03.12.2012 Views

Recent advances in permafrost modelling - Department of Geography

Recent advances in permafrost modelling - Department of Geography

Recent advances in permafrost modelling - Department of Geography

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

PERMAFROST AND PERIGLACIAL PROCESSES<br />

Permafrost and Periglac. Process. 19: 137–156 (2008)<br />

Published onl<strong>in</strong>e <strong>in</strong> Wiley InterScience<br />

(www.<strong>in</strong>terscience.wiley.com) DOI: 10.1002/ppp.615<br />

<strong>Recent</strong> Advances <strong>in</strong> Permafrost Modell<strong>in</strong>g<br />

Daniel Riseborough , 1 * Nikolay Shiklomanov, 2 Bernd Etzelmüller, 3 Stephan Gruber 4 and Sergei Marchenko 5<br />

1 Geological Survey <strong>of</strong> Canada, Ottawa, Canada<br />

2 <strong>Department</strong> <strong>of</strong> <strong>Geography</strong>, University <strong>of</strong> Delaware, Newark, DE, USA<br />

3 <strong>Department</strong> <strong>of</strong> Geosciences, Physical <strong>Geography</strong>, University <strong>of</strong> Oslo, Oslo, Norway<br />

4 <strong>Department</strong> <strong>of</strong> <strong>Geography</strong>, University <strong>of</strong> Zürich, Zürich, Switzerland<br />

5 Geophysical Institute, University <strong>of</strong> Alaska, Fairbanks, AK, USA<br />

ABSTRACT<br />

This paper provides a review <strong>of</strong> <strong>permafrost</strong> modell<strong>in</strong>g <strong>advances</strong>, primarily s<strong>in</strong>ce the 2003 <strong>permafrost</strong><br />

conference <strong>in</strong> Zürich, Switzerland, with an emphasis on spatial <strong>permafrost</strong> models, <strong>in</strong> both arctic and high<br />

mounta<strong>in</strong> environments. Models are categorised accord<strong>in</strong>g to temporal, thermal and spatial criteria, and<br />

their approach to def<strong>in</strong><strong>in</strong>g the relationship between climate, site surface conditions and <strong>permafrost</strong> status.<br />

The most significant recent <strong>advances</strong> <strong>in</strong>clude the expand<strong>in</strong>g application <strong>of</strong> <strong>permafrost</strong> thermal models<br />

with<strong>in</strong> spatial models, application <strong>of</strong> transient numerical thermal models with<strong>in</strong> spatial models and<br />

<strong>in</strong>corporation <strong>of</strong> <strong>permafrost</strong> directly with<strong>in</strong> global circulation model (GCM) land surface schemes. Future<br />

challenges for <strong>permafrost</strong> modell<strong>in</strong>g will <strong>in</strong>clude establish<strong>in</strong>g the appropriate level <strong>of</strong> <strong>in</strong>tegration required<br />

for accurate simulation <strong>of</strong> <strong>permafrost</strong>-climate <strong>in</strong>teraction with<strong>in</strong> GCMs, the <strong>in</strong>tegration <strong>of</strong> environmental<br />

change such as treel<strong>in</strong>e migration <strong>in</strong>to <strong>permafrost</strong> response to climate change projections, and parameteris<strong>in</strong>g<br />

the effects <strong>of</strong> sub-grid scale variability <strong>in</strong> surface processes and properties on small-scale (large<br />

area) spatial models. Copyright # 2008 John Wiley & Sons, Ltd.<br />

KEY WORDS: <strong>permafrost</strong>; models; geothermal; mounta<strong>in</strong>s; spatial models<br />

INTRODUCTION<br />

Permafrost (def<strong>in</strong>ed as ground where temperatures have<br />

rema<strong>in</strong>ed at or below 08C for a period <strong>of</strong> least two<br />

consecutive years) is a key component <strong>of</strong> the cryosphere<br />

through its <strong>in</strong>fluence on energy exchanges, hydrological<br />

processes, natural hazards and carbon budgets — and<br />

hence the global climate system. The climate<strong>permafrost</strong><br />

relation has acquired added importance<br />

with the <strong>in</strong>creas<strong>in</strong>g awareness and concern that ris<strong>in</strong>g<br />

temperatures, widely expected throughout the next<br />

century, may particularly affect <strong>permafrost</strong> environments.<br />

The Intergovernmental Panel on Climate Change<br />

* Correspondence to: Daniel Riseborough, Geological Survey<br />

<strong>of</strong> Canada, 601 Booth Street, Ottawa, Ontario, Canada K1A<br />

0E4. E-mail: drisebor@nrcan.gc.ca<br />

Copyright # 2008 John Wiley & Sons, Ltd.<br />

(1990) has advocated that research should be directed<br />

towards address<strong>in</strong>g the climate-<strong>permafrost</strong> relation,<br />

<strong>in</strong>clud<strong>in</strong>g the effects <strong>of</strong> temperature forc<strong>in</strong>g from<br />

climatic variation, local environmental factors such as<br />

snow and vegetation, and surficial sediments or bedrock<br />

types. Permafrost has been identified as one <strong>of</strong> six<br />

cryospheric <strong>in</strong>dicators <strong>of</strong> global climate change with<strong>in</strong><br />

the <strong>in</strong>ternational framework <strong>of</strong> the World Meteorological<br />

Organization (WMO) Global Climate Observ<strong>in</strong>g<br />

System (Brown et al., 2008).<br />

This review gives an overview <strong>of</strong> <strong>permafrost</strong><br />

modell<strong>in</strong>g <strong>advances</strong>, primarily s<strong>in</strong>ce the 2003 <strong>permafrost</strong><br />

conference <strong>in</strong> Zurich, Switzerland, with an<br />

emphasis on spatial <strong>permafrost</strong> models, <strong>in</strong> both arctic<br />

and high mounta<strong>in</strong> environments. Many models have<br />

been developed to predict the spatial variation <strong>of</strong><br />

<strong>permafrost</strong> thermal response to chang<strong>in</strong>g climate<br />

Received 3 January 2008<br />

Revised 19 March 2008<br />

Accepted 19 March 2008


138 D. Riseborough et al.<br />

conditions at different scales, <strong>in</strong>clud<strong>in</strong>g conceptual,<br />

empirical and process-based models. The <strong>permafrost</strong><br />

models considered <strong>in</strong> this paper are those that def<strong>in</strong>e the<br />

thermal condition <strong>of</strong> the ground, based on some<br />

comb<strong>in</strong>ation <strong>of</strong> climatic conditions and the properties<br />

<strong>of</strong> earth surface and subsurface properties. Particular<br />

emphasis is given to models used <strong>in</strong> spatial applications.<br />

MODELLING BACKGROUND<br />

A model is a conceptual or mathematical representation<br />

<strong>of</strong> a phenomenon, usually conceptualised as a<br />

system. It provides an idealised framework for logical<br />

reason<strong>in</strong>g, mathematical or computational evaluation<br />

as well as hypothesis test<strong>in</strong>g. Explicit assumptions<br />

about or simplifications <strong>of</strong> the system may be part <strong>of</strong><br />

model development; how these decisions affect the<br />

utility <strong>of</strong> the model will depend on whether the model<br />

serves its <strong>in</strong>tended purpose with satisfactory accuracy.<br />

Rykiel (1996) suggests that model ‘validation’ can be<br />

separated <strong>in</strong>to evaluations <strong>of</strong> theory, implementation<br />

and data; while some statistical tests can be performed<br />

to measure differences between model behaviour and<br />

the behaviour <strong>of</strong> the system, ‘validation’ ultimately<br />

depends on whether the model and its behaviour are<br />

reasonable <strong>in</strong> the judgement <strong>of</strong> knowledgeable people.<br />

The value <strong>of</strong> a model depends on its usefulness for a<br />

given purpose and not its sophistication. Simple models<br />

can be more useful than models which <strong>in</strong>corporate many<br />

processes, especially when data are limited. Choos<strong>in</strong>g<br />

the appropriate po<strong>in</strong>t along the cont<strong>in</strong>uum <strong>of</strong> model<br />

complexity depends on data availability, modell<strong>in</strong>g<br />

(usually computer) resources and the questions under<br />

<strong>in</strong>vestigation. The data needed to obta<strong>in</strong> credible results<br />

usually <strong>in</strong>crease with <strong>in</strong>creas<strong>in</strong>g model complexity and<br />

with the number <strong>of</strong> processes that are represented. In<br />

mounta<strong>in</strong> environments, lateral variations <strong>of</strong> surface and<br />

subsurface conditions as well as micro-climatology<br />

are far greater than <strong>in</strong> lowland environments.<br />

Process-based <strong>permafrost</strong> models determ<strong>in</strong>e the<br />

thermal state <strong>of</strong> the ground based on pr<strong>in</strong>ciples <strong>of</strong> heat<br />

transfer, and can be categorised us<strong>in</strong>g temporal, thermal<br />

and spatial criteria. Temporally, models may def<strong>in</strong>e<br />

equilibrium <strong>permafrost</strong> conditions for a given annual<br />

regime (equilibrium models), or they may capture<br />

the transient evolution <strong>of</strong> <strong>permafrost</strong> conditions from<br />

some <strong>in</strong>itial state to a modelled current or future state<br />

(transient models).<br />

Thermally, simple models may def<strong>in</strong>e the presence<br />

or absence <strong>of</strong> <strong>permafrost</strong>, active-layer depth, or mean<br />

annual ground temperature, based on empirical and<br />

statistical relations or application <strong>of</strong> so-called equilibrium<br />

models utilis<strong>in</strong>g transfer functions between<br />

atmosphere and ground. Numerical models (f<strong>in</strong>iteelement<br />

or f<strong>in</strong>ite-difference models) may def<strong>in</strong>e the<br />

annual and longer term progression <strong>of</strong> a deep-ground<br />

temperature pr<strong>of</strong>ile (transient models). The <strong>in</strong>fluence<br />

<strong>of</strong> surface energy exchange on subsurface conditions<br />

may be def<strong>in</strong>ed by simplified equations us<strong>in</strong>g a few<br />

parameters (such as freez<strong>in</strong>g/thaw<strong>in</strong>g <strong>in</strong>dices and n<br />

factors, or air temperature and snow cover <strong>in</strong><br />

equilibrium models), or as a fully explicit energy<br />

balance, requir<strong>in</strong>g data for atmospheric conditions.<br />

Spatially, models may def<strong>in</strong>e conditions at a s<strong>in</strong>gle<br />

location (either as an <strong>in</strong>dex or a one-dimensional<br />

vertical temperature pr<strong>of</strong>ile), along a two-dimensional<br />

transect, or over a geographic region. Most geographic/<br />

spatial <strong>permafrost</strong> models today are collections <strong>of</strong><br />

modelled po<strong>in</strong>t locations, with no lateral heat flow<br />

between adjacent po<strong>in</strong>ts. Po<strong>in</strong>ts <strong>in</strong> such spatial models<br />

behave as one-dimensional models, so that small-scale<br />

spatial variability <strong>in</strong> soil properties and snow cover is<br />

not considered. This is a central problem for mounta<strong>in</strong><br />

areas where the effects <strong>of</strong> slope, aspect and elevation<br />

must be considered at regional or local scales. Thus, <strong>in</strong><br />

mounta<strong>in</strong>ous regions the scale <strong>of</strong> variation <strong>in</strong> these<br />

factors requires alternative approaches to spatial<br />

modell<strong>in</strong>g.<br />

Heat Flow Theory<br />

Basic heat flow theory is described <strong>in</strong> some detail <strong>in</strong><br />

textbooks, such as Carslaw and Jaeger (1959),<br />

Williams and Smith (1989) and Lunard<strong>in</strong>i (1981).<br />

The equation for heat flow under transient conditions<br />

forms the basis <strong>of</strong> all geothermal models.<br />

C @T<br />

@t ¼ k @2T @z2 (1)<br />

Def<strong>in</strong>itions <strong>of</strong> equation symbols are given <strong>in</strong> Table 1.<br />

Two exact analytical models derived for a semi<strong>in</strong>f<strong>in</strong>ite<br />

and isotropic half-space us<strong>in</strong>g equation 1 are: the<br />

harmonic solution, describ<strong>in</strong>g ground temperatures at<br />

any time t and depth z below a ground surface<br />

experienc<strong>in</strong>g s<strong>in</strong>usoidal temperature variations:<br />

Tz;t ¼ T þ As e z<br />

p<br />

s<strong>in</strong> 2pt<br />

P<br />

ffiffiffiffiffiffiffiffi<br />

p=aP<br />

pffiffiffiffiffiffiffiffiffiffiffi<br />

z p=aP<br />

(2)<br />

and the step change solution, describ<strong>in</strong>g changes to<br />

ground temperatures at any time t and depth z below a<br />

ground surface follow<strong>in</strong>g a step change <strong>in</strong> ground<br />

Copyright # 2008 John Wiley & Sons, Ltd. Permafrost and Periglac. Process., 19: 137–156 (2008)<br />

DOI: 10.1002/ppp


Table 1 Symbols used <strong>in</strong> equations.<br />

A s<br />

¼ annual temperature amplitude at soil<br />

surface, o C<br />

c ¼ specific heat, Jkg 1<br />

C ¼ volumetric heat capacity, Jm 3<br />

IFA ¼ seasonal air freez<strong>in</strong>g <strong>in</strong>dex, 8Cs<br />

IFS ¼ seasonal ground surface freez<strong>in</strong>g <strong>in</strong>dex, 8Cs<br />

ITA ¼ seasonal air thaw<strong>in</strong>g <strong>in</strong>dex, 8Cs<br />

ITS ¼ seasonal ground surface thaw<strong>in</strong>g <strong>in</strong>dex, 8Cs<br />

L ¼ volumetric latent heat <strong>of</strong> fusion, Jm 3<br />

nF ¼ surface freez<strong>in</strong>g n-factor<br />

¼ surface thaw<strong>in</strong>g n-factor<br />

nT<br />

P ¼ period <strong>of</strong> the temperature wave, s<br />

P sn<br />

¼ period <strong>of</strong> the temperature wave, adjusted for<br />

snow melt, s<br />

t ¼ time, s<br />

T ¼ mean annual temperature, 8C<br />

T0 ¼ <strong>in</strong>itial soil temperature, 8C<br />

TF ¼ fusion temperature, 8C<br />

TS ¼ surface temperature, 8C<br />

TTOP ¼ temperature at top <strong>of</strong> perennially<br />

frozen/unfrozen ground, 8C<br />

Tz ¼ mean annual temperature at the depth <strong>of</strong><br />

seasonal thaw (equivalent to TTOP), 8C<br />

T z,t<br />

¼ temperature at depth z at time t, 8C<br />

x ¼ volume fraction<br />

X ¼ depth <strong>of</strong> thaw, m<br />

z ¼ depth, m<br />

uU<br />

r<br />

¼ volumetric unfrozen water content<br />

¼ density, kg m 3<br />

a ¼ l = C ¼ thermal diffusivity m 2 s 1<br />

l ¼ thermal conductivity, Wm 1 K 1<br />

Subscripts for a, l, r, c, C and n:<br />

a ¼ apparent<br />

i ¼ subscript identify<strong>in</strong>g component<br />

(m<strong>in</strong>eral, ice, water, etc.)<br />

T ¼ thawed or thaw<strong>in</strong>g<br />

F ¼ frozen or freez<strong>in</strong>g<br />

surface temperature:<br />

DTz;t ¼ DTS erfc<br />

z<br />

2 ffiffiffiffiffi p (3)<br />

a t<br />

(erfc is the complementary error function)<br />

Permafrost models are a subset <strong>of</strong> a more general<br />

class <strong>of</strong> geothermal models. In <strong>permafrost</strong> models,<br />

ground freez<strong>in</strong>g and thaw<strong>in</strong>g are central <strong>in</strong> determ<strong>in</strong><strong>in</strong>g<br />

the important variables and parameters <strong>of</strong> which<br />

the model is comprised. Equations 2 and 3 form the<br />

basis <strong>of</strong> analyses <strong>of</strong> ground temperatures outside <strong>of</strong><br />

<strong>permafrost</strong> regions, and are most useful where<br />

<strong>Recent</strong> Advances <strong>in</strong> Permafrost Modell<strong>in</strong>g 139<br />

freez<strong>in</strong>g and thaw<strong>in</strong>g <strong>of</strong> significant amounts <strong>of</strong> soil<br />

moisture do not occur. Exact analytical models <strong>of</strong> the<br />

thermal behaviour <strong>of</strong> the ground when freez<strong>in</strong>g or<br />

thaw<strong>in</strong>g occurs are limited to a few idealised<br />

conditions (Lunard<strong>in</strong>i, 1981). Real-world conditions<br />

such as seasonal variation <strong>in</strong> the ground surface<br />

temperature, accumulation and ablation <strong>of</strong> snow<br />

cover, and temperature dependent thermal properties,<br />

are beyond the capacity <strong>of</strong> these exact models. Two<br />

paths move beyond this impasse: approximate<br />

analytical models developed by mak<strong>in</strong>g simplify<strong>in</strong>g<br />

assumptions, or numerical techniques employed to<br />

solve more complex problems with the acceptance <strong>of</strong><br />

limited error.<br />

For ground that undergoes freez<strong>in</strong>g and thaw<strong>in</strong>g, the<br />

release and absorption <strong>of</strong> the latent heat <strong>of</strong> fusion <strong>of</strong><br />

the soil water dom<strong>in</strong>ate heat flow, although the<br />

temperature-dependence <strong>of</strong> thermal conductivity is<br />

also important. Account<strong>in</strong>g for latent heat is usually<br />

achieved by subsum<strong>in</strong>g its effect <strong>in</strong> the heat capacity<br />

term <strong>in</strong> equation 1.<br />

The Stefan Model<br />

Ca ¼ X xir ici þ L @uu= @T<br />

(4)<br />

The analytical equation most widely employed <strong>in</strong> the<br />

formulation <strong>of</strong> <strong>permafrost</strong> models is the Stefan<br />

solution to the mov<strong>in</strong>g freez<strong>in</strong>g (or thaw) front. When<br />

diffusive effects are small relative to the rate <strong>of</strong> frost<br />

front motion and the <strong>in</strong>itial temperature <strong>of</strong> the ground<br />

is close to 08C, the exact equation for the mov<strong>in</strong>g<br />

phase change boundary can be simplified to a form <strong>of</strong><br />

the Stefan solution us<strong>in</strong>g accumulated ground surface<br />

degree-day total I (either the freez<strong>in</strong>g <strong>in</strong>dex I F or<br />

thaw<strong>in</strong>g <strong>in</strong>dex IT) (Lunard<strong>in</strong>i, 1981):<br />

rffiffiffiffiffiffiffi<br />

2lI<br />

X ¼<br />

L<br />

(5)<br />

The form <strong>of</strong> Stefan solution represented by equation<br />

(5) is widely used for spatial active-layer characterisation<br />

by estimat<strong>in</strong>g soil properties (‘edaphic<br />

parameters’) empirically, us<strong>in</strong>g summer air temperature<br />

records and active-layer data obta<strong>in</strong>ed from<br />

representative locations (e.g. Nelson et al., 1997;<br />

Shiklomanov and Nelson, 2003; Zhang T. et al.,<br />

2005).<br />

Carlson (1952, based on Sumg<strong>in</strong> et al., 1940) used<br />

equation 5 as the orig<strong>in</strong> <strong>of</strong> a simple model for presence<br />

