13.07.2015 Views

regeneration studies on some important trees in a natural moist ...

regeneration studies on some important trees in a natural moist ...

regeneration studies on some important trees in a natural moist ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

KFRI Research Report 83REGENERATION STUDIES ON SOME IMPORTANT TREES IN ANATURAL MOIST DECIDUOUS FOREST ECOSYSTEMK. SwarupanandanN. SasidharanKERALA FOREST RESEARCH INSTITUTEPEECHI, THRISSUR1992 Pages: 128


CONTENTSPageFileSummary ix r.83.21 Introducti<strong>on</strong> 1 r.83.32 Review of Literature 5 r.83.43 Study area 15 r.83.54 Moist deciduous Forest ofTrichur Forest Divisi<strong>on</strong> 23 r.83.65 Methods 37 r.83.76 Results and Discussi<strong>on</strong> I: TheReproductory Phase 53 r.83. 87 Results and Discussi<strong>on</strong> II: TheSeedl<strong>in</strong>g Phase 63 r.83.98 Results and Discussi<strong>on</strong> III: TheTree Phase 93 r.83.109 Results and Discussi<strong>on</strong> IV:Future of Regenerati<strong>on</strong> <strong>in</strong> theSouth Indian Moist DeciduousForests97 r.83.1110 Synthesis 105 r.83.1211 References 111 r.83.13


SummaryForest Resources are renewable <strong>on</strong>ly because they do regenerate.The pace at which older <strong>trees</strong> are replaced by younger <strong>on</strong>es is very much<strong>important</strong> <strong>in</strong> this respect. Regenerati<strong>on</strong> dynamics thus, is <strong>on</strong>e of the thrustareas of study <strong>in</strong> the management of <strong>natural</strong> forests.In India Tropical Moist Deciduous Forests rank next to the TropicalDry Deciduous Forests <strong>in</strong> extent. On the other hand, the Moist DeciduousForests (MDFs) stand first <strong>in</strong> meet<strong>in</strong>g the requirements of the people, asthey yield timber <strong>trees</strong> of commerce like teak, sal, venteak, rosewood, etc.Kerala has approximately 4,100 km 2 of Moist Deciduous Forestsamount<strong>in</strong>g to 43.6 percent of the State's total forest area. Regenerati<strong>on</strong> isheavily deficient <strong>in</strong> these forests. Thus, the project was undertaken to<strong>in</strong>vestigate the causes of poor <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> <strong>in</strong> these forests with specialreference to the commercially <strong>important</strong> <strong>trees</strong>. In address<strong>in</strong>g the problem,the follow<strong>in</strong>g questi<strong>on</strong>s were posed: To what extent is the paucity of<str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> <strong>in</strong> the Moist Deciduous Forests? Do the flower<strong>in</strong>g and fruit<strong>in</strong>gbehaviour of the commercially <strong>important</strong> <strong>trees</strong> c<strong>on</strong>tribute to the paucityof their <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>? What are the specifics of populati<strong>on</strong> dynamics <strong>in</strong>the early phases of sylvigenesis of these species? What processes limit the ,growth of <strong>natural</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> populati<strong>on</strong>s below the desired levels?C<strong>on</strong>venti<strong>on</strong>al phenological, demographic and phytosociological<str<strong>on</strong>g>studies</str<strong>on</strong>g> were c<strong>on</strong>ducted <strong>in</strong> the South Indian Moist Deciduous Forests of theTrichur Forest Divisi<strong>on</strong> (Kerala) so as to answer the questi<strong>on</strong>s cover<strong>in</strong>g allphases of sylvigenesis. Qualitative phenological <str<strong>on</strong>g>studies</str<strong>on</strong>g> were c<strong>on</strong>ducted<strong>on</strong> 172 marked <strong>trees</strong> bel<strong>on</strong>g<strong>in</strong>g to 18 tree species. M<strong>on</strong>thly observati<strong>on</strong>s of10 phenological phases were made with the help of a b<strong>in</strong>ocular for threeyears. Quantitative phenological <str<strong>on</strong>g>studies</str<strong>on</strong>g> were c<strong>on</strong>ducted <strong>in</strong> a permanentplot by <strong>in</strong>stall<strong>in</strong>g seventy five 1 m2 litter traps. Regenerati<strong>on</strong> survey wasc<strong>on</strong>ducted <strong>in</strong> eight widely distributed 0.6 ha sample plots, so as to havea general idea of the seedl<strong>in</strong>g bank. Various parameters of the dynamicsof seedl<strong>in</strong>g populati<strong>on</strong>s such as natality, mortality, survival, etc. werestudied <strong>in</strong> two permanent plots by m<strong>on</strong>itor<strong>in</strong>g over 4,000 tagged seedl<strong>in</strong>gsfor two years. In additi<strong>on</strong>, for a period of <strong>on</strong>e year the number of newlyemerg<strong>in</strong>g tree seedl<strong>in</strong>gs were m<strong>on</strong>itored <strong>in</strong> n<strong>in</strong>ety 4 m 2 quadrats atfortnightly <strong>in</strong>tervals, so as to get an idea of seed to new recruits ratio.Role of summer soil <strong>moist</strong>ure depleti<strong>on</strong> <strong>on</strong> seedl<strong>in</strong>g mortality was studiedby m<strong>on</strong>itor<strong>in</strong>g the survival of tagged seedl<strong>in</strong>gs <strong>in</strong> thirty 20 m 2 plots dur<strong>in</strong>gthe summer m<strong>on</strong>ths. Fate of 900 (>= 10 cm dbh) <strong>trees</strong> <strong>in</strong> the two permanentplots of 2 ha size were m<strong>on</strong>itored for estimati<strong>on</strong> of survival.


XThe average number of unestablished seedl<strong>in</strong>gs ( 100 cm and dbh 10 cm and


xi<strong>trees</strong> ha-1. Hence, the reproductive potential of MDFs <strong>in</strong> terms of flower,fruit, seed and seedl<strong>in</strong>g producti<strong>on</strong> is <strong>in</strong> no way a limit<strong>in</strong>g factor h<strong>in</strong>der<strong>in</strong>gample <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>.Sumemer soil <strong>moist</strong>ure depleti<strong>on</strong> by itself is not a serious threat to<str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>. Experimental <str<strong>on</strong>g>studies</str<strong>on</strong>g> <strong>in</strong> protected sample plots showed thatseedl<strong>in</strong>g mortality dur<strong>in</strong>g the summer moths was no more than 10 to 20percent. This was so presumably because, the thick litter carpet available<strong>on</strong> the ground dur<strong>in</strong>g the summer m<strong>on</strong>ths acted as a heat protective coverand prevented excessive <strong>moist</strong>ure loss from soil.Biotic factors were found to be the ma<strong>in</strong> causes resp<strong>on</strong>sible for thepaucity of <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> <strong>in</strong> the Moist Deciduous Forests . Recurr<strong>in</strong>g fire,graz<strong>in</strong>g and brows<strong>in</strong>g by goats and sheep, illicit cutt<strong>in</strong>g of sapl<strong>in</strong>gs andpoles, charcoal mak<strong>in</strong>g etc. are the ma<strong>in</strong> reas<strong>on</strong>s for the paucity of<str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>. Besides the biotic factors, competiti<strong>on</strong> offered by weeds,tw<strong>in</strong>ers and the less useful species also offer c<strong>on</strong>tra<strong>in</strong>ts but to a lesserextent. In <strong>some</strong> species <strong>in</strong>tr<strong>in</strong>sic c<strong>on</strong>stra<strong>in</strong>ts also exist.In areas where recurrent fire is comm<strong>on</strong>, this is the s<strong>in</strong>gle largestfactor caus<strong>in</strong>g paucity of <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> <strong>in</strong> Moist Deciduous Forests. Becauseof the seas<strong>on</strong>al physiognomy, proximity to settlements and penetrability,MDFs are almost entirely (except perhaps a few protected areas) subjectto fire every year. Recurrent fire, both <strong>in</strong>tenti<strong>on</strong>al and un<strong>in</strong>tenti<strong>on</strong>al,nullifies the reproductive potential by devastat<strong>in</strong>g the young seedl<strong>in</strong>gs.The probabilities of transiti<strong>on</strong> of <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> form lower to higher sizeclasses get dim<strong>in</strong>ished and from higher to lower size classes get amplified.Fire therefore always leads to retardati<strong>on</strong> of the populati<strong>on</strong> of<str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>.Moist Deciduous Forests have the seedl<strong>in</strong>g banks, the substraterequired for the process of sylvigenesis to operate. But the latter getsarrested ow<strong>in</strong>g to fire. Thus, <strong>in</strong> areas where fire is fairly regular, it islargely resp<strong>on</strong>sible for the paucity of established seedl<strong>in</strong>gs (sapl<strong>in</strong>gs).Fire also reduces the seed source c<strong>on</strong>siderably. In general, thediaspores (fruits/ seeds) of the commercially <strong>important</strong> <strong>trees</strong> of the MDFsare larger than that of the weeds and other less useful <strong>trees</strong>. Therefore,they fail to enter the seed bank. C<strong>on</strong>sequently they are burnt <strong>in</strong> the forestfire thus reduc<strong>in</strong>g the seed source.Further, fire causes damages and also kills mature <strong>trees</strong>, which isthe seed source for <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>. Of the 900 <strong>trees</strong> (>= 10 cm dbh)


xiim<strong>on</strong>itored, 28 percent (251) had fire burnt blisters or decay holes <strong>on</strong> thetrunk/ collar regi<strong>on</strong>. Repeated ground fires burn the collar regi<strong>on</strong> of <strong>trees</strong>and over years the wood gets <strong>in</strong>fected by decay caus<strong>in</strong>g fungi. The <strong>trees</strong>gradually get killed either by fungi or by w<strong>in</strong>d fall.Illicit cutt<strong>in</strong>g of sapl<strong>in</strong>gs, poles and <strong>trees</strong> creates gaps <strong>in</strong> stands<strong>on</strong> the <strong>on</strong>e hand and <strong>on</strong> the other distorts the populati<strong>on</strong> structure of<strong>in</strong>dividual species, aga<strong>in</strong> lead<strong>in</strong>g to arrested sylvigenesis. This <strong>in</strong> turnleads to poor regenerative potential.The populati<strong>on</strong> of <strong>natural</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> of the commercially lessused species outnumber that of the useful species and offers str<strong>on</strong>gcompetiti<strong>on</strong> to the latter. This is <strong>in</strong> additi<strong>on</strong> to that c<strong>on</strong>tributed by weedyshrubs, tw<strong>in</strong>ers and lianas.Some tree species have <strong>in</strong>herent <strong>in</strong>tr<strong>in</strong>sic c<strong>on</strong>stra<strong>in</strong>ts. This isbest exemplified by Lagerstroemia microcarpa where milli<strong>on</strong>s of seedsproduced each year are practically sterile (with very low germ<strong>in</strong>ati<strong>on</strong>percentage) <strong>in</strong> the absence of a viable embryo.Protecti<strong>on</strong> from biotic factors is the most <strong>important</strong> measure to beadopted for augment<strong>in</strong>g <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> <strong>in</strong> Moist Deciduous Forests. Firebe<strong>in</strong>g the largest am<strong>on</strong>g the c<strong>on</strong>stra<strong>in</strong>ts to <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> its c<strong>on</strong>trol is ofvital importance. Due to fire protecti<strong>on</strong> al<strong>on</strong>e, populati<strong>on</strong>s of <strong>natural</strong><str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> have shown significant <strong>in</strong>crease <strong>in</strong> survival (85 percent) andtransiti<strong>on</strong> probabilities to higher size classes. This is <strong>in</strong>dicative of thefact that MDFs although deficient of ample <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> are <strong>in</strong> no wayirreparable. If proper protecti<strong>on</strong> is given they can still get back toun<strong>in</strong>terrupted sylvigenesis. In additi<strong>on</strong>, graz<strong>in</strong>g and brows<strong>in</strong>g, illicitcutt<strong>in</strong>g, charcoal mak<strong>in</strong>g, etc. need to be c<strong>on</strong>trolled.In areas which are already degraded <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> need to beaugmented by enrichment plant<strong>in</strong>g. Present <str<strong>on</strong>g>studies</str<strong>on</strong>g> have shown higher firesurvival (p=0.45) of seedl<strong>in</strong>gs <strong>in</strong> the size class 1-10 cm dbh. Hence,standardizati<strong>on</strong> of plant<strong>in</strong>g stock and technology with the lower half ofthis size class would be a better opti<strong>on</strong> <strong>in</strong> places where full fire protecti<strong>on</strong>measures cannot be enforced.All causes of forest degradati<strong>on</strong> such as fire, graz<strong>in</strong>g, illicit cutt<strong>in</strong>g,etc. are anthropogenic <strong>in</strong> orig<strong>in</strong>. Measures to check degradati<strong>on</strong> thereforeshould take <strong>in</strong>to c<strong>on</strong>siderati<strong>on</strong> the sociological aspects of forestmanagement. Due thoughts must be given to participatory management offorest resources, <strong>in</strong>clud<strong>in</strong>g the <strong>in</strong>volvement of the local populati<strong>on</strong>.


Chapter 1Introducti<strong>on</strong>For approximately half a century forestry research centred largelyaround plantati<strong>on</strong> forestry. However, hav<strong>in</strong>g experienced with thedemerits of the homogeneous m<strong>on</strong>ocultural systems, <strong>in</strong> recent years forestmanagement research has shown trends to c<strong>on</strong>ceive the idea of susta<strong>in</strong>ablemanagement of multiple resources c<strong>on</strong>serv<strong>in</strong>g the rich <strong>natural</strong> diversity(Bawa and Krugman, 1986).Precise knowledge of the <strong>in</strong>tr<strong>in</strong>sic structure of the dynamics ofecosystems is a s<strong>in</strong>e qua n<strong>on</strong> <strong>in</strong> develop<strong>in</strong>g practical methods forsusta<strong>in</strong>able management. Thus, research with the aim of acquir<strong>in</strong>g basic<strong>in</strong>formati<strong>on</strong> <strong>on</strong> ecosystem dynamics has been c<strong>on</strong>ducted <strong>in</strong> various partsof the world (Bawa, 1974; Frankie et al., 1974a, 1974b; Janzen, 1978;Bawa,1979; Chan, 1981; Leigh et al., 1982; Bawa, 1983; Sutt<strong>on</strong> et al.,1983; Bawa et al., 1985a, 1985) and the process is c<strong>on</strong>t<strong>in</strong>u<strong>in</strong>g.Regenerati<strong>on</strong> is the process of sylvigenesis (= forest build<strong>in</strong>g; cf.Halle et al., 1978) by which <strong>trees</strong> and forests survive over time. Unlikehomogeneous plantati<strong>on</strong>s, management of <strong>natural</strong> forests rely largely <strong>on</strong><strong>natural</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>. Successful management therefore depends <strong>on</strong> good<strong>natural</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> of valuable species. Regenerati<strong>on</strong> dynamics is <strong>on</strong>eof the thrust areas for <strong>in</strong>tensive research. The f<strong>in</strong>al goal of theseresearch programmes should be to evolve methods to harm<strong>on</strong>ise the ratesof exploitati<strong>on</strong> and <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>.Because of the fragile nature, Evergreen Forests received muchattenti<strong>on</strong> <strong>on</strong> the above l<strong>in</strong>es, but the Moist Deciduous Forests did not. TheMoist Deciduous Forests are commercially much more <strong>important</strong>, as humandependence <strong>on</strong> this forest type is greater than that <strong>on</strong> the Evergreens.In fact, the problem of the Moist Deciduous Forests is much more acutethan that of the Evergreens, the situati<strong>on</strong> be<strong>in</strong>g complicated with a highdegree of anthropogenic c<strong>on</strong>stra<strong>in</strong>ts.Kerala has approximately 4,100 km 2 of Moist Deciduous Forests(Forest Survey of India, 1989) (Figure 1.1). They are the habitats for themost valuable timber species like rose wood (Dalbergia latifolia Roxb., D.sissofdes Grah. ex Wt. et Arn.), teak (Tect<strong>on</strong>a grandis L<strong>in</strong>n. f.), irul(Xylia xylocarpa (Roxb.) Taub.), maruthi (Term<strong>in</strong>alia crenulata Roth, T.paniculata Roth), venteak (Lagerstroemia microcarpa Wt.), chadachi(Grewia tiliifolia Vahl), vaga (Albizia odoratissima (L<strong>in</strong>n. f. ) Benth.),manjakkadambu (Hald<strong>in</strong>a cordifolia (Roxb.) Ridsd.), etc. Regenerati<strong>on</strong>1


2 Introducti<strong>on</strong>Distributi<strong>on</strong> of Moist Deciduous Forests <strong>in</strong> Kerala.Figure 1.1A. Compiled from Chandrasekharan (1962). B. Redrawn from Nair etal. (1984). The pr<strong>on</strong>ounced reducti<strong>on</strong> <strong>in</strong> area by 1984 is due tothe c<strong>on</strong>versi<strong>on</strong> of many areas <strong>in</strong>to plantati<strong>on</strong>..


Introducti<strong>on</strong> 3is generally very poor and totally unsatisfactory for many of thesecommercially <strong>important</strong> tree species.The first step <strong>in</strong> f<strong>in</strong>d<strong>in</strong>g suitable soluti<strong>on</strong>s for the problem of<str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> is to identify the actual c<strong>on</strong>stra<strong>in</strong>ts <strong>in</strong>volved. Identificati<strong>on</strong>of the c<strong>on</strong>stra<strong>in</strong>ts <strong>in</strong> turn requires a demographic assessment so as tolocate the po<strong>in</strong>ts of acti<strong>on</strong> of the c<strong>on</strong>stra<strong>in</strong>ts. As a matter of fact, thepresent study was undertaken so as to:1. Get a general idea of <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> dynamics of South Indian MoistDeciduous Forests, especially <strong>in</strong> Kerala.2. Identify the c<strong>on</strong>stra<strong>in</strong>ts of <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> specific to the commercially<strong>important</strong> species through phenological, demographic and phytosociological<str<strong>on</strong>g>studies</str<strong>on</strong>g>.The Trichur Forest Divisi<strong>on</strong> has a large junk of Moist DeciduousForests and therefore, this area was selected for the study.In forestry, generally the use of the term '<str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>' is restrictedto the lower size classes, especially seedl<strong>in</strong>gs. However, <strong>in</strong> the verbalform it is a cyclic process beg<strong>in</strong>n<strong>in</strong>g with flower<strong>in</strong>g and end<strong>in</strong>g with theformati<strong>on</strong> of adult <strong>trees</strong>, pass<strong>in</strong>g through fruits, seeds, seedl<strong>in</strong>gs, sapl<strong>in</strong>gsand poles (P. N. Nair, 1961). Thus, <strong>in</strong> a wider sense the term applies to alllife stages of the plant. Regenerati<strong>on</strong> <str<strong>on</strong>g>studies</str<strong>on</strong>g> to be helpful <strong>in</strong> identify<strong>in</strong>gthe c<strong>on</strong>stra<strong>in</strong>ts must, therefore, embrace all the life stages. Thus, thedifferent parameters studied <strong>in</strong> this c<strong>on</strong>necti<strong>on</strong> were designed to addressquesti<strong>on</strong>s relat<strong>in</strong>g to the reproductive phase, <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> phase and themature tree phase. S<strong>in</strong>ce results and discussi<strong>on</strong>s <strong>on</strong> each of the silvicphases menti<strong>on</strong>ed above are lengthy, they are dealt <strong>in</strong> separate chapters.


Chapter 2Review of LiteratureHistory of Regenerati<strong>on</strong> Studies ......... 5Natural Regenerati<strong>on</strong> .................... 6Processes and phases of NaturalRegenerati<strong>on</strong> . 6Flower<strong>in</strong>g ............................. 7Fruit<strong>in</strong>g/ Seed<strong>in</strong>g ..................... 8Dispersal ............................. 9seed Predati<strong>on</strong>........................ 9Dormancy .............................. 10seed Banks ............................ 10Germ<strong>in</strong>ati<strong>on</strong> and Establishment......... 10C<strong>on</strong>versi<strong>on</strong> to Upper Size Classes ...... 11SilviculturalSystems Associatedwith Natural Regenerati<strong>on</strong> .............. 12Studies <strong>on</strong> <strong>moist</strong> Deciduous Forests ....... 13Histroy of Regenerati<strong>on</strong> StudiesThe very birth of the science of forestry was as <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>studies</str<strong>on</strong>g>.The col<strong>on</strong>ial powers <strong>in</strong> India were very much <strong>in</strong> need of teak for shipbuild<strong>in</strong>g, Shortage of teak and the need for its c<strong>on</strong>t<strong>in</strong>uous supply led tothe rais<strong>in</strong>g of first teak plantati<strong>on</strong>s <strong>in</strong> India and Burma (Stebb<strong>in</strong>g, 1922).After the lapse of approximately 150 years, today this traditi<strong>on</strong> ofartificial <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> and domesticati<strong>on</strong> of forest <strong>trees</strong> is wellestablished as plantati<strong>on</strong> forestry. Literature <strong>on</strong> this subject is enormousand has been precisely reviewed by Libby (1973) and Seymour et al.(1986).While plantati<strong>on</strong> forestry is an alternative measure to <strong>in</strong>crease theturn over of yield of desired species it has the demerits of m<strong>on</strong>ocultures.Epidemic diseases and outbreak of pests are always associated with it.Moreover, plantati<strong>on</strong>s modify the <strong>natural</strong> vegetati<strong>on</strong> completely. This ledto the c<strong>on</strong>cept of manag<strong>in</strong>g the <strong>natural</strong> forests, keep<strong>in</strong>g their orig<strong>in</strong>alstructure and diversity and us<strong>in</strong>g the techniques of <strong>natural</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>.The practice of <strong>natural</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> over many decades had c<strong>on</strong>tributeda vast store of know-hows of silvicultural practices <strong>in</strong> forest management(P. N. Nair, 1961; C. T. S. Nair, 1986).


6 Review of LiteratureToday, the c<strong>on</strong>cept of c<strong>on</strong>servati<strong>on</strong> <strong>in</strong> resource management is wellestablished. Many <strong>in</strong>ternati<strong>on</strong>al forums f<strong>in</strong>d their efforts to developsuitable methods for practic<strong>in</strong>g the c<strong>on</strong>cept of susta<strong>in</strong>ed yield <strong>in</strong> forestry(Unesco, 1975). Therefore, the subject of <strong>natural</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> is receiv<strong>in</strong>ggreater attenti<strong>on</strong>. To take a brief retrospect, artificial <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>(plantati<strong>on</strong> forestry), <strong>natural</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>, and the susta<strong>in</strong>ed yieldc<strong>on</strong>cept are three phases of development <strong>in</strong> the history of forestry.Natural RRegenerati<strong>on</strong>Foresters and ecologists have c<strong>on</strong>tributed to the knowledge of<str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> dynamics of <strong>natural</strong> forests. Regenerati<strong>on</strong> dynamics havebeen studied <strong>in</strong> both unmodified and modified forests of differentlatitud<strong>in</strong>al, l<strong>on</strong>gitud<strong>in</strong>al, altitud<strong>in</strong>al and typological specificati<strong>on</strong>s(Brooks, 1941; Ayliffee, 1952; Holmes, 1956; Webb et al., 1972, Murray,1981; Kahn, 1982; Heuveldop and Neumann, 1983; Burschel et al., 1985;Venn<strong>in</strong>g, 1985 and many others). Temperate Forests and Tropical WetEvergreen Forests are the <strong>on</strong>es best studied. Regenerati<strong>on</strong> <str<strong>on</strong>g>studies</str<strong>on</strong>g> <strong>on</strong>selected species and specific categories of taxa are also numerous (Watt,1919, 1923; Barnard, 1956; Kho<strong>on</strong>, 1981; Newbold et al., 1981;Chac<strong>on</strong>sotelo, 1983; Dimitrov, 1984; Daly and Shankman, 1985; Drapier,1985; Melnik, 1985; Mor<strong>in</strong>, 1986; Szappanos, 1986; Bernier, 1987; Everard,1987).P. N. Nair (1961) has brought out a detailed review of the literaturec<strong>on</strong>cern<strong>in</strong>g the various aspects of <strong>natural</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>. C. T. S. Nair(1986) has drawn a c<strong>on</strong>cise account of the silvicultural systems associatedwith <strong>natural</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>. Fox (1976) has made a categoricalreview of c<strong>on</strong>stra<strong>in</strong>ts of <strong>natural</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>. The vast store of literature<strong>on</strong> <strong>natural</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> differs markedly <strong>in</strong> its c<strong>on</strong>tent as the foresttypes themselves are and the factors and the processes <strong>in</strong>volved <strong>in</strong><str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>. Important aspects are reviewed hereunder, followed bysynoptic review of pert<strong>in</strong>ent <str<strong>on</strong>g>studies</str<strong>on</strong>g> <strong>on</strong> the Deciduous Forests.Processes and Phases of Natural Regenerati<strong>on</strong>A number of reviews <strong>on</strong> the subject are already available. P. N. Nair(1 961 )has given a review of the subject <strong>on</strong> Tropical Forests. Unesco (1 978a, 1978 b) covered the subject at length.


Review of Literature 7All populati<strong>on</strong>s are under the flux of two vital, but oppositeprocesses, viz. growth and death. Regenerati<strong>on</strong> leads to <strong>in</strong>crease <strong>in</strong>populati<strong>on</strong> number (Krebs, 1972). Different k<strong>in</strong>ds of organisms havedifferent k<strong>in</strong>ds of regenerative strategies (Grime, 1979). Of these, forest<strong>trees</strong> by and large have seed based regenerative strategies (ie, by genets)although <strong>some</strong> species also show a certa<strong>in</strong> degree of vegetative<str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> (ie, by ramets).Adequate seed supply, effective dispersal, good viability andl<strong>on</strong>gevity of seeds, successful establishment of seedl<strong>in</strong>gs and goodc<strong>on</strong>versi<strong>on</strong> to mature <strong>trees</strong> are all unavoidable for a susta<strong>in</strong>able forestmanagement. Therefore, the populati<strong>on</strong> structure at each of these lifestages, viz., adult <strong>trees</strong>, flower, fruit, seed, seedl<strong>in</strong>g, sapl<strong>in</strong>g, pole, etc.determ<strong>in</strong>e the structure of mature tree populati<strong>on</strong>s of the future. Thecharacteristic <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> pattern of <strong>in</strong>dividual species and forest typesare therefore, compromises between the real <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> potential andthe pressure offered by the c<strong>on</strong>stra<strong>in</strong>ts (Fox, 1976).Flower<strong>in</strong>gIn the tropics flower<strong>in</strong>g and fruit<strong>in</strong>g of forest <strong>trees</strong> are quite oftennot regular. These irregylarities affect <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>. For this reas<strong>on</strong>,fell<strong>in</strong>g operati<strong>on</strong>s are to be based <strong>on</strong> the flower<strong>in</strong>g and fruit<strong>in</strong>g behaviourof the more <strong>important</strong> <strong>trees</strong> (Dhamanijayakul, 1981; P. N. Nair, 1961). Infact such phenological characteristics are be<strong>in</strong>g utilized for the managementof Dipterocarp Forests <strong>in</strong> South East Asia.A brief review of flower<strong>in</strong>g of tropical plants was made by Bawa(1983). Flower<strong>in</strong>g phenology of many forest <strong>trees</strong>, especially theEvergreen Forests, have been studied <strong>in</strong> the tropics (Holttum, 1931;Holmes, 1942a, 1942b; Koelmeyer, 1959; P<strong>in</strong>to, 1970; Medway, 1972; Ng andLoh, 1974; Cockburn, 1976; Ng, 1977, 1981). Flower<strong>in</strong>g phenology of a fewecosystems <strong>in</strong> toto had also been studied (Lee, 1971; Frankie et al.,1974a, 1974b).Flower<strong>in</strong>g <strong>in</strong>cludes floral bud <strong>in</strong>itiati<strong>on</strong>, development, bloom<strong>in</strong>g andfloral persistence (Borchert, 1983; Rathcke and Lacey, 1985). In a broadersense it also <strong>in</strong>cludes the study of breed<strong>in</strong>g systems <strong>in</strong>clud<strong>in</strong>g floralbiology. Of these, bud <strong>in</strong>itiati<strong>on</strong>, development and bloom<strong>in</strong>g are subjectsof <strong>in</strong>terest to physiologists and except for a few crop <strong>trees</strong>, forest <strong>trees</strong>have not been studied <strong>in</strong> this respect.


