong>cays)For example the GGSZ method (Dalitz plot analysis of B D K with DK 0 s h + h -<strong>de</strong>cay) provi<strong>de</strong>s the best constraint to γ with B-factories data:Brand new result from Belle based on a mo<strong>de</strong>l-in<strong>de</strong>pen<strong>de</strong>nt analysis[Belle,arXiv:1204.6561]γ = (77.3 +15.1 -14.9 ± 4.1 ± 4.3 δD from Cleo )°LHCb expects to pin down the error on gamma to 5° by 2018: it will be interesting…25


5) The charm sectorChateau <strong>de</strong> Blois: Colombina by Francesco Melzi


CPV in charm Large D 0 − D 0 mixing discovered in 2007 by Babar and Belle and the newLHCb and CDF results on direct CP violation in charm system are givingnew impetus to this field.To first or<strong>de</strong>r:1) No mixing if GIM is fully at work (m d ==m s )2) No CPV phase if CKM is fully at work ( no phase with two generations)So “in principle” large mixing and large CPV should be sign of New Physics……26


CPV in charm Large D 0 − D 0 mixing discovered in 2007 by Babar and Belle and the newLHCb and CDF results on direct CP violation in charm system are givingnew impetus to this field.To first or<strong>de</strong>r:1) No mixing if GIM is fully at work (m d ==m s )2) No CPV phase if CKM is fully at work ( no phase with two generations)So “in principle” large mixing and large CPV should be sign of New Physics……Three types of CP violation: In <strong>de</strong>cay: amplitu<strong>de</strong>s for a process and its conjugate differ (direct) In mixing: rates of D 0 D 0 and D 0 D 0 differ in interference between mixing and <strong>de</strong>cay diagrams26


See M. Coombes &D. Epifanov’s talksCharm: indirect CPV In SM indirect CPV expected very small and universal between CP eigenstates(10 -3 for CPV parameters, 10 -5 for observables like A Γ ) but it can be enhanced by NP to o(%).[ Bibliography too long, see spare sli<strong>de</strong>s]Intermediate b : CKM suppressed Intermediate d,s: GIM suppressed Non perturbaPve: hard to predict in SM Currently: |x|


See M. Coombes’s talkCharm: indirect CPV Example mixing analysis is measurement of “y CP ”, which is D 0 width splittingparameter modified by CP-violating effects. Comparison to pure “y” measurements probes for CP-violation, as does measurement of pure CP-violating observable A Γ A Γ : compare D 0 and D 0 lifetimes in KK final state [tagged samples] y CP : compare lifetime of D 0 →CP-eigenstate,eg. KK or ππ, to D 0 →non-eigenstate eg. Kπ [untagged samples] LHCb results based on 2010 data (~29 pb -1 ) [LHCb,arXiv:1112.4698, subm. To JHEP]not yet competitive with the world average28


Charm: indirect CPV Brand new results from B-factories presented two weeks ago at CHARM 2012. Belle (Staric): measurements of D 0 -D 0 mixing inD 0 K + K - , π+ π- <strong>de</strong>cays updated with fulldataset (976 fb -1 ):y CP = (+1.11 ± 0.22 ± 0.11) % (4.5 σ) Most sensitive and most significantmeasurement of any mixing parameter up to now.ΔΓ = (-0.03 ± 0.20 ± 0.08) % Consistent with no indirect CPVBabar (Neri): final value for y CP andΔY == (1+y CP )A Γ using 468 fb -1 of data:y CP = [0.720 ±0.180 (stat) ± 0.124 (syst)]%ΔY = [0.088±0.255(stat) ± 0.058 (syst)] %No mixing exclu<strong>de</strong>d at 3.3 σ levelNo CPV observed29


