13.07.2015 Views

Measuring physical fitness in Persons with Severe/Profound ...

Measuring physical fitness in Persons with Severe/Profound ...

Measuring physical fitness in Persons with Severe/Profound ...

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Measur<strong>in</strong>g</strong> <strong>physical</strong> <strong>fitness</strong><strong>in</strong> persons <strong>with</strong> severe or profound<strong>in</strong>tellectual and multiple disabilitiesAly Wan<strong>in</strong>ge


The study presented <strong>in</strong> this thesis wasperformed at the Royal Dutch Visio De Br<strong>in</strong>kand at the Research and Innovation Group <strong>in</strong>Health Care and Nurs<strong>in</strong>g of Hanze Universityof Applied Sciences Gron<strong>in</strong>gen,the NetherlandsAly Wan<strong>in</strong>ge<strong>Measur<strong>in</strong>g</strong> <strong>physical</strong> <strong>fitness</strong> <strong>in</strong> persons <strong>with</strong>severe or profound <strong>in</strong>tellectual and multipledisabilitiesDissertation University of Gron<strong>in</strong>gen, May 2011ISBN 978-90-367-4881-0Graphic Design: Jodh | www.jodh.nlPhotographer: K. Dall<strong>in</strong>gaPhoto cover: Joey OtterPress: Drukkerij Wilco, Amersfoort


Rijksuniversiteit Gron<strong>in</strong>gen<strong>Measur<strong>in</strong>g</strong> <strong>physical</strong> <strong>fitness</strong><strong>in</strong> persons <strong>with</strong> severe or profound<strong>in</strong>tellectual and multiple disabilitiesProefschriftter verkrijg<strong>in</strong>g van het doctoraat <strong>in</strong> deMedische Wetenschappenaan de Rijksuniversiteit Gron<strong>in</strong>genop gezag van deRector Magnificus, dr. E. Sterken,<strong>in</strong> het openbaar te verdedigen opmaandag 9 mei 2011om 16.15 uur.doorAly Wan<strong>in</strong>gegeboren op 25 juni 1964te Zuidlaren


8 | Chapter 1


Chapter 1IntroductionChapter 1 | 9


Outl<strong>in</strong>e of the <strong>in</strong>troductionThe <strong>in</strong>troduction describes the characteristics of persons <strong>with</strong> severe or profound <strong>in</strong>tellectualdisabilities (ID), as well as the consequences <strong>in</strong> function<strong>in</strong>g of additional visual impairments.Firstly, this <strong>in</strong>troduction exposes the various health threats associated <strong>with</strong> severe or profoundID and/or visual impairments. Next, an exam<strong>in</strong>ation of the theoretical framework of this thesisis put forward. F<strong>in</strong>ally, both the research questions and the outl<strong>in</strong>e of the thesis will be brieflydescribed.Intellectual disabilities<strong>Persons</strong> <strong>with</strong> ID have significant limitations <strong>in</strong> both <strong>in</strong>tellectual function<strong>in</strong>g and adaptivebehaviour as expressed <strong>in</strong> conceptual, social, and practical skills [1]. Intellectual disability is acondition that affects people’s ability to make self-determ<strong>in</strong>ed choices. In addition, people <strong>with</strong><strong>in</strong>tellectual disabilities are <strong>in</strong> danger of be<strong>in</strong>g excluded from many situations and opportunitiesusually available to people not suffer<strong>in</strong>g from ID [1]. Based on the WHO population prevalenceestimate, the prevalence of ID <strong>in</strong> the population of Europe is about 1% [2].The ICD-10 (World Health Organization, WHO) [3] dist<strong>in</strong>guishes four levels of ID: mild (IQ50-69), moderate (IQ 35-49), severe (IQ 20-34) or profound (IQ under 20). Adults <strong>with</strong> severeID have an <strong>in</strong>tellectual age from 3 to 6 years, which is likely to result <strong>in</strong> a cont<strong>in</strong>uous need forsupport. Adults <strong>with</strong> profound ID have an <strong>in</strong>tellectual age below 3 years, which results <strong>in</strong> seriouslimitations <strong>in</strong> self-care, cont<strong>in</strong>ence, communication and mobility [3].Intellectual disabilities and visual impairmentIn all subgroups <strong>with</strong> ID, prevalence of visual impairment and bl<strong>in</strong>dness are significantly higher,compared to the general Dutch population [4]. The severity of the visual impairment is related tothe severity of ID. Moreover, prevalence of visual impairments <strong>in</strong> persons <strong>with</strong> severe or profoundID is 92% [5]. As the comb<strong>in</strong>ation of ID and visual impairment is even more detrimental, therebycreat<strong>in</strong>g less opportunity for compensation [6], the comb<strong>in</strong>ation of visual impairment <strong>with</strong> IDaggravates problems <strong>in</strong> daily function<strong>in</strong>g [7].Health threats associated <strong>with</strong> ID and/or visual impairmentsResearch has shown <strong>in</strong>dividuals <strong>with</strong> ID to have twice as much health problems and significantlyhigher levels of co-morbidity when compared to the general population [8]. As an example,prevalence of neurological problems <strong>in</strong> persons <strong>with</strong> ID is 15%, versus 5% <strong>in</strong> the generalpopulation [8]. Moreover, 75% of the persons <strong>with</strong> severe or profound ID also suffer fromlocomotor disabilities [9], while adults <strong>with</strong> mild or moderate ID score significantly lower thana control group <strong>with</strong>out ID on all sensorimotor tests [10]. Also, Sh<strong>in</strong>kfield et al. [11] reportedthat <strong>in</strong>dividuals <strong>with</strong> mild or moderate ID display <strong>in</strong>adequacies both <strong>in</strong> perception as <strong>in</strong> motorreproduction.In addition, those classified <strong>with</strong> ID are more prone to experience lifestyle related diseasessuch as diabetes mellitus II or cardiovascular diseases [8, 12, 13]. These persons often sufferfrom overweight [14, 15, 16] or malnutrition [17]. Obesity <strong>in</strong> women and underweight <strong>in</strong> both menand women are also known to be more common <strong>in</strong> adults <strong>with</strong> ID than <strong>in</strong> the general population[12]. Furthermore, Mc Guire et al. [13] found that 68% of their ID sample was overweight orobese. In the Netherlands, over 40% of adults <strong>with</strong> an <strong>in</strong>tellectual disability were shown to have10 | Chapter 1


overweight [15]. This prevalence is similar to that <strong>in</strong> other countries [14, 16]. Moreover, persons<strong>with</strong> ID are often not sufficiently active to achieve health benefits [14, 16, 18, 19], and more than50 % of the persons <strong>with</strong> ID of all age categories <strong>in</strong> Europe have a sedentary lifestyle [20]. As aconsequence, these persons may have poor <strong>physical</strong> <strong>fitness</strong> [14, 16].Similar to <strong>in</strong>dividuals <strong>with</strong> ID, persons <strong>with</strong> visual impairments display poor performanceon locomotor skills [21] and have low levels of habitual activity [22], result<strong>in</strong>g <strong>in</strong> poor <strong>physical</strong><strong>fitness</strong> when compared to the control group, <strong>in</strong> this case persons <strong>with</strong> normal eyesight [23, 24].Furthermore, persons display<strong>in</strong>g a comb<strong>in</strong>ation of severe or profound <strong>in</strong>tellectual disability anda visual impairment are particularly at risk to develop deficits <strong>in</strong> both locomotor skills as <strong>in</strong> dailyfunction<strong>in</strong>g [7]. The comb<strong>in</strong>ation of these f<strong>in</strong>d<strong>in</strong>gs puts forward the suggestion that personshav<strong>in</strong>g severe or profound <strong>in</strong>tellectual and visual disabilities are likely to display <strong>in</strong>sufficient<strong>physical</strong> <strong>fitness</strong>Term<strong>in</strong>ology relat<strong>in</strong>g to persons <strong>with</strong> severe or profound IDA wide range of terms is be<strong>in</strong>g used to describe persons hav<strong>in</strong>g a comb<strong>in</strong>ation of severe orprofound <strong>in</strong>tellectual and additional disabilities. The persons studied <strong>in</strong> this thesis have severe orprofound <strong>in</strong>tellectual as well as visual disabilities. In general, the study population is referred toas persons <strong>with</strong> severe or profound <strong>in</strong>tellectual and multiple disabilities (SPIMD). In the studiesexam<strong>in</strong><strong>in</strong>g a population consist<strong>in</strong>g <strong>in</strong> majority of persons <strong>with</strong> severe <strong>in</strong>tellectual disabilities,the term severe <strong>in</strong>tellectual and multiple disabilities (SIMD) is used. In the studies exam<strong>in</strong><strong>in</strong>ga population consist<strong>in</strong>g <strong>in</strong> majority of persons <strong>with</strong> profound <strong>in</strong>tellectual disabilities, the termprofound <strong>in</strong>tellectual and multiple disabilities (PIMD) is used. The term ‘multiple’ <strong>in</strong>dicateslocomotor disabilities, neurological problems, sensory disabilities, and/or problems <strong>with</strong> food<strong>in</strong>gestion.As locomotor skills may <strong>in</strong>fluence protocols for measur<strong>in</strong>g <strong>physical</strong> <strong>fitness</strong>, it is useful to classifypersons <strong>with</strong> severe or profound ID accord<strong>in</strong>g to their locomotor skills. The Gross Motor FunctionClassification System (GMFCS) [25] is a five-level system used to classify the locomotor skillsof people <strong>with</strong> <strong>physical</strong> disabilities and is also applicable for persons <strong>with</strong> ID. Participants <strong>with</strong>a “Level I” classification can generally walk <strong>with</strong>out restrictions but tend to have limitations <strong>in</strong>some more advanced motor skills. Participants <strong>with</strong> a “Level II” classification can walk <strong>with</strong> slightrestrictions and do not spontaneously <strong>in</strong>crease their speed dur<strong>in</strong>g walk<strong>in</strong>g. Participants <strong>with</strong> a“Level III” are only able to walk <strong>with</strong> walk<strong>in</strong>g devices and have restrictions <strong>in</strong> walk<strong>in</strong>g outside aswell as <strong>in</strong> their liv<strong>in</strong>g environment. Participants <strong>with</strong> a “Level IV” have limited mobility, but mightbe able to stand dur<strong>in</strong>g transfers. Usually they use a wheelchair, which they may drive themselvesby hand or by assistive technology. Participants <strong>with</strong> a “Level V” classification generally havevery limited mobility, even <strong>with</strong> the use of assistive technology. These participants always use awheelchair.It is often assumed that persons <strong>with</strong> profound ID automatically have low locomotor levelsand are not able to walk. However, the ability to walk varies considerably <strong>in</strong> persons <strong>with</strong> severeID as well as <strong>in</strong> persons <strong>with</strong> profound ID. For example, 75 percent of persons <strong>with</strong> severe ID isable to walk at least <strong>with</strong> walk<strong>in</strong>g devices (GMFCS I-III), whereas 25 percent is not able to walk(GMFCS IV-V). Moreover, 56 percent of persons <strong>with</strong> profound ID is able to walk at least <strong>with</strong>walk<strong>in</strong>g devices (GMFCS I-III), whereas 44 percent is not able to walk (GMFCS IV-V). Thus, contraryto common beliefs, it is necessary to perform research <strong>in</strong> persons <strong>with</strong> severe or profound ID yetrang<strong>in</strong>g <strong>in</strong> GMFCS levels from I to V.Chapter 1 | 11