8 Review of LiteratureNot all the <strong>trees</strong> do flower and fruit <strong>in</strong> the same manner. Variati<strong>on</strong>exists <strong>in</strong> frequency, time and durati<strong>on</strong> of flower<strong>in</strong>g and fruit<strong>in</strong>g. It alsovaries with species, populati<strong>on</strong>s and ecosystems, and accord<strong>in</strong>g to theclimatic c<strong>on</strong>diti<strong>on</strong>s (Bawa, 1983; Primack, 1985). The Costa Rican forestsshow a bimodal distributi<strong>on</strong> of flower<strong>in</strong>g frequencies (Baker et al., 1983).The South East Asian Dipterocarps flower synchr<strong>on</strong>ously <strong>on</strong>ce <strong>in</strong> 5-13years. This phenomen<strong>on</strong> is comm<strong>on</strong>ly termed as gregarious flower<strong>in</strong>g(Medway. 1972; Janzen, 1974a). In most other <strong>trees</strong> annual flower<strong>in</strong>g isthe rule. Periodicities between these extremes are also known. Thesephenological patterns are very much related to competiti<strong>on</strong> of poll<strong>in</strong>ators,poll<strong>in</strong>ator activities and selecti<strong>on</strong> for life history traits (Bawa, 1983;Primack, 1985). The relati<strong>on</strong>ship between breed<strong>in</strong>g systems (<strong>in</strong>clud<strong>in</strong>g anthecology= poll<strong>in</strong>ati<strong>on</strong> ecology; Frankie et al., 1974b; Baker et al., 1983;Bawa et al., 1985a) and <strong>in</strong>compatibility mechanisms (Bawa et al., 1985b)of <strong>in</strong>dividual species are <strong>on</strong>ly be<strong>in</strong>g understood.Fruit<strong>in</strong>g/ Seed<strong>in</strong>gFruit<strong>in</strong>g/ seed<strong>in</strong>g <strong>in</strong>cludes fruit <strong>in</strong>itiati<strong>on</strong>, growth, ripen<strong>in</strong>g, fruitfall and the presentati<strong>on</strong> of fruits (seeds) to dispersers (Rathcke andLacey, 1985). Janzen (1978) made a detailed review of seed<strong>in</strong>g patternsfor tropical <strong>trees</strong>. Generally flower<strong>in</strong>g periodicities are reflected <strong>in</strong>fruit<strong>in</strong>g. But, a tree flower<strong>in</strong>g profusely need not always fruit. Size of theseed crops of any given <strong>in</strong>dividual for any two years need not be thesame. For example, <strong>in</strong> Hymmenaea courbanil (Fabaceae) although flower<strong>in</strong>gtakes place annually, fruit<strong>in</strong>g is abundant <strong>on</strong>ly <strong>on</strong>ce <strong>in</strong> five years.Aborti<strong>on</strong> of flowers and immature fruits rang<strong>in</strong>g between 1 to 100 percenthave been recorded (Bawa et al., 1985 b). In the West African Parkiacapert<strong>on</strong>iana out of approximately 2,000 fertile flowers <strong>on</strong>ly 4-5 develop<strong>in</strong>to fruits (Baker and Harris, 1957).The predator-seed crop relati<strong>on</strong> has been studied <strong>in</strong> <strong>some</strong> detail.Janzen (1974 a, 1974 b) argues that mast seed<strong>in</strong>g <strong>in</strong> Dipterocarps is aresult of predator satiati<strong>on</strong> achieved by <strong>in</strong>dividual <strong>trees</strong>. The time takenby fruits and seeds to mature varies from few weeks to several m<strong>on</strong>ths(Ng and Loh, 1974). Time of ripen<strong>in</strong>g of fruits and seeds are known to becorrelated with the zoochorous dispersal <strong>in</strong> <strong>some</strong> <strong>trees</strong> (Smythe, 1970).Indian literature <strong>on</strong> forest tree phenology is extremely sparse.Nevertheless a few <str<strong>on</strong>g>studies</str<strong>on</strong>g> are available <strong>on</strong> the subject (Krishnaswamyand Mathauda, 1960; Kaul and Ra<strong>in</strong>a, 1980; Boojh and Ramakrishnan,


Re view of Li tera ture 91981; Khosla et al., 1982; Shukla and Ramakrishnan, 1982; Shrivasthava,1982; Ralhan et al., 1985; Prasad and Hegde, 1986; Basha, 1987) .DispersalThe place of producti<strong>on</strong> of seeds does not have the carry<strong>in</strong>gcapacity to grow and susta<strong>in</strong> all of them (Gadgil, 1971). -Thus, competiti<strong>on</strong>is avoided by dispers<strong>in</strong>g seeds even at the danger of casualties. Themechanism of dispersal <strong>in</strong>volves w<strong>in</strong>d, water, frugivorous birds andanimals (Ridley, 1930, Pijl, 1969). In Wet Forests seeds of more than 60percent of the <strong>trees</strong> are dispersed by sarcochorous means (eaten byanimals; Danserau and Lems, 1957). While, the Dry Forests show a greaterpercentage of w<strong>in</strong>d dispersal (Baker et al., 1983).The time of maturati<strong>on</strong> and dispersal need not be the same. In P<strong>in</strong>usradiata and P. caribaea, c<strong>on</strong>es with seeds are reta<strong>in</strong>ed <strong>on</strong> the <strong>trees</strong> forfive or more years without loos<strong>in</strong>g viability. Seed fall is maximum <strong>in</strong> theedges of forests (near clear<strong>in</strong>gs; Roe, 1967; Yocom, 1968). In closed stands<strong>on</strong> the other hand seed fall is highest at ca. 30 m from source (Cremer,1965).Seed Predati<strong>on</strong>Predati<strong>on</strong> is an <strong>important</strong> factor c<strong>on</strong>troll<strong>in</strong>g the viable seedpopulati<strong>on</strong>. Predators can affect the seed populati<strong>on</strong> by feed<strong>in</strong>g <strong>on</strong>photosynthetic tissues, flowers and directly <strong>on</strong> fruits and seeds. Bothpredispersal and postdispersal predati<strong>on</strong> occur. There are <strong>in</strong>stances of upto 40 % seed predati<strong>on</strong> by rodents (Synnott, 1973) . In Shorea ovalisgreater than 90 % seed predati<strong>on</strong> due to <strong>in</strong>sects has been recorded(Unesco, 1978 b). Seed collecti<strong>on</strong> from <strong>natural</strong> stands for various purposesalso gives the same effect. Generally predati<strong>on</strong> decreases with distancefrom seed tree or with poor seed density. Janzen (1971) suggested a'predator escape hypothesis' accord<strong>in</strong>g to which plants escape predati<strong>on</strong>by satiat<strong>in</strong>g them (Howe and Smallwood, 1982). In the Dipterocarp Forestsof Malaya seed years are widely spaced. The seeds escape predator threatby immediately germ<strong>in</strong>at<strong>in</strong>g and build<strong>in</strong>g up a seedl<strong>in</strong>g bank (P. N. Nair,1961; Grime, 1979).


10 Review of LiteratureDormancyDispersed seeds generally show a period of rest termed 'dormancy'(of. Harper, 1977). Seeds of <strong>trees</strong> of mature phase <strong>in</strong> Wet Forests aregenerally not dormant (Tang and Tamari, 1973) while those of otherspecies extend from two weeks to 3 years (Mensbrugi, 1966). Most speciesof Semievergreen Forests lack seed dormancy (Hoi, 1972).Seed BanksNot all the seeds germ<strong>in</strong>ate as so<strong>on</strong> as they are dispersed. A goodpercentage move <strong>in</strong>to the soil a few centimeters down. These form a 'seedbank'. Keay (1960) has given a review of forest seed banks and Whitmore(1983) has discussed the sec<strong>on</strong>dary successi<strong>on</strong> of seeds <strong>in</strong> Tropical Ra<strong>in</strong>Forests. Roberts (1981) and Cavers (1983) have made recent reviews ofsoil seed banks. There are excellent <str<strong>on</strong>g>studies</str<strong>on</strong>g> <strong>on</strong> seed banks of tropics(Sym<strong>in</strong>gt<strong>on</strong>, 1933; Liew, 1973; Hall and Swa<strong>in</strong>e, 1980) and of higherlatitudes (Kellman, 1970; Johns<strong>on</strong>, 1975).Most <str<strong>on</strong>g>studies</str<strong>on</strong>g> <strong>in</strong>dicate that seeds of dom<strong>in</strong>ant <strong>trees</strong> of the communitiesare either totally absent (Thomps<strong>on</strong> and Grime, 1979) <strong>in</strong> the soilor they are poorly represented (Karpov, 1960). Generally the seed banksc<strong>on</strong>ta<strong>in</strong> seeds of pi<strong>on</strong>eer species. This n<strong>on</strong>-corresp<strong>on</strong>dence of seed florato the dom<strong>in</strong>ant tree flora is thought to be due to: 1. immigrati<strong>on</strong> of seedsby bird dispersal, and 2. quick loss of viability of seeds of dom<strong>in</strong>ant <strong>trees</strong>(Roberts, 1981 ).Germ<strong>in</strong>ati<strong>on</strong> and EstablishmentDormancy is by far the chief factor determ<strong>in</strong><strong>in</strong>g the time ofgerm<strong>in</strong>ati<strong>on</strong>. Even <strong>in</strong> forests where there are two peak seas<strong>on</strong>s of seeddispersal there is <strong>on</strong>ly <strong>on</strong>e peak seas<strong>on</strong> for seed germ<strong>in</strong>ati<strong>on</strong> (Garwood,1983 a), the peak be<strong>in</strong>g with<strong>in</strong>,the first two m<strong>on</strong>ths of the ra<strong>in</strong>y (wet)seas<strong>on</strong>. In Tropical Seas<strong>on</strong>al Forests canopy species, lianas and thepi<strong>on</strong>eer species show a unimodal pattern of germ<strong>in</strong>ati<strong>on</strong>. On the c<strong>on</strong>trary<strong>in</strong> the case of understorey and shade tolerant species germ<strong>in</strong>ati<strong>on</strong> isthroughout the ra<strong>in</strong>y seas<strong>on</strong>, without a peak <strong>in</strong> any of the m<strong>on</strong>ths(Garwood, 1983 b). Seedl<strong>in</strong>g emergence <strong>in</strong> canopy gaps peak 1-6 weeksprior to that <strong>in</strong> shaded understories (Garwood, 1983 a).


Review of Literature 11The c<strong>on</strong>diti<strong>on</strong>s for germ<strong>in</strong>ati<strong>on</strong> and establishment of mature phasetree species are very much specialized (Gomez-Pompa et al., 1972). In thelife history of a plant highest mortality rates operate between flower<strong>in</strong>gand seedl<strong>in</strong>g establishment (Wyatt-Smith, 1963). Mortality due to vagaries<strong>in</strong> ra<strong>in</strong> fall, <strong>in</strong>tense drought, herbivore predati<strong>on</strong> and self th<strong>in</strong>n<strong>in</strong>g arerecorded (Unesco, 1978 b).C<strong>on</strong>versi<strong>on</strong> to Upper Size ClassesTrees are perennials with l<strong>on</strong>g life spans extend<strong>in</strong>g over hundredsof years. Therefore, <str<strong>on</strong>g>studies</str<strong>on</strong>g> <strong>on</strong> the c<strong>on</strong>versi<strong>on</strong> to higher size classes byfollow<strong>in</strong>g the life history of <strong>in</strong>dividuals <strong>in</strong> a given populati<strong>on</strong> of anygiven species or forest type for very l<strong>on</strong>g spans are totally lack<strong>in</strong>g.However, size reflects age and therefore, size structure of ‘populati<strong>on</strong>sproxies the dynamic of size c<strong>on</strong>versi<strong>on</strong>s <strong>in</strong> the past. To a certa<strong>in</strong> extentit also tells about the future of the stands (Buell, 1945; also of. Harper,1977). Oliver and Lars<strong>on</strong> (1990) have reviewed the subject of forest standdynamics thoroughly. Seth (1 974) and Satyamurthi (1 980) have ref<strong>in</strong>ed themathematical tools for the study of forest stand dynamics.Distributi<strong>on</strong> of size (diameter) classes is the most studied parameter.Nevertheless comparis<strong>on</strong> of data is very much difficult ow<strong>in</strong>g to differences<strong>in</strong> the lower size limit, the class <strong>in</strong>tervals and units of measurement(Unesco, 1978 a) or because of limit<strong>in</strong>g measurements to certa<strong>in</strong> classes.Size class distributi<strong>on</strong>s were studied <strong>in</strong> most forest types, viz., Low Landand M<strong>on</strong>tane Evergreen Forests, Semideciduous Forests, Dry DeciduousForests, Mangrove and Swamp Forests ( Beard, 1946; Rollet, 1952; Dawk<strong>in</strong>s,1958; Anders<strong>on</strong>, 1961; Rollet, 1962, 1974, etc.; of. Unesco, 1978a).Each forest type shows wide variability <strong>in</strong> stand structure. Someforest types are richer <strong>in</strong> large stems (>= 60 cm dbh) than others (Rollet,1962; Nichols<strong>on</strong>, 1965; Pierlot, 1966), ow<strong>in</strong>g to the behaviour of certa<strong>in</strong>species and partly due to the history of stands. In <strong>some</strong> gregariousDipterocarp Forests this may be due to mast seed years.Stand structure always tends to be exp<strong>on</strong>ential especially <strong>in</strong> asemilogarithmic graph (Unesco, 1978 a). When the limit of size class goesfurther and further down, the graph develops a c<strong>on</strong>cavity thus diverg<strong>in</strong>gfrom the exp<strong>on</strong>ential model. Accord<strong>in</strong>g to the exp<strong>on</strong>ential model the sumof stems larger than a given diameter is equal to the number of stems <strong>in</strong>the immediate lower class. When the quotient (survival probability) is


12 Review of Literaturegreater than 0.5 the c<strong>on</strong>versi<strong>on</strong> from <strong>on</strong>e class to another <strong>in</strong>creases(Wyatt-Smith, 1963). Meyer (1952) theorizes that structure of forestsover any large area approaches a balanced c<strong>on</strong>diti<strong>on</strong> where the quotientof populati<strong>on</strong> size <strong>in</strong> two successive size (diameter) classes approachesa c<strong>on</strong>stant value. This ideal state is never observed although stands tendtowards it (Harper, 1977). Moreover the situati<strong>on</strong> can be very muchworsened by disturbance, which results <strong>in</strong> broken l<strong>in</strong>es <strong>in</strong> graphs (Unesco,1978 a).Populati<strong>on</strong> structure of most tree species shows str<strong>on</strong>gly skewedL-shaped graphs while others show an exp<strong>on</strong>ential model. Some erraticspecies show normal distributi<strong>on</strong>. Semilogarithmic graphs show upward ordownward c<strong>on</strong>cavity <strong>in</strong>dicat<strong>in</strong>g sharp decrease <strong>in</strong> the survival probabilityof lowermost or uppermost classes (Krebs, 1972; Unesco, 1978 a).Yoda et al. (1963) have proposed the self th<strong>in</strong>n<strong>in</strong>g rule for even-ageds<strong>in</strong>gle-species populati<strong>on</strong>s. Accord<strong>in</strong>g to this rule, <strong>in</strong>dividuals getelim<strong>in</strong>ated ow<strong>in</strong>g to limitati<strong>on</strong>s of space and mass, ie, due to overcrowd<strong>in</strong>gand tied up organic matter and nutrients (Westoby, 1984). Bazzaz andHarper's (1976) arguments extend the applicability of the rule tomixed-aged and mixed-species stands. White (1974,1975, 1980,1981)hasextended the rule to forest stands, expla<strong>in</strong><strong>in</strong>g mortality and populati<strong>on</strong>structure.Silvicultural Systems Associated withNatural Regenerati<strong>on</strong>Applicati<strong>on</strong> oriented research c<strong>on</strong>cern<strong>in</strong>g <strong>natural</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> hasc<strong>on</strong>tributed a series of silvicultural practices to the science of forestry.P. N. Nair (1961) and C. T. S. Nair (1986) have made excellent reviews ofthis topic. A very c<strong>on</strong>cise abstract is given below.Three <strong>important</strong> silvicultural systems are known: 1. clear fell<strong>in</strong>g, 2.shelterwood system, and 3. selecti<strong>on</strong> system. The clear fell<strong>in</strong>g system<strong>in</strong>volves a total removal of the <strong>trees</strong> leav<strong>in</strong>g the seeds and seedl<strong>in</strong>gs togrow <strong>in</strong> order to give rise to a new generati<strong>on</strong> of <strong>trees</strong>. This system isknown from Malaya (Walt<strong>on</strong> et al., 1952; Barnard, 1955; Land<strong>on</strong> andSettan, 1957) and North Borneo (Walt<strong>on</strong>, 1955; Nichols<strong>on</strong>, 1958).The shelterwood system <strong>in</strong>volves the gradual open<strong>in</strong>g of the canopyso as to <strong>in</strong>duce <strong>natural</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> <strong>in</strong> forests. Various modificati<strong>on</strong>s of


Review of Literature 13this system were practiced <strong>in</strong> African countries (Lancaster, 1952;Barnard, 1955), India (Chengappa, 1944; Kadambi, 1954; C. T. S. Nair,1986,), areas of Bangladesh and Sri Lanka (Rosayro, 1954).The selecti<strong>on</strong> system <strong>in</strong>volves reduc<strong>in</strong>g part of the grow<strong>in</strong>g stockespecially the commercially <strong>important</strong> species and favour<strong>in</strong>g growth and<str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>. This system has many modificati<strong>on</strong>s and are practiced <strong>in</strong>West Africa, Sri Lanka, India (Kadambi, 1954) Pakistan, Burma,Philipp<strong>in</strong>es and Australia (P. N. Nair, 1961).Studies <strong>on</strong> Moist DeciduousForestsBroadly speak<strong>in</strong>g, forested ecosystems can be recognized <strong>in</strong>to three,viz., the Wet, Moist and Dry Forests. Thirty three percent of the Tropicaland Subtropical Forests are composed of Moist Forests (Murphy and Lugo,1986). Compared to the Wet Forests the Moist Forests are poorly studied.C<strong>on</strong>sequently, literature <strong>on</strong> the <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> dynamics of these foresttypes are also but a few. C<strong>on</strong>tributi<strong>on</strong>s of Rollet (1952, 1962) and Mo<strong>on</strong>ey(1961) <strong>on</strong> stand structure, Hubbel (1979) <strong>on</strong> diversity, FA0 (1955) <strong>on</strong>phenology, Gilbert (1938), J<strong>on</strong>es (1950, 1956) and Mensbrugi (196.6) <strong>on</strong>seed dormancy, germ<strong>in</strong>ati<strong>on</strong> and establishment etc. are notable.Indian literature <strong>on</strong> the <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> dynamics of the DeciduousForests are widely segmented. A brief review may be found <strong>in</strong> Champi<strong>on</strong>and Seth's (1968 b) m<strong>on</strong>ograph of Indian Silviculture. Chengappa (1937,1944) has made detailed <str<strong>on</strong>g>studies</str<strong>on</strong>g> <strong>on</strong> the <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> of Andaman forests.Brief notes <strong>on</strong> phenology, eye view estimates of <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> status,seedl<strong>in</strong>g establishment etc. of <strong>in</strong>dividual species were compiled by Troup(1921). Highly fragmented but very valuable <strong>in</strong>formati<strong>on</strong> <strong>on</strong> the silvicultureand various aspects of <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> of the Moist Deciduous Forestsare found distributed <strong>in</strong> the issues of two serial publicati<strong>on</strong>s: (1) ForestResearch <strong>in</strong> India, Parts I and II (1923-1961), published by the Governmnetof India, and (2) The Annual Research Report of the SilvicultureDivisi<strong>on</strong>, Kerala Forest Department.Regenerati<strong>on</strong> of rosewood (Dalbergia latifolia; Balasundaram et al. ,1979; Deshmukh, 1985), Dipterocarpus spp. (Thangam, 1982). sal (Shorearobusta; Bor, 1930; Champi<strong>on</strong>, 1933; Chakravarthi, 1948; Chaudhuri,1960; Bhatnagar, 1961; Sharma et al., 1985), teak (Tect<strong>on</strong>a grandis;Kadambi, 1957), irul (Xylia xylocarpa; Arora, 1960) have received much


14 Review of litera i t ureattenti<strong>on</strong>. Further details and specifics <strong>on</strong> the various aspects of<str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> of Moist Deciduous Forests and species are scattered <strong>in</strong> thevarious Forest Work<strong>in</strong>g Plans and phytosociological <str<strong>on</strong>g>studies</str<strong>on</strong>g>.


Chapter 3Study AreaLocati<strong>on</strong> and Area ........... 15Climate ................. 15Physiography ................ 19Geology and Rocks ............ 21Vegetati<strong>on</strong> .................. 21Settlements ................. 22.Locati<strong>on</strong> and AreaThe Western Ghats is disc<strong>on</strong>t<strong>in</strong>uous towards the south by a 22 km widegap, the Palghat Gap. The forest formati<strong>on</strong> <strong>in</strong> this regi<strong>on</strong> more or lessc<strong>on</strong>forms to the course of the Western Ghats. Thus, south of the PalghatGap the forest land assumes a more or less T-shaped strip (Figure 3.1).The Trichur Forest Divisi<strong>on</strong> is situated <strong>on</strong> the western half of thehoriz<strong>on</strong>tal arm of this T-shaped porti<strong>on</strong> of the Western Ghats. It isbordered by settlements and revenue lands all al<strong>on</strong>g the western, easternand northern boundaries and by the Chalakkudy and Nemmara ForestDivisi<strong>on</strong>s al<strong>on</strong>g the south and south-east respecitively (Figure 3.2;George, 1963).The Divisi<strong>on</strong> falls wholly with<strong>in</strong> the limits of the Trichur RevenueDistrict of the Kerala State and lies between the latitudes 100 20' and10 0 50' N and l<strong>on</strong>gitudes 75 0 95' and 76 0 30' E. As rec<strong>on</strong>stituted <strong>in</strong> 1980,it comprises an area of approximately 328 km 2 of forests divided <strong>in</strong>to fouradm<strong>in</strong>istrative blocks, viz. Wadakkanchery, Machad, Pattikkad and PeechiRanges (of Figure 3.3). Of the above, the <strong>natural</strong> forests, the area of thepresent study c<strong>on</strong>stitutes approximately 204 km 2 spread over theMukundapuram, Trichur and Thalappilly Taluks (Men<strong>on</strong> andBalasubramanyan, 1985).ClimateThe area shares a warm humid climate characteristic of the regi<strong>on</strong>.The ma<strong>in</strong> sources of atmospheric precipitati<strong>on</strong> are the south-west andnorth-east m<strong>on</strong>so<strong>on</strong>s. The greater porti<strong>on</strong> of the ra<strong>in</strong> is from south-westnso<strong>on</strong> which showers between June and September, especially dur<strong>in</strong>g


Figure 3.2 Map of Trichur Revenue Districtshow<strong>in</strong>g the area and boundaries of TrichurForest Divisi<strong>on</strong>.Figure 3.1. Forest map of South WestIndia show<strong>in</strong>g the locati<strong>on</strong> of TrichurForest Divisi<strong>on</strong>.INDEXForest landTrichurForestDivisi<strong>on</strong>


Area of Study 19June and July. The north-east m<strong>on</strong>so<strong>on</strong> showers dur<strong>in</strong>g the later part ofyear between October and November. The . annual total for 10 years(1978-1987) ranged between 2,397 and 3,600 mm with the mean valuebe<strong>in</strong>g 2,793 mm. The details of distributi<strong>on</strong> of precipitati<strong>on</strong> for anaverage year (for the term of Meher-Homji, 1979), 1985, for Peechi(Trichur Forest Divisi<strong>on</strong>) are given <strong>in</strong> Table 3.1.The temperature extremes recorded for the past few years for Peechiwere 18.9 0 C and 39.4 0 C. The details of temperature fluctuati<strong>on</strong>s dur<strong>in</strong>g1985 are given <strong>in</strong> Table 3.1. The three m<strong>on</strong>ths, March to May are thehottest. Dur<strong>in</strong>g December to early half of January, night temperature goesas far down to 18.9 0 C.The trade w<strong>in</strong>ds dur<strong>in</strong>g the two m<strong>on</strong>so<strong>on</strong>s are south-west andnorth-east respectively. Dur<strong>in</strong>g the m<strong>on</strong>ths December to February, theforests <strong>on</strong> the eastern border receive warm w<strong>in</strong>ds com<strong>in</strong>g through thePalghat Gap. A rare <strong>in</strong>cident of cycl<strong>on</strong>ic w<strong>in</strong>d was also recorded for theDivisi<strong>on</strong> dur<strong>in</strong>g the year 1940.Relative humidity is always greater than 55 % and atta<strong>in</strong>s 100 %dur<strong>in</strong>g the ra<strong>in</strong>y m<strong>on</strong>ths. The statistics for 1985 for Peechi are given <strong>in</strong>Table 3.1.Figure 3.4 is an ombrothermic graph for 1986 for Peechi. GenerallyMay to October are wet m<strong>on</strong>ths and November to April are dry.Physiographically the whole Divisi<strong>on</strong> is dist<strong>in</strong>guishableblocks:<strong>in</strong>to five1. The Machad Mala Ridge runn<strong>in</strong>g al<strong>on</strong>g the north-west -south-east directi<strong>on</strong>, flanked by the Chelakkara-Elanad Valley <strong>on</strong>the north and the Vazhani Valley <strong>on</strong> the south. This is the largests<strong>in</strong>gle block recognizable.2. The Vellani Mala Ridge runn<strong>in</strong>g east-west with Thanippadamand Pananchery Valleys <strong>on</strong> either side. This block is smaller <strong>in</strong>extent than the former and jo<strong>in</strong>s it by the western end.


20 Area of StudyTable 3.1Statistic of climatic variables dur<strong>in</strong>g an average year (1985)at Peechi.0J F M A M J .I A S O N DFigure 3.4MONTHSOmbrotherm for Peechi.1000800EY600 $c2-400 iTuW200 g


Area of Study 213. The low ly<strong>in</strong>g foot hills of the Machad Mala Ridge and the VellaniMala Ridge al<strong>on</strong>g the west, north-west and north-east, where theelevati<strong>on</strong> scarcely exceeds 200 m . These hills are separated fromthe ridges because of the <strong>in</strong>trusi<strong>on</strong> of human settlements andcultivati<strong>on</strong>.4. The many, more or less radiat<strong>in</strong>g ridges of the catchment ofPeechi Reservoir, andthe6. The Anaikkal-Mangattu Komban Ridge runn<strong>in</strong>g east-west,form<strong>in</strong>g the northern flanks of the Chim<strong>on</strong>ey Valley (ChalakkudyForest Divisi<strong>on</strong>) and hold<strong>in</strong>g the highest po<strong>in</strong>t (P<strong>on</strong>mudi, 928 m)with<strong>in</strong> the Divisi<strong>on</strong>.Because of the highly rugged, undulat<strong>in</strong>g physiography all k<strong>in</strong>ds ofaspects are met with. Nevertheless, the area is well dra<strong>in</strong>ed with two westflow<strong>in</strong>g rivers, Vadakkanchery River and Manali River. Two check-damsalso exist, viz., Peechi and Vazhani, which irrigate the agricultural landsal<strong>on</strong>g the west.Geology and RocksThe hills bel<strong>on</strong>g to the crystall<strong>in</strong>e rocks of archean age compris<strong>in</strong>gchiefly of charnockites, granites and granitic gneisses traversed by basicdykes (Geological Survey of India, 1976).The forest land is recognizable <strong>in</strong>to three: open blanks, plantati<strong>on</strong>sand <strong>natural</strong> forests. Of these, the <strong>natural</strong> forests comprise Evergreen,Semievergreen and Moist Deciduous Forests.The dom<strong>in</strong>ant species <strong>in</strong> the Evergreen Forests are: Calophyllumapetalum Willd., Dipterocarpus <strong>in</strong>dicus Bedd., Mesua ferrea L<strong>in</strong>n.,Palaquium ellipticum (Dalz.) Baill., Syzygium chavaran (Bourd.) Gamb., S.gardneri Thw., etc.The dom<strong>in</strong>ant species of the semievergreens are: Artocarpus hirsutusLamk., Bombax ceiba L<strong>in</strong>n., Lagerstroemia microcarpa Wt., Polyalthia


22 Area of Studyfragrans (Dalz.) Bedd., Pterospermum reticulatum Wt. et Arn., Vitexaltissima L<strong>in</strong>n. f., etc. The details of the Moist Deciduous Forests, be<strong>in</strong>gthe subject of the present study, are given <strong>in</strong> detail <strong>in</strong> a subsequentchapter.SettlementsOn the north, east and west, the Forest Divisi<strong>on</strong> is surrounded bysettlements. Hence, a well c<strong>on</strong>nected transportati<strong>on</strong> network <strong>in</strong>terceptsthe forest land. The Coch<strong>in</strong>-Shoranur railway l<strong>in</strong>e bisects the Divisi<strong>on</strong><strong>in</strong>to two east-west halves; likewise the nati<strong>on</strong>al highway NH 47 bisectsit <strong>in</strong>to two north-south halves. Some of the other <strong>important</strong> roads are: 1.Chelakkara-Elanad Rd., 2. Trichur-Ramavarmapuram-Vazhani Rd., 3.Trichur-Shoranur Rd., 4. Trichur-Mannamangalam Rd., and 6. Pattikkad-Peechi Rd.People liv<strong>in</strong>g immediately around the <strong>natural</strong> forests are highlydependent <strong>on</strong> the forests for agriculture, firewood, cattle graz<strong>in</strong>g andsmaller c<strong>on</strong>structi<strong>on</strong> needs. The Malayas, the tribals at Velanganoor andOlakara are by traditi<strong>on</strong> dependent <strong>on</strong> the forests for their livelihood.


Chapter 4Moist Deciduous Forests ofTrichur Forest Divisi<strong>on</strong>:The Materials of StudyTypology ......................... 23Distributi<strong>on</strong> ....................... 23Soil .............................. 24physiognomy ........................ 24Floristic structure ................ 28Populati<strong>on</strong> Structure ......... 28Richness at Staratal Level ....... 28Dom<strong>in</strong>ance structure .............. 28stock<strong>in</strong>g level ................... 32Factors Affect<strong>in</strong>g the Vegetati<strong>on</strong> ... 34Permanent Sample Plots ............. 34The term 'Moist Deciduous Forests' (MDFs) denotes an aggregateforest type. This forest type is classified variously and the subdivisi<strong>on</strong>sreceived different names <strong>in</strong> different systems.Champi<strong>on</strong> (1936; English school) was the first to provide a practicalclassificati<strong>on</strong> of the Tropical Deciduous Forests of India, which was laterrevised by Champi<strong>on</strong> and Seth (1968 a). The latter authors classified theTropical MDFs of India <strong>in</strong>to two: South Indian MDF s and North Indian MDFs.The Moist Deciduous Forests of the Trichur Forest Divisi<strong>on</strong> bel<strong>on</strong>g to theformer category. Puri et al. (1983) equated the South Indian MDF s with theSer. Tect<strong>on</strong>a - Dillenia - Lagerstroemia - Tem<strong>in</strong>alia paniculata of Gaussen(1959) and Gaussen et al. (1961a, 1961 b, 1963a. 1963b, 1965a, 1965b,1968a. 1968b, 1971, 1972, 1973, 1978) of the French school.The South Indian MDFs comprise a large number of subdivisi<strong>on</strong>s.Presumably all these forest types exist <strong>in</strong> Kerala and Trichur ForestDivisi<strong>on</strong>. The present <str<strong>on</strong>g>studies</str<strong>on</strong>g> were c<strong>on</strong>ducted <strong>in</strong> Southern Moist MixedDeciduous Forests.Distributi<strong>on</strong>Trichur Forest Divisi<strong>on</strong> at present holds a total of 162 km 2 of <strong>natural</strong>oist Deciduous Forests. Distributed upto an elevati<strong>on</strong> of 928 m above


24 Materials of StudyMSL, these forests are a complex associati<strong>on</strong> of different k<strong>in</strong>ds of habitatslike reservoirs, man-made forests and <strong>natural</strong> forests. Al<strong>on</strong>g the upperreaches they form part of the <strong>in</strong>sulati<strong>on</strong> belt around the Evergreen andSemievergreen Forests. On the lower reaches they are surrounded bysettlements and agricultural lands (Figure 4.1).Soil and its properties vary c<strong>on</strong>siderably depend<strong>in</strong>g up <strong>on</strong> elevati<strong>on</strong>and physiography of the land. Generally it is shallow, except <strong>on</strong> gentleslopes where it is moderately deep.The soils bel<strong>on</strong>g to the group of red soils (oxisols) or red ferralliticsoils. They have orig<strong>in</strong>ated from weather<strong>in</strong>g of crystall<strong>in</strong>e rocks likegranite, gneisses and charnockites. The red colour of different <strong>in</strong>tensitiesdepend up <strong>on</strong> the c<strong>on</strong>tent of Fe 2 0 3 , A1 2 0 3 and SiO 2 . The reddish browncolour of the surface soil turns reddish-yellow or yellowish-red withdepth. The surface soil is generally sandy loam <strong>in</strong> texture and granular <strong>in</strong>structure while it becomes loamy and massive beneath. The absorb<strong>in</strong>gcapacity of the soils is low, except <strong>in</strong> the humus accumulative layer.Initial stages of laterizati<strong>on</strong> are observed where the soils are devoid of avegetal cover and erosi<strong>on</strong> is active (Sankar et al., 1987).In the permanent plot at Kalluchal, established for the <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g><str<strong>on</strong>g>studies</str<strong>on</strong>g>, <strong>in</strong> the surface soil samples the gravel c<strong>on</strong>tent ranged between 69and 405 with a mean of 223 2 SD 72 g/kg and the f<strong>in</strong>er particles rangedbetween 595 and 931 with a mean of 777 2 SD 72 g/kg. They were acidic(pH 5.8 2 SD 0.2) <strong>in</strong> reacti<strong>on</strong>, medium <strong>in</strong> organic carb<strong>on</strong> c<strong>on</strong>tent' (21.7'5SD 4.7 g/kg), exchange acidity (33 2 16 mg/kg) and exchangeable bases(163 2 SD 30 mg/kg) (Sujatha, 1989).PhysiognomyDur<strong>in</strong>g the wet seas<strong>on</strong>, because of the thick foliage the MoistDeciduous Forests mimics the Evergreen Forests. Dur<strong>in</strong>g this seas<strong>on</strong> theirsurface morphology is very much like that of the Evergreen Forests(Figure 4.2 A) . However, dur<strong>in</strong>g the dry seas<strong>on</strong>, <strong>in</strong> the MDFs <strong>trees</strong> shedtheir foliage and leave the vertical structure of the stands pellucid(Figures 4.2 B, 4.3 A & B).


.LY#’Figure 4.1 The Moist, Deciduous Forest ecosystem with Evergreen andSemievergreen Forests <strong>in</strong> the upper reaches, the <strong>in</strong>cluded reservoirs andcatchments .~ and the lower valleys with agricultural land and settlements(Peechi Forest Range, May, 1988).


