13.07.2015 Views

Number Theory

Number Theory

Number Theory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

xxTable of Contents14.6.5 The Equation x 6 − y 4 = z 2 . . . . . . . . . . . . . . . . . . . . . . . . 109914.6.6 The Equation x 4 − y 6 = z 2 . . . . . . . . . . . . . . . . . . . . . . . . 109914.6.7 The Equation x 6 + y 4 = z 2 . . . . . . . . . . . . . . . . . . . . . . . . 110114.6.8 Further Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110114.7 Applications of Mason’s Theorem. . . . . . . . . . . . . . . . . . . . . . . . . 110314.7.1 Mason’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110314.7.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110414.8 Exercises for Chapter 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110515. The Modular Approach to Diophantine Equations . . . . . . . .110715.1 Newforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110715.1.1 Introduction and Necessary Software Tools . . . . . . . . . . 110715.1.2 Newforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110815.1.3 Rational Newforms and Elliptic Curves . . . . . . . . . . . . . 110915.2 Ribet’s Level-Lowering Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . 111015.2.1 Definition of “Arises From” . . . . . . . . . . . . . . . . . . . . . . . . 111015.2.2 Ribet’s Level-Lowering Theorem . . . . . . . . . . . . . . . . . . . 111115.2.3 Absence of Isogenies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111315.2.4 How to use Ribet’s Theorem . . . . . . . . . . . . . . . . . . . . . . . 111515.3 Fermat’s Last Theorem and Similar Equations . . . . . . . . . . . . . 111515.3.1 A Generalization of FLT . . . . . . . . . . . . . . . . . . . . . . . . . . 111615.3.2 E Arises from a Curve with Complex Multiplication . . 111715.3.3 End of the Proof of Theorem 15.3.1 . . . . . . . . . . . . . . . . . 111815.3.4 The Equation x 2 = y p + 2 r z p for p 7 and r 2 . . . . . 111915.3.5 The Equation x 2 = y p + z p for p 7 . . . . . . . . . . . . . . . . 112115.4 An Occasional Bound for the Exponent . . . . . . . . . . . . . . . . . . . 112115.5 An Example of Serre–Mazur–Kraus .. . . . . . . . . . . . . . . . . . . . . . 112315.6 The Method of Kraus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112615.7 “Predicting Exponents of Constants” . . . . . . . . . . . . . . . . . . . . . 112915.7.1 The Diophantine Equation x 2 − 2 = y p . . . . . . . . . . . . . . 112915.7.2 Application to the SMK Equation . . . . . . . . . . . . . . . . . . 113315.8 Recipes for Some Ternary Diophantine Equations. . . . . . . . . . . 113415.8.1 Recipes for Signature (p, p, p) . . . . . . . . . . . . . . . . . . . . . . 113515.8.2 Recipes for Signature (p, p, 2) . . . . . . . . . . . . . . . . . . . . . . 113615.8.3 Recipes for Signature (p, p, 3) . . . . . . . . . . . . . . . . . . . . . . 113816. Catalan’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114116.1 Mihăilescu’s First Two Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 114116.1.1 The First Theorem: Double Wieferich Pairs . . . . . . . . . . 114216.1.2 The Equation (x p − 1)/(x − 1) = py q . . . . . . . . . . . . . . . 114416.1.3 Mihăilescu’s Second Theorem: p | h − q and q | h − p . . . . . . 114816.2 The + and − Subspaces and the Group S . . . . . . . . . . . . . . . . . 114916.2.1 The + and − Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 115016.2.2 The Group S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115216.3 Mihăilescu’s Third Theorem: p < 4q 2 and q < 4p 2 . . . . . . . . . . 1154

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!