Physical <strong>fitness</strong> and persons <strong>with</strong> both severe or profound ID andvisual impairmentAs a sufficient <strong>physical</strong> <strong>fitness</strong> level and <strong>physical</strong> activity improve health [26], and sufficienthealth <strong>in</strong> turn improves well-be<strong>in</strong>g and quality of life [27, 28, 29], it is imperative to ga<strong>in</strong>comprehensive <strong>in</strong>sight <strong>in</strong>to the <strong>physical</strong> <strong>fitness</strong> of persons <strong>with</strong> SPIMD.However, the feasibility and reliability of <strong>physical</strong> <strong>fitness</strong> measurements and tests <strong>in</strong> participants<strong>with</strong> SPIMD have until now not been properly scrut<strong>in</strong>ized, result<strong>in</strong>g <strong>in</strong> little reliable knowledge onthe <strong>physical</strong> <strong>fitness</strong> levels and locomotor skills of persons <strong>with</strong> SPIMD.Due to limitations both <strong>in</strong> <strong>in</strong>tellectual function<strong>in</strong>g as <strong>in</strong> adaptive behaviour related toSPIMD, the level of health-related <strong>physical</strong> <strong>fitness</strong> is difficult to quantify <strong>in</strong> a feasible and reliablemanner [1]. Therefore, improv<strong>in</strong>g feasibility of <strong>physical</strong> <strong>fitness</strong> tests <strong>in</strong> persons <strong>with</strong> SPIMD needsto be prioritized. <strong>Persons</strong> <strong>with</strong> SPIMD are not accustomed to the assessments, have difficultycomprehend<strong>in</strong>g what is required of them [30] and often cannot understand <strong>in</strong>structions [3].Furthermore, persons <strong>with</strong> visual disabilities cannot see how test tasks need to be performed [4],hence show<strong>in</strong>g them how to perform the task at hand is useless. In general, if a participant doesnot understand the tasks <strong>with</strong><strong>in</strong> a certa<strong>in</strong> test, the test will automatically fail to provide a realisticimpression of the capabilities of the participant, render<strong>in</strong>g the test <strong>in</strong>valid. Thus, test <strong>in</strong>structionsfor persons <strong>with</strong> SPIMD require our special focus.Other factors of <strong>in</strong>fluence when determ<strong>in</strong><strong>in</strong>g the feasibility, reliability and validity of <strong>physical</strong><strong>fitness</strong> tests <strong>in</strong> persons <strong>with</strong> SPIMD are the prevalence of locomotor disabilities and motivationalproblems. Adapted test procedures and specific <strong>in</strong>clusion criteria are required because persons<strong>with</strong> <strong>in</strong>tellectual, visual, and locomotor disabilities are not able to stand straight or to standat all [31]. Also, persons <strong>with</strong> SPIMD are often not motivated to exert themselves fully, whichnecessitates adjustments to and familiarization <strong>with</strong> test protocols.S<strong>in</strong>ce <strong>physical</strong> <strong>fitness</strong> is related to <strong>physical</strong> activity [26], it is important to ga<strong>in</strong> <strong>in</strong>sight <strong>in</strong>tothe <strong>physical</strong> activity level <strong>in</strong> persons <strong>with</strong> SPIMD. However, as almost 40 % of SPIMD populationis simply not able to walk, walk<strong>in</strong>g fails to be an adequate representation of a person’s overallactivity level [32].Moreover, the presumed low levels of activity <strong>in</strong> persons <strong>with</strong> such profound disabilitiesare often not accurately presented by measurement devices, like activity monitors, which arerelatively <strong>in</strong>sensitive [32]. Heart rate monitor<strong>in</strong>g may be an <strong>in</strong>dicator of activity levels assum<strong>in</strong>g arelationship between activity <strong>in</strong>tensity and heart rate [33, 34]. Heart rate monitor<strong>in</strong>g appears tobe sufficiently valid for creat<strong>in</strong>g broad <strong>physical</strong> activity categories (e.g. highly active, somewhatactive, sedentary) [35]. However, a proper method for dat<strong>in</strong>g heart rate patterns <strong>in</strong> persons <strong>with</strong>PIMD, as well as the proper correlation between heart rate monitor<strong>in</strong>g and activity levels for thisspecific group have so far not been exam<strong>in</strong>ed.12 | Chapter 1


Theoretical framework of the studyInternational Classification of Function<strong>in</strong>g, Disability and HealthPhysical <strong>fitness</strong> is related to health [26] which <strong>in</strong> turn is related to participation [36]. S<strong>in</strong>ceparticipation for persons <strong>with</strong> ID is important, it is necessary to describe the relation betweenhealth and participation for this specific group as well [6].The International Classification of Function<strong>in</strong>g, Disability and Health [36] is a commonly usedmodel for various target groups <strong>in</strong> the field of health care. The concept of participation is def<strong>in</strong>ed<strong>with</strong><strong>in</strong> the framework of the ICF [3]. Kiestra [6] described participation <strong>in</strong> persons <strong>with</strong> a profound<strong>in</strong>tellectual and visual disability as the extent to which someone can take part <strong>in</strong> or has <strong>in</strong>fluenceon situations and contexts that are important to him or her, or are considered to be important tohim or her by his or her representative or personal coach. This <strong>in</strong>cludes situations such as liv<strong>in</strong>ghabits, daily activities, leisure activities, recreation, sports, etc. The level of participation is l<strong>in</strong>kedto the abilities of perform<strong>in</strong>g the activities <strong>in</strong> question. In figure 1 the <strong>physical</strong> <strong>fitness</strong> componentsand their related activities are <strong>in</strong>tegrated <strong>in</strong>to the model of the ICF to show their relation.Health condition, disease or disability- Visual impairment- Neurologic diseases- Orthopedic defects- Etc.Body functions andStructure- Cognition- Visual perception- Cardiorespiratory<strong>fitness</strong>- Muscle strength andflexibility- Balance- Body composition- Etc.Activities/disabilities:- Visual function<strong>in</strong>g- Understand<strong>in</strong>g- Walk<strong>in</strong>g- Stand<strong>in</strong>g- Stand-up- Walk<strong>in</strong>g stairs- Sitt<strong>in</strong>g- Etc.Participation- Daily activities- Leisure activities- Sports- Family- Live habits- Etc.Environmental Factors- Parents- Direct support persons- Facility- Etc.Personal factors:- Age, gender- BMI, waist circumference- Motivation- Etc.Figure 1. ICF model <strong>with</strong> <strong>physical</strong> <strong>fitness</strong> components and their related activities.Chapter 1 | 13


Health, <strong>physical</strong> <strong>fitness</strong>, <strong>physical</strong> activity and quality of lifeSeveral models and concepts have been developed to describe quality of life, participation,<strong>physical</strong> well-be<strong>in</strong>g, <strong>physical</strong> <strong>fitness</strong>, <strong>physical</strong> activity, health and their mutual relatedness.To illustrate the connections between these concepts, a comb<strong>in</strong>ation of three models is made,which is shown <strong>in</strong> Figure 2.Quality of lifeIParticipationPhysical well-be<strong>in</strong>gIIIPhysical activityPhysical <strong>fitness</strong>HealthFigure 2. Integration of models and concepts of participation, quality of life, <strong>physical</strong> well-be<strong>in</strong>g, <strong>physical</strong> activity,<strong>physical</strong> <strong>fitness</strong>, and health [1, 26, 27, 28, 29]. I. refers to the description of the model of Shalock <strong>in</strong> the text; and IIIrefers to the model of Bouchard <strong>in</strong> the text.I. First, Schalock et al. [1] provided a concept of quality of life <strong>with</strong><strong>in</strong> the <strong>in</strong>ternational fieldof <strong>in</strong>tellectual disabilities. Most quality of life concepts share the follow<strong>in</strong>g common features:general feel<strong>in</strong>gs of well-be<strong>in</strong>g, feel<strong>in</strong>gs of positive social <strong>in</strong>volvement, and opportunities toachieve personal potential [1]. In this model, <strong>physical</strong> well-be<strong>in</strong>g is <strong>in</strong>corporated as one of theseven doma<strong>in</strong>s that contribute to quality of life. Furthermore, quality of life is considered to be anoutcome measure of participation [36].II. Second, we <strong>in</strong>corporated the follow<strong>in</strong>g statement <strong>in</strong>to the model: sufficient health improveswell-be<strong>in</strong>g and quality of life as well [27, 28, 29].III. The third part of our model reflects the Toronto model, which describes the relation between<strong>physical</strong> <strong>fitness</strong>, <strong>physical</strong> activity and health. Both sufficient <strong>physical</strong> <strong>fitness</strong> and <strong>physical</strong> activityimprove health [26]. Physical activity is def<strong>in</strong>ed as any body movement produced by skeletalmuscles that results <strong>in</strong> energy expenditure [37], while <strong>physical</strong> <strong>fitness</strong> is def<strong>in</strong>ed as the ability toperform <strong>physical</strong> activity, depend<strong>in</strong>g on a specific set of attributes that people have or achieve(The American College of Sports Medic<strong>in</strong>e, ACSM) [38]. However, only <strong>physical</strong> activity whichreveals heart rates of more than 55% of the heart rate reserve dur<strong>in</strong>g 5 days <strong>in</strong> a week, mayga<strong>in</strong> profit for <strong>physical</strong> <strong>fitness</strong> [39]. Health is def<strong>in</strong>ed as a state of complete <strong>physical</strong>, mental andsocial well-be<strong>in</strong>g, and is a positive concept emphasiz<strong>in</strong>g social and personal resources, as well as<strong>physical</strong> capacities [40]. As far as we know, the direct relation between <strong>physical</strong> activity / <strong>physical</strong><strong>fitness</strong> and participation <strong>in</strong> persons <strong>with</strong> SPIMD is still unknown, as <strong>in</strong>dicated by the dotted l<strong>in</strong>e.14 | Chapter 1