26 Materials of Study-+ . -Figure 4.2 Physiognomy of the Moist Deciduous Forest dur<strong>in</strong>g wet and dryseas<strong>on</strong>s. A. Wet seas<strong>on</strong> (September). B. Dry seas<strong>on</strong> (April) - (Chathupara,Peechi Forest Range, 1988).


Materials of Study 27Figure 4.3 Moist Deciduous Forests of Trichur Forest Divisi<strong>on</strong>A. A view from above (Chathupara, Peechi Forest RangeApril, 1988). B. A view of the stand from below (VazhaniMachad Forest Range, April, 1988).


28 Materials of StudyFloristic StructureA list of the comm<strong>on</strong> tree species encountered <strong>in</strong> the Moist DeciduousForests of Trichur Forest Divisi<strong>on</strong> is given <strong>in</strong> Table 4.1 and photographsof <strong>some</strong> commercially <strong>important</strong> species are given <strong>in</strong> Figure 4.4.The shrub layer is ma<strong>in</strong>ly c<strong>on</strong>sisted of Helicteres isora L.,Eupatorium odoratum L. (= Chromolaena odorata (L.) K. & R.) and to alesser extent Lantana camara L.The sylvan communities are also well represented with lianousspecies like Acacia spp. (A. pennata (L.) Willd., A. torta (Roxn.) Craib., A.s<strong>in</strong>uata (Lour.) Merr., Butea parviflora Roxb. (Figure 4.4 E), Calycopterisfloribunda Lamk. Dalbergia volubilis Roxb., and Zizyphus rugosa Lam. (notrepresented <strong>in</strong> the profile diagrams).Populati<strong>on</strong> StructureStandard profile diagrams of two samples are represented <strong>in</strong> Figure 4.5.The <strong>trees</strong> are stratified <strong>in</strong>to three, viz., upper (1 st), middle (2 nd) andlower (3 rd) strata. The upper stratum is 25-35m <strong>in</strong> height, the middlebetween 18 to 25 m and the lower up to 10 m height.Richness at Stratal LevelAt stratal level species counts of <strong>trees</strong> >= 10 cm dbh showssignificant differences between <strong>in</strong>dividual strata. There were 2 1 species<strong>in</strong> the upper stratum, 39 <strong>in</strong> the middle and <strong>on</strong>ly 4 <strong>in</strong> the lower strata(Table 4.1). The list of <strong>trees</strong> given <strong>in</strong> Table 4.1 shows that all species ofthe upper stratum are commercially very <strong>important</strong>, while most species ofthe middle and lower strata are less <strong>important</strong>. Thus, <strong>in</strong> subsequentsecti<strong>on</strong>s of the text, the term upper stratum (stratum 1) is used <strong>in</strong>steadof 'commercially <strong>important</strong> species'.Dom<strong>in</strong>ance StructureThe area does not show any 'character species' associati<strong>on</strong> (Men<strong>on</strong>and Balasubramanyan, 1985). Dom<strong>in</strong>ant sylvan community of the 'medium


Materials of Study 29Table 4 .1 List of tree species found <strong>in</strong> the different tree strata<strong>in</strong> the.Trichur Forest Divisi<strong>on</strong>.Upper stratum (Stratum 1):123456789101112131415161718192021Albizia odoratissima (L. f.)Benth.Alst<strong>on</strong>ia scholaris (L.) R. Br.Bombax ceiba L.B. <strong>in</strong>signe Wall.Dalbergia sissoides Wt.Dillenia pentagyna Roxb.Gmel<strong>in</strong>a arborea Roxb.Crewia tiliifolia VahlHald<strong>in</strong>a cordifolia (Roxb. )Ridsd.Lagerstroemia microcarpa Wt.Lannea coromandelica (Houtt .)Merr.Melia dubia Cav.Pterocarpus marsupium Roxb.Radermachera xylocarpa (Roxb.)Schum.Stereospermum colais (Buch.)Mabb.Tect<strong>on</strong>a grandis L. f.Term<strong>in</strong>alia bellirica (Gaert.)Roxb.T. crenulata RothT. paniculata Rothet Arn.Tetrameles nudiflora R. Br.Xylia xylocarpa (Roxb.) Taub.Middle Stratum (Stratum 2):22 Aporusa l<strong>in</strong>dleyana (Wt .)Baill.23 Artocarpus hirsuta Lamk.24 Bauh<strong>in</strong>ia racemosa Lamk.25 Bridelia squamosa Gerh.26 Carallia brachiata (Lour.)Merr .27 Careya arborea Roxb.28 Cassia fistula L.29 Cleistanthus coll<strong>in</strong>us Hook. f.30 Cordia wallichii G. D<strong>on</strong> .31 Dalbergia lanceolaria L. f.32 Diospyros m<strong>on</strong>tana Roxb.3334353637383940414243444546474849505152535455* Bxotic or serievergreen irrigrants: seen <strong>on</strong>ly as seedl<strong>in</strong>gs.Emblica offic<strong>in</strong>alis Caert .Tabernaem<strong>on</strong> tana heyneana Wall.Wall.Ficus exasperate VahlF. drupacea Thunb. var pubescens(Roth) CornerGaruga floribunda Dcne.Hymenodicty<strong>on</strong> orixense (Roxb.)Mabb .Litsea sp.Mitragyna parvifolia (Roxb.)Kunth.M. tubulosa (Arn.) Havil.Macaranga peltata (Roxb.)Muel1.-Arg.Hallotus philippensis (Lamk.)Muell.-Arg.Miliusa tomentosa (Roxb.) S<strong>in</strong>cl.Olea dioica Roxb.Pajanelia l<strong>on</strong>gifolia (Willd.) K.Schum.Persea macrantha (Nees ) Kosterm.*Samanea saman (Jacq.) Merr.Sap<strong>in</strong>dus laurifolia VahlSchleichera oleosa (Lour.)OkenSp<strong>on</strong>dias p<strong>in</strong>nata (L. f .) KurzSterculia guttata Roxb.S. urens Roxb.Streblus asper Lour.Strychnos nux-vomica L.56 *Syzygium sp.57 Trema orientalis (L.) B1.58 Vitex altissima L. f ,59 Xeromphis sp<strong>in</strong>osa (Thunb,) Keay60 X. ulig<strong>in</strong>osa (Retz.) Mahesh.Lower stratum (Stratum 3):61 Casearea wynadensis62 Hol arrhena pubescens(Roth) DC63 Nar<strong>in</strong>gi crenulata (Roxb.)Nicols.64 Wrightia t<strong>in</strong>ctoria (Roxb. )R. Br.


Materials of Study 310 102030 40 60 70 80Strip length(m)020 30 40 50 60 70Strip length(m)Figure 4.5 .Vegetati<strong>on</strong> Profiles of selected sample localities.A. Karadippara. B.Kallucha1 (<strong>in</strong>dividuals >= 10 cm DBH of tree speciesal<strong>on</strong>e depicted).AL Alst<strong>on</strong>ia scholarisBS Bridelia squamosaDS Dalbergia sissoidesGT - Grewia tiliifoliaLM Lagerstroemia microcarpaXX Xylia xylocarpaWT - Wrightia t<strong>in</strong>ctoria


32 Materials of Studyranked associati<strong>on</strong>' is composed of species like Xylia xylocarpa, Dilleniapen tagyna, Tect<strong>on</strong>a grandis, Gre wia tiliifolia, Term<strong>in</strong>alia panicula ta,T. crenulata and Lagerstroemia microcarpa (Figure 4.6 A). In better<strong>moist</strong>ure regimes and less disturbed areas a prep<strong>on</strong>derence ofLagerstroemia microcarpa is seen. (eg.: Karadippara; Figure 4.6 B). Indrier regimes, especially with underly<strong>in</strong>g rock formati<strong>on</strong>s Anogeissuslatifolia (a representative of the Dry Deciduous Forests) appears Inassooiati<strong>on</strong> with Pterocarpus marsupium (eg.: Pathrakkallu, MachadRange), or with T. crenulsta (eg.: Vazhani; Figure 4.6 C). However, theextent of these specialized communities is very limited, often be<strong>in</strong>grestricted to a few hectares. The last two of these communities and teakdom<strong>in</strong>ant areas were not <strong>in</strong>cluded <strong>in</strong> the present study.Totally undisturbed areas are altogether want<strong>in</strong>g <strong>in</strong> these MixedDeciduous Forests. Canpopy gaps <strong>in</strong> the studied areas ranged between 1and 30 percent and basal area between 4.4 and 28.2 m 2 ha -1 . Over 90percent of the total tree basal area is c<strong>on</strong>stituted by stratum 1 species.The basal area c<strong>on</strong>stituted by the other two tree strata were <strong>in</strong>significant.Four species had mean basal area > 1 m 2 ha -1 , the species be<strong>in</strong>g Xyliaxylocarpa, Term<strong>in</strong>alia paniculata, Lagerstroemia microcarpa, and Grewiatiliifolia. The highest values of maximum and mean basal area showed byany s<strong>in</strong>gle species were 9.10 and 4.06 m 2 ha -1 for Lagerstroemiamicrocarpa.Stock<strong>in</strong>g LevelThe per hectare grow<strong>in</strong>g stock of <strong>trees</strong> >= 20 cm dbh ranged between120 and 183, with a mean around 149 f SD 22 while <strong>trees</strong> >= 1 cm dbhranged between 522 and 186 with a mean of 323 f SD 122. Relative densitywas also more than 60 for the upper stratum. Six species of the upperstratum had mean tree (>= 10 cm dbh) density greater than 10 <strong>trees</strong> ha-1and relative density >= 4. The species were Bombax spp. (cumulativevalue for two species: B. ceiba and B. <strong>in</strong>signe), Dillenia pentagyna, Grewiatiliifolia, Lagerstroemia microcarpa, Term<strong>in</strong>slia panicula ta and Xyliax ylocarpa.Stratawise, the upper stratum showed the highest mean RelativeImportance Value (RIVI; RIVI = IVI/3; 169 2 SD 9); the actual values rangedbetween 58 and 82. Six species had RIVI >= 3. The species were Bombaxspp. (cumulative values of two species: B. ceiba and B. <strong>in</strong>signe), Dilleniapen tagyna, Grewia tiliifolia, Lagerstroemia microcarpa, Term<strong>in</strong>aliapanlculata and Xylia xylocarpa. The highest values of maximum and


Materials of Study 33Figure 4.6 Species compositi<strong>on</strong> <strong>in</strong> the Moist Deciduous Forestsof Trichur Divisi<strong>on</strong> (c<strong>on</strong>t<strong>in</strong>ued). A. A stand withprep<strong>on</strong>derance of Lagerstroemia microcarpa (Karadippara,Peechi Forest Range, April, 1988). B. Xylia - Grewia -Dillenia community (Vazhani, Machad Forest Range, April,1988). C. Anogeissus latifolia - Term<strong>in</strong>alia crenulatacommunity (Vazhani, Machad Forest Range, April, 1988).


34 Materials of Studymean RIVI owned by any s<strong>in</strong>gle species were 33 and 23 respectively, forXylia xylocarpa. In additi<strong>on</strong> to the upper stratum species, the lowerstratum species Holarrhena pubescens and Wrightia t<strong>in</strong>ctoria also showedRIVI > 3.Factors Affect<strong>in</strong>g the Vegetati<strong>on</strong>. The vegetati<strong>on</strong> is under heavy biotic pressure. This has resulted <strong>in</strong>the paucity of sapl<strong>in</strong>g and pole crops, low stock<strong>in</strong>g, excessive open<strong>in</strong>g ofcanopy and establishment of exotic weed like Eupatorium. Most of theforests are degraded and <strong>in</strong> the past and several enrichment plant<strong>in</strong>gswere d<strong>on</strong>e with commercially <strong>important</strong> tree species.The biotic pressures are largely of anthropogenic orig<strong>in</strong>. Peopleliv<strong>in</strong>g <strong>in</strong> the nearby settlements depend <strong>on</strong> the Moist Deciduous Forests forsmall timber, fire wood and green manure. Illicit charcoal mak<strong>in</strong>g is alsoprevalent. These activities often result <strong>in</strong> burn<strong>in</strong>g the area.Farmers often burn the forests so that their agricultural lands getenriched by ash brought down by ra<strong>in</strong> water. In the absence of pasturelands people also drive their cattle and goats <strong>in</strong>to the forests for graz<strong>in</strong>gand brows<strong>in</strong>g. Fire helps new grass growth and this facilitates graz<strong>in</strong>g.Tribals liv<strong>in</strong>g <strong>in</strong>side the forests and the local people liv<strong>in</strong>g <strong>in</strong> theadjo<strong>in</strong><strong>in</strong>g villages collect m<strong>in</strong>or forest produce such as Acacia fruits, soapnut, h<strong>on</strong>ey, etc. They burn the undergrowth to facilitatate easy collecti<strong>on</strong>.The fire spreads and causes havocs.Ground fire is the prevalent form <strong>in</strong> the Moist Deciduous Forests;the dry litter carpet <strong>on</strong> the ground gets burnt dur<strong>in</strong>g summer al<strong>on</strong>g withthe young <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>.Permanent Sample PlotsMost of the phenological and demographic <str<strong>on</strong>g>studies</str<strong>on</strong>g> were c<strong>on</strong>ducted<strong>in</strong> two permanent plots established at Karadippara (Figure 4.7) andKalluchal (Peechi Range). Both the plots were made <strong>in</strong>to grids of 10 m x 10m. The qaudrats were marked by chemically treated numbered wooden pegs.Species compositi<strong>on</strong> of the two plots is given <strong>in</strong> Table 4.2.


Materials of Study 36Figure 4.7 A size to scale map of the permanent plot atKaradippara (Kp), Peechi Range, Trichur Forest Divisi<strong>on</strong>,established for the study. Each square is 100 m 2 (10 m x 10 m)<strong>in</strong> size. The dots <strong>in</strong>dicate positi<strong>on</strong> of <strong>trees</strong> >=10 cm dbh.


36 Materials of Study~-Table 4.2Percentage compositi<strong>on</strong> of stands of the two permanent plotsestablished for demographic <str<strong>on</strong>g>studies</str<strong>on</strong>g> of <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>.KalluchalKaradippara-No Species Percentagecompositi<strong>on</strong>*NoSpeciesPercentagecomposi t i<strong>on</strong>41 xylia xylocarpa 31.122 Grewia tiliifolia 10.483 Cleistanthua coll<strong>in</strong>us 10.024 Dillenia pentagyna 8.435 Term<strong>in</strong>alia crenulata 6.836 Tem<strong>in</strong>alia paniculata 5.69789101112131415Lagerstroemia microcarpa 4.10Tect<strong>on</strong>a grandis 3.64Wrightia t<strong>in</strong>ctoria 2.96Lannea coromandslica 2.05Bridelia squamosa 1.82Dalbergia lanceolaria 1.59Hald<strong>in</strong>a cordifolia 1.59Hymenodicty<strong>on</strong> orixense 1.37Stereospermun colais 1.3716 Dalbergia sissoides17 Baub<strong>in</strong>ia racemosa18 Bombax <strong>in</strong>signis19 Macaranga peltata20 Cassia fistula21 Emblica offic<strong>in</strong>alis22 Pterocarpus marsupium23 Term<strong>in</strong>alia bellirica24 Bridelia squamova25 Careya arborea26 Cleistanthus coll<strong>in</strong>us27 Gmel<strong>in</strong>e arborea0.910.680.680.680.460.460.460.460.230.230.230.2328 Nar<strong>in</strong>gi crenulata 0.2329 Schl ei cher oleosa 0.23Total 100.001 Wrightia t<strong>in</strong>ctoria2 Lagerstroemia microcarpa3 Xylia xylocarpa4 Dillenia pentagyna5 Aporusa l<strong>in</strong>dleyana6 Tem<strong>in</strong>alia paniculata7 Grewia tiliifolia8 Dalbergia sissoides9 Emblica offic<strong>in</strong>alis10 Albizia odoratissima11 Bridelia squamosa12 Strychnos nux-vomica13 Bauh<strong>in</strong>ia racemosa14 Cassia fistula15 Holarrhena pubescens16 Careya arborea17 Litsea sp.18 Sp<strong>on</strong>dias p<strong>in</strong>nata19 Term<strong>in</strong>alia bellirica20 Term<strong>in</strong>alia crenulata21 Tect<strong>on</strong>a grandis22 Bombax <strong>in</strong>signis23 Bischofia a Ja vani ca24 Ficus Sp.25 Garuga floribunda26 Hald<strong>in</strong>a cordifolia27 Macaranga pel tata28 Melia dubia29 Olea dioica30 Pterocarpusmarsupium31 Randia sp.32 Schleicher olsosa33 Sterculia guttata34 Tetramel es nudi fl oraTotal29.7819.3514.5714.134.573.911.521.091.090.870.870.870.650.650.650.430.430.430.430.430.430.220.220.220.220.220.220.220.220.220.220.220.220.22100.00


Chapter 6Methods FollowedIntroducti<strong>on</strong> .......................... 37Dynamics of the Reproductive Phase ..... 38Qualitative phenology ............... 38Data Analysis ..................... 38Quantitative Phenology .............. 40Data Analysis ..................... 40Dynamics of the seedl<strong>in</strong>g Phase ........ 41estimati<strong>on</strong> of Seedl<strong>in</strong>g Bank ......... 41Sample selecti<strong>on</strong> .................. 41size of Releve .................... 41Releve Record ..................... 42The Sample Plots .................. 42Enumerati<strong>on</strong> and Measurements ...... 46Data Analysis ................... 46populati<strong>on</strong> Dynamics ................. 47Experiment to Determ<strong>in</strong>e Natality .. 49Effect of Soil Moisture Depleti<strong>on</strong><strong>on</strong> seedl<strong>in</strong>g Populati<strong>on</strong> s ........ 50Dynamics of the Mature Tree Phase ....... 51Simulati<strong>on</strong> Studies ..................... 51Introducti<strong>on</strong>The term '<str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>' covers all life stages start<strong>in</strong>g fromflower<strong>in</strong>g to the mature <strong>trees</strong>. Thus, <strong>in</strong> search<strong>in</strong>g the causes of paucity of<str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>, the <str<strong>on</strong>g>studies</str<strong>on</strong>g> should cover all the life stages. In this c<strong>on</strong>text,the follow<strong>in</strong>g questi<strong>on</strong>s arise.Is the flower<strong>in</strong>g behaviour of the <strong>trees</strong> <strong>in</strong> the Moist DeciduousForests regular? Or, are they widely spaced as <strong>in</strong> the case of South EastAsian dipterocarps with mast-flower<strong>in</strong>g/ mast seed<strong>in</strong>g? What is the extentof variability <strong>in</strong> the flower<strong>in</strong>g behaviour at different organizati<strong>on</strong>allevels, such as all-<strong>trees</strong>, stratal and species levels? What quantity offlowers, fruits and seeds of commercially <strong>important</strong> tree species isproduced? Is the quantity of seeds produced sufficient to meet the<str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> requirements of the stands? What is the strength of thepopulati<strong>on</strong> of exist<strong>in</strong>g seedl<strong>in</strong>g bank? What rates of natality, mortality,survival and rate of <strong>natural</strong> <strong>in</strong>crease the seedl<strong>in</strong>g populati<strong>on</strong>s of differentcategories exhibit? What is the rate of survival of the mother <strong>trees</strong> thatserve as the seed source for <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>? Can these dynamic parametersbe estimated so that predicti<strong>on</strong> of the future of <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> will bepossible?


38 Methods FollowedIn attempt<strong>in</strong>g to answer the questi<strong>on</strong>s posed <strong>in</strong> the previousparagraph, c<strong>on</strong>venti<strong>on</strong>al phenological, plant demographic andphytosociological methods were followed. They are described below.Dynamics of the Reproductory PhaseQualitative PhenologyAltogether, 22 species bel<strong>on</strong>g<strong>in</strong>g to upper and middle tree stratawere studied. One hundred and seventy two <strong>trees</strong> were pa<strong>in</strong>t marked <strong>in</strong> thetwo permanent plots at Kalluchal and Karadippara, for phenologicalobservati<strong>on</strong>s (Table 5.1) . M<strong>on</strong>thly phenological observati<strong>on</strong>s of these <strong>trees</strong>were made with the help of a 10 x 40 Leitz Tr<strong>in</strong>ovid b<strong>in</strong>ocular. At thebeg<strong>in</strong>n<strong>in</strong>g, each <strong>in</strong>dividual tree was screened for 10 phenological states bya visual rat<strong>in</strong>g from 0 -100 percent depend<strong>in</strong>g up<strong>on</strong> the <strong>in</strong>tensity of thephenostate. Rat<strong>in</strong>gs dur<strong>in</strong>g subsequent observati<strong>on</strong>s were made <strong>in</strong>comparis<strong>on</strong> with the previous rat<strong>in</strong>gs. The phenostates observed were,flush, semimature leaves, mature leaves, old leaves, flower bud, matureflower, young fruit, semimature fruit and old fruit. The data were entered<strong>in</strong> data sheets. A thirty six m<strong>on</strong>th data have been collected dur<strong>in</strong>g thethree years. The dates of phenological observati<strong>on</strong>s are given <strong>in</strong> Table 5.2.Data Analysis: The numerical data collected <strong>on</strong> <strong>in</strong>dividual species wereentered <strong>in</strong>to the computer and stored as computer files. The DBASE IIIPLUS software was used for enter<strong>in</strong>g the data. Three <strong>in</strong>dividual DBASEprograms were written to calculate phenostate averages. Phenostateaverages at 10 day <strong>in</strong>tervals were calculated for 12 m<strong>on</strong>ths. This was d<strong>on</strong>eat three organizati<strong>on</strong>al levels, viz. 1) species level, (2) stratum level and(3) all-<strong>trees</strong> level.At species level, all percentages of the particular phenostate of allthe <strong>trees</strong> bel<strong>on</strong>g<strong>in</strong>g to tree species between each 10 day <strong>in</strong>terval for eachm<strong>on</strong>th were added up and divided by the number of observati<strong>on</strong>s to get theaverage. At stratum level, the phenostate values of all species bel<strong>on</strong>g<strong>in</strong>gto that stratum were added up and phenostate averages calculated. Atall-<strong>trees</strong> level, phenostate values of all <strong>trees</strong> of all species bel<strong>on</strong>g<strong>in</strong>g toboth the tree strata studied were added up and average calculated. Thephenostate 'averages so obta<strong>in</strong>ed were then graphically represented (<strong>in</strong>phenograms) for each species, stratum and all-<strong>trees</strong> and for eachphenostate separately ( of Chapter 6, Figures 6.1-6.6).


~ ~~Methods Followed 39Table 5.1No12345678910111213141516Trees used for m<strong>on</strong>thly phenologicalobservati<strong>on</strong>sSpeciesstratum 1 Spec iesAl bi zia odoratissimaAlst<strong>on</strong>ia scholarisBombax ceibaBombax <strong>in</strong>signeDillenia pentagynaDa1 bergia sissoidesGmel<strong>in</strong>a arboreaGrewia tili i foliaHal d<strong>in</strong>a cordif ol iaLagerstroemia microcarpaMelia dubiaTerm<strong>in</strong>al ia be1 liricaTerm<strong>in</strong>alia paniculataTect<strong>on</strong>a grandisTetrameles nudifloraXyl i a xyl ocarpaII2a-112916111-513619Kalluchal-1281396721610110Total221320'10415718261916119Stratum 2 Sp ecies17 Bridelia squamosa18 Cleistanthus coll<strong>in</strong>us19 Sp<strong>on</strong>dias p<strong>in</strong>nata20 Strychnos nux-vomica21 Lannea coromandelica22 Macaranga pel ta taTotal3-11 -3 --5184 88172Table 5.2Dates of qualitative phenological observati<strong>on</strong>s ofmarked <strong>trees</strong> <strong>in</strong> the localities Kalluchal andKaradippara.MthJanPebMarAprMayJneJ lyAugSeptOctNovDecKaradippara1988 1989 1990 199118 22 321 22 419 20 23 1128 21 17 521 24 2515 27 2717 232 2 275 28 243 25 62816Kalluchal1988 1989 1990 199119 23 328 27 2410 28 27 138 21 30 221 1918 21 1827 242 286 28 253 2614 26 . 819 19 30


40 Methods FollowedQuantitative PhenologyQuantitative phenological <str<strong>on</strong>g>studies</str<strong>on</strong>g> were c<strong>on</strong>ducted <strong>in</strong> theKaradippara permanent plot. Seventy five 1 m 2 wooden litter traps weremade by affix<strong>in</strong>g nyl<strong>on</strong> meshes of 0.2 mm size. Litter traps were <strong>in</strong>stalled<strong>on</strong> 1 m wooden pegs, <strong>in</strong> groups of 26, <strong>in</strong> three subplots. The <strong>in</strong>ter-trapdistance was ma<strong>in</strong>ta<strong>in</strong>ed as 6 m. The traps were numbered. At fortnight<strong>in</strong>tervals, litter collected <strong>in</strong> the traps were transferred <strong>in</strong>to polybags andtransported to the laboratory. The polybags were numbered with the trapnumber. The c<strong>on</strong>tents of the polybags were separated specieswise and thenumber of flower buds, flowers, fruits, seeds etc. recorded <strong>in</strong> data sheets.Data Analysis The bulk of numerical data were fed <strong>in</strong>to a computer andstored <strong>in</strong> files us<strong>in</strong>g the DBASE III PLUS software. The data was processedus<strong>in</strong>g a DBASE program written for the purpose. For each species totalnumber of flower buds, mature flowers, young fruits, semimature fruitsmature fruits and old fruits, etc. were totalled <strong>in</strong>dividually. From theseobserved figures actual figures <strong>in</strong> each category was calculated as given<strong>in</strong> Table 6.3. The actual number obta<strong>in</strong>ed were then c<strong>on</strong>verted to perhectare values.Table 5.3. Calculati<strong>on</strong> of populati<strong>on</strong> structure of thereproductive phase.semimature fruitsyoung fruitsmature flowersroducedflowers


Methods Followed 41Dynamics of the Seedl<strong>in</strong>g PhaseEstimati<strong>on</strong> of Seedl<strong>in</strong>g BankLife tables and survivorship curves provide the best method ofknow<strong>in</strong>g the structure of populati<strong>on</strong>s. It helps to p<strong>in</strong> po<strong>in</strong>t the locati<strong>on</strong>s(life stages) at which mortality (casualty) becomes a crucial factor. Thus,it gives clues about the c<strong>on</strong>stra<strong>in</strong>ts operat<strong>in</strong>g <strong>on</strong> the rate of <strong>natural</strong><strong>in</strong>crease.The preparati<strong>on</strong> of life tables <strong>in</strong>volve demographic census<strong>in</strong>g of alllife stages of organisms under study. The same methodology has been used<strong>in</strong> the present study and static life tables prepared. The methods followedare detailed out below.Sample Selecti<strong>on</strong>: In estimat<strong>in</strong>g the <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> status c<strong>on</strong>venti<strong>on</strong>alphytosociological methods were followed. Initially many Moist DeciduousForest localities <strong>in</strong> the Trichur Forest Divisi<strong>on</strong> (Akamala, Elnadu,Pathrakkalu, Mundippadam and Vazhani from Machad Range, Kuthiran andParavattani Hills from Pattikkadu Range, and Karadippara, Pannikkuzhi,Vaniyampara, Moodal Mala, Vengappara, Kalluchal, Kallala, and the farside of Vellakkarithadam area from the Peechi Range) were visited.Based <strong>on</strong> the vegetati<strong>on</strong> map prepared by Men<strong>on</strong> and Balasubramanyan(1985) and the visual observati<strong>on</strong>s <strong>on</strong> stand compositi<strong>on</strong>, density andvariability of stands eight localities were selected for sampl<strong>in</strong>g:Karadippara (Kp), Kalluchal (Kc), Kuthiran (Kt), Mundippadam (Mp),Pathrakkallu (Pk), Vazhani- l(Vzl), Vazhani-2(Vz2) and Vazhani-3 (Vz3).Size of Releve: S<strong>in</strong>ce most parts of the MDFs were highly disturbed,species-area relati<strong>on</strong> was worked out for a least disturbed near-<strong>natural</strong>site (Karadippara) and a more or less disturbed site (Kalluchal). Theexperiment was c<strong>on</strong>ducted us<strong>in</strong>g the expand<strong>in</strong>g quadrat method (Bharuchaand de Leeuw, 1957).Thirty centimeter gbh(10 cm dbh) was taken as the lower limit forC<strong>on</strong>siderati<strong>on</strong> as a tree because <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> is largely seed based and<strong>trees</strong> flower and fruit <strong>on</strong>ly after acquir<strong>in</strong>g a certa<strong>in</strong> age. From the graphobta<strong>in</strong>ed, the size of releve was determ<strong>in</strong>ed as 90 m2 for Karadippara and60 m 2 for Kalluchal, whereafter, a 10 % <strong>in</strong>crease <strong>in</strong> area scarcely led to10 % <strong>in</strong>crease <strong>in</strong> species (Figure 5.1).At Karadippara and Kalluchal, <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> enumerati<strong>on</strong> was d<strong>on</strong>e<strong>in</strong> the permanent plots. In other localities, temporary plots were laid out.


42 Methods Followed201 )o* a’ M* 60’ 70’ 80’ go* ao’ 11d 120’Area (m.1Figure 5.1 Species-area curves for the localities Kalluchal (KC)and Karadippara (kp), Peechi Range, Trichur FD. The curvesrepresent the richness of tree (>= 10 cm dbh) species <strong>on</strong>ly.Releve Record: Preparatory to <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> enumerati<strong>on</strong>, based <strong>on</strong> generalvisual observati<strong>on</strong>s, a releve record of the localities was prepared (Table5.4). Elevati<strong>on</strong>, aspect, slope, dom<strong>in</strong>ant species, undergrowth and otherdetails were noted <strong>in</strong> the field book.The Sample Plots: In localities where permanent plots were not laid out<str<strong>on</strong>g>studies</str<strong>on</strong>g> were c<strong>on</strong>ducted <strong>in</strong> temporary plots. In demarcat<strong>in</strong>g the temporaryplots the follow<strong>in</strong>g methods were adopted. A right angled triangle of sides3 m, 4 m and 6 m, was laid out <strong>on</strong> the ground with the help of a rope. Thetriangle was marked <strong>on</strong> the ground with three ir<strong>on</strong> pegs al<strong>on</strong>g the corners.Next, by extend<strong>in</strong>g the vertical and horiz<strong>on</strong>tal sides of the triangle a 10m x 10 m quadrat was laid out. The quadrat was marked with ir<strong>on</strong> pegs <strong>on</strong>the ground and outl<strong>in</strong>ed by ty<strong>in</strong>g coloured nyl<strong>on</strong> ropes to the pegs.Subsequent quadrats were laid out by extend<strong>in</strong>g the sides of the firstquadrat us<strong>in</strong>g 10 m l<strong>on</strong>g nyl<strong>on</strong> ropes. The sequence of quadrat mak<strong>in</strong>g isshown <strong>in</strong> Figures 5.2 to 6.4.


