Hyaluronan cross-linking: a protective mechanism in inflammation?

Hyaluronan cross-linking: a protective mechanism in inflammation? Hyaluronan cross-linking: a protective mechanism in inflammation?

lerner.ccf.org
from lerner.ccf.org More from this publisher

Op<strong>in</strong>ion TRENDS <strong>in</strong> Immunology Vol.26 No.12 December 2005 641(a)MonocyteIIILP1HACABLEIIVIIIXXVIII+ ++ + + VI ICD44HALP3IVLP3HG12OVHA CABLE(b)(c)Chemok<strong>in</strong>eCS/DSVersicanHAXI(d)CD44MonocyteL select<strong>in</strong>XIITRENDS <strong>in</strong> ImmunologyFigure 2. HA cables support leukocyte attachment. (a) A confocal micrograph of an HA cable (sta<strong>in</strong>ed with HABP; green) synthesized by mucosal smooth muscle cells (M-SMC) follow<strong>in</strong>g their stimulation with the viral mimic poly I:C [7,30,32]. Non-activated monocytes (nuclei sta<strong>in</strong>ed blue with DAPI) b<strong>in</strong>d to these HA cables through CD44 (red)on their cell surfaces. However, they do not adhere to HA ‘patches’ present on the surface of the smooth muscle cells (not shown) <strong>in</strong>dicat<strong>in</strong>g that the organization of HA <strong>in</strong>to acable-like structure provides it with specific proadhesive properties. (b) A cartoon expand<strong>in</strong>g a region of the confocal micrograph illustrat<strong>in</strong>g the association of the cable witha s<strong>in</strong>gle monocyte. It can be seen that a cable is comprised of a large number of <strong>in</strong>dividual HA molecules, where an extended HA cha<strong>in</strong> of 2 MDa has a length of w5 micron,and a monocyte has a diameter of 15–25 microns. (c) A region of the cable is magnified to show some of the possible <strong>in</strong>termolecular <strong>in</strong>teractions that contribute to cableformation and function. The HCs of IaI and PaI have been shown to be required for cable formation [7,30,33]. Therefore, it is likely that HC–HC contacts serve to <strong>cross</strong>-l<strong>in</strong>k the<strong>in</strong>dividual HA cha<strong>in</strong>s by either homotypic (I) or heterotypic (II) <strong>in</strong>teractions, as described <strong>in</strong> Figure 1c; presumably the HCs are covalently l<strong>in</strong>ked to HA through some form oftransfer reaction, however, <strong>in</strong> this case this is likely to occur <strong>in</strong> a TSG-6-<strong>in</strong>dependent manner (C.A. de la Motte and A.J. Day, unpublished). The CS/DS proteoglycan versicanalso associates with the cable structures [7,30]. Versican is a HA-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>, which belongs to the L<strong>in</strong>k module superfamily [4,40] and <strong>in</strong>teracts with the polysaccharidethrough its N-term<strong>in</strong>al G1-doma<strong>in</strong> [43]. Cartilage l<strong>in</strong>k prote<strong>in</strong> (LP1) has been shown to form cooperative complexes with versican (III) and it is possible, therefore, that therelated, and ubiquitously expressed LP3 [43], could stabilize the b<strong>in</strong>d<strong>in</strong>g of versican to HA (IV). Versican might also <strong>in</strong>teract with HA cooperatively <strong>in</strong> the absence of l<strong>in</strong>kprote<strong>in</strong>s (V) [43,44]. Such associations could serve to form stiffened and extended regions of the HA cha<strong>in</strong> (e.g. with the super-helical conformation described recently [42]);however, it is clear from the extensive sta<strong>in</strong><strong>in</strong>g with HABP that much of the HA is not saturated with prote<strong>in</strong>s. The CS and/or DS cha<strong>in</strong>s