13.07.2015 Views

Balanced Hermitian geometry on nilmanifolds

Balanced Hermitian geometry on nilmanifolds

Balanced Hermitian geometry on nilmanifolds

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <str<strong>on</strong>g>geometry</str<strong>on</strong>g><strong>on</strong> <strong>nilmanifolds</strong>Luis UgarteUniv. Zaragoza – I.U.M.A.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 1 / 28


OutlineGoal: invariant balanced <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <str<strong>on</strong>g>geometry</str<strong>on</strong>g> of <strong>nilmanifolds</strong> ofdimensi<strong>on</strong> 6, deformati<strong>on</strong> of balanced metrics and hol<strong>on</strong>omy of theassociated Bismut c<strong>on</strong>necti<strong>on</strong>. As an applicati<strong>on</strong>, soluti<strong>on</strong>s of theStrominger system with respect to the Bismut and Chern c<strong>on</strong>necti<strong>on</strong>.Invariant complex structures <strong>on</strong> <strong>nilmanifolds</strong>L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 2 / 28


OutlineGoal: invariant balanced <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <str<strong>on</strong>g>geometry</str<strong>on</strong>g> of <strong>nilmanifolds</strong> ofdimensi<strong>on</strong> 6, deformati<strong>on</strong> of balanced metrics and hol<strong>on</strong>omy of theassociated Bismut c<strong>on</strong>necti<strong>on</strong>. As an applicati<strong>on</strong>, soluti<strong>on</strong>s of theStrominger system with respect to the Bismut and Chern c<strong>on</strong>necti<strong>on</strong>.Invariant complex structures <strong>on</strong> <strong>nilmanifolds</strong><str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <str<strong>on</strong>g>geometry</str<strong>on</strong>g> in six dimensi<strong>on</strong>sL. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 2 / 28


OutlineGoal: invariant balanced <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <str<strong>on</strong>g>geometry</str<strong>on</strong>g> of <strong>nilmanifolds</strong> ofdimensi<strong>on</strong> 6, deformati<strong>on</strong> of balanced metrics and hol<strong>on</strong>omy of theassociated Bismut c<strong>on</strong>necti<strong>on</strong>. As an applicati<strong>on</strong>, soluti<strong>on</strong>s of theStrominger system with respect to the Bismut and Chern c<strong>on</strong>necti<strong>on</strong>.Invariant complex structures <strong>on</strong> <strong>nilmanifolds</strong><str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <str<strong>on</strong>g>geometry</str<strong>on</strong>g> in six dimensi<strong>on</strong>sDeformati<strong>on</strong> of balanced metricsL. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 2 / 28


OutlineGoal: invariant balanced <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <str<strong>on</strong>g>geometry</str<strong>on</strong>g> of <strong>nilmanifolds</strong> ofdimensi<strong>on</strong> 6, deformati<strong>on</strong> of balanced metrics and hol<strong>on</strong>omy of theassociated Bismut c<strong>on</strong>necti<strong>on</strong>. As an applicati<strong>on</strong>, soluti<strong>on</strong>s of theStrominger system with respect to the Bismut and Chern c<strong>on</strong>necti<strong>on</strong>.Invariant complex structures <strong>on</strong> <strong>nilmanifolds</strong><str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <str<strong>on</strong>g>geometry</str<strong>on</strong>g> in six dimensi<strong>on</strong>sDeformati<strong>on</strong> of balanced metricsHol<strong>on</strong>omy of the Bismut c<strong>on</strong>necti<strong>on</strong>L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 2 / 28


OutlineGoal: invariant balanced <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <str<strong>on</strong>g>geometry</str<strong>on</strong>g> of <strong>nilmanifolds</strong> ofdimensi<strong>on</strong> 6, deformati<strong>on</strong> of balanced metrics and hol<strong>on</strong>omy of theassociated Bismut c<strong>on</strong>necti<strong>on</strong>. As an applicati<strong>on</strong>, soluti<strong>on</strong>s of theStrominger system with respect to the Bismut and Chern c<strong>on</strong>necti<strong>on</strong>.Invariant complex structures <strong>on</strong> <strong>nilmanifolds</strong><str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <str<strong>on</strong>g>geometry</str<strong>on</strong>g> in six dimensi<strong>on</strong>sDeformati<strong>on</strong> of balanced metricsHol<strong>on</strong>omy of the Bismut c<strong>on</strong>necti<strong>on</strong>Applicati<strong>on</strong>s to heterotic string theoryL. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 2 / 28


OutlineGoal: invariant balanced <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <str<strong>on</strong>g>geometry</str<strong>on</strong>g> of <strong>nilmanifolds</strong> ofdimensi<strong>on</strong> 6, deformati<strong>on</strong> of balanced metrics and hol<strong>on</strong>omy of theassociated Bismut c<strong>on</strong>necti<strong>on</strong>. As an applicati<strong>on</strong>, soluti<strong>on</strong>s of theStrominger system with respect to the Bismut and Chern c<strong>on</strong>necti<strong>on</strong>.Invariant complex structures <strong>on</strong> <strong>nilmanifolds</strong><str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <str<strong>on</strong>g>geometry</str<strong>on</strong>g> in six dimensi<strong>on</strong>sDeformati<strong>on</strong> of balanced metricsHol<strong>on</strong>omy of the Bismut c<strong>on</strong>necti<strong>on</strong>Applicati<strong>on</strong>s to heterotic string theory(Joint work with M. Fernández, S. Ivanov and R. Villacampa.)L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 2 / 28


NilmanifoldsDef.: A nilmanifold is a compact quotient Γ\G of a simply c<strong>on</strong>nectednilpotent Lie group G by a lattice Γ of maximal rank.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 3 / 28


NilmanifoldsDef.: A nilmanifold is a compact quotient Γ\G of a simply c<strong>on</strong>nectednilpotent Lie group G by a lattice Γ of maximal rank.The Lie algebra g of G is s-step nilpotent, i.e. the ascending centralseriesg 0 = {0}, g l = {X ∈ g | [X, g] ⊆ g l−1 } , l ≥ 1,satisfies {0} ⊂ g 1 ⊂ · · · ⊂ g s−1 ≠ g s = g.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 3 / 28


NilmanifoldsDef.: A nilmanifold is a compact quotient Γ\G of a simply c<strong>on</strong>nectednilpotent Lie group G by a lattice Γ of maximal rank.The Lie algebra g of G is s-step nilpotent, i.e. the ascending centralseriesg 0 = {0}, g l = {X ∈ g | [X, g] ⊆ g l−1 } , l ≥ 1,satisfies {0} ⊂ g 1 ⊂ · · · ⊂ g s−1 ≠ g s = g.Nilmanifolds have proved to be useful in c<strong>on</strong>structing a rich and widevariety of examples of compact complex manifolds possessingadditi<strong>on</strong>al geometric structures with interesting properties.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 3 / 28


NilmanifoldsDef.: A nilmanifold is a compact quotient Γ\G of a simply c<strong>on</strong>nectednilpotent Lie group G by a lattice Γ of maximal rank.The Lie algebra g of G is s-step nilpotent, i.e. the ascending centralseriesg 0 = {0}, g l = {X ∈ g | [X, g] ⊆ g l−1 } , l ≥ 1,satisfies {0} ⊂ g 1 ⊂ · · · ⊂ g s−1 ≠ g s = g.Nilmanifolds have proved to be useful in c<strong>on</strong>structing a rich and widevariety of examples of compact complex manifolds possessingadditi<strong>on</strong>al geometric structures with interesting properties.Γ\G carries a Kähler metric if and <strong>on</strong>ly if it is a torus [BG][BG] C. Bens<strong>on</strong>, C. Gord<strong>on</strong>: Kähler and symplectic structures <strong>on</strong> <strong>nilmanifolds</strong>, Topology 27 (1988),513-518.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 3 / 28


Invariant complex structures <strong>on</strong> <strong>nilmanifolds</strong>We c<strong>on</strong>sider complex <strong>nilmanifolds</strong> (M = Γ\G, J) endowed with aninvariant complex structure J, i.e. J comes from a left-invariantintegrable almost complex structure <strong>on</strong> G.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 4 / 28


Invariant complex structures <strong>on</strong> <strong>nilmanifolds</strong>We c<strong>on</strong>sider complex <strong>nilmanifolds</strong> (M = Γ\G, J) endowed with aninvariant complex structure J, i.e. J comes from a left-invariantintegrable almost complex structure <strong>on</strong> G.The Lie algebra g of G has an endomorphism J : g −→ g such thatJ 2 = −Id, and[JX, JY ] = J[JX, Y ] + J[X, JY ] + [X, Y ], X, Y ∈ g.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 4 / 28


Invariant complex structures <strong>on</strong> <strong>nilmanifolds</strong>We c<strong>on</strong>sider complex <strong>nilmanifolds</strong> (M = Γ\G, J) endowed with aninvariant complex structure J, i.e. J comes from a left-invariantintegrable almost complex structure <strong>on</strong> G.The Lie algebra g of G has an endomorphism J : g −→ g such thatJ 2 = −Id, and[JX, JY ] = J[JX, Y ] + J[X, JY ] + [X, Y ], X, Y ∈ g.Equivalently,d(g 1,0 ) ⊂ ∧ 2,0 (g ∗ ) ⊕ ∧ 1,1 (g ∗ )L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 4 / 28


Invariant complex structures <strong>on</strong> <strong>nilmanifolds</strong>We c<strong>on</strong>sider complex <strong>nilmanifolds</strong> (M = Γ\G, J) endowed with aninvariant complex structure J, i.e. J comes from a left-invariantintegrable almost complex structure <strong>on</strong> G.The Lie algebra g of G has an endomorphism J : g −→ g such thatJ 2 = −Id, and[JX, JY ] = J[JX, Y ] + J[X, JY ] + [X, Y ], X, Y ∈ g.Equivalently,d(g 1,0 ) ⊂ ∧ 2,0 (g ∗ ) ⊕ ∧ 1,1 (g ∗ )In general the terms g l are not invariant under J.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 4 / 28


Invariant complex structures <strong>on</strong> <strong>nilmanifolds</strong>We c<strong>on</strong>sider complex <strong>nilmanifolds</strong> (M = Γ\G, J) endowed with aninvariant complex structure J, i.e. J comes from a left-invariantintegrable almost complex structure <strong>on</strong> G.The Lie algebra g of G has an endomorphism J : g −→ g such thatJ 2 = −Id, and[JX, JY ] = J[JX, Y ] + J[X, JY ] + [X, Y ], X, Y ∈ g.Equivalently,d(g 1,0 ) ⊂ ∧ 2,0 (g ∗ ) ⊕ ∧ 1,1 (g ∗ )In general the terms g l are not invariant under J. We define theascending series a l (J) compatible with J: a 0 (J) = {0},a l (J)={X ∈ g | [X, g] ⊆ a l−1 (J) and [JX, g] ⊆ a l−1 (J)}, l ≥1.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 4 / 28


Nilpotent complex structuresDef. [CFGU 1 ]: J is said to be nilpotent if a t (J) = g for some t,that is, {0} ⊂ a 1 (J) ⊂ · · · ⊂ a t−1 (J) ≠ a t (J) = g.[CFGU1] L.A. Cordero, M. Fernández, A. Gray, L. Ugarte: Compact <strong>nilmanifolds</strong> with nilpotent complexstructure: Dolbeault cohomology, Trans. Amer. Math. Soc. 352 (2000), 5405-5433.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 5 / 28


Nilpotent complex structuresDef. [CFGU 1 ]: J is said to be nilpotent if a t (J) = g for some t,that is, {0} ⊂ a 1 (J) ⊂ · · · ⊂ a t−1 (J) ≠ a t (J) = g.Particular examples of nilpotent complex structures:[CFGU1] L.A. Cordero, M. Fernández, A. Gray, L. Ugarte: Compact <strong>nilmanifolds</strong> with nilpotent complexstructure: Dolbeault cohomology, Trans. Amer. Math. Soc. 352 (2000), 5405-5433.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 5 / 28