See M. Coombes’s talk & I. Bertram’s talksDirect CPV in D 0 → π + π – , K + K - :CPV in mixing (indirect) can be related to direct CPV via the relation:Consi<strong>de</strong>ring ππ or KK final states wecan build the difference:A CP (K + K - ) – A CP (π+π-) = Δa CP (direct) + Δ/τ a indCPHCP 2011: LHCb, 620 pb -1 : first evi<strong>de</strong>nce (3.5 σ) of CPV in charm: Moriond 2012: CDF, 9.6 fb -1 , confirms this resultLHCb, PRL 108 (2012) 11602(- 0.62 ± 0.21 ± 0.10) %CDF, PRD 85 (2012) 012009Combination of LHCb and CDF results in a 3.8 σ <strong>de</strong>viations from zero. 30


See M. Coombes’s talk & I. Bertram’s talksDirect CPV in D 0 → π + π – , K + K - :EPS 2011 – July 2011Moriond 2012 (6 months later)CPV established at 3.8 σ levelWhat can we conclu<strong>de</strong> from this result?Is it SM or New Physics?31


6) EW penguins7) B s µµ: status of the art(single <strong>de</strong>cay measurements with NP discovery potential)Chateau <strong>de</strong> Blois: royal emblems


Strategies for indirect NP search Improve measurement precision of CKM elements— Compare measurements of same quantity,which may or may not be sensitive to NP— Extract all CKM angles and si<strong>de</strong>s in many different ways• any inconsistency will be a sign of New PhysicsPrecision CKM metrology,including NP-free<strong>de</strong>terminations of CKMangle γ€ Measure FCNC transitions, where New Physics is more likely to emerge,and compare to predictions— e.g. OPE expansion for b→s transitions:H eff= − 4G F2 V V *∑ tb tsC i(µ)O i(µ)+— New Physics may• modify C i(’)short-distance Wilson coefficients• add new long-distance operators O i(’)i[left -han<strong>de</strong>d partC ʹ′ (µ) O ʹ′ (µ)i i]right -han<strong>de</strong>d partsuppressed in SM€Single B <strong>de</strong>caymeasurements withNP discoverypotentiali =1,2i = 3 − 6,8i = 7i = 9,10i = Si = PTreeGluon penguinPhoton penguinElectroweak penguinHiggs (scalar) penguinPseudoscalar penguin4


Search for NP in BK (*) l + l -BK (*) l + l - are FCNC <strong>de</strong>cays, forbid<strong>de</strong>n at tree level.Three effective Wilson coefficients can contribute:- C 7(‘)from γ penguin (also in bsγ process)- C 9 (‘) (C 10(‘)) from vector (axial vector) part of W/Z boxNew Physics can modify the helicity structure (angular distributions):Interference of axial & vector currents give direct access to relative phases of diagramsinvolved [for example, W. Altmannshofer et al. JHEP 0901:019, 2009]NP? NP? NP? but also alter branching fractions, modify the CP- and isospin- asymmetries,produce lepton number violating <strong>de</strong>cays (ex: B + h - l + l + )[see R. Vazquez and S. Emery’s talks]32


see R. Vazquez& S. Emery’s talksSearch for NP in BK (*) l + l - ]Partial BF and angular observables have been measured by Babar, Belle, CDF and LHCb:all show good agreement with SM predictions (within the uncertainties)Differential BR]2! c4 /GeV-7[101.51Theory Binned theoryLHCb CDF BELLE BaBarLHCbPreliminaryK* longitudinal polarizationF L10.80.6Theory Binned theoryLHCb CDF BELLE BaBarLHCbPreliminaryq 2 = invariant di-­‐leptons mass dBF/dq20.50.40.200 5 10 15 202q 2 [GeV /c 4 ]Babar: S. Akar, Lake Louise 2012Belle: Phys. Rev. Lett. 103, 171801 (2009)CDF: Phys. Rev. Lett. 108, 081807 (2012)LHCb: LHCb-CONF-2012-008Theory predictions:C. Bobeth, G. Hiller, D. van Dyk, JHEP 07 067 (2011)A FB0.5000 5 10 15 202q 2 [GeV /c 4 ]Forward-backward asymmetry1Theory Binned theoryLHCb CDF BELLE BaBarTensions” seen by othersin region 1 < q 2 < 6 GeV 2 /c 4not confirmed by LHCb-0.5LHCbPreliminary-10 5 10 15 20q 2 [GeV 2 /c 433