of versican are also likely to have animportant structural role, through the attraction of positive counter ions and ‘<strong>in</strong>flation’ of the cables due to an osmotic potential (VI). Additionally, versican has been reportedto b<strong>in</strong>d various chemok<strong>in</strong>es (yellow) through its CS and/or DS cha<strong>in</strong>s [45,46], where these <strong>in</strong>teractions could sequester the chemok<strong>in</strong>es and negatively regulate their function(VII); TSG-6 also b<strong>in</strong>ds to these GAGs (VIII) and could become sequestered. Under-sulfated regions of the CS cha<strong>in</strong>s might become covalently modified with HCs (IX), as seen<strong>in</strong> human follicular fluid [47]. This reaction could be mediated by TSG-6 because chondoit<strong>in</strong> (i.e. non-sulfated CS) can act as a weak substrate for TSG-6-dependent HC transfer[14]. This would provide an alterative means of HA <strong>cross</strong>-<strong>l<strong>in</strong>k<strong>in</strong>g</strong> (X) and could have an effect on the local structure of the cable. Thus, TSG-6 might be able to <strong>in</strong>fluence cablefunction even though it does not appear to be required for their formation. (d) Two possible ways <strong>in</strong> which the HA cable might <strong>in</strong>teract with receptors on the monocyte surfaceare illustrated. The correct presentation of <strong>cross</strong>-l<strong>in</strong>ked HA cha<strong>in</strong>s could promote the cluster<strong>in</strong>g and functional activation of CD44 (XI). Alternatively, there could be attachmentof the HA cable through the co-engagement of HA with CD44 and of versican (on the HA cable) with a counter receptor on the surface of the monocyte (XII). L-select<strong>in</strong> is areasonable candidate for this given that it has been shown to b<strong>in</strong>d to the CS/DS cha<strong>in</strong>s of versican through its C-type lect<strong>in</strong> doma<strong>in</strong> and is present on monocytes [46]. (a)reproduced with permission from Ref. [48].Cables might prevent immune activation and promoteheal<strong>in</strong>gIn <strong>in</strong>flammatory conditions (e.g. <strong>in</strong>flammatory boweldisease, asthma and atherosclerosis), there is a clearcorrelation between ER stress, HA synthesis and leukocyteaccumulation [8,9]. Therefore, it has been suggestedthat HA cables act as distress signals to promote<strong>in</strong>teractions with leukocytes and thus might perpetuatechronic <strong>in</strong>flammation [8]. However, it seems equallyprobable that cables function to control leukocyte activation.For example, <strong>in</strong>filtration of monocytes contributesto the pathogenesis of diabetic nephropathy, wheretransform<strong>in</strong>g growth factor-b1 (TGF-b1), <strong>in</strong>duced <strong>in</strong>response to direct proximal tubule cell–monocyteadhesion, has been implicated <strong>in</strong> progressive renal<strong>in</strong>terstitial fibrosis [34]. Here the CD44-dependentb<strong>in</strong>d<strong>in</strong>g of monocytes to HA cables [33], producedconstitutively by the proximal tubule cells, <strong>in</strong>hibits<strong>in</strong>tercellular adhesion molecule-1 (ICAM-1) mediatedcontact and thus prevents their activation [34]. Similarly,the vascular cell adhesion molecule-1 (VCAM-1) receptorsof virally-stimulated colon M-SMC are masked by HA;treatment of cells with hyaluronidase enables very lateantigen-4 (VLA-4) <strong>in</strong>tegr<strong>in</strong>-mediated adhesion [35], awell-known pro<strong>in</strong>flammatory signal.Recently, it has been observed that peripheral bloodmonocytes are stimulated through their b<strong>in</strong>d<strong>in</strong>g to HAcables but that this <strong>in</strong>teraction <strong>in</strong>duces the expression ofgrowth factors and matrix components rather thanpro<strong>in</strong>flammatory mediators (C.A. de la Motte, unpublished).This <strong>in</strong>dicates that HA cables do not just provide aphysical retention <strong>mechanism</strong> but also convey thewww.sciencedirect.com