Nilpotent complex structuresDef. [CFGU 1 ]: J is said to be nilpotent if a t (J) = g for some t,that is, {0} ⊂ a 1 (J) ⊂ · · · ⊂ a t−1 (J) ≠ a t (J) = g.Particular examples of nilpotent complex structures:Abelian complex structures: [JX, JY ] = [X, Y ].a l (J) = g l , l ≥1 ⇒ J nilpotent (g 1,0 abelian Lie algebra).[CFGU1] L.A. Cordero, M. Fernández, A. Gray, L. Ugarte: Compact <strong>nilmanifolds</strong> with nilpotent complexstructure: Dolbeault cohomology, Trans. Amer. Math. Soc. 352 (2000), 5405-5433.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 5 / 28


Nilpotent complex structuresDef. [CFGU 1 ]: J is said to be nilpotent if a t (J) = g for some t,that is, {0} ⊂ a 1 (J) ⊂ · · · ⊂ a t−1 (J) ≠ a t (J) = g.Particular examples of nilpotent complex structures:Abelian complex structures: [JX, JY ] = [X, Y ].a l (J) = g l , l ≥1 ⇒ J nilpotent (g 1,0 abelian Lie algebra).Complex-parallelizable structures: [JX, Y ] = J[X, Y ].a l (J) = g l , l ≥1 ⇒ J nilpotent (g complex Lie algebra).[CFGU1] L.A. Cordero, M. Fernández, A. Gray, L. Ugarte: Compact <strong>nilmanifolds</strong> with nilpotent complexstructure: Dolbeault cohomology, Trans. Amer. Math. Soc. 352 (2000), 5405-5433.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 5 / 28


Complex structure equati<strong>on</strong>sNilpotent structuresdω k ∈ ∧2 〈ω 1 , . . . , ω k−1 , ω 1 , . . . , ω k−1 〉, k = 1, . . . , n.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 6 / 28


Complex structure equati<strong>on</strong>sNilpotent structuresdω k ∈ ∧2 〈ω 1 , . . . , ω k−1 , ω 1 , . . . , ω k−1 〉, k = 1, . . . , n.Abeliand(g 1,0 ) ⊂ ∧ 1,1 (g ∗ )L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 6 / 28


Complex structure equati<strong>on</strong>sNilpotent structuresdω k ∈ ∧2 〈ω 1 , . . . , ω k−1 , ω 1 , . . . , ω k−1 〉, k = 1, . . . , n.Abeliand(g 1,0 ) ⊂ ∧ 1,1 (g ∗ )Complex-parallelizabled(g 1,0 ) ⊂ ∧ 2,0 (g ∗ )L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 6 / 28


Complex structure equati<strong>on</strong>sNilpotent structuresdω k ∈ ∧2 〈ω 1 , . . . , ω k−1 , ω 1 , . . . , ω k−1 〉, k = 1, . . . , n.Abeliand(g 1,0 ) ⊂ ∧ 1,1 (g ∗ )Complex-parallelizabled(g 1,0 ) ⊂ ∧ 2,0 (g ∗ )Theorem [S]J is a complex structure <strong>on</strong> a NLA g if and <strong>on</strong>ly if g 1,0 has a basis{ω k } n k=1 such that dω k ∈ I(ω 1 , . . . , ω k−1 ), k = 1, . . . , n.[S] S. Salam<strong>on</strong>: Complex structures <strong>on</strong> nilpotent Lie algebras, J. Pure Appl. Algebra 157 (2001), 311-333.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 6 / 28


Dimensi<strong>on</strong> 4Complex equati<strong>on</strong>s{dω 1 = 0dω 2 = A 12 ω 12 + A 1¯1ω 1¯1 + A 1¯2ω 1¯2L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 7 / 28


Dimensi<strong>on</strong> 4Complex equati<strong>on</strong>s{dω 1 = 0dω 2 = A 12 ω 12 + A 1¯1ω 1¯1 + A 1¯2ω 1¯2reduce to dω 1 = 0, dω 2 = ɛ ω 1¯1 (ɛ = 0, 1).L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 7 / 28


Dimensi<strong>on</strong> 4Complex equati<strong>on</strong>s{dω 1 = 0dω 2 = A 12 ω 12 + A 1¯1ω 1¯1 + A 1¯2ω 1¯2reduce to dω 1 = 0, dω 2 = ɛ ω 1¯1 (ɛ = 0, 1).Propositi<strong>on</strong>A 4-dimensi<strong>on</strong>al NLA g has a complex structure if and <strong>on</strong>ly if it isisomorphic to (0, 0, 0, 0) or (0, 0, 0, 12).Moreover, any complex structure J is abelian.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 7 / 28


Dimensi<strong>on</strong> 4Complex equati<strong>on</strong>s{dω 1 = 0dω 2 = A 12 ω 12 + A 1¯1ω 1¯1 + A 1¯2ω 1¯2reduce to dω 1 = 0, dω 2 = ɛ ω 1¯1 (ɛ = 0, 1).Propositi<strong>on</strong>A 4-dimensi<strong>on</strong>al NLA g has a complex structure if and <strong>on</strong>ly if it isisomorphic to (0, 0, 0, 0) or (0, 0, 0, 12).Moreover, any complex structure J is abelian.Notati<strong>on</strong>: g ∼ = (0, 0, 0, 12) means that ∃ basis {α 1 , α 2 , α 3 , α 4 } for g ∗such that dα 1 = dα 2 = dα 3 = 0, dα 4 = α 1 ∧ α 2 ;L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 7 / 28


Dimensi<strong>on</strong> 4Complex equati<strong>on</strong>s{dω 1 = 0dω 2 = A 12 ω 12 + A 1¯1ω 1¯1 + A 1¯2ω 1¯2reduce to dω 1 = 0, dω 2 = ɛ ω 1¯1 (ɛ = 0, 1).Propositi<strong>on</strong>A 4-dimensi<strong>on</strong>al NLA g has a complex structure if and <strong>on</strong>ly if it isisomorphic to (0, 0, 0, 0) or (0, 0, 0, 12) .Moreover, any complex structure J is abelian.Notati<strong>on</strong>: g ∼ = (0, 0, 0, 12) means that ∃ basis {α 1 , α 2 , α 3 , α 4 } for g ∗such that dα 1 = dα 2 = dα 3 = 0, dα 4 = α 1 ∧ α 2 ;Proof: if ɛ = 1 then ω 1 = α 1 + iα 2 , ω 2 = α 3 + iα 4 .L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 7 / 28


Dimensi<strong>on</strong> 6Generic complex equati<strong>on</strong>s:⎧dω 1 = 0,⎪⎨ dω 2 = A 12 ω 12 + A 13 ω 13 + A 1¯1ω 1¯1 + A 1¯2ω 1¯2 + A 1¯3ω 1¯3 ,⎪⎩dω 3 = B 12 ω 12 + B 13 ω 13 + B 1¯1ω 1¯1 + B 1¯2ω 1¯2 + B 1¯3ω 1¯3+ B 23 ω 23 + B 2¯1ω 2¯1 + B 2¯2ω 2¯2 + B 2¯3ω 2¯3 ,where A 12 , A 13 , A 1¯1,A 1¯2,A 1¯3,B 12 , . . . , B 2¯3∈ C.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 8 / 28


Reduced equati<strong>on</strong>s in dimensi<strong>on</strong> 6 [UV 1 ]Let J be a complex structure <strong>on</strong> a NLA g of dimensi<strong>on</strong> 6.[UV1] L. Ugarte, R. Villacampa: N<strong>on</strong>-nilpotent complex <str<strong>on</strong>g>geometry</str<strong>on</strong>g> of <strong>nilmanifolds</strong> and heterotic supersymmetry,arXiv:0912.5110v1 [math.DG]L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 9 / 28


Reduced equati<strong>on</strong>s in dimensi<strong>on</strong> 6 [UV 1 ]Let J be a complex structure <strong>on</strong> a NLA g of dimensi<strong>on</strong> 6.⎧dω 1 = 0,⎪⎨ dω 2 = ɛ ω 1¯1 ,J nilpotent:dω 3 = ρ ω 12 + (1−ɛ)A ω 1¯1 + B ω 1¯2⎪⎩+ C ω 2¯1 + (1−ɛ)D ω 2¯2,where A, B, C, D ∈ C and ɛ, ρ ∈ {0, 1};[UV1] L. Ugarte, R. Villacampa: N<strong>on</strong>-nilpotent complex <str<strong>on</strong>g>geometry</str<strong>on</strong>g> of <strong>nilmanifolds</strong> and heterotic supersymmetry,arXiv:0912.5110v1 [math.DG]L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 9 / 28


Reduced equati<strong>on</strong>s in dimensi<strong>on</strong> 6 [UV 1 ]Let J be a complex structure <strong>on</strong> a NLA g of dimensi<strong>on</strong> 6.⎧dω 1 = 0,⎪⎨ dω 2 = ɛ ω 1¯1 ,J nilpotent:dω 3 = ρ ω 12 + (1−ɛ)A ω 1¯1 + B ω 1¯2⎪⎩+ C ω 2¯1 + (1−ɛ)D ω 2¯2,where A, B, C, D ∈ C and ɛ, ρ ∈ {0, 1};⎧⎪⎨ dω 1 = 0,J n<strong>on</strong>-nilpotent: dω⎪⎩2 = ω 13 + ω 1¯3 ,dω 3 = i ɛ ω 1¯1 ± i(ω 1¯2 − ω 2¯1),where ɛ = 0, 1.[UV1] L. Ugarte, R. Villacampa: N<strong>on</strong>-nilpotent complex <str<strong>on</strong>g>geometry</str<strong>on</strong>g> of <strong>nilmanifolds</strong> and heterotic supersymmetry,arXiv:0912.5110v1 [math.DG]L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 9 / 28


Dimensi<strong>on</strong> 6Theorem [S, CFGU 2 ]A 6-dimensi<strong>on</strong>al NLA g has a complex structure if and <strong>on</strong>ly if it isisomorphic to:h 1 = (0,0,0,0,0,0),h 2 = (0,0,0,0,12,34),h 3 = (0,0,0,0,0,12+34),h 4 = (0,0,0,0,12,14+23),h 5 = (0,0,0,0,13+42,14+23),h 6 = (0,0,0,0,12,13),h 7 = (0,0,0,12,13,23),h 8 = (0,0,0,0,0,12),h 9 = (0,0,0,0,12,14+25),h 10 = (0,0,0,12,13,14),h 11 = (0,0,0,12,13,14+23),h 12 = (0,0,0,12,13,24),h 13 = (0,0,0,12,13+14,24),h 14 = (0,0,0,12,14,13+42),h 15 = (0,0,0,12,13+42,14+23),h 16 = (0,0,0,12,14,24),h − 19 = (0,0,0,12,23,14−35),h + 26 = (0,0,12,13,23,14+25).[CFGU2] L.A. Cordero, M. Fernández, A. Gray, L. Ugarte: Nilpotent complex structures <strong>on</strong> compact <strong>nilmanifolds</strong>,Rend. Circ. Mat. Palermo 49 (1997), 83-100.[S] S. Salam<strong>on</strong>: Complex structures <strong>on</strong> nilpotent Lie algebras, J. Pure Appl. Algebra 157 (2001), 311-333.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 10 / 28


Dimensi<strong>on</strong> 6Theorem [S, CFGU 2 ]A 6-dimensi<strong>on</strong>al NLA g has a complex structure if and <strong>on</strong>ly if it isisomorphic to:h 1 = (0,0,0,0,0,0),h 2 = (0,0,0,0,12,34),h 3 = (0,0,0,0,0,12+34),h 4 = (0,0,0,0,12,14+23),h 5 = (0,0,0,0,13+42,14+23),h 6 = (0,0,0,0,12,13),h 7 = (0,0,0,12,13,23),h 8 = (0,0,0,0,0,12),h 9 = (0,0,0,0,12,14+25),h 10 = (0,0,0,12,13,14),h 11 = (0,0,0,12,13,14+23),h 12 = (0,0,0,12,13,24),h 13 = (0,0,0,12,13+14,24),h 14 = (0,0,0,12,14,13+42),h 15 = (0,0,0,12,13+42,14+23),h 16 = (0,0,0,12,14,24),h − 19 = (0,0,0,12,23,14−35),h + 26 = (0,0,12,13,23,14+25).[CFGU2] L.A. Cordero, M. Fernández, A. Gray, L. Ugarte: Nilpotent complex structures <strong>on</strong> compact <strong>nilmanifolds</strong>,Rend. Circ. Mat. Palermo 49 (1997), 83-100.[S] S. Salam<strong>on</strong>: Complex structures <strong>on</strong> nilpotent Lie algebras, J. Pure Appl. Algebra 157 (2001), 311-333.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 10 / 28