Methods Followed 43Table 5.4Releve record of the atudy plots.Karadipara (Kp) : Peechi Range,12 km South East of KPRI <strong>on</strong> thefar aide of Peechi reservoir:10 0 15' N, 76 0 24' I, 2 230 m >MSL.Aspect SE, slope gentle,rock formati<strong>on</strong>s close to thesample plot.Tl: Xylia, D. sissoides,Grewia, Lagerstroemia,Tec t<strong>on</strong>a , Dill eniaT2: Aporusa, Strychnos,Bauh<strong>in</strong>ia, S. guttata,Macaranga.C1: Acacia <strong>in</strong>tsia, Calycopteris, SpatholobusS: Bupatorium, Clerodendrum,Helicteres .ICanopy closed, pole Cropspractically absent, fire usual.graz<strong>in</strong>g and brows<strong>in</strong>g much lessKalluchalKc): Peechi Range:ca. 8 km south east from KeralaForest Research Inst., 1.5 .kmeast of Thamaravellachal. 10 030' 57' N, 76 0 22'38' E, +I80 m> MSL.Aspect SE, slope gentle,rock formati<strong>on</strong>s close to sampleplot, soil blackish loam.T1:T2 :T3 :c1:s:Xylia, Term<strong>in</strong>alia bellirica, T. paniculata, Grewia,Lagers troemia.Bridelia, Cleis tan thus,Schleichera, Dalbergialanceolaria.Casearia, Wrightia.Acacia <strong>in</strong>tsia, Zizyphusrugosa.Eupa tori urn, He1 i c teres.ICanopy almost closed, firerecurrent, graz<strong>in</strong>g comm<strong>on</strong>, cutstumps of poles occasi<strong>on</strong>alKuthiran (Kt): Pattikkad Range,ca. 1.5 km away from NH 47 <strong>on</strong>the crest of the Kuthiran hilland about 1 km away from theVana Vigyan Kendra: 30 0 34'12'N, 76 0 23'E, 5180 m > MSL.Aspectflat,E, elope almostT1: Xylia, Term<strong>in</strong>alia bellirica, T. paniculata, Grewia,Lagerstroemia; Tect<strong>on</strong>a andDillenia absent.T2: Trees of this layer practically absent.T3: Holarrhena, Wrightia.C1: Zizyphus rugosa.S: Bupatoriun, Helicteres.Canopy opened up, large<strong>trees</strong> still frequent, fire recurr<strong>in</strong>g,brows<strong>in</strong>g and graz<strong>in</strong>gvery comm<strong>on</strong>Mundippadam(Mp): Uachad Range,ca. 1 km away from the Mundippadamsettlements: 10 0 36'N.76 0 23'1' E, +I80 m > MSL.Aspect NW slope ca. 10percent,T1: Xylia, Grewia, Term<strong>in</strong>aliabe1 liri ca , Dal bergia.S : He1 icteres, Eupa tori um .Stand density poor, canopyopened up, illicit charcoalmak<strong>in</strong>g active, <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> ofSterculia guttata frequent [Sec<strong>on</strong>daryMixed SIMDFs].pathrakkallu (Pk): Machad Range,ca. 1 km away from the Eucalyptuscoppice plantati<strong>on</strong>:10 0 36'80 N, 76 0 23'46' E, 2120 m> MSL.


44 Materials of StudyTable 5.4 Releve Record of the study plots (c<strong>on</strong>t<strong>in</strong>ued).Aspect S, slope almostflat: ground bouldry,T1: Xylia. Grewia, Term<strong>in</strong>aliapanicula ta, Lagers troemia.S: Helicteres. Eupatorium.Stand density poor, graz<strong>in</strong>gand fire heavy, <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>of Xylia <strong>some</strong> what satisfactory.yazhani-1(Vz1): Machad Range.ca. 1.5 km north east of theVazhani dam, situated <strong>in</strong> thecatchment: 10 0 38'53"N. 76 O 18 '-44" E, +180 m > MSL.Aspect SW,cent,slope 13 per-T1: Xylia, Tetrameles, T. paniculata, Grewia, Pterocarpus, Dillenia.T2: Bridelia.C1: Spatholobus.S: Eupatorium, Helicteres.Stand moderately disturbed,fire recurrent, root-sucker<str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> of Xylia pro-: Machad Range,about 2 km north east of theVazhani dam, situated <strong>in</strong> thecatchment:10 0 38'52-S, 76 0 18'-42' E, 2125 m > MSL.Aspect SW, slope 1 percent,Tl: Xylia, Grewia, Bombax, Albizia, Term<strong>in</strong>alia paniculata, Dillenia.c1 : Spa tholobus.S: Ma<strong>in</strong>ly Bupatorium.Stock<strong>in</strong>g poor, graz<strong>in</strong>gheavy, root sucker <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>of Xylia profuseVazhani-3(Vz3): Machad Range,ca. 1.5 km eastward of the Vazhanidam: 10 0 38'52" S. 76 0 18'-45" E, 2115 m > MSL.ent,Aspect S, slope 13 perc-T1: Xylia, Grewia, Dillenia,Term<strong>in</strong>alia paniculata.Cl : Spa thoi obus.S: Helicteres, Bupatorium.Stand density poor


Methods Follo wed465.21c 2Figures 5.2 - 5.4 Methods used <strong>in</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> survey. 5.2Survey of permanent sample plots with the help of a cross staffand rang<strong>in</strong>g rods. 5.3 Sequence of quadrat (=l00 m 2 ) lay<strong>in</strong>g <strong>in</strong>temporary sample plots. 5.4 Sequence of enumerati<strong>on</strong> <strong>in</strong> quadrats.C - Cross staff; P - Peg; R - Rang<strong>in</strong>g rod.


46 Methods FollowedEnumerati<strong>on</strong> and Measurements: Enumerati<strong>on</strong> was d<strong>on</strong>e <strong>in</strong> the permanentplots at Karadippara, Kalluchal and temporary plots laid out at Kuthiran,Mundippadam, Pathrakkallu, Vazhani- 1, Vazhani-2 and Vazhani-3.Quadrats for <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> enumerati<strong>on</strong> were outl<strong>in</strong>ed by ty<strong>in</strong>gcoloured nyl<strong>on</strong> ropes <strong>on</strong> the pegs. All <strong>in</strong>dividuals bel<strong>on</strong>g<strong>in</strong>g to all <strong>trees</strong>pecies were measured and recorded <strong>in</strong> data sheets.The size measurements were d<strong>on</strong>e under the follow<strong>in</strong>g categories: ( 1 ).height of all tree seedl<strong>in</strong>gs < 3 cm gbh, and (2). girth of all <strong>in</strong>dividuals>= 3 cm gbh. Once the size of all <strong>trees</strong> above 30 cm gbh was measured <strong>in</strong>a 10 m x 10 m quadrat, the quadrat was divided <strong>in</strong>to two 5 m x 10 mquadrats by means of a rope. Then, the size dimensi<strong>on</strong>s of the lower sizeclasses were recorded follow<strong>in</strong>g a path as illustrated <strong>in</strong> Figure 6.4.Data Analysis: The numerical data obta<strong>in</strong>ed were fed <strong>in</strong>to a pers<strong>on</strong>alcomputer us<strong>in</strong>g the software DBASE IIIPLUS. The data were pooled atvarious size class levels. Of the larger size classes although measurementswere taken <strong>in</strong> terms of gbh, the measurements were c<strong>on</strong>verted to dbhvalues us<strong>in</strong>g the geometric area-diameter relati<strong>on</strong> and used <strong>in</strong> theanalysis. The size classes recognized are given <strong>in</strong> Table 5.5. Further, thedata were categorized at various magnitudes and tax<strong>on</strong>omic levels, viz.all-<strong>trees</strong>, stratal and species levels. Life tables were prepared at these'levels (Tables 7.1, 7.2, 7.3, 7.4) and percentage representati<strong>on</strong> <strong>in</strong> eachclass worked out (Table 7.7). Semilogarithmic graphs were prepared for thedom<strong>in</strong>ant tree species (Figure 7.3).Table 5.5Size classes recognized.No12345678910Nameh50h100hglOOd10d20d30d40d50d60dg60hththtdbhdbhdbhdbhdbhdbhdbhSize range 50 cm and 100 cm and dbh < 1 cm>= 1 cm and 10 cm and 20 cm and 30 cm and 40 cm and 50 cm and 60 cmht - height; dbh- diameter at breast height


Methods Followed 47Populati<strong>on</strong> DynamicsSeedl<strong>in</strong>gs <strong>in</strong>crease <strong>in</strong> number by seed germ<strong>in</strong>ati<strong>on</strong>, decrease bydeath of <strong>in</strong>dividuals or survive over a period of time. A surviv<strong>in</strong>g seedl<strong>in</strong>ghas three opti<strong>on</strong>s: (1) to grow and <strong>in</strong>crease <strong>in</strong> size when c<strong>on</strong>diti<strong>on</strong>s arefavourable, (2) to rema<strong>in</strong> dormant when c<strong>on</strong>diti<strong>on</strong>s are adverse, or (3) toretard and go back to a lower phase of sylvigenesis when c<strong>on</strong>diti<strong>on</strong>s arenot favorable. Three separate experiments/ surveys were c<strong>on</strong>ducted forthe purpose. Studies to quantify and describe the above populati<strong>on</strong>dynamic parameters were d<strong>on</strong>e ma<strong>in</strong>ly by m<strong>on</strong>itor<strong>in</strong>g populati<strong>on</strong>s <strong>in</strong>permanent plots at Kalluchal and Karadippara.Of the 200 quadrats <strong>in</strong> each permanent plot, 50 quadrats wereselected <strong>in</strong> a systematic way with a random start. All tree <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> <strong>in</strong>these quadrats were tagged with numbered alum<strong>in</strong>ium tags andmeasurements taken prior to the <strong>on</strong>set of m<strong>on</strong>so<strong>on</strong>, ie, before the start ofgrow<strong>in</strong>g seas<strong>on</strong>.Two subsequent enumerati<strong>on</strong>s and measurements were made (as given<strong>in</strong> Table 5.6) such that there was a gap of <strong>on</strong>e full grow<strong>in</strong>g seas<strong>on</strong> (<strong>on</strong>efull wet seas<strong>on</strong>) between any two subsequent measurements.Both the plots burnt completely dur<strong>in</strong>g February 1989 (summer),ow<strong>in</strong>g to a wide spread fire that orig<strong>in</strong>ated from the nearby forestdwell<strong>in</strong>g. However, after a few m<strong>on</strong>so<strong>on</strong> showers surviv<strong>in</strong>g seedl<strong>in</strong>gs couldbe identified by the metallic tags hang<strong>in</strong>g <strong>on</strong> their dead stumps orsurviv<strong>in</strong>g shoot. C<strong>on</strong>sequently, the tags <strong>on</strong> the dead stumps weretransferred to their sprouted new shoots and subsequent measurementswere made after the lapse of a full grow<strong>in</strong>g seas<strong>on</strong>. Because of the verycumber<strong>some</strong> and time c<strong>on</strong>sum<strong>in</strong>g procedure <strong>in</strong>volved <strong>in</strong> trac<strong>in</strong>g theseedl<strong>in</strong>gs, the number of samples were subsequently reduced to twentyfive 10 m 2 quadrats per plot, <strong>in</strong>stead of the 60 quadrat6 <strong>in</strong>itially selected.The sample size, <strong>in</strong> terms of the number of <strong>in</strong>dividuals <strong>in</strong> the different sizeclasses and strata of the Kalluchal plot is given <strong>in</strong> Table 5.7.As fire was not anticipated, the combustible materials and <strong>in</strong>tensityof fire could not be estimated. Nevertheless, to get a general idea of the<strong>in</strong>tensity of fire, <strong>in</strong> the subsequent year the combustible materials <strong>on</strong> theground <strong>in</strong> the plots were estimated. The mean weight of combustiblematerials burnt <strong>in</strong> the plots was found to be_7.9 t ha -1


48 Methods FollowedTable 5.6Events and tim<strong>in</strong>gs of <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> enumerati<strong>on</strong> and measurement <strong>in</strong> the twopermanent plots for estimati<strong>on</strong> of parameters of populati<strong>on</strong> dynamics.permanentplotsFirstenumerati<strong>on</strong>Events between1st and 2ndmeasurementssec<strong>on</strong>dEnumerati<strong>on</strong>KalluchalMay1988<strong>on</strong>e grow<strong>in</strong>gseas<strong>on</strong> withoutfireNov. 1988Fire burnt <strong>in</strong>Feb. 1989; <strong>on</strong>egrow<strong>in</strong>g seas<strong>on</strong>after 2nd enumerati<strong>on</strong>and fireSept. 1989.KaradipparaDec. 1988Fire burnt <strong>in</strong>Feb. 1989; <strong>on</strong>egrow<strong>in</strong>g seas<strong>on</strong>1st enumerati<strong>on</strong>and fireNov. 1989One grow<strong>in</strong>gseas<strong>on</strong> withoutDec. 1990.Table 5.7 Samples used (number of seedl<strong>in</strong>gs observed) for study<strong>in</strong>gthe effect of fire protecti<strong>on</strong> (FP) and fire (F) <strong>on</strong><str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> dynamics <strong>in</strong> the Kalluchal plot.Strata ’FPh50FStrat 1 482 644Strat 2 338 368Strat 3 95 123Total 915 1135h100 . hg100 d10 TotalFP F FP F FP F FP F291 364 119 166 26 37 918 1211140 129 106 120 22 38 606 655172 183 75 84 10 13 352 403603 676 300 370 58 88 1876 2269


Methods Followed 49In additi<strong>on</strong> to the above menti<strong>on</strong>ed experiment, supplementaryexperiments were c<strong>on</strong>ducted to quantify the natality.and to know the roleof summer soil <strong>moist</strong>ure depleti<strong>on</strong> <strong>on</strong> seedl<strong>in</strong>g mortality.Experiment to Determ<strong>in</strong>e NatalityThe study was c<strong>on</strong>ducted <strong>in</strong> the two permanent plots at Kalluchaland Karadippara. A series of n<strong>in</strong>ety 4 m 2 quadrats were laid out, 46 at theKaradippara and 45 at Kalluchal. The 46 quadrats were distributed <strong>in</strong> 3groups of 15 each. The quadrats were marked with pa<strong>in</strong>ted pegs and GIwire tied al<strong>on</strong>g the perimeter. The quadrats were cleared of shrubs so asto observe the emerg<strong>in</strong>g seedl<strong>in</strong>gs. Observati<strong>on</strong>s were taken for a full <strong>on</strong>eyear at fortnight <strong>in</strong>tervals dur<strong>in</strong>g 1990-1991. The observed data weresummarized m<strong>on</strong>th-wise <strong>in</strong> species, stratum and all-<strong>trees</strong> levels.Effect of Soil Moisture Depleti<strong>on</strong> <strong>on</strong> Seedl<strong>in</strong>g Populati<strong>on</strong>Soil <strong>moist</strong>ure is an <strong>important</strong> parameter determ<strong>in</strong><strong>in</strong>g the survival ofseedl<strong>in</strong>g bank. The seas<strong>on</strong>al deciduous phenology of SIMDFs allow the hotrays of the summer sun to reach the ground and deplete the soil <strong>moist</strong>ure.The study was c<strong>on</strong>ducted <strong>in</strong> the Karadippara permanent plot to knowwhether the summer <strong>moist</strong>ure depleti<strong>on</strong> c<strong>on</strong>tributes to depleti<strong>on</strong> of theseedl<strong>in</strong>g bank seriously. C<strong>on</strong>sider<strong>in</strong>g the m<strong>in</strong>or variati<strong>on</strong>s <strong>in</strong> terra<strong>in</strong> andthe probable c<strong>on</strong>sequent soil <strong>moist</strong>ure differences, a stratified randomsampl<strong>in</strong>g scheme was followed. Three terra<strong>in</strong> strata of approximately 1 melevati<strong>on</strong>al difference were selected. Ten replicate quadrats were selected<strong>in</strong> each stratum. Each quadrat was a strip of size 20 m 2 (= 10 m x 2 m).The sample strips were demarcated with pa<strong>in</strong>ted numbered woodenpegs and by ty<strong>in</strong>g GI wire al<strong>on</strong>g the perimeter. Tree seedl<strong>in</strong>gs (> 5 cmheight and < 30 cm gbh) were enumerated <strong>in</strong> the sample strips and soi1<strong>moist</strong>ure estimated dur<strong>in</strong>g February, March and April 1991 when soil<strong>moist</strong>ure depleti<strong>on</strong> reached its peak. The m<strong>on</strong>itor<strong>in</strong>g was stopped <strong>in</strong> Maywhen, ow<strong>in</strong>g to copious pre-m<strong>on</strong>so<strong>on</strong> showers, the soil <strong>moist</strong>ure had g<strong>on</strong>eup.The <strong>in</strong>itial seedl<strong>in</strong>g enumerati<strong>on</strong> was c<strong>on</strong>ducted <strong>in</strong> February. Alltree seedl<strong>in</strong>gs were tagged with numbered alum<strong>in</strong>ium tags, height/ gbhmeasured and data recorded <strong>in</strong> data sheets. In subsequent enumerati<strong>on</strong>ssurvival al<strong>on</strong>e was noted.


50 Methods FollowedSoil <strong>moist</strong>ure <strong>in</strong> the samples was determ<strong>in</strong>ed by gravimetric means(of. Gardner, 1965). Approximately 80 gm of soil from 10 cm depth of theground was collected from freshly dug pits near the strips and kept <strong>in</strong>pre-weighed small steel vessels and closed. The samples were transportedat the earliest to the laboratory and fresh weight determ<strong>in</strong>ed. The samplesal<strong>on</strong>g with the pots were oven dried at 105 0 C until c<strong>on</strong>stant weight. Thedata were recorded <strong>in</strong> data sheets and <strong>moist</strong>ure percentage worked out as(weight loss of soil sample X 100/ dry weight of soil sample). Moisturehold<strong>in</strong>g capacity of the soil at the study site was also estimated bygravimetric means, by dry<strong>in</strong>g of saturated soil samples (Jacks<strong>on</strong>, 1958).As the soil <strong>moist</strong>ure percentage between the three elevati<strong>on</strong>alstrata did not vary significantly at any given time of sampl<strong>in</strong>g (andenumerati<strong>on</strong>), both soil <strong>moist</strong>ure results (and enumerati<strong>on</strong> results) of thedifferent strata were pooled together for analysis.Data AnalysisThe data were analysed for various parameters of populati<strong>on</strong>dynamics, such as mortality, natality and survival. Survival was either bywhole plants (ie, reta<strong>in</strong><strong>in</strong>g the shoot) or by produc<strong>in</strong>g new shoots from thesurviv<strong>in</strong>g root stocks <strong>in</strong> the succeed<strong>in</strong>g favorable seas<strong>on</strong>. Growth ofseedl<strong>in</strong>gs <strong>in</strong> the post-fire grow<strong>in</strong>g seas<strong>on</strong> could be negligible if the damagecaused was high. In other <strong>in</strong>stances growth could be significant if damageto the seedl<strong>in</strong>g was low and the additi<strong>on</strong> of organic matter to the soilow<strong>in</strong>g to fire was substantial. Thus, based <strong>on</strong> the extent of growth <strong>in</strong> thesucceed<strong>in</strong>g favorable seas<strong>on</strong>, the seedl<strong>in</strong>gs of the latter category were of3 types:1. Those that could grow <strong>on</strong>ly to a size class lower than the <strong>on</strong>e towhich they bel<strong>on</strong>ged prior to fire,2. Those that could grow to the size class to which they bel<strong>on</strong>gedprior to fire, and3. Those that could grow to a size class higher than the <strong>on</strong>e towhich they bel<strong>on</strong>ged prior to fire.Under each of the populati<strong>on</strong> parameters menti<strong>on</strong>ed above, the datawere analysed at all-<strong>trees</strong>, stratal and species levels. In additi<strong>on</strong>, impact<strong>on</strong> survival had been analysed at size class (szcl) level too. Thus the datawere analysed <strong>in</strong> the follow<strong>in</strong>g hierarchic order as given <strong>in</strong> Figure 6.5.


Methods Followed 61tTTZ-,Seedl<strong>in</strong>g Resp<strong>on</strong>se&j*&All-Tree StratalIBy whole plantsIkl1 -TreelevelliSurviv4alSize classlevelI I iStratal Specieslevel levelFigure 5.5Analysis of seedl<strong>in</strong>g resp<strong>on</strong>se dataDynamics of the Mature Tree PhaseThe fate of survival of 900 <strong>trees</strong> was studied <strong>in</strong> two permanentplots, Kallucahal and Karadippara. All these <strong>trees</strong> were numbered, the Xand Y co-ord<strong>in</strong>ate distances with<strong>in</strong> the 10 m x 10 m quadrats measured,species identified, gbh measured and recorded <strong>in</strong> data sheets dur<strong>in</strong>gFebruary 1988. Survival of <strong>trees</strong> were m<strong>on</strong>itored annually up to 1991, andthe rates worked out.Simulati<strong>on</strong> StudiesModels provide w<strong>in</strong>dows to view the system's future, under thelimitati<strong>on</strong>s offered by the assumpti<strong>on</strong>s ( cf Pellew, 1983). Simulati<strong>on</strong> isthe technique of predict<strong>in</strong>g future us<strong>in</strong>g models. Successi<strong>on</strong> has beenc<strong>on</strong>ceived as a stati<strong>on</strong>ary Markov process (Horn, 1975 a, 1975 b, 1976).The reliability of the c<strong>on</strong>cept has been questi<strong>on</strong>ed recently (B<strong>in</strong>kley,1980). Thus simulati<strong>on</strong> techniques are not true spectacles of the futureof the system. However, simulati<strong>on</strong> still is a useful technique <strong>in</strong>prospect<strong>in</strong>g the future of systems with reas<strong>on</strong>able degrees of accuracy( cf Shugart, 1984).


52 Methods FollowedA matrix of probabilities of transiti<strong>on</strong> under fire protecti<strong>on</strong> andUnder fire for various size classes <strong>in</strong> the different strata were also workedout us<strong>in</strong>g a PASCAL program. These probabilities were extrapolated andpictorial models of populati<strong>on</strong> flux <strong>in</strong> different size classes of variousstrata under fire protecti<strong>on</strong> and under fire were also c<strong>on</strong>structed.Employ<strong>in</strong>g matrix model and matrix multiplicati<strong>on</strong>, populati<strong>on</strong> flux <strong>in</strong>various size classes under different fire frequency <strong>in</strong>tervals was studied.


Chapter 6Results and Discussi<strong>on</strong> I:The Reproductory PhaseQualitative Phenology ....................... 53Flower<strong>in</strong>g and Fruit<strong>in</strong>g Periodicity ........ 53Inter-annual Variati<strong>on</strong>s ................. 53Intra-populati<strong>on</strong> Variati<strong>on</strong>s ............. 53Due to Disease ........................ 53Due to Mammalian Predators ............ 54Quantitative Pheanology ..................... 61Qualitative PhenologyFlower<strong>in</strong>g and Fruit<strong>in</strong>g PeriodicityOf the 16 commercially <strong>important</strong> tree species studied, all the<strong>in</strong>dividuals bel<strong>on</strong>g<strong>in</strong>g to 10 species flowered and fruited <strong>in</strong> all the 3 yearsunder observati<strong>on</strong>. The species are given <strong>in</strong> Table 6.1.<strong>in</strong>ter-annual Variati<strong>on</strong>s: In other species <strong>in</strong>terannual variati<strong>on</strong>s existed.In Alst<strong>on</strong>ia scholaris, both the <strong>trees</strong>, although large sized, did not flowerand fruit dur<strong>in</strong>g 1988 and 1989 but flowered dur<strong>in</strong>g 1990. In otherlocati<strong>on</strong>s al<strong>on</strong>g the pla<strong>in</strong>s, the same species was found to flower and fruitevery year.Intra-populati<strong>on</strong> Variati<strong>on</strong>s: In <strong>some</strong> species, although flower<strong>in</strong>g wasregularly circannual, all the <strong>trees</strong> did not produce mature fruits everyyear. Typical example is Xylia xylocarpa where fruit set was seen <strong>on</strong>ly <strong>in</strong><strong>some</strong> <strong>in</strong>dividuals. In Tect<strong>on</strong>a grandis <strong>in</strong> the Kalluchal plot 3 <strong>in</strong>dividuals<strong>in</strong> 1988, 9 <strong>in</strong>dividuals <strong>in</strong> 1989 and 3 <strong>in</strong>dividuals <strong>in</strong> 1990 did not flowerand fruit. Likewise <strong>in</strong> Term<strong>in</strong>alia bellirica , out of the six <strong>trees</strong> underobservati<strong>on</strong>, <strong>on</strong>e tree bel<strong>on</strong>g<strong>in</strong>g to the large diameter class did not flowerand fruit <strong>in</strong> 1989. In T crenulata out of the 11 <strong>trees</strong> under observati<strong>on</strong>,3 <strong>in</strong> 1988, 4 <strong>in</strong> 1989 and <strong>on</strong>e <strong>in</strong> 1990 did not flower and fruit.Due to Disease: In Term<strong>in</strong>alia paniculata, out of the 19 <strong>trees</strong> under,observati<strong>on</strong> <strong>on</strong>e tree did not flower and fruit <strong>in</strong> 1988 and 1989 as it had<strong>some</strong> disease, as was evident from the smaller crumbled leaves.


64 Results: The Reproductory PhaseDue to Mammalian Predators: Mammalian predators were found to affect the<strong>in</strong>tensity of mature fruit producti<strong>on</strong> <strong>in</strong> Xylia xylocarpa. In theKaradippara permanent plot, an isolated tree of the species could belocated. In the year 199 1 fruits fallen underneath the tree were counted.The statistics are given <strong>in</strong> Table 6.2. Producti<strong>on</strong> of mature fruits <strong>in</strong> many<strong>trees</strong> of the species is affected by heavy predati<strong>on</strong> of Malabar giantsquirrels (Ratufa maxima).Despite the small percentage of occasi<strong>on</strong>al <strong>in</strong>ter-annual and <strong>in</strong>trapopulati<strong>on</strong>alirregularities <strong>in</strong> flower<strong>in</strong>g and fruit<strong>in</strong>g, at species level n<strong>on</strong>eof the commercially <strong>important</strong> species had shown irregular periodicity.Neither any species showed the <strong>in</strong>cidence of gregarious flower<strong>in</strong>g and mastseed<strong>in</strong>g (for the terms cf Janzen, 1974; Appanah, 1985) nor they rema<strong>in</strong>edwithout flower<strong>in</strong>g/ fruit<strong>in</strong>g.Temporal distributi<strong>on</strong> of phenological behaviours at all- <strong>trees</strong>,stratal and species levels were worked out from the qualitative data.Phenograms of selected phenophases, strata and the dom<strong>in</strong>ant tree speciesare given <strong>in</strong> Figures 6.1 to 6.6. Nevertheless, no descripti<strong>on</strong> is provideddetail<strong>in</strong>g the temporal and density distributi<strong>on</strong>s of phenostates, as theyare graphically depicted.Table 6.1 List of Stratum 1 species <strong>in</strong> whichall the <strong>in</strong>dividuals under observati<strong>on</strong>flowered and set fruit every year.Albizia odoratissimaBombax ceibaB. <strong>in</strong>signeDillenia pentagynaGmel<strong>in</strong>a arborea .Grewia tiliifoliaHal d<strong>in</strong>a cordi fol i aLagerstroemia microcarpaMelia dubiaTetrameles nudi f 1 oraTable 6.2Effect of mammalian predati<strong>on</strong> <strong>on</strong> fruit producti<strong>on</strong> ofan isolated tree of Xylia xylocarpa dur<strong>in</strong>g 1991.categories of fruits collectedYoung fruits not eaten by RatufaSubaature fruits eaten by Ratufanature fruit. eaten by RatufaTotalPercentageJan Feb Mar -Total- -7 7742 57 37 83664 30 37 131806 94 74 97483 10 7 100


56 Results: The Reproductory Phase-_--- -- -Figure 6.2 Phenogram of mature fruit <strong>in</strong> the MDFs of Trichur ForestDivisi<strong>on</strong>. Each dot represents <strong>in</strong>tensity of expressi<strong>on</strong> <strong>in</strong> less than fivepercent. Each millimeter width of the bars represents 10 percent <strong>in</strong>tensityof expressi<strong>on</strong>. The phenogram represents phenophase averages of 3-yearm<strong>on</strong>thly observati<strong>on</strong>s. (For further details please refer Chapter 5. Methodsfollowed).Alb Allsp A1st. Bceiba B<strong>in</strong>s -Dill -Dsiss -Grw -Hald -La -Albizia odoratissima.All-Trees;Alst<strong>on</strong>ia scholaris;Bombax ceiba;Bombax <strong>in</strong>signis;Dillenia pentagyna;Dalbergia sissoides;Grewia ti 1iifo1ia;Ha1 d<strong>in</strong>a cordif olia;Lagers troemiamicrocarpa;Melia Melia dubia;Stl Stratum 1;St2 Stratum 2;Tect Tect<strong>on</strong>a grandi s;TbTerm<strong>in</strong>alia bellirica;TcTerm<strong>in</strong>alia crenulata;Tp - Term<strong>in</strong>alia paniculata;Tetra Tetrameles nudiflora;Xyl - Xylia xylocarpa.


Results: The Reproductory Phase 57Figure 6.3 Phenogram of stratum 1 and stratum 2 <strong>in</strong> the MDFs of TrichurForest Divisi<strong>on</strong>. Each dot represents <strong>in</strong>tensity of expressi<strong>on</strong> <strong>in</strong> less thanfive percent. Each millimeter width of the bars represents 10 percent<strong>in</strong>tensity of expressi<strong>on</strong>. The phenogram represents phenophase averagesof 3-year m<strong>on</strong>thly observati<strong>on</strong>s. (For further details please refer Chapter5. Methods followed).Flbd Flower bud;Flsh Flush;MflMature flower;MfrMature fruit;Mls - Mature leaves;Oldfr Old fruit;Oldls Old leaves:SmfrSemimature fruit:SmlsSemimature leaves;Ygfr - Young fruit.


58 Results: The Reproductory PhaseFigure 6.4 Phenqgram of dom<strong>in</strong>ant tree species <strong>in</strong> the MDFs of TrichurForest Divisi<strong>on</strong>. Each dot represents <strong>in</strong>tensity of expressi<strong>on</strong> <strong>in</strong> less thanfive percent. Each millimeter width of the bars represents 10 percent<strong>in</strong>tensity of expressi<strong>on</strong>. The phenogram represents phenophase averagesof 3-year m<strong>on</strong>thly observati<strong>on</strong>s. (For further details please refer Chapter5. Methods followed).Flbd Flower bud;Flsh Flush;Mflnature flower;Mfrnature fruit;Mls - nature leaves;Oldfr Old fruit;Oldls Old leaves;Smfr - Semimature fruit;Smls Semimature leaves;Ygfr - Young fruit.


Results: The Reproductory Phase 593mlrnrrFigure 6.5 Phenogram of dom<strong>in</strong>ant tree species <strong>in</strong> the MDFs of TrichurForest Divisi<strong>on</strong>. Each dot represents <strong>in</strong>tensity of expressi<strong>on</strong> <strong>in</strong> less thanfive percent. Each millimeter width of the bars represents 10 percent<strong>in</strong>tensity of expressi<strong>on</strong>. The phenogram represents phenophase averagesof 3-year m<strong>on</strong>thly observati<strong>on</strong>s. (For further details please refer Chapter5. Methods followed).FlbdFlshMflMfrMlsFlower bud;Flush;Mature flower;Mature fruit;- Mature leaves;Oldfr Old fruit;Oldls Old leaves;SmfrSemimature fruit;Smls Semimature leaves;Ygfr - Young fruit..


60 Results: The Reproductory PhaseFPbdFigure 6.6 Phenogram of dom<strong>in</strong>ant tree species <strong>in</strong> the MDFs of TrichurForest Divisi<strong>on</strong>. Each dot represents <strong>in</strong>tensity of expressi<strong>on</strong> In less thanfive percent. Each millimeter width of the bars represents 10 percent<strong>in</strong>tensity of expressi<strong>on</strong>. The phenogram represents phenophase averagesof 3-year m<strong>on</strong>thly observati<strong>on</strong>s. (For further details please refer Chapter5. Methods followed).FlbdFlower bud;FlshFlush;Mfl Mature Flower;MfrMature Sruit;Mls - Mature leaves;Oldfr - Old fruit;Oldls - Old leaves;Smfr Semimature Sruit;SmlsSemimature loavesYgfr - Young Fruit.