see R. Vazquez’s talkSearch for NP in BK (*) l + l -Measurement of the zero crossing of A FB gives access to ratio of Wilson coefficients C 7eff/C 9effThe zero crossing point is largely free from form-factor uncertaintiesExtracted through a 2D fit to the forward and backward-going m(B 0 ) and q 2 distributionsA FBLHCb: LHCb-CONF-2012-00810.5Theory Counting Experiment UnbinnedLHCbPreliminaryforward signalbackground0-0.5backward -12 4 62 4q 2 (GeV /c )LHCb has performed the world’s first measurement of the zero-crossing point:q 02= 4.9 +1.1 -1.3 GeV2consistent with SM prediction: 4-4.3 GeV 2 [Eur. Phys. J C 41 (2005) 173-188]35


see R. Vazquez’s , I. Bertram and L.Oakes talksSearch for NP in B s,d µµ <strong>de</strong>caysB (d,s) µµ is the best way for LHCb to constrain the parameters ofthe exten<strong>de</strong>d Higgs sector in MSSM, fully complementary to direct searchesMain SM diagrams~ |V ts | 2 , C ADouble suppressed <strong>de</strong>cay: FCNC process and helicity suppressed: very small in the Standard Mo<strong>de</strong>l but well predicted:Bs→µ + µ - = (3.2±0.2)×10 -9 Bd→µ + µ - = (1.0±0.1)×10 -1036 Buras et al., arXiv:1007.5291 and references therein


Search for NP in B s,d µµ <strong>de</strong>caysB (d,s) µµ is the best way for LHCb to constrain the parameters ofthe exten<strong>de</strong>d Higgs sector in MSSM, fully complementary to direct searchesMain SM diagrams~ |V ts | 2 , C A+ ~ C P , C SDouble suppressed <strong>de</strong>cay: FCNC process and helicity suppressed: very small in the Standard Mo<strong>de</strong>l but well predicted:Bs→µ + µ - = (3.2±0.2)×10 -9 Bd→µ + µ - = (1.0±0.1)×10 -10Buras et al., arXiv:1007.5291 and references therein Sensitive to NP contributions in the scalar/pseudo scalar sector:( ) 2 ( ) 2 MSSM, large tanβ approximation 36


see R. Vazquez’s , I. Bertram and L.Oakes talksSearch for NP in B s,d µµ <strong>de</strong>caysNice race all around the world to improve the limit…..Limit @95%CLL[fb -1 ]D0: < 51x10 -9 6.1CDF: [0.8,34]x10 -9 10ATLAS:< 22 x 10 -9 2.4CMS: < 7.7 x 10 -9 4.9LHCb:


see R. Vazquez’s , I. Bertram and L.Oakes talksSearch for NP in B s,d µµ <strong>de</strong>caysThe Bsµµ signal is slowly emerging from data…2Events per 24 MeV/c642BDT>0.5LHCb05350 54002m µµ (MeV/c )….. But which is the BR? 3 σ observation possible if BR=BR(SM) at the LHC with 2011+2012 data38


Impact of B s → µ + µ – on global SUSY fits• Global fit inclu<strong>de</strong> many results:– Higgs and SUSY searches at LHC, dark matter searches at XENON100,EW and B physics measurements (such as b → sγ, B + → τν, B s → µµ), g–2• A constrained version of MSSM, the CMSSM: only five parameters free: m 0 ,m 1/2 , A 0 , tanβ , sgn(µ)N. MahmoudiMoriond QCD 2012m 0 = universal scalar mass parameterm 1/2 = universal gaugino massRed line: CMSexclusion limitwith 4.4 fb -1 dataLHCb /CMS Bsμμ result at EPS 2011 39