642Op<strong>in</strong>ion TRENDS <strong>in</strong> Immunology Vol.26 No.12 December 2005message to the bound leukocyte that it must help heal.Significantly, the clearance of HA from <strong>in</strong>flamed tissue,which is a prerequisite to permanent matrix restoration, isalso mediated by CD44 C monocytic cells [37]. Althoughnumerous previous reports have demonstrated that HAhas pro<strong>in</strong>flammatory effects on leukocytes and other typesof stromal cells, the data are not <strong>in</strong>consistent with ourop<strong>in</strong>ion. Most of the pro<strong>in</strong>flammatory observations have<strong>in</strong>volved smaller molecular weight or purified fragmentsof HA that signal at least <strong>in</strong> part through Toll-like receptor4 (TLR4) receptors [38,39]; this is <strong>in</strong> contrast to the largemolecular weight <strong>cross</strong>-l<strong>in</strong>ked cable structures discussedhere, which probably signal through CD44. In this regard,<strong>cross</strong>-l<strong>in</strong>ked HA structures might be more resistant todegradation, provid<strong>in</strong>g another important limit<strong>in</strong>g step <strong>in</strong><strong>in</strong>flammation.Formation and activity of HA fibrilsIn addition to the HA cables described earlier there arealso likely to be other HA–prote<strong>in</strong> complexes that areproadhesive for leukocytes. For example, it has been foundthat the pre-<strong>in</strong>cubation of HA with TSG-6 enhances or<strong>in</strong>duces the b<strong>in</strong>d<strong>in</strong>g of HA to lymphocyte cell l<strong>in</strong>es andthat this is probably due to the formation of HA–TSG-6fibrils (Figure 1d) that can activate CD44 through receptorcluster<strong>in</strong>g [10]. Although this structure is clearly proadhesive,its functional role is not yet clear. Given the otherproperties of TSG-6 [19,28,29] it seems likely that thesefibrils will be anti-<strong>in</strong>flammatory, where it can be envisagedthat their formation at sites of <strong>in</strong>flammation and release<strong>in</strong>to the microcirculation could <strong>in</strong>hibit the adhesive<strong>in</strong>teractions of circulat<strong>in</strong>g lymphocytes with the vascularendothelium; TSG-6–HA complexes were found to beeffective competitors of CD44-mediated cell attachmentand roll<strong>in</strong>g on immobilized HA <strong>in</strong> vitro [10]. However,further work is clearly required to determ<strong>in</strong>e the structureof these fibrils and their precise role <strong>in</strong> <strong>in</strong>flammation.Conclud<strong>in</strong>g remarksOver recent years a diverse range of <strong>cross</strong>-l<strong>in</strong>ked HAstructures have been identified that appear to have a keyrole <strong>in</strong> <strong>in</strong>flammation. Although it is well-established thatleukocytes can b<strong>in</strong>d to HA, the purpose of this <strong>in</strong>teractionhas been unclear. Previous literature supported a pro<strong>in</strong>flammatoryrole for HA but here we suggest a <strong>protective</strong> or‘counter-<strong>in</strong>flammatory’ role for the highly <strong>cross</strong>-l<strong>in</strong>ked HAstructures. The two notions are not necessarily exclusive.We are now beg<strong>in</strong>n<strong>in</strong>g to appreciate that HA is an<strong>in</strong>formation rich system and, depend<strong>in</strong>g upon its degreeof <strong>cross</strong>-<strong>l<strong>in</strong>k<strong>in</strong>g</strong>, its size and the nature of the boundprote<strong>in</strong>s, this simple sugar polymer might achievedifferent functions. The f<strong>in</strong>d<strong>in</strong>g that a s<strong>in</strong>gle prote<strong>in</strong>,such as TSG-6, can support multiple <strong>cross</strong>-<strong>l<strong>in</strong>k<strong>in</strong>g</strong><strong>mechanism</strong>s (Figure 1) suggests that so far we haveuncovered just the tip of this particular iceberg and thatwe should expect to f<strong>in</strong>d many more ways to organize HAand, thus, modulate its function (Box 2).AcknowledgementsWe are <strong>in</strong>debted to Carol<strong>in</strong>e Milner for her critical review of themanuscript and to the Arthritis Research Campaign (grants 16119 and16539; A.J.D.) and the National Institute of Health (DK58867 andDK57756; C.d.l.M.) for their support for our research.References1 Tammi, M. et al. (2002) <strong>Hyaluronan</strong> and homeostasis: a balanc<strong>in</strong>g act.J. Biol. Chem. 277, 4581–45842 Puré, E. and Cuff, C.A. (2001) A crucial role for CD44 <strong>in</strong> <strong>in</strong>flammation.Trends Mol. Med. 7, 213–2213 Day, A.J. and Sheehan, J.K. (2001) <strong>Hyaluronan</strong>: polysaccharide chaosto prote<strong>in</strong> organisation. Curr. Op<strong>in</strong>. Struct. Biol. 11, 617–6224 Blundell, C.D. et al. (2004) Structural and functional diversity ofhyaluronan-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s. In Chemistry and Biology of <strong>Hyaluronan</strong>(Garg, H.G. and Hales, C.A., eds), pp. 189–204, Elsevier5 Zhuo, L. et al. (2004) Inter-a-tryps<strong>in</strong> <strong>in</strong>hibitor, a covalent prote<strong>in</strong>glycosam<strong>in</strong>oglycan-prote<strong>in</strong>complex. J. Biol. Chem. 279, 38079–380826 Day, A.J. et al. (2005) The role of hyaluronan-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s <strong>in</strong>ovulation. In <strong>Hyaluronan</strong>: Its Structure, Metabolism, BiologicalActivities and Therapeutic Applications (Balazs, E.A. and Hascall,V.C., eds), Matrix Biology Institute (<strong>in</strong> press), published onl<strong>in</strong>e athttp://www.matrixbiology<strong>in</strong>stitute.org/ha03/ch8/<strong>in</strong>dex.htm7 de la Motte, C.A. et al. (2003) Mononuclear leukocytes b<strong>in</strong>d to specifichyaluronan structures on colon mucosal smooth muscle cells treatedwith poly<strong>in</strong>os<strong>in</strong>ic acid:polycytidylic acid: Inter-a-tryps<strong>in</strong> <strong>in</strong>hibitor iscrucial to structure and function. Am. J. Pathol. 163, 121–1338 Majors, A.K. et al. (2003) Endoplasmic reticulum stress <strong>in</strong>duceshyaluronan deposition and leukocyte adhesion. J. Biol. Chem. 278,47223–472319 Hascall, V.C. et al. (2004) Intracellular hyaluronan: a new frontier for<strong>in</strong>flammation? Biochim. Biophys. Acta 1673, 3–1210 Lesley, J. et al. (2004) TSG-6 modulates the <strong>in</strong>teraction betweenhyaluronan and cell surface CD44. J. Biol. Chem. 279, 25745–2575411 Richards, J.S. et al. (2002) Ovulation: new dimensions and newregulators of the <strong>in</strong>flammatory-like response. Annu. Rev. Physiol. 