~~Results: The Reproductory Phase 61Quantitative PhenologyTable 6.3 gives the populati<strong>on</strong> structure of <strong>in</strong>dividual tree strataand species start<strong>in</strong>g from flower to fruit. At stratal level, the producti<strong>on</strong>of flowers of the upper stratum species was_ 124 milli<strong>on</strong> ha -1 yr -1 . Ofthis, _56 milli<strong>on</strong> matured to fruits bear<strong>in</strong>g a seed populati<strong>on</strong> of _1156milli<strong>on</strong> ha -1 yr -1 . Even after ignor<strong>in</strong>g the seeds of Lagerstroemiamicrocarpa and Tetrameles nudiflora, which show very small percentagesof germ<strong>in</strong>ati<strong>on</strong>, there were 2.85 milli<strong>on</strong> seeds. At any rate, this is a verylarge number especially when compared to the number of mature <strong>trees</strong> isless than 250 at the end of sylvigenesis, that too over a period of 50 or60 years.Seed producti<strong>on</strong> of <strong>in</strong>dividual tree species was also <strong>in</strong> no way low.However, <strong>in</strong>ter-species variati<strong>on</strong>s <strong>in</strong> the number of seeds as evident fromTable 6.3 is <strong>in</strong> not comparable as the reproductive potential of the speciesdiffer, depend<strong>in</strong>g up<strong>on</strong> tree size, density, <strong>in</strong>herent mortality rates at eachreproductory stage.Table 6.3Estimated populati<strong>on</strong> size <strong>in</strong> differentphenophases* .TaxaFlbd Mfl Ygfr Smfr MfrsdStratum 1Stratum 213,82,60 12,36,03 5,78,76 5,64,77 5,61,5356,40 56,39 2,63 1,33 1,221,15,63,541,24Albizia odoratissimaDillenia pentagynaDalbergia sissoidesGrewia tiliifoliaLagerstroemia microcarpaTerm<strong>in</strong>alia belliricaTetrameles nudifloraTerm<strong>in</strong>alia paniculataXylia Xylocarpa8,48 8,4841,02 34,0734,00 34,0043,46 13,432 , 72,9838,885,35,178,664,00,322,45,7736,495,35,178,663,19,976 61,87 1,851,45 1,264,18 3,9726,20 13,0698 985,34,84 5,34,848,62 8,6254 1261,73843,9712,55985,32,658,6210205,221,275,455,901,1211,46,438,6270Flbd- Flower bud; Mfl - Mature flower; Mfr- Mature fruit; sd- Seeds;Smfr - Semimature fruit.* All figures x 103


62 Results: The Reproductory PhaseTable 6.4 gives survival rates of different generative stages of thetwo tree-strata and the various upper stratum species. There existsignificant differences am<strong>on</strong>g different species and am<strong>on</strong>g different lifestages. The survival rate from flower bud to mature flower is almost 100percent <strong>in</strong> Albizia odoratissima, Tetrameles nudiflora and Term<strong>in</strong>aliapaniculata, while it is just 31 percent <strong>in</strong> Grewia tiliifolia. Likewise,transiti<strong>on</strong> rate from mature flower to mature fruit is almost cent percent<strong>in</strong> Tetrameles and Term<strong>in</strong>alia paniculata while it is less than 10 percent<strong>in</strong> most other species, and lower than 0.1 percent <strong>in</strong> Xylia xylocarpa.Table 6.4 Percentage of survival <strong>in</strong> different phenophases.+Stratum 1Stratum 2TaxaFlbd Mfl Ygf r Smf r89 42 41 41100 5 2 2Stratum 1 speciesAlbizia odora tissimaDill enia pen tagynaDalbergia sissoidesGrewia tiliifoliaLagers troemi a mi crocarpaTerm<strong>in</strong>alia belliricaTetramel es nudi fl oraTerm<strong>in</strong>al ia panicula taXyl ia xylocarpa10083 .10031909410010080*5410103100100** *5 44 39 95 53 3100 100100 100**


Results and Discussi<strong>on</strong> II:The Seedl<strong>in</strong>g Phase (Regenerati<strong>on</strong>)Introducti<strong>on</strong> ................................ 63Size Class Distributi<strong>on</strong> ..................... 64At All-Trees Level ........................ 64At Stratal Level .......................... 64At Species level .......................... 69Populati<strong>on</strong> Dynamics ......................... 73Natality (N) .............................. 73From Natality Experimental Plot ......... 73seas<strong>on</strong>al Variati<strong>on</strong>s ................... 74Species Level ......................... 74From Other General Experimental Plots .... 74At All-Trees Level .................... 74At Stratal kvel ...................... 77At Species Level ...................... 77Mortality (M) ............................. 77Sumner Soil Moisture Depleti<strong>on</strong> <strong>on</strong>Seedl<strong>in</strong>g Mortality ...................... 79At All-Trees Level .................... 79At Stratal kvel ...................... 79At Species Level ...................... 79At Size Class Level ................... 81Survival .................................. 81Survival by Whole Plants (SWP) .......... 81Survival by New Shoots (SNS) ............ 82Retenti<strong>on</strong> <strong>in</strong> the Same Size Classes (RSSC) 85C<strong>on</strong>versi<strong>on</strong> to Higher Size Classes (CHSC) 85C<strong>on</strong>versi<strong>on</strong> to Lower Size Classes (CLSC) . 88Intr<strong>in</strong>sic Rate of Natural Increase (rN) .. 88The term 'seedl<strong>in</strong>g' has several mean<strong>in</strong>gs . In a very restricted sense itrefers to plants of seed orig<strong>in</strong>. still reta<strong>in</strong><strong>in</strong>g the cotyled<strong>on</strong>ary leaves . Inthe wider sense it refers to plants of vegetative orig<strong>in</strong> (ramets) (Grime.1979) . In general. it refers to smaller plants as opposed to adult (mature)plants of the same species .In forestry. the term '<str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>' encompasses the wider sense of theterm seedl<strong>in</strong>g . Foresters generally recognize two categories under63


64 Results: The Seedl<strong>in</strong>g Phaseseedl<strong>in</strong>gs. Unestablished seedl<strong>in</strong>gs (< 100 cm height) and establishedseedl<strong>in</strong>gs (height > 100 cm and dhh


Results: The Seedl<strong>in</strong>g Phase 65Table 7.1-LocKPKcKtMPPkVzlvz2vz 3-MaxM<strong>in</strong>h502270252021403600241028606960261069602140Mean 3170SD 1600-Per hectare size class representati<strong>on</strong> ofAll-<strong>trees</strong> <strong>in</strong> the stand*.Size classes- - ----hlOO hgl00 d10 d20 d3 0 d40 d50 d60 dg6 0-2660199010504908601990370525-2660370-1240860-620690600150500530140120690120420240- ---1602203706725090603037291322141015-48491344955-4056424031453555-2740392731404530-2224191820251510--281426184020207015------370 37 49 56 45 25 7030 10 31 27 10 14---5---160 20 23 43 35 19120 10 20- 9 7 5- - -Figures > 100 rounded off to tens: Loc-Loclaity.-2918--Table 7.2 Per hectare size class representati<strong>on</strong><strong>in</strong> Stratum 1*.Loch50hlOOhglOOSize classesKPKcKtMPPkVZlvz2vz31030166018002290166023006500197056010805702603901640270400150340225711504906580MaxM<strong>in</strong>23001030164027048571MeanSDI 1* Figures > 100 rounded off to tens; Lof - Lccality.


66 Results: The Seedl<strong>in</strong>g PhaseSIZE CLASSES60k Total7.220?3ae0'$ 200First stratumI--I a cCII -JhW) bl00 hg1QO d10 d2O d3O d40 dso d60 dg60SIZE CLASSESFigures 7.1 and 7.2 Per hectare populati<strong>on</strong> structure ofdifferent tree strata' <strong>in</strong> the Moist Deciduous forests of TrichurForest Divisi<strong>on</strong>. 7.1 Actual populati<strong>on</strong> structure. 7.2Percentage populati<strong>on</strong> structure.h50 -ht 20 and 50 and 30 and 100 cm and dbh


~~Results: The Seedl<strong>in</strong>g Phase 67Table 7.3I ILoc'h50 hlOOPer hectare size class representati<strong>on</strong> <strong>in</strong>Stratum 2*.KPKcKtMpPkVzlVz2Vz3MaxM<strong>in</strong>MeanSD520 290480 340160 721190 89610 210220 100340 95610 501190 340160 50520 150320 110* Figures >l00 rounded off to tens.LocKPKcKtMPPkVzlvz2vz3MaxM<strong>in</strong>MeanSDrSize classesh50 hlOO hglOO d10 d20720 1810 390 80 31380 570 120 60 6180 410 340 330 13120 140 60 18150 260 190 100340 260 15 20120 10 40 30 535 80 35 25720 1810 390 330 3135 10 15 20 5260 440 150 80 14220 580 150 100 13* figures >100 rounded off to tens.


68 Results: The Seedl<strong>in</strong>g PhaseIn the case of upper stratum, although populati<strong>on</strong> size reducesc<strong>on</strong>siderably with size classes up and up, there are no size classeswithout representati<strong>on</strong> except <strong>in</strong> <strong>on</strong>e or two <strong>in</strong>stances. However,paucity of <strong>in</strong>dividuals <strong>in</strong> the size classes d20 (> 10 cm and 20 cm and


Results: The Seedl<strong>in</strong>g Phase 69Seth and Kaul (1978) give average stock<strong>in</strong>g of <strong>trees</strong> (> 20 cm dhh;given <strong>in</strong> square brackets) for Wet Evergreen Forests [289], Moist DeciduousForests [167]and even aged plantati<strong>on</strong>s of deciduous species like Shorearobusta [138]and teak 11111. From these figures, proporti<strong>on</strong>ate figures forunestablished and established seedl<strong>in</strong>gs of commercially <strong>important</strong> <strong>trees</strong>pecies for <strong>natural</strong> Moist Deciduous Forests are calculated and given <strong>in</strong>Table 7.5. (For the sake of c<strong>on</strong>venience, here the size range ofunestablished seedl<strong>in</strong>gs were taken as height = 20 cm dbh). These figures are also given <strong>in</strong> Table 7.5.The observed frequencies <strong>in</strong> the <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> classes from TFD are alsogiven <strong>in</strong> Table 7.5.From Table 7.5, it can be seen that the observed frequency ofunestablished seedl<strong>in</strong>gs (3,040 2 SD 1090) comes more or less closer tothe value estimated from P. N. Nair's (1961) weigh<strong>in</strong>g (3,740) and is farhigher than the value estimated from mean survival probability (1,620).That is, at this stage, <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> status is more or less satisfactory. Onthe other hand, the observed frequency of established seedl<strong>in</strong>gs (<strong>in</strong>clud<strong>in</strong>gsapl<strong>in</strong>gs and poles; 240 2 SD 90) roughly accounts <strong>on</strong>ly to half of theestimated values (580 and 530). That is, <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> at the sapl<strong>in</strong>g, andpole stage is highly unsatisfactory.Observed frequencies <strong>in</strong> different <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> classes of different,strata are given <strong>in</strong> Table 7.6. The number of unestablished seedl<strong>in</strong>gs <strong>in</strong>each of the middle and lower strata is always less than that of the upperstratum. Nevertheless, together they account to almost half of thepopulati<strong>on</strong> size of the upper stratum. The number of established seedl<strong>in</strong>gsof each of the middle and lower strata <strong>on</strong> the other hand, accounts toapproximately half of the populati<strong>on</strong> size of the upper stratum. Together,they outnumber the populati<strong>on</strong> size of established seedl<strong>in</strong>gs of the upperstratum. Therefore, more than the unestablished seedl<strong>in</strong>gs, theestablished seedl<strong>in</strong>gs (sapl<strong>in</strong>gs and poles) of the middle and lower strata-must be offer<strong>in</strong>g significant stress <strong>in</strong> terms of competiti<strong>on</strong> for those of theupper stratum.At Species Level: This secti<strong>on</strong> deals with the populati<strong>on</strong> structure of themore commercially <strong>important</strong> tree species <strong>on</strong>ly. Of the 21 commercially<strong>important</strong> species, Dillenia pentagyna, Grewia tiliifolia, Lagerstroemiamicrocarpa, Term<strong>in</strong>alia panicula ta and Xylia xylocarpa showed highervalues of Basal Area (BA), Relative Basal Area (RBA), Density (D), Relative


70 Results: The Seedl<strong>in</strong>g PhaseTable 7.6. Observed frequencies <strong>in</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>classes of different strata*.Regenerati<strong>on</strong> classFrequency <strong>in</strong> StrataStratal number1 2 3Unestablished Seedl<strong>in</strong>gs(ht 100 cm and dbh 10cm and 100 cm height and < 1 cm dbh)<strong>in</strong>dicat<strong>in</strong>g higher mortality rates dur<strong>in</strong>g c<strong>on</strong>versi<strong>on</strong> to sapl<strong>in</strong>gs. In Bombaxspp., Dillenia pentagyna, Term<strong>in</strong>alia crenulata, T. paniculata and Xyliaxylocarpa populati<strong>on</strong> size <strong>in</strong> the lower size classes (below d20 = 10-20cm dbh) decreases more slowly, while <strong>in</strong> Grewia tiliifolia this is morequick ( cf . Figure 7.3) .


Results: The Seedl<strong>in</strong>g Phase 71d92H38410Size classesFigure 7.3 Semilogarithmic graphs of populati<strong>on</strong> structure ofdom<strong>in</strong>ant Stratum 1- and Stratum 3-species.


72 Results: The Seedl<strong>in</strong>g PhaseThe process of <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> is more or less satisfactory <strong>in</strong> Xyliaxylocarpa. This may be due to good germ<strong>in</strong>ati<strong>on</strong>, high fire resistance, rootsucker formati<strong>on</strong> and high coppic<strong>in</strong>g ability. The species is found toregenerate even <strong>in</strong> disturbed sites. In other species, the number ofseedl<strong>in</strong>gs is not that high compared to the number of large sized <strong>trees</strong>.Table 7.7 Size class representati<strong>on</strong> given as percentage of total populati<strong>on</strong>of selected species.-h100---hg100-d10-Size classes-d20--d30--d40--d50--dg60-Stratum I speciesAlbizia odoratissimaAlst<strong>on</strong>ia scholarisBombax spp.Dalbergia sissoidesDillenia pentagynaGrewiatiliifoliaHald<strong>in</strong>a cordifoliaLannea coromandelicaMelia dubiaPterocarpus marsupiumRadermachera xylocarpaStereospermum colaisTerm<strong>in</strong>alia belliricaTerm<strong>in</strong>alia crenulataTerm<strong>in</strong>alia paniculataTect<strong>on</strong>a grandisTetrameles nudifloraXylia Xylocarpa961846783745297169515967671733341179-33733128385812191293224213240311614-*20941103212866121822234-*21a15*416323431181-411214321*-*112*12911411’-*1119118124115221-*21021210*711-42121158163528431-Holarrhena pubescensWrightia t<strong>in</strong>ctoria3420-43511517-710-1-* less than 0.5 percent.


Results: The Seedl<strong>in</strong>g Phase 73Populati<strong>on</strong> DynamicsNatality (N)From Natality Experimental PlotsEstimates of total number of tree seedl<strong>in</strong>gs emerged per hectare of thestudy area are given <strong>in</strong> the Table 7.8. At all-<strong>trees</strong> level, the meannumber of seedl<strong>in</strong>gs emerged was 27,360 ha -1 yr -l . This is approximatelyequal to 3 seedl<strong>in</strong>gs per m2.The highest c<strong>on</strong>tributi<strong>on</strong> to seedl<strong>in</strong>g emergence however was by thecommercially <strong>important</strong> species (9,700 seedl<strong>in</strong>gs ha -1 ; = 1 seedl<strong>in</strong>g per m 2 )which amounted to 35 percent of the total. N<strong>on</strong>etheless, it is less than thecumulative total (17,670 seedl<strong>in</strong>gs ha -1 ; = 2 seedl<strong>in</strong>gs per m2; 65 percentof total) c<strong>on</strong>tributed by all the other strata.Table 7.8Distributi<strong>on</strong> of tree emergence at variouslevels and their statistics*Levels Mean* Per hectarePercent*of totalAll-<strong>trees</strong>Stratum 1Stratum 2Stratum 3Evergreenimmigrants164 27 , 360'58 9,70023 3,89042 7 , 00041 6,78010035142625


74 Results: The Seedl<strong>in</strong>g PhaseSeas<strong>on</strong>al Variati<strong>on</strong>s: Distributi<strong>on</strong> of percentage of seedl<strong>in</strong>g emergenceaccord<strong>in</strong>g to seas<strong>on</strong>s is given <strong>in</strong> Table 7.9.The peak seas<strong>on</strong> of seedl<strong>in</strong>g emergence of all-<strong>trees</strong>, upper stratum,middle stratum and the evergreen immigrants was dur<strong>in</strong>g the first twom<strong>on</strong>ths of SW m<strong>on</strong>so<strong>on</strong>. Nevertheless, 75 percent of the seedl<strong>in</strong>gs of lowerstratum emerged dur<strong>in</strong>g the pre-m<strong>on</strong>so<strong>on</strong> showers dur<strong>in</strong>g April itself,while the evergreen immigrants did not emerge dur<strong>in</strong>g the pre-m<strong>on</strong>so<strong>on</strong>showers at al. Dur<strong>in</strong>g late m<strong>on</strong>so<strong>on</strong> (August - Setptember) the seedl<strong>in</strong>gemergence uniformly ma<strong>in</strong>ta<strong>in</strong>ed a low rate (


I__~~ ~ ~-Results: The Seedl<strong>in</strong>g Phase 75Table 7.9Distributi<strong>on</strong> of percentage ofseedl<strong>in</strong>g emergence accord<strong>in</strong>gto seas<strong>on</strong>s.TaxaApril Jne + Aug + n*July SeptAll-<strong>trees</strong>Stratum 1Stratum 2Stratum 3Evergreenimmigrants_ _30 66 4 98530 68 2 3495 90 5 14075 20 5 252- 97 3 244* n = Total number of observati<strong>on</strong>s (seedl<strong>in</strong>g emergences)Table 7.10 Distributi<strong>on</strong> of seedl<strong>in</strong>g emergenceaccord<strong>in</strong>g to species and seas<strong>on</strong>s.r *Strata Taxa April Jne + Aug + n*July Sept1 Alst<strong>on</strong>ia scholaris 77 20 3 301 Xylia xylocarpa 60 40 1193 Wrightia t<strong>in</strong>ctoria 69 31 162* n = Total number of observati<strong>on</strong>s (seedl<strong>in</strong>g emergences)


76 Results: The Seedl<strong>in</strong>g PhaseTable 7.11 Percentage of effective natallty (PN; at the end of thefavourable seas<strong>on</strong>) under fire protecti<strong>on</strong> (UFP) and Under Fire(UF)-Level UFP *UF *UF/UFPAll- <strong>trees</strong> 16 20Stratum levelIStratum 1Stratum 22651923Stratum 3 1018Species level+1.210.714.471.84Grewia tiliifoliaLagerstroemfa microcarpaTerm<strong>in</strong>alia crenulataTerm<strong>in</strong>alia paniculataXylia xylocarpaM<strong>in</strong>imumMaximum21239127212431349131.131.370.370.330.62E15.20* Figures rounded off to whole number.+ Values for <strong>on</strong>ly the dom<strong>in</strong>ant commercially <strong>important</strong> species aregiven, while the m<strong>in</strong>ima and maxima given are from the wholelot of species represented.54fi3a&12:3I2Q210T $1 (52 S3Figure 7.4 Comparis<strong>on</strong> of Percentages of Natality (PN) Indifferent Strata Under Fire Protecti<strong>on</strong> (UFP) and under Fire (UF).PN - percentage of natality; S1 - Stratum 1; S2 -Stratum 2; S3 - Stratum 3; T - (Total) All-Trees; uf -under fire; ufp - under fire protecti<strong>on</strong>.


Results: The Seedl<strong>in</strong>g Phase 77.-percentage under fire protecti<strong>on</strong> and under fire were respectively 16 and20, the ratio be<strong>in</strong>g 1 to 1.2.At Stratal Level : Natality percentage of stratum 1 under fire (1 9 %) wassignificantly less than that under fire protecti<strong>on</strong> (26 %). On the otherhand, there was significant <strong>in</strong>crease <strong>in</strong> natality percentage of strata 2and 3, under fire. An approximately five fold <strong>in</strong>crease is observed forstratum 2.At Species Level: Under fire protecti<strong>on</strong>, at species level, natalitypercentages oscillated between 2 and 91 am<strong>on</strong>g the dom<strong>in</strong>ant species ofthe three strata. Under fire, this range changed to 9 and 34. The ratiobetween natality percentage under fire and under fire protecti<strong>on</strong> rangedbetween 0.2 and 15.The n<strong>on</strong>-uniform resp<strong>on</strong>se to effective natality at stratal and specieslevels is very much obvious. Fire is a source of high temperature which<strong>in</strong> turn acts <strong>on</strong> seeds of different species differently (Floyd, 1966). In<strong>some</strong> species, it burns the seeds and reduces the populati<strong>on</strong> of viableseeds. It is a well established fact that <strong>in</strong> forested ecosystems viableseeds of the canopy <strong>trees</strong> are poorly represented <strong>in</strong> the seed bank <strong>in</strong>comparis<strong>on</strong> to the pi<strong>on</strong>eer species (cf Roberts, 1981). This precisely isthe case with Term<strong>in</strong>alia crenula ta, T. paniculata and Xylia xylocarpa.Their diaspores (dispersal unit; fruit/ seed, as the case may be) are largeand therefore fail to enter the seed bank and get severely burned <strong>in</strong>ground fires.Mortality (M)Mortality denotes death of <strong>in</strong>dividuals. As <strong>in</strong> the case of natality,here also efforts were made <strong>on</strong>ly to estimate effective mortality, ie.,mortality as recorded at the end of the favorable seas<strong>on</strong>. The datatherefore excludes death of the new recruits of the year. The percentageof mortality under fire protecti<strong>on</strong> and under fire are given <strong>in</strong> Table 7.12and represented <strong>in</strong> Figure 7.5.Under fire protecti<strong>on</strong>, the mortality percentage at the all-<strong>trees</strong> levelwas <strong>on</strong>ly 11 percent. At stratum level it ranged between 9 % (stratum1and 14 % (stratum 2), while am<strong>on</strong>g the dom<strong>in</strong>ant species of all the stratait ranged between 6 % (Cleistanthus coll<strong>in</strong>us) and 32 % (Lagersroemiamicrocarpa).


78 Results: The Seedl<strong>in</strong>g PhaseTable 7.12 Percentage of mortality (PM) under fire protecti<strong>on</strong> (UFP)and Under Fire (UF)LevelIUFP*UF/UFPAll- <strong>trees</strong>113.10Stratum levelStratum 1Stratum 2Stratum 3Species level+91493527273.901.923.03Grewia tiliifoliaLagerstroemia microcarpaTerm<strong>in</strong>alfa crenulataTerm<strong>in</strong>alia paniculataXylia xylocarpa. M<strong>in</strong>imumMaximum1232766632415555402717553.531.708.216.894.781.708.24--* Figures rounded off to whole number.+ Values for <strong>on</strong>ly the dom<strong>in</strong>ant commercially <strong>important</strong> species aregiven, while the m<strong>in</strong>ima and maxima given are from the wholelot of species represented.?. 93.1 ,I I 3.03T Sl s3Figure 7.5 Comparis<strong>on</strong> of Percentages of Mortality (PM) <strong>in</strong>different Strata Under Fire Protecti<strong>on</strong> (UFP) and Under Fire (UP).PM - percentage of mortality; S1 - Stratum 1; S2 -Stratum 2; s3 - Stratum 3; T - (Total) All-Trees; uf -under fire; ufp - under fire protecti<strong>on</strong>.


Results: The Seedl<strong>in</strong>g Phase 79Under fire, mortality <strong>in</strong>creased at all levels; the all-<strong>trees</strong> levelaverage <strong>in</strong>creased to 33 %, that is 3 fold; that, of strata ranged between27 (stratum 2) and 35 (stratum 1) and of the <strong>in</strong>dividual species between17 and 55 percent. The rate of <strong>in</strong>crease <strong>in</strong> percentage was <strong>in</strong> the rangeof about 2-3 times <strong>in</strong> the different strata and 2 to 8 times <strong>in</strong> <strong>in</strong>dividualspecies.Am<strong>on</strong>g the species, Term<strong>in</strong>alia crenulata and Lagerstroemia microcarpawere the most affected, mortality be<strong>in</strong>g greater than 50 % <strong>in</strong> the latterspecies. The ratio between mortality percentages under fire and underfire protecti<strong>on</strong> was highest for Term<strong>in</strong>alia crenulata and T. panirulata,the <strong>in</strong>crease be<strong>in</strong>g 8 and 7 times respectively.Summer Soil Moisture Depleti<strong>on</strong> <strong>on</strong> Seedl<strong>in</strong>g MortalityAt All-Trees Level: The <strong>moist</strong>ure hold<strong>in</strong>g capacity of the soil at the studysite (fire protected) was found to be 35.3 2 SD 2.8 percent,. The summersoil <strong>moist</strong>ure fluctuati<strong>on</strong>s and the variati<strong>on</strong>s <strong>in</strong> seedl<strong>in</strong>g survival aregiven <strong>in</strong> Table 7.13. .Out of a total of 816 seedl<strong>in</strong>gs marked <strong>in</strong> February, 2.3 percent died offbetween February and March. The percentage of mortality <strong>in</strong>creased to 7.1percent by April end. The two values are statistically significantlydifferent (P = 0.05). At the same time, when the seedl<strong>in</strong>g bank <strong>in</strong> MDFs (=4,990 ha -1 ; as estimated from <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> survey) and the new recruits(9,700 ha -1 yr -1 ; unestablished seedl<strong>in</strong>gs) are c<strong>on</strong>sidered, seedl<strong>in</strong>gmortality purely due to <strong>moist</strong>ure depleti<strong>on</strong> dur<strong>in</strong>g summer is quite<strong>in</strong>significant.At Stratum Level: Seedl<strong>in</strong>g mortality rates dur<strong>in</strong>g the summer m<strong>on</strong>ths forthe different strata are given <strong>in</strong> Table 7.14. Mortality rates for strata 1and 2 did not <strong>in</strong>crease significantly with <strong>in</strong>creas<strong>in</strong>g soil <strong>moist</strong>uredepleti<strong>on</strong>, while for straturn 3 it <strong>in</strong>creased more than thrice to the orig<strong>in</strong>alvalue. Still the mortality rate rema<strong>in</strong>ed less than ten percent.At Species level. There were 28 tree species<strong>in</strong> theexperimental samplesOf these, <strong>on</strong>ly 4 species had a populati<strong>on</strong> greater than or around 50 <strong>in</strong>each. Distributi<strong>on</strong> of mortality of these species is giv en <strong>in</strong> Table 7. I5The net mortality percentage <strong>in</strong> all the four species were under 10percent of the <strong>in</strong>itial populati<strong>on</strong>. Nevertheless, a general doubl<strong>in</strong>g ofmortality percentage from March to April is evident.


80 Results: The Seedl<strong>in</strong>g PhaseTable 7.13 Seedl<strong>in</strong>g mortality of All-Trees dur<strong>in</strong>g summer soil<strong>moist</strong>ure depleti<strong>on</strong> <strong>in</strong> the study plot.M<strong>on</strong>th &DateFeb 16(<strong>in</strong>itial)Soil<strong>moist</strong>ure140.7Sample 1n m%234 -Sample 2n m%266 -Sample 3n m%316 -Totaln mm%816 -Mar 1513.20.6229 2.1261 1.9307 2.9797 2.35.4April 25*21 t0.9219 6.4250 6288 9757 7.1+1.3n = Numberof seedl<strong>in</strong>gs observed : m %= Mortality percent;mm % = Mean mortality percent.* Thehigher percent of <strong>moist</strong>ure dur<strong>in</strong>g April was due to apre-m<strong>on</strong>so<strong>on</strong> shower 2 days before soil sampl<strong>in</strong>g. In fact the<strong>moist</strong>ure c<strong>on</strong>tent for the m<strong>on</strong>th should have been lesser thanthat of March.1Percentage of Mortality 'n' as <strong>on</strong>Strata Feb. 16March 16 April 25Stratum 1 3.0 3.3 299Stratum 2 2.1 3.2 94Stratum 3 2.4 8.4 381* Evergreen lmmigrants not <strong>in</strong>cluded: Number n = of seedl<strong>in</strong>gs observed.b


Results: The Seedl<strong>in</strong>g Phase 81Table 7.15 Distributi<strong>on</strong> of seedl<strong>in</strong>g mortality <strong>in</strong>different species.Stratum andspeciesStratum 1 speciesPercentage of Mortality-April 25'n' as <strong>on</strong>Feb. 16Grewi a ti1iifoliaXylia xylocarpa1.24.82.47.784168Holarrhena pubescens 2.3Wrightia t<strong>in</strong>ctoria 1 2.4n - Number of observati<strong>on</strong>s.6.88.744335At Size Class Level: Distributi<strong>on</strong> of summer mortality <strong>in</strong> different sizeclasses is given <strong>in</strong> Table 7.16. At the all-<strong>trees</strong> level, mortality is seen <strong>in</strong>all <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> size classes except d10 (1 - 10 cm dbh). In the size classh50 (height 100 cm and dhh < 1 cm),the mortality percentage was low <strong>in</strong> March (_ 1) which <strong>in</strong>creased <strong>in</strong> April.This def<strong>in</strong>itely shows that the upper size classes are able to resist lowsummer soil <strong>moist</strong>ure than the lowest size class signify<strong>in</strong>g the role of size<strong>in</strong> summer mortality due to soil <strong>moist</strong>ure depleti<strong>on</strong>.SurvivalSurvival by Whole Plants (SWP)The simplest destructi<strong>on</strong> that fire can br<strong>in</strong>g about. to the <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>is the burn<strong>in</strong>g of above ground shoots. Of the total 2,269 marked seedl<strong>in</strong>gs<strong>on</strong>ly 107 seedl<strong>in</strong>gs survived fire by their old shoots. The data is notsufficient enough to analyze the percentage of survival of old shootsunder fire, at stratal and species levels. However, disregard<strong>in</strong>g speciesand strata, percentage of survival <strong>in</strong> different size classes at all-<strong>trees</strong>level seems to c<strong>on</strong>vey <strong>some</strong> <strong>in</strong>dicati<strong>on</strong>s. Percentage of survival by wholeplants (ie., <strong>in</strong>clud<strong>in</strong>g the old shoot) under fire protecti<strong>on</strong> and under fireare given <strong>in</strong> Table 7.17 and represented <strong>in</strong> Figure 7.6.