Impact of B s → µ + µ – on global SUSY fits• Global fit inclu<strong>de</strong> many results:– Higgs and SUSY searches at LHC, dark matter searches at XENON100,EW and B physics measurements (such as b → sγ, B + → τν, B s → µµ), g–2• A constrained version of MSSM, the CMSSM: only five parameters free: m 0 ,m 1/2 , A 0 , tanβ , sgn(µ)N. MahmoudiMoriond QCD 2012m 0 = universal scalar mass parameterm 1/2 = universal gaugino massRed line: CMSexclusion limitwith 4.4 fb -1 dataLHCb Bsμμ result at Moriond 2012 39 Recent B s µµ results disfavor mo<strong>de</strong>ls with NP at the TeV scale and large tanβ


Summary & Open Questions1) sin(2β) vs BR(Bτν): BR too high or sin(2β) too low?2) The “strange” brother: CPV in Bsϕ s in agreement with SM predictions3) New physics in B s &/or B d mixing? A sl needs in<strong>de</strong>pen<strong>de</strong>nt checks4) The γ angle more precision nee<strong>de</strong>d5) CPV in charm NP or SM?6) EW penguins in agreement with SM predictions MFV or NP at 10 TeV scale?7) BR(B s µµ):rapidly approaching SM value (maybe lower than SM?) NP at the TeV scale in mo<strong>de</strong>ls with large tanβ highly disfavored


Brief history of the Blois castle:4) XXI st century: Les Rencontres <strong>de</strong> Blois 2012- physics mo<strong>de</strong>l: the Standard Mo<strong>de</strong>l with the CKM mechanism controllingthe interactions between quarks- anomalies: many(….which is the end of the story?)


Parallel sessions on Heavy Flavour(Tuesday & Wednesday afternoon) CP violation in b→s penguin and T,CPT violation at BaBar and Belle – S. EmeryCP violation in the beauty system at LHCb – A. GomezCP violation in charm and tau at BaBar and Belle – D. EpifanovCP violation in the charm system at LHCb – M. CoombesCKM related measurements (including CPV) at BaBar and Belle – J. DalsenoRare beauty and charm <strong>de</strong>cays at LHCb - Ricardo Vazquez GomezRecent Heavy Flavor Results from the Tevatron - Iain BertramHadronic B <strong>de</strong>cays at LHCb - Thomas Lathamb-physics with ATLAS and CMS - Louise Oakes


STOP


Exclusive B 0 s channel with Φ(1020) resonance : ν µµ + D − sφ 0 K +π −K −s}BsThe main formula again (untagged):0¯bε(t) is the <strong>de</strong>tector acceptance function.IF The fraction of integrals, IF, has been evaluated as ~0.02 a p is at most a few percent. Thus: a p *0.02 ≈ 10 -4 .19


Method to resolve the ambiguityTwo-­‐fold ambiguity [Y. Xie et al., JHEP 09 (2009) 074]K + K - P-wave:Phase of Breit-Wigner amplitu<strong>de</strong>increases rapidly across φ(1020)mass regionK + K - S-wave:Phase of Flatté amplitu<strong>de</strong> for f 0 (980)relatively flat (similar for non-resonance)Phase difference between S- and P-wave amplitu<strong>de</strong>sDecreases rapidly across φ(1020) mass regionResolution method: choose the solution with <strong>de</strong>creasing trend ofδ s - δ P vs m KK in the φ(1020) mass region75


B s mixing frequency ΔM sLHCb result obtained with 0.34/= : A mix0.40.2LHCb preliminary-1s=7TeV, 340 pbOST+SSKTCompare ol<strong>de</strong>r results:0CDF (2006)(PRL97,242003 (2006))-0.2LHCb, 37/pb (PLB 709 (2012) 177, arXiv 1112.4311) WA fully dominated by LHCb resultand in agreement with SM predictions:-0.40 0.1 0.2 0.3t modulo (2 / m s ) [ ps ]B s D s (3)π Δms (SM) = (17.3 ± 2.6 ) ps-­‐1 Lenz,Nierste arXiv:1102.4274 Experimental precision ahead of theory Improved lapce results nee<strong>de</strong>d 36