Dimensi<strong>on</strong> 6Theorem [S, CFGU 2 ]A 6-dimensi<strong>on</strong>al NLA g has a complex structure if and <strong>on</strong>ly if it isisomorphic to:h 1 = (0,0,0,0,0,0),h 2 = (0,0,0,0,12,34) ,h 3 = (0,0,0,0,0,12+34),h 4 = (0,0,0,0,12,14+23),h 5 = (0,0,0,0,13+42,14+23),h 6 = (0,0,0,0,12,13),h 7 = (0,0,0,12,13,23),h 8 = (0,0,0,0,0,12),h 9 = (0,0,0,0,12,14+25),h 10 = (0,0,0,12,13,14),h 11 = (0,0,0,12,13,14+23),h 12 = (0,0,0,12,13,24),h 13 = (0,0,0,12,13+14,24),h 14 = (0,0,0,12,14,13+42),h 15 = (0,0,0,12,13+42,14+23),h 16 = (0,0,0,12,14,24),h − 19 = (0,0,0,12,23,14−35),h + 26 = (0,0,12,13,23,14+25).[CFGU2] L.A. Cordero, M. Fernández, A. Gray, L. Ugarte: Nilpotent complex structures <strong>on</strong> compact <strong>nilmanifolds</strong>,Rend. Circ. Mat. Palermo 49 (1997), 83-100.[S] S. Salam<strong>on</strong>: Complex structures <strong>on</strong> nilpotent Lie algebras, J. Pure Appl. Algebra 157 (2001), 311-333.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 10 / 28


Dimensi<strong>on</strong> 6Theorem [S, CFGU 2 ]A 6-dimensi<strong>on</strong>al NLA g has a complex structure if and <strong>on</strong>ly if it isisomorphic to:h 1 = (0,0,0,0,0,0),h 2 = (0,0,0,0,12,34),h 3 = (0,0,0,0,0,12+34) ,h 4 = (0,0,0,0,12,14+23),h 5 = (0,0,0,0,13+42,14+23),h 6 = (0,0,0,0,12,13),h 7 = (0,0,0,12,13,23),h 8 = (0,0,0,0,0,12),h 9 = (0,0,0,0,12,14+25),h 10 = (0,0,0,12,13,14),h 11 = (0,0,0,12,13,14+23),h 12 = (0,0,0,12,13,24),h 13 = (0,0,0,12,13+14,24),h 14 = (0,0,0,12,14,13+42),h 15 = (0,0,0,12,13+42,14+23),h 16 = (0,0,0,12,14,24),h − 19 = (0,0,0,12,23,14−35),h + 26 = (0,0,12,13,23,14+25).[CFGU2] L.A. Cordero, M. Fernández, A. Gray, L. Ugarte: Nilpotent complex structures <strong>on</strong> compact <strong>nilmanifolds</strong>,Rend. Circ. Mat. Palermo 49 (1997), 83-100.[S] S. Salam<strong>on</strong>: Complex structures <strong>on</strong> nilpotent Lie algebras, J. Pure Appl. Algebra 157 (2001), 311-333.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 10 / 28


Dimensi<strong>on</strong> 6Theorem [S, CFGU 2 ]A 6-dimensi<strong>on</strong>al NLA g has a complex structure if and <strong>on</strong>ly if it isisomorphic to:h 1 = (0,0,0,0,0,0),h 2 = (0,0,0,0,12,34),h 3 = (0,0,0,0,0,12+34),h 4 = (0,0,0,0,12,14+23),h 5 = (0,0,0,0,13+42,14+23) ,h 6 = (0,0,0,0,12,13),h 7 = (0,0,0,12,13,23),h 8 = (0,0,0,0,0,12),h 9 = (0,0,0,0,12,14+25),h 10 = (0,0,0,12,13,14),h 11 = (0,0,0,12,13,14+23),h 12 = (0,0,0,12,13,24),h 13 = (0,0,0,12,13+14,24),h 14 = (0,0,0,12,14,13+42),h 15 = (0,0,0,12,13+42,14+23),h 16 = (0,0,0,12,14,24),h − 19 = (0,0,0,12,23,14−35),h + 26 = (0,0,12,13,23,14+25).[CFGU2] L.A. Cordero, M. Fernández, A. Gray, L. Ugarte: Nilpotent complex structures <strong>on</strong> compact <strong>nilmanifolds</strong>,Rend. Circ. Mat. Palermo 49 (1997), 83-100.[S] S. Salam<strong>on</strong>: Complex structures <strong>on</strong> nilpotent Lie algebras, J. Pure Appl. Algebra 157 (2001), 311-333.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 10 / 28


Dimensi<strong>on</strong> 6Theorem [S, CFGU 2 ]A 6-dimensi<strong>on</strong>al NLA g has a complex structure if and <strong>on</strong>ly if it isisomorphic to:h 1 = (0,0,0,0,0,0),h 2 = (0,0,0,0,12,34),h 3 = (0,0,0,0,0,12+34),h 4 = (0,0,0,0,12,14+23),h 5 = (0,0,0,0,13+42,14+23),h 6 = (0,0,0,0,12,13),h 7 = (0,0,0,12,13,23),h 8 = (0,0,0,0,0,12),h 9 = (0,0,0,0,12,14+25),h 10 = (0,0,0,12,13,14),h 11 = (0,0,0,12,13,14+23),h 12 = (0,0,0,12,13,24),h 13 = (0,0,0,12,13+14,24),h 14 = (0,0,0,12,14,13+42),h 15 = (0,0,0,12,13+42,14+23),h 16 = (0,0,0,12,14,24),h − 19 = (0,0,0,12,23,14−35),h + 26 = (0,0,12,13,23,14+25).[CFGU2] L.A. Cordero, M. Fernández, A. Gray, L. Ugarte: Nilpotent complex structures <strong>on</strong> compact <strong>nilmanifolds</strong>,Rend. Circ. Mat. Palermo 49 (1997), 83-100.[S] S. Salam<strong>on</strong>: Complex structures <strong>on</strong> nilpotent Lie algebras, J. Pure Appl. Algebra 157 (2001), 311-333.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 10 / 28


<str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> structuresDef.: <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> structure <strong>on</strong> a manifold M 2n is a pair (J, g), J complexstructure and g Riemannian metric such that g(JX, JY ) = g(X, Y ).L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 11 / 28


<str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> structuresDef.: <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> structure <strong>on</strong> a manifold M 2n is a pair (J, g), J complexstructure and g Riemannian metric such that g(JX, JY ) = g(X, Y ).Fundamental 2-form: F(X, Y ) = g(X, JY ).L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 11 / 28


<str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> structuresDef.: <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> structure <strong>on</strong> a manifold M 2n is a pair (J, g), J complexstructure and g Riemannian metric such that g(JX, JY ) = g(X, Y ).Fundamental 2-form: F(X, Y ) = g(X, JY ).Lee 1-form: θ = 11−nJδF, where δ is the g-adjoint of d.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 11 / 28


<str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> structuresDef.: <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> structure <strong>on</strong> a manifold M 2n is a pair (J, g), J complexstructure and g Riemannian metric such that g(JX, JY ) = g(X, Y ).Fundamental 2-form: F(X, Y ) = g(X, JY ).Lee 1-form: θ = 11−nJδF, where δ is the g-adjoint of d.Bismut c<strong>on</strong>necti<strong>on</strong> [B]: ∇ B unique c<strong>on</strong>necti<strong>on</strong> for which g and J areparallel with torsi<strong>on</strong> T : g(X, T (Y , Z )) = JdF(X, Y , Z ).[B] J.-M. Bismut, A local index theorem for n<strong>on</strong>-Kähler manifolds, Math. Ann. 284 (1989), 681-699.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 11 / 28


<str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> structuresDef.: <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> structure <strong>on</strong> a manifold M 2n is a pair (J, g), J complexstructure and g Riemannian metric such that g(JX, JY ) = g(X, Y ).Fundamental 2-form: F(X, Y ) = g(X, JY ).Lee 1-form: θ = 11−nJδF, where δ is the g-adjoint of d.Bismut c<strong>on</strong>necti<strong>on</strong> [B]: ∇ B unique c<strong>on</strong>necti<strong>on</strong> for which g and J areparallel with torsi<strong>on</strong> T : g(X, T (Y , Z )) = JdF(X, Y , Z ).Special class [M]: (J, g) <strong>on</strong> M 2n is called <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> if theLee form θ ≡ 0. Equivalently, F n−1 is closed.[B] J.-M. Bismut, A local index theorem for n<strong>on</strong>-Kähler manifolds, Math. Ann. 284 (1989), 681-699.[M] M.L. Michelsohn, On the existence of special metrics in complex <str<strong>on</strong>g>geometry</str<strong>on</strong>g>, Acta Math. 149 (1982), 261-295.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 11 / 28


<str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> structuresDef.: <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> structure <strong>on</strong> a manifold M 2n is a pair (J, g), J complexstructure and g Riemannian metric such that g(JX, JY ) = g(X, Y ).Fundamental 2-form: F(X, Y ) = g(X, JY ).Lee 1-form: θ = 11−nJδF, where δ is the g-adjoint of d.Bismut c<strong>on</strong>necti<strong>on</strong> [B]: ∇ B unique c<strong>on</strong>necti<strong>on</strong> for which g and J areparallel with torsi<strong>on</strong> T : g(X, T (Y , Z )) = JdF(X, Y , Z ).Special class [M]: (J, g) <strong>on</strong> M 2n is called <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> if theLee form θ ≡ 0. Equivalently, F n−1 is closed.Intersecti<strong>on</strong>s in dimensi<strong>on</strong> 2n ≥ 6 [AI]:[B] J.-M. Bismut, A local index theorem for n<strong>on</strong>-Kähler manifolds, Math. Ann. 284 (1989), 681-699.[M] M.L. Michelsohn, On the existence of special metrics in complex <str<strong>on</strong>g>geometry</str<strong>on</strong>g>, Acta Math. 149 (1982), 261-295.[AI] B. Alexandrov, S. Ivanov: Vanishing theorems <strong>on</strong> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> manifolds, Differential Geom. Appl. 14 (2001), 251-265.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 11 / 28


<str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> structuresDef.: <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> structure <strong>on</strong> a manifold M 2n is a pair (J, g), J complexstructure and g Riemannian metric such that g(JX, JY ) = g(X, Y ).Fundamental 2-form: F(X, Y ) = g(X, JY ).Lee 1-form: θ = 11−nJδF, where δ is the g-adjoint of d.Bismut c<strong>on</strong>necti<strong>on</strong> [B]: ∇ B unique c<strong>on</strong>necti<strong>on</strong> for which g and J areparallel with torsi<strong>on</strong> T : g(X, T (Y , Z )) = JdF(X, Y , Z ).Special class [M]: (J, g) <strong>on</strong> M 2n is called <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> if theLee form θ ≡ 0. Equivalently, F n−1 is closed.Intersecti<strong>on</strong>s in dimensi<strong>on</strong> 2n ≥ 6 [AI]:BH ∩ LCK = K BH ∩ KT = K LCK ∩ KT = K[B] J.-M. Bismut, A local index theorem for n<strong>on</strong>-Kähler manifolds, Math. Ann. 284 (1989), 681-699.[M] M.L. Michelsohn, On the existence of special metrics in complex <str<strong>on</strong>g>geometry</str<strong>on</strong>g>, Acta Math. 149 (1982), 261-295.[AI] B. Alexandrov, S. Ivanov: Vanishing theorems <strong>on</strong> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> manifolds, Differential Geom. Appl. 14 (2001), 251-265.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 11 / 28


6-<strong>nilmanifolds</strong> with BH structurePropositi<strong>on</strong> [U]A compact nilmanifold M 6 = Γ\G admits a balanced metric compatiblewith an invariant complex structure J if and <strong>on</strong>ly if the Lie algebra of Gis isomorphic to h 1 ,. . .,h 6 or h − 19 .[U] L. Ugarte: <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> structures <strong>on</strong> six-dimensi<strong>on</strong>al <strong>nilmanifolds</strong>, Transform. Groups 12 (2007), 175-202.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 12 / 28