<strong>of</strong> <strong>permafrost</strong>, based on the notion that <strong>permafrost</strong> will<br />

Copyright # 2008 John Wiley & Sons, Ltd. Permafrost and Periglac. Process., 19: 137–156 (2008)<br />

DOI: 10.1002/ppp


140 D. Riseborough et al.<br />

be present where predicted w<strong>in</strong>ter season freez<strong>in</strong>g<br />

exceeds predicted summer season thaw, so that<br />

<strong>permafrost</strong> exists where kFIFS > kTITS. Nelson and<br />

Outcalt (1987) derived the Frost Index model on this<br />

relationship. While the Frost Index model has been<br />

used extensively (e.g. Anisimov and Nelson, 1996),<br />

the Kudryavstev model has become more common <strong>in</strong><br />

recent studies.<br />

The Kudryavtsev Model<br />

An alternative solution to the Stefan problem was<br />

proposed by Kudryavtsev et al. (1974) (Figure 1A) for<br />

estimat<strong>in</strong>g maximum annual depth <strong>of</strong> thaw propagation<br />

and the mean annual temperature at the base <strong>of</strong><br />

the active layer Tz (equivalent to the temperature at the<br />

top <strong>of</strong> <strong>permafrost</strong>, or TTOP, described below):<br />

where<br />

h i<br />

Az ¼ As Tz<br />

ln AsþL=2CT<br />

TzþL=2CT<br />

and<br />

Zc ¼ 2ðAs TzÞ<br />

L<br />

2CT<br />

qffiffiffiffiffiffiffiffiffiffiffiffi<br />

l Psn CT<br />

p<br />

2Az CT þ L<br />

The mean annual temperature at the depth <strong>of</strong> seasonal<br />

thaw (<strong>permafrost</strong> surface) can be calculated as:<br />

Tz ¼<br />

Zthaw ¼<br />

2ðAs TzÞ<br />

0:5Ts ðlF þ lTÞþAs lF lT<br />

p<br />

l<br />

l ¼ lF; if numerator < 0<br />

lT; if numerator > 0:<br />

h qffiffiffiffiffiffiffiffiffiffiffiffi<br />

i<br />

Ts<br />

As<br />

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi<br />

þ<br />

lT Psn CT<br />

p<br />

arcs<strong>in</strong> Ts<br />

As þ<br />

2Az CT þ L<br />

1 p 2<br />

A 2 s<br />

(7)<br />

Kudryavtsev’s equations were derived assum<strong>in</strong>g a<br />

periodic steady state with phase change (L > 0)<br />

(Kudryavtsev et al., 1974). Romanovsky and Osterkamp<br />

(1997) <strong>in</strong>dicate that equations 6 and 7 can be<br />

applied on an annual basis. Extensive validation <strong>of</strong><br />

Kudryavtsev’s equations us<strong>in</strong>g empirical data from the<br />

North Slope <strong>of</strong> Alaska <strong>in</strong>dicate that they provide more<br />

accurate estimates <strong>of</strong> annual maximum seasonal thaw<br />

depth than the Stefan equation (Romanovsky and<br />

Osterkamp, 1997; Shiklomanov and Nelson, 1999).<br />

Kudryavtsev’s model is used extensively at regional<br />

(Shiklomanov and Nelson, 1999; Sazonova and<br />

Romanovsky, 2003; Stendel et al., 2007) and<br />

circum-arctic (Anisimov et al., 1997) scales.<br />

N Factors<br />

Freez<strong>in</strong>g and thaw<strong>in</strong>g n factors relate ground surface<br />

temperature to air temperature as an empirical<br />

alternative to the energy balance (Lunard<strong>in</strong>i, 1978).<br />

N factors are applied to seasonal degree-day totals<br />

(FDD or IF for freez<strong>in</strong>g; TDD or IT for thaw<strong>in</strong>g),<br />

calculated as the accumulated departure <strong>of</strong> mean daily<br />

ð2Az CT ZcþL ZcÞ L<br />

2Az CT ZcþL Zþð2Az CT þLÞ<br />

temperature above (or below) 08C, so that equation 5<br />

can be applied us<strong>in</strong>g air temperature data.<br />

nT ¼ ITS<br />

; nF ¼<br />

ITA<br />

IFS<br />

IFA<br />

(8)<br />

N factors account <strong>in</strong> a lumped form for the complex<br />

processes with<strong>in</strong> the atmosphere-soil system and, as<br />

such, n factors will vary for a given location. Shur and<br />

Slav<strong>in</strong>-Borovskiy (1993) found that site-specific n<br />

factors are stable, with <strong>in</strong>terannual changes less than<br />

10 per cent <strong>in</strong> cont<strong>in</strong>ental arctic areas. In mounta<strong>in</strong>ous<br />

regions, however, n factor variations can be much<br />

higher, especially dur<strong>in</strong>g w<strong>in</strong>ter due to <strong>in</strong>terannual<br />

variation <strong>of</strong> snow cover (e.g. Juliussen and Humlum,<br />

2007). This variability might be even more accentuated<br />

<strong>in</strong> maritime mounta<strong>in</strong>ous areas (e.g. Etzelmüller<br />

et al., 2007, 2008). In low-topography,<br />

cont<strong>in</strong>ental areas n factors can be correlated with<br />

surface cover and extrapolated over larger areas (e.g.<br />

Duchesne et al., 2008).<br />

The TTOP Model<br />

pffiffiffiffiffiffiffi<br />

l Psn<br />

p C pT<br />

ffiffiffiffiffiffiffi<br />

l Psn<br />

p C T<br />

(6)<br />

The TTOP model (Smith and Riseborough, 1996)<br />

(Figure 1B) estimates the mean annual temperature at<br />

the top <strong>of</strong> perennial frozen/unfrozen soil by comb<strong>in</strong><strong>in</strong>g a<br />

model (Romanovsky and Osterkamp, 1995) <strong>of</strong> the<br />

thermal <strong>of</strong>fset effect (<strong>in</strong> which the mean annual<br />

Copyright # 2008 John Wiley & Sons, Ltd. Permafrost and Periglac. Process., 19: 137–156 (2008)<br />

DOI: 10.1002/ppp


Figure 1 (A) Conceptual draw<strong>in</strong>g <strong>of</strong> the Kudryavtsev model; (B)<br />

temperature at the top <strong>of</strong> <strong>permafrost</strong> (TTOP) model conceptual<br />

schematic pr<strong>of</strong>ile <strong>of</strong> mean annual temperature through the lower<br />

atmosphere, active layer and upper <strong>permafrost</strong>.<br />

temperature shifts to lower values <strong>in</strong> the active layer<br />

because <strong>of</strong> the difference between frozen and<br />

thawed thermal conductivities <strong>of</strong> the soil) with freez<strong>in</strong>g<br />

and thaw<strong>in</strong>g <strong>in</strong>dices <strong>in</strong> the lower atmosphere l<strong>in</strong>ked to<br />

values at the ground surface us<strong>in</strong>g n factors (equation 8):<br />

TTOP ¼ nTlT ITA nFlF IFA<br />

;<br />

kFP<br />

TTOP < 0<br />

TTOP ¼ nTlT ITA nFlF IFA<br />

;<br />

lTP<br />

TTOP > 0<br />

(9)<br />

Applications <strong>of</strong> the TTOP model have depended on<br />

empirically derived n factors (Wright et al., 2003;<br />

Juliussen and Humlum, 2007), although Riseborough<br />

<strong>Recent</strong> Advances <strong>in</strong> Permafrost Modell<strong>in</strong>g 141<br />

(2004) attempted to develop a physically based<br />

n-factor parameterisation <strong>of</strong> the effect <strong>of</strong> snow cover.<br />

Statistical-Empirical Models and<br />

Multiple-Criteria Analysis<br />

Statistical-empirical <strong>permafrost</strong> models relate <strong>permafrost</strong><br />

occurrences to topoclimatic factors (such as<br />

altitude, slope and aspect, mean air temperature, or<br />

solar radiation), which can easily be measured or<br />

computed. This type <strong>of</strong> model is widely used <strong>in</strong><br />

mounta<strong>in</strong> <strong>permafrost</strong> studies (see also Hoelzle et al.,<br />

2001), assumes equilibrium conditions and usually<br />

relies on basal temperature <strong>of</strong> the snow cover (BTS),<br />

temperatures measured with m<strong>in</strong>iature data loggers,<br />

geophysical <strong>in</strong>vestigations, or the existence <strong>of</strong> specific<br />

landforms (rock glaciers) as evidence <strong>of</strong> <strong>permafrost</strong><br />

occurrence. In the early 1990s, the availability <strong>of</strong><br />

Geographical Information Systems (GIS) allowed the<br />

first estimation and visualisation <strong>of</strong> the spatial<br />

distribution <strong>of</strong> <strong>permafrost</strong> <strong>in</strong> steep mounta<strong>in</strong>s. PER-<br />

MAKART (Keller, 1992) uses an empirical topographic<br />

key for <strong>permafrost</strong> distribution and <strong>in</strong> the<br />

PERMAMAP approach <strong>of</strong> Hoelzle and Haeberli<br />

(1995), BTS measurements, which are associated<br />

with the presence or absence <strong>of</strong> <strong>permafrost</strong>, are<br />

statistically related to mean annual air temperature<br />

(MAAT, estimated us<strong>in</strong>g nearby climate station<br />

records) and potential direct solar radiation dur<strong>in</strong>g<br />

the snow-free season, calculated us<strong>in</strong>g digital<br />

elevation models (DEMs) (Funk and Hoelzle,<br />

1992). The challenges with these approaches <strong>in</strong>clude<br />

the <strong>of</strong>ten <strong>in</strong>direct nature <strong>of</strong> the driv<strong>in</strong>g <strong>in</strong>formation on<br />

<strong>permafrost</strong>, the strong <strong>in</strong>terannual variability <strong>of</strong> BTS,<br />

and the need to recalibrate for different environments.<br />

Statistical-empirical models usually estimate mean<br />

ground temperatures or provide measures <strong>of</strong> <strong>permafrost</strong><br />

probability.<br />

For small-scale mapp<strong>in</strong>g <strong>of</strong> large mounta<strong>in</strong> areas,<br />

MAAT is <strong>of</strong>ten used as the sole predictor <strong>of</strong> <strong>permafrost</strong><br />

occurrence, us<strong>in</strong>g thresholds based on field measurements.<br />

This approach <strong>in</strong>volves the spatial <strong>in</strong>terpolation<br />

<strong>of</strong> air temperature patterns from a common reference<br />

elevation (usually sea level) and the subsequent<br />

calculation <strong>of</strong> the near-surface MAAT us<strong>in</strong>g a DEM<br />

and a (sometimes spatially variable) lapse rate. Studies <strong>in</strong><br />

southern Norway and Iceland have shown that a MAAT<br />

<strong>of</strong> 3to 48C is a good estimate for the regional limit <strong>of</strong><br />

the lower mounta<strong>in</strong> <strong>permafrost</strong> boundary (Etzelmüller<br />

et al., 2003, 2007). These threshold values are normally<br />

estimated based on ground surface temperature data<br />

from several locations, or other proxy <strong>in</strong>formation such<br />

as landforms. The result<strong>in</strong>g mounta<strong>in</strong> <strong>permafrost</strong><br />

distributions are then compared with more local-scale<br />

Copyright # 2008 John Wiley & Sons, Ltd. Permafrost and Periglac. Process., 19: 137–156 (2008)<br />

DOI: 10.1002/ppp


142 D. Riseborough et al.<br />

observations or maps, confirm<strong>in</strong>g the overall spatial<br />

pattern for Scand<strong>in</strong>avia (e.g. Isaksen et al., 2002;<br />

Heggem et al., 2005; Etzelmüller et al., 2007; Farbrot<br />

et al., 2008).<br />

For more remote areas or regions with sparse data<br />

on <strong>permafrost</strong> <strong>in</strong>dicators, multi-criteria approaches<br />

with<strong>in</strong> a GIS framework have been applied to generate<br />

maps <strong>of</strong> ‘<strong>permafrost</strong> favorability’. Here, scores were<br />

derived for s<strong>in</strong>gle factors (elevation, topographic<br />

wetness, potential solar radiation, vegetation) based<br />

on simple logistic regression or basic process understand<strong>in</strong>g,<br />

with the sum <strong>of</strong> the derived probabilities<br />

used as a measure <strong>of</strong> <strong>permafrost</strong> favourability <strong>in</strong> a<br />

given location (Etzelmüller et al., 2006).<br />

Numerical Models<br />

The limitations <strong>of</strong> equilibrium models have spurred<br />

the recent adaptation <strong>of</strong> transient numerical simulation<br />

models <strong>in</strong> spatial applications. Numerical models are<br />

flexible enough to accommodate highly variable<br />

materials, geometries and boundary conditions. Most<br />

thermal models for geoscience applications are<br />

implemented by simulat<strong>in</strong>g vertical ground temperature<br />

pr<strong>of</strong>iles <strong>in</strong> one dimension employ<strong>in</strong>g a f<strong>in</strong>itedifference<br />

or f<strong>in</strong>ite-element form <strong>of</strong> equation 1,<br />

usually follow<strong>in</strong>g a standard procedure:<br />

1. Def<strong>in</strong>e the modelled space: set a start<strong>in</strong>g po<strong>in</strong>t <strong>in</strong><br />

time, and upper and lower boundaries.<br />

2. Divide cont<strong>in</strong>uous space <strong>in</strong>to f<strong>in</strong>ite pieces (a grid <strong>of</strong><br />

nodes or elements) and cont<strong>in</strong>uous time <strong>in</strong>to f<strong>in</strong>ite<br />

time steps.<br />

3. Specify the thermal properties <strong>of</strong> the soil materials.<br />

4. Specify the temperature or heat flow conditions as a<br />

function <strong>of</strong> time (i.e. for each time step) for the<br />

upper and lower boundaries.<br />

5. Specify an <strong>in</strong>itial temperature for every po<strong>in</strong>t <strong>in</strong> the<br />

pr<strong>of</strong>ile.<br />

6. For each time step after the start<strong>in</strong>g time, the new<br />

temperature pr<strong>of</strong>ile is calculated, based on the<br />

comb<strong>in</strong>ation <strong>of</strong> thermal properties, antecedent<br />

and boundary conditions.<br />

While the use <strong>of</strong> numerical models allows the<br />

accommodation <strong>of</strong> heterogeneity <strong>in</strong> both space and<br />

time, it also gives rise to the problem <strong>of</strong> actually<br />

supply<strong>in</strong>g spatial data fields <strong>of</strong> material properties<br />

and <strong>in</strong>itial conditions.<br />

Upper Boundary Conditions<br />

Upper boundary temperature conditions <strong>in</strong> numerical<br />

models can be specified <strong>in</strong> various ways. Temperatures<br />

may be specified for the ground surface directly or<br />

us<strong>in</strong>g n factors (e.g. Duchesne et al., 2008);<br />

alternately, when snow cover is present the temperature<br />

at the snow surface may be specified so that<br />

ground surface temperature is determ<strong>in</strong>ed by heat flow<br />

between the snow and the ground (e.g. Oelke and<br />

Zhang, 2004). The most elaborate method <strong>of</strong><br />

establish<strong>in</strong>g the surface boundary temperature is by<br />

calculation <strong>of</strong> the surface energy balance to determ<strong>in</strong>e<br />

the equilibrium temperature (Budyko, 1958) at the<br />

snow or ground surface (e.g. Zhang et al., 2003).<br />

Surface energy-balance models generally employ a<br />

radiation balance with partition<strong>in</strong>g <strong>of</strong> atmospheric<br />

sensible and latent heat us<strong>in</strong>g aerodynamic theory. The<br />

earlier generation <strong>of</strong> <strong>permafrost</strong> models generally<br />

employed data that were collected locally for<br />

site-specific application, <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>com<strong>in</strong>g solar<br />

radiation, w<strong>in</strong>d speed and air temperature (e.g. Outcalt<br />

et al., 1975; Ng and Miller, 1977; Mittaz et al., 2000).<br />

Spatial <strong>permafrost</strong> modell<strong>in</strong>g at regional (H<strong>in</strong>zman<br />

et al., 1998; Chen et al., 2003) and cont<strong>in</strong>ental<br />

(Anisimov, 1989; Zhang et al., 2007) scales has<br />

required a less site-specific approach to the energy<br />

balance, with short-wave radiation attenuated through<br />

the atmosphere, w<strong>in</strong>d fields modified by local<br />

conditions based on satellite-derived leaf area <strong>in</strong>dices,<br />

etc., <strong>of</strong>ten with climatic conditions obta<strong>in</strong>ed from<br />

GCM output (e.g. Sushama et al., 2007). In mounta<strong>in</strong><br />

areas, extreme spatial variability requires the parameterisation<br />

<strong>of</strong> the <strong>in</strong>fluence <strong>of</strong> topography on surface<br />

micro-climatology for the derivation <strong>of</strong> spatially<br />

distributed <strong>in</strong>formation about temperature and snow<br />

cover (cf. Stocker-Mittaz et al., 2002; Gruber, 2005).<br />

SPATIAL MODELS<br />

Application <strong>of</strong> the types <strong>of</strong> models described <strong>in</strong> the<br />

previous sections to the simulation and prediction <strong>of</strong><br />

<strong>permafrost</strong> distribution at cont<strong>in</strong>ental, regional and<br />

local scales is discussed <strong>in</strong> the follow<strong>in</strong>g sections.<br />

Mounta<strong>in</strong> <strong>permafrost</strong> models are discussed <strong>in</strong> a separate<br />

section, as is recent work <strong>in</strong>corporat<strong>in</strong>g <strong>permafrost</strong> <strong>in</strong>to<br />

General Circulation Model (GCM) land surface<br />

schemes.<br />

Cont<strong>in</strong>ental/circumpolar<br />

Due to the strong dependence <strong>of</strong> <strong>permafrost</strong> conditions<br />

on regional climate, geocryological spatial modell<strong>in</strong>g<br />

has been dom<strong>in</strong>ated by national- to circumpolar-scale<br />

(i.e. small scale) studies <strong>in</strong> which broad spatial<br />

patterns can be related to a few readily available<br />

Copyright # 2008 John Wiley & Sons, Ltd. Permafrost and Periglac. Process., 19: 137–156 (2008)<br />

DOI: 10.1002/ppp


climatic parameters. The empirical methods frequently<br />

used to assess <strong>permafrost</strong> distribution at these<br />

scales implicitly assume that the thermal regime <strong>of</strong><br />

near-surface <strong>permafrost</strong> is determ<strong>in</strong>ed by modern<br />

climatic conditions. The use <strong>of</strong> macro-scale patterns <strong>of</strong><br />

climatic parameters to <strong>in</strong>fer the configuration <strong>of</strong><br />

<strong>permafrost</strong> zones was first proposed by G. Wild<br />

(Shiklomanov, 2005), who was able to correlate the<br />

southern boundary <strong>of</strong> <strong>permafrost</strong> with the 28C<br />

isotherm <strong>of</strong> MAAT (Wild, 1882). Such simple<br />

empirical relations were frequently used throughout<br />

the twentieth century for <strong>permafrost</strong> regionalisation<br />

(Heg<strong>in</strong>bottom, 2002), although they do not account for<br />

the thermal <strong>in</strong>ertia <strong>of</strong> <strong>permafrost</strong>.<br />

Equilibrium Models.<br />

The Frost Number model was applied successfully<br />

to central Canada (Nelson, 1986) and cont<strong>in</strong>ental<br />

Europe (Nelson and Anisimov, 1993) for modern<br />

climatic conditions. Calculated boundaries <strong>of</strong> cont<strong>in</strong>uous<br />

and discont<strong>in</strong>uous <strong>permafrost</strong> were <strong>in</strong> satisfactory<br />

agreement with exist<strong>in</strong>g geocryological maps.<br />

The Frost Number was used with an empirical<br />

scenario derived from palaeoanalogues and with<br />

output from several GCMs to predict the future<br />

distribution <strong>of</strong> ‘climatic’ <strong>permafrost</strong> <strong>in</strong> the northern<br />

hemisphere (Anisimov and Nelson, 1996; Anisimov<br />

and Nelson, 1997). An alternative approach was used<br />

by Smith and Riseborough (2002) to evaluate the<br />

conditions controll<strong>in</strong>g the limits and cont<strong>in</strong>uity <strong>of</strong><br />

<strong>permafrost</strong> <strong>in</strong> the Canadian Arctic by means <strong>of</strong> the<br />

TTOP model. Us<strong>in</strong>g a model derived from the TTOP<br />

model, based primarily on the roles <strong>of</strong> snow and soil<br />

thermal properties on the thermal effect <strong>of</strong> the w<strong>in</strong>ter<br />

snow cover, Riseborough (2004) produced maps <strong>of</strong> the<br />

southern boundary <strong>of</strong> <strong>permafrost</strong> <strong>in</strong> Canada for a range<br />

<strong>of</strong> substrate conditions.<br />

Several variations <strong>of</strong> the Kudryavtsev model have<br />

been used with GIS technology to calculate both<br />

active-layer thickness and mean annual ground temperatures<br />

at circum-arctic scales (Anisimov et al.,<br />

1997). The thermal and physical properties <strong>of</strong> snow,<br />

vegetation, and organic and m<strong>in</strong>eral soils were fixed<br />

both spatially and temporally. These properties were<br />

varied stochastically with<strong>in</strong> a range <strong>of</strong> published data for<br />

each grid cell, produc<strong>in</strong>g a range <strong>of</strong> geographically<br />

vary<strong>in</strong>g active-layer estimates. The f<strong>in</strong>al active-layer<br />

field was produced by averag<strong>in</strong>g <strong>of</strong> <strong>in</strong>termediate results.<br />

The model was extensively used to evaluate the<br />

potential changes <strong>in</strong> active-layer thickness under<br />

different climate change scenarios at circumpolar<br />

(Anisimov et al., 1997) and cont<strong>in</strong>ental (Anisimov<br />

and Reneva, 2006) scales, to assess the hazard potential<br />

associated with progressive deepen<strong>in</strong>g <strong>of</strong> the active<br />

<strong>Recent</strong> Advances <strong>in</strong> Permafrost Modell<strong>in</strong>g 143<br />

layer (Nelson et al., 2001, 2002; Anisimov and Reneva,<br />

2006) and to evaluate the emission <strong>of</strong> greenhouse gases<br />

from the Arctic wetlands under global warm<strong>in</strong>g<br />

conditions for Russian territory (Anisimov et al.,<br />

2005; Anisimov and Reneva, 2006).<br />

Numerical Models.<br />

A one-dimensional f<strong>in</strong>ite-difference model for heat<br />

conduction with phase change and a snow rout<strong>in</strong>e<br />

(Goodrich, 1978, 1982) has been adapted at the National<br />

Snow and Ice Data Center (NSIDC) to simulate soil<br />

freeze/thaw processes at regional or hemispheric scales<br />

(Oelke et al., 2003, 2004; Zhang T. et al., 2005). The<br />

NSIDC <strong>permafrost</strong> model requires gridded fields <strong>of</strong><br />

daily meteorological parameters (air temperature,<br />

precipitation), snow depth and soil moisture content,<br />

as well as spatial representation <strong>of</strong> soil properties, land<br />

cover categories, and DEMs to evaluate the daily<br />

progression <strong>of</strong> freeze/thaw cycles and soil temperature<br />

at specified depth(s) over the modell<strong>in</strong>g doma<strong>in</strong>. Initial<br />

soil temperatures are prescribed from available empirical<br />

observations associated with <strong>permafrost</strong> classification<br />

from the International Permafrost Association’s<br />

Circum-Arctic Permafrost Map (Brown, 1997; Zhang<br />

et al., 1999), with a grid resolution <strong>of</strong> 25 km 25 km.<br />

The numerical model has been shown to provide<br />

excellent results for active-layer depth and <strong>permafrost</strong><br />

temperatures (Zhang et al., 1996; Zhang and Stamnes,<br />

1998) when driven with well-known boundary conditions<br />

and forc<strong>in</strong>g parameters at specific locations.<br />

Several numerical models have been developed<br />

recently for simulat<strong>in</strong>g <strong>permafrost</strong> evolution at<br />

cont<strong>in</strong>ental scales. The Ma<strong>in</strong> Geophysical Observatory<br />

(St Petersburg) model was developed for Russian<br />

territory, us<strong>in</strong>g pr<strong>in</strong>ciples similar to those applied at<br />

the NSIDC but differ<strong>in</strong>g <strong>in</strong> computational details and<br />

parameterisations. In particular, the model was<br />

designed to be driven by GCM output to provide a<br />

substitute for unavailable empirical observations<br />

(Malevsky-Malevich et al., 2001; Molkent<strong>in</strong> et al.,<br />

2001).<br />

Zhang et al. (2006) developed the Northern<br />

Ecosystem Soil Temperature (NEST) numeric model<br />

to simulate the evolution <strong>of</strong> the ground thermal regime<br />

<strong>of</strong> the Canadian landmass s<strong>in</strong>ce the Little Ice<br />

Age (1850) (Figure 2). The model explicitly considered<br />

the effects <strong>of</strong> differ<strong>in</strong>g ground conditions, <strong>in</strong>clud<strong>in</strong>g<br />

vegetation, snow, forest floor or moss layers, peat layers,<br />

m<strong>in</strong>eral soils and bedrock. Soil temperature dynamics<br />

were simulated with the upper boundary condition (the<br />

ground surface or snow surface when snow is present)<br />

determ<strong>in</strong>ed by the surface energy balance and the lower<br />

boundary condition (at a depth <strong>of</strong> 120 m) def<strong>in</strong>ed by the<br />

geothermal heat flux (Zhang et al., 2003). The NEST<br />

Copyright # 2008 John Wiley & Sons, Ltd. Permafrost and Periglac. Process., 19: 137–156 (2008)<br />

DOI: 10.1002/ppp


144 D. Riseborough et al.<br />

Figure 2 Modelled changes <strong>in</strong> depth to the <strong>permafrost</strong> base from<br />

the 1850s to the 1990s, simulated us<strong>in</strong>g the Northern Ecosystem Soil<br />

Temperature numeric model (Zhang et al., 2006).<br />

model operates at half-degree latitude/longitude resolution<br />

and requires <strong>in</strong>puts relat<strong>in</strong>g to vegetation<br />

(vegetation type and leaf area <strong>in</strong>dex), ground conditions<br />

(thickness <strong>of</strong> forest floor and peat, m<strong>in</strong>eral soil texture<br />

and organic carbon content, ground ice content, thermal<br />

conductivity <strong>of</strong> bedrock and geothermal heat flux) and<br />

atmospheric climate (air temperature, precipitation,<br />

solar radiation, vapour pressure and w<strong>in</strong>d speed).<br />

Marchenko et al. (2008) developed University <strong>of</strong><br />

Alaska Fairbanks-Geophysical Institute Permafrost<br />

Lab model Version 2 (UAF-GIPL 2.0), an Alaskaspecific,<br />

implicit f<strong>in</strong>ite-difference, numerical model<br />

(Tipenko et al., 2004). The formulation <strong>of</strong> the<br />

one-dimensional Stefan problem (Alexiades and<br />

Solomon, 1993; Verdi, 1994) makes it possible to<br />

use coarse vertical resolution without loss <strong>of</strong><br />

latent-heat effects <strong>in</strong> the phase transition zone, even<br />

under conditions <strong>of</strong> rapid or abrupt changes <strong>in</strong> the<br />

temperature fields. Soil freez<strong>in</strong>g and thaw<strong>in</strong>g follow<br />

the unfrozen water content curve <strong>in</strong> the model,<br />

specified for each grid po<strong>in</strong>t and soil layer, down to the<br />

depth <strong>of</strong> constant geothermal heat flux (typically 500<br />

to 1000 m). The model uses gridded fields <strong>of</strong> monthly<br />

air temperature, snow depth, soil moisture, and<br />

thermal properties <strong>of</strong> snow, vegetation and soil at<br />

0.58 0.58 resolution. Extensive field observations<br />

from representative locations characteristic <strong>of</strong> the<br />

major physiographic units <strong>of</strong> Alaska were used to<br />

develop gridded fields <strong>of</strong> soil thermal properties and<br />

moisture conditions.<br />

Non-l<strong>in</strong>earity <strong>of</strong> sub-grid scale processes may lead to<br />

biased estimation <strong>of</strong> <strong>permafrost</strong> parameters when <strong>in</strong>put<br />

data and computational results are averaged at the grid<br />

scale. While coarse spatial resolution is sufficient for<br />

many small-scale geocryological applications such as<br />

<strong>permafrost</strong> regionalisation, evaluation <strong>of</strong> spatial variations<br />

<strong>in</strong> near surface <strong>permafrost</strong> temperature and the<br />

active layer should account for more localised spatial<br />

variability. This problem is addressed to some extent by<br />

regional, spatial <strong>permafrost</strong> models.<br />

Local/regional<br />

In general the approaches to <strong>permafrost</strong> modell<strong>in</strong>g<br />

at regional scale are similar to those at small<br />

geographical scale. However, regional, spatial <strong>permafrost</strong><br />

models are applied <strong>in</strong> areas for which significant<br />

amounts <strong>of</strong> data are available, with the underly<strong>in</strong>g<br />

pr<strong>in</strong>ciple to ‘stay close to the data’. Available<br />

observations allow comprehensive analysis <strong>of</strong> landscape-specific<br />

(vegetation, topography, soil properties<br />

and composition) and climatic (air temperature and<br />

its amplitude, snow cover, precipitation) characteristics<br />

that <strong>in</strong>fluence the ground thermal regime and<br />

provide realistic parameterisations for high-resolution<br />

modell<strong>in</strong>g.<br />

Empirical Models.<br />

Us<strong>in</strong>g empirically derived landscape-specific edaphic<br />

parameters represent<strong>in</strong>g the response <strong>of</strong> the active layer<br />

and <strong>permafrost</strong> to both climatic forc<strong>in</strong>g and local factors<br />

(soil properties, moisture conditions and vegetation),<br />

empirical spatial modell<strong>in</strong>g was successfully applied to<br />

high-resolution spatial modell<strong>in</strong>g <strong>of</strong> the annual thaw<br />

depth propagation over the 29 000 km 2 Kuparuk region<br />

<strong>in</strong> north-central Alaska (Nelson et al., 1997; Shiklomanov<br />

and Nelson, 2002) and the northern portion <strong>of</strong><br />

west Siberia (Shiklomanov et al., 2008). Zhang T. et al.<br />

(2005) used a landscape-sensitivity approach <strong>in</strong> conjunction<br />

with Russian historic ground temperature<br />

measurements to evaluate spatial and temporal variability<br />

<strong>in</strong> active-layer thickness over several Russian<br />

arctic dra<strong>in</strong>age bas<strong>in</strong>s.<br />

Equilibrium Models (Kudryavtsev, Stefan<br />

and TTOP).<br />

The Kudryavtsev approach was applied successfully<br />

over the Kuparuk region <strong>of</strong> north-central Alaska<br />

by Shiklomanov and Nelson (1999) for highresolution<br />

(1 km 2 ) characterisation <strong>of</strong> active-layer<br />

thickness and was used as the basis for the GIPL 1.0,<br />

an <strong>in</strong>teractive GIS model designed to estimate the<br />

long-term response <strong>of</strong> <strong>permafrost</strong> to changes <strong>in</strong><br />

climate. The GIPL 1.0 model has been applied to<br />

detailed analysis <strong>of</strong> <strong>permafrost</strong> conditions over two<br />

regional transects <strong>in</strong> Alaska and eastern Siberia<br />

(Sazonova and Romanovsky, 2003). In particular it<br />

Copyright # 2008 John Wiley & Sons, Ltd. Permafrost and Periglac. Process., 19: 137–156 (2008)<br />

DOI: 10.1002/ppp


was used to simulate the dynamics <strong>of</strong> active-layer<br />

thickness and ground temperature, both retrospectively<br />

and prognostically, us<strong>in</strong>g climate forc<strong>in</strong>g from<br />

six GCMs (Sazonova et al., 2004). To ref<strong>in</strong>e its spatial<br />

resolution, the GIPL 1.0 model was used <strong>in</strong> conjunction<br />

with a regional climate model (RCM) to provide<br />

more realistic trends <strong>of</strong> <strong>permafrost</strong> dynamics over the<br />

east-Siberian transect (Stendel et al., 2007).<br />

Stefan-based methods range from straightforward<br />

computational algorithms requir<strong>in</strong>g determ<strong>in</strong>istic<br />

specification <strong>of</strong> <strong>in</strong>put parameters (gridded fields <strong>of</strong><br />

thaw<strong>in</strong>g <strong>in</strong>dices, thermal properties <strong>of</strong> soil, moisture/<br />

ice content and land cover characteristics, and terra<strong>in</strong><br />

models) (Klene et al., 2001) to establish<strong>in</strong>g empirical<br />

and semi-empirical relationships between variables<br />

based on comprehensive field sampl<strong>in</strong>g (Nelson et al.,<br />

1997; Shiklomanov and Nelson, 2002). These<br />

methods were used for high-resolution mapp<strong>in</strong>g <strong>of</strong><br />

the active layer <strong>in</strong> the Kuparuk region (Klene et al.,<br />

2001) and for detailed spatial characterisation <strong>of</strong><br />

active-layer thickness <strong>in</strong> an urbanised area <strong>in</strong> the<br />

Arctic (Klene et al., 2003).<br />

Wright et al. (2003) used the TTOP formulation for<br />

high-resolution (1 km 2 ) characterisation <strong>of</strong> <strong>permafrost</strong><br />

distribution and thickness <strong>in</strong> the broader Mackenzie<br />

River valley, north <strong>of</strong> 608N. The TTOP model<br />

calibrated for the Mackenzie region us<strong>in</strong>g observations<br />

<strong>of</strong> <strong>permafrost</strong> occurrence and thickness at 154<br />

geotechnical borehole sites along the Norman Wells<br />

Pipel<strong>in</strong>e provided good general agreement with<br />

currently available <strong>in</strong>formation. The results <strong>in</strong>dicate<br />

that given adequate empirically derived parameterisations,<br />

the simple TTOP model is well suited for<br />

regional-scale GIS-based mapp<strong>in</strong>g applications and<br />

<strong>in</strong>vestigations <strong>of</strong> the potential impacts <strong>of</strong> climate<br />

change on <strong>permafrost</strong>.<br />

Numerical Models.<br />

Although empirical and equilibrium approaches<br />

currently dom<strong>in</strong>ate spatial <strong>permafrost</strong> modell<strong>in</strong>g at a<br />

regional scale, several numerical models were adopted<br />

for regional applications to provide spatial-temporal<br />

evolution <strong>of</strong> <strong>permafrost</strong> parameters.<br />

A regional, spatial, numerical thermal model was<br />

developed by H<strong>in</strong>zman et al. (1998) and applied to<br />

simulate active layer and <strong>permafrost</strong> processes over<br />

the Kuparuk region, the North Slope <strong>of</strong> Alaska, at<br />

1km 2 resolution. The model utilises a surface energy<br />

balance and subsurface f<strong>in</strong>ite-element formulations to<br />

calculate the temperature pr<strong>of</strong>ile and the depth <strong>of</strong> thaw.<br />

Meteorological data were provided by a local highdensity<br />

observational network and surface and<br />

subsurface characteristics were spatially <strong>in</strong>terpolated<br />

based on measurements collected <strong>in</strong> typical landform<br />

and vegetation units.<br />

Duchesne et al. (2008) use a one-dimensional<br />

f<strong>in</strong>ite-element heat conduction model <strong>in</strong>tegrated with<br />

a GIS to <strong>in</strong>vestigate the transient impact <strong>of</strong> climate<br />

change on <strong>permafrost</strong> over three areas <strong>of</strong> <strong>in</strong>tensive<br />

human activity <strong>in</strong> the Mackenzie valley (Figure 3).<br />

The model uses extensive field survey data and<br />

exist<strong>in</strong>g regional maps <strong>of</strong> surface and subsurface<br />

characteristics as <strong>in</strong>put parameters to predict <strong>permafrost</strong><br />

distribution and temperature characteristics at<br />

high resolution (1 km 2 ), and facilitates transient<br />

modell<strong>in</strong>g <strong>of</strong> <strong>permafrost</strong> evolution over selected time<br />

frames. Statistical validation <strong>of</strong> modell<strong>in</strong>g results<br />

<strong>in</strong>dicates a reasonable level <strong>of</strong> confidence <strong>in</strong> model<br />

performance for applications specific to the Mackenzie<br />

River valley.<br />

Mounta<strong>in</strong>s<br />

<strong>Recent</strong> Advances <strong>in</strong> Permafrost Modell<strong>in</strong>g 145<br />

The lateral variability <strong>of</strong> surface micro-climate and<br />

subsurface conditions is far greater <strong>in</strong> mounta<strong>in</strong>s than<br />

<strong>in</strong> lowland environments. The processes that govern<br />

the existence and evolution <strong>of</strong> mounta<strong>in</strong> <strong>permafrost</strong><br />

can be categorised <strong>in</strong>to the scales and process doma<strong>in</strong>s<br />

<strong>of</strong> climate, topography and ground conditions<br />

(Figure 4). At the global scale, latitude and global<br />

circulation patterns determ<strong>in</strong>e the distribution <strong>of</strong> cold<br />

mounta<strong>in</strong> climates. These climatic conditions are<br />

modified locally by topography, <strong>in</strong>fluenc<strong>in</strong>g microclimate<br />

and surface temperature due to differences <strong>in</strong><br />

ambient air temperature caused by elevation, differences<br />

<strong>in</strong> solar radiation caused by terra<strong>in</strong> shape and<br />

orientation, and differences <strong>in</strong> snow cover due to<br />

transport by w<strong>in</strong>d and avalanches. The <strong>in</strong>fluence <strong>of</strong><br />

topographically altered climate conditions on ground<br />

temperatures is further modified locally by the<br />

physical and thermal properties <strong>of</strong> the ground.<br />

Substrate materials with high ice content can<br />

significantly retard warm<strong>in</strong>g and <strong>permafrost</strong> degradation<br />

at depth, while, especially <strong>in</strong> mounta<strong>in</strong>ous<br />

terra<strong>in</strong>, coarse blocky layers promote ground cool<strong>in</strong>g<br />

relative to bedrock or f<strong>in</strong>e-gra<strong>in</strong>ed substrates (Hanson<br />

and Hoelzle, 2004; Juliussen and Humlum, 2008).<br />

Conceptually, these three scales and process doma<strong>in</strong>s<br />

are useful <strong>in</strong> understand<strong>in</strong>g the diverse <strong>in</strong>fluences on<br />

mounta<strong>in</strong> <strong>permafrost</strong> characteristics and the differences<br />

between modell<strong>in</strong>g approaches, although<br />

divisions between scales are not sharply def<strong>in</strong>ed.<br />

The overall magnitude <strong>of</strong> the effect <strong>of</strong> topography on<br />

ground temperature conditions can be as high as 158C<br />

with<strong>in</strong> a horizontal distance <strong>of</strong> 1 km — comparable to<br />

the effect <strong>of</strong> a latitud<strong>in</strong>al distance <strong>of</strong> 1000 km <strong>in</strong> polar<br />

lowland areas.<br />

Copyright # 2008 John Wiley & Sons, Ltd. Permafrost and Periglac. Process., 19: 137–156 (2008)<br />

DOI: 10.1002/ppp


146 D. Riseborough et al.<br />

Figure 3 Near-surface <strong>permafrost</strong> temperature <strong>in</strong> the Fort Simpson region <strong>of</strong> Northwest Territories, Canada, simulated us<strong>in</strong>g a<br />

f<strong>in</strong>ite-element model with surface boundary conditions (n factors, subsurface properties) derived from satellite and map-based vegetation<br />

characteristics (Duchesne et al., 2008).<br />

Empirical-Statistical and Analytical<br />

Distributed Models.<br />

Lewkowicz and Ednie (2004) designed a BTS- and<br />

radiation-based statistical model <strong>in</strong> the Yukon Territory<br />

<strong>in</strong> Canada, us<strong>in</strong>g an extensive set <strong>of</strong> observations <strong>in</strong> pits<br />

for calibration and validation. Lewkowicz and Bonnaventure<br />

(2008) exam<strong>in</strong>ed strategies for transferr<strong>in</strong>g<br />

BTS-based statistical models to other regions, with the<br />

aim <strong>of</strong> modell<strong>in</strong>g <strong>permafrost</strong> probabilities over the<br />

extensive mounta<strong>in</strong> areas <strong>of</strong> western Canada. Brenn<strong>in</strong>g<br />

Figure 4 Conceptual hierarchy <strong>of</strong> scales and process doma<strong>in</strong>s that <strong>in</strong>fluence ground temperature and <strong>permafrost</strong> conditions <strong>in</strong> mounta<strong>in</strong><br />

areas. The white disk <strong>in</strong> the two leftmost images refers to a location that is then depicted <strong>in</strong> the image to the right — and has its conditions<br />

further overpr<strong>in</strong>ted by the respective conditions at that scale.<br />

Copyright # 2008 John Wiley & Sons, Ltd. Permafrost and Periglac. Process., 19: 137–156 (2008)<br />

DOI: 10.1002/ppp


et al. (2005) have outl<strong>in</strong>ed statistical techniques for<br />

improv<strong>in</strong>g the def<strong>in</strong>ition <strong>of</strong> such models, as well as for<br />

design<strong>in</strong>g effective measurement campaigns.<br />

A very simple alternative approach is to represent<br />

the <strong>in</strong>fluence <strong>of</strong> solar radiation on ground temperatures<br />

us<strong>in</strong>g a model <strong>of</strong> the form: MAGT ¼ MAAT<br />

þ a þ b PR, where PR is the potential direct shortwave<br />

radiation, MAGT is the mean annual ground<br />

temperature, and a, b are model constants. This<br />

approach is usually limited by the available data for<br />

MAGT but can be a valuable first guess <strong>in</strong> remote<br />

locations (cf. Abramov et al., 2008).<br />

DEM-derived topographic parameters and <strong>in</strong>formation<br />

derived from satellite images <strong>of</strong>fer the potential<br />

for more accurate <strong>permafrost</strong> distribution modell<strong>in</strong>g <strong>in</strong><br />

remote mounta<strong>in</strong>ous areas. Heggem et al. (2006)<br />

estimated the spatial distribution <strong>of</strong> mean annual ground<br />

surface temperature and active-layer thickness based on<br />

measured ground surface temperatures <strong>in</strong> different<br />

landscape classes def<strong>in</strong>ed by topographic parameters<br />

(elevation, potential solar radiation, wetness <strong>in</strong>dex) and<br />

satellite image-derived factors (forest and grass cover).<br />

A s<strong>in</strong>e function was fitted to the surface temperature<br />

measurements (parameterised as the mean annual<br />

temperature and amplitude), provid<strong>in</strong>g <strong>in</strong>put for the<br />

Stefan equation. Unlike the statistical approaches, this<br />

allowed the spatial mapp<strong>in</strong>g <strong>of</strong> simulated ground<br />

surface temperature and active-layer thickness fields<br />

for chang<strong>in</strong>g temperature or snow cover.<br />

Juliussen and Humlum (2007) proposed a TTOPtype<br />

model adapted for mounta<strong>in</strong> areas. Elevation<br />

change is described through air temperatures, while<br />

slope dependencies are parameterised by potential<br />

solar radiation as a multiplicative summer-thaw n<br />

factor, <strong>in</strong>clud<strong>in</strong>g parameterisation for convective flow<br />

<strong>in</strong> blocky material. While there are benefits to this<br />

approach (such as a broad base <strong>of</strong> experience <strong>in</strong><br />

lowland areas), the multiplicative treatment <strong>of</strong> solar<br />

radiation <strong>in</strong> the n factors will lead to problems when<br />

used over large ranges <strong>in</strong> elevation and needs further<br />

study. For Iceland, Etzelmüller et al. (2008) used the<br />

TTOP-modell<strong>in</strong>g approach to estimate the <strong>in</strong>fluence <strong>of</strong><br />

snow cover on <strong>permafrost</strong> existence at four mounta<strong>in</strong><br />

sites. The results were compared aga<strong>in</strong>st transient heat<br />

flow modell<strong>in</strong>g <strong>of</strong> borehole temperatures. Both studies<br />

show a high variability <strong>of</strong> w<strong>in</strong>ter n factors through the<br />

years <strong>of</strong> monitor<strong>in</strong>g.<br />

Transient Models, Energy-balance Modell<strong>in</strong>g and<br />

RCM-Coupl<strong>in</strong>g.<br />

In Scand<strong>in</strong>avia, one-dimensional transient models<br />

were applied to ground temperatures measured <strong>in</strong><br />

<strong>permafrost</strong> boreholes <strong>in</strong> Iceland (Farbrot et al., 2007;<br />

Etzelmüller et al., 2008).<br />

<strong>Recent</strong> Advances <strong>in</strong> Permafrost Modell<strong>in</strong>g 147<br />

The slope <strong>in</strong>stability associated with the rapid<br />

thermal response <strong>of</strong> <strong>permafrost</strong> <strong>in</strong> steep bedrock<br />

slopes (cf. Gruber and Haeberli, 2007) has led to<br />

<strong>in</strong>creased <strong>in</strong>terest <strong>in</strong> measurements (Gruber et al.,<br />

2003) and models (Gruber et al., 2004a, 2004b) <strong>of</strong><br />

near-surface rock temperatures <strong>in</strong> steep terra<strong>in</strong>. The<br />

physics-based modell<strong>in</strong>g (and validation) <strong>of</strong> temperatures<br />

<strong>in</strong> steep bedrock is an <strong>in</strong>terest<strong>in</strong>g subset <strong>of</strong><br />

modell<strong>in</strong>g the whole mounta<strong>in</strong> cryosphere, because<br />

the <strong>in</strong>fluence <strong>of</strong> topography on micro-climate is<br />

maximised, while the <strong>in</strong>fluence <strong>of</strong> all other factors is<br />

m<strong>in</strong>imal. The mostly th<strong>in</strong> snow cover on steep rock<br />

walls implies gravitational transport <strong>of</strong> snow and<br />

deposition at the foot <strong>of</strong> the slope. This is manifested<br />

<strong>in</strong> the occurrence <strong>of</strong> low-elevation <strong>permafrost</strong> as well<br />

as small glaciers that are entirely below the glacier<br />

equilibrium l<strong>in</strong>e altitude. A simple and fast algorithm<br />

for gravitational redistribution <strong>of</strong> snow (Gruber, 2007)<br />

is currently be<strong>in</strong>g tested <strong>in</strong> distributed energy-balance<br />

models (e.g. Strasser et al., 2007).<br />

Terra<strong>in</strong> geometry and highly variable upper boundary<br />

conditions determ<strong>in</strong>e the shape <strong>of</strong> the <strong>permafrost</strong> body,<br />

borehole temperature pr<strong>of</strong>iles (cf. Gruber et al., 2004c)<br />

and potential rates <strong>of</strong> <strong>permafrost</strong> degradation. Noetzli<br />

et al. (2007) have conducted detailed experiments with<br />

two- and three-dimensional thermal models, demonstrat<strong>in</strong>g<br />

that zones <strong>of</strong> very high lateral heat flux exist <strong>in</strong><br />

ridges and peaks, and that these zones are subject to<br />

accelerated degradation as warm<strong>in</strong>g takes place from<br />

several sides (Noetzli et al., 2008).<br />

The one-dimensional model SNOWPACK (Bartelt<br />

and Lehn<strong>in</strong>g, 2002), orig<strong>in</strong>ally developed to represent<br />

a highly differentiated seasonal snow cover, has been<br />

used <strong>in</strong> several pilot studies to <strong>in</strong>vestigate <strong>permafrost</strong><br />

(Luetschg et al., 2004; Luetschg and Haeberli, 2005).<br />

In this model, mass and energy transport as well as<br />

phase change processes are treated with equal detail<br />

throughout all snow and soil layers, with water<br />

transported <strong>in</strong> a l<strong>in</strong>ear reservoir cascade. The<br />

distributed model Alp<strong>in</strong>e3D (employ<strong>in</strong>g SNOW-<br />

PACK) can calculate or parameterise w<strong>in</strong>d transport<br />

<strong>of</strong> snow, terra<strong>in</strong>-reflected radiation and snow structure<br />

(Lehn<strong>in</strong>g et al., 2006).<br />

Freeze-thaw processes comb<strong>in</strong>ed with steep slopes<br />

produce significant fluctuations <strong>in</strong> water and ice content<br />

<strong>in</strong> the active layer <strong>of</strong> mounta<strong>in</strong> <strong>permafrost</strong>. GEOTop<br />

(Zanotti et al., 2004; Bertoldi et al., 2006; Rigon et al.,<br />

2006; Endrizzi, 2007) is a distributed hydrological<br />

model with coupled water and energy budgets that is<br />

specificallydesignedforuse<strong>in</strong>mounta<strong>in</strong>areasandis<br />

currently be<strong>in</strong>g adapted to <strong>permafrost</strong> research. While<br />

the parameterisation, <strong>in</strong>itialisation and validation <strong>of</strong><br />

such complex models are demand<strong>in</strong>g, the <strong>in</strong>itial results<br />

<strong>of</strong> this research are promis<strong>in</strong>g.<br />

Copyright # 2008 John Wiley & Sons, Ltd. Permafrost and Periglac. Process., 19: 137–156 (2008)<br />

DOI: 10.1002/ppp


148 D. Riseborough et al.<br />

In contrast to high-latitude mounta<strong>in</strong>s and lowlands,<br />

the central Asian mid-latitud<strong>in</strong>al <strong>permafrost</strong> <strong>of</strong> the<br />

Tien Shan Mounta<strong>in</strong>s can be attributed exclusively to<br />

elevation. In the <strong>in</strong>ner and eastern Tien Shan region the<br />

high level <strong>of</strong> solar radiation and high w<strong>in</strong>ds <strong>in</strong><br />

comb<strong>in</strong>ation with low atmospheric pressure and low<br />

humidity promote very <strong>in</strong>tensive evaporation/sublimation<br />

<strong>in</strong> the upper ground and can lead to the<br />

formation <strong>of</strong> unexpectedly thick <strong>permafrost</strong>, especially<br />

with<strong>in</strong> blocky debris (Haeberli et al., 1992; Harris,<br />

1996; Humlum, 1997; Harris and Pedersen, 1998;<br />

Delaloye et al., 2003; Gorbunov et al., 2004; Delaloye<br />

and Lambiel, 2005; Juliussen and Humlum, 2008;<br />

Gruber and Hoelzle, 2008). Spatial modell<strong>in</strong>g <strong>of</strong><br />

altitud<strong>in</strong>al <strong>permafrost</strong> <strong>in</strong> the Tien Shan and Altai<br />

mounta<strong>in</strong>s exam<strong>in</strong>ed both <strong>permafrost</strong> evolution over<br />

time and <strong>permafrost</strong> dynamics at the local scale for<br />

specific sites with<strong>in</strong> selected river bas<strong>in</strong>s (Marchenko,<br />

2001; Marchenko et al., 2007) and also at regional<br />

scale for the entire Tien Shan <strong>permafrost</strong> doma<strong>in</strong>.<br />

Regional-scale simulation used a multi-layered<br />

numerical soil model, <strong>in</strong>clud<strong>in</strong>g the latent heat <strong>of</strong><br />

fusion, with snow cover and vegetation hav<strong>in</strong>g<br />

time-dependent thermal properties. The model uses<br />

soil extend<strong>in</strong>g down to a depth at least <strong>of</strong> 100 m<br />

(without horizontal fluxes), and takes <strong>in</strong>to account<br />

convective cool<strong>in</strong>g with<strong>in</strong> coarse debris and underly<strong>in</strong>g<br />

soils (Marchenko, 2001). An <strong>in</strong>ternational team<br />

<strong>of</strong> experts is currently work<strong>in</strong>g on a unified <strong>permafrost</strong><br />

map <strong>of</strong> Central Asia (Lai et al., 2006), <strong>in</strong>clud<strong>in</strong>g the<br />

Altai Mounta<strong>in</strong> region. Figure 5 shows the first attempt<br />

to simulate the Altai’s spatially distributed altitud<strong>in</strong>al<br />

<strong>permafrost</strong>, with a 5-km grid size.<br />

Permafrost <strong>in</strong> Global/RCMs<br />

Until recently the transient response <strong>of</strong> <strong>permafrost</strong> to<br />

projected climate change has usually been modelled<br />

outside <strong>of</strong> GCMs, us<strong>in</strong>g GCM results only to force<br />

surface conditions, <strong>in</strong> what Nicolsky et al. (2007) call<br />

a ‘post-process<strong>in</strong>g approach’, primarily because the<br />

coarse subsurface resolution with<strong>in</strong> GCMs did not<br />

adequately represent <strong>permafrost</strong> processes. The<br />

representation <strong>of</strong> the soil column with<strong>in</strong> early GCM<br />

land surface schemes did not <strong>in</strong>clude freez<strong>in</strong>g and<br />

thaw<strong>in</strong>g processes, and most recent implementations<br />

<strong>in</strong>clude few soil layers and a soil column <strong>of</strong> less than<br />