With 0.35 fb –1 :— most precise results Direct CPV in B (s) Kπ)22Events / ( 0.02 GeV/c)Events / ( 0.02 GeV/cA CP (B 0 → Kπ) =–0.088 ±0.011 ±0.008> 6σ opposite sign, as expected in SM 3.3σ A CP (B s → πK) =+0.27 ±0.08 ±0.0230002500200015001000500400350300250200150100500LHCb(a)05 5.2 5.4 5.6 5.805 5.2 5.4 5.6 5.8+ 2K 2invariant mass (GeV/c )K + invariant mass (GeV/c )LHCb(c)Result compatible with CDF:A CP (Bsπ K) = (0.39 ± 0.15 ± 0.08) CDFB 0 → K + π – _ B s → π – K + 5 5.2 5.4 5.6 5.82K + invariant mass (GeV/c ))2Events / ( 0.02 GeV/c)23000 LHCb2500 _B(b)0 → K – π + 2000Events / ( 0.02 GeV/c15001000500400350300250200150100500LHCb: PRL 108,201601 (2012)CDF: PRL 106,181802LHCb(d)B K0B sK0B 0B sKKB3-bodyComb. bkgFirst observation of direct CPV in B <strong>de</strong>cays at a hadron colli<strong>de</strong>r5 5.2 5.4 5.6 5.82K + invariant mass (GeV/c )First evi<strong>de</strong>nce of direct CPV in B s <strong>de</strong>cays !0B s → π + K –


Direct CPV in B (s) Kπ)2Events / ( 0.02 GeV/c30002500200015001000500A CP (B 0 → Kπ) =–0.088 ±0.011 ±0.008LHCb(a)B 0 → K + π – )2Events / ( 0.02 GeV/c3000 LHCb2500 _ 20001500100005 5.2 5.4 5.6 5.805 5.2 5.4 5.6 5.8+ 2K 2invariant mass (GeV/c )K + invariant mass (GeV/c )500(b)B 0 → K – π + 0B K0B sK0B 0B sKKB3-bodyComb. bkgAnother point in the ΔA(Kπ) puzzle…..1) too large colour-suppressed treeamplitu<strong>de</strong>s?2) new phase in ew penguins?30


Towards γ with B s → D s K ±• Two <strong>de</strong>cay amplitu<strong>de</strong>s (b→c and b→u),interfering via B s mixing– magnitu<strong>de</strong>s of similar or<strong>de</strong>r (~λ 3 ) → large interference– tagged time-<strong>de</strong>pen<strong>de</strong>nt analysis can <strong>de</strong>termine €weak phase φ s + γ, hence angle γ, in a very clean € way• First analysis (0.35 fb –1 )LHCb: arXiv 1204.1237submitted to JHEP28 – 404 ±26 signal evts– <strong>de</strong>termine branching ratio(twice better than worldaverage))Events / ( 14 MeV/c 2160140120100806040200€€€€B s0 {B s0 {bsbs180 LHCb( ) = (+0.121.90 ± 0.12 ± 0.13 ) −0.14×10 –4B B s 0 →D s K ±€€€€€€€€sucsscus}K +}D s−}D s+}K –5200 5400 5600 5800f s /f d 0-+Bs K0 - +B DsK0 - +B D K0 -Bs Ds +0 (*)- (*)+Bs DsK(*)- b Dsp0 (*)-Bs Ds( + , + )CombinatorialD Mass (MeV/cs K mass (MeV/c 2 ) For a discussion about γ extractionfrom B (s) hh’ <strong>de</strong>cays see A. Gomez’s talk2)


Direct CPV violation in charm: bibliography• Bianco, Fabbri, Berson & Bigi, Riv. Nuovo Cimento 26N7 (2003)• Grossman, Kagan & Nir PRD 75, 036008 (2007)• Bigi, arXiv:0907.2950• Bobrowski, Lenz, Riedl & Rothwild, JHEP 03 009 (2010)• Bigi, Blanke, Buras & Recksiegel, JHEP 0907 097 (2009)• Feldmann, Nandi & Soni, arXiv:1202.3795