6-<strong>nilmanifolds</strong> with BH structurePropositi<strong>on</strong> [U]A compact nilmanifold M 6 = Γ\G admits a balanced metric compatiblewith an invariant complex structure J if and <strong>on</strong>ly if the Lie algebra of Gis isomorphic to h 1 ,. . .,h 6 or h − 19 .Remark: [B]: Symmetrizati<strong>on</strong> process <strong>on</strong> M = Γ\G: given anyQ : X(M) × · · · × X(M) −→ C ∞ (M), define Q ν : g × · · · × g −→ R byQ ν (X 1 , . . . , X k ) = ∫ p∈M Q p(X 1 | p , . . . , X k | p ) ν[U] L. Ugarte: <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> structures <strong>on</strong> six-dimensi<strong>on</strong>al <strong>nilmanifolds</strong>, Transform. Groups 12 (2007), 175-202.[B] F.A. Belgun: On the metric structure of n<strong>on</strong>-Kähler complex surfaces, Math. Ann. 317 (2000), 1-40.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 12 / 28


6-<strong>nilmanifolds</strong> with BH structurePropositi<strong>on</strong> [U]A compact nilmanifold M 6 = Γ\G admits a balanced metric compatiblewith an invariant complex structure J if and <strong>on</strong>ly if the Lie algebra of Gis isomorphic to h 1 ,. . .,h 6 or h − 19 .Remark: [B]: Symmetrizati<strong>on</strong> process <strong>on</strong> M = Γ\G: given anyQ : X(M) × · · · × X(M) −→ C ∞ (M), define Q ν : g × · · · × g −→ R byQ ν (X 1 , . . . , X k ) = ∫ p∈M Q p(X 1 | p , . . . , X k | p ) ν[FG]: dF 2 = 0 =⇒ d(F 2 ) ν = 0;J invariant =⇒ (F 2 ) ν is strictly positive (2, 2)-form;∃ (J, ĝ) <strong>on</strong> g such that ˆF 2 = (F 2 ) ν =⇒ (J, ĝ) is balanced <strong>on</strong> g.[U] L. Ugarte: <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> structures <strong>on</strong> six-dimensi<strong>on</strong>al <strong>nilmanifolds</strong>, Transform. Groups 12 (2007), 175-202.[B] F.A. Belgun: On the metric structure of n<strong>on</strong>-Kähler complex surfaces, Math. Ann. 317 (2000), 1-40.[FG] A. Fino, G. Grantcharov: Properties of manifolds with skew-symmetric torsi<strong>on</strong> and special hol<strong>on</strong>omy,Adv. Math. 189 (2004), 439-450.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 12 / 28


Proof: (1) Fixed a basis {ω j } 3 j=1 for g1,0 with respect to J, thefundamental 2-form F ∈ ∧2 g ∗ of any J-<str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> metric is given by:2 F = i(r 2 ω 1¯1 + s 2 ω 2¯2 + t 2 ω 3¯3) + u ω 1¯2 − ū ω 2¯1 + v ω 2¯3 − ¯v ω 3¯2+ z ω 1¯3 − ¯z ω 3¯1,where r 2 , s 2 , t 2 ∈ R ∗ and u, v, z ∈ C.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 13 / 28


Proof: (1) Fixed a basis {ω j } 3 j=1 for g1,0 with respect to J, thefundamental 2-form F ∈ ∧2 g ∗ of any J-<str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> metric is given by:2 F = i(r 2 ω 1¯1 + s 2 ω 2¯2 + t 2 ω 3¯3) + u ω 1¯2 − ū ω 2¯1 + v ω 2¯3 − ¯v ω 3¯2+ z ω 1¯3 − ¯z ω 3¯1,where r 2 , s 2 , t 2 ∈ R ∗ and u, v, z ∈ C.(2) J complex-parallelizable (h 5 , J 0 ): any F is balanced.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 13 / 28


Proof: (1) Fixed a basis {ω j } 3 j=1 for g1,0 with respect to J, thefundamental 2-form F ∈ ∧2 g ∗ of any J-<str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> metric is given by:2 F = i(r 2 ω 1¯1 + s 2 ω 2¯2 + t 2 ω 3¯3) + u ω 1¯2 − ū ω 2¯1 + v ω 2¯3 − ¯v ω 3¯2where r 2 , s 2 , t 2 ∈ R ∗ and u, v, z ∈ C.(2) J complex-parallelizable (h 5 , J 0 ): any F is balanced.+ z ω 1¯3 − ¯z ω 3¯1,(3) J nilpotent but not complex-parallelizable:{dω 1 = dω 2 = 0, dω 3 = ρ ω 12 + ω 1¯1 + b 2 ω 1¯2 + D ω 2¯2,2 F = i(ω 1¯1 + s 2 ω 2¯2 + t 2 ω 3¯3) + u ω 1¯2 − ū ω 2¯1,s 2 + D = ūb 2 i =⇒ g ∼ = h 1 , h 2 , h 3 , h 4 , h 5 , h 6L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 13 / 28


Proof: (1) Fixed a basis {ω j } 3 j=1 for g1,0 with respect to J, thefundamental 2-form F ∈ ∧2 g ∗ of any J-<str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> metric is given by:2 F = i(r 2 ω 1¯1 + s 2 ω 2¯2 + t 2 ω 3¯3) + u ω 1¯2 − ū ω 2¯1 + v ω 2¯3 − ¯v ω 3¯2where r 2 , s 2 , t 2 ∈ R ∗ and u, v, z ∈ C.(2) J complex-parallelizable (h 5 , J 0 ): any F is balanced.+ z ω 1¯3 − ¯z ω 3¯1,(3) J nilpotent but not complex-parallelizable:{dω 1 = dω 2 = 0, dω 3 = ρ ω 12 + ω 1¯1 + b 2 ω 1¯2 + D ω 2¯2,2 F = i(ω 1¯1 + s 2 ω 2¯2 + t 2 ω 3¯3) + u ω 1¯2 − ū ω 2¯1,s 2 + D = ūb 2 i =⇒ g ∼ = h 1 , h 2 , h 3 , h 4 , h 5 , h 6{dω 1 = 0, dω 2 = ω 13 + ω 1¯3, dω 3 = ±i(ω 1¯2− ω 2¯1),(4) J n<strong>on</strong>-nilp:2 F = i(r 2 ω 1¯1+ s 2 ω 2¯2+ t 2 ω 3¯3) + v ω 2¯3− ¯v ω 3¯2.g ∼ = h − 19L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 13 / 28


Deformati<strong>on</strong> of balanced metricsDefiniti<strong>on</strong> [FY]A complex manifold M 2n satisfies the (n − 1, n)-th weak ∂ ¯∂-lemma if:∀ real ϕ n−1,n−1 | ¯∂ϕ = ∂η, there exists ψ n−2,n−1 such that ¯∂ϕ = i∂ ¯∂ψ.[FY] J-X. Fu, S-T. Yau: A note <strong>on</strong> balanced metrics under small deformati<strong>on</strong>s, arXiv:1105.0026v2 [math.DG]L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 14 / 28


Deformati<strong>on</strong> of balanced metricsDefiniti<strong>on</strong> [FY]A complex manifold M 2n satisfies the (n − 1, n)-th weak ∂ ¯∂-lemma if:∀ real ϕ n−1,n−1 | ¯∂ϕ = ∂η, there exists ψ n−2,n−1 such that ¯∂ϕ = i∂ ¯∂ψ.Theorem [FY]Let M 2n complex and M λ a small deformati<strong>on</strong>. If M 0 has a balancedmetric and M λ satisfies the (n − 1, n)-th weak ∂ ¯∂-lemma for smallλ ≠ 0, then ∃ a balanced structure <strong>on</strong> M λ for sufficiently small λ.[FY] J-X. Fu, S-T. Yau: A note <strong>on</strong> balanced metrics under small deformati<strong>on</strong>s, arXiv:1105.0026v2 [math.DG]L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 14 / 28


Deformati<strong>on</strong> of balanced metricsDefiniti<strong>on</strong> [FY]A complex manifold M 2n satisfies the (n − 1, n)-th weak ∂ ¯∂-lemma if:∀ real ϕ n−1,n−1 | ¯∂ϕ = ∂η, there exists ψ n−2,n−1 such that ¯∂ϕ = i∂ ¯∂ψ.Theorem [FY]Let M 2n complex and M λ a small deformati<strong>on</strong>. If M 0 has a balancedmetric and M λ satisfies the (n − 1, n)-th weak ∂ ¯∂-lemma for smallλ ≠ 0, then ∃ a balanced structure <strong>on</strong> M λ for sufficiently small λ.Remark: small deformati<strong>on</strong> of the Iwasawa manifold (h 5 , J 0 ) does notsatisfy the (2, 3)-th weak ∂ ¯∂-lemma.Questi<strong>on</strong>: which <strong>nilmanifolds</strong> satisfy the (n − 1, n)-th weak ∂ ¯∂-lemma?[FY] J-X. Fu, S-T. Yau: A note <strong>on</strong> balanced metrics under small deformati<strong>on</strong>s, arXiv:1105.0026v2 [math.DG]L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 14 / 28


(n-1,n)-th weak ∂ ¯∂-lemma <strong>on</strong> <strong>nilmanifolds</strong>Propositi<strong>on</strong> [UV 2 ]Let M 2n = (Γ\G, J) nilmanifold, J invariant, g Lie algebra of G.(1) If (g, J) does not satisfy the weak lemma,then M does not satisfy the weak lemma.(2) If (g, J) satisfies the weak lemma and H n−2,n (M) ∼ = H n−2,n (g, J),then M satisfies the weak lemma.[UV2] L. Ugarte, R. Villacampa: <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <str<strong>on</strong>g>geometry</str<strong>on</strong>g> <strong>on</strong> 6-dimensi<strong>on</strong>al <strong>nilmanifolds</strong>, arXiv:1104.5524v2 [math.DG]L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 15 / 28


(n-1,n)-th weak ∂ ¯∂-lemma <strong>on</strong> <strong>nilmanifolds</strong>Propositi<strong>on</strong> [UV 2 ]Let M 2n = (Γ\G, J) nilmanifold, J invariant, g Lie algebra of G.(1) If (g, J) does not satisfy the weak lemma,then M does not satisfy the weak lemma.(2) If (g, J) satisfies the weak lemma and H n−2,n (M) ∼ = H n−2,n (g, J),then M satisfies the weak lemma.Proof: (1) Use the symmetrizati<strong>on</strong> process.[UV2] L. Ugarte, R. Villacampa: <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <str<strong>on</strong>g>geometry</str<strong>on</strong>g> <strong>on</strong> 6-dimensi<strong>on</strong>al <strong>nilmanifolds</strong>, arXiv:1104.5524v2 [math.DG]L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 15 / 28


(n-1,n)-th weak ∂ ¯∂-lemma <strong>on</strong> <strong>nilmanifolds</strong>Propositi<strong>on</strong> [UV 2 ]Let M 2n = (Γ\G, J) nilmanifold, J invariant, g Lie algebra of G.(1) If (g, J) does not satisfy the weak lemma,then M does not satisfy the weak lemma.(2) If (g, J) satisfies the weak lemma and H n−2,n (M) ∼ = H n−2,n (g, J),then M satisfies the weak lemma.Proof: (1) Use the symmetrizati<strong>on</strong> process.(2) Let ϕ ∈ Ω n−1,n−1 (M) real such that ¯∂ϕ = ∂η n−2,n .¯∂η =0, H n−2,n (M) ∼ = H n−2,n (g, J) =⇒ η = η ν + ¯∂(iα), α ∈ Ω n−2,n−1 (M);[UV2] L. Ugarte, R. Villacampa: <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <str<strong>on</strong>g>geometry</str<strong>on</strong>g> <strong>on</strong> 6-dimensi<strong>on</strong>al <strong>nilmanifolds</strong>, arXiv:1104.5524v2 [math.DG]L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 15 / 28