10 m (e.g. Li and Koike, 2003; Lawrence and Slater,<br />

2005; Saha et al., 2006; Saito et al., 2007; Sushama<br />

et al., 2007). Christensen and Kuhry (2000) and<br />

Stendel and Christensen (2002) used RCM- and<br />

GCM-derived surface temperature <strong>in</strong>dices to model<br />

active-layer thickness us<strong>in</strong>g the Stefan equation, and<br />

<strong>permafrost</strong> distribution us<strong>in</strong>g the Frost Number model,<br />

Figure 5 (A) Location map for the Altai Mounta<strong>in</strong>s; (B) modelled<br />

<strong>permafrost</strong> distribution with<strong>in</strong> the northwest part <strong>of</strong> the region.<br />

while Stendel et al. (2007) evaluated <strong>permafrost</strong><br />

conditions by driv<strong>in</strong>g the Kudryavtsev model with<br />

GCM output downscaled to RCM resolution. Li and<br />

Koike (2003) and Yi et al. (2006) have developed<br />

schemes to improve the accuracy <strong>of</strong> frost l<strong>in</strong>e or<br />

active-layer thickness estimates with coarsely layered<br />

soils grids us<strong>in</strong>g modified forms <strong>of</strong> the Stefan<br />

equation.<br />

Lawrence and Slater (2005) modelled transient<br />

<strong>permafrost</strong> evolution directly with<strong>in</strong> the Community<br />

Climate System Model GCM (Coll<strong>in</strong>s et al., 2006) and<br />

Community Land Model Version 3 (CLM3) (Oleson<br />

et al., 2004). Their results generated significant<br />

discussion with<strong>in</strong> the <strong>permafrost</strong> community (Burn<br />

and Nelson, 2006; Lawrence and Slater, 2006; Delisle,<br />

2007; Yi et al., 2007) for reasons largely related to the<br />

shallow (3.43 m) soil pr<strong>of</strong>ile (see follow<strong>in</strong>g section on<br />

depth, memory and sp<strong>in</strong>-up), although Yi et al. (2007)<br />

also demonstrate the importance <strong>of</strong> the surface organic<br />

layer. Subsequent work on the geothermal component<br />

<strong>of</strong> CLM3 (Mölders and Romanovsky, 2006; Alexeev<br />

et al., 2007; Nicolsky et al., 2007) has clarified many<br />

issues <strong>in</strong>volved <strong>in</strong> account<strong>in</strong>g for the annual <strong>permafrost</strong><br />

regime. While a modified scheme has been<br />

evaluated aga<strong>in</strong>st long-term monitor<strong>in</strong>g data (Mölders<br />

and Romanovsky, 2006), spatial results us<strong>in</strong>g the<br />

modified scheme at global or regional scale have not<br />

yet appeared.<br />

Copyright # 2008 John Wiley & Sons, Ltd. Permafrost and Periglac. Process., 19: 137–156 (2008)<br />

DOI: 10.1002/ppp


At present the most realistic representation <strong>of</strong><br />

transient <strong>permafrost</strong> dynamics with<strong>in</strong> spatial models is<br />

with<strong>in</strong> externally forced ‘post-processed’ models<br />

which <strong>in</strong>corporate high-resolution f<strong>in</strong>ite-element or<br />

f<strong>in</strong>ite-difference, numerical heat flow models (e.g.<br />

Oelke and Zhang, 2004; Zhang Y. et al., 2005, 2006).<br />

The application <strong>of</strong> RCM/GCM output to the<br />

physics-based modell<strong>in</strong>g <strong>of</strong> <strong>permafrost</strong> is especially<br />

difficult <strong>in</strong> mounta<strong>in</strong> areas. Because <strong>of</strong> the poor<br />

representation <strong>of</strong> steep topography on coarse grids,<br />

strong differences between simulated and measured<br />

climate <strong>in</strong> those areas exist. Salzmann et al. (2006,<br />

2007) and Noetzli et al. (2007) have described a<br />

method that allows downscal<strong>in</strong>g RCM/GCM results <strong>in</strong><br />

mounta<strong>in</strong> areas and their application to energybalance<br />

and three-dimensional temperature modell<strong>in</strong>g<br />

<strong>in</strong> steep bedrock.<br />

DISCUSSION AND FUTURE DIRECTIONS<br />

Model Uncerta<strong>in</strong>ty and Data Uncerta<strong>in</strong>ty<br />

Permafrost models that operate on broad (circumpolar/cont<strong>in</strong>ental)<br />

geographical scale are the most<br />

appropriate tools for provid<strong>in</strong>g descriptions <strong>of</strong><br />

climate-<strong>permafrost</strong> <strong>in</strong>teractions over the terrestrial<br />

Arctic. However, their spatial resolution and accuracy<br />

are limited by availability <strong>of</strong> data characteris<strong>in</strong>g the<br />

spatial heterogeneity <strong>of</strong> many important processes<br />

controll<strong>in</strong>g the ground thermal regime. Shiklomanov<br />

et al. (2007) found large differences between spatially<br />

modelled active-layer fields produced by various<br />

small-scale <strong>permafrost</strong> models, due primarily to<br />

differences <strong>in</strong> the models’ approaches to characterisation<br />

<strong>of</strong> largely unknown spatial distributions <strong>of</strong><br />

surface (vegetation, snow) and subsurface (soil<br />

properties, soil moisture) conditions. Further, Anisimov<br />

et al. (2007) found the differences <strong>in</strong> global<br />

basel<strong>in</strong>e climate datasets (air temperature, precipitations),<br />

widely used for forc<strong>in</strong>g small-scale <strong>permafrost</strong><br />

models, can translate <strong>in</strong>to uncerta<strong>in</strong>ty <strong>of</strong> up to 20<br />

per cent <strong>in</strong> estimates <strong>of</strong> near-surface <strong>permafrost</strong> area,<br />

which is comparable to the extent <strong>of</strong> changes projected<br />

for the current century.<br />

Lower Boundary and Initial Conditions —<br />

Depth, Memory and Sp<strong>in</strong>-up<br />

Ground temperature is largely controlled by changes<br />

at the surface, with change lagged and damped by<br />

diffusion at depth. The depth to which numerical<br />

models simulate temperature is limited by the<br />

relationship between the thermal properties <strong>of</strong> the<br />

<strong>Recent</strong> Advances <strong>in</strong> Permafrost Modell<strong>in</strong>g 149<br />

ground and the size <strong>of</strong> time step and grid spac<strong>in</strong>g (and<br />

as determ<strong>in</strong>ed by the limitations <strong>of</strong> the model).<br />

One-dimensional <strong>permafrost</strong> model studies typically<br />

specify a modelled soil depth <strong>of</strong> 20 m or more, <strong>in</strong> order<br />

to capture the annual ground temperature cycle, with<br />

deeper pr<strong>of</strong>iles specified when the long-term evolution<br />

<strong>of</strong> the ground thermal regime is be<strong>in</strong>g evaluated.<br />

The medium- and long-term fate <strong>of</strong> <strong>permafrost</strong> is<br />

determ<strong>in</strong>ed by changes at depth, such as the<br />

development <strong>of</strong> supra-<strong>permafrost</strong> taliks. Truncat<strong>in</strong>g<br />

the ground temperature pr<strong>of</strong>ile at too shallow a depth<br />

will <strong>in</strong>troduce errors as the deep pr<strong>of</strong>ile <strong>in</strong>fluences the<br />

thermal regime <strong>of</strong> the near surface, with errors<br />

accumulat<strong>in</strong>g as the temperature change at the surface<br />

penetrates to the base <strong>of</strong> the pr<strong>of</strong>ile.<br />

Alexeev et al. (2007) suggest that <strong>in</strong> general the<br />

lower boundary should be specified so that the total<br />

soil depth is much greater than the damp<strong>in</strong>g length for<br />

the timescale <strong>of</strong> <strong>in</strong>terest. They suggest that the<br />

timescale <strong>of</strong> maximum error is about two years for<br />

a 4 m-deep soil layer, or about 200 years for a<br />

30 m-deep grid, although their analysis ignores the<br />

effect <strong>of</strong> latent heat. In a comparison with an<br />

equilibrium model (a situation with no memory at<br />

all) and a numerical model that accounts for latent<br />

heat, Riseborough (2007) showed that the long-term<br />

mean annual temperature at the base <strong>of</strong> the active layer<br />

could be accurately predicted under transient conditions<br />

except where a talik was present. Apply<strong>in</strong>g this<br />

result to the analysis <strong>of</strong> Alexeev et al. (2007), they<br />

likely underestimate the magnitude <strong>of</strong> errors due to a<br />

shallow base, as thaw to the base does not imply the<br />

disappearance <strong>of</strong> <strong>permafrost</strong>, but does imply the<br />

development <strong>of</strong> a talik, and that <strong>permafrost</strong> is no<br />

longer susta<strong>in</strong>able under the chang<strong>in</strong>g climate.<br />

The <strong>in</strong>clusion <strong>of</strong> a deep temperature pr<strong>of</strong>ile for the<br />

modelled space <strong>in</strong>troduces the additional challenge <strong>of</strong><br />

estimat<strong>in</strong>g a realistic <strong>in</strong>itial condition. While this can<br />

be established us<strong>in</strong>g field temperature data, this<br />

approach is impractical <strong>in</strong> spatial modell<strong>in</strong>g; where<br />

no data are available, an <strong>in</strong>itial temperature pr<strong>of</strong>ile is<br />

usually established by an equilibration or ‘sp<strong>in</strong>-up’<br />

procedure, runn<strong>in</strong>g the model through repeated annual<br />

cycles with a stationary surface climate, until an<br />

equilibrium ground temperature pr<strong>of</strong>ile develops.<br />

Depend<strong>in</strong>g on the pr<strong>of</strong>ile used to <strong>in</strong>itiate the sp<strong>in</strong>-up<br />

procedure, equilibration <strong>of</strong> deep pr<strong>of</strong>iles typically<br />

requires hundreds <strong>of</strong> cycles, although as Lawrence and<br />

Slater (2005) and others have noted, the <strong>in</strong>itial pr<strong>of</strong>ile<br />

has little effect if the pr<strong>of</strong>ile is very shallow. In a<br />

regional <strong>permafrost</strong> model, with a 120 m-deep<br />

temperature pr<strong>of</strong>ile Ednie et al. (2008) found that<br />

<strong>permafrost</strong> pr<strong>of</strong>iles equilibrated us<strong>in</strong>g twentieth<br />

century climate data did not adequately reproduce<br />

Copyright # 2008 John Wiley & Sons, Ltd. Permafrost and Periglac. Process., 19: 137–156 (2008)<br />

DOI: 10.1002/ppp


150 D. Riseborough et al.<br />

the essential characteristics <strong>of</strong> the current regime <strong>in</strong><br />

the Mackenzie Valley, Northwest Territories, Canada,<br />

<strong>in</strong> particular the presence <strong>of</strong> deep, nearly isothermal<br />

(disequilibrium) <strong>permafrost</strong>. They <strong>in</strong>itiated their<br />

model with a sp<strong>in</strong>-up to equilibrium for the year<br />

1721, followed by a surface history comb<strong>in</strong><strong>in</strong>g local<br />

palaeo-climatic reconstructions and the <strong>in</strong>strumental<br />

record. For a national scale model, Zhang Y. et al.<br />

(2005, 2006) began their long-term simulations<br />

assum<strong>in</strong>g equilibrium <strong>in</strong> 1850, with climate data for<br />

the 1850–1900 period estimated by backward l<strong>in</strong>ear<br />

extrapolation from twentieth century climatic data.<br />

Initial modell<strong>in</strong>g <strong>of</strong> <strong>permafrost</strong> distribution <strong>in</strong> the<br />

Mackenzie Valley (Northwest Territories, Canada)<br />

used the TTOP model (Wright et al., 2003), predict<strong>in</strong>g<br />

mean annual ground temperature and <strong>permafrost</strong><br />

thickness. The TTOP model was used to improve<br />

efficiency when modell<strong>in</strong>g the transient evolution <strong>of</strong><br />

<strong>permafrost</strong> <strong>in</strong> this environment us<strong>in</strong>g a onedimensional<br />

f<strong>in</strong>ite-element model (Duchesne et al.,<br />

2008). First, the accuracy <strong>of</strong> the TTOP model for<br />

estimat<strong>in</strong>g equilibrium conditions allowed for a<br />

reasonable first estimate <strong>of</strong> the <strong>in</strong>itial ground<br />

temperature pr<strong>of</strong>ile, m<strong>in</strong>imis<strong>in</strong>g the time required<br />

for model equilibration. Second, the equilibrium<br />

<strong>permafrost</strong> thickness estimated us<strong>in</strong>g the TTOP model<br />

was used to establish the depth <strong>of</strong> the bottom <strong>of</strong> the<br />

grid.<br />

Modell<strong>in</strong>g Permafrost and Environmental<br />

Change<br />

Future ref<strong>in</strong>ements to modell<strong>in</strong>g <strong>of</strong> <strong>permafrost</strong><br />

response to climate change projections will require<br />

consideration <strong>of</strong> the <strong>in</strong>teraction between <strong>permafrost</strong>,<br />

snow cover, vegetation and other environmental<br />

factors at timescales rang<strong>in</strong>g from decadal to<br />

millennial. To a significant degree, the position <strong>of</strong><br />

treel<strong>in</strong>e controls the geographic distribution <strong>of</strong> snow<br />

density (Riseborough, 2004), so that changes <strong>in</strong><br />

<strong>permafrost</strong> distribution, migration <strong>of</strong> treel<strong>in</strong>e and<br />

changes <strong>in</strong> snow cover properties <strong>in</strong> the forest-tundra<br />

transition zone will be highly <strong>in</strong>ter-dependent. At<br />

much longer timescales, the distribution <strong>of</strong> peatlands<br />

depends on the relative rates <strong>of</strong> carbon accumulation<br />

and depletion <strong>in</strong> the soil, with the zone <strong>of</strong> peak soil<br />

carbon and peatland distribution close to the position<br />

<strong>of</strong> the 08C mean annual ground temperature isotherm<br />

(Swanson et al., 2000). Chang<strong>in</strong>g ground temperatures<br />

under climate warm<strong>in</strong>g will alter the distribution <strong>of</strong><br />

peatlands, thereby alter<strong>in</strong>g local <strong>permafrost</strong> distribution.<br />

These changes will <strong>in</strong>fluence surface and<br />

subsurface physical, thermal and hydraulic properties,<br />

which are <strong>of</strong>ten currently assumed to rema<strong>in</strong><br />

unchanged, even <strong>in</strong> a future climate.<br />

N Factors and Parameterisation<br />

N factors expressed as a ratio (equation 8) or the layers<br />

<strong>of</strong> the Kudryavtsev model (which function by<br />

diffusive ext<strong>in</strong>ction) may not adequately express the<br />

empirical relationships among the multitude <strong>of</strong><br />

processes they subsume and the underly<strong>in</strong>g system<br />

behaviour (as opposed to model behaviour). The<br />

functional form <strong>in</strong> which parameters encapsulate<br />

complex processes <strong>in</strong> simple models will <strong>in</strong>fluence<br />

the behaviour <strong>of</strong> the model, especially where models<br />

are used for predictions beyond the scope <strong>in</strong> which the<br />

parameters were derived. Unless there is a strong<br />

theoretical basis for the functional form <strong>of</strong> the<br />

parameterisation, it may be better to express the<br />

relationship <strong>in</strong> a form dictated by empirical results;<br />

alternate forms <strong>in</strong>clude differences or multi-parameter<br />

l<strong>in</strong>ear or non-l<strong>in</strong>ear relationships.<br />

CONCLUSION<br />

The fate <strong>of</strong> <strong>permafrost</strong> under a chang<strong>in</strong>g climate has<br />

been a concern s<strong>in</strong>ce the earliest GCM results<br />

demonstrated the magnitude <strong>of</strong> the problem. Current<br />

<strong>permafrost</strong> transient modell<strong>in</strong>g efforts generally<br />

follow two approaches: <strong>in</strong>corporation <strong>of</strong> <strong>permafrost</strong><br />

dynamics directly <strong>in</strong>to GCM surface schemes and<br />

<strong>in</strong>creas<strong>in</strong>gly sophisticated regional, national and<br />

global models forced by GCM output. Although<br />

computational cost is becom<strong>in</strong>g less critical as<br />

computer technology <strong>advances</strong>, these two approaches<br />

will cont<strong>in</strong>ue to evolve <strong>in</strong> tandem, and are unlikely to<br />

merge. While Stevens et al. (2007) demonstrate the<br />

importance <strong>of</strong> the deep geothermal regime on heat<br />

storage under a chang<strong>in</strong>g climate, the <strong>in</strong>fluence <strong>of</strong><br />

<strong>permafrost</strong> conditions on the evolv<strong>in</strong>g GCM climate<br />

and the computational requirements <strong>of</strong> a multi-layer<br />

ground thermal scheme will likely be balanced with a<br />

level <strong>of</strong> complexity that is less than can be achieved <strong>in</strong><br />

detailed regional models. Once this balance is<br />

achieved, the relationship between GCM-based and<br />

post-processed models will be equivalent to the<br />

relationship between global and regional climate<br />

models.<br />

Historically, spatial models <strong>of</strong> <strong>permafrost</strong> <strong>in</strong> arctic<br />

lowlands and mounta<strong>in</strong> terra<strong>in</strong> have developed<br />

follow<strong>in</strong>g different pr<strong>in</strong>ciples. Permafrost was <strong>in</strong>itially<br />

studied <strong>in</strong> Arctic lowland areas, ma<strong>in</strong>ly because <strong>of</strong><br />

human development <strong>in</strong> these regions. Both numerical<br />

and analytical solutions were developed early, both <strong>of</strong><br />

Copyright # 2008 John Wiley & Sons, Ltd. Permafrost and Periglac. Process., 19: 137–156 (2008)<br />

DOI: 10.1002/ppp


which were easy to apply to spatial models as GIS and<br />

computer power developed. Permafrost <strong>in</strong> mounta<strong>in</strong>s<br />

was recognised as an eng<strong>in</strong>eer<strong>in</strong>g and scientific topic<br />

much later (1970s), and the spatial heterogeneity <strong>of</strong><br />

factors <strong>in</strong>fluenc<strong>in</strong>g <strong>permafrost</strong> led to the development<br />

<strong>of</strong> empirical concepts. A trend apparent today is the<br />

merg<strong>in</strong>g <strong>of</strong> the concepts developed <strong>in</strong> Arctic lowland<br />

regions <strong>in</strong> mounta<strong>in</strong> environments. This is now<br />

possible with the <strong>in</strong>creas<strong>in</strong>g power <strong>of</strong> computer<br />

hardware and s<strong>of</strong>tware, but the treatment <strong>of</strong> sub-grid<br />

heterogeneity (such as the effect <strong>of</strong> topography) over<br />

cont<strong>in</strong>ental or hemispheric areas rema<strong>in</strong>s a major<br />

scientific challenge.<br />

ACKNOWLEDGEMENTS<br />

The authors would like to thank Carol<strong>in</strong>e Duchesne<br />

and two anonymous reviewers whose comments were<br />

useful <strong>in</strong> revis<strong>in</strong>g the paper. Yu Zhang and Carol<strong>in</strong>e<br />

Duchesne provided graphical examples <strong>of</strong> recent work<br />

for <strong>in</strong>clusion as figures. The forbearance <strong>of</strong> the journal’s<br />

editors is gratefully acknowledged.<br />

REFERENCES<br />

Abramov A, Gruber S, Gilich<strong>in</strong>sky D. 2008. Mounta<strong>in</strong><br />

<strong>permafrost</strong> on active volcanoes: field data and statistical<br />

mapp<strong>in</strong>g, Klyuchevskaya volcano group, Kamchatka,<br />

Russia. Permafrost and Periglacial Processes (<strong>in</strong> press).<br />

Alexeev VA, Nicolsky DJ, Romanovsky VE, Lawrence DM.<br />

2007. An evaluation <strong>of</strong> deep soil configurations <strong>in</strong> the<br />

CLM3 for improved representation <strong>of</strong> <strong>permafrost</strong>. Geophysical<br />

Research Letters 34: L09502. DOI:10.1029/<br />

2007GL029536.<br />

Alexiades V, Solomon AD. 1993. Mathematical model<strong>in</strong>g<br />

<strong>of</strong> melt<strong>in</strong>g and freez<strong>in</strong>g processes. Hemisphere:<br />

Wash<strong>in</strong>gton.<br />

Anisimov OA. 1989. Chang<strong>in</strong>g climate and <strong>permafrost</strong><br />

distribution <strong>in</strong> the Soviet Arctic. Physical <strong>Geography</strong><br />

10: 285–293.<br />

Anisimov OA, Nelson FE. 1996. Permafrost distribution<br />

<strong>in</strong> the Northern Hemisphere under scenarios <strong>of</strong> climatic<br />

change. Global and Planetary Change 14(1–2):<br />

59–72. DOI:10.1016/0921-8181(96)00002-1.<br />

Anisimov OA, Nelson FE. 1997. Permafrost zonation and<br />

climate change <strong>in</strong> the northern hemisphere: results from<br />

transient general circulation models. Climatic Change,<br />

35(2): 241–258. DOI: 10.1023/A:1005315409698.<br />

Anisimov OA, Reneva SA. 2006. Permafrost and chang<strong>in</strong>g<br />

climate: the Russian perspective. Ambio 35: 169–175.<br />

DOI:10.1579/0044-7447(2006)35[169:PACCTR]2.0.CO;2.<br />

Anisimov OA, Shiklomanov NI, Nelson FE. 1997.<br />

Effects <strong>of</strong> global warm<strong>in</strong>g on <strong>permafrost</strong> and<br />

active-layer thickness: results from transient general<br />

<strong>Recent</strong> Advances <strong>in</strong> Permafrost Modell<strong>in</strong>g 151<br />

circulation models. Global and Planetary Change, 15:<br />

61–77. DOI: 10.1016/S0921-8181(97)00009-X.<br />

Anisimov OA, Lavrov SA, Reneva SA. 2005. Emission<br />

<strong>of</strong> methane from the Russian frozen wetlands under the<br />

conditions <strong>of</strong> the chang<strong>in</strong>g climate. In Problems <strong>of</strong><br />

Ecological Model<strong>in</strong>g and Monitor<strong>in</strong>g <strong>of</strong> Ecosystems,<br />

Izrael Y (ed.). Hydrometeoizdat: St Petersburg;<br />

124–142 (<strong>in</strong> Russian).<br />

Anisimov OA, Lobanov VA, Reneva SA, Shiklomanov<br />

NI, Zhang T, Nelson FE. 2007. Uncerta<strong>in</strong>ties <strong>in</strong><br />

gridded air temperature fields and effects on predictive<br />

active layer model<strong>in</strong>g. Journal Of Geophysical<br />

Research, 112: F02S14. DOI:10.1029/2006JF000593.<br />

Bartelt P, Lehn<strong>in</strong>g M. 2002. A physical SNOWPACK<br />

model for the Swiss avalanche warn<strong>in</strong>g. Part I: numerical<br />

model. Cold Regions Science and Technology. 35(3):<br />

123–145. DOI: 10.1016/S0165-232X(02)00074-5.<br />

Bertoldi G, Rigon R, Over TM. 2006. Impact <strong>of</strong> watershed<br />

geomorphic characteristics on the energy and<br />

water budgets. Journal <strong>of</strong> Hydrometeorology 7(3):<br />

389–403. DOI: 10.1175/JHM500.1.<br />

Brenn<strong>in</strong>g A, Gruber S, Hoelzle M. 2005. Sampl<strong>in</strong>g and<br />

statistical analyses <strong>of</strong> BTS measurements. Permafrost<br />

and Periglacial Processes 16: 383–393. DOI: 10.1002/<br />

ppp.541.<br />

Brown J. 1997. A new <strong>permafrost</strong> map <strong>of</strong> the Northern<br />

Hemisphere. Eos Transactions <strong>of</strong> the American Geophysical<br />

Union 78: F274.<br />

Brown J, Smith SL, Romanovsky V, Christiansen HH,<br />

Clow G, Nelson FE. 2008. Global Terrestrial Network<br />

for Permafrost. In Terrestrial Essential Climate Variables<br />

for Assessment, Mitigation and Adaptation, WMO<br />

Global Climate Observ<strong>in</strong>g System report GTOS-52,<br />

Sessa, Dolman (eds). Food and Agriculture Organization<br />

<strong>of</strong> the United Nations (UN FAO), Rome; pp. 24–<br />

25.<br />

Budyko MI. 1958. Earth Surface Temperature and its<br />

bioclimatic importance. In Contemporary problems <strong>of</strong><br />

boundary layer climatology. Len<strong>in</strong>grad: GidrometIzdat;<br />

234 pp. (<strong>in</strong> Russian).<br />

Burn CR, Nelson FE. 2006. Comment on ‘A projection <strong>of</strong><br />

severe near-surface <strong>permafrost</strong> degradation dur<strong>in</strong>g the<br />

21st century’ by David M. Lawrence and Andrew G.<br />

Slater. Geophysical Research Letters 33: L21503.<br />

DOI:10.1029/2006GL027077.<br />

Carlson H. 1952. Calculation <strong>of</strong> depth <strong>of</strong> thaw <strong>in</strong> frozen<br />

ground. Frost action <strong>in</strong> soils Highway Research Board<br />

Special Report Number 2, 192–223.<br />

Carslaw HS, Jaeger JC. 1959. Conduction <strong>of</strong> Heat <strong>in</strong><br />

Solids, 2nd Ed. Oxford University Press: Oxford.<br />

Chen W, Zhang Y, Cihlar J, Smith SL, Riseborough DW.<br />

2003. Changes <strong>in</strong> soil temperature and active-layer<br />

thickness dur<strong>in</strong>g the twentieth century <strong>in</strong> a region <strong>in</strong><br />

western Canada. Journal <strong>of</strong> Geophysical Research,<br />

108(D22): 4696. DOI:10.1029/2002JD003355.<br />

Christensen JH, Kuhry P. 2000. High-resolution regional<br />

climate model validation and <strong>permafrost</strong> simulation for<br />

the East European Russian Arctic. Journal <strong>of</strong> Geophysical<br />

Research-Atmospheres, 105: 29647–29658.<br />

Copyright # 2008 John Wiley & Sons, Ltd. Permafrost and Periglac. Process., 19: 137–156 (2008)<br />

DOI: 10.1002/ppp


152 D. Riseborough et al.<br />

Coll<strong>in</strong>s WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton<br />

CS, Carton JA, Chang P, Doney SC, Hack JJ,<br />

Henderson TB, Kiehl JT, Large WG, Mckenna DS,<br />

Santer BD, Smith RD. 2006. The community climate<br />

system model: CCSM3. Journal <strong>of</strong> Climate 19(11):<br />

2122–2143. DOI: 10.1175/JCLI3761.1.<br />

Delaloye R, Lambiel C. 2005. Evidence <strong>of</strong> w<strong>in</strong>ter ascend<strong>in</strong>g<br />

air circulation throughout talus slopes and rock<br />

glaciers situated <strong>in</strong> the lower belt <strong>of</strong> alp<strong>in</strong>e discont<strong>in</strong>uous<br />

<strong>permafrost</strong> (Swiss Alps). Norwegian Journal<br />

<strong>of</strong> <strong>Geography</strong>, 59(2): 194–203. DOI: 10.1080/<br />

00291950510020673.<br />

Delaloye R, Reynard E, Lambiel C, Marescot L, Monnet R.<br />

2003. Thermal anomaly <strong>in</strong> a cold scree slope, Creux du<br />

Van, Switzerland. In Proceed<strong>in</strong>gs <strong>of</strong> the Eighth International<br />

Conference on Permafrost,A.A.Balkema:Lisse;<br />

175–180.<br />

Delisle G. 2007. Near-surface <strong>permafrost</strong> degradation: How<br />

severe dur<strong>in</strong>g the 21st century? Geophysical Research<br />

Letters 34: L09503. DOI:10.1029/2007GL029323.<br />

Duchesne C, Ednie M, Wright JF. 2008. High resolution<br />

numerical model<strong>in</strong>g <strong>of</strong> climate change impacts to<br />

<strong>permafrost</strong> <strong>in</strong> the vic<strong>in</strong>ities <strong>of</strong> Inuvik, Norman Wells,<br />

and Fort Simpson, NT, Canada. In Proceed<strong>in</strong>gs <strong>of</strong> the<br />

N<strong>in</strong>th International Conference on Permafrost, Fairbanks,<br />

Alaska. Institute <strong>of</strong> Northern Eng<strong>in</strong>eer<strong>in</strong>g, University<br />

<strong>of</strong> Alaska, Fairbanks.<br />

Ednie M, Duchesne C, Wright JF. 2008. A paleo-climatic<br />

reconstruction for transient ground thermal model<strong>in</strong>g <strong>in</strong><br />

the Mackenzie River valley. In Proceed<strong>in</strong>gs <strong>of</strong> the N<strong>in</strong>th<br />

International Conference on Permafrost, Fairbanks,<br />

Alaska. Institute <strong>of</strong> Northern Eng<strong>in</strong>eer<strong>in</strong>g, University<br />

<strong>of</strong> Alaska, Fairbanks.<br />

Endrizzi S. 2007. Snow cover modell<strong>in</strong>g at a local and<br />

distributed scale over complex terra<strong>in</strong> PhD dissertation,<br />

<strong>Department</strong> <strong>of</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g,<br />

University <strong>of</strong> Trento, Italy, 189pp.<br />

Etzelmüller B, Berthl<strong>in</strong>g I, Sollid JL. 2003. Aspects and<br />

Concepts on the Geomorphological Significance <strong>of</strong><br />

Holocene Permafrost <strong>in</strong> Southern Norway. Geomorphology,<br />

52: 87–104.<br />

Etzelmüller B, Heggem ESF, Sharkhuu N, Frauenfelder<br />

R, Kääb A, Goulden C. 2006. Mounta<strong>in</strong> <strong>permafrost</strong><br />

distribution model<strong>in</strong>g us<strong>in</strong>g a multi-criteria approach<br />

<strong>in</strong> the Hövsgöl area, Northern Mongolia. Permafrost<br />

and Periglacial Processes 17: 91–104. DOI: 10.1002/<br />

ppp.554.<br />

Etzelmüller B, Farbrot H, Guðmundsson A, Humlum O,<br />

Tveito OE, Björnsson H. 2007. The regional distribution<br />

<strong>of</strong> mounta<strong>in</strong> <strong>permafrost</strong> <strong>in</strong> Iceland. Permafrost and Periglacial<br />

Processes 18: 185–199. DOI: 10.1002/ppp.583.<br />

Etzelmüller B, Schuler TV, Farbrot H, Gudmundsson A.<br />

2008. Permafrost <strong>in</strong> Iceland – distribution, ground<br />

temperatures and climate change impact. In Proceed<strong>in</strong>gs<br />

<strong>of</strong> the N<strong>in</strong>th International Conference on Permafrost,<br />

29 June–3 July 2008, University <strong>of</strong> Fairbanks,<br />

Fairbanks, Alaska. Institute <strong>of</strong> Northern Eng<strong>in</strong>eer<strong>in</strong>g,<br />

University <strong>of</strong> Alaska, Fairbanks.<br />

Farbrot H, Etzelmüller B, Gudmundsson A, Schuler TV,<br />

Eiken T, Humlum O, Björnsson H. 2007. Thermal<br />

characteristics and impact <strong>of</strong> climate change on mounta<strong>in</strong><br />

<strong>permafrost</strong> <strong>in</strong> Iceland. Journal <strong>of</strong> Geophysical<br />

Research, 112: F03S90. DOI:10.1029/2006JF000541.<br />

Farbrot H, Etzelmüller B, Isaksen K. 2008. Present and<br />

past distribution <strong>of</strong> mounta<strong>in</strong> <strong>permafrost</strong> <strong>in</strong> Gaissane<br />

Mounta<strong>in</strong>s, northern Norway. In Proceed<strong>in</strong>gs <strong>of</strong> the<br />

N<strong>in</strong>th International Conference on Permafrost, 29<br />

June–3 July 2008, University <strong>of</strong> Fairbanks, Fairbanks,<br />

Alaska. Institute <strong>of</strong> Northern Eng<strong>in</strong>eer<strong>in</strong>g, University<br />

<strong>of</strong> Alaska, Fairbanks.<br />

Funk M, Hoelzle M. 1992. A model <strong>of</strong> potential direct<br />

solar radiation for <strong>in</strong>vestigat<strong>in</strong>g occurrences <strong>of</strong> mounta<strong>in</strong><br />

<strong>permafrost</strong>. Permafrost and Periglacial Processes,<br />

3: 139–142.<br />

Goodrich LE. 1978. Some results <strong>of</strong> a numerical study<br />

<strong>of</strong> ground thermal regimes. In Proceed<strong>in</strong>gs <strong>of</strong> the Third<br />

International Conference on Permafrost, Edmonton,<br />

Canada. National Research Council <strong>of</strong> Canada,<br />

Ottawa; 30–34.<br />

Goodrich LE. 1982. The <strong>in</strong>fluence <strong>of</strong> snow cover on the<br />

ground thermal regime. Canadian Geotechnical Journal<br />

19: 421–432.<br />

Gorbunov AP, Marchenko S, Seversky E. 2004. The<br />

Thermal Environment <strong>of</strong> Blocky Materials <strong>in</strong> the<br />

Mounta<strong>in</strong>s <strong>of</strong> Central Asia. Permafrost and Periglacial<br />

Processes 15: 95–98. DOI: 10.1002/ppp.478.<br />

Gruber S. 2005. Mounta<strong>in</strong> <strong>permafrost</strong>: transient spatial<br />

model<strong>in</strong>g, model verification and the use <strong>of</strong> remote<br />

sens<strong>in</strong>g PhD dissertation, <strong>Department</strong> <strong>of</strong> <strong>Geography</strong>,<br />

University <strong>of</strong> Zurich, Switzerland, 123pp.<br />

Gruber S. 2007. MTD: a mass-conserv<strong>in</strong>g algorithm to<br />

parameterize gravitational transport and deposition processes<br />

us<strong>in</strong>g digital elevation models. Water Resources<br />

Research, 43: W06412. DOI:10.1029/2006WR004868.<br />

Gruber S, Haeberli W. 2007. Permafrost <strong>in</strong> steep bedrock<br />

slopes and its temperature-related destabilization follow<strong>in</strong>g<br />

climate change. Journal <strong>of</strong> Geophysical<br />

Research, 112: F02S18. DOI:10.1029/2006JF000547.<br />

Gruber S, Hoelzle M. 2008. The cool<strong>in</strong>g effect <strong>of</strong> coarse<br />

blocks revisited. In Proceed<strong>in</strong>gs <strong>of</strong> the N<strong>in</strong>th International<br />

Conference on Permafrost, Fairbanks, Alaska.<br />

Institute <strong>of</strong> Northern Eng<strong>in</strong>eer<strong>in</strong>g, University <strong>of</strong><br />

Alaska, Fairbanks.<br />

Gruber S, Peter M, Hoelzle M, Woodhatch I, Haeberli W.<br />

2003. Surface temperatures <strong>in</strong> steep alp<strong>in</strong>e rock faces; a<br />

strategy for regional-scale measurement and modell<strong>in</strong>g.<br />

In Proceed<strong>in</strong>gs <strong>of</strong> the Eighth International Conference<br />

on Permafrost, Vol. 1, Phillips M, Spr<strong>in</strong>gman SM,<br />

Arenson LU (eds). A.A. Balkema: Lisse; 325–330.<br />

Gruber S, Hoelzle M, Haeberli W. 2004a. Permafrost<br />

thaw and destabilization <strong>of</strong> Alp<strong>in</strong>e rock walls <strong>in</strong> the hot<br />

summer <strong>of</strong> 2003. Geophysical Research Letters 31:<br />

L13504, 4pp, DOI:10.1029/2006JF000547.<br />

Gruber S, Hoelzle M, Haeberli W. 2004b. Rock-wall temperatures<br />

<strong>in</strong> the alps: model<strong>in</strong>g their topographic distribution<br />

and regional differences. Permafrost and<br />

Copyright # 2008 John Wiley & Sons, Ltd. Permafrost and Periglac. Process., 19: 137–156 (2008)<br />