82 Results: The Seedl<strong>in</strong>g PhaseTable 7.16 Distributi<strong>on</strong> of sunnner mortality at size class level*.Mortality percentage <strong>in</strong> size classesStrata'h50Mar April16 25h100Mar April16 25hg100Mar April16 25dl0Mar April16 25All-TreesStratum 14.9 3.7[328] [328]5.8 4.5[156] [156]0.8 5.7[265] [265]-1.21841 [84]Stratum 2Stratum 34.1 3.3[123] [l2311.3 9.0[155] [155]1.9 4.9[l03] [l03]* Evergreen immigrants not <strong>in</strong>cluded.* Figures <strong>in</strong> parentheses <strong>in</strong>dicate sample size <strong>in</strong> terms ofnumber of seedl<strong>in</strong>gs observed.Under fire protecti<strong>on</strong>, the survival percentage was greater than 85 <strong>in</strong>all size classes. There is a trend of gradual <strong>in</strong>crease of the survivalpercentage with higher and higher size classes. Follow<strong>in</strong>g fire, thepercentage was seen much affected. However, similar to that under fireprotecti<strong>on</strong>, a gradual <strong>in</strong>crease <strong>in</strong> the survival percentage with higher sizeclasses was observed. The percentage of survival was around 3 <strong>in</strong> both thesize classes h50 and hl00 and it doubled <strong>in</strong> the size class hgl00(_7). Asudden <strong>in</strong>crease was observed <strong>in</strong> the size class d10 (_46) which is: 13times that observed <strong>in</strong> the size class h50. Frequency of survival of<str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> of different strata and species by whole plants is given <strong>in</strong>Tables 7.18 and 7.19.Survival by New Shoots(SNS)Great majority of the <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> which survived by produc<strong>in</strong>g newshoots <strong>in</strong> the succeed<strong>in</strong>g favorable seas<strong>on</strong> follow<strong>in</strong>g fire did not acquiretheir orig<strong>in</strong>al size which they had before the occurrence of fire. A smallpercentage reached the same size classes as they were before fire. A stillsmaller percentage had grown to higher size classes than the pre-fire sizeclasses.


Results: The Seedl<strong>in</strong>g Phase83No1234Table 7.17 Fire survival of seedl<strong>in</strong>g shoots under fire protecti<strong>on</strong>(UFP) and Under Fire (UF)-I1 1 1 Size class UFP UF UF/UFPh50 (ht >=5 50 l00 cm dbh =1 cm


84 Results: The Seedl<strong>in</strong>g PhaseTable 7.18Survival of old shoots after fire at strataland all <strong>trees</strong> level.StrataStrat 1Strat 2Strat 34-56345.1-10 10.1-20 20.1-30 Total Sample8 3 2 19 379 5 - 17 386 3 - 49 13All-Trees- I___13 _____. -- 23 - -- - 11- - -- - - -----2 49 88Table 7.19 Survival of old shoots after fire <strong>in</strong> different species.i Str' atum1112SpeciesDi ll enia pen tagynaHa ld<strong>in</strong>a cordi foliaTect<strong>on</strong>a grandisXylia xylocarpaCleistanthus coll<strong>in</strong>usCasearea sp.Holarrhena pubescensTotal,. - .__, - -Diameter classes (cm)-4-5Cm---15311-135.1-10cm-1-25911--23Tota113312171249


Results: The Reproductory Phase 85Retenti<strong>on</strong> <strong>in</strong> the Same Size Classes(RSSC)Populati<strong>on</strong> reta<strong>in</strong>ed <strong>in</strong> the same size classes (as they were dur<strong>in</strong>g theenumerati<strong>on</strong> before fire) does not c<strong>on</strong>vey details of positive or negativegrowth. This attribute <strong>in</strong>cludes elements of both growth and reducti<strong>on</strong> <strong>in</strong>size due to fire. If there is a str<strong>on</strong>g reducti<strong>on</strong> <strong>in</strong> the populati<strong>on</strong>, it can beeither due to c<strong>on</strong>versi<strong>on</strong> to higher or lower classes. Descriptive statisticsof the variable are given <strong>in</strong> Table 7.20 and illustrated <strong>in</strong> Figure 7.7.At all-<strong>trees</strong> level, under fire protecti<strong>on</strong>, the percentage of populati<strong>on</strong>reta<strong>in</strong>ed <strong>in</strong> the same size classes was : 73 %; under fire the figurereduced to: 45 percent..At stratal level under fire protecti<strong>on</strong>, all the three strata had highpercentage of retenti<strong>on</strong> <strong>in</strong> the same size classes, the range be<strong>in</strong>g between- 71 and ca.76 percent. Under fire, significant reducti<strong>on</strong> was the trend,the range limits hav<strong>in</strong>g changed to: 42 and 52. The times by which thepercentage of retenti<strong>on</strong> reduced was between 0.56 and 0.73, the highestretenti<strong>on</strong> under fire be<strong>in</strong>g <strong>in</strong> stratum 2.At species level, under fire protecti<strong>on</strong>, the percentage of retenti<strong>on</strong>ranged between 55 (Lagerstroemia microcarpa) and 82 (Xyliaxylocarpa). Under fire it <strong>in</strong>variably decreased, the range be<strong>in</strong>g between-* 30 percent (Term<strong>in</strong>alia crenulata) and 60 percent (Hymenodicty<strong>on</strong>orixense). The reducti<strong>on</strong>, <strong>in</strong> terms of number of times of the values underfire protecti<strong>on</strong> ranged between 0.47 (T. crenulata) and 0.81 (CleistanthusColl<strong>in</strong> us).C<strong>on</strong>versi<strong>on</strong> to Higher Size Classes (CHSC)C<strong>on</strong>versi<strong>on</strong> to higher size classes <strong>in</strong>dicates the extent of growth <strong>in</strong>terms of size. The statistics are given <strong>in</strong> Table 7.21 and represented <strong>in</strong>Figure 7.8.The average rate of c<strong>on</strong>versi<strong>on</strong> to higher size classes at. all-<strong>trees</strong>level under fire protecti<strong>on</strong> was: 13 % which was subsequently reducedto: 7 %, under fire.At stratal level, under fire protecti<strong>on</strong> the percentage was highest forstratum 1 (_ 15 %) and least for stratum 3 (_ 10 %) Under fire, thepercentage values decreased for both strata 1 and 2, while that ofstratum 3 was not much affected. In fact the latter showed a slight<strong>in</strong>crease, although not very significant.


86 Results: The Seedl<strong>in</strong>g PhaseTable 7.20 Percentage of populati<strong>on</strong> retalned In the same sizeclasses (PPRSC) under fire protecti<strong>on</strong> (UFP) and Under Fire(UF).LevelUPP *All- <strong>trees</strong>73450.63Stratus levelStratum 1Stratum 2Stratum 3Species+level7371764352420.590.730.56Grewia tiliifoliaLagerstroemia microcarpaTerm<strong>in</strong>alia cren ulaTerm<strong>in</strong>alia paniculaXylia xylocarpa59556566825261303653 .0.891.110.470.550.65M<strong>in</strong>imumMaximum558230610.471.11Figures rounded off to whole number+ Values €or <strong>on</strong>ly the dom<strong>in</strong>ant commercially <strong>important</strong> species aregiven, while the m<strong>in</strong>ima and maxima given are from the wholelot of species represented.T Sl S2 S3Figure 7.7 Comparis<strong>on</strong> of Percentage of Populati<strong>on</strong> Reta<strong>in</strong>ti<strong>on</strong> <strong>in</strong>the Same Size Classes (PPRSC) <strong>in</strong> different Strata Under FireProtecti<strong>on</strong> (UFP) and Under Fire (UF).PRSC - Percentage of Retenti<strong>on</strong> <strong>in</strong> the Same SizeClasses; S1 - Stratum 1; S2 - Stratum 2; S3 - Stratum 3;T - (Total) All-Trees; uf - under fire; ufp - under fireprotecti<strong>on</strong>.


Results: The Reproductory Phase 87Table 7.21 Percentage of c<strong>on</strong>versi<strong>on</strong>, to higher size classes (PCHC)under fire protecti<strong>on</strong> (UFP) and Under Fire (UF) -LevelUFP*UF*UF/UFPAll-<strong>trees</strong>1370.54StratumlevelStratum 1Stratum 2Stratum 3Species level+15111065120.410.431.23Grew ia tiliifoliaLagers troemia microcarpaTerm<strong>in</strong>alia crenulataTerm<strong>in</strong>alfa paniculataXylia xylocarpa18132823101166660.620.400.190.270.61M<strong>in</strong>imumMaximum1283140.261.93* Figures rounded off to whole number.+ Values for <strong>on</strong>ly the dom<strong>in</strong>ant commercially <strong>important</strong> species aregiven, while the m<strong>in</strong>ima and maxima given are from the wholelot of species represented.2=1I 0 *50X0P0.0T SZ $3Figure 7.8 Comparis<strong>on</strong> of percentage of c<strong>on</strong>versi<strong>on</strong> to higher sizeclasses (PCHC) <strong>in</strong> different strata under fire protecti<strong>on</strong> (ufp) andUnder Fire (UF).PCHC - Percentage of C<strong>on</strong>versi<strong>on</strong> to Higher SizeClasses; S1 - Stratum 1; S2 - Stratum 2;S3 - Stratum 3;T - (Total) All-Trees; uf - under fire; ufp - under fireprotecti<strong>on</strong>.


88 Results: The Seedl<strong>in</strong>g PhaseAt species level, under fire protecti<strong>on</strong>, the c<strong>on</strong>versi<strong>on</strong> ranged between- 1 and: 28 percent am<strong>on</strong>g the dom<strong>in</strong>ant species of the three strata.Under fire the range c<strong>on</strong>densed between: 3 and: 14 percent. In mostspecies, there is a reducti<strong>on</strong> <strong>in</strong> the value of the attribute while <strong>in</strong> <strong>some</strong>species of strata 2 and 3 it <strong>in</strong>creased a little. The percentage ofc<strong>on</strong>versi<strong>on</strong> to higher size classes at various levels decreased from 0.26times to 0.41 times, while that of Wrightia t<strong>in</strong>ctoria (stratum 3 species)and Hymenodicty<strong>on</strong> orixense (stratum 2 species) <strong>in</strong>creased <strong>on</strong>e to twofold. This would imply that fire would enhance the growth of<str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> of less commercially useful species <strong>in</strong> the favorable seas<strong>on</strong>follow<strong>in</strong>g fire. The reas<strong>on</strong> perhaps may be the accumulati<strong>on</strong> of organicmatter <strong>in</strong> the soil ow<strong>in</strong>g to fire and the ability of the staratum 3 speciesto take advantage of the situati<strong>on</strong> better than species of other strata.C<strong>on</strong>versi<strong>on</strong> to Lower Size Classes (CLSC)C<strong>on</strong>versi<strong>on</strong> to lower size classes speaks of reducti<strong>on</strong> <strong>in</strong> the size ofseedl<strong>in</strong>gs. The figures for the attribute are given <strong>in</strong> Table 7.22 and thedynamics represented <strong>in</strong> Figure 7.9.At all-<strong>trees</strong> level the rate of c<strong>on</strong>versi<strong>on</strong> to lower size classes underfire protecti<strong>on</strong> was <strong>on</strong>ly: 4 % while under fire this had <strong>in</strong>creased: 4 times15 %).At stratal level figures under fire protecti<strong>on</strong> ranged between 36 %(stratum 1) and: 5 % (stratum 3). In all the three strata, under fire thevalues <strong>in</strong>creased, the rate of <strong>in</strong>crease be<strong>in</strong>g: 3 times (stratum 3) to: 5times (stratum 1).At species level, under fire protecti<strong>on</strong>, the percentages rangedbetween 0 to: 14 % while under fire, the range <strong>in</strong>creased from: 5 to: 39percent. The percentage of retardati<strong>on</strong> <strong>in</strong>variably <strong>in</strong>creased and rangedbetween L1 to 139 times the values under fire protecti<strong>on</strong>. Perhaps thismight expla<strong>in</strong> the absence of sapl<strong>in</strong>gs and poles <strong>in</strong> many of thecommercially <strong>important</strong> tree species.Intr<strong>in</strong>sic Rate of Natural Increase (rN)Every populati<strong>on</strong> has a tendency to <strong>in</strong>crease over a period of time. Therate at which populati<strong>on</strong>s <strong>in</strong>crease is denoted by the term '<strong>in</strong>tr<strong>in</strong>sic rateof <strong>natural</strong> <strong>in</strong>crease' and is generally denoted by rN (Harper and White,1974). Invasive (<strong>in</strong>creas<strong>in</strong>g) populati<strong>on</strong>s assume positive values of rN


Results: The Seedl<strong>in</strong>g Phase 89IAll-<strong>trees</strong>Table 7.22 Percentage of c<strong>on</strong>versi<strong>on</strong> to lower size classes (PCLC)under fire protecti<strong>on</strong> (UFP) and Under Fire (UF).Stratum levelLevelUFP *4Stratum 1Stratum 2Stratum 3Species level+3451412174.653.063.22Grewia tiliifoliaLagers troemia microcarpaTerm<strong>in</strong>alia cren ulatfaTerm<strong>in</strong>alia paniculataXylia xylocarpa.M<strong>in</strong>imumMaximum1400620143.096.651.0538.54Figures rounded off to whole number.+ Values for <strong>on</strong>ly the dom<strong>in</strong>ant commercially <strong>important</strong> species aregiven, while the m<strong>in</strong>ima and maxima given are from the wholelot of species represented.4-65T Sl s2 $3Figure 7.9 Comparis<strong>on</strong> of percentage of c<strong>on</strong>versi<strong>on</strong> to higher sizeclasses (PCHC) <strong>in</strong> different strata under fire protecti<strong>on</strong> (ufp) andUnder Fire (UF).PCLC - percentage of c<strong>on</strong>versi<strong>on</strong> to Lower SizeClasses; s1 - stratum 1 ;s2 - stratum 2; S3 - Stratum 3;T - (Total ) All-Trees; uf - under fire; ufp - under fireprotec ti<strong>on</strong>.


90 Results: The Seedl<strong>in</strong>g Phasewhile regressive (shr<strong>in</strong>k<strong>in</strong>g) populati<strong>on</strong>s assume negative values.Statistics of rN values are given <strong>in</strong> Table 7.23 and the dynamicsillustrated <strong>in</strong> Figure 7.10.While <strong>in</strong>tr<strong>in</strong>sic rate of <strong>natural</strong> <strong>in</strong>crease tells us about the dynamics <strong>in</strong>each populati<strong>on</strong> of the c<strong>on</strong>cerned level, it does not reflect the relativepicture, ie, with respect to the all-<strong>trees</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> populati<strong>on</strong>. To get<strong>some</strong> idea about this, importance value <strong>in</strong>dices (IVI), under fire protecti<strong>on</strong>and under fire were calculated at all levels, based <strong>on</strong> their density (Table7.24).The average percentage of <strong>natural</strong> <strong>in</strong>crease for all-<strong>trees</strong> was positiveunder fire protecti<strong>on</strong>, the value be<strong>in</strong>g 5.8 % or 1.058 times a year. Underfire, the value <strong>in</strong>creased but <strong>in</strong> the regressive directi<strong>on</strong>. This <strong>in</strong>dicatesthat, under fire, <strong>in</strong>stead of growth, the populati<strong>on</strong> shrunk more than twiceby which it <strong>in</strong>creased under fire protecti<strong>on</strong>. In other words, this wouldimply that after a fire, the populati<strong>on</strong> would require at least two yearsof fire protecti<strong>on</strong> to come to the orig<strong>in</strong>al status.Under fire, all the strata showed negative values of rN, the fold ofshr<strong>in</strong>kage <strong>in</strong> populati<strong>on</strong> be<strong>in</strong>g distributed between 11 and 1.5 times. Thepercentage values of <strong>natural</strong> <strong>in</strong>crease with<strong>in</strong> the <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> populati<strong>on</strong>of stratum 1 under fire protecti<strong>on</strong> and under fire mutually nullified, theirsigns be<strong>in</strong>g opposite. Thus, alternate years of fire (<strong>on</strong>ce <strong>in</strong> two years)might not affect the <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> status of stratum 1 significantly. Thepost-fire importance value of the populati<strong>on</strong> was z52 %, which aga<strong>in</strong> wasmore or less equal to the pre-fire importance value C54 %), but with aslight loss c2 %) This loss <strong>on</strong> the other hand was complemented by<strong>in</strong>crease <strong>in</strong> the importance value of strata 2 and 3.Although the under fire importance value of stratum 2 shows slight<strong>in</strong>crease (1.25 %), the percentage values of <strong>natural</strong> <strong>in</strong>crease for thisstratum showed negative values both under fire protecti<strong>on</strong> and under fire.This <strong>in</strong>dicates that, regardless of fire or fire protecti<strong>on</strong> this populati<strong>on</strong>is regressive; perhaps the successi<strong>on</strong> process favours further th<strong>in</strong>n<strong>in</strong>g <strong>in</strong>this stratum. Under fire, its importance value <strong>in</strong>creased, ow<strong>in</strong>g to areducti<strong>on</strong> <strong>in</strong> the populati<strong>on</strong> of stratum 1.Stratum 3 showed positive value (+2.00) of rN under fire protecti<strong>on</strong>while under fire it <strong>in</strong>creased 5 folds <strong>in</strong> the regressive directi<strong>on</strong>. Itsimportance value <strong>in</strong>creased slightly (+ 0.81 %) under fire, as alreadymenti<strong>on</strong>ed..


~Results: The Seedl<strong>in</strong>g Phase 91Table 7.13 Percentage of <strong>natural</strong> Increase (rN) under fireprotecti<strong>on</strong> (UFP) and Under Fire (UF) -LevelUFP*UF*UF/UFPAll- <strong>trees</strong>6-13-2.26Stratum levelStratum 1Straturn 2Stratum 3Species level+17-92-16-9-10-0.94-1.05-6.20Gre wia tiliifoliaLagerstroemia microcarpaTerm<strong>in</strong>alia crenulataTerm<strong>in</strong>alia paniculataXylia xyiocarpa13-10842 2.15-22-2520-31-14-1.782.64-0.24-1.41-0.90M<strong>in</strong>imumMaximum-1684-2-31-0.09-5.06+Figures rounded off to who number.Values for <strong>on</strong>ly the dom<strong>in</strong>ant commercially <strong>important</strong> species aregiven, while the m<strong>in</strong>ima and maxima given are from the wholelot of species represented.Figure 7.10 Comparis<strong>on</strong> of Rateo of Natural Increase (rN) <strong>in</strong>different Strata Under Fire Protecti<strong>on</strong> (UFP) and Under Fire (UF).rN- Rates of Natural Increase; S1 - Stratum 1; s2 -Stratum 2; S3 - Stratum 3; T - (Total) All-Trees; uf -under fire: ufp - under fire protecti<strong>on</strong>.


~92 Results: The Seedl<strong>in</strong>g PhaseAt species level, most species showed positive values of rN under fireprotecti<strong>on</strong> except Lagerstroemia microcarpa (stratum 1 species),Cleistanthus coll<strong>in</strong>us (stratum 2 species) and Hymenodicty<strong>on</strong> orixense(stratum 3 species). Under fire, however, all species have shown negativevalues, the values be<strong>in</strong>g <strong>on</strong>e to two fold the values obta<strong>in</strong>ed under fireprotecti<strong>on</strong>. Likewise, under fire importance value of most commercially<strong>important</strong> species reduced slightly. A few species of strata 2 and 3 suchas Cleistanthus coll<strong>in</strong>us and Holarrhena pubescens also showed an<strong>in</strong>crease of rN (not given <strong>in</strong> Table).Shr<strong>in</strong>kage of populati<strong>on</strong> of Lagerstroemia microcarpa both under fireprotecti<strong>on</strong> and under fire is very much evident from the rN values. Thisspecies is found to produce milli<strong>on</strong>s of seeds but characteristically lacksa viable embryo <strong>in</strong> the seeds except rarely. This could be the reas<strong>on</strong> forthe negative rNvalues. In the tree populati<strong>on</strong>s of the species, medium tolarge sized <strong>in</strong>dividuals are plenty, while sapl<strong>in</strong>gs and poles arepractically lack<strong>in</strong>g.From the values of <strong>in</strong>tr<strong>in</strong>sic rate of <strong>natural</strong> <strong>in</strong>crease ( r N ) andimportance value <strong>in</strong>dex (IVI) (Table 7.24) fire does not seem to affectspecies compositi<strong>on</strong> and relative importance of species <strong>in</strong> the<str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> populati<strong>on</strong> significantly. Nevertheless, repeated fires canaccumulate the differences <strong>in</strong> IVI and reduce the <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> of stratum1 significantly. However, the possibility of the strata 2 and 3 acquir<strong>in</strong>ga higher strength than stratum 1 seems not likely, as l<strong>on</strong>g as the <strong>trees</strong> ofstratum 1 are available as seed source.Table 7.24 Importance Value Indices (IVI) of <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> underprotecti<strong>on</strong> (UFP) and Under Fire (UF).UFPUFUF/UFPAll- <strong>trees</strong>Stratum levelIIStratum 1Stratum 2Stratum 3Species level+Grewia tiliifoliaLagerstroemia microcarpaTerm<strong>in</strong>alia crenulataTermlna Iia panicula taXylia xylocarpa10054.428.017.74.2198.67.721.610062.429.218.5I 3.01.67.86.121.40.72na'0.961.041.05. 0.860.900.800.99-na* not applicable,+values for <strong>on</strong>ly the dom<strong>in</strong>ant commercially <strong>important</strong> speciesgiven.


.................Introducti<strong>on</strong> 63survival of <strong>trees</strong> ............. 93Other ........ 93Trees provide the propagules (the seeds), the source materialsneeded for the <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> process to <strong>in</strong>itiate, Thus, their populati<strong>on</strong>structure too has a bear<strong>in</strong>g <strong>on</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>.Survival of TreesOf the populati<strong>on</strong> of 900 <strong>trees</strong> m<strong>on</strong>itored, 45 <strong>trees</strong> died off with<strong>in</strong>a period of three years due to various reas<strong>on</strong>s (Table 8. 1). This is roughlyequivalent, to 3.7 <strong>trees</strong> ha -1 yr -l . The break up of mortality at variouslevels of organizati<strong>on</strong> is given <strong>in</strong> Table 8.2. At the all-<strong>trees</strong> level, theannual mortality rate was 1.7 percent. Am<strong>on</strong>g the three tree strata,stratum 2 showed the highest rate (2.8 %) and stratum 1 the least (1.5 %).Am<strong>on</strong>g the dom<strong>in</strong>ant commercially <strong>important</strong> species, Grewia tiliifolia andXylia xylocarpa showed highest rates, 2.5 and 2.2 percent respectively.Table 8.3 gives the distributi<strong>on</strong> of mortality <strong>in</strong> different sizeclasses of the tree phase. Apparently, there is a reducti<strong>on</strong> <strong>in</strong> the mortalitypercentage with <strong>in</strong>crease <strong>in</strong> size classes. The vailable data is <strong>in</strong>sufficientto study the distributi<strong>on</strong> of mortality <strong>in</strong> different size classes at strataland species levels and hence not attempted.Other Damages to TreesAlthough the tree phase mortality is just 1.7 percent per year(= 3.7 <strong>trees</strong> ha -1 yr -l ), a very high percentage of <strong>trees</strong> is found to bedamaged. Twenty n<strong>in</strong>e percent had burn blisters/ decay holes <strong>on</strong> thetrunk/collar regi<strong>on</strong>.


-II__l__l __I----- -----+---.-1_1_1-94 Results: The Tree Phase-Table 9.2 Percentage mortality <strong>in</strong> mature <strong>trees</strong> at different levels.I---.--1032.51.3 i 107I1.0 I 320.8 432.2 i 208I Dom<strong>in</strong>ant Stratum 3 speciesWrightia t<strong>in</strong>ctoria 150


95Results: The Tree Phase8.3 Distributi<strong>on</strong> of percentage mortality <strong>in</strong> different size size classes oftree phase dur<strong>in</strong>g the three year period of study*.Size classesdl0 d20 d30 d40 d50 d60 dg60I: Stratum 1 iI1 I [4[17 176 202 178 15150 10 1.7 7 3.1 4.1 0.0 160 117 143 130 7486] IjI1I* Figures <strong>in</strong> parentheses <strong>in</strong>dicate sample size.Decay holes <strong>on</strong> the trunk of <strong>trees</strong>, especially <strong>on</strong> the lower porti<strong>on</strong>of the trunk are largely due to fire. Frequency distributi<strong>on</strong> of such decayholes is given <strong>in</strong> Tables 8.4 and 8.5. Cent percent of the evergreen treeelements had decay holes <strong>on</strong> the trunk while stratum 1 showed <strong>on</strong>ly 17percent. Am<strong>on</strong>g the spectrum of tree species represented, the dom<strong>in</strong>antstratum 1 species, Dillenia pentagyna, Grewia tiliifolia, Lagerstroemiamicrocarpa, Term<strong>in</strong>alia paniculata and Xylia xylocarpa showed lowpercentages of <strong>trees</strong> with decay holes (rang<strong>in</strong>g between 7.5 and 18.5percent). At the species level, the stratum 3 species Wrightia t<strong>in</strong>ctoriashowed the highest percentage (58%) with decay holes.The fact is that fires burn the base of the tree trunks, whichgradually gets killed and <strong>in</strong>fected by wood decay<strong>in</strong>g fungi. The extent ofdecay <strong>in</strong>creases <strong>on</strong> repeated fires and over years the <strong>trees</strong> topple downdur<strong>in</strong>g the ra<strong>in</strong>y seas<strong>on</strong> w<strong>in</strong>ds. Thus, fire reduces the seed source at <strong>on</strong>eend while it <strong>in</strong>creases the gaps <strong>in</strong> the canopy at the other end.


96 Results: The Tree PhaseTable 8.4Percentage frequency distributi<strong>on</strong> of decay holes<strong>on</strong> trunk <strong>in</strong> tree populati<strong>on</strong>s.All-Trees1 - strataTaxai Stratum 1ii Stratum 21 Stratum 3Evergreen TreesDom<strong>in</strong>ant Stratum 1 SpeciesII Dillenia pentagyna: Grewia tiliifoliaj/ Lagerstroemia microcarpa:f Term<strong>in</strong>alia crenulatail Term<strong>in</strong>alia paniculata;/ .rij Xylia xylocarpaB; Dom<strong>in</strong>ant Stratum 3 SpeciesWrightia t<strong>in</strong>ctoriaPercentage of<strong>trees</strong> withdecay holes29.217.140.257.310018.511.37.53.116.317.358.0Table 8.5 Percentage distributi<strong>on</strong> of decay hole <strong>on</strong> tree trunk <strong>in</strong> different sizeclasses.Taxasize classesdl0 d20 d30 d40 d50 d60 dg60I1I'!'IAll-Trees 64.7 44.9 28.7 15.2 27.2 16.7 37.9[17 176 202 178 151 84 92]iStratum 1 0.0 13.3 13.7 8.4 22.3 14.9 33.760 117 143 130 74 86]IA* Figures <strong>in</strong> parentheses <strong>in</strong>dicate sample size.


Chapter 9Results and Discussi<strong>on</strong> IV:Future of Regenerati<strong>on</strong> <strong>in</strong> theSouth Indian Moist DeciduousForestsThe probabilities of transiti<strong>on</strong> of the three tree strata under fireprotecti<strong>on</strong> and under fire are given <strong>in</strong> Tables 9.1 and 9.2. Pictorial modelsof populati<strong>on</strong> flux as represented <strong>in</strong> these matrices are illustrated <strong>in</strong>Figures 9.1-9.4. Populati<strong>on</strong> structure of <strong>in</strong>dividual strata for 15 years wassimulated for various frequencies of fire us<strong>in</strong>g the populati<strong>on</strong> structureof the stand as <strong>on</strong> September 1989 as the <strong>in</strong>itial populati<strong>on</strong>. The resultsfor stratum 1, which comprises all the commercially <strong>important</strong> species, areplotted <strong>in</strong> a graph (Figure 9.5).The decay rates of vegetati<strong>on</strong>s are generally accounted as half lifeperiods (cf Harper, 1977). The half life periods for the three strata,under different fire frequencies, as derived from simulated data are given<strong>in</strong> Table 9.3.When the frequency of fire was at l-year <strong>in</strong>terval, <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>populati<strong>on</strong> of all the strata decreased rapidly. The populati<strong>on</strong>s becamehalf <strong>in</strong> every sixth year (Table 9.3).When the frequency of fire was lowered to a 2-year <strong>in</strong>terval, thehalf life period of the strata ranged between 13 to 15 years. Still thecurve sloped down as years <strong>in</strong>creased.At a 3-year fire frequency <strong>in</strong>terval, the graph approached a moreor less horiz<strong>on</strong>tal positi<strong>on</strong> and c<strong>on</strong>formed to almost a straight l<strong>in</strong>e-sawtooth. Populati<strong>on</strong> decay was very low as <strong>in</strong>dicated by the half life periods(63 to 83 years).For every <strong>in</strong>crease <strong>in</strong> fire frequency <strong>in</strong>terval bey<strong>on</strong>d 3 years, overyears populati<strong>on</strong> strength of <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> would never dim<strong>in</strong>ish (seeFigure 9.5), unless and until other factors such as self th<strong>in</strong>n<strong>in</strong>g (cfWestoby, 1984), overgraz<strong>in</strong>g, severe drought or other critical phenomena<strong>in</strong>terfere.Figure 9.6 shows graphs of the populati<strong>on</strong> flux of establishedseedl<strong>in</strong>gs (> 50 cm ht and


98 Results: The Tree PhaseTable 9.1 Probabilities of transiti<strong>on</strong> <strong>in</strong> various size classssunder fire protecti<strong>on</strong>.*Stra Szcl Zero, h50(1) 1 h100(2)0 0.78720 0.148651 0.12956 0.72242 0.138052 0.04505 0.03801 0.744971 3 0.02609 0.03382 0.140444 0.071435hgl00(3) d10(4) d20(5)0.106750.009970.16835 0.003620.72870 0.070950.928570 0.31589 0.134341 0.15950 0.76287 0.072692 2 0.17941 0.13311 0.469223 0.00397 0.05113450.082790.004940.218260.73452 0.210391.000000 0.65887 0.674461 0.14110 0.72764 0.072462 0.06841 0.07490 0.762543 3 0.04080 0.01667 0.11764450.136800.058800.09425 .0.77988 0.045020.87500 0.12500Table 9.2 Probabilities of transiti<strong>on</strong> <strong>in</strong> various size classesunder fire.1 0.25749 0.63456 0.08077 0.027172 0.34439 0.16961 0.42653 0.059472 3 0.33102 0.03631 0.19255 0.43834 0.001794 0.22279 0.01020 0.05159 0.33163 0.3837950 0.419791 0.14110 0.54110 0.11599 0.014492 0.19944 0.16340 0.52108 0.116073 3 0.22587 0.05863 0.36015 0.34416 0.011205* .0.08333I0.10000Stra - Strata: h50, h100, hg100, dl0, d20: Size classes.0.816671.00000 .I


100 Results: The Future of Regenerati<strong>on</strong>Figures 9.1 and 9.2 Flow charts show<strong>in</strong>g the populati<strong>on</strong> flux <strong>in</strong> thevarious size classes of all-<strong>trees</strong> (Fig. 9.1) and stratum 1 (Fig. 9.2) underfire protecti<strong>on</strong> and after fire. Time is given <strong>in</strong> the vertical axis, <strong>in</strong>dicat<strong>in</strong>gthe directi<strong>on</strong> of flow. Fire <strong>in</strong>cidence is shown by a narrow bar travers<strong>in</strong>gthe entire flow chart <strong>in</strong> the middle. The porti<strong>on</strong> above the fire <strong>in</strong>cidencel<strong>in</strong>e perta<strong>in</strong>s to populati<strong>on</strong> flux after fire and that beneath the l<strong>in</strong>eperta<strong>in</strong>s to that under fire protecti<strong>on</strong>. The horiz<strong>on</strong>tal boxes at the bottom,middle and top depict the populati<strong>on</strong> strength at the different time po<strong>in</strong>tsof sampl<strong>in</strong>g. The Vertica1 arid <strong>in</strong>cl<strong>in</strong>ed bars represent the populati<strong>on</strong> flowbetween the successive sampl<strong>in</strong>gs. Bars with arrow head at the bottom andmiddle, emerg<strong>in</strong>g from the horiz<strong>on</strong>tal boxes, <strong>in</strong>dicate seedl<strong>in</strong>g mortality.Bars with a sagitate base and jo<strong>in</strong><strong>in</strong>g the horiz<strong>on</strong>tal hoxes at the middleand top depict new recruits. Relative figures arid proporti<strong>on</strong>ate width ofpopulati<strong>on</strong> flux al<strong>on</strong>e are depicted.dI0 - dbh 1-10 cm; h50 - h t 50 and 100 cm and dbh < 1 cm.