(n-1,n)-th weak ∂ ¯∂-lemma <strong>on</strong> <strong>nilmanifolds</strong>Propositi<strong>on</strong> [UV 2 ]Let M 2n = (Γ\G, J) nilmanifold, J invariant, g Lie algebra of G.(1) If (g, J) does not satisfy the weak lemma,then M does not satisfy the weak lemma.(2) If (g, J) satisfies the weak lemma and H n−2,n (M) ∼ = H n−2,n (g, J),then M satisfies the weak lemma.Proof: (1) Use the symmetrizati<strong>on</strong> process.(2) Let ϕ ∈ Ω n−1,n−1 (M) real such that ¯∂ϕ = ∂η n−2,n .¯∂η =0, H n−2,n (M) ∼ = H n−2,n (g, J) =⇒ η = η ν + ¯∂(iα), α ∈ Ω n−2,n−1 (M);¯∂ϕ = ∂η =⇒ ¯∂ϕ ν = ∂η ν = i∂ ¯∂ ˜α, ˜α ∈ ∧ n−2,n−1 (g).[UV2] L. Ugarte, R. Villacampa: <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <str<strong>on</strong>g>geometry</str<strong>on</strong>g> <strong>on</strong> 6-dimensi<strong>on</strong>al <strong>nilmanifolds</strong>, arXiv:1104.5524v2 [math.DG]L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 15 / 28


(n-1,n)-th weak ∂ ¯∂-lemma <strong>on</strong> <strong>nilmanifolds</strong>Propositi<strong>on</strong> [UV 2 ]Let M 2n = (Γ\G, J) nilmanifold, J invariant, g Lie algebra of G.(1) If (g, J) does not satisfy the weak lemma,then M does not satisfy the weak lemma.(2) If (g, J) satisfies the weak lemma and H n−2,n (M) ∼ = H n−2,n (g, J),then M satisfies the weak lemma.Proof: (1) Use the symmetrizati<strong>on</strong> process.(2) Let ϕ ∈ Ω n−1,n−1 (M) real such that ¯∂ϕ = ∂η n−2,n .¯∂η =0, H n−2,n (M) ∼ = H n−2,n (g, J) =⇒ η = η ν + ¯∂(iα), α ∈ Ω n−2,n−1 (M);¯∂ϕ = ∂η =⇒ ¯∂ϕ ν = ∂η ν = i∂ ¯∂ ˜α, ˜α ∈ ∧ n−2,n−1 (g).Therefore, ¯∂ϕ = i∂ ¯∂(˜α + α).[UV2] L. Ugarte, R. Villacampa: <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <str<strong>on</strong>g>geometry</str<strong>on</strong>g> <strong>on</strong> 6-dimensi<strong>on</strong>al <strong>nilmanifolds</strong>, arXiv:1104.5524v2 [math.DG]L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 15 / 28


Weak lemma for balanced 6-<strong>nilmanifolds</strong>Propositi<strong>on</strong> [UV 2 ]Let M 6 = Γ\G nilmanifold with g = h 1 , . . . , h 6 or h − 19, and J invariant <strong>on</strong>M. Then, (M, J) satisfies the weak lemma if and <strong>on</strong>ly if J is abelian,complex-parallelizable or of n<strong>on</strong>-nilpotent type.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 16 / 28


Weak lemma for balanced 6-<strong>nilmanifolds</strong>Propositi<strong>on</strong> [UV 2 ]Let M 6 = Γ\G nilmanifold with g = h 1 , . . . , h 6 or h − 19, and J invariant <strong>on</strong>M. Then, (M, J) satisfies the weak lemma if and <strong>on</strong>ly if J is abelian,complex-parallelizable or of n<strong>on</strong>-nilpotent type.Proof: Using [CF, R], it suffices to study the weak lemma <strong>on</strong> (g, J).[CF] S. C<strong>on</strong>sole, A. Fino: Dolbeault cohomology of compact <strong>nilmanifolds</strong>, Transform. Groups 6 (2001), 111-124.[R] S. Rollenske: Geometry of <strong>nilmanifolds</strong> with left-invariant complex structure and deformati<strong>on</strong>s in the large,Proc. L<strong>on</strong>d<strong>on</strong> Math. Soc. 99 (2009), 425-460.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 16 / 28


Weak lemma for balanced 6-<strong>nilmanifolds</strong>Propositi<strong>on</strong> [UV 2 ]Let M 6 = Γ\G nilmanifold with g = h 1 , . . . , h 6 or h − 19, and J invariant <strong>on</strong>M. Then, (M, J) satisfies the weak lemma if and <strong>on</strong>ly if J is abelian,complex-parallelizable or of n<strong>on</strong>-nilpotent type.Proof: Using [CF, R], it suffices to study the weak lemma <strong>on</strong> (g, J).J nilpotent: ∂ ¯∂( ∧ 1,2 (g ∗ )) = 0 ⊃ 〈ρ ω 12¯1¯2¯3〉 = ∂( ∧ 1,3 (g ∗ )) =⇒ ρ = 0[CF] S. C<strong>on</strong>sole, A. Fino: Dolbeault cohomology of compact <strong>nilmanifolds</strong>, Transform. Groups 6 (2001), 111-124.[R] S. Rollenske: Geometry of <strong>nilmanifolds</strong> with left-invariant complex structure and deformati<strong>on</strong>s in the large,Proc. L<strong>on</strong>d<strong>on</strong> Math. Soc. 99 (2009), 425-460.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 16 / 28


Weak lemma for balanced 6-<strong>nilmanifolds</strong>Propositi<strong>on</strong> [UV 2 ]Let M 6 = Γ\G nilmanifold with g = h 1 , . . . , h 6 or h − 19, and J invariant <strong>on</strong>M. Then, (M, J) satisfies the weak lemma if and <strong>on</strong>ly if J is abelian,complex-parallelizable or of n<strong>on</strong>-nilpotent type.Proof: Using [CF, R], it suffices to study the weak lemma <strong>on</strong> (g, J).J nilpotent: ∂ ¯∂( ∧ 1,2 (g ∗ )) = 0 ⊃ 〈ρ ω 12¯1¯2¯3〉 = ∂( ∧ 1,3 (g ∗ )) =⇒ ρ = 0J n<strong>on</strong>-nilpotent: ∂ ¯∂( ∧ 1,2 (g ∗ )) = 〈ω 13¯1¯2¯3〉 = ∂( ∧ 1,3 (g ∗ ))[CF] S. C<strong>on</strong>sole, A. Fino: Dolbeault cohomology of compact <strong>nilmanifolds</strong>, Transform. Groups 6 (2001), 111-124.[R] S. Rollenske: Geometry of <strong>nilmanifolds</strong> with left-invariant complex structure and deformati<strong>on</strong>s in the large,Proc. L<strong>on</strong>d<strong>on</strong> Math. Soc. 99 (2009), 425-460.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 16 / 28


Weak lemma for balanced 6-<strong>nilmanifolds</strong>Propositi<strong>on</strong> [UV 2 ]Let M 6 = Γ\G nilmanifold with g = h 1 , . . . , h 6 or h − 19, and J invariant <strong>on</strong>M. Then, (M, J) satisfies the weak lemma if and <strong>on</strong>ly if J is abelian,complex-parallelizable or of n<strong>on</strong>-nilpotent type.Proof: Using [CF, R], it suffices to study the weak lemma <strong>on</strong> (g, J).J nilpotent: ∂ ¯∂( ∧ 1,2 (g ∗ )) = 0 ⊃ 〈ρ ω 12¯1¯2¯3〉 = ∂( ∧ 1,3 (g ∗ )) =⇒ ρ = 0J n<strong>on</strong>-nilpotent: ∂ ¯∂( ∧ 1,2 (g ∗ )) = 〈ω 13¯1¯2¯3〉 = ∂( ∧ 1,3 (g ∗ ))Example: h 5 = (0, 0, 0, 0, 13 − 24, 14 + 23). For λ ∈ [0, 1),I λ : dµ 1 = dµ 2 = 0,dµ 3 = λ µ 12 + µ 1¯2[CF] S. C<strong>on</strong>sole, A. Fino: Dolbeault cohomology of compact <strong>nilmanifolds</strong>, Transform. Groups 6 (2001), 111-124.[R] S. Rollenske: Geometry of <strong>nilmanifolds</strong> with left-invariant complex structure and deformati<strong>on</strong>s in the large,Proc. L<strong>on</strong>d<strong>on</strong> Math. Soc. 99 (2009), 425-460.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 16 / 28


Weak lemma for balanced 6-<strong>nilmanifolds</strong>Propositi<strong>on</strong> [UV 2 ]Let M 6 = Γ\G nilmanifold with g = h 1 , . . . , h 6 or h − 19, and J invariant <strong>on</strong>M. Then, (M, J) satisfies the weak lemma if and <strong>on</strong>ly if J is abelian,complex-parallelizable or of n<strong>on</strong>-nilpotent type.Proof: Using [CF, R], it suffices to study the weak lemma <strong>on</strong> (g, J).J nilpotent: ∂ ¯∂( ∧ 1,2 (g ∗ )) = 0 ⊃ 〈ρ ω 12¯1¯2¯3〉 = ∂( ∧ 1,3 (g ∗ )) =⇒ ρ = 0J n<strong>on</strong>-nilpotent: ∂ ¯∂( ∧ 1,2 (g ∗ )) = 〈ω 13¯1¯2¯3〉 = ∂( ∧ 1,3 (g ∗ ))Example: h 5 = (0, 0, 0, 0, 13 − 24, 14 + 23). For λ ∈ [0, 1),I λ : dµ 1 = dµ 2 = 0,dµ 3 = λ µ 12 + µ 1¯2<str<strong>on</strong>g>Balanced</str<strong>on</strong>g> I λ -<str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> metric: g λ =diag(1, 1,√1+λ1−λ , √1+λ1−λ[CF] S. C<strong>on</strong>sole, A. Fino: Dolbeault cohomology of compact <strong>nilmanifolds</strong>, Transform. Groups 6 (2001), 111-124.[R] S. Rollenske: Geometry of <strong>nilmanifolds</strong> with left-invariant complex structure and deformati<strong>on</strong>s in the large,Proc. L<strong>on</strong>d<strong>on</strong> Math. Soc. 99 (2009), 425-460., 1+ λ, 1+λ)L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 16 / 28


Hol<strong>on</strong>omy of the Bismut c<strong>on</strong>necti<strong>on</strong>Given (J, g) <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>on</strong> M 2n , Hol(∇ B ) ⊂ U(n).L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 17 / 28


Hol<strong>on</strong>omy of the Bismut c<strong>on</strong>necti<strong>on</strong>Given (J, g) <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>on</strong> M 2n , Hol(∇ B ) ⊂ U(n).Def.: An SU(n)-structure <strong>on</strong> M 2n is a pair (F, Ψ) such that F is thefundamental 2-form of an almost <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> structure (J, g) andΨ is a (n,0)-form such that F ∧ Ψ = 0, F n = c n Ψ ∧ Ψ ≠ 0.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 17 / 28


Hol<strong>on</strong>omy of the Bismut c<strong>on</strong>necti<strong>on</strong>Given (J, g) <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>on</strong> M 2n , Hol(∇ B ) ⊂ U(n).Def.: An SU(n)-structure <strong>on</strong> M 2n is a pair (F, Ψ) such that F is thefundamental 2-form of an almost <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> structure (J, g) andΨ is a (n,0)-form such that F ∧ Ψ = 0, F n = c n Ψ ∧ Ψ ≠ 0.If, in additi<strong>on</strong>, ∇ B Ψ = 0 then Hol(∇ B ) ⊂ SU(n).L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 17 / 28


Hol<strong>on</strong>omy of the Bismut c<strong>on</strong>necti<strong>on</strong>Given (J, g) <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>on</strong> M 2n , Hol(∇ B ) ⊂ U(n).Def.: An SU(n)-structure <strong>on</strong> M 2n is a pair (F, Ψ) such that F is thefundamental 2-form of an almost <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> structure (J, g) andΨ is a (n,0)-form such that F ∧ Ψ = 0, F n = c n Ψ ∧ Ψ ≠ 0.If, in additi<strong>on</strong>, ∇ B Ψ = 0 then Hol(∇ B ) ⊂ SU(n).Propositi<strong>on</strong> [FPS]: An invariant <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> structure <strong>on</strong> a nilmanifoldM 2n = Γ\G is balanced if and <strong>on</strong>ly if Hol(∇ B ) ⊂ SU(n).∇ B (ω 1 ∧ · · · ∧ ω n ) = 0 for any basis {ω k } n k=1of g1,0[FPS] A. Fino, M. Part<strong>on</strong>, S. Salam<strong>on</strong>: Families of str<strong>on</strong>g KT structures in six dimensi<strong>on</strong>s, Comment. Math. Helv. 79 (2004)L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 17 / 28