DOI: 10.1002/ppp


Periglacial Processes 15: 299–307. DOI: 10.1002/<br />

ppp.501.<br />

Gruber S, K<strong>in</strong>g L, Kohl T, Herz T, Haeberli W, Hoelzle M.<br />

2004c. Interpretation <strong>of</strong> geothermal pr<strong>of</strong>iles perturbed by<br />

topography: the Alp<strong>in</strong>e <strong>permafrost</strong> boreholes at Stockhorn<br />

Plateau, Switzerland. Permafrost and Periglacial<br />

Processes 15(4): 349–357. DOI: 10.1022/ppp.503.<br />

Haeberli W, Ev<strong>in</strong> M, Tenthorey G, Kensen R, Hoelzle M,<br />

Keller F, Vonder MühllD,WagnerS,Pelf<strong>in</strong>iW,Smiraglia<br />

C. 1992. Permafrost research sites <strong>in</strong> the Alps:<br />

excursions <strong>of</strong> the International Workshop on Permafrost<br />

and Periglacial Environments <strong>in</strong> Mounta<strong>in</strong> Areas. Permafrost<br />

and Periglacial Processes 3: 189–202.<br />

Hanson S, Hoelzle M. 2004. The thermal regime <strong>of</strong> the<br />

active layer at the Murtèl Rock Glacier based on data<br />

from 2002. Permafrost and Periglacial Processes<br />

15(3): 273–282. DOI: 10.1002/ppp.499.<br />

Harris SA. 1996. Lower mean annual ground temperature<br />

beneath a block stream <strong>in</strong> the Kunlun Pass, Q<strong>in</strong>ghai<br />

Prov<strong>in</strong>ce, Ch<strong>in</strong>a. In Proceed<strong>in</strong>gs <strong>of</strong> the Fifth Ch<strong>in</strong>ese<br />

Permafrost Conference, Lanzhou. Gansu Culture<br />

Press: Lanzhou, Ch<strong>in</strong>a; 227–237.<br />

Harris SA, Pedersen DE. 1998. Thermal regimes beneath<br />

coarse blocky materials. Permafrost and Periglacial<br />

Processes. 9: 107–120. DOI: 10.1002/(SICI)1099-1530<br />

(199804/06)9:23.0.CO;2-G.<br />

Heggem ESF, Juliussen H, Etzelmüller B. 2005. The<br />

<strong>permafrost</strong> distribution <strong>in</strong> central-eastern Norway.<br />

Norsk Geografisk Tidskrift, 59: 94–108. DOI:10.<br />

1080/00291950510038377.<br />

Heggem ESF, Etzelmüller B, Sharkhuu N, Goulden CE,<br />

Nand<strong>in</strong>setseg B. 2006. Spatial empirical modell<strong>in</strong>g <strong>of</strong><br />

ground surface temperature <strong>in</strong> the Hövsgöl area,<br />

Northern Mongolia. Permafrost and Periglacial Processes,<br />

17: 357–369. DOI: 10.1002/ppp.568.<br />

Heg<strong>in</strong>bottom JA. 2002. Permafrost mapp<strong>in</strong>g: a review.<br />

Progress <strong>in</strong> Physical <strong>Geography</strong>, 26: 623–642. DOI:<br />

10.1191/0309133302pp355ra.<br />

H<strong>in</strong>zman LD, Goer<strong>in</strong>g DJ, Kane DL. 1998. A distributed<br />

thermal model for calculat<strong>in</strong>g soil temperature pr<strong>of</strong>iles<br />

and depth <strong>of</strong> thaw <strong>in</strong> <strong>permafrost</strong>. Journal <strong>of</strong> Geophysical<br />

Research, 103: 28975–28991.<br />

Hoelzle M, Haeberli W. 1995. Simulat<strong>in</strong>g the effects <strong>of</strong><br />

mean annual air temperature changes on <strong>permafrost</strong><br />

distribution and glacier size: an example from the Upper<br />

Engad<strong>in</strong>, Swiss Alps. Annals <strong>of</strong> Glaciology 21: 399–405.<br />

Hoelzle M, Mittaz C, Etzelmüller B, Haeberli W. 2001.<br />

Surface energy fluxes and distribution models relat<strong>in</strong>g<br />

to <strong>permafrost</strong> <strong>in</strong> European Mounta<strong>in</strong> areas: an overview<br />

<strong>of</strong> current developments. Permafrost and Periglacial<br />

Processes 12: 53–68. DOI: 10.1002/ppp.385<br />

Humlum O. 1997. Active layer thermal regime at three<br />

rock glaciers <strong>in</strong> Greenland. Permafrost and Periglacial<br />

Processes 8(4): 383–408. DOI: 10.1002/(SICI)1099-<br />

1530(199710/12)8:4 3.0.CO;2-V.<br />

Intergovernmental Panel on Climate Change (IPCC). 1990.<br />

Seasonal snow cover, ice and <strong>permafrost</strong>. In Climate<br />

Change: The IPCC Impacts Assessment, Tegart<br />

<strong>Recent</strong> Advances <strong>in</strong> Permafrost Modell<strong>in</strong>g 153<br />

WJ McG, Sheldon GW, Griffiths DC (eds). Australian<br />

Government Publish<strong>in</strong>g Service: Canberra; 7.1–7.45.<br />

Isaksen K, Hauck C, Gudevang E, Ødega˚rd RS, Sollid JL.<br />

2002. Mounta<strong>in</strong> <strong>permafrost</strong> distribution on Dovrefjell and<br />

Jotunheimen, southern Norway, based on BTS and DC<br />

resistivity tomography data. Norsk Geografisk Tidsskrift,<br />

56: 122–136. DOI: 10.1080/002919502760056459.<br />

Juliussen H, Humlum O. 2007. Towards a TTOP ground<br />

temperature model for mounta<strong>in</strong>ous terra<strong>in</strong> <strong>in</strong> central-eastern<br />

Norway. Permafrost and Periglacial Processes<br />

18: 161–184. DOI: 10.1002/ppp.586.<br />

Juliussen H, Humlum O. 2008. Thermal Regime <strong>of</strong> Openwork<br />

Block Fields on the Mounta<strong>in</strong>s Elga˚hogna and<br />

Sølen, Central-eastern Norway. Permafrost and Periglacial<br />

Processes 19: 1–18. DOI: 10.1002/ppp.607.<br />

Keller F. 1992. Automated mapp<strong>in</strong>g <strong>of</strong> mounta<strong>in</strong> <strong>permafrost</strong><br />

us<strong>in</strong>g the program PERMAKART with<strong>in</strong> the<br />

geographical <strong>in</strong>formation system ARC/INFO. Permafrost<br />

and Periglacial Processes 3: 133–138. DOI:<br />

10.1002/ppp.3430030210.<br />

Klene AE, Nelson FE, Shiklomanov NI, H<strong>in</strong>kel KM. 2001b.<br />

The n-factor <strong>in</strong> natural landscapes: variability <strong>of</strong> air and<br />

soil-surface temperatures, Kuparuk River bas<strong>in</strong>, Alaska.<br />

Arctic, Antarctic, and Alp<strong>in</strong>e Research, 33(2): 140–148.<br />

Klene AE, H<strong>in</strong>kel KM, Nelson FE. 2003. The Barrow<br />

Urban Heat Island Study: Soil temperatures and<br />

active-layer thickness. In Proceed<strong>in</strong>gs <strong>of</strong> the Eighth<br />

International Conference on Permafrost, vol. 1,<br />

Phillips M, Spr<strong>in</strong>gman SM, and Arenson LU (eds).<br />

Lisse: A.A. Balkema, pp. 555–560.<br />

Kudryavtsev VA, Garagulya LS, Kondrat’yeva KA, Melamed<br />

VG. 1974. Fundamentals <strong>of</strong> Frost Forecast<strong>in</strong>g <strong>in</strong><br />

Geological Eng<strong>in</strong>eer<strong>in</strong>g Investigations. Cold Regions<br />

Reseach and Eng<strong>in</strong>eer<strong>in</strong>g Laboratory: Hanover, NH.<br />

Lai Y, Huijun J, Brown J. 2006. Asian conference on<br />

<strong>permafrost</strong>. Frozen Ground 30: 5–6.<br />

Lawrence DM, Slater AG. 2005. A projection <strong>of</strong> severe<br />

near-surface <strong>permafrost</strong> degradation dur<strong>in</strong>g the 21st<br />

century. Geophysical Research Letters 32: L24401.<br />

DOI:10.1029/2005GL025080.2005.<br />

Lawrence DM, Slater AG. 2006. Reply to comment by<br />

C.R. Burn and F.E. Nelson on ‘A projection <strong>of</strong> nearsurface<br />

<strong>permafrost</strong> degradation dur<strong>in</strong>g the 21st century’.<br />

Geophysical Research Letters 33(21): L21504.<br />

DOI: 10.1029/2006GL027955.<br />

Lehn<strong>in</strong>g M, Völksch I, Gustafsson D, Nguyen TA, Stähli<br />

M, Zappa M. 2006. ALPINE3D: A detailed model <strong>of</strong><br />

mounta<strong>in</strong> surface processes and its application to snow<br />

hydrology. Hydrological Processes 20: 2111–2128.<br />

DOI: 10.1002/hyp.6204.<br />

Lewkowicz AG, Bonnaventure PP. 2008. Interchangeability<br />

<strong>of</strong> local mounta<strong>in</strong> <strong>permafrost</strong> probability<br />

models, northwest Canada. Permafrost and Periglacial<br />

Processes, 19: 49–62. DOI: 10.1002/ppp.612.<br />

Lewkowicz AG, Ednie M. 2004. Probability mapp<strong>in</strong>g <strong>of</strong><br />

mounta<strong>in</strong> <strong>permafrost</strong> us<strong>in</strong>g the BTS method, Wolf<br />

Creek, Yukon Territory, Canada. Permafrost and Periglacial<br />

Processes 15: 67–80. DOI: 10.1002/ppp.480.<br />

Copyright # 2008 John Wiley & Sons, Ltd. Permafrost and Periglac. Process., 19: 137–156 (2008)<br />

DOI: 10.1002/ppp


154 D. Riseborough et al.<br />

Li X, Koike T. 2003. Frozen soil parameterization <strong>in</strong> SiB2<br />

and its validation with GAME-Tibet observations.<br />

Cold Regions Science and Technology, 36: 165–182.<br />

DOI: 10.1016/S0165-232X(03)00009-0.<br />

L<strong>in</strong>g F, Zhang T. 2004. A numerical model for surface<br />

energy balance and thermal regime <strong>of</strong> the active<br />

layer and <strong>permafrost</strong> conta<strong>in</strong><strong>in</strong>g unfrozen water.<br />

Cold Regions Science and Technology 38: 1–15.<br />

DOI:10.1016/S0165-232X(03)00057-0.<br />

Luetschg M, Haeberli W. 2005. Permafrost evolution <strong>in</strong><br />

the Swiss Alps <strong>in</strong> a chang<strong>in</strong>g climate and the role <strong>of</strong> the<br />

snow cover. Norsk Geografisk Tidsskrift–Norwegian<br />

Journal <strong>of</strong> <strong>Geography</strong> Vol. 59: 78–83. Oslo. ISSN<br />

0029-1951 DOI: 10.1080/00291950510020583.<br />

Luetschg M, Stoeckli V, Lehn<strong>in</strong>g M, Haeberli W,<br />

Ammann W. 2004. Temperatures <strong>in</strong> two boreholes<br />

at Flüela Pass, Eastern Swiss Alps: the effect <strong>of</strong><br />

snow redistribution on <strong>permafrost</strong> distribution<br />

patterns <strong>in</strong> high mounta<strong>in</strong> areas. Permafrost and Periglacial<br />

Processes, 15(3): 283–297. DOI: 10.1002/<br />

ppp.500.<br />

Lunard<strong>in</strong>i VJ. 1978. Theory <strong>of</strong> N-factors and correlation<br />

<strong>of</strong> data. In Proceed<strong>in</strong>gs <strong>of</strong> the Third International<br />

Conference on Permafrost, Vol. 1. National Council<br />

<strong>of</strong> Canada: Ottawa; 40–46.<br />

Lunard<strong>in</strong>i VJ. 1981. Heat transfer <strong>in</strong> cold climates. Van<br />

Nostrand Re<strong>in</strong>hold: New York.<br />

Malevsky-Malevich SP, Molkent<strong>in</strong> EK, Nadyozh<strong>in</strong>a ED,<br />

Shklyarevich OB. 2001. Numerical simulation <strong>of</strong> <strong>permafrost</strong><br />

parameters distribution <strong>in</strong> Russia. Cold<br />

Regions Science and Technology, 32: 1–11. DOI:<br />

10.1016/S0165-232X(01)00018-0.<br />

Marchenko S, Gorbunov A, Romanovsky V. 2007. Permafrost<br />

warm<strong>in</strong>g <strong>in</strong> the Tien Shan Mounta<strong>in</strong>s, Central<br />

Asia. Global and Planetary Change 56: 311–327.<br />

DOI: 10.1016/j.gloplacha.2006.07.023.<br />

Marchenko SS. 2001. A model <strong>of</strong> <strong>permafrost</strong> formation<br />

and occurrences <strong>in</strong> the <strong>in</strong>tracont<strong>in</strong>ental mounta<strong>in</strong>s.<br />

Norsk Geografisk Tidsskrift–Norwegian Journal <strong>of</strong><br />

<strong>Geography</strong>, 55: 230–234.<br />

Marchenko SS, Romanovsky VE, Tipenko G. 2008.<br />

Numerical model<strong>in</strong>g <strong>of</strong> spatial <strong>permafrost</strong> dynamics<br />

<strong>in</strong> Alaska. In Proceed<strong>in</strong>gs <strong>of</strong> the N<strong>in</strong>th International<br />

Conference on Permafrost, 29 June–3 July 2008, Fairbanks,<br />

Alaska. Institute <strong>of</strong> Northern Eng<strong>in</strong>eer<strong>in</strong>g, University<br />

<strong>of</strong> Alaska, Fairbanks.<br />

Mittaz C, Hoelzle M, Haeberli W. 2000. First results and<br />

<strong>in</strong>terpretation <strong>of</strong> energy-flux measurements <strong>of</strong> Alp<strong>in</strong>e<br />

<strong>permafrost</strong>. Annals <strong>of</strong> Glaciology, 31: 275–280.<br />

Mölders N, Romanovsky VE. 2006. Long-term evaluation<br />

<strong>of</strong> the Hydro-Thermodynamic Soil-Vegetation Scheme’s<br />

frozen ground/<strong>permafrost</strong> component us<strong>in</strong>g observations<br />

at Barrow, Alaska. Journal <strong>of</strong> Geophysical Research<br />

111: D04105. DOI:10.1029/2005JD005957.<br />

Molkent<strong>in</strong> EK, Nadyozh<strong>in</strong>a ED, Shklyarevich OB. 2001.<br />

Spatial distribution <strong>of</strong> modeled <strong>permafrost</strong> characteristics.<br />

Gidrologia i Meteorologia, 8: 89–97 (<strong>in</strong> Russian).<br />

Nelson FE. 1986. Permafrost distribution <strong>in</strong> central<br />

Canada: applications <strong>of</strong> a climate-based predictive<br />

model. Annals <strong>of</strong> the Association <strong>of</strong> American Geographers,<br />

76(4): 550–569.<br />

Nelson FE, Anisimov OA. 1993. Permafrost zonation <strong>in</strong><br />

Russia under anthropogenic climatic change. Permafrost<br />

and Periglacial Processes, 4(2): 137–148.<br />

Nelson FE, Outcalt SI. 1987. A computational method for<br />

prediction and regionalization <strong>of</strong> <strong>permafrost</strong>. Arctic<br />

and Alp<strong>in</strong>e Research. 19(3): 279–288.<br />

Nelson FE, Shiklomanov NI, Mueller GR, H<strong>in</strong>kel KM,<br />

Walker DA, Bockheim JG. 1997. Estimat<strong>in</strong>g activelayer<br />

thickness over a large region: Kuparuk River<br />

Bas<strong>in</strong>, Alaska, USA. Arctic and Alp<strong>in</strong>e Research,<br />

29(4): 367–378.<br />

Nelson FE, Anisimov OA, Shiklomanov NI. 2001. Climate<br />

change and hazard potential <strong>in</strong> northern <strong>permafrost</strong><br />

regions. Nature, 410: 889–890. DOI: 10.1038/35073746.<br />

Nelson FE, Anisimov OA, Shiklomanov NI. 2002. Climate<br />

change and hazard zonation <strong>in</strong> the circum-arctic <strong>permafrost</strong><br />

regions. Natural Hazards 26(3): 203–225.<br />

Ng E, Miller PC. 1977. Validation <strong>of</strong> a model <strong>of</strong> the effect<br />

<strong>of</strong> tundra vegetation on soil temperatures. Arctic and<br />

Alp<strong>in</strong>e Research, 9(2): 89–104.<br />

Nicolsky DJ, Romanovsky VE, Alexeev VA, Lawrence<br />

DM. 2007. Improved model<strong>in</strong>g <strong>of</strong> <strong>permafrost</strong> dynamics<br />