Components of <strong>physical</strong> <strong>fitness</strong>The attributes of <strong>physical</strong> <strong>fitness</strong> can be def<strong>in</strong>ed differently for different target groups [U.S.Centers for Disease Control and Prevention] and therefore, <strong>physical</strong> <strong>fitness</strong> for persons <strong>with</strong>SPIMD needs to be described. Hilgenkamp et al. [42] stated that “<strong>physical</strong> <strong>fitness</strong> describeshow “fit” a person <strong>physical</strong>ly is to cope <strong>with</strong> the demands set by his or her environment” anddescribed <strong>physical</strong> <strong>fitness</strong> for older people <strong>with</strong> ID <strong>in</strong> a model (table 1) [U.S. Centers for DiseaseControl and Prevention; 26, 41, 42].Based on this model, the required attributes of <strong>physical</strong> <strong>fitness</strong> for persons <strong>with</strong> SPIMD aredescribed by caregivers, professionals and scientists <strong>in</strong> the field of SPIMD. Coord<strong>in</strong>ation, reactiontime and muscle endurance are considered irrelevant attributes for <strong>in</strong>dividuals <strong>with</strong> such limitedcognitive and <strong>physical</strong> skills.Caregivers of persons <strong>with</strong> profound <strong>in</strong>tellectual, visual and locomotor disabilities (profound<strong>in</strong>tellectual and multiple disabilities, PIMD) often describe the quality of daily movements <strong>in</strong>terms of ‘flexibility’ or ‘stiffness’. S<strong>in</strong>ce muscular flexibility is one of the def<strong>in</strong>ed <strong>physical</strong> <strong>fitness</strong>components for persons <strong>with</strong> PIMD, muscle tonus or level of spasticity may be used as outcomemeasures to objectify the concepts of ‘flexibility’ and ‘stiffness’.Hence, the required attributes of <strong>physical</strong> <strong>fitness</strong> for persons <strong>with</strong> SPIMD are bodycomposition, cardiorespiratory <strong>fitness</strong>, balance, muscle strength and muscle flexibility (table 1).Table 1. Model of components of <strong>physical</strong> <strong>fitness</strong> for older persons <strong>with</strong> ID [U.S. Centers for Disease Control andPrevention; 26, 41, 42].Health-related <strong>physical</strong>U.S. Centers forPhysical <strong>fitness</strong> ofPhysical <strong>fitness</strong> of<strong>fitness</strong>Disease Control andolder adults <strong>with</strong> IDpersons <strong>with</strong> PIMDBouchard et al. (1994)Prevention(Hilgenkamp et al.2010)MotorCoord<strong>in</strong>ationCoord<strong>in</strong>ationReaction timeReaction timeBalanceBalanceBalanceMuscularMuscular strengthMuscular strengthMuscular strengthMuscular enduranceMuscular enduranceFlexibilityFlexibilityFlexibilityCardiorespiratoryCardiorespiratory<strong>fitness</strong>Cardiorespiratory<strong>fitness</strong>Cardiorespiratory<strong>fitness</strong>MorphologicalBody compositionBody compositionMetabolicChapter 1 | 15


Aims and research questions of this thesisUntil present, the feasibility and reliability of <strong>physical</strong> <strong>fitness</strong> measurements and tests forparticipants <strong>with</strong> SPIMD are unknown. Consequently, knowledge of the <strong>physical</strong> <strong>fitness</strong> levelsand locomotor skills of persons <strong>with</strong> SPIMD is scarce. Yet, only <strong>with</strong> feasible and reliable teststhe evaluation of a specific tra<strong>in</strong><strong>in</strong>g <strong>in</strong>tervention aimed at promot<strong>in</strong>g <strong>physical</strong> <strong>fitness</strong> can beobjectively established. The ma<strong>in</strong> aim of the research reported <strong>in</strong> this thesis is to exam<strong>in</strong>e thefeasibility, the validity and the reliability of <strong>physical</strong> <strong>fitness</strong> tests <strong>in</strong> <strong>in</strong>dividuals <strong>with</strong> SPIMD.This research addresses the follow<strong>in</strong>g research questions:1 Are body composition measurements <strong>in</strong> participants <strong>with</strong> SIMD and GMFCS levels I and IIfeasible and reliable? If so, what are the outcomes of the body composition measurements <strong>in</strong>these participants [chapter 2]?2 Are waist circumference measurements <strong>in</strong> participants <strong>with</strong> PIMD and GMFCS levels IV and Vvalid and reliable [chapter 3]?3 Are the 6 M<strong>in</strong>ute Walk<strong>in</strong>g Distance (6MWD) and the adapted Shuttle Run Test (aSRT) <strong>in</strong>persons <strong>with</strong> SIMD and GMFCS levels I and II feasible and reliable [chapter 4]?4 Are the feasibility, validity and test-retest reliability of the adapted Shuttle Run Test (aSRT)protocol performed on a treadmill for persons <strong>with</strong> SIMD and GMFCS level I sufficient[chapter 5]?5 Is the modified Berg Balance Scale (mBBS) <strong>in</strong> persons <strong>with</strong> SIMD and GMFCS levels I and IIfeasible and reliable [chapter 6]?6 Are the Modified Ashworth Scale (MAS) and the Modified Tardieu Scale (MTS) <strong>in</strong> persons<strong>with</strong> PIMD and GMFCS levels IV and V feasible and reliable [chapter 7]?7 What is the level of <strong>physical</strong> activity of persons <strong>with</strong> PIMD based on heart rate patterns whencompared to ACSM guidel<strong>in</strong>es of healthy <strong>physical</strong> activity? Differ heart rate patternsaccord<strong>in</strong>g to group differences, days, time of day and is it possible to establish adherentclassification <strong>in</strong> heart rate height and patterns? Is there a relation between heart ratepatterns and observed level of activity <strong>in</strong> persons <strong>with</strong> PIMD? What is the <strong>in</strong>fluence ofcovariates such as gender, age, and common co-morbidity (motor disabilities, spasticity andsensory disabilities) on heart rate patterns [chapter 8]?Outl<strong>in</strong>e of the thesisChapter 2 addresses the feasibility and the test-retest reliability of body composition measures <strong>in</strong>participants <strong>with</strong> SIMD. Anthropometric measurements are widely used to reliably quantify bodycomposition and to estimate risks of overweight <strong>in</strong> both healthy subjects as <strong>in</strong> patients. However,<strong>in</strong>formation about the reliability of anthropometric measurements <strong>in</strong> participants <strong>with</strong> severe<strong>in</strong>tellectual and visual disabilities is lack<strong>in</strong>g.Chapter 3 deals <strong>with</strong> the validity and reliability of measur<strong>in</strong>g waist circumference <strong>in</strong> persons<strong>with</strong> PIMD. Waist circumference as an <strong>in</strong>dicator of abdom<strong>in</strong>al fat is an important predictor ofhealth risks. It is unknown whether waist circumference can be measured validly and reliablywhen a participant is <strong>in</strong> a sup<strong>in</strong>e position. This assumption however is a critical one when<strong>in</strong>ternational standards for healthy subjects are applied to persons <strong>with</strong> PIMD.Chapter 4 seeks to address the cardiorespiratory component of <strong>physical</strong> <strong>fitness</strong>.Cardiorespiratory <strong>fitness</strong> can be divided <strong>in</strong>to functional exercise and aerobic capacity [26].16 | Chapter 1


Therefore, a study is put forward <strong>with</strong> the purpose of exam<strong>in</strong><strong>in</strong>g the feasibility and test-retestreliability of both the six-m<strong>in</strong>ute walk<strong>in</strong>g distance test (6MWD) as an adapted shuttle run test(aSRT) <strong>in</strong> persons <strong>with</strong> SIMD.Chapter 5 exam<strong>in</strong>es the feasibility, validity and reliability of the adapted Shuttle Run Testperformed on a treadmill, <strong>in</strong> persons <strong>with</strong> SIMD.Sufficient balance is necessary to perform daily activities. Chapter 6 discusses a study <strong>with</strong> thepurpose of determ<strong>in</strong><strong>in</strong>g the feasibility and reliability of the modified Berg Balance Scale (mBBS)<strong>in</strong> persons <strong>with</strong> SIMD.The Modified Ashworth Scale and the Modified Tardieu Scale Muscle exam<strong>in</strong>e muscle tonusor level of spasticity. The purpose of the study described <strong>in</strong> Chapter 7 was to determ<strong>in</strong>e thefeasibility, the test-retest reliability and <strong>in</strong>terrater reliability of the Modified Ashworth Scale andthe Modified Tardieu Scale <strong>in</strong> persons <strong>with</strong> PIMD.Reliably quantify<strong>in</strong>g <strong>physical</strong> activity levels <strong>in</strong> persons <strong>with</strong> SPIMD is important, but alsodifficult <strong>in</strong> persons who are not able to walk. Heart rate monitor<strong>in</strong>g may be an <strong>in</strong>dicator ofactivity levels. Chapter 8 describes heart rate monitor<strong>in</strong>g and heart rate patterns of persons<strong>with</strong> PIMD. Furthermore, this chapter exam<strong>in</strong>es the relative activity of persons <strong>with</strong> PIMD whencompared to ACSM guidel<strong>in</strong>es of healthy <strong>physical</strong> activity, as well as the correlation betweenheart rate patterns and level of activity for this specific target group. F<strong>in</strong>ally, the <strong>in</strong>fluence ofcovariates such as gender, age, and common co-morbidity on heart rate height are exam<strong>in</strong>ed andparticipants are classified accord<strong>in</strong>g to heart rate height dur<strong>in</strong>g <strong>physical</strong> activity.Chapter 9 summarizes the ma<strong>in</strong> f<strong>in</strong>d<strong>in</strong>gs and puts them <strong>in</strong> perspective. Implications andrecommendations for further research, methodological analyses and cl<strong>in</strong>ical practice are given.Chapter 1 | 17