Charm: direct CPV Direct CP violation can be larger in SM, very <strong>de</strong>pen<strong>de</strong>nt on the final state(therefore we must search whenever we can):Negligible in Cabibbo-favoured mo<strong>de</strong>s (SM trees dominate)In generic singly Cabibbo-suppressed mo<strong>de</strong>s:- up to o(10 -3 ) plausible- few 10 -3 possible:Also direct CPV can be enhanced by NP, in principle to o(%)[ Bibliography too long, see spare sli<strong>de</strong>s]35


See M. Coombes’s & I. Bertram’s talksDirect CPV in D 0 → π + π – , K + K:CPV in mixing (indirect) can be related to direct CPV via the relation:Consi<strong>de</strong>ring ππ or KK final states wecan build the difference:A CP (K + K - ) – A CP (π+π-) = Δa CP (direct) + Δ/τ a indCPHCP 2011: LHCb, 620 pb -1 : first evi<strong>de</strong>nce (3.5 σ) of CPV in charm: LHCb, PRL 108 (2012) 11602Moriond 2012: CDF, 9.6 fb -1 , also measures the individual asymmetries:A CP (KK) = (-0.24 ± 0.22 ±0.09) % A CP (ππ) = (+0.22±0.24±0.11)%CDF, PRD 85 (2012) 012009That seem to indicate equal and opposite effects as predicted by some theorists 36


See M. Coombes’s and I. Bertram’s talksDirect CPV in D 0 → π + π – , K + K - :CPV in mixing (indirect) can be related to direct CPV via the relation:Consi<strong>de</strong>ring ππ or KK final states wecan build the difference:A CP (K + K - ) – A CP (π+π-) = Δa CP (direct) + Δ/τ a indCP/τ = 1 at B factories, ~2.5 at CDF (displaced trigger) In<strong>de</strong>pen<strong>de</strong>nt of the final state Where:30


see R. Vazquez& S. Emery’s talksSearch for NP in BK (*) l + l -Partial BF and angular observables have been measured by Babar, Belle, CDF and LHCb:all show good agreement with SM predictions (within the uncertainties)S 3 ≈ A2T (1-F L )Differential BR]2! c4 /GeV-7[10dBF/dq21.510.5Theory Binned theoryLHCb CDF BELLE BaBarLHCbPreliminaryasymmetry in K* transverse polarizationS 310.50-0.5TheoryLHCbBinned theoryCDFLHCbPreliminaryq 2 = invariant di-­‐leptons mass 00 5 10 15 202q 2 [GeV /c 4 ]Babar: S. Akar, Lake Louise 2012Belle: Phys. Rev. Lett. 103, 171801 (2009)CDF: Phys. Rev. Lett. 108, 081807 (2012)LHCb: LHCb-CONF-2012-008Theory predictions:C. Bobeth, G. Hiller, D. van Dyk, JHEP 07 067 (2011)A Im10.5-10 5 10 15 202q 2 [GeV /c 4 ]A im : a T-odd CP asymmetry0LHCbCDFLHCbPreliminary-0.5-10 5 10 15 202q 2 [GeV /c 4 ]34


Impact of B s → µ + µ – on global SUSY fits• Global fit inclu<strong>de</strong> many results:– Higgs and SUSY searches at LHC, dark matter searches at XENON100,EW and B physics measurements (such as b → sγ, B + → τν, B s → µµ), g–2• Two variants of the MSSM:– Δχ 2 profiles for B s → µµ (state as of December 2011)298765432100 1 2 3 4 5 6 7 8With M h= 125 GeV dropping (g-2)With M h= 125 GeV and (g-2)Pre-Higgs, with (g-2) constraintCMSSM BR(B !!)sExclu<strong>de</strong>d by LHCb pred/BR(Bs!!)SM2987654321O. Buchmueller et al.arXiv:1112.356400 1 2 3 4 5 6 7 8With M h= 125 GeV dropping (g-2)With M h= 125 GeV and (g-2)Pre-Higgs, with (g-2) constraintNUHM1 BR(B !!)sExclu<strong>de</strong>d by LHCb pred/BR(Bs!!)Recent B s µµ results disfavor mo<strong>de</strong>ls with NP at the TeV scale and large tanβSM39

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!