Hol<strong>on</strong>omy of the Bismut c<strong>on</strong>necti<strong>on</strong>Given (J, g) <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>on</strong> M 2n , Hol(∇ B ) ⊂ U(n).Def.: An SU(n)-structure <strong>on</strong> M 2n is a pair (F, Ψ) such that F is thefundamental 2-form of an almost <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> structure (J, g) andΨ is a (n,0)-form such that F ∧ Ψ = 0, F n = c n Ψ ∧ Ψ ≠ 0.If, in additi<strong>on</strong>, ∇ B Ψ = 0 then Hol(∇ B ) ⊂ SU(n).Propositi<strong>on</strong> [FPS]: An invariant <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> structure <strong>on</strong> a nilmanifoldM 2n = Γ\G is balanced if and <strong>on</strong>ly if Hol(∇ B ) ⊂ SU(n).∇ B (ω 1 ∧ · · · ∧ ω n ) = 0 for any basis {ω k } n k=1of g1,0Questi<strong>on</strong>: which balanced <strong>nilmanifolds</strong> have Hol(∇ B ) = SU(n)?[FPS] A. Fino, M. Part<strong>on</strong>, S. Salam<strong>on</strong>: Families of str<strong>on</strong>g KT structures in six dimensi<strong>on</strong>s, Comment. Math. Helv. 79 (2004)L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 17 / 28


Propositi<strong>on</strong> [UV 2 ]Let (J,g) be an invariant balanced <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> structure <strong>on</strong> a nilmanifoldM 6 = Γ\G. Then, Hol(∇ B ) = SU(3) if and <strong>on</strong>ly if J is n<strong>on</strong>-abelian.Moreover, if J is abelian then Hol(∇ B ) ⊆ SU(2), with “=” iff g ∼ = h 5 .L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 18 / 28


Propositi<strong>on</strong> [UV 2 ]Let (J,g) be an invariant balanced <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> structure <strong>on</strong> a nilmanifoldM 6 = Γ\G. Then, Hol(∇ B ) = SU(3) if and <strong>on</strong>ly if J is n<strong>on</strong>-abelian.Moreover, if J is abelian then Hol(∇ B ) ⊆ SU(2), with “=” iff g ∼ = h 5 .Remarks: (1) Hol(∇ B ) <strong>on</strong>ly depends <strong>on</strong> the complex structure J.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 18 / 28


Propositi<strong>on</strong> [UV 2 ]Let (J,g) be an invariant balanced <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> structure <strong>on</strong> a nilmanifoldM 6 = Γ\G. Then, Hol(∇ B ) = SU(3) if and <strong>on</strong>ly if J is n<strong>on</strong>-abelian.Moreover, if J is abelian then Hol(∇ B ) ⊆ SU(2), with “=” iff g ∼ = h 5 .Remarks: (1) Hol(∇ B ) <strong>on</strong>ly depends <strong>on</strong> the complex structure J.(2) For (h 5 , I λ , g λ ): Hol(∇ B 0 ) = SU(2) and Hol(∇B λ) = SU(3) for λ ≠ 0.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 18 / 28


Propositi<strong>on</strong> [UV 2 ]Let (J,g) be an invariant balanced <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> structure <strong>on</strong> a nilmanifoldM 6 = Γ\G. Then, Hol(∇ B ) = SU(3) if and <strong>on</strong>ly if J is n<strong>on</strong>-abelian.Moreover, if J is abelian then Hol(∇ B ) ⊆ SU(2), with “=” iff g ∼ = h 5 .Remarks: (1) Hol(∇ B ) <strong>on</strong>ly depends <strong>on</strong> the complex structure J.(2) For (h 5 , I λ , g λ ): Hol(∇ B 0 ) = SU(2) and Hol(∇B λ) = SU(3) for λ ≠ 0.(3) The result does not hold <strong>on</strong> solvmanifolds. For example:g = (0, 0, −13 − 24, −14 + 23, 15 + 26, 16 − 25)Abelian complex structure: Je 1 = −e 2 , Je 3 = −e 4 , Je 5 = −e 6<str<strong>on</strong>g>Balanced</str<strong>on</strong>g> structure: F = e 12 + e 34 + e 56Ψ = (e 1 + i e 2 ) ∧ (e 3 + i e 4 ) ∧ (e 5 + i e 6 ) satisfies ∇ B Ψ = 0and Hol(∇ B ) = SU(3).L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 18 / 28


Proof: adapted basis: Je 1 = −e 2 , Je 3 = −e 4 , Je 5 = −e 6 ,F = e 12 + e 34 + e 56 , Ψ = (e 1 + i e 2 ) ∧ (e 3 + i e 4 ) ∧ (e 5 + i e 6 )L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 19 / 28


Proof: adapted basis: Je 1 = −e 2 , Je 3 = −e 4 , Je 5 = −e 6 ,F = e 12 + e 34 + e 56 , Ψ = (e 1 + i e 2 ) ∧ (e 3 + i e 4 ) ∧ (e 5 + i e 6 )• J nilpotent but not complex-parallelizable:⎧⎪⎨de 1 = de 2 = de 3 = de 4 = 0,⎪⎩de 5 =s t (ρ + b2 )e 13 −s t (ρ − b2 )e 24 ,de 6 = − 2 t (e 12 − e 34 ) +s t (ρ − b2 )e 14 +s t (ρ + b2 )e 23 ,⎧(de = 2sY 1 |u|b (e − e ) − tu 1 |u| Y 2 b2 (e 13 + e 24 ) + su 1 ρ (e 13 − e 24 ) + su 2 (ρ − b 2 )e 14 + (ρ + b 2 )e 23)] ,⎪⎩ de 6 = 2sY[(2s 2 −u 2 b 2 )|u| (e 12 − e 34 )+ tu 2 |u| Y 2 b2 (e 13 + e 24 )− su 2 ρ (e 13 − e 24 )+ su 1((ρ−b 2 )e 14 + (ρ+b 2 )e 23)]⎪⎨de 1 = de 2 = de 3 = de 4 = 0,[u 2 12 34 √ρ ∈ {0, 1}, b ∈ R, s, t ∈ R ∗ , s 2 > |u| 2 > 0, Y = 2 s 2 − |u| 2 /|u|t;L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 19 / 28


Proof: adapted basis: Je 1 = −e 2 , Je 3 = −e 4 , Je 5 = −e 6 ,F = e 12 + e 34 + e 56 , Ψ = (e 1 + i e 2 ) ∧ (e 3 + i e 4 ) ∧ (e 5 + i e 6 )• J nilpotent but not complex-parallelizable:⎧⎪⎨⎪⎩de 1 = de 2 = de 3 = de 4 = 0,de 5 = t s (ρ + b2 )e 13 − t s (ρ − b2 )e 24 ,de 6 = − 2 t (e 12 − e 34 ) + t s (ρ − b2 )e 14 + t s (ρ + b2 )e 23 ,⎧de 1 = de 2 = de 3 = de 4 = 0,⎪⎨(de 5 = 2sY[u 1 |u|b 2 (e 12 − e 34 ) − tu 1 |u| Y 2 b2 (e 13 + e 24 ) + su 1 ρ (e 13 − e 24 ) + su 2 (ρ − b 2 )e 14 + (ρ + b 2 )e 23)] ,⎪⎩ de 6 = 2sY[(2s 2 −u 2 b 2 )|u| (e 12 − e 34 )+ tu 2 |u| Y 2 b2 (e 13 + e 24 )− su 2 ρ (e 13 − e 24 )+ su 1((ρ−b 2 )e 14 + (ρ+b 2 )e 23)]√ρ ∈ {0, 1}, b ∈ R, s, t ∈ R ∗ , s 2 > |u| 2 > 0, Y = 2 s 2 − |u| 2 /|u|t;ρ = 0 ⇒⎧⎨∇ B (e 12 + e 34 ) = 0, ∇ B ((e 1 + i e 2 ) ∧ (e 3 + i e 4 )) = 0,⎩∇ B e 5 = 0, ∇ B e 6 = 0.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 19 / 28


Proof: adapted basis: Je 1 = −e 2 , Je 3 = −e 4 , Je 5 = −e 6 ,F = e 12 + e 34 + e 56 , Ψ = (e 1 + i e 2 ) ∧ (e 3 + i e 4 ) ∧ (e 5 + i e 6 )• J nilpotent but not complex-parallelizable:⎧⎪⎨⎪⎩de 1 = de 2 = de 3 = de 4 = 0,de 5 = t s (ρ + b2 )e 13 − t s (ρ − b2 )e 24 ,de 6 = − 2 t (e 12 − e 34 ) + t s (ρ − b2 )e 14 + t s (ρ + b2 )e 23 ,⎧de 1 = de 2 = de 3 = de 4 = 0,⎪⎨(de 5 = 2sY[u 1 |u|b 2 (e 12 − e 34 ) − tu 1 |u| Y 2 b2 (e 13 + e 24 ) + su 1 ρ (e 13 − e 24 ) + su 2 (ρ − b 2 )e 14 + (ρ + b 2 )e 23)] ,⎪⎩ de 6 = 2sY[(2s 2 −u 2 b 2 )|u| (e 12 − e 34 )+ tu 2 |u| Y 2 b2 (e 13 + e 24 )− su 2 ρ (e 13 − e 24 )+ su 1((ρ−b 2 )e 14 + (ρ+b 2 )e 23)]√ρ ∈ {0, 1}, b ∈ R, s, t ∈ R ∗ , s 2 > |u| 2 > 0, Y = 2 s 2 − |u| 2 /|u|t;ρ = 0 ⇒⎧⎨∇ B (e 12 + e 34 ) = 0, ∇ B ((e 1 + i e 2 ) ∧ (e 3 + i e 4 )) = 0,⎩∇ B e 5 = 0, ∇ B e 6 = 0.If, in additi<strong>on</strong>, b = 0 ⇒ ∇ B (e 12 ) = 0, ∇ B (e 34 ) = 0.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 19 / 28


Proof: adapted basis: Je 1 = −e 2 , Je 3 = −e 4 , Je 5 = −e 6 ,F = e 12 + e 34 + e 56 , Ψ = (e 1 + i e 2 ) ∧ (e 3 + i e 4 ) ∧ (e 5 + i e 6 )• J nilpotent but not complex-parallelizable:⎧⎪⎨⎪⎩de 1 = de 2 = de 3 = de 4 = 0,de 5 = t s (ρ + b2 )e 13 − t s (ρ − b2 )e 24 ,de 6 = − 2 t (e 12 − e 34 ) + t s (ρ − b2 )e 14 + t s (ρ + b2 )e 23 ,⎧de 1 = de 2 = de 3 = de 4 = 0,⎪⎨(de 5 = 2sY[u 1 |u|b 2 (e 12 − e 34 ) − tu 1 |u| Y 2 b2 (e 13 + e 24 ) + su 1 ρ (e 13 − e 24 ) + su 2 (ρ − b 2 )e 14 + (ρ + b 2 )e 23)] ,⎪⎩ de 6 = 2sY[(2s 2 −u 2 b 2 )|u| (e 12 − e 34 )+ tu 2 |u| Y 2 b2 (e 13 + e 24 )− su 2 ρ (e 13 − e 24 )+ su 1((ρ−b 2 )e 14 + (ρ+b 2 )e 23)]√ρ ∈ {0, 1}, b ∈ R, s, t ∈ R ∗ , s 2 > |u| 2 > 0, Y = 2 s 2 − |u| 2 /|u|t;ρ = 0 ⇒⎧⎨∇ B (e 12 + e 34 ) = 0, ∇ B ((e 1 + i e 2 ) ∧ (e 3 + i e 4 )) = 0,⎩∇ B e 5 = 0, ∇ B e 6 = 0.If, in additi<strong>on</strong>, b = 0 ⇒ ∇ B (e 12 ) = 0, ∇ B (e 34 ) = 0.• J complex-parallelizable or n<strong>on</strong>-nilpotent: always Hol(∇ B ) = SU(3).L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 19 / 28


Applicati<strong>on</strong>s to heterotic string theoryHeterotic string compactificati<strong>on</strong>s with fluxes:10-dimensi<strong>on</strong>al manifold R 1,3 × M 6 , M compact, endowed with:L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 20 / 28