Results: The Future of Regenerati<strong>on</strong> 101LhWsize classes)hX)OhsmodK)h50 hXH) hgno dl0size classes)


102 Results: The Future of Regenerati<strong>on</strong>Figures 9.3 and 9.4 Flow charts show<strong>in</strong>g the populati<strong>on</strong> flux <strong>in</strong> thevarious size classes of stratum 2 (Fig. 9.3) and stratum 3 (Fig. 9.4) underfire protecti<strong>on</strong> and after fire. Time is given <strong>in</strong> the vertical axis, <strong>in</strong>dicat<strong>in</strong>gthe directi<strong>on</strong> of flow. Fire <strong>in</strong>cidence is shown by a narrow bar travers<strong>in</strong>gthe entire flow chart <strong>in</strong> the middle. The porti<strong>on</strong> above the fire <strong>in</strong>cidencel<strong>in</strong>e perta<strong>in</strong>s to populati<strong>on</strong> flux after fire and that beneath the l<strong>in</strong>eperta<strong>in</strong>s to that under fire protecti<strong>on</strong>. The horiz<strong>on</strong>tal boxes at the bottom,middle and top depict the populati<strong>on</strong> strength at the different time po<strong>in</strong>tsof sampl<strong>in</strong>g. The vertical and <strong>in</strong>cl<strong>in</strong>ed bars represent the populati<strong>on</strong> flowbetween the successive sampl<strong>in</strong>gs. Bars with arrow head at the bottom andmiddle, emerg<strong>in</strong>g from the horiz<strong>on</strong>tal boxes, <strong>in</strong>dicate seedl<strong>in</strong>g mortality.Bars with a sagitate base and jo<strong>in</strong><strong>in</strong>g the horiz<strong>on</strong>tal boxes at the middleand top depict new recruits. Relative figures and proporti<strong>on</strong>ate width ofpopulati<strong>on</strong> flux al<strong>on</strong>e are depicted.d10 - dbh 1-10 cm; h50 - ht 50 and 100 cm and dbh < 1 cm.


Results: The Future of Regenerati<strong>on</strong> 103939.4h50 hW hg loo d10 d2Ostze classes)


104 Results: The Future of Regenerati<strong>on</strong>Table 9.3 Computed values of half llfe perlods (years) underdlfferent fire frequencies (simulated data used).10' I 0#I04ayearsFigure 9.5 Resp<strong>on</strong>se of vary<strong>in</strong>g fire frequency <strong>in</strong>tervals <strong>on</strong><str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> populati<strong>on</strong> of Staratum 1: results of simulati<strong>on</strong>studdies us<strong>in</strong>g matrix model and exp<strong>on</strong>ential <strong>in</strong>terpolati<strong>on</strong> oftransiti<strong>on</strong> probabilities.


Results: The Future of Regenerati<strong>on</strong> 105(z50004 4000f0 2 468lDl2116YearsFigure 9.6 Resp<strong>on</strong>se of vary<strong>in</strong>g fire frequency <strong>in</strong>tervals <strong>on</strong> thepopulati<strong>on</strong> of established seedl<strong>in</strong>gs (ht > 50 cm and dbh < 10 cm)of Stratum 1; result of simulati<strong>on</strong> <str<strong>on</strong>g>studies</str<strong>on</strong>g> us<strong>in</strong>g matrix model andexp<strong>on</strong>ential <strong>in</strong>terpolati<strong>on</strong> of transiti<strong>on</strong> probabilities.


Chapter 10SynthesisThe Reproductory Phase ...... 107The Seedl<strong>in</strong>g Phase ......... 109Sapl<strong>in</strong>g and Pole Stages . 111The Mature Tree Phase ...... 111C<strong>on</strong>clusi<strong>on</strong>s ................ 11 2Recommendati<strong>on</strong>s ............. 112A summary of ohservat<strong>in</strong>ns carried out and the results obta<strong>in</strong>edfrom the study is given <strong>in</strong> Table 10.1.The Reproductory PhaseStudies <strong>on</strong> the populati<strong>on</strong> dynamics of the reproductive life stagesof the commercially <strong>important</strong> tree species of the Moist Deciduous Forestsshowed no abnormalities. The flower<strong>in</strong>g and fruit<strong>in</strong>g periodicities wereregularly circannual, <strong>in</strong> all the species. No gregarious flower<strong>in</strong>g/ mastseed<strong>in</strong>g was evident from the <str<strong>on</strong>g>studies</str<strong>on</strong>g>. Therefore, there are no significanttemporal gaps <strong>in</strong> the seed source. Litter trap <str<strong>on</strong>g>studies</str<strong>on</strong>g> showed that therewere more than 124 x 106 flowers ha -l yr -l which were capable ofproduc<strong>in</strong>g more than 56 x 106 mature fruits and c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g a resource ofof 1156 x 106 seeds ha -1 yr -1 . Such large quantities of flower, fruit andseed overrule the existence of any c<strong>on</strong>stra<strong>in</strong>ts <strong>in</strong> the reproductory phaseof the commercially <strong>important</strong> tree species.At species Level, <strong>some</strong> commercially <strong>important</strong> species are known tohave c<strong>on</strong>stra<strong>in</strong>ts of <strong>in</strong>tr<strong>in</strong>sic and envir<strong>on</strong>mental orig<strong>in</strong>. Lagerstroemiamicrocarpa produced milli<strong>on</strong>s of seeds of which over 90 percent werewithout a viable embryo. Perhaps ow<strong>in</strong>g to this reas<strong>on</strong>, the species ispoorly represented <strong>in</strong> all stages of <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> while mature tree phaseis fairly well represented. The reas<strong>on</strong> for this state of affairs requiresfurther <str<strong>on</strong>g>studies</str<strong>on</strong>g>. Investigati<strong>on</strong>s <strong>in</strong>to the causes of the producti<strong>on</strong> of suchlarge number of sterile seeds and search for alternate methods ofmultiplicati<strong>on</strong> are desirable.In areas where Malabar giant squirrel <strong>in</strong>habits, seeds of Xyliaxylocarpa are heavily predated (also cf. Ramachandran, 1988).Nevertheless, <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> of the species is more or less satisfactory,presumably because of vegetative reproducti<strong>on</strong> through offsets from rootsand root suckers.107


108SynthesisTable 10.1. summary of observati<strong>on</strong>s and results of the study <strong>on</strong>commercially Important Trees of SIMDFs of TFD.Is1- parametersNo studiedObservati<strong>on</strong>s-Status-Causes1 Flower<strong>in</strong>g andfruit<strong>in</strong>g periodicities2 Flower producti<strong>on</strong>3 Fruit producti<strong>on</strong>4 Seed producti<strong>on</strong>circannual,regular124 mill. ha-1 yr -l56 mill. ha-1 yr -11156 mill. ha -1 yr -lOKOKOKOKOK5 Emerg<strong>in</strong>g newrecruits6 UnestablishedSeedl<strong>in</strong>gs7 Establishedseedl<strong>in</strong>gs8 Poles10,000 ha -1 yr -13,000 ha -1240 ha-110 ha -1OKOKUNSUNS1. Forestfire2. Overgraz<strong>in</strong>g3. Illicitcutt<strong>in</strong>g9 stock<strong>in</strong>g10 Mortality rates11 Unhealthy <strong>trees</strong>145 ha -11.5 % yr-l29 %OK??-UNS- Unsatisfactory.


Synthesis 109The Seedl<strong>in</strong>g PhaseA prelim<strong>in</strong>ary survey of the seedl<strong>in</strong>g bank had shown an average ofmore than 3,000 unestablished seedl<strong>in</strong>gs of commercially <strong>important</strong> <strong>trees</strong>pecies per hectare. Studies <strong>on</strong> seedl<strong>in</strong>g emergence have shown that everyyear a populati<strong>on</strong> of about 10,000 new recruits enrich the exist<strong>in</strong>gseedl<strong>in</strong>g bank. Despite such large seedl<strong>in</strong>g banks and annual enrichments,the presence of established seedl<strong>in</strong>gs (240 ha -1 ) and poles (10 ha -1 ) isextremely low.Semilogarithmic graphs of populati<strong>on</strong> structure of several specieslike Dillenia pen tagyna, Grewia tiliifolia, Lagerstroemia microcarpa haveshown str<strong>on</strong>g bimodal distributi<strong>on</strong>s while <strong>in</strong> other species like Term<strong>in</strong>aliacrenulata, T. paniculata and Xylia xylocarpa there are str<strong>on</strong>g depressi<strong>on</strong>s<strong>in</strong> the graphs <strong>in</strong>dicat<strong>in</strong>g the paucity of sapl<strong>in</strong>gs and poles. All these showthat the c<strong>on</strong>t<strong>in</strong>uity of the process of sylvigenesis is <strong>in</strong>terrupted,especially dur<strong>in</strong>g c<strong>on</strong>versi<strong>on</strong> from seedl<strong>in</strong>g to sapl<strong>in</strong>g and sapl<strong>in</strong>g to polestages.Experimental <str<strong>on</strong>g>studies</str<strong>on</strong>g> <strong>in</strong> fire protected samples have brought outthat mortality of tree seedl<strong>in</strong>gs is less than 10 percent dur<strong>in</strong>g summerm<strong>on</strong>ths. This <strong>in</strong>dicates that summer soil <strong>moist</strong>ure depleti<strong>on</strong> <strong>in</strong> itself is nota serious c<strong>on</strong>stra<strong>in</strong>t for sylvigenesis.By follow<strong>in</strong>g the life of over 4,000 <strong>in</strong>dividual seedl<strong>in</strong>gs for a periodof two years, it is clear that fire is the s<strong>in</strong>gle largest factor that acts asa degrad<strong>in</strong>g factor <strong>in</strong> tree <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> <strong>in</strong> MDFs. Fire apparently is capableof retard<strong>in</strong>g the seedl<strong>in</strong>g emergence rates of commercially <strong>important</strong> <strong>trees</strong>pecies, The diaspores (seeds/ fruits) of most commercially <strong>important</strong> <strong>trees</strong>pecies are large enough to be trapped <strong>in</strong> the thick litter layer available<strong>on</strong> the ground and as the litter burns seeds also get burnt. Fire is capableof accelerat<strong>in</strong>g the rate of mortality to several fold comparaed to that ofnatality. Enormous number of seedl<strong>in</strong>gs die, many loose their above groundporti<strong>on</strong>s. As a result, fire retards the rate of <strong>natural</strong> <strong>in</strong>crease at alllevels, thus lead<strong>in</strong>g to regressi<strong>on</strong> <strong>in</strong> the populati<strong>on</strong>s.Regenerati<strong>on</strong> is the start<strong>in</strong>g populati<strong>on</strong> which <strong>in</strong> due course undergoesthe process of sylvigenesis and builds up the stand. The amount of<str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> (exclud<strong>in</strong>g sapl<strong>in</strong>gs and poles) encountered <strong>in</strong> <strong>natural</strong> MoistDeciduous Forests gives the impressi<strong>on</strong> that they are not. that poor <strong>in</strong><str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>. In fact, the situati<strong>on</strong> is very different. The li<strong>on</strong>'s share ofthe <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> populati<strong>on</strong> <strong>in</strong> fire <strong>in</strong>fested Moist Deciduous Forests has<strong>on</strong>ly temporary existence. Be<strong>in</strong>g swallowed by fire every year, the


110 Synthesis<str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> is not available for the process ofbuild<strong>in</strong>g) to advance.sylvigenesis (treeIn additi<strong>on</strong> to the deleterious effect <strong>on</strong> the populati<strong>on</strong>, fire alsoaccelerates the c<strong>on</strong>versi<strong>on</strong> of <strong>in</strong>dividuals to lower size classes. Side byside with this, it can also cause significant reducti<strong>on</strong> <strong>in</strong> the c<strong>on</strong>versi<strong>on</strong>of <strong>in</strong>dividuals to higher classes. Thus, the process of sylvigenesis slowsdown c<strong>on</strong>siderably lead<strong>in</strong>g to degradati<strong>on</strong> of Moist Deciduous Forests.The rate of <strong>natural</strong> <strong>in</strong>crease of certa<strong>in</strong> commercially <strong>important</strong> <strong>trees</strong>pecies such as Hald<strong>in</strong>a cordifolia and Lagerstroemia microcarpa isaffected very adversely by fire. If annual fire is very regular there isevery chance that <strong>some</strong> of these species get elim<strong>in</strong>ated from the ecosystemaltogether, <strong>on</strong>ce their adult <strong>trees</strong> die off.Simulati<strong>on</strong> <str<strong>on</strong>g>studies</str<strong>on</strong>g> us<strong>in</strong>g the observed probabilities of transiti<strong>on</strong>have shown that a low fire <strong>in</strong>cidence frequency such as 3-year frequencywould be able to shift the <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> populati<strong>on</strong> from regressive to astable structure. This would enhance the establishment of advance growth(sapl<strong>in</strong>gs and poles) to a satisfactory level.In the study plots, simply by tak<strong>in</strong>g fire protecti<strong>on</strong> measures al<strong>on</strong>e,more than 85 percent of <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> could survive. Regenerati<strong>on</strong> lossdue to other reas<strong>on</strong>s amounts to just 15 percent. Thus, fire is by far thes<strong>in</strong>gle largest factor caus<strong>in</strong>g heavy damage to the <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> <strong>in</strong> MoistDeciduous Forests.Forest fire is <strong>in</strong>variably of human orig<strong>in</strong> (Fox, 1976). MoistDeciduous Forests are burnt by people for various reas<strong>on</strong>s (for a full listplease see Basha, 1990). The agricultural lands are <strong>on</strong> the valleys of theseMoist Deciduous Forests . Therefore, farmers burn the forest so that thefields are enriched by ash brought through ra<strong>in</strong> water. Fire also helps newgrass growth for cattle graz<strong>in</strong>g. The tribals who live <strong>in</strong>side the forest andthe local people who collect m<strong>in</strong>or forest produce such as h<strong>on</strong>ey, bark ofAcacia, and fruits like soap nut etc. burn the forest so that undergrowthis removed and walk<strong>in</strong>g and collecti<strong>on</strong>s made easy.Instances abound from other parts of the world, where unc<strong>on</strong>trolledgraz<strong>in</strong>g and brows<strong>in</strong>g have been proved to be <strong>in</strong>imical to the <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>of forest <strong>trees</strong> (L<strong>in</strong>hart and Whelan, 1980; G. S<strong>in</strong>gh, 1983; Prasad, 1985; R.P. S<strong>in</strong>g, 1985). People liv<strong>in</strong>g close to the forest areas, <strong>in</strong> the absence ofpasture lands, depend the forest for their cattle and goats to graze and


Synthesis 111browse. Many people leave the cattle <strong>in</strong>side the forest and <strong>on</strong>ly dur<strong>in</strong>gtimes of agricultural field work they br<strong>in</strong>g their cattle back. Likewise,cows are brought back <strong>on</strong>ly when they milch. Slaughter house owners alsoleave their cattle to graze and breed <strong>in</strong>side the forest. Withthe result, at any given time forests are always with a certa<strong>in</strong> cattlepopulati<strong>on</strong>.The destructi<strong>on</strong> d<strong>on</strong>e to the <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> by sheep herds is murhmore destructive. Though Kerala State as such does not have any sheepfarm<strong>in</strong>g, sheep herds from Tamilnadu, Andhra Pradesh and Karnataka f<strong>in</strong>dtheir feed <strong>in</strong> many areas of the forests of Kerala. A few m<strong>on</strong>ths stay of thesheep herds <strong>in</strong>side the forest devastates all green herbage, <strong>in</strong>clud<strong>in</strong>g<str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> of tree species. However, no efforts were made to quantifydestructi<strong>on</strong> of tree <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> due to these agents.Sapl<strong>in</strong>g and Pole Stages: The paucity of sapl<strong>in</strong>gs especially with<strong>in</strong> the sizerange of 5-10 cm dbh is partly due to illicit cutt<strong>in</strong>gs. Dur<strong>in</strong>g the past fewyears, especially when paddy cultivati<strong>on</strong> has turned out to beunec<strong>on</strong>omical, the paddy fields <strong>in</strong> the pla<strong>in</strong>s are be<strong>in</strong>g put under bananacultivati<strong>on</strong>. In order to protect the plantati<strong>on</strong>s from w<strong>in</strong>d damage, supportis given for each banana plant. Sapl<strong>in</strong>gs are regularly extracted from theforests for this purpose. Cutt<strong>in</strong>g of poles for the c<strong>on</strong>structi<strong>on</strong> of huts,cattle sheds, etc, is also quite comm<strong>on</strong>. A quantificati<strong>on</strong> of this aspect isbey<strong>on</strong>d the scope of this study. But this is also <strong>on</strong>e of the factors lead<strong>in</strong>gto the degradati<strong>on</strong> of Moist Deciduous Foresets.The Mature Tree PhaseThe mature tree populati<strong>on</strong>s, although do not pose seriousc<strong>on</strong>stra<strong>in</strong>ts for the seed source, the amount of fire damage to <strong>trees</strong> isc<strong>on</strong>siderable. Approximately 29 percent of the <strong>trees</strong> <strong>in</strong> the study plotswere found to have rotten/ decayed holes orig<strong>in</strong>at<strong>in</strong>g largely from firedamage. These <strong>trees</strong> <strong>on</strong> subsequent acti<strong>on</strong> by wood decay<strong>in</strong>g fungi getdeteriorated and topple down <strong>in</strong> the str<strong>on</strong>g w<strong>in</strong>ds associated with them<strong>on</strong>so<strong>on</strong> ra<strong>in</strong>s. Thus the seed source is gett<strong>in</strong>g, reduced although not muchsignificant at smaller time scales.


112 SynthesisC<strong>on</strong>clusi<strong>on</strong>sAm<strong>on</strong>g the causes of poor <strong>natural</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> of commercially<strong>important</strong> tree species <strong>in</strong> the Moist Deciduous Forests, fire is the most<strong>important</strong> factor. Other causes are over-graz<strong>in</strong>g and browz<strong>in</strong>g, illicitcutt<strong>in</strong>g of sapl<strong>in</strong>gs and poles, charcoal mak<strong>in</strong>g and so <strong>on</strong>. All theseproximate causes for poor <strong>natural</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> are of anthropogenic/sociological orig<strong>in</strong>.Recommendati<strong>on</strong>s1. Fire protecti<strong>on</strong> is the most <strong>important</strong> measure to be adopted foraugment<strong>in</strong>g the <strong>natural</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> <strong>in</strong> the Moist Deciduous Forests. Thiswill not <strong>on</strong>ly help to improve the <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> status, but also improve thestand<strong>in</strong>g crop and the whole ecosystem. Al<strong>on</strong>g with this, cattle graz<strong>in</strong>g,goat/sheep brows<strong>in</strong>g, illicit cutt<strong>in</strong>g and charcoal mak<strong>in</strong>g also need to bec<strong>on</strong>trolled for obta<strong>in</strong><strong>in</strong>g satisfactory <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> and sylvigenesis.2. In the already degraded forests, enrichment plant<strong>in</strong>gs withseedl<strong>in</strong>gs of native species hav<strong>in</strong>g commercial value are to be carried outensur<strong>in</strong>g fire protecti<strong>on</strong>, lest the efforts should go wasted.3. The <str<strong>on</strong>g>studies</str<strong>on</strong>g> show that the size class 1-10 cm dbh has a 50percent survival probability under fire and hence standardisati<strong>on</strong> ofplant<strong>in</strong>g stock and technology of the lower half of the this size classwould be a better opti<strong>on</strong> <strong>in</strong> places where full fire protecti<strong>on</strong> measurescannot be enforced.4. The causes of forest degradati<strong>on</strong> be<strong>in</strong>g fully anthropogeniccreat<strong>in</strong>g awareness am<strong>on</strong>g the user community <strong>in</strong>volv<strong>in</strong>g them <strong>in</strong>participatory management is to be seriously c<strong>on</strong>sidered as the adjo<strong>in</strong><strong>in</strong>gvillagers cannot be completely kept away from us<strong>in</strong>g the forests for theirb<strong>on</strong>a fide purposes.


References CitedAnders<strong>on</strong>, J. A. R. 1961. The ecology and forest types of the peat swampforests of Sarawak and Brunei <strong>in</strong> relati<strong>on</strong> to their silviculture. Ph.D. Thesis, Univ. Ed<strong>in</strong>burgh.Appanah, S. 1985. General flower<strong>in</strong>g <strong>in</strong> the climax ra<strong>in</strong> forests of South-East Asia. J. Trop. Ecol. 1: 225-240.Arora, R. K. 1960. Ecology of Xylia xylocarpa. Indian For. 86: 306-313.Ayliffee, R. S. 1952. The <strong>natural</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> of Tr<strong>in</strong>idad forests. Proc.Sixth Brit. Com. C<strong>on</strong>f., Canada.Baker, H. G., Bawa, K. S., Frankie, G. W. and Opler, P. A. 1983.Reproductive biology of plants <strong>in</strong> tropical forests. Pages 183- 215.In: Golley, F. G. and Lieth, H. (eds.). Tropical ra<strong>in</strong> forestecosystems. Elsevier Scientific Publ.Baker, H. G. and Harris, B. J. 1957. The poll<strong>in</strong>ati<strong>on</strong> of arkiaby bats and itsattendant evoluti<strong>on</strong>ary problems. Evoluti<strong>on</strong> 11: 449-460.Balasundaram, A., George, M. and Prasad, K. M. 1979. A survey note <strong>on</strong> the<str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> of rose wood (Dalbergia latifolia Roxb.) <strong>in</strong> Gudalure,Wynad forest tract (Nilgiris). Indian For. 105: 727-732.Barnard, R. C. 1955. Silviculture <strong>in</strong> the tropical ra<strong>in</strong> forest of WesternNigeria compared with Malayan methods. Malay. For. 18: 173-190.Barnard, R. C. 1956. Recruitment, survival and growth of timber <strong>trees</strong>eedl<strong>in</strong>gs <strong>in</strong> tropical ra<strong>in</strong> forest. Malay. For. 19 (3).Basha, S. C. 1987. Studies <strong>on</strong> the ecology of evergreen forests of Keralawith special reference to Silent Valley and A ttappady (South India).Doctoral dissertati<strong>on</strong>, Kerala University (Unpublished).Basha, S.C. 1990. C<strong>on</strong>servati<strong>on</strong> and management of tropical <strong>moist</strong>deciduous forests.Pages 132-143. In: Nair, K. K. N., Bhat, K. V.Sharma, J. K. and Swarupanandan, K. (eds.). Proc. MAB Regi<strong>on</strong>alTra<strong>in</strong><strong>in</strong>g Workshop, Tropical forest ecosystem c<strong>on</strong>servati<strong>on</strong> anddevelopment <strong>in</strong> South and South-east Asia, Trichur, India, 1989.Kerala Forest Research Institute.Bawa, K. S. 1974. Breed<strong>in</strong>g systems of tropical tree species of a lowlandtropical community. Evoluti<strong>on</strong> 28: 86-92.113


114 References CitedBawa, K. S. 1979. Breed<strong>in</strong>g systems of <strong>trees</strong> <strong>in</strong> a tropical low land wetforest. New Zealand J. Bot., Spl. Iss., 17: 521-524.Bawa, K. S. 1983. Patterns of flower<strong>in</strong>g <strong>in</strong> tropical plants. Pages 394-410.In: J<strong>on</strong>es, C. E. and Little, R. J. (eds.). Handbook of experimentalpoll<strong>in</strong>ati<strong>on</strong> biology. Van Nostrand Re<strong>in</strong>hold, New York.Bawa, K. S., Bullock, S. H., Perry, D. R., Coville, R. E., and Grayum, M. H.1986 a. Reproductive biology of tropical lowland ra<strong>in</strong>forest <strong>trees</strong>.11. Poll<strong>in</strong>ati<strong>on</strong> systems. Am. J. Bot. 72(3): 346-356.Bawa, K.S., Bullock, S.H., Perry, D.R., Coville, R.E. and Grayum, M.H. 1985b. Reproductive biology of tropicai lowland ra<strong>in</strong> forest <strong>trees</strong>. I.Sexual systems and <strong>in</strong>compatibility mechanisms. Am. J. Bot. 72(3):331 -345.Bawa, K. S. and Krugman, S. L. 1986. Reproductive biology and genetics oftropical forest <strong>trees</strong>. Biol. Internat., Spl. lss., 18: 22-25.Bazzaz, F. A. and Harper, J. L. 1976. Relati<strong>on</strong>ship between plantand numbers <strong>in</strong> mixed populati<strong>on</strong>s of S<strong>in</strong>apis alba (L.)and Lepidium sativum L. J. Appl. Ecol. 13: 211-216.weightRabenh.Beard, J. S. 1946. The <strong>natural</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> of Tr<strong>in</strong>idad forests. OxfordForestry Mem. no. 20.Bernier, P. Y. 1987. Regenerati<strong>on</strong> and growth of lodgepole p<strong>in</strong>e <strong>in</strong> smallopen<strong>in</strong>gs <strong>in</strong> the Alberta foot hills. Can. J. For. Res. 17: 758-759.Bharucha, F. R. and de Leeuw, W. C. 1957. A practical guide to plantsociology. Bom bay.Bhatnagar, H. P. 1961. Basic <strong>in</strong>formati<strong>on</strong> <strong>on</strong> sal (Shorea robusta) forest ofUttar Pradesh deficient <strong>in</strong> <strong>natural</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>. J. Indian Bot. Soc.40:47-489.Bhoojh, R. and Ramakrishnan, P. S. 1981. Phenology of <strong>trees</strong> <strong>in</strong> asubtropical evergreen m<strong>on</strong>tane forest <strong>in</strong> North-East India. Geo-Eco-Trop. 6: 189-209.B<strong>in</strong>kley, C, S. 1980. Is successi<strong>on</strong> <strong>in</strong> hardwood forests a stati<strong>on</strong>ary Markovprocess? Forest Sci. 2 6 ( 4 ) : 5 6 6 - 5 7 0.Bor, N. L. 1930. Sal <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>. lndian For. 56: 136-137


References Cited 115Borchert, R. 1983. Phenology and c<strong>on</strong>trol of flower<strong>in</strong>g <strong>in</strong> tropical <strong>trees</strong>.Biotropica 15: 81-89.Brooks, R. L. 1941. The <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> of mixed forests <strong>in</strong> Tr<strong>in</strong>idad.Carribbean For. 2: 164-172.Buell, J. H. 1945. The predicti<strong>on</strong> of growth <strong>in</strong> uneven-aged timber stands<strong>on</strong> the basis of diameter distributi<strong>on</strong>. Duke Univ. Sch. For. Bull. no.11.Burschel, P. Kateb, H. E., Huss, J. and Mosandl, R. 1985. Regenerati<strong>on</strong> <strong>in</strong>a mixed mounta<strong>in</strong> forest. Forstwissenschaftlichas Gentralblatt 104:65-100.Cavers, P. B. 1983. Seed demography. Can. J. Bot. 61: 3578-3590.Chac<strong>on</strong>sotelo, J. M. 1983. Regenerati<strong>on</strong> through parent <strong>trees</strong> of P<strong>in</strong>usariz<strong>on</strong>iana. Ciencia Forestal 8: 3-20.Chakravarthi, R. 1948. Natural and artificial <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> of drypen<strong>in</strong>sular sal. Indian For. 74: 56-57.Champi<strong>on</strong>, H. G. 1933. Regenerati<strong>on</strong> and management of sal (Shorearobusta). Indian For. Rec., Silvic., 19 (3).Champi<strong>on</strong>, H. G. 1936. A prelim<strong>in</strong>ary survey of the forest types of Indiaand Burma. Indian For. Rec. 1: 1-136.Champi<strong>on</strong>, H. G. and Seth, S. K. 1968 a. A revised survey of the foresttypes of India. Manager of publicati<strong>on</strong>s, Delhi.Champi<strong>on</strong>, H. G. and Seth, S. K. 1968 b. General silviculture for India.Manager of Publicati<strong>on</strong>s, New Delhi.Chan, H. T. 1981. Reproductive biology of <strong>some</strong> Malaysian Dipterocarps. IIIBreed<strong>in</strong>g systems. Malays. For. 44:28-34.Chaudhuri, D. C. 1960. Natural <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> of sal <strong>in</strong> Tripura. Proc. 19 thSilvic. C<strong>on</strong>f., Dehra Dun, 1957, 1: 118-120.Chengappa, B. S. 1937. Reproducti<strong>on</strong> of the Andaman forests. Indian For.63: 16-29.


116 References CitedChengappa, B. S. 1944. Andaman forests and their <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>. Pt. 2.Indian For. 70: 339-351.Cockburn, P. F. 1975. Phenology of Dipterocarps <strong>in</strong> Sabah. Malay. For. 38:160- 170.Cremer, K. W. 1965. Dissem<strong>in</strong>ati<strong>on</strong> of seed from Eucalyptus regnans. Aust.For. 33 - 3 7.Daly, C. and Shankman, D. 1985. Seedl<strong>in</strong>g establishment by c<strong>on</strong>ifers abovetree limit <strong>on</strong> Niwot Ridge, Fr<strong>on</strong>t Range, Colorado, USA. Arctic Alp<strong>in</strong>eRes. 17: 389-400.Dansereau, P. and Lems, K. 1957. The grad<strong>in</strong>g of dispersal types <strong>in</strong> plantcommunities and their ecological significance. C<strong>on</strong>tr. Inst. Bot.Dawk<strong>in</strong>s, H. C. 1958. The management of <strong>natural</strong> tropical high forest withspecial reference to Uganda. Imperial Forestry Inst. Oxford. Pap. no.34.Deshmukh, D. K. 1985. Regenerati<strong>on</strong> of rosewood (Dalbergia latifoliaRoxb.). Myforest 11: 87-93.Dhamanijayakul, P. 1981. The phenology of <strong>trees</strong> <strong>in</strong> dry evergreen forestand its applicati<strong>on</strong> to tim<strong>in</strong>g for logg<strong>in</strong>g operati<strong>on</strong>. For. Res. Bull.Fac. For. Ksasetsort Univ. no. 64.Dimitrov, D. 1984. Natural <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> of Quercus hartwissiana <strong>in</strong> theStrandzha regi<strong>on</strong> of Bulgaria. Gorsko Stopanstvo 40: 22-25.Drapier, J. 1986. Problems <strong>in</strong> the <strong>natural</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> of silver fir <strong>in</strong> theVosges: an ecological study. Rev. For. Franc. 37: 45-55.Everard, J. E. 1987. Natural <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> of oak. Oxford For. Inst.Occasi<strong>on</strong>al papers no. 34.FAO. 1956.Tree seed notes. FAO, Rome.Floyd, A. F. 1966. Effect of fire up<strong>on</strong> weed seeds <strong>in</strong> the wet sclerphyllforests of Northern New South Wales. Austr. J. Bot. 14: 243-256.Ford-Roberts<strong>on</strong>, F. C. 1971. Term<strong>in</strong>ology of forest service, technology,practice and products. Society of American Foresters, Wash<strong>in</strong>gt<strong>on</strong>.