64,69–9212 Zhuo, L. et al. (2001) Defect <strong>in</strong> SHAP-hyaluronan complex causessevere female <strong>in</strong>fertility. J. Biol. Chem. 276, 7693–769613 Fülöp, C. et al. (2003) Impaired cumulus mucification and femalesterility <strong>in</strong> tumor necrosis factor-<strong>in</strong>duced prote<strong>in</strong>-6 deficient mice.Development 130, 2253–226114 Mukhopadhyay, D. et al. (2004) Specificity of the tumor necrosisfactor-<strong>in</strong>duced prote<strong>in</strong> 6-mediated heavy cha<strong>in</strong> transfer from the<strong>in</strong>ter-a-<strong>in</strong>hibitor to hyaluronan. Implications for the assembly of thecumulus extracellular matrix. J. Biol. Chem. 279, 11119–1112815 Sanggaard, K.W. et al. (2005) The TSG-6 and IaI <strong>in</strong>teraction promotesa transesterification cleav<strong>in</strong>g the prote<strong>in</strong>-glycosam<strong>in</strong>oglycan-prote<strong>in</strong>(PGP) <strong>cross</strong>-l<strong>in</strong>k. J. Biol. Chem. 280, 11936–1194216 Rugg, M.S. et al. (2005) Characterization of complexes formedbetween TSG-6 and <strong>in</strong>ter-a-<strong>in</strong>hibitor that act as <strong>in</strong>termediates <strong>in</strong>the covalent transfer of heavy cha<strong>in</strong>s onto hyaluronan. J. Biol. Chem.280, 25674–2568617 Salustri, A. et al. (2004) PTX3 plays a key role <strong>in</strong> the organization ofthe cumulus oophorus extracellular matrix and <strong>in</strong> <strong>in</strong> vivo fertilization.Development 131, 1577–158618 Kuznetsova, S.A. et al. (2005) The N-term<strong>in</strong>al module of thrombospond<strong>in</strong>-1<strong>in</strong>teracts with the L<strong>in</strong>k doma<strong>in</strong> of TSG-6 and enhances itscovalent association with the heavy cha<strong>in</strong>s of <strong>in</strong>ter-a-tryps<strong>in</strong> <strong>in</strong>hibitor.J. Biol. Chem. 280, 30899–3090819 Milner, C.M. and Day, A.J. (2003) TSG-6: a multi-functional prote<strong>in</strong>associated with <strong>in</strong>flammation. J. Cell Sci. 116, 1863–187320 Wisniewski, H.G. and Vilcek, J. (2004) Cytok<strong>in</strong>e-<strong>in</strong>duced geneexpression at the <strong>cross</strong>roads of <strong>in</strong>nate immunity, <strong>in</strong>flammation andfertility: TSG-6 and PTX3/TSG-14. Cytok<strong>in</strong>e Growth Factor Rev. 15,129–14621 Garlanda, C. et al. (2005) Pentrax<strong>in</strong>s at the <strong>cross</strong>roads between <strong>in</strong>nateimmunity, <strong>in</strong>flammation, matrix deposition, and female fertility.Annu. Rev. Immunol. 23, 337–36622 Y<strong>in</strong>gsung, W. et al. (2003) Molecular heterogeneity of the SHAPhyaluronancomplex: isolation and characterization of the complex <strong>in</strong>synovial fluid from patients with rheumatoid arthritis. J. Biol. Chem.278, 32710–3271823 Roberts, S. et al. (2005) TNFa-stimulated gene product (TSG-6) and itsb<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>, IaI, <strong>in</strong> the human <strong>in</strong>tervertebral disc: new moleculesfor the disc. Eur. Sp<strong>in</strong>e J. 14, 36–42www.sciencedirect.com


Op<strong>in</strong>ion TRENDS <strong>in</strong> Immunology Vol.26 No.12 December 2005 64324 Luchetti, M.M. et al. (2000) Expression and production of the longpentrax<strong>in</strong> PTX3 <strong>in</strong> rheumatoid arthritis (RA). Cl<strong>in</strong>. Exp. Immunol.119, 196–20225 Bayliss, M.T. et al. (2001) Up-regulation and differential expression ofthe hyaluronan-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> TSG-6 <strong>in</strong> cartilage and synovium <strong>in</strong>rheumatoid arthritis and osteoarthritis. Osteoarthritis Cartilage 9,42–4826 Vallejo, A.N. et al. (2003) Synoviocyte-mediated expansion of<strong>in</strong>flammatory T cells <strong>in</strong> rheumatoid synovitis is dependent on CD47-thrombospond<strong>in</strong> 1 <strong>in</strong>teraction. J. Immunol. 171, 1732–174027 Kehlen, A. et al. (2003) Gene expression <strong>in</strong>duced by <strong>in</strong>terleuk<strong>in</strong>-17 <strong>in</strong>fibroblast-like synoviocytes of patients with rheumatoid arthritis:upregulation of hyaluronan-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> TSG-6. Arthritis Res.Ther. 5, R186–R19228 Szántó, S.et al. (2004) Enhanced neutrophil extravasation and rapidprogression of proteoglycan-<strong>in</strong>duced arthritis <strong>in</strong> TSG-6-knockoutmice. Arthritis Rheum. 50, 3012–302229 Mahoney, D.J. et al. (2005) Characterization of the <strong>in</strong>teractionbetween tumor necrosis factor-stimulated gene-6 and hepar<strong>in</strong>;implications for the <strong>in</strong>hibition of plasm<strong>in</strong> <strong>in</strong> extracelluar matrixmicroenvironments. J. Biol. Chem. 280, 27044–2705530 de la Motte, C.A. et al. (2002) Poly I:C <strong>in</strong>duces mononuclear leukocyteadhesivehyaluronan structures on colon smooth muscle cells: IaIandversican facilitate adhesion. In <strong>Hyaluronan</strong> (Vol. 1) (Kennedy, J.F.et al., eds), pp. 381–388, Woodhead Publish<strong>in</strong>g31 Wang, A. and Hascall, V.C. (2004) <strong>Hyaluronan</strong> structures synthesizedby rat mesangial cells <strong>in</strong> response to hyperglycemia <strong>in</strong>duce monocyteadhesion. J. Biol. Chem. 279, 10279–1028532 de la Motte, C.A. et al. (2005) Viral stimuli <strong>in</strong>duce novel hyaluronancable structures on colon smooth muscle cells that b<strong>in</strong>d leukocytesexternally and nuclei <strong>in</strong>ternally. In <strong>Hyaluronan</strong>: Its Structure,Metabolism, Biological Activities and Therapeutic Applications(Balazs, E.A. and Hascall, V.C., eds), Matrix Biology Institute (<strong>in</strong>press), published onl<strong>in</strong>e at http://www.matrixbiology<strong>in</strong>stitute.org/ha03/ch8/<strong>in</strong>dex.htm33 Selbi, W. et al. (2004) BMP-7 modulates hyaluronan-mediated proximaltubular cell-monocyte <strong>in</strong>teraction. J. Am. Soc. Nephrol. 15, 1199–121134 Zhang, X.L. et al. (2004) Renal proximal tubular epithelial celltransform<strong>in</strong>g growth factor-b1 generation and monocyte b<strong>in</strong>d<strong>in</strong>g. Am.J. Pathol. 165, 763–77335 de la Motte, C.A. et al. (1999) Mononuclear leukocytes preferentiallyb<strong>in</strong>d via CD44 to hyaluronan on human <strong>in</strong>test<strong>in</strong>al mucosal smoothmuscle cells after virus <strong>in</strong>fection or treatment with poly I:C. J. Biol.Chem. 274, 30747–3075536 Teriete, P. et al. (2004) Structure of the regulatory hyaluronan-b<strong>in</strong>d<strong>in</strong>gdoma<strong>in</strong> <strong>in</strong> the <strong>in</strong>flammatory leukocyte hom<strong>in</strong>g receptor CD44. Mol.Cell 13, 483–49637 Teder, P. et al. (2002) Resolution of lung <strong>in</strong>flammation by CD44.Science 296, 155–15838 Termeer, C. et al. (2002) Oligosaccharides of hyaluronan activatedendritic cells via toll-like receptor 4. J. Exp. Med. 195, 99–11139 Taylor, K.R. et al. (2004) <strong>Hyaluronan</strong> fragments stimulateendothelial recognition of <strong>in</strong>jury through TLR4. J. Biol. Chem.279, 17079–1708440 Day, A.J. and Prestwich, G.D. (2002) <strong>Hyaluronan</strong>-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s:ty<strong>in</strong>g