Applicati<strong>on</strong>s to heterotic string theoryHeterotic string compactificati<strong>on</strong>s with fluxes:10-dimensi<strong>on</strong>al manifold R 1,3 × M 6 , M compact, endowed with:Three-form field strength H (flux);Dilat<strong>on</strong> functi<strong>on</strong> φ;N<strong>on</strong>-zero curvature 2-form F A of instant<strong>on</strong> type(D<strong>on</strong>alds<strong>on</strong>-Uhlenbeck-Yau instant<strong>on</strong> A);Curvature 2-form R of some metric c<strong>on</strong>necti<strong>on</strong> ∇;String tensi<strong>on</strong> α ′ > 0.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 20 / 28


C<strong>on</strong>sider H = T , the torsi<strong>on</strong> 3-form of ∇ B .Strominger system [St]: compact SU(3)-manifold satisfyingGravitino and dilatino equati<strong>on</strong>s: Hol(∇ B ) ⊂ SU(3),J integrable and Lee form θ = 2dφ;[St] A. Strominger: Superstrings with torsi<strong>on</strong>, Nuclear Phys. B 274 (1986), 254-284.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 21 / 28


C<strong>on</strong>sider H = T , the torsi<strong>on</strong> 3-form of ∇ B .Strominger system [St]: compact SU(3)-manifold satisfyingGravitino and dilatino equati<strong>on</strong>s: Hol(∇ B ) ⊂ SU(3),J integrable and Lee form θ = 2dφ;Gaugino equati<strong>on</strong>: D<strong>on</strong>alds<strong>on</strong>-Uhlenbeck-Yau’sSU(3)-instant<strong>on</strong> A:(F A ) i j (Je k, Je l ) = (F A ) i j (e ∑k, e l ),k (F A ) i j (e k, Je k ) = 0;[St] A. Strominger: Superstrings with torsi<strong>on</strong>, Nuclear Phys. B 274 (1986), 254-284.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 21 / 28


C<strong>on</strong>sider H = T , the torsi<strong>on</strong> 3-form of ∇ B .Strominger system [St]: compact SU(3)-manifold satisfyingGravitino and dilatino equati<strong>on</strong>s: Hol(∇ B ) ⊂ SU(3),J integrable and Lee form θ = 2dφ;Gaugino equati<strong>on</strong>: D<strong>on</strong>alds<strong>on</strong>-Uhlenbeck-Yau’sSU(3)-instant<strong>on</strong> A:(F A ) i j (Je k, Je l ) = (F A ) i j (e ∑k, e l ),k (F A ) i j (e k, Je k ) = 0;Anomaly cancellati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>:dT = α′4 (tr R ∧ R − tr F A ∧ F A ), α ′ > 0,R is the curvature of a metric c<strong>on</strong>necti<strong>on</strong> ∇ over M.[St] A. Strominger: Superstrings with torsi<strong>on</strong>, Nuclear Phys. B 274 (1986), 254-284.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 21 / 28


C<strong>on</strong>sider H = T , the torsi<strong>on</strong> 3-form of ∇ B .Strominger system [St]: compact SU(3)-manifold satisfyingGravitino and dilatino equati<strong>on</strong>s: Hol(∇ B ) ⊂ SU(3),J integrable and Lee form θ = 2dφ;Gaugino equati<strong>on</strong>: D<strong>on</strong>alds<strong>on</strong>-Uhlenbeck-Yau’sSU(3)-instant<strong>on</strong> A:(F A ) i j (Je k, Je l ) = (F A ) i j (e ∑k, e l ),k (F A ) i j (e k, Je k ) = 0;Anomaly cancellati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>:dT = α′4 (tr R ∧ R − tr F A ∧ F A ), α ′ > 0,R is the curvature of a metric c<strong>on</strong>necti<strong>on</strong> ∇ over M.Existence of soluti<strong>on</strong>s: [FY][FY] J-X. Fu, S-T. Yau: The theory of superstring with flux <strong>on</strong> n<strong>on</strong>-Kähler manifolds and the complex M<strong>on</strong>ge-Ampère equati<strong>on</strong>,J. Differential Geom. 78 (2008), 369-428.[St] A. Strominger: Superstrings with torsi<strong>on</strong>, Nuclear Phys. B 274 (1986), 254-284.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 21 / 28


Explicit soluti<strong>on</strong>s with c<strong>on</strong>stant dilat<strong>on</strong> φ [FIUV]:compact SU(3) manifold satisfyingGravitino and dilatino equati<strong>on</strong>s with c<strong>on</strong>stant dilat<strong>on</strong>:Hol(∇ B ) ⊂ SU(3) and <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> structure;Gaugino equati<strong>on</strong>: SU(3)-instant<strong>on</strong> A:(F A ) i j (Je k, Je l ) = (F A ) i j (e ∑k, e l ),k (F A ) i j (e k, Je k ) = 0;Anomaly cancellati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>:dT = α′4 (tr R ∧ R − tr F A ∧ F A ), α ′ > 0.Two cases: R = R B and R = R C .[FIUV] M. Fernández, S. Ivanov, L. Ugarte, R. Villacampa: N<strong>on</strong>-Kaehler heterotic-string compactificati<strong>on</strong>s with n<strong>on</strong>-zerofluxes and c<strong>on</strong>stant dilat<strong>on</strong>, Commun. Math. Phys. 288 (2009), 677-697.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 22 / 28


Explicit soluti<strong>on</strong>s with c<strong>on</strong>stant dilat<strong>on</strong> φ [FIUV]:compact SU(3) manifold satisfyingGravitino and dilatino equati<strong>on</strong>s with c<strong>on</strong>stant dilat<strong>on</strong>:Hol(∇ B ) ⊂ SU(3) and <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> structure;Gaugino equati<strong>on</strong>: SU(3)-instant<strong>on</strong> A:(F A ) i j (Je k, Je l ) = (F A ) i j (e ∑k, e l ),k (F A ) i j (e k, Je k ) = 0;Anomaly cancellati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>:dT = α′4 (tr R ∧ R − tr F A ∧ F A ), α ′ > 0.Two cases: R = R B and R = R C .Questi<strong>on</strong>: given a complex structure J <strong>on</strong> a nilmanifold M 6 ,can we ensure existence of soluti<strong>on</strong>?[FIUV] M. Fernández, S. Ivanov, L. Ugarte, R. Villacampa: N<strong>on</strong>-Kaehler heterotic-string compactificati<strong>on</strong>s with n<strong>on</strong>-zerofluxes and c<strong>on</strong>stant dilat<strong>on</strong>, Commun. Math. Phys. 288 (2009), 677-697.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 22 / 28


Soluti<strong>on</strong>s with respect to ∇ BTheoremLet M 6 nilmanifold with invariant BH structure (J, g). If J isabelian then for any g there is a n<strong>on</strong>-flat instant<strong>on</strong> solving theStrominger system with respect to ∇ B .L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 23 / 28


Soluti<strong>on</strong>s with respect to ∇ BTheoremLet M 6 nilmanifold with invariant BH structure (J, g). If J isabelian then for any g there is a n<strong>on</strong>-flat instant<strong>on</strong> solving theStrominger system with respect to ∇ B .Proof: two families of balanced structures for abelian J:(I)⎧⎪⎨⎪⎩de 1 = de 2 = de 3 = de 4 = 0,de 5 = t s b2 (e 13 + e 24 ),de 6 = − 2 t (e 12 − e 34 ) − t s b2 (e 14 − e 23 ),(II)⎧⎪⎨⎪⎩de 1 = de 2 = de 3 = de 4 = 0,[]de 5 = 2sY u 1 |u|b 2 (e 12 − e 34 ) − tu 1 |u| Y 2 b2 (e 13 + e 24 ) − su 2 b 2 (e 14 − e 23 ) ,[]de 6 = 2sY (2s 2 −u 2 b 2 )|u| (e 12 − e 34 )+ tu 2 |u| Y 2 b2 (e 13 + e 24 )− su 1 b 2 (e 14 − e 23 ) ,√where b 2 ∈ {0, 1}, s, t ∈ R ∗ , s 2 > |u| 2 > 0, Y = 2 s 2 −|u| 2.|u|tL. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 23 / 28


Instant<strong>on</strong> A: for each τ ∈ R, let A be the SU(3)-c<strong>on</strong>necti<strong>on</strong>:(σ A ) 1 2 = −(σA ) 2 1 = −(σA ) 3 4 = (σA ) 4 3 = τ(e5 + e 6 );then any (F A ) i j∈ su(3) because is a linear combinati<strong>on</strong> ofe 12 − e 34 , e 13 + e 24 , e 14 − e 23 .L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 24 / 28


Instant<strong>on</strong> A: for each τ ∈ R, let A be the SU(3)-c<strong>on</strong>necti<strong>on</strong>:(σ A ) 1 2 = −(σA ) 2 1 = −(σA ) 3 4 = (σA ) 4 3 = τ(e5 + e 6 );then any (F A ) i j∈ su(3) because is a linear combinati<strong>on</strong> ofe 12 − e 34 , e 13 + e 24 , e 14 − e 23 .For (I) and (II): tr F A ∧ F A = τ 2 C 1 (b, s, t, u) e 1234 , C 1 < 0L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 24 / 28


Instant<strong>on</strong> A: for each τ ∈ R, let A be the SU(3)-c<strong>on</strong>necti<strong>on</strong>:(σ A ) 1 2 = −(σA ) 2 1 = −(σA ) 3 4 = (σA ) 4 3 = τ(e5 + e 6 );then any (F A ) i j∈ su(3) because is a linear combinati<strong>on</strong> ofe 12 − e 34 , e 13 + e 24 , e 14 − e 23 .For (I) and (II): tr F A ∧ F A = τ 2 C 1 (b, s, t, u) e 1234 , C 1 < 0tr R B ∧ R B = C 2 (b, s, t, u) e 1234 , C 2 < 0L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 24 / 28


Instant<strong>on</strong> A: for each τ ∈ R, let A be the SU(3)-c<strong>on</strong>necti<strong>on</strong>:(σ A ) 1 2 = −(σA ) 2 1 = −(σA ) 3 4 = (σA ) 4 3 = τ(e5 + e 6 );then any (F A ) i j∈ su(3) because is a linear combinati<strong>on</strong> ofe 12 − e 34 , e 13 + e 24 , e 14 − e 23 .For (I) and (II): tr F A ∧ F A = τ 2 C 1 (b, s, t, u) e 1234 , C 1 < 0tr R B ∧ R B = C 2 (b, s, t, u) e 1234 , C 2 < 0α ′4 (tr RB ∧ R B − tr F A ∧ F A ) = α′4 (C 2 − τ 2 C 1 ) e 1234L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 24 / 28


Instant<strong>on</strong> A: for each τ ∈ R, let A be the SU(3)-c<strong>on</strong>necti<strong>on</strong>:(σ A ) 1 2 = −(σA ) 2 1 = −(σA ) 3 4 = (σA ) 4 3 = τ(e5 + e 6 );then any (F A ) i j∈ su(3) because is a linear combinati<strong>on</strong> ofe 12 − e 34 , e 13 + e 24 , e 14 − e 23 .For (I) and (II): tr F A ∧ F A = τ 2 C 1 (b, s, t, u) e 1234 , C 1 < 0tr R B ∧ R B = C 2 (b, s, t, u) e 1234 , C 2 < 0α ′4 (tr RB ∧ R B − tr F A ∧ F A ) = α′4 (C 2 − τ 2 C 1 ) e 1234dT = C 3 (b, s, t, u) e 1234 , C 3 < 0L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 24 / 28


Instant<strong>on</strong> A: for each τ ∈ R, let A be the SU(3)-c<strong>on</strong>necti<strong>on</strong>:(σ A ) 1 2 = −(σA ) 2 1 = −(σA ) 3 4 = (σA ) 4 3 = τ(e5 + e 6 );then any (F A ) i j∈ su(3) because is a linear combinati<strong>on</strong> ofe 12 − e 34 , e 13 + e 24 , e 14 − e 23 .For (I) and (II): tr F A ∧ F A = τ 2 C 1 (b, s, t, u) e 1234 , C 1 < 0tr R B ∧ R B = C 2 (b, s, t, u) e 1234 , C 2 < 0α ′4 (tr RB ∧ R B − tr F A ∧ F A ) = α′4 (C 2 − τ 2 C 1 ) e 1234dT = C 3 (b, s, t, u) e 1234 , C 3 < 0τ small enough ⇒ C 2 − τ 2 C 1 < 0 and α ′ = 4 C 3C 2 −τ 2 C 1> 0L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 24 / 28


Iwasawa manifold: <strong>on</strong> M 5 any abelian J has a compatiblebalanced metric g, and for any such g there is a n<strong>on</strong>-flatinstant<strong>on</strong> solving the Strominger system with respect to ∇ B .L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 25 / 28


Iwasawa manifold: <strong>on</strong> M 5 any abelian J has a compatiblebalanced metric g, and for any such g there is a n<strong>on</strong>-flatinstant<strong>on</strong> solving the Strominger system with respect to ∇ B .Generalized Heisenberg manifold: <strong>on</strong> M 3 there are two (abelian)complex structuresJ ± :dω 1 = dω 2 = 0, dω 3 = ω 1¯1 ± ω 2¯2Only J − has balanced metrics g, and for any such g thesoluti<strong>on</strong>s of the Strominger system also solve the heteroticequati<strong>on</strong>s of moti<strong>on</strong>.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 25 / 28


Iwasawa manifold: <strong>on</strong> M 5 any abelian J has a compatiblebalanced metric g, and for any such g there is a n<strong>on</strong>-flatinstant<strong>on</strong> solving the Strominger system with respect to ∇ B .Generalized Heisenberg manifold: <strong>on</strong> M 3 there are two (abelian)complex structuresJ ± :dω 1 = dω 2 = 0, dω 3 = ω 1¯1 ± ω 2¯2Only J − has balanced metrics g, and for any such g thesoluti<strong>on</strong>s of the Strominger system also solve the heteroticequati<strong>on</strong>s of moti<strong>on</strong>.Theorem [I]Given a soluti<strong>on</strong> of the Strominger system with respect to ∇,it solves the equati<strong>on</strong>s of moti<strong>on</strong> ⇐⇒ ∇ is of instant<strong>on</strong> type.[I] S. Ivanov: Heterotic supersymmetry, anomaly cancellati<strong>on</strong> and equati<strong>on</strong>s of moti<strong>on</strong>, Phys. Lett. B 685 (2010), 190-196.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 25 / 28


Soluti<strong>on</strong>s with respect to ∇ CTheoremLet M nilmanifold corresp<strong>on</strong>ding to h − 19. For any J there is a soluti<strong>on</strong> ofthe Strominger system with respect to ∇ C with n<strong>on</strong>-flat instant<strong>on</strong>.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 26 / 28


Soluti<strong>on</strong>s with respect to ∇ CTheoremLet M nilmanifold corresp<strong>on</strong>ding to h − 19. For any J there is a soluti<strong>on</strong> ofthe Strominger system with respect to ∇ C with n<strong>on</strong>-flat instant<strong>on</strong>.Proof: Any J ∼ = J ± and for J ± c<strong>on</strong>sider with respect to an adaptedbasis {e 1 , . . . , e 6 }, the family of balanced structures F :⎧⎨⎩de 1 = 0, de 2 = 0, de 3 = 2sre 15 , de 4 = 2sre 25 ,de 5 = 0, de 6 = ± 2 rs (e13 + e 24 ), r, s ∈ R ∗ .L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 26 / 28


Soluti<strong>on</strong>s with respect to ∇ CTheoremLet M nilmanifold corresp<strong>on</strong>ding to h − 19. For any J there is a soluti<strong>on</strong> ofthe Strominger system with respect to ∇ C with n<strong>on</strong>-flat instant<strong>on</strong>.Proof: Any J ∼ = J ± and for J ± c<strong>on</strong>sider with respect to an adaptedbasis {e 1 , . . . , e 6 }, the family of balanced structures F :⎧⎨⎩de 1 = 0, de 2 = 0, de 3 = 2sre 15 , de 4 = 2sre 25 ,de 5 = 0, de 6 = ± 2 rs (e13 + e 24 ), r, s ∈ R ∗ .Instant<strong>on</strong> A: for each τ ∈ R, let A be the SU(3)-c<strong>on</strong>necti<strong>on</strong>(σ A ) 2 3 = (σA ) 2 5 = (σA ) 4 5 = 1 2 (σA ) 5 6 = −τ e6 , σ j i= −σ i j ,(σ A ) i j= τ e 6 , for 1 ≤ i < j ≤ 6, (i, j) ≠ (2, 3), (2, 5), (4, 5), (5, 6).Then, any (F A ) i jis a multiple of e 13 + e 24 ∈ su(3).L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 26 / 28


tr F A ∧ F A = −144 τ 2r 2 s 2 e 1234L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 27 / 28


tr F A ∧ F A = −144 τ 2r 2 s 2 e 1234tr R C ∧ R C = − 16r 4 e 1234 − 16r 4 e 1256L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 27 / 28


tr F A ∧ F A = −144 τ 2r 2 s 2 e 1234tr R C ∧ R C = − 16r 4 e 1234 − 16r 4 e 1256α ′4 (tr RC ∧ R C − tr F A ∧ F A ) = − 4(s2 −9τ 2 r 2 )α ′e 1234 − 4α′ e 1256r 4 s 2 r 4L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 27 / 28


tr F A ∧ F A = −144 τ 2r 2 s 2 e 1234tr R C ∧ R C = − 16r 4 e 1234 − 16r 4 e 1256α ′4 (tr RC ∧ R C − tr F A ∧ F A ) = − 4(s2 −9τ 2 r 2 )α ′e 1234 − 4α′ e 1256r 4 s 2 r 4dT = − 8r 2 s 2 e 1234 − 8s2r 2 e 1256L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 27 / 28


tr F A ∧ F A = −144 τ 2r 2 s 2 e 1234tr R C ∧ R C = − 16r 4 e 1234 − 16r 4 e 1256α ′4 (tr RC ∧ R C − tr F A ∧ F A ) = − 4(s2 −9τ 2 r 2 )α ′e 1234 − 4α′ e 1256r 4 s 2 r 4Therefore, α ′ = 2r 2 s 2 > 0 and τ =dT = − 8r 2 s 2 e 1234 − 8s2r 2 e 1256√s 4 −19r 2 s 2L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 27 / 28


tr F A ∧ F A = −144 τ 2r 2 s 2 e 1234tr R C ∧ R C = − 16r 4 e 1234 − 16r 4 e 1256α ′4 (tr RC ∧ R C − tr F A ∧ F A ) = − 4(s2 −9τ 2 r 2 )α ′e 1234 − 4α′ e 1256r 4 s 2 r 4Therefore, α ′ = 2r 2 s 2 > 0 and τ =dT = − 8r 2 s 2 e 1234 − 8s2r 2 e 1256√s 4 −19r 2 s 2 (⇒ s 2 ≥ 1).⊲ instant<strong>on</strong> A is n<strong>on</strong>-flat if and <strong>on</strong>ly if s 2 > 1.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 27 / 28


CorollaryLet M nilmanifold corresp<strong>on</strong>ding to h − 19. For any J there is (F, Ψ, A),with A n<strong>on</strong>-flat, solving the anomaly cancellati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s for both∇ B and ∇ C .L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 28 / 28


CorollaryLet M nilmanifold corresp<strong>on</strong>ding to h − 19. For any J there is (F, Ψ, A),with A n<strong>on</strong>-flat, solving the anomaly cancellati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s for both∇ B and ∇ C .Proof: tr R B ∧ R B = 16(s4 −4)r 4 s 4e 1234 −16 s4r 4 e 1256L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 28 / 28


CorollaryLet M nilmanifold corresp<strong>on</strong>ding to h − 19. For any J there is (F, Ψ, A),with A n<strong>on</strong>-flat, solving the anomaly cancellati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s for both∇ B and ∇ C .Proof: tr R B ∧ R B = 16(s4 −4)r 4 s 4e 1234 −16 s4r 4 e 1256α ′4 (tr RB ∧ R B − tr F A ∧ F A ) = (4 s4 −16+36 r 2 s 2 τ 2 )α ′e 1234 − 4 s4 α ′e 1256r 4 s 4 r 4L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 28 / 28


CorollaryLet M nilmanifold corresp<strong>on</strong>ding to h − 19. For any J there is (F, Ψ, A),with A n<strong>on</strong>-flat, solving the anomaly cancellati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s for both∇ B and ∇ C .Proof: tr R B ∧ R B = 16(s4 −4)r 4 s 4e 1234 −16 s4r 4 e 1256α ′4 (tr RB ∧ R B − tr F A ∧ F A ) = (4 s4 −16+36 r 2 s 2 τ 2 )α ′e 1234 − 4 s4 α ′e 1256r 4 s 4 r 4dT = − 8r 2 s 2 e 1234 − 8s2r 2 e 1256L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 28 / 28


CorollaryLet M nilmanifold corresp<strong>on</strong>ding to h − 19. For any J there is (F, Ψ, A),with A n<strong>on</strong>-flat, solving the anomaly cancellati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s for both∇ B and ∇ C .Proof: tr R B ∧ R B = 16(s4 −4)r 4 s 4e 1234 −16 s4r 4 e 1256α ′4 (tr RB ∧ R B − tr F A ∧ F A ) = (4 s4 −16+36 r 2 s 2 τ 2 )α ′e 1234 − 4 s4 α ′e 1256r 4 s 4 r 4Therefore, α ′ = 2r 2s 2 > 0 and ˜τ =dT = − 8 e 1234 − 8s2r 2 s 2√2(2−s 4 )9r 2 s 2r 2 e 1256L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 28 / 28


CorollaryLet M nilmanifold corresp<strong>on</strong>ding to h − 19. For any J there is (F, Ψ, A),with A n<strong>on</strong>-flat, solving the anomaly cancellati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s for both∇ B and ∇ C .Proof: tr R B ∧ R B = 16(s4 −4)r 4 s 4e 1234 −16 s4r 4 e 1256α ′4 (tr RB ∧ R B − tr F A ∧ F A ) = (4 s4 −16+36 r 2 s 2 τ 2 )α ′e 1234 − 4 s4 α ′e 1256r 4 s 4 r 4Therefore, α ′ = 2r 2s 2 > 0 and ˜τ =dT = − 8 e 1234 − 8s2r 2 s 2r 2 e 1256√2(2−s 4 )9r 2 s 2 (⇒ s 2 ≤ √ 2).L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 28 / 28


CorollaryLet M nilmanifold corresp<strong>on</strong>ding to h − 19. For any J there is (F, Ψ, A),with A n<strong>on</strong>-flat, solving the anomaly cancellati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s for both∇ B and ∇ C .Proof: tr R B ∧ R B = 16(s4 −4)r 4 s 4e 1234 −16 s4r 4 e 1256α ′4 (tr RB ∧ R B − tr F A ∧ F A ) = (4 s4 −16+36 r 2 s 2 τ 2 )α ′e 1234 − 4 s4 α ′e 1256r 4 s 4 r 4Therefore, α ′ = 2r 2s 2 > 0 and ˜τ =dT = − 8 e 1234 − 8s2r 2 s 2r 2 e 1256√2(2−s 4 )9r 2 s 2 (⇒ s 2 ≤ √ 2).⊲ For s 2 ∈ (1, √ 2), ∃ n<strong>on</strong>-flat A τ and A˜τ solving the systems.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 28 / 28


CorollaryLet M nilmanifold corresp<strong>on</strong>ding to h − 19. For any J there is (F, Ψ, A),with A n<strong>on</strong>-flat, solving the anomaly cancellati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s for both∇ B and ∇ C .Proof: tr R B ∧ R B = 16(s4 −4)r 4 s 4e 1234 −16 s4r 4 e 1256α ′4 (tr RB ∧ R B − tr F A ∧ F A ) = (4 s4 −16+36 r 2 s 2 τ 2 )α ′e 1234 − 4 s4 α ′e 1256r 4 s 4 r 4Therefore, α ′ = 2r 2s 2 > 0 and ˜τ =dT = − 8 e 1234 − 8s2r 2 s 2r 2 e 1256√2(2−s 4 )9r 2 s 2 (⇒ s 2 ≤ √ 2).⊲ For s 2 ∈ (1, √ 2), ∃ n<strong>on</strong>-flat A τ and A˜τ solving the systems.√⊲ If s 2 5=3then τ = ˜τ and the instant<strong>on</strong> solves both systems.L. Ugarte (Univ. Zaragoza) <str<strong>on</strong>g>Balanced</str<strong>on</strong>g> <str<strong>on</strong>g>Hermitian</str<strong>on</strong>g> <strong>nilmanifolds</strong> Golden Sands, Bulgaria 28 / 28

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!