References Cited 117Forest Survey of India, 1989. The state of forest report 1989. ForestSurvey of India, M<strong>in</strong>istry of Envir<strong>on</strong>ment and Forest, Dehra Dun.Fox, J. E. D. 1976. C<strong>on</strong>stra<strong>in</strong>ts <strong>on</strong> the <strong>natural</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> of tropical<strong>moist</strong> forest. For. Ecol. Manage. 1: 37-65.Frankie,G. W., Baker, H. G. and Opler, P. A. 1974 a. Comparativephenological <str<strong>on</strong>g>studies</str<strong>on</strong>g> of <strong>trees</strong> <strong>in</strong> tropical wet and, dry forests <strong>in</strong> thelowlands of Costa Rica. J. Ecol. 62: 881-919.Frankie, G. W., Baker, H. G. and Opler, P. A. 1974 b. Tropical plantphenology: applicati<strong>on</strong>s for <str<strong>on</strong>g>studies</str<strong>on</strong>g> <strong>in</strong> community ecology. Pages287-296. In: Lieth H. (ed.). Phenology and seas<strong>on</strong>ality model<strong>in</strong>g.Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>.Gadgil, M. 1971. Dispersal: populati<strong>on</strong> c<strong>on</strong>sequences and evoluti<strong>on</strong>.Ecology 52: 253-261.Gardner, W.H. 1965. Water c<strong>on</strong>tent. Pages 82-127. In: Black, C.A. (ed.).Methods of soil analysis, Pt.1. American Society of Agr<strong>on</strong>omy Inc.,Madis<strong>on</strong>.Garwood, N. C. 1983 a. Seas<strong>on</strong>al rhythm of seed germ<strong>in</strong>ati<strong>on</strong> <strong>in</strong> asemideciduous tropical forest. Pages 173-185. In: Leigh, E. G. Jr.,Rand, A. S., and W<strong>in</strong>dor, D. M. (eds.). The ecology of a tropicalforest: seas<strong>on</strong>al rhythms and l<strong>on</strong>gtermchanges. Smiths<strong>on</strong>ian Inst.,Wash<strong>in</strong>gt<strong>on</strong>.Garwood, N. C. 1983 b. Seed germ<strong>in</strong>ati<strong>on</strong> <strong>in</strong> a seas<strong>on</strong>al tropical forest <strong>in</strong>Panama: a community study. Ecol. M<strong>on</strong>ogr. 53: 159- 181.Gaussen, H. 1959. The vegetati<strong>on</strong> maps, Trav. Sect. Sci. Tech. 1: 155-179.Gaussen, H., Legris, P., Viart, M., Meher-Homji, V.M., Sankaranarayanan,K.A., Dabholkr, M.V., Gupta, R.K. 1961 a. Sheet Cape Comor<strong>in</strong>:Internati<strong>on</strong>al map of vegetati<strong>on</strong> and envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s.Trav. Sect. Sci. Tech. Hors, Ser. 2.Gaussen, H., Legris, P. and Viart, M. 1961 b. Sheet Madras. Trav. Sect. Sci.Tech. Hors, Ser. 3.Gaussen, H., Legris, P., Viart, M., Marlange, M. and Meher-Homji, V.M. 1963a. Sheet Madras, Trav. Sect. Sci. Tech. Hors, Ser.5.


118 References CitedGaussen, H., Legris, P., Viart, M., Marlange, M. and Meher-Homji,V.M. 1963b. Sheet Jagannath. Trav. Sect. Sci. Tech. Hors, Ser.6.Gaussen, H., Legris, P., Viart, M. and Meher-Homji, V.M. and Labrow, L.1965 a. Sheet Mysore. Trav. Sect. Sci. Tech. Hors, Ser. 11.Gaussen, H., Legris, P., Viart, M. and Meher-Homji, V.M. and Labrow, L.1965 b. Sheet Bombay, Trav. Sect. Sci. Tech. Hors, Ser. 12.Gaussen, H., Legris, P., Blasco, F., Meher-Homji, V.M. and Troy,J.P. 1968 a.Sheet Kathiawar. Trav. Sect. Sci. Tech. Hors, Ser. No.14.Gaussen, H., Legris, P., Blasco, F., Meher-Homji, V.M. and Troy,J.P. 1968 b.Sheet Satpura Mounta<strong>in</strong>s. Trav. Sect. Sci. Tech. Hors, Ser. No.15.Gaussen, H., Meher-Homji, V.M., Legris, P., Blasco, F., Gupta, R.K. andTroy, J.P. 1971. Sheet Rajasthan. Trav. Sect. Sci. Tech. Hors, Ser.No.17.Gaussen, H., Legris, P., Blasco, F., Meher-Homji, V.M. and Troy,J.P. 1972.Sheet Wa<strong>in</strong>ganga. No.18.Gaussen, H., Meher-Homji, V.M., Blasco, F., F<strong>on</strong>tanel, J., Legris,P. andTroy, J.P. 1973. Sheet Orissa. Trav. Sect. Sci. Tech. Hors, Ser.No.19.Gaussen, H., Meher-Homji, V.M., F<strong>on</strong>tanel, J., Legris, P. and Pascal, J.P.1978. Sheet Allahabad. Trav. Sect. Sci. Tech. Hors, Ser. No.22.Geological Survey of India, 1976. Geology and m<strong>in</strong>eral resources of theStates of India, Part XI. Kerala. Miscellaneous publicati<strong>on</strong> no. 30.Geological Survey of India, Government of India.George, M. P. 1963. Work<strong>in</strong>g plan for the Trichur Forest Divisi<strong>on</strong> 1955-56to 1969-70. Govt. Press, Ernakulam.Gilbert, G. 1938. Observati<strong>on</strong>s prelim<strong>in</strong>ares sur la morphologie desplantules forestieres au C<strong>on</strong>go belge. Publ. INEAC, Ser. Sci., 17.Goff, F. G. and West, D. 1975. Canopy-understorey <strong>in</strong>teracti<strong>on</strong> effects <strong>on</strong>forest populati<strong>on</strong> structure. For. Sci. 21: 98- 108.


References Cited 119Gomez-Pompa, A., Vazquez-Yanes, C. and Guevara, S. 1972. The tropicalra<strong>in</strong> forest: a n<strong>on</strong>-renewable resource. Science 177: 762-765.Grime, J. P. 1979. Regenerative strategies. Pages 79-122. In: Grime, J. P.(ed.). Plant strategies and vegetati<strong>on</strong> process. John Wiley and S<strong>on</strong>s,New York.Hall, J. B. and Swa<strong>in</strong>e, M. D. 1980. Seed stocks <strong>in</strong> Ghanian forest soils.Biotropica 12: 256-263.Halle, F., Oldeman, R. A. A. and Toml<strong>in</strong>s<strong>on</strong>, P. B. 1978. Tropical <strong>trees</strong> andforests: an architectural analysis. Spr<strong>in</strong>ger - Verl ag, Berl<strong>in</strong>.Harper, J. L. 1977. Populati<strong>on</strong> biology of plants. Academic Press, L<strong>on</strong>d<strong>on</strong>.Harper, J. L. and White, J. 1974. The demography of plants. Ann. Rev. Ecol.Syst. 5: 419-463.Heuveldop, J. and Neumann, M. 1983. Structure and functi<strong>on</strong>s of ara<strong>in</strong>forest <strong>in</strong> the Internati<strong>on</strong>al Amaz<strong>on</strong> Ecosystem Project:Prelim<strong>in</strong>ary data <strong>on</strong> growth rates and <strong>natural</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> from apilot study. Turrialba 33: 25-38.Hoi, L. V. 1972. Forest calendar and forestry seed saig<strong>on</strong>. Inst. Rech. For.1972: 1-100.Holmes, C. H. 1942 a. Flower<strong>in</strong>g and fruit<strong>in</strong>g of forest <strong>trees</strong> <strong>in</strong> Ceyl<strong>on</strong>. Pt.1. Indian For. 68: 411-420.Holmes, C. H. 1942 b. Flower<strong>in</strong>g and fruit<strong>in</strong>g of forest <strong>trees</strong> <strong>in</strong> Ceyl<strong>on</strong>. Pt.2. Indian For. 68: 488-501.Holmes, C. H. 1966. The <strong>natural</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> of the wet and dry evergreenforests of Ceyl<strong>on</strong>. Ceyl<strong>on</strong> For. 2(4).Holttum, R. E. 1931. On periodic leaf change and flower<strong>in</strong>g of <strong>trees</strong> <strong>in</strong>S<strong>in</strong>gapore. Gard. Bull. S<strong>in</strong>gapore 5: 173-206.Horn, H. S. 1975 a. Forest successi<strong>on</strong>. Sci. Am. 232: 90-98.Horn, H. S. 1975 b. Markovian properties of forest successi<strong>on</strong>. Pages 196-211. In: Cody, M.L. and Diam<strong>on</strong>d, J.M. (eds.), Ecology and evoluti<strong>on</strong>of communities. Harvard Univ. Press, Cambridge.


120 References CitedHorn, H.S. 1976. Successi<strong>on</strong>. Pages 187-204. In: May, R.D. (ed.),Theoretical ecology. Blackwell Scientific Publ. , Oxford.Howe, H. F. and Smallwood, J. 1982. Ecology of seed dispersal. Ann. Rev.Ecol. Syst. 13: 201-228.Hubbell, S. P. 1979. Tree dispersi<strong>on</strong>, abundance and diversity <strong>in</strong> a tropicaldry forest. Science 203: 1299-1309.Jacks<strong>on</strong>, M. L. 1958. Soil chemical analysis. Englewood Cliffs, New Jersey.Janzen, D. H. 1971. Seed predati<strong>on</strong> by animals. Ann. Rev. Ecol. Syst. 2:465-492.Janzen, D. H. 1974 a. Tropical black-water rivers, animals and mastfruit<strong>in</strong>g by the Dipterocarpaceae. Biotropica 6: 69- 103.Janzen, D. H. 1974 b . The role of seed predator guild <strong>in</strong> a tropicaldeciduous forest, with <strong>some</strong> reflecti<strong>on</strong>s <strong>on</strong> tropical biologicalc<strong>on</strong>trol. Pages 3-14. In: J<strong>on</strong>es, D. P., and Solom<strong>on</strong>, M. E (eds.).Biology <strong>in</strong> pest and disease c<strong>on</strong>trol. Blackwell Scientific Publ.,Oxford.Janzen, D. H. 1978. Seed<strong>in</strong>g patterns of tropical <strong>trees</strong>. Pages 83- 128. In:Toml<strong>in</strong>s<strong>on</strong>, P. B. and Zimmerman, M. H. (eds.). Tropical <strong>trees</strong> asliv<strong>in</strong>g systems. Cambridge Univ. Press, Cambridge.Johns<strong>on</strong>, E. A. 1975. Buried seed populati<strong>on</strong>s <strong>in</strong> the subarctic forest eastof Great Slave Lake, Northwest Territories. Can. J. Bot. 53:2933-2941.J<strong>on</strong>es, E. W, 1950. Some aspects of <strong>natural</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> <strong>in</strong> the Ben<strong>in</strong> ra<strong>in</strong>forests. Empire. For. Rev. 29: 108-124.J<strong>on</strong>es, E. W, 1956. Ecological <str<strong>on</strong>g>studies</str<strong>on</strong>g> <strong>in</strong> the ra<strong>in</strong>forest of Southern Nigeria.IV. Part 2. J. Ecol. 44: 83-117.Kadambi, K. 1954. Dipterocarpus <strong>in</strong>dicus Bedd. (Syn. D. turb<strong>in</strong>atus Gaertn.f) its silviculture and management. Indian For. 80.Kadarnbi, K. 1957. The silviculture of gregarious types: Naturalreproducti<strong>on</strong> of teak. Trop. Silvi. 2: 187-192.


References Cited 121Kahn, F. 1982. Regenerati<strong>on</strong> of tropical ra<strong>in</strong> forest <strong>in</strong> the southwesternIvory Coast. Mem. Orsotom no. 97.Karpov, V. G. 1960. On the species compositi<strong>on</strong> of the viable seed supply<strong>in</strong> the soil of spruce-Vacc<strong>in</strong>ium myrtillus vegetati<strong>on</strong>. Trudy Mask.Obshch. Ispyt. Prir. 3: 131-140.Kaul, V. and Ra<strong>in</strong>a, R. 1980. The phenology of woody angiosperms <strong>in</strong>Sr<strong>in</strong>agar. Indian For. 106: 94-101.Keay, R. W. J. 1960. Seeds <strong>in</strong> forest soil. Nigeria For. Dept. Inform. Bull.,N. S., 4:l-12.Kellman, M. C. 1970. The viable seed c<strong>on</strong>tent of <strong>some</strong> forest soil <strong>in</strong> BritishColumbia. Can. J. Bot. 48: 1383-1385.Kho<strong>on</strong>, G. W. 1981. Studies <strong>on</strong> the <strong>natural</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> of a hillDipterocarp species, Hopea pedicellata. Malays. For. 44: 357- 369.Khosla, P. K., Shamet, G. S . and Sehgal, R. N. 1982. Phenology and breed<strong>in</strong>gsystems of Bombax ceiba L<strong>in</strong>n. (B. malabaricum). Proc. Symp.Improvement of forest biomass, Solan, India. Pages 41 -49.Koelmeyer, K. 0. 1959. The periodicity of leaf change and flower<strong>in</strong>g <strong>in</strong> thepr<strong>in</strong>cipal forest communities of Ceyl<strong>on</strong>. Ceyl<strong>on</strong> For. 4: 157-189.Krebs, C. J. 1972. Ecology: the experimental analysis of distributi<strong>on</strong> andabundance. Harper and Row, New York.Krishnaswamy, V. S. and Mathauda, G. S. 1960. Phenological behaviour ofa few forest species at New Forest, Dehra Dun. Indian For. Rec., N.S.,9 (2).Lancaster, 1952. Natural <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>: Tropical Nigeria. Proc. VIth Brit.Comm. For. C<strong>on</strong>f. Canada.Land<strong>on</strong>, F. H. and Settan, G. G. K. 1957. Forest and forest research <strong>in</strong> theFederati<strong>on</strong> of Malaya. Unasylva 11: 165-171.Lee, Y. N. 1971. Patterns of flower<strong>in</strong>g periods <strong>in</strong> selected floras of theworld. J. Korean Res. Inst. Better Liv<strong>in</strong>g 6: 41-51.


122 References CitedLeigh, E. G. Jr., Rand, A. B. and W<strong>in</strong>dsor, D. M. 1982. The ecology oftropical forest seas<strong>on</strong>al rhythms and l<strong>on</strong>g term changes.Smiths<strong>on</strong>ian Instituti<strong>on</strong> Press, Wash<strong>in</strong>gt<strong>on</strong>.Libby, W. J. 1973. Domesticati<strong>on</strong> strategies for forest <strong>trees</strong>. Can. J. For.Res. 3: 265-276.Liew, T. C. 1973. Occurrence of seeds <strong>in</strong> virg<strong>in</strong> forest top soil withparticular reference to sec<strong>on</strong>dary species <strong>in</strong> Sabah. Malays. For. 36:185-193.L<strong>in</strong>hart, U. B. and Whelan, R. J. 1980. Woodland <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> <strong>in</strong> relati<strong>on</strong> tograz<strong>in</strong>g and fenc<strong>in</strong>g <strong>in</strong> loed Gorswen, North Wales. J. Appl. Ecol. 17:827-840.Medway, L. 1972. Phenology of a tropical ra<strong>in</strong> forest <strong>in</strong> Malaya. Biol. J.L<strong>in</strong>n. Soc. 4: 117-146.Meher-Homji, V. M. 1979. The climate-vegetati<strong>on</strong> stability: case <str<strong>on</strong>g>studies</str<strong>on</strong>g>from the Indian subc<strong>on</strong>t<strong>in</strong>ent. Int. J. Ecol. Envir<strong>on</strong>. Sci. 5: 75-93.Melnik, V. I. 1985. Natural <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> of Picea abies <strong>in</strong> the polish regi<strong>on</strong>of the Ukra<strong>in</strong>e. Lesnoe Khozyaistro 6: 34-35.Men<strong>on</strong>, A. R. R. and Balasubramanyan, K. 1985. Species relati<strong>on</strong> <str<strong>on</strong>g>studies</str<strong>on</strong>g> <strong>in</strong><strong>moist</strong> deciduous forests of Trichur Forest Divisi<strong>on</strong> (Kerala). KFRIResearch Report no. 32.Mensbruge, C. de la. 1966. La germ<strong>in</strong>ati<strong>on</strong> et les plantules des essencesarborees de la foret dense humide de la cote d' ivoire Nogent-Sur-Marne. Centre Technique Forestier Tropical (CTFT) Publ. no.389.Meyer, H. A. 1952. Structure, growth and ga<strong>in</strong> <strong>in</strong> balanced uneven agedforests. J: For. 50: 85-92.Mo<strong>on</strong>ey, J. W. C. 1961. Classificati<strong>on</strong> of the vegetati<strong>on</strong> of the high forestz<strong>on</strong>e of Ghana. Pages 85-86.In: Unesco. Tropical Soils andVegetati<strong>on</strong>. Unesco, Paris.Mor<strong>in</strong>, H. 1986. Regenerati<strong>on</strong> of white spruce <strong>in</strong> the m<strong>on</strong>tane subalp<strong>in</strong>e andalp<strong>in</strong>e z<strong>on</strong>es of Mount Jaeques-Cortier Quebec. Natur. Canad. 113:347-354.


References Cited 123Murphy, P. G. and Lugo, A. E. 1986. Ecology of tropical dry forest. Ann.Rev. Ecol. Syst. 17: 67-88.Murray, M. 1981. Forest <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> at high latitudes. Experiences fromNorthern Sweden. USDA Forest Service, General Technical Report no.132.Nair, C. T. S. 1986. Management of the tropical wet evergreen forests <strong>in</strong>India: a comparative account of the silvicultural practices <strong>in</strong>Kerala, Andaman Islands and Assam. Paper read at the Symposium<strong>on</strong> Ra<strong>in</strong> Forest Regenera ti<strong>on</strong> and Management, Guri, Venezuela,1986.Nair, N. F. K., Nair, N. J. K. and Kutty, M. N. 1984. Resource atlas ofKerala. Centre for Earth Science Studies, Trivandrum.Nair, P. N. 1961. Regenerati<strong>on</strong> of <strong>moist</strong> tropical forests with specialreference to Kerala. DAIFC Dissertati<strong>on</strong>, Indian For. Coll., DehraDun.Newbold, A. J., Goldsmith, F. B. and Hard<strong>in</strong>u, J. S. 1981. The <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>of oak, beech and birch: a literature review. Discussi<strong>on</strong> Papers <strong>in</strong>C<strong>on</strong>servati<strong>on</strong>, Univ. College, L<strong>on</strong>d<strong>on</strong> no. 33.Ng, F. S. P. 1977. Gregarious flower<strong>in</strong>g of Dipterocarps <strong>in</strong> Kep<strong>on</strong>g, 1976.Malays. For. 40: 126-137.Ng, F. S. P. 1981. Vegetative and reproductive phenology of Dipterocarps.Malays. For. 44: 197-22 1.Ng, F. S. P. and Loh, H. S. 1974. Flower<strong>in</strong>g-to-fruit<strong>in</strong>g periods ofMalaysian <strong>trees</strong>. Malay. For. 37: 127-132.Nichols<strong>on</strong>, D. I. 1958. Natural <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> of logged tropical ra<strong>in</strong> forest,North Borneo. Malay. For. 21 (2).Nichols<strong>on</strong>, D. I. 1965. A study of virg<strong>in</strong> forest near Sandakan, NorthBorneo. Pages 67-87. In: Unesco. Proc. Symposium <strong>on</strong> EcologicalResearch <strong>in</strong> Humid Tropics Vegetati<strong>on</strong>, Kuch<strong>in</strong>g. 1963. Unesco.Oliver, C. D. and Lars<strong>on</strong>, B.C. 1990. Forest stand dynamics. McGraw-HillInc., New York.


124 References CitedPande, P. K. and Bisht, A. P. S. 1988. Regenerati<strong>on</strong> behaviour of <strong>some</strong> <strong>trees</strong>pecies of <strong>some</strong> forested ecosystems. J. Trop. For. 4: 78-84.Pellew, R. A. P. 1983. The impacts of elephant, giraffe, and fire <strong>on</strong> Acaciatortilis Woodlands of Serengeti. Afr. J. Ecol. 21: 41-74.Pierlot, R. 1966. Structure et compositi<strong>on</strong> des forets denses d' AfriqueCentrale, specialement celles du Kiru. Bruxelles, Mem. Acad. Roy.Sci. Outre-Mer, N. S., 16 (4).Pijl, van der, 1969. Pr<strong>in</strong>ciples of dispersal <strong>in</strong> higher plants.Spr<strong>in</strong>ger- Verlag , Berl<strong>in</strong>.P<strong>in</strong>to, A. E. 1970. Phenological <str<strong>on</strong>g>studies</str<strong>on</strong>g> of <strong>trees</strong> at El Verde. Pages D 237-269. In: Odum, H. T. (ed.). A tropical ra<strong>in</strong> forest . US Atomic EnergyCommissi<strong>on</strong>.Prasad, N. S. and Hegde, M. 1986. Phenology and seas<strong>on</strong>ality <strong>in</strong> thetropical deciduous forest of Bandipur, South India. Proc. IndianAcad. Sci., P1. Sci., 96: 121-134.Prasad, R. 1985. Effect of graz<strong>in</strong>g: Closure <strong>on</strong> the re habilitati<strong>on</strong> offlowered bamboo areas <strong>in</strong> Mandla forest of Madhya Pradesh. J. Trop.For. 1: 145-151.Primack, R. B. 1986. L<strong>on</strong>gevity of <strong>in</strong>dividual flowers. Ann. Rev. Ecol. Syst.16: 15-37.Puri, G. S., Gupta, R. K., Meher-Homji, V.M. and Puri, S. 1983. ForestEcology, Vol. 1, ed.2. Oxford & IBH, New Delhi.Ralhan, P. K., Khanna, R. K., S<strong>in</strong>gh, S. P. and S<strong>in</strong>gh, J. S. 1985.Phenological characteristics of the tree layer of Kumaun Himalayanforests. Vegetatio 60: 113-120.Ramachandran, K. K. 1988. Ecology and behaviour of Malabar GiantSquirrel: Ratufa <strong>in</strong>dica maxima. KFRI Res. Report no. 55 . KeralaForest Research Institute, Peechi.Rathcke, B. and Lacey, E. P. 1985. Phenological patterns of terrestrialplants. Ann. Rev. Ecol. Syst. 16: 179-214.


References Cited 125Ridley, H. N. 1930. The dispersal of plants throughout the world. L. Reeve,L<strong>on</strong>d<strong>on</strong>.Roberts, H. A. 1981. Seed banks <strong>in</strong> soils. Adv. Appl. Biol. 6: 1- 55.Roe, A. L. 1967. Seed dispersal <strong>in</strong> a bumper spruce seed year. U. S. ForestService Res. Pap. 39: 1-10.Rollet, B. 1952. Etudes sur les Forets claires du sud <strong>in</strong>doch<strong>in</strong>ois.Recherches Forestieres, Saig<strong>on</strong>.Rollet, B. 1962. Inventaire forestier de L'est Mek<strong>on</strong>g. FA0 Report no. 1500.FAO.Rollet, B. 1974. L'architecture des forets dense humide sempervirente depla<strong>in</strong>e. Centre Technique Forestier Tropicale, Nogent-Sur-Marne.Rosayro, R. A. 1954. A rec<strong>on</strong>naissance of S<strong>in</strong>haraja ra<strong>in</strong> forest. Ceyl<strong>on</strong>.For., (n. s.), 1: 68-74.Sankar, S., Thomas, T. P., Mary, M. V., Balagopalan, M. and Alexander, T.C. 1987. Properties of soils (profiles) <strong>in</strong> <strong>natural</strong> forests of TrichurForest Divisi<strong>on</strong>. Kerala Forest Research Institute (Unpublished).Satyamurthi, K. R. 1980. 'Silvometrics': Study<strong>in</strong>g the growth dynamics ofa stand of <strong>trees</strong>. Indian For. Rec., n. s., Statistical, 2(1).Saxena, A. K. and S<strong>in</strong>gh, J. S. 1984. Tree populati<strong>on</strong> structure of certa<strong>in</strong>Himalayan forest associati<strong>on</strong> and implicati<strong>on</strong>s c<strong>on</strong>cern<strong>in</strong>g theirfuture compositi<strong>on</strong>. Vegetatio 58: 61-69.Seth, S. K. 1974. Populati<strong>on</strong> dynamics of forest stands. Indian For. Rec., n.S.Silviculture 13 (1).Seth, S, K. and Kaul, 0. N. 1978. Tropical forest ecosystems of India: theteak forest. Pages 628-640. In : Unesco, UNEP and FAO. Tropicalforest ecosystems. Unesco-UNEP, France.Seymour, R. S., Hannah, P. R. Grace, J. R. and Marquis, D. A. 1986.Silviculture, the next 30 years, the past 30 years. J. For. 184:31-38.


126 References CitedSharma, J. S., Darbal, B. G. and S<strong>in</strong>g, K. 1985. Edaphic andmicroclimatological <str<strong>on</strong>g>studies</str<strong>on</strong>g> with reference to <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> of sal(Shorea robusta). Indian For. 11: 396-409.S<strong>in</strong>gh, G. 1983. Status of <strong>natural</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> of fir forest <strong>in</strong> Jammu andKashmir State. Indian J. For. 6: 132-136.S<strong>in</strong>gh, R. P. 1985. A note <strong>on</strong> the effect of graz<strong>in</strong>g <strong>on</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> ofCedrus deodara. Indian For. 11 1: 767-768.Shrivastava, R. K. 1982. A note <strong>on</strong> phenological observati<strong>on</strong>s <strong>on</strong> Aeglemarmelos Correa. Indian For. 108: 593-596.Shugart, H. H. 1984. A theory of forest dynamics: the ecologicalimplicati<strong>on</strong>s of forest secessi<strong>on</strong> models. Spr<strong>in</strong>ger-Verlag, New York,Berl<strong>in</strong>.Shukla, R. P. and Ramakrishnan, P. S. 1982. Phenology of <strong>trees</strong> <strong>in</strong> atropical humid forest <strong>in</strong> North Eastern India. Vegetatio 49:103- 109.Smythe, N. 1970. Relati<strong>on</strong>ship between fruit<strong>in</strong>g seas<strong>on</strong>s and seed dispersalmethods <strong>in</strong> a neotropical forest. Am. Nat. 104: 25- 35.Stebb<strong>in</strong>g, E. P. 1922. The forests of India. John Lane, L<strong>on</strong>d<strong>on</strong>.Sujatha, M. P. 1989. Variati<strong>on</strong> of soil properties <strong>in</strong> the surface soil sample(0-20 cm) of Kalluchal plot. Kerala Forest Research Institute(Unpublished).Sutt<strong>on</strong>, S. L ., Whitmore, T. C. and Chadwik, S. C. (eds.). 1983. Tropical ra<strong>in</strong>forest: ecology and management. Blackwell Scientific Publ., Oxford.Sym<strong>in</strong>gt<strong>on</strong>, C. F.-1933. The study of sec<strong>on</strong>dary growth <strong>on</strong> ra<strong>in</strong> forest sites<strong>in</strong> Malaya. Malay. For. 12: 107-117.Synnott, T. J. 1973. Seed problems. In: IUFRO Int. Symp. <strong>on</strong> SeedProcess<strong>in</strong>g, Rergen.Szappanos, A. 1986. Natural <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> of oak stands <strong>in</strong> the eighties.Ecos 35: 106- 110.


References Cited 127Tang, H. T. and Tamari, C. 1973. Seed descripti<strong>on</strong> and storage tests of<strong>some</strong> Dipterocarps. Malay. For. 36: 38-53,Thangam, E. S. 1982. Regenerati<strong>on</strong> methods of Dipterocarpus species <strong>in</strong>India. Indian For. 108: 637-647.Thomps<strong>on</strong>, K. and Grime, J. P. 1979. Seas<strong>on</strong>al variati<strong>on</strong> <strong>in</strong> the seed banksof herbaceous species <strong>in</strong> ten c<strong>on</strong>trast<strong>in</strong>g habitats, J. Ecol. 67:893-921.Troup, R. S. 1921. The silviculture of Indian <strong>trees</strong>, 3 vols. Oxford Univ.Press, Oxford.Unesco, 1975. Regi<strong>on</strong>al meet<strong>in</strong>g <strong>on</strong> <strong>in</strong>tegrated ecological research andtra<strong>in</strong><strong>in</strong>g needs <strong>in</strong> tropical deciduous and semideciduous forestecosystems of South Asia. MAB Report ser. no. 35. Hamburg-Re<strong>in</strong>Unesco, 1978 a. Chapter 5. Organizati<strong>on</strong> In: Tropical forest ecosystems.Pages 112-142. Unesco-UNEP, France.Unesco, 1978 b. Chapter 8. The <strong>natural</strong> forest: plant biology, <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>and tree growth. In: Tropical forest ecosystems: 180-215.Unesco-UNEP, France.Venn<strong>in</strong>g, J. 1985. Natural <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>: a South Australian perspective.Trs. Nat. Resource . 27: 9- 11.Walt<strong>on</strong>, A. B. 1955. Forests and forestry <strong>in</strong> North Borneo. Malay. For. 18:20-23.Walt<strong>on</strong>, A. B., Barnard, R. C. and Wyatt-Smith, J. 1952. Silviculture oflowland Dipterocarp forest <strong>in</strong> Malaya. Malay. For. 15: 1-181.Watt, A. S. 1919. On the causes of failure of <strong>natural</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> <strong>in</strong>British oak woods. J. Ecol. 7: 173-203.Watt, A. S. 1923. On the ecology of British beech woods with specialreference to their <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g>. Part I. The causes of failure of<strong>natural</strong> <str<strong>on</strong>g>regenerati<strong>on</strong></str<strong>on</strong>g> of the beech. J. Ecol. 11: 1- 48.Webb, L. J. Tracey, J. G. and Williams, W. T. 1972. Regenerati<strong>on</strong> andpattern <strong>in</strong> the subtropical ra<strong>in</strong> forest. J. Ecol. 60: 675- 695.


128 References CitedWest, D. C., Shugart, H. H. Jr. and Ranney, J. W. 1981. Populati<strong>on</strong> structureof forests over a large area. For. Sci. 27: 701-710.Westoby, M. 1984. The self-th<strong>in</strong>n<strong>in</strong>g rule. Adv. Ecol. Res. 14: 167-225.White, J. 1974. Dynamics of forest tree populati<strong>on</strong>s (Abstr.).Bot. Assoc. 7: 10-11.Bull. Can.White, J. 1975. Patterns of th<strong>in</strong>n<strong>in</strong>g of plant populati<strong>on</strong>s. Proc. 12thBot. C<strong>on</strong>gr. 1975.Int.White, J. 1980. Demographic factors <strong>in</strong> populati<strong>on</strong> of plants. Pages21-48. In: Solbrig, T. 0. (ed.). Demography and evoluti<strong>on</strong> <strong>in</strong> plantpopulati<strong>on</strong>s. Blackwell Scientific Publ., Oxford.White, J. 1981. The allometric <strong>in</strong>terpretati<strong>on</strong> of the self-th<strong>in</strong>n<strong>in</strong>g rule, J.Theor. Biol. 89: 475-500.Whitmore, T. C. 1983. Sec<strong>on</strong>dary successi<strong>on</strong> of seed <strong>in</strong> tropical ra<strong>in</strong> forests.For. Abstr. 44: 769-779.Wyatt-Smith, J. 1963. Manual of Malayan silviculture for <strong>in</strong>land forests.Malay. For. Rec. no. 23.Yocom, H. A. 1968. Short leaf p<strong>in</strong>e seed dispersal. J. For. 66: 422.Yoda, K., Kira, T., Ogawa, H. and Hozumi, H. 1963. Self th<strong>in</strong>n<strong>in</strong>g <strong>in</strong>overcrowded pure stands under cultivated and <strong>natural</strong> c<strong>on</strong>diti<strong>on</strong>s.J. Biol. Osaka Cy Univ. 14: 107-129.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!