up the giant. J. Biol. Chem. 277, 4585–458841 Blundell, C.D. et al. (2003) The L<strong>in</strong>k module from ovulation- and<strong>in</strong>flammation-associated prote<strong>in</strong> TSG-6 changes conformation onhyaluronan b<strong>in</strong>d<strong>in</strong>g. J. Biol. Chem. 278, 49261–4927042 Blundell, C.D. et al. (2005) Towards a structure for a hyaluronan-TSG-6 complex by model<strong>in</strong>g and NMR spectroscopy: <strong>in</strong>sights <strong>in</strong>to othermembers of the L<strong>in</strong>k module superfamily. J. Biol. Chem. 280, 18189–1820143 Seyfried, N.T. et al. (2005) Expression and purification of functionallyactive hyaluronan-b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong>s from human l<strong>in</strong>k prote<strong>in</strong>,aggrecan and versican: formation of ternary complexes with def<strong>in</strong>edhyaluronan oligosaccharides. J. Biol. Chem. 280, 5435–544844 Seyfried, N.T. et al. Experimental evidence for all-or-none cooperative<strong>in</strong>teractions between the G1-doma<strong>in</strong> of versican and multivalenthyaluronan oligosaccharides. Matrix Biol. (<strong>in</strong> press)45 Hirose, J. et al. (2001) Versican <strong>in</strong>teracts with chemok<strong>in</strong>es andmodulates cellular responses. J. Biol. Chem. 276, 5228–523446 Kawashima, H. et al. (2002) Oversulfated chondroit<strong>in</strong>/dermatansulfates conta<strong>in</strong><strong>in</strong>g GlcAb1/IdoAa1-3GalNAc(4,6-O-disulfate) <strong>in</strong>teractwith L- and P-select<strong>in</strong> and chemok<strong>in</strong>es. J. Biol. Chem. 277,12921–1293047 Eriksen, G.V. et al. (1999) Isolation and characterization of proteoglycansfrom human follicular fluid. Biochem. J. 340, 613–62048 de la Motte, C.A. et al. (2000) Cover illustration. Mol. Biol. Cell 11(6)Reuse of Current Op<strong>in</strong>ion and Trends journal figures <strong>in</strong> multimedia presentationsIt’s easy to <strong>in</strong>corporate figures published <strong>in</strong> Trends or Current Op<strong>in</strong>ion journals <strong>in</strong>to your PowerPo<strong>in</strong>t presentations or other imagedisplayprograms. Simply follow the steps below to augment your presentations or teach<strong>in</strong>g materials with our f<strong>in</strong>e figures!1. Locate the article with the required figure <strong>in</strong> the Science Direct journal collection2. Click on the ‘Full text + l<strong>in</strong>ks’ hyperl<strong>in</strong>k3. Scroll down to the thumbnail of the required figure4. Place the cursor over the image and click to engage the ‘Enlarge Image’ option5. On a PC, right-click over the expanded image and select ‘Copy’ from pull-down menu (Mac users: hold left button down and thenselect the ‘Copy image’ option)6. Open a blank slide <strong>in</strong> PowerPo<strong>in</strong>t or other image-display program7. Right-click over the slide and select ‘paste’ (Mac users hit ‘Apple-V’ or select the ‘Edit-Paste’ pull-down option).Permission of the publisher, Elsevier, is required to re-use any materials <strong>in</strong> Trends or Current Op<strong>in</strong>ion journals or any other workspublished by Elsevier. Elsevier authors can obta<strong>in</strong> permission by complet<strong>in</strong>g the onl<strong>in</strong>e form available through the CopyrightInformation section of Elsevier’s Author Gateway at http://authors.elsevier.com/. Alternatively, readers can access the request formthrough Elsevier’s ma<strong>in</strong> web site at http://www.elsevier.com/locate/permissions.www.sciencedirect.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!