<strong>in</strong> a GCM land-surface scheme. Geophysical Research<br />

Letters 34: L08501. DOI:10.1029/2007GL029525.<br />

Noetzli J, Gruber S, Kohl T, Salzmann N, Haeberli W.<br />

2007. Three-dimensional distribution and evolution <strong>of</strong><br />

<strong>permafrost</strong> temperatures <strong>in</strong> idealized high-mounta<strong>in</strong><br />

topography. Journal <strong>of</strong> Geophysical Research 112:<br />

F02S13. DOI: 10.1029/2006JF000545.<br />

Noetzli J, Hilbich C, Hoelzle M, Hauck C, Gruber S,<br />

Krauer M. 2008. Comparison <strong>of</strong> transient 2D temperature<br />

fields with time-lapse electrical resistivity data at<br />

the Schilthorn Crest, Switzerland. In Proceed<strong>in</strong>gs <strong>of</strong><br />

the N<strong>in</strong>th International Conference on Permafrost,<br />

Fairbanks, Alaska. Institute <strong>of</strong> Northern Eng<strong>in</strong>eer<strong>in</strong>g,<br />

University <strong>of</strong> Alaska, Fairbanks.<br />

Oelke C, Zhang T. 2004. A model study <strong>of</strong> circum-arctic<br />

soil temperatures. Permafrost and Periglacial Processes<br />

15: 103–121. DOI: 10.1002/ppp.485.<br />

Oelke C, Zhang T, Serreze MC, Armstrong RL. 2003.<br />

Regional-scale model<strong>in</strong>g <strong>of</strong> soil freeze/thaw over the<br />

arctic dra<strong>in</strong>age bas<strong>in</strong>. Journal <strong>of</strong> Geophysical Research<br />

108(D10): 4314, DOI: 10.1029/2002JD002722.<br />

Oelke C, Zhang T, Serreze MC. 2004. Model<strong>in</strong>g evidence<br />

for recent warm<strong>in</strong>g <strong>of</strong> the Arctic soil thermal regime.<br />

Geophysical Research Letters 31: L07208.<br />

DOI:10.1029/2003GL019300.<br />

Oleson KW, Dai Y, Bonan GB, Bosilovich M, Dick<strong>in</strong>son<br />

R, Dirmeyer P, H<strong>of</strong>fman F, Houser P, Levis S, Niu G-Y,<br />

Thornton P, Vertenste<strong>in</strong> M, Yang ZL, Zeng X. 2004.<br />

Technical description <strong>of</strong> the Community Land Model<br />

(CLM) NCAR Technical Note NCAR/TN-461þSTR,<br />

Boulder, Colorado. 173pp.<br />

Outcalt SI, Goodw<strong>in</strong> C, Weller G, Brown J. 1975. Computer<br />

simulation <strong>of</strong> the snowmelt and soil thermal<br />

regime at Barrow, Alaska. Water Resources Research,<br />

11(5): 709–715.<br />

Copyright # 2008 John Wiley & Sons, Ltd. Permafrost and Periglac. Process., 19: 137–156 (2008)<br />

DOI: 10.1002/ppp


Rigon R, Bertoldi G, Over TM. 2006. GEOtop: A distributed<br />

hydrological model with coupled water and<br />

energy budgets. Journal <strong>of</strong> Hydrometeorology 7(3):<br />

371–388. DOI: 10.1175/JHM497.1.<br />

Riseborough DW. 2004. Explor<strong>in</strong>g the parameters <strong>of</strong> a<br />

simple model <strong>of</strong> the <strong>permafrost</strong> – climate relationship<br />

PhD dissertation, <strong>Department</strong> <strong>of</strong> <strong>Geography</strong>, Carleton<br />

University, Canada, 329 pp.<br />

Riseborough DW. 2007. The effect <strong>of</strong> transient conditions<br />

on an equilibrium <strong>permafrost</strong>-climate model.<br />

Permafrost and Periglacial Processes 18: 21–32. DOI:<br />

10.1002/ppp.579.<br />

Romanovsky VE, Osterkamp TE. 1995. Interannual variations<br />

<strong>of</strong> the thermal regime <strong>of</strong> the active layer and<br />

near-surface <strong>permafrost</strong> <strong>in</strong> northern Alaska. Permafrost<br />

and Periglacial Processes, 6(4): 313–335. DOI:<br />

10.1000/PPP.3430060404.<br />

Romanovsky VE, Osterkamp TE. 1997. Thaw<strong>in</strong>g <strong>of</strong> the<br />

active layer on the coastal pla<strong>in</strong> <strong>of</strong> the Alaskan Arctic.<br />

Permafrost and Periglacial Processes, 8(1): 1–22. DOI:<br />

10.1002/(SICI)1099-1530(199701)8:13.0.CO;2-U.<br />

Rykiel EJ. 1996. Test<strong>in</strong>g ecological models: the<br />

mean<strong>in</strong>g <strong>of</strong> validation. Ecological Modell<strong>in</strong>g 90:<br />

229–244.<br />

Saha SK, R<strong>in</strong>ke A, Dethl<strong>of</strong>f K, Kuhry P. 2006. Influence<br />

<strong>of</strong> a complex land surface scheme on Arctic climate<br />

simulations. Journal Of Geophysical Research 111:<br />

D22104. DOI:10.1029/2006JD007188.<br />

Saito K, Kimoto M, Zhang T, Takata K, Emori S. 2007.<br />

Evaluat<strong>in</strong>g a high-resolution climate model: Simulated<br />

hydrothermal regimes <strong>in</strong> frozen ground regions and<br />

their change under the global warm<strong>in</strong>g scenario. Journal<br />

Of Geophysical Research, 112: F02S11.<br />

DOI:10.1029/2006JF000577.<br />

Salzmann N, Frei C, Vidale P-L, Hoelzle M. 2006. The<br />

application <strong>of</strong> regional climate model output for the<br />

simulation <strong>of</strong> high-mounta<strong>in</strong> <strong>permafrost</strong> scenarios.<br />

Global and Planetary Change 56: 188–202. DOI:<br />

10.1016/j.gloplacha.2006.07.006.<br />

Salzmann N, Noetzli J, Hauck C, Gruber S, Hoelzle M.<br />

2007. RCM-based ground surface temperature<br />

scenarios <strong>in</strong> high-mounta<strong>in</strong> topography and their<br />

uncerta<strong>in</strong>ty ranges. Journal <strong>of</strong> Geophysical Research,<br />

112: F02S12. DOI:10.1029/2006JF000527.<br />

Sazonova TS, Romanovsky VE. 2003. A model for<br />

regional-scale estimation <strong>of</strong> temporal and spatial variability<br />

<strong>of</strong> active layer thickness and mean annual ground<br />

temperatures. Permafrost and Periglacial Processes<br />

14: 125–139. DOI: 10.1002/ppp.449.<br />

Sazonova TS, Romanovsky VE, Walsh JE, Sergueev DO.<br />

2004. Permafrost dynamics <strong>in</strong> the 20th and 21st<br />

centuries along the East Siberian transect. Journal <strong>of</strong><br />

Geophysical Research-Atmos. 109(D1): D01108. DOI:<br />

10.1029/2003JD003680.<br />

Shiklomanov NI. 2005. From exploration to systematic<br />

<strong>in</strong>vestigation; development <strong>of</strong> geocryology <strong>in</strong> 19thand<br />

early-20th-century Russia. Physical <strong>Geography</strong><br />

26(4): 249–263. DOI: 10.2747/0272-3646.26.4.249<br />

<strong>Recent</strong> Advances <strong>in</strong> Permafrost Modell<strong>in</strong>g 155<br />

Shiklomanov NI, Nelson FE. 1999. Analytic representation<br />

<strong>of</strong> the active layer thickness field, Kuparuk<br />

River Bas<strong>in</strong>, Alaska. Ecological Model<strong>in</strong>g. 123(2-3):<br />

105–125. DOI: 10.1016/S0304-3800(99)00127-1.<br />

Shiklomanov NI, Nelson FE. 2002. Active-layer mapp<strong>in</strong>g<br />

at regional scales: A 13-year spatial time series for the<br />

Kuparuk region, north-central Alaska. Permafrost and<br />

Periglacial Processes, 13: 219–230. DOI: 10.1002/<br />

ppp.425.<br />

Shiklomanov NI, Nelson FE. 2003. Statistical representation<br />

<strong>of</strong> landscape-specific active-layer variability.<br />

In: Phillips, M., Spr<strong>in</strong>gman S,M., and Arenson, L.U.<br />

(eds.) Proceed<strong>in</strong>gs <strong>of</strong> the Eighth International Conference<br />

on Permafrost, Zurich, Switzerland. Lisse:<br />

A.A. Balkema, pp. 1039–1044.<br />

Shiklomanov NI, Anisimov OA, Zhang T, Marchenko<br />

SS, Nelson FE, Oelke C. 2007. Comparison <strong>of</strong> model-produced<br />

active layer fields: Results for northern<br />

Alaska. Journal.<strong>of</strong> Geophysical. Research, 112:<br />

F02S10. DOI:10.1029/2006JF000571.<br />

Shiklomanov NI, Nelson FE, Streletskiy DA, H<strong>in</strong>kel KM,<br />

Brown J. 2008. The Circumpolar Active Layer Monitor<strong>in</strong>g<br />

(CALM) Program: Data collection, management,<br />

and dissem<strong>in</strong>ation strategies. In Proceed<strong>in</strong>gs <strong>of</strong> the N<strong>in</strong>th<br />

International Conference on Permafrost, 29 June–3 July<br />

2008, Fairbanks, Alaska. Institute <strong>of</strong> Northern Eng<strong>in</strong>eer<strong>in</strong>g,<br />

University <strong>of</strong> Alaska, Fairbanks.<br />

Shur YL, Slav<strong>in</strong>-Borovskiy VB. 1993. N-factor maps <strong>of</strong><br />

Russian <strong>permafrost</strong> region. In Proceed<strong>in</strong>gs <strong>of</strong> the Sixth<br />

International Conference on Permafrost, Vol. II. South<br />

Ch<strong>in</strong>a University <strong>of</strong> Technology Press, Wushan,<br />

Guangzhou, Ch<strong>in</strong>a; 564–568.<br />

Smith MW, Riseborough DW. 1996. Ground temperature<br />

monitor<strong>in</strong>g and detection <strong>of</strong> climate change. Permafrost<br />

and Periglacial Processes, vol 7 no 4, pp. 301–310. DOI:<br />

10.1002/(SICI)1099-1530(199610)7:43.0.CO;2-R.<br />

Smith MW, Riseborough DW. 2002. Climate and the<br />

limits <strong>of</strong> <strong>permafrost</strong>: a zonal analysis. Permafrost and<br />

Periglacial Processes, 13(1): 1–15. DOI: 10.1002/<br />

ppp.410<br />

Stendel M, Christensen JH. 2002. Impact <strong>of</strong> global<br />

warm<strong>in</strong>g on <strong>permafrost</strong> conditions <strong>in</strong> a coupled<br />

GCM. Geophysical Research Letters, 29: art. no.-<br />

1632. DOI: 10.1029/2001GL014345.<br />

Stendel M, Romanovsky VE, Christensen JH, Sazonova<br />

T. 2007. Us<strong>in</strong>g dynamical downscal<strong>in</strong>g to close the gap<br />

between global change scenarios and local <strong>permafrost</strong><br />

dynamics. Global and Planetary Change 56: 203–214.<br />

DOI:10.1016/j.gloplacha.2006.07.014.<br />

Stevens MB, Smerdon JE, Gonzalez-Rouco JF, Stieglitz<br />

M, Beltrami H. 2007. Effects <strong>of</strong> bottom boundary<br />

placement on subsurface heat storage: Implications<br />

for climate model simulations. Geophysical Research<br />

Letters 34: L02702. DOI: 10.1029/2006GL028546.<br />

Stocker-Mittaz C, Hoelzle M, Haeberli W. 2002. Permafrost<br />

distribution model<strong>in</strong>g based on energy-balance<br />

data: a first step. Permafrost and Periglacial Processes,<br />

13(4): 271–282. DOI: 10.1002/ppp.426.<br />

Copyright # 2008 John Wiley & Sons, Ltd. Permafrost and Periglac. Process., 19: 137–156 (2008)<br />

DOI: 10.1002/ppp


156 D. Riseborough et al.<br />

Strasser U, Bernhardt M, Weber M, Liston GE, Mauser W.<br />

2007. Is snow sublimation important <strong>in</strong> the alp<strong>in</strong>e<br />

water balance? The Cryosphere Discussions 1: 303–<br />

350.<br />

Sushama L, Laprise R, Caya D, Verseghy D, Allard M.<br />

2007. An RCM projection <strong>of</strong> soil thermal and moisture<br />

regimes for North American <strong>permafrost</strong> zones. Geophysical<br />

Research Letters, 34: L20711, DOI: 10.1029/<br />

2007GL031385.<br />

Swanson DK, Lacelle B, Tarnocai C. 2000. Temperature<br />

and the boreal subarctic maximum <strong>in</strong> soil organic<br />

carbon. Geographie Physique et Quaternaire 54(2):<br />

157–167.<br />

Tipenko G, Marchenko S, Romanovsky S, Groshev V,<br />

Sazonova T. 2004. Spatially distributed model <strong>of</strong><br />

<strong>permafrost</strong> dynamics <strong>in</strong> Alaska. Eos Transactions<br />

AGU, 85(47): Fall Meet. Suppl., Abstract C12A-02.<br />

Verdi C. 1994. Numerical aspects <strong>of</strong> parabolic free<br />

boundary and hysteresis problems. In Lecture Notes <strong>in</strong><br />

Mathematics. Spr<strong>in</strong>ger-Verlag: New York; 213–284.<br />

Wild GO. 1882. Air Temperature <strong>in</strong> the Russian Empire.<br />

Izdatel’stvo Russkogo Geograficheskogo Obshestva:<br />

St Petersburg (<strong>in</strong> Russian).<br />

Williams PJ, Smith MW. 1989. The Frozen Earth: Fundamentals<br />

<strong>of</strong> Geocryology. Cambridge University<br />

Press: Cambridge.<br />

Wright JF, Duchesne C, Côté MM. 2003. Regional-scale<br />

<strong>permafrost</strong> mapp<strong>in</strong>g us<strong>in</strong>g the TTOP ground temperature<br />

model. In Proceed<strong>in</strong>gs <strong>of</strong> the Eighth International<br />

Conference on Permafrost, Zurich, Switzerland,<br />

Phillips M, Spr<strong>in</strong>gman SM, Arenson LU (eds).<br />

A.A. Balkema: Lisse; 1241–1246.<br />

Yi S, Ara<strong>in</strong> MA, Woo M-K. 2006. Modifications <strong>of</strong> a<br />

land surface scheme for improved simulation <strong>of</strong><br />

ground freeze-thaw <strong>in</strong> northern environments. Geophysical<br />

Research Letters 33: L13501. DOI:10.1029/<br />

2006GL026340.<br />

Yi S, Woo M-K, Ara<strong>in</strong> MA. 2007. Impacts <strong>of</strong> peat and<br />

vegetation on <strong>permafrost</strong> degradation under climate<br />

warm<strong>in</strong>g. Geophysical Research Letters 34: L16504.<br />

DOI: 10.1029/2007GL030550.<br />

Zanotti F, Endrizzi S, Bertoldi G, Rigon R. 2004. The<br />

GEOTOP snow module. Hydrological Processes 18:<br />

3667–3679. DOI: 10.1002/hyp.5794.<br />

Zhang T, Stamnes K. 1998. Impact <strong>of</strong> climatic factors on<br />

the active layer and <strong>permafrost</strong> at Barrow, Alaska.<br />

Permafrost and Periglacial Processes, 9: 229–246.<br />

DOI:10.1002/(SICI)1099-1530(199807/09)9:33.0.CO;2-T.<br />

Zhang T, Osterkamp TE, Stamnes K. 1996. Influence <strong>of</strong><br />

the depth hoar layer <strong>of</strong> the seasonal snow cover on the<br />

ground thermal regime. Water Resources Research,<br />

32(7): 2075–2086.<br />

Zhang T, Barry RG, Knowles K, Heg<strong>in</strong>bottom JA, Brown<br />

J. 1999. Statistics and characteristics <strong>of</strong> <strong>permafrost</strong> and<br />

ground ice distribution <strong>in</strong> the Northern Hemisphere.<br />

Polar <strong>Geography</strong>, 23(2): 147–169.<br />

Zhang T, Frauenfeld OW, Serreze MC, Etr<strong>in</strong>ger A, Oelke C,<br />

McCreight J, Barry RG, Gilich<strong>in</strong>sky D, Yang D, Ye H,<br />

L<strong>in</strong>g F, Chud<strong>in</strong>ova S. 2005. Spatial and temporal variability<br />

<strong>in</strong> active layer thickness over the Russian Arctic<br />

dra<strong>in</strong>age bas<strong>in</strong>. Journal <strong>of</strong> Geophysical Research-<br />

Atmospheres, 110: D16101. DOI:10.1029/2004JD005642.<br />

Zhang T, Nelson FE, Gruber S. 2007. Introduction to<br />

special section: Permafrost and seasonally frozen ground<br />

under a chang<strong>in</strong>g climate. Journal <strong>of</strong> Geophysical<br />

Research, 112: F02S01. DOI:10.1029/2007JF000821.<br />

Zhang Y, Chen W, Cihlar J. 2003. A process-based model<br />

for quantify<strong>in</strong>g the impact <strong>of</strong> climate change on <strong>permafrost</strong><br />

thermal regimes. Journal <strong>of</strong> Geophysical<br />

Research-Atmospheres, 108(D22): 4695, DOI:10.<br />

1029/2002JD003354.<br />

Zhang Y, Chen W, Smith SL, Riseborough DW, Cihlar J.<br />

2005. Soil temperature <strong>in</strong> Canada dur<strong>in</strong>g the twentieth<br />

century: complex responses to the changes <strong>in</strong> air<br />

temperature at high latitudes. Journal <strong>of</strong> Geophysical<br />

Research, vol. 110: D03112. DOI: 10.1029/<br />

2004JD004910.<br />

Zhang Y, Chen W, Riseborough DW. 2006. Temporal and<br />

spatial changes <strong>of</strong> <strong>permafrost</strong> <strong>in</strong> Canada s<strong>in</strong>ce the end<br />

<strong>of</strong> the Little Ice Age. Journal <strong>of</strong> Geophysical Research<br />

111: D22103. DOI: 10.1029/2006JD007284.<br />

Copyright # 2008 John Wiley & Sons, Ltd. Permafrost and Periglac. Process., 19: 137–156 (2008)<br />

DOI: 10.1002/ppp

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!