13.07.2015 Views

marker-assisted selection in wheat

marker-assisted selection in wheat

marker-assisted selection in wheat

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 7 – Marker-<strong>assisted</strong> <strong>selection</strong> <strong>in</strong> common beans and cassava 109major traits of agronomic <strong>in</strong>terest even <strong>in</strong>a subset of elite parents used for breed<strong>in</strong>gis beyond the resources available for beanand cassava research. Association mapp<strong>in</strong>gand l<strong>in</strong>kage disequilibrium mapp<strong>in</strong>g,which rely upon non-random associationof candidate genes or <strong>marker</strong>s on a high resolutionmap with a phenotype of <strong>in</strong>terest<strong>in</strong> a non-structured collection of genotypes,have been proposed as a way aroundthis problem. Association mapp<strong>in</strong>g can beused to discover new <strong>marker</strong>-trait associationsor to validate associations that werefound through conventional genetic mapp<strong>in</strong>g.The GCP is facilitat<strong>in</strong>g associationmapp<strong>in</strong>g of traits of agronomic importance<strong>in</strong> cassava and beans with the goal of discover<strong>in</strong>gmore useful <strong>marker</strong>s for a widerrange of genotypes.The need to strike a balance betweenMAS and field-based <strong>selection</strong>Occasionally the question is raised: whichis better, MAS or conventional <strong>selection</strong>?This very question betrays a falsedichotomy that h<strong>in</strong>ders progress. By itself,MAS is seldom an adequate <strong>selection</strong> tooland therefore must be comb<strong>in</strong>ed withconventional phenotypic <strong>selection</strong>. Theobjective should be to develop the optimalbalance between conventional and molecularbreed<strong>in</strong>g, and the “best” balance willbe unique to each situation, crop, <strong>selection</strong>scheme, environment and opportunities fordifferent <strong>selection</strong> methods. More emphasisis needed on comb<strong>in</strong>ed <strong>selection</strong> systems,rather than view<strong>in</strong>g MAS as a replacementfor phenotypic or field <strong>selection</strong>.ReferencesAfanador, L.K. & Hadley, S.D. 1993. Adoption of a m<strong>in</strong>i-prep DNA extraction method for RAPD<strong>marker</strong> analysis <strong>in</strong> common bean. Bean Improv. Coop. 35: 10–11.Akano, A.O., Dixon, A.G.O., Mba, C., Barrera, E. & Fregene, M. 2002. Genetic mapp<strong>in</strong>g of a dom<strong>in</strong>antgene conferr<strong>in</strong>g resistance to cassava mosaic disease. Theor. Appl. Genet. 105: 521–525.Asiedu, R., Hahn, S.K., Bai, K.V. & Dixon, A.G.O. 1992. Introgression of genes from wild relatives<strong>in</strong>to cassava. In M.O. Akoroda & O.B. Arene, eds. Proc. 4 th . Triennial Symp. Internat. Soc. Trop.Root Crops-Africa Branch, pp. 89-91. Nigeria, ISTRC-AB/IDRC/CTA/IITA.Awale, H.E. &. Kelly, J.D. 2001. Development of SCAR <strong>marker</strong>s l<strong>in</strong>ked to Co-42 gene <strong>in</strong> commonbean. Ann. Rep. Bean Improv. Coop. 44: 119–120.Babu, L. & Chatterjee, S.R. 1999. Prote<strong>in</strong> content and am<strong>in</strong>o acid composition of cassava tubers andleaves. J. Root Crops .25: 163–168.Beaver, J.S., Rosas, J.C., Myers, J., Acosta, J., Kelly, J.D., Nchimbi-Msolla, S.M., Misangu, R.,Bokosi, J., Temple, S., Aranud-Santana, E. & Coyne, D.P. 2003. Contributions of the bean/cowpea CRSP to cultivar and germplasm development <strong>in</strong> common bean. Field Crops Res. 82:87–102.Beebe, S., Velasco, A. & Pedraza, F. 1999. Marcaje de genes para rendimiento en condiciones de altoy bajo fósforo en las accesiones de frijol G21212 y BAT 881. VI Reunião Nacional de Pesquisa deFeijão. Salvador, Brazil.Beebe, S., Skroch, P.W., Tohme, J., Duque, M.C., Pedraza, F. & Nienhuis, J. 2000. Structure ofgenetic diversity among common bean landraces of Mesoamerican orig<strong>in</strong> based on correspondenceanalysis of RAPD. Crop Sci. 40: 264–273.Beebe, S., Rengifo, J., Gaitan, E., Duque, M.C. & Tohme, J. 2001. Diversity and orig<strong>in</strong> of Andeanlandraces of common bean. Crop Sci. 41: 854–862.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!