References1 Schalock R, Brown I, Brown R, Cumm<strong>in</strong>s RA, Felce D, Matikka L, Keith KD, Parmenter T.Conceptualization, Measurement, and Application of Quality of Life for <strong>Persons</strong> WithIntellectual Disabilities: Report of an International Panel of Experts. Ment Retard.2002;40(6):457-470.2 Walsh PN, Kerr M, Van Schrojenste<strong>in</strong> Lantman-de Valk HM. Health <strong>in</strong>dicators for people <strong>with</strong><strong>in</strong>tellectual disabilities: a European perspective. Eur J Public Health. 2003;13(3 Suppl):47-503 World Health Organization (WHO). International Classification of Function<strong>in</strong>g, Disability andHealth. Geneva, 20014 Van Splunder J, Stilma JS, Bernsen RM, Evenhuis HM. Prevalence of visual impairment<strong>in</strong> adults <strong>with</strong> <strong>in</strong>tellectual disabilities <strong>in</strong> the Netherlands: cross-sectional study. Eye (Lond)2006;20(9):1004-10.5 Van den Broek EG, Janssen CG, van RT, Deen L. Visual impairments <strong>in</strong> people <strong>with</strong> severeand profound multiple disabilities: an <strong>in</strong>ventory of visual function<strong>in</strong>g. J IntellectDisabil Res 2006;50(Pt 6):470-5.6 Kiestra T, De unieke handicap, referentiemodel voor meervoudige beperk<strong>in</strong>gen. 2005,ISBN 9080638420, Scholma Druk, Bedum7 Evenhuis HM, Sjoukes L, Koot HM, Kooijman AC. Does visual impairment lead to additionaldisability <strong>in</strong> adults <strong>with</strong> <strong>in</strong>tellectual disabilities? J Intellect Disabil Res. 2009;53(1):19-28.8 Van Schrojenste<strong>in</strong> Lantman-de Valk HMJ, Metsemakers JFM, Haveman MJ, Crebolder HFJM.Health problems <strong>in</strong> people <strong>with</strong> <strong>in</strong>tellectual disability <strong>in</strong> general practice: A comparativestudy. Family Practice. 2000;17:405–4079 Nakken H & Vlaskamp C. A need for a taxonomy for profound <strong>in</strong>tellectual and multipledisabilities. J Policy Practice Int Dis.2007;4;83-7.10 Carmeli E, Bar-Yossef T, Ariav C, Paz R, Sabbaq H, Levy R. Sensorimotor impairments andstrategies <strong>in</strong> adults <strong>with</strong> <strong>in</strong>tellectual disabilities. Motor Control. 2008;12(4):348-61.11 Sh<strong>in</strong>kfield AJ, Sparrow WA, Day RH. Visual discrim<strong>in</strong>ation and motor reproduction ofmovement by <strong>in</strong>dividuals <strong>with</strong> mental retardation. Am J Ment Retard. 1997;102(2):172-81.12 Bhaumik S, Watson JM, Thorp CF, Tyrer F, Mc Grother CW. Body mass <strong>in</strong>dex <strong>in</strong> adults <strong>with</strong><strong>in</strong>tellectual disability: distribution, association and service implications: a population-basedprevalence study. J Intellect Disabil Res. 2008;52(Pt 4):287-98.13 McGuire BE, Daly P, Smyth F. Lifestyle and health behaviours of adults <strong>with</strong> an <strong>in</strong>tellectualdisability. J Intellect Disabil Res. 2007;51(Pt 7):497-510.14 Frey GC & Chow B. Relationship between BMI, <strong>physical</strong> <strong>fitness</strong>, and motor skills <strong>in</strong> youth <strong>with</strong>mild <strong>in</strong>tellectual disabilities. Int J Obes. 2006;30:861-867.15 Knijff-Raeven van AGM, Jansen-Jacobs CCM, Freen PJW, Hoekman J, Maaskant MA. BodyMass Index (BMI) bij mensen met een verstandelijke beperk<strong>in</strong>g. Nederlands Tijdschrift voorde Zorg aan mensen met verstandelijke beperk<strong>in</strong>gen. 2005;1:3-17.16 Laht<strong>in</strong>en U, R<strong>in</strong>tala P, Mal<strong>in</strong> A. Physical performance of <strong>in</strong>dividuals <strong>with</strong> <strong>in</strong>tellectual disability:a 30 year follow up. Adapt Phys Act Q. 2007;24: 125-143.17 Stevenson RD, Conaway M, Chumlea WC, Rosenbaum, O’Donnell, Samson-Fang L, Stall<strong>in</strong>gsVA, Fung EB, Henderson RC, Worley G, Liptak G. Growth and Health <strong>in</strong> Children WithModerate-to-<strong>Severe</strong> Cerebral Palsy. Pediatrics. 2006;118:1010-1018.18 Draheim CC, Williams DP, MCCubb<strong>in</strong> JA. Prevalence of <strong>physical</strong> <strong>in</strong>activity and recommended<strong>physical</strong> activity <strong>in</strong> community-based adults <strong>with</strong> mental retardation. Ment Retard.18 | Chapter 1


2002;40:436-444.19 Temple VA, Frey GC, Stanish HI. Physical activity of adults <strong>with</strong> mental retardation: reviewand research needs. Am J Health Promotion. 2006;21:2-12.20 Haveman M, Heller T, Lee L, Maaskant M, Shooshtari S, Strydom A. Major health risks <strong>in</strong>age<strong>in</strong>g persons <strong>with</strong> <strong>in</strong>tellectual disabilities: an overview of recent studies. J Policy PracticeInt Dis. 2010;7:59-69.21 Houwen S, Visscher C, Lemm<strong>in</strong>k KAPM, Hartman E. Motor skill performance of school-agechildren <strong>with</strong> visual impairments. Dev Med and Child Neur. 2008;50(2):139-45.22 Hopk<strong>in</strong>s WG, Gaeta H, Thomas AC, Hill PM. Physical <strong>fitness</strong> of bl<strong>in</strong>d and sighted children.Eur J of Appl Phys Occ Phys. 1987;56: 69-73.23 Häkk<strong>in</strong>en A, Holopa<strong>in</strong>en E, Kautia<strong>in</strong>en H, Sillanpää E, Häkk<strong>in</strong>en K. Neuromuscular functionand balance of prepubertal and pubertal bl<strong>in</strong>d and sighted boys. Acta Paediatr.2006;95(10):1277-83.24 Seemungal BM, Glasauwer S, Gresty MA, Bronste<strong>in</strong> AM. Vestibular perception and navigation<strong>in</strong> the congenitally bl<strong>in</strong>d. J of Neurophys. 2007;97(6):4341-56.25 Palisano R, Hanna SE, Rosenbaum PL, Rusell DJ, Walter SD, Wood EP, Ra<strong>in</strong>a PS, Galuppi BE.Validation of a model of Gross Motor Function for Children With Cerebral Palsy. PhysTherapy. 2000;80:974-985.26 Bouchard C, Shepard RJ, Stephens T. Physical activity, Fitness and Health. 1994, HumanK<strong>in</strong>etics Publishers, ChampaignIL.27 Kramer AF, Hahn S, Cohen NJ, Banich MT, McAyley E, Harrison CR, Chason J, Vakil E, BardellL, Boileau RA, Colcombe A. Age<strong>in</strong>g, <strong>fitness</strong> and neurocognitive function. Nature.1999;400:418-41928 Sitskoorn, MM. Het plastische bre<strong>in</strong>; <strong>in</strong>vloed van gedrag. De Psycholoog. 2005;40(5):262-267.29 Colcombe S, Erickson KI, Raz N, Webb AG, MC Auley EB, Kramer AF. Aerobic <strong>fitness</strong> reducesbra<strong>in</strong> tissue loss <strong>in</strong> ag<strong>in</strong>g humans. J Gerontol. 2003;58:176-180.30 Hale L, Bray A, Littmann A. Assess<strong>in</strong>g the balance capacities of people <strong>with</strong> profound<strong>in</strong>tellectual disabilities who have experienced a fall. J Intellect Disabil Res. 2007;51(Pt4):260-8.31 Rosenbaum P, Paneth N, Leviton A. A report: the def<strong>in</strong>ition and classification of cerebralpalsy. Dev Med Child Neur. 2007;109:8-14.32 Warms C. Physical Activity Measurement <strong>in</strong> <strong>Persons</strong> <strong>with</strong> chronic and disabl<strong>in</strong>g conditions,methods, strategies and issues. Fam Community Health. 2006;29:788-799.33 Hunter J. Energy costs of wheelchair propulsion by elderly and disabled people. Int J RehabRes. 1987;50-54.34 Littlewood RA, Davies PSW, Cleghorn GJ. Grote RH. Physical activity cost <strong>in</strong> childrentbllow<strong>in</strong>g an acquired bra<strong>in</strong> <strong>in</strong>jury—a comparative study. Cl<strong>in</strong> Nutr. 2004;23:99-104.35 Sirard JR, Pate RR. Physical activity assessment <strong>in</strong> children and adolescents. Sports Med.2001;31(6):439-54.36 Schiariti V, Fayed N, Cieza A, Klassen A, O’Donnell M. Content comparison of health-relatedquality of life measures for cerebral palsy based on the International Classification ofFunction<strong>in</strong>g, Disability and Rehabilitation. 2010;early onl<strong>in</strong>e 1-10.37 Capsersen CJ, Powell KE, Christenson GM. Physical Activity, Exercise, and Physical Fitness:Def<strong>in</strong>itions and Dist<strong>in</strong>ctions for Health-Related Research. Public Health Reports.Chapter 1 | 19


1985;100(2):127-131.38 Wilder RP, Green JA, W<strong>in</strong>ters KL, Long WB 3 rd , Gubler K, Edlich RF. Physical <strong>fitness</strong>assessment: an update. Division of Sp<strong>in</strong>e and Sports Care, The Runner’s Cl<strong>in</strong>ic, Departmentof Physical Medic<strong>in</strong>e and Rehabilitation, University of Virg<strong>in</strong>ia Health Sciences System,Charlottesville, Virg<strong>in</strong>ia, USA.J Long Term Eff Med Implants. 2006;16(2):193-204.39 American College of Sports Medic<strong>in</strong>e Position Stand. The recommended quantity and qualityof exercise for develop<strong>in</strong>g and ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g cardiorespiratory and muscular <strong>fitness</strong>, andflexibility <strong>in</strong> healthy adults. Med Sci Sports Exerc. 1998;30:975-9140 World Health Organization. Ottawa Charter for Health Promotion, 1986.41 Hilgenkamp TIM, Van Wijck R, Evenhuis HM. Physical <strong>fitness</strong> <strong>in</strong> older people <strong>with</strong> ID—Conceptand measur<strong>in</strong>g <strong>in</strong>struments: A review. Res Dev Dis. 2010;31:1027–1038.42 Bouchard C & Sheppard RJ. Physical activity, <strong>fitness</strong>, and health: The model and keyconcepts <strong>physical</strong> activity, <strong>fitness</strong> and health, <strong>in</strong>ternational proceed<strong>in</strong>gs and consensusstatement. 1994, Champa<strong>in</strong>: Human K<strong>in</strong>etics Publishers.20 | Chapter 1


Chapter 2Feasibility and reliability of body compositionmeasurements <strong>in</strong> adults <strong>with</strong> severe <strong>in</strong>tellectualand sensorydisabilitiesA. Wan<strong>in</strong>geW. van der WeideI. J. EvenhuisR. van WijckC.P. van der SchansJournal of Intellectual Disability Research 2009; 53(4):377-388.Reproduced by courtesy of Wiley and BlackwellChapter 2 | 21


AbstractBackground Anthropometric measurements are widely used to reliably quantify body compositionand to estimate risks of overweight <strong>in</strong> healthy subjects and <strong>in</strong> patients. However, <strong>in</strong>formationabout the reliability of anthropometric measurements <strong>in</strong> subjects <strong>with</strong> severe <strong>in</strong>tellectual andsensory disabilities is lack<strong>in</strong>g.Objective The purpose of this study was to determ<strong>in</strong>e the feasibility and the test–retest reliabilityof body composition measures <strong>in</strong> subjects <strong>with</strong> severe <strong>in</strong>tellectual and sensory disabilities.Method The study population consisted of 45 subjects <strong>with</strong> severe <strong>in</strong>tellectual and sensorydisabilities. Body mass <strong>in</strong>dex, waist circumference, sk<strong>in</strong>folds and tibia length were measured.Reliability was assessed by Wilcoxon signed rank test, limits of agreement (LOA) and <strong>in</strong>traclasscorrelation coefficients. The outcomes were compared <strong>with</strong> values provided by theWorld HealthOrganization.Results There were no significant differences between test and retest (P < 0.05). For the sk<strong>in</strong>foldmeasurements, however, the LOA was <strong>in</strong>sufficient. Intraclass correlation coefficients for allvariables, except sk<strong>in</strong>fold measurements, were 0.90 or above.Conclusion Test–retest reliability and feasibility for all measurements are acceptable <strong>in</strong> subjects<strong>with</strong> severe <strong>in</strong>tellectual and sensory disabilities. Sk<strong>in</strong>fold measurements, however, could not bereliably performed <strong>in</strong> these subjects. <strong>Measur<strong>in</strong>g</strong> tibia length and us<strong>in</strong>g the determ<strong>in</strong>ed formulato calculate body height from tibia length is a reliable alternative for measur<strong>in</strong>g body height.Although measur<strong>in</strong>g the body height of subjects <strong>with</strong> severe disabilities was feasible, measur<strong>in</strong>gtibia length was more feasible.22 | Chapter 2


IntroductionPhysical <strong>fitness</strong> and health are related accord<strong>in</strong>g to the Toronto model [1], <strong>in</strong> the sense that agood <strong>physical</strong> <strong>fitness</strong> may reduce health risks [2, 3]. Health can be def<strong>in</strong>ed as a state of complete<strong>physical</strong>, mental and social well-be<strong>in</strong>g and not merely the absence of disease or <strong>in</strong>firmity [WorldHealth Organization (WHO) 4, 5]. In addition, health is considered a resource for everyday life, notthe objective of liv<strong>in</strong>g. Health is a positive concept emphasis<strong>in</strong>g social and personal resources,as well as <strong>physical</strong> capacities [6]. The American College of Sports Medic<strong>in</strong>e [(ACSM), 7] gives thefollow<strong>in</strong>g def<strong>in</strong>ition of health-related <strong>physical</strong> <strong>fitness</strong>: ‘Health related <strong>physical</strong> <strong>fitness</strong> is def<strong>in</strong>edas a set of attributes that people have or achieve that relates to the ability to perform <strong>physical</strong>activity’.In the ACSM guidel<strong>in</strong>es [8], body composition is def<strong>in</strong>ed as a component of health-related<strong>physical</strong> <strong>fitness</strong>; this implies that assessment of health-related <strong>physical</strong> <strong>fitness</strong> <strong>in</strong>cludes measuresof body composition [8]. Higher body weights are associated <strong>with</strong> decrease <strong>in</strong> health [9]: be<strong>in</strong>gobese or overweight substantially <strong>in</strong>creases the risk of morbidity of diseases, like heart andvascular diseases, type 2 diabetes, and respiratory problems [10]. In the Netherlands, over 40%of adults <strong>with</strong> an <strong>in</strong>tellectual disability (ID) have been shown to be overweight [11]. This figure issimilar <strong>in</strong> other countries [12, 13]. Reliable measurements are essential <strong>in</strong> order to prevent these<strong>in</strong>dividuals from becom<strong>in</strong>g overweight or to reduce the weight of those already overweight.Anthropometry provides techniques for assess<strong>in</strong>g the size, proportions and compositionof the human body; these techniques are universally applicable, <strong>in</strong>expensive and non-<strong>in</strong>vasive[14]. To assess an <strong>in</strong>dividual’s body composition, body length, body weight, waist circumference,sk<strong>in</strong>fold measurement and bioelectrical impedance tests are used [15].If height cannot be measured, it can be estimated <strong>with</strong> alternative height measurementssuch as tibia length, ulna length, knee height or demispan, described by the ‘MUST’ ExplanatoryBooklet [16]. Hogan [17] described knee height, Madden [18] ulna length and We<strong>in</strong>brenner [19]demi-span as alternative measurements. Long bone length is known to be the best <strong>in</strong>dicator ofstature [20]. Moreover, ulna and tibia length are preferred, because measurements of knee heightor demispan may be <strong>in</strong>fluenced by deformation of the <strong>in</strong>cluded jo<strong>in</strong>ts: the ankle jo<strong>in</strong>t <strong>in</strong> measur<strong>in</strong>gknee height and the shoulder, elbow, wrist and f<strong>in</strong>ger jo<strong>in</strong>ts <strong>in</strong> measur<strong>in</strong>g demispan. Because ofease of measurement and low cost, tibia length has been advocated by Stevenson [21] as theproxy measurement of choice <strong>in</strong> mobility-impaired subjects. Duyar & Pel<strong>in</strong> [20] advised whenestimat<strong>in</strong>g height based on tibia length, the <strong>in</strong>dividual’s general stature category should be taken<strong>in</strong>to consideration, and group specific formulae should be used for short and tall subjects.Body mass <strong>in</strong>dex (BMI) provides a more accurate measure of total body fat than bodyweight alone [15]. The correlation between BMI and body fat content is fairly strong; however, thiscorrelation varies accord<strong>in</strong>g to gender, race and age [22, 23]. BMI has some limitations: BMI mayoverestimate body fat <strong>in</strong> very muscular people and underestimate body fat <strong>in</strong> some underweightpeople, who have lost lean tissue, such as the elderly [15].Another means of assess<strong>in</strong>g body fat content is through waist circumference. Waistcircumference as an <strong>in</strong>dicator of abdom<strong>in</strong>al fat, is an important predictor of health risks [15]like heart and vascular diseases and type 2 diabetes [24, 25]. Accord<strong>in</strong>g to the study of Nadas[26], the <strong>in</strong>tra-observer and <strong>in</strong>ter-observer differences <strong>in</strong> repeated measurements of waistcircumference are small when expressed <strong>in</strong> absolute values.Some publications regard sk<strong>in</strong>fold thickness as a better predictor of high body fat contentChapter 2 | 23


<strong>in</strong> adults than BMI [27]. Thus, <strong>in</strong> addition to BMI and waist circumference, it is important to usean additional method to assess body composition, such as sk<strong>in</strong>fold measurements. The reliabilityof waist circumference and sk<strong>in</strong>fold measurements was exam<strong>in</strong>ed by Bemben [28] <strong>in</strong> men aged20–74. For lean, healthy <strong>in</strong>dividuals, most techniques appeared to provide accurate values, butas <strong>in</strong>dividuals age there is more discrepancy between the methods. If <strong>in</strong>dividuals are frail or notmobile, anthropometry can be used as long as its limitations are noted [28]. Stevenson et al[29] described the reliability of weight, tibia length and sk<strong>in</strong>fold measurements. These authorsdescribed that reliability was comparable <strong>with</strong> other published reports [30] <strong>in</strong> children <strong>with</strong> CP.Body composition measurements are widely used <strong>in</strong> healthy subjects and <strong>in</strong> patients [31, 15, 32, 27,26]. In subjects <strong>with</strong> mild ID, prevalence of overweight and obesity is described among others byBhaumik et al, Emerson, Melville et al and, Merriman et al [33, 34, 35, 36], us<strong>in</strong>g BMI. Furthermore,validity of measurements of BMI, waist-to-hip-ratio and sk<strong>in</strong>folds <strong>in</strong> people <strong>with</strong> learn<strong>in</strong>gdisabilities was exam<strong>in</strong>ed by Rimmer [37].To date, however, no available data exist on the feasibility and reliability of perform<strong>in</strong>g thesemeasurements <strong>in</strong> persons <strong>with</strong> severe or profound <strong>in</strong>tellectual and sensory disabilities (SIMD).The feasibility and reliability of measur<strong>in</strong>g the body composition of these <strong>in</strong>dividuals, however,may be less than that <strong>in</strong> other subjects, because these persons <strong>with</strong> severe or profound ID mayhave an <strong>in</strong>tellectual level of a young child [International Association for the Scientific Study ofIntellectual Disabilities (IASSID); 38], may not understand much of their environment, and may bebl<strong>in</strong>d or partially sighted and thus cannot see their environment. They are completely dependenton their caregivers and not accustomed to the above-mentioned assessments. Other potentialconfound<strong>in</strong>g factors <strong>in</strong>clude motivational problems, agitation, anxiety and misunderstand<strong>in</strong>g. Forexample, some are unable to stand up aga<strong>in</strong>st a wall, whereas others do not understand why theyfeel a p<strong>in</strong>ch dur<strong>in</strong>g sk<strong>in</strong>fold measurements. <strong>Measur<strong>in</strong>g</strong> body composition is very relevant, becausethese subjects may suffer from <strong>in</strong>activity and have <strong>in</strong>creased risk for obesity [39, 40].The purpose of this study was (1) to determ<strong>in</strong>e the feasibility of perform<strong>in</strong>g bodycomposition measurements on participants <strong>with</strong> severe <strong>in</strong>tellectual and sensory disabilities;(2) to determ<strong>in</strong>e the test–retest reliability of measur<strong>in</strong>g body composition variables <strong>in</strong> theseparticipants; and (3) to describe the body composition of these participants.Materials and methodsSubjectsParticipants were classified accord<strong>in</strong>g to an adapted Gross Motor Function Classification System[(GMFCS), 41], a five-level system used to classify the severity of motor abilities <strong>in</strong> people <strong>with</strong>mental and <strong>physical</strong> disabilities. For example, participants hav<strong>in</strong>g a ‘level 1’ classification cangenerally walk <strong>with</strong>out restrictions but tend to be limited <strong>in</strong> some more advanced motor skills.Participants <strong>with</strong> a ‘level 5’ classification have generally very limited mobility, even <strong>with</strong> the use ofassistive technology. These participants always use a wheelchair.The orig<strong>in</strong>al GMFCS was adapted for two reasons:• In the study population, some participants had better motor skills than those outl<strong>in</strong>ed for GMFCSlevel 1. Thus, we added a level 0 to the classification system; and• Most of the participants had to deal <strong>with</strong> impaired vision, and as a result they could not jump andrun spontaneously. If a participant spontaneously <strong>in</strong>creased his speed dur<strong>in</strong>g walk<strong>in</strong>g, <strong>in</strong>stead ofjump<strong>in</strong>g and runn<strong>in</strong>g, the participant was classified as GMFCS level 1. The adapted version of the24 | Chapter 2


GMFCS was presented to the <strong>in</strong>vestigator, who translated the orig<strong>in</strong>al version of the GMFCS <strong>in</strong>toDutch [41] and he concluded that the adaptations did not <strong>in</strong>fluence the reliability of the system.The participants were recruited from ‘De Br<strong>in</strong>k’, a residential care facility <strong>in</strong> the Netherlands, <strong>in</strong>which 200 persons <strong>with</strong> severe of profound <strong>in</strong>tellectual and sensory disabilities live. Moreover,<strong>in</strong> 65% they are suffer<strong>in</strong>g from motor disabilities as well. We asked the representativesof 92 participants a written permission for the subjects to participate <strong>in</strong> this study. Eightyrepresentatives gave permission. After <strong>in</strong>formed consent was obta<strong>in</strong>ed, we screened theseparticipants based on the exam<strong>in</strong>ation f<strong>in</strong>d<strong>in</strong>gs of a physician specialized <strong>in</strong> mental disabilities andof a behavior scholar and excluded five participants. Another eight participants were excludedbecause they did not live at the centre for people <strong>with</strong> severe <strong>in</strong>tellectual and sensory disabilitieswhere the tests were performed. Twenty-two participants were excluded because they presented<strong>with</strong> exclusion criteria (see below) at the time the measurements were be<strong>in</strong>g performed (Fig. 1).92 subjects80 subjects75 subjects67 subjects45 subjects12 subjects lacked permission of representatives5 subjects excluded for medical or behavioral reasons8 subjects did not live at the exam<strong>in</strong>ation centre22 subjects excluded because of exhibit<strong>in</strong>g exclusion criteria atthe time of the testFigure 1. Inclusion stepsIn all, 45 participants participated <strong>in</strong> this study: 17 were female and 28 were male. The mean (SD)age of the men was 38 (11) years and of the women was 44 (10) years. Five participants wereclassified as GMFCS level 0, 21 participants as GMFCS level 1 and 19 participants as GMFCS level 2.Eighty-n<strong>in</strong>e percent (40) of the participants had severe ID and 11% (5) had profound ID, accord<strong>in</strong>gto the classification scheme of the IASSID. Most of the participants also had impaired vision.Accord<strong>in</strong>g to WHO guidel<strong>in</strong>es [42], 55% (25) of the clients were severely partially sighted, 38%(17) were partially sighted and 7% (3) were slightly limited <strong>in</strong> sight. Most participants had impairedmotor abilities: 64% (29) had orthopaedic defects. In addition, 29% (13) of the participants hadslight hear<strong>in</strong>g problems, 9% (4) had loss of hear<strong>in</strong>g and 4% (2) had severe loss of hear<strong>in</strong>g or werecompletely deaf.Chapter 2 | 25


Study designForty-five participants were measured twice. There was 1 week between the test and the retestand both measurements were conducted at the same time of the day. Food before the test–retest,defecation before the test–retest and the attendant of the test–retest were noted so that we couldcheck if these factors <strong>in</strong>fluenced whether the tests could not be reliably performed.Ethical statementThe study was performed <strong>in</strong> agreement <strong>with</strong> the guidel<strong>in</strong>es of the Hels<strong>in</strong>ki Declaration as revised<strong>in</strong> 1975. Permission to carry out the study was obta<strong>in</strong>ed from a <strong>in</strong>stitutional ethics committee.Informed consent was obta<strong>in</strong>ed from representatives of the participants, because all participantswere unable to give consent. The measurements were performed <strong>in</strong> accordance <strong>with</strong> thebehavioral code section entitled ‘Resistance among people <strong>with</strong> an <strong>in</strong>tellectual disability <strong>in</strong> theframework of the Act Govern<strong>in</strong>g Medical-Scientific Research Involv<strong>in</strong>g Humans’ [43]. Consistentdistress or unhapp<strong>in</strong>ess was <strong>in</strong>terpreted as a sign of lack of assent and further participation <strong>in</strong> thestudy was reconsidered.Measures and protocolsAll measurements took place around the swimm<strong>in</strong>g pool at the <strong>in</strong>stitution. This location waschosen because this was thought to be a relax<strong>in</strong>g environment for the participants. Three testers,a dietary therapist, a <strong>physical</strong> therapist and a <strong>physical</strong> therapy student took the measurementsafter an appropriate tra<strong>in</strong><strong>in</strong>g (three times) <strong>with</strong> two together. Participants were excluded from thestudy if they exhibited any of the follow<strong>in</strong>g exclusion criteria at the time of the measurements:psychoses, depression, or other severe psychological problems, or somatic diseases, whichwere def<strong>in</strong>ed as chronic diseases and/or diseases that do not resolve <strong>in</strong> the short term (e.g.osteoarthritis, osteoporosis, pneumonia, etc.). Participants were also excluded for the follow<strong>in</strong>greasons: general illness or fever; tak<strong>in</strong>g antibiotics; worsen<strong>in</strong>g of asthma, epilepsy (recent <strong>in</strong>sult orepileptic fits), fresh wound(s)/bruise(s) or other factors caus<strong>in</strong>g pa<strong>in</strong> dur<strong>in</strong>g movement; or stressdue to the participants’ behaviour just before the measurement date.Body heightThe participant was asked to remove his shoes, to stand <strong>with</strong> his back aga<strong>in</strong>st a wall and toplace his feet flat on the ground such that the back of his heels made contact <strong>with</strong> the wall. Theparticipant had to stand straight and look forward. When the participant was stand<strong>in</strong>g correctly,we determ<strong>in</strong>ed body length by slid<strong>in</strong>g the measur<strong>in</strong>g tape upward from the ground towards theparticipant’s head (Seca height meter 202, accurate at the 0.1 cm level, Hamburg, Germany). Thelength was noted <strong>in</strong> centimeters (cm). When a participant was unable to stand aga<strong>in</strong>st the wallproperly, he was asked to lie <strong>in</strong> a sup<strong>in</strong>e position or to lie on one side <strong>with</strong> stretched legs for bodylength to be measured. To measure a participant <strong>in</strong> a sup<strong>in</strong>e position, we drew two horizontall<strong>in</strong>es – one touch<strong>in</strong>g the top of his head and one touch<strong>in</strong>g the bottom of his heels – and measuredthe distance between the two l<strong>in</strong>es. To measure a participant ly<strong>in</strong>g on his side, we measuredthe follow<strong>in</strong>g distances: (1) top of head-to-cervical sp<strong>in</strong>e; (2) cervical sp<strong>in</strong>e-to-os sacrum; and(3) os sacrum-to-bottom of heel. We summed these three distances to obta<strong>in</strong> the body lengthmeasurement. For both positions, sup<strong>in</strong>e and ly<strong>in</strong>g on one’s side, it was important to followthe body l<strong>in</strong>es <strong>in</strong>stead of measur<strong>in</strong>g the shortest distance. No protocols from previous studiesmeasur<strong>in</strong>g height <strong>in</strong> sup<strong>in</strong>e position are known. However, our measurer skills are based on 20years dietary and physiotherapeutic experience <strong>in</strong> handl<strong>in</strong>g participants from this target group.26 | Chapter 2


Body weightTo determ<strong>in</strong>e the body weight, we <strong>in</strong>structed the participant to remove his shoes, to wear onlyswimm<strong>in</strong>g clothes and to stand on an electronic calibrated gauged pair of scales (Weigh plateaufor wheelchairs PM-9050, Lopital Nederland BV, Oisterwijk, the Netherlands). When a participantwas unable to stand <strong>in</strong>dependently <strong>with</strong>out mov<strong>in</strong>g (e.g. because of anxiety), the participant wasweighed <strong>in</strong> a wheelchair. The weight (kg) of the participant was then calculated accord<strong>in</strong>g to thefollow<strong>in</strong>g formula: body weight = measured weight – mass of wheelchair.BMIThe follow<strong>in</strong>g formula was used to calculate BMI:BMI = (body weight, kg)/(body length, m)2.Waist circumferenceWe used a measur<strong>in</strong>g tape (Seca 201 tape measurer, accurate at the 0.1 cm level, Hamburg,Germany) to determ<strong>in</strong>e waist circumference. Waist circumference was measured at the po<strong>in</strong>tlocated halfway between the crista iliaca and the tenth rib. We took two measurements, one asthe participant breathed <strong>in</strong> and one as he breathed out. The average of these two values was usedfor analysis. We deviate from The International Society for the Advancement of K<strong>in</strong>anthropometryprocedure, because <strong>in</strong> our participants a normal expiration <strong>in</strong> these circumstances may be difficultto recognize.Sk<strong>in</strong>fold measurementsSk<strong>in</strong>folds were measured <strong>in</strong> mm at four sites accord<strong>in</strong>g to the guidel<strong>in</strong>es of the ACSM [8] andHarpenden Sk<strong>in</strong>fold Calliper (Model: HSK-BI, Baty International, West Sussex, UK) was used. Theparticipant was asked to stand straight for all measurements, and sk<strong>in</strong>folds on the right side weremeasured twice. The average of the two measurements was used for analysis. Triceps and bicepssk<strong>in</strong>folds were measured at the midpo<strong>in</strong>t between the acromion border and the proximal borderof the olecranon. Subscapular sk<strong>in</strong>folds were measured by palpat<strong>in</strong>g the participants’ angulus<strong>in</strong>ferior scapulae and p<strong>in</strong>ch<strong>in</strong>g the sk<strong>in</strong>fold located just lateral to and under the angulus <strong>in</strong>feriorat an angle of 45 degrees (<strong>with</strong> the sp<strong>in</strong>e). Suprailiac sk<strong>in</strong>folds were measured by palpat<strong>in</strong>g thecrista iliaca of the pelvis and p<strong>in</strong>ch<strong>in</strong>g the sk<strong>in</strong>fold just before the top of the crista iliaca.Tibia lengthThe participant was asked to sit <strong>in</strong> a chair <strong>with</strong> his knees flexed at 90 degrees. Next, we palpatedthe medial malleolus and the proximal end of the tibia, and then measured the distance (cm)between the distal border of the medial malleolus and the proximal end of the tibia <strong>with</strong> ameasur<strong>in</strong>g tape.Data analysisThe data were analysed us<strong>in</strong>g spss 14.0.FeasibilityTo determ<strong>in</strong>e feasibility, we compared the number of successful measurements <strong>with</strong> the totalnumber of measurements. The feasibility was considered to be sufficient when 95% of themeasurements were successful.Chapter 2 | 27


ReliabilityFirst, to determ<strong>in</strong>e whether significant differences between measurements 1 and 2 exist, weanalysed the differences us<strong>in</strong>g the Wilcoxon signed rank test. Wilcoxon signed rank tests wereused because the data were not normally distributed. The level of statistical significance wasset at 5%. Limits of agreement (LOA) between two measurements of the same variables werecalculated accord<strong>in</strong>g to the procedure described by Bland & Altman [44]. The LOA is consideredto be an <strong>in</strong>dicator of reliability. LOAs are expressed <strong>in</strong> units and as a percentage of the mean ofthe first measurement. Measurements were considered reliable when the LOA was less than 10%of the mean of the first measurement.F<strong>in</strong>ally, the <strong>in</strong>traclass correlation coefficients (ICC two-way random, absolute agreement) ofmeasurements 1 and 2 of the same variables were computed. Reliability is considered acceptablewhen the ICC value is greater than 0.80 and the 95% confidence <strong>in</strong>terval is 0.04 or less. Tocompare the reliability determ<strong>in</strong>ed <strong>in</strong> the present study <strong>with</strong> those from other studies, we madesimilar calculations of similar variables: the standard error of measurement (SEM = SD/√n); thecoefficient of variation 1 (CV1 = SD/mean x 100%); the technical error (TE = √Sd 2 /2n, where d isthe difference between paired measures of n subjects); and the coefficient of variation 2 (CV2 =100 x TE/mean of measures taken).Calculation of heightThe long bone length/height ratio has been shown to vary among populations [45] and it isknown that this ratio does vary to some degree <strong>with</strong> differences <strong>in</strong> stature [46, 47]. To addressthese differences, specific formulae have been generated for certa<strong>in</strong> populations [48, 49, 50, 51,52, 53]. For that reason, we used the formula to estimate a subject’s height from his tibia lengthof Stevenson [54]. The calculated height data were compared <strong>with</strong> the actual measured heightus<strong>in</strong>g Wilcoxon rank tests and ICC (two-way random, total agreement). Also, LOAs between twomeasurements of the same variables were calculated accord<strong>in</strong>g to the procedure described byBland & Altman [44]. If necessary, a l<strong>in</strong>ear regression analysis was performed to determ<strong>in</strong>e themost appropriate equation for calculat<strong>in</strong>g a subject’s height from tibia length.Body weight statusIf feasibility and reliability were acceptable, the outcomes were compared <strong>with</strong> the normal WHOvalues [55, 56, 32].ResultsReliabilityTable 1 summarizes the means and standard deviations of body length, body weight, BMI, waistcircumference, and sk<strong>in</strong>fold measurements, the results of Wilcoxon signed rank test, LOA, ICC,and LOA expressed as a percentage of the means. There were no significant differences betweenmeasurements 1 and 2. The LOAs expressed as a percentage of the means for the sk<strong>in</strong>foldmeasurements were more than 10%, whereas the LOAs for all the other variables were less than10%. Intraclass correlation coefficients for all variables, except those for biceps, subscapular andsuprailiac sk<strong>in</strong>fold measurements, were 0.90 or above.28 | Chapter 2


Table 1 Results of Wilcoxon rank test, limits of agreement (LOA), percentage LOA of mean, and <strong>in</strong>traclasscorrelation coefficients (ICC)Mean1(SD)Mean2 (SD)p valueWilcoxonLOALOA ofmean (%)ICC*95% CIWeight(<strong>in</strong> kg)Height(<strong>in</strong> cm)BMI(<strong>in</strong> kg/m 2 )Tibia length(<strong>in</strong> cm)Waistcircumference(<strong>in</strong> mm)Sk<strong>in</strong>foldBiceps (<strong>in</strong> mm)Sk<strong>in</strong>foldTriceps (<strong>in</strong> mm)Sk<strong>in</strong>foldSub scapular(<strong>in</strong> mm)Sk<strong>in</strong>foldSuprailiac(<strong>in</strong> mm)Sum of sk<strong>in</strong>foldmeasurements(<strong>in</strong> mm)63 (12) 63 (12) 0.814 2 * 1.06939 3.2% 0.990.99-0.99164 (14) 164 (14) 0.129 2 * 1.75123 2.1% 0.990.99-0.9923 (3) 23 (3) 0.554 2 * 0.68659 5.8% 0.980.98-0.9936(4) 36(4) 0.527 2 * 0.94545 5.2 % 0.990.98-0.9985 (9) 85 (9) 0.372 2 * 2.27459 5.3% 0.970.95-0.9810 (5) 10 (6) 0.468 2 * 4.02861 80% 0.860.75-0.9315 (6) 16 (7) 0.957 2 * 3.56180 44% 0.910.85-0.9619 (8) 20 (7) 0.258 2 * 4.64008 46% 0.830.80-0.9520 (7) 20 (7) 0.957 2 * 5.52351 55% 0.890.68-0.9166 (22) 65 (21) 0.931 2 * 8.94375 27% 0.910.84-0.95* Two way random, total agreement.Chapter 2 | 29


Table 2 shows SEM and CV1 values for waist circumference and for biceps, triceps, subscapularand suprailiac sk<strong>in</strong>folds. Table 3 lists TE and CV2 values for weight, tibia length, and triceps andsubscapular sk<strong>in</strong>folds.Table 2 Standard error of measurement (SEM) and coefficient of variation 1 (CV1) values for waist circumferencemeasurements and sk<strong>in</strong>fold measurements*SEMPresent studyCV 1Present studyWaistmeasurementSk<strong>in</strong>foldbicepsSk<strong>in</strong>foldtricepsSk<strong>in</strong>foldsubscapularSk<strong>in</strong>foldsuprailiac0.340 0.4000.622 6.2120.556 3.5900.743 3.8100.863 4.300* SEM = SD/√n; CV1 = SD/mean x 100%Table 3 Technical error (TE) and coefficient of variation (CV) values for weight, tibia length, and triceps andsubscapular sk<strong>in</strong>folds*TEPresent studyCV 2Present studyWeight 0.0005 0.0008Tibia length 0 0Sk<strong>in</strong>foldtricepsSk<strong>in</strong>foldsubscapular0.03 0.190.07 0.36*TE = √ ∑ d 2 /2n, where d is the difference between paired measures for n subjects; CV = 100 x TE/mean ofmeasures taken30 | Chapter 2


Calculation of heightThe mean (SD) height calculated <strong>with</strong> the Stevenson formula [151 (35) cm] was significantlydifferent (p < 0.01) from that of the mean (SD) of actual measured heights [164 (11) cm]. Because ofthis significant difference, we performed a l<strong>in</strong>ear regression analysis to identify a more accurateformula for calculat<strong>in</strong>g height from tibia length and arrived at the follow<strong>in</strong>g formula(p < 0.01; R/R2: 0.926/0.857; Durb<strong>in</strong>/Watson: 1.945):For men, 74.008 + (1.841 x tibia length) + (0.389 x weight) - (3.787 x 0);For women, 74.008 + (1.841 x tibia length) + (0.389 x weight) - (3.787 x 1).We used the Wilcoxon rank tests, ICC (2-way random, total agreement) and LOAs to compareheight data calculated <strong>with</strong> the new formula to actual measured height data and found that heightcalculated <strong>with</strong> this formula was not significantly different from the actual measured height(p = 0.953). Moreover, the LOA was 10 cm, which is 6% of the mean, and the ICC was 0.96. Figure2 shows that the standardized normal P-P plot of the regression analysis is acceptable.Figure 2 Normal P-P Plot.Normal P-Plot of Regression Standardized ResidualDependent Variable: body height <strong>in</strong> cm1,00,8Expected Cum Prob0,60,40,20,00,00,2 0,4 0,6 0,81,0Observed Cum ProbFeasibilityExcept for the measurements of sk<strong>in</strong>folds, which were 82% successful, at least 95% of therema<strong>in</strong><strong>in</strong>g measurements were successful.Chapter 2 | 31


Body weight statusTables 4 and 5 show the results of the comparison of BMI and waist measurements accord<strong>in</strong>g tothe WHO [32, 55, 56].Table 4. BMI <strong>in</strong>terpretation accord<strong>in</strong>g to WHO values: obese (BMI>30); overweight(2530); healthy weight (18.525); underweight (BMI 102 for men, waist > 88 for women); risk weight (96 > waist < 102 for men, 80 >waist < 88 for women); healthy weight (88 > waist < 96 for men, 76 > waist < 80 for women);underweight (waist < 88 for men, waist < 76 for women).Whole group Men WomenN 45 28 17Underweight 16% 25% -Healthy weight 42% 61% 12%Risk weight 24% 11% 47%Abdom<strong>in</strong>al obese 18% 3% 41%Totaal 100% 100% 100%Waist circumference <strong>in</strong> cm.WHO, World Health Organization.32 | Chapter 2


DiscussionThe results of our study show that measurements such as body height, body weight, waistcircumference and tibia length can reliably be performed <strong>in</strong> participants <strong>with</strong> severe <strong>in</strong>tellectualand sensory disabilities (SIMD).Feasibility and reliability of the measurements depended partly on the motivation of theattendant and participant. The environment and the attitude of the attendant can <strong>in</strong>fluence aparticipant’s state of m<strong>in</strong>d. However, when a participant is stressed and moves a lot, it is difficultto take a correct measurement. When a participant is relaxed, the attendant has more time toread the measurement value, and thus the measurement will be more accurate. To measure bodyheight, the exam<strong>in</strong>er has to determ<strong>in</strong>e whether a participant is stand<strong>in</strong>g correctly, because theparticipant is unaware of his stance. The measurement process must follow the protocol, so theattendant must check that the participant’s feet are flat on the ground, that the back of his heelscontact the wall and that he is stand<strong>in</strong>g straight and is look<strong>in</strong>g forward. This process can be verydifficult for the attendant, because it is often hard for a participant to stand still for a few seconds<strong>in</strong> the correct position. For this reason, we sought another way of determ<strong>in</strong><strong>in</strong>g participant’s heightby calculat<strong>in</strong>g body height from tibia length. To accurately measure tibia length, an attendantmust have sufficient knowledge of human anatomy. We found that the feasibility of obta<strong>in</strong><strong>in</strong>gaccurate measurements from tibia lengths is much better, because the participant is allowed to siton a chair.We experienced the most problems <strong>in</strong> perform<strong>in</strong>g sk<strong>in</strong>fold measurements. Dur<strong>in</strong>g themeasurement, the participant feels a p<strong>in</strong>ch but does not understand why he or she is be<strong>in</strong>gp<strong>in</strong>ched. Hence, at that moment, the participant becomes agitated and starts mov<strong>in</strong>g. Thisrestricts measurement, because as soon as a participant feels the p<strong>in</strong>ch, it takes 2 s beforeit is possible to read the correct value. When the subject is unable to stand still, it is almostimpossible to take an accurate measurement. The sk<strong>in</strong>fold measurement process also causedan unacceptable amount of stress to most of the participants. Furthermore, the LOAs expressedas a percentage of the mean sk<strong>in</strong>fold values show that the sk<strong>in</strong>fold measurement accuracy wasunacceptable.The reliability of body weight, body height, waist circumference, sk<strong>in</strong>folds and tibia lengthmeasurements of the present study is comparable to the reliability of similar measurementsreported <strong>in</strong> other studies. This is considered to be a good result because of the complexity ofobta<strong>in</strong><strong>in</strong>g measurements <strong>in</strong> this study population. In the study of Bemben et al. (1998), thereliability of waist circumference measurements and sk<strong>in</strong>fold measurements was exam<strong>in</strong>edby determ<strong>in</strong><strong>in</strong>g the standard errors of measurement and coefficients of variation. Our waistcircumference measurements (SEM/CV: Bemben et al. [28], 0.590/0.72; the present study,0.340/0.400) and suprailiac sk<strong>in</strong>fold measurements (SEM/CV: Bemben [28], 3.120/20.73; presentstudy, 0.863/4.3) were more accurate than those reported by Bemben [28]. However, Bemben’s[28] biceps, triceps and subscapular sk<strong>in</strong>fold measurements are more accurate than ourmeasurements (SEM: Bemben [28], 0.470, 0.420, 0.590, respectively; present study, 0.622, 0.556,0.743, respectively).In the study of Stevenson et al. (2006), the reliability of anthropometric measurementswas exam<strong>in</strong>ed by determ<strong>in</strong><strong>in</strong>g the technical error and the coefficients of variation. By compar<strong>in</strong>gtheir calculations, we found that our weight, tibia length and sk<strong>in</strong>fold (triceps and subscapular)measurements are more accurate (TE: Stevenson [29], 0.08, 0.22, 0.6, 0.51, respectively;Chapter 2 | 33


present study, 0.0005, 0, 0.03, 0.07, respectively). In the study of Pr<strong>in</strong>ce [57], the ICC of waistcircumference was 0.99 (p < 0.0001) and LOAs from -5.5 to 6.7 cm was 6.1 cm. In our study, the<strong>in</strong>traclass correlation was similar. However, LOA was 4.4 cm, <strong>in</strong>dicat<strong>in</strong>g that our measures weresomewhat more sensitive for monitor<strong>in</strong>g <strong>in</strong>dividual changes. The study of Nadas [26] exam<strong>in</strong>ed<strong>in</strong>tra-observer and <strong>in</strong>ter-observer variability <strong>in</strong> waist circumference measurements and BMI. Intheir study, the difference of the means of BMI measurement 1 and 2 was 0.02 kg/m 2 , and theabsolute average difference of the BMI was 0.292 kg/m 2 . In our study, the difference of these twomeans of the BMI was 0.10 kg/m 2 , and the absolute difference between BMI values was 0.687kg/m 2 , which is less reliable, but still acceptable, accord<strong>in</strong>g to the LOAs expressed as a percentageof the means.The results of the present study also demonstrated that a considerable number ofparticipants <strong>with</strong> SIMD are overweight or obese, and are therefore at risk for develop<strong>in</strong>g healthproblems. Accord<strong>in</strong>g to the BMI and waist measurements, more of the men than women had ahealthy weight. Thus, the women <strong>in</strong> the study population were at a higher risk for develop<strong>in</strong>ghealth problems compared <strong>with</strong> the men. Based on BMI values, 10% of the female subjects wereobese and 39% were abdom<strong>in</strong>al obese, while 0% of the male clients were obese and only 7%were abdom<strong>in</strong>al obese.ConclusionsTest–retest reliability and feasibility for all measurements are acceptable <strong>in</strong> participants <strong>with</strong>SIMD. However, sk<strong>in</strong>fold measurements could not be reliably performed <strong>in</strong> these subjects.<strong>Measur<strong>in</strong>g</strong> tibia length and us<strong>in</strong>g the determ<strong>in</strong>ed formula to calculate body height from tibialength is a reliable alternative for measur<strong>in</strong>g body height. Although the feasibility of perform<strong>in</strong>gbody height measurements as outl<strong>in</strong>ed <strong>in</strong> our protocol was acceptable, the feasibility ofperform<strong>in</strong>g tibia length measurements was much better. Assess<strong>in</strong>g body fat composition <strong>in</strong> adults<strong>with</strong> SIMD through sk<strong>in</strong>fold measurements is not recommended. Furthermore, our results <strong>in</strong>dicatethat this study population has a considerable number of participants that are overweight orobese.AcknowledgementsThe research was f<strong>in</strong>anced by Hanze University Gron<strong>in</strong>gen, the Br<strong>in</strong>k, and <strong>with</strong> fund<strong>in</strong>g from theRegional Action-and-Attention Knowledge Circulation. The authors k<strong>in</strong>dly acknowledge and thankthe participants for their participation <strong>in</strong> this study, their representatives for given permission tothis, Ms J. Kramer and the caregivers of ‘De Br<strong>in</strong>k’ for assistance <strong>with</strong> the measurements.34 | Chapter 2


References1 Bouchard C, Shepard RJ, Stephens T, Physical activity, Fitness and Health. 1994, HumanK<strong>in</strong>etics Publishers, Champaign, IL.2 Kramer AF, Hahn S, Cohen NJ, Banich MT, McAyley E, Harrison CR, Chason J, Vakil E, BardellL, Boileau RA, Colcombe A. Age<strong>in</strong>g, <strong>fitness</strong> and neurocognitive function. Nature.1999;400:418-419.3 Sitskoorn MM. Het plastische bre<strong>in</strong>; <strong>in</strong>vloed van gedrag. De Psycholoog. 2005;40(5):262-267.4 World Health Organization. Health for all, 1979.5 World Health Organization. WHO Chr. 1980;34(2):80.6 World Health Organization. Ottawa Charter for Health Promotion, 1986.7 Wilder RP, Green JA, W<strong>in</strong>ters KL, Long WB 3 rd , Gubler K, Edlich RF. Physical <strong>fitness</strong>assessment: an update. Division of Sp<strong>in</strong>e and Sports Care, The Runner’s Cl<strong>in</strong>ic, Departmentof Physical Medic<strong>in</strong>e and Rehabilitation, University of Virg<strong>in</strong>ia Health Sciences System,Charlottesville, Virg<strong>in</strong>ia, USA. J Long Term Eff Med Implants. 2006;16(2):193-204.8 Amstrong LE, Whaley MH, Brubaker PH, Otto RM. ACSM’s Guidel<strong>in</strong>es for Exercise Test<strong>in</strong>g andPrescription, 7 th ed. Philadelphia, 2005, Pa: Lipp<strong>in</strong>cott Williams & Wilk<strong>in</strong>s, American Collegeof sports medic<strong>in</strong>e, guidel<strong>in</strong>es sk<strong>in</strong>fold measurement, Philadelphia, PA.9 Bouchard C. Overweight, mortality and obesity. In: (Ed. C. Bouchard), 2000: 3-7. HumanK<strong>in</strong>etics Publishers, Champaign, IL.10 Bray GA. Overweight, Mortality and Obesity. In: Physical activity and obesity. (Ed. C.Bouchard), 2000, pp. 32-37. Human K<strong>in</strong>etics Publishers, Champaign IL.11 Knijff-Raeven van AGM, Jansen-Jacobs CC M, Freen P JW, Hoekman J, Maaskant MA. BodyMass Index (BMI) bij mensen met een verstandelijke beperk<strong>in</strong>g. Nederlands Tijdschrift Voorde Zorg aan Mensen Met Verstandelijke Beperk<strong>in</strong>gen. 2005;1:3–17.12 Frey GC & Chow B. Relationship between BMI, <strong>physical</strong> <strong>fitness</strong>, and motor skills <strong>in</strong> youth <strong>with</strong>mild <strong>in</strong>tellectual disabilities. Intern J Obes. 2006;30(5):861-7.13 Laht<strong>in</strong>en U, R<strong>in</strong>tala P & Mal<strong>in</strong> A. Physical performance of <strong>in</strong>dividuals <strong>with</strong> <strong>in</strong>tellectualdisability: a 30 year follow up. Adapt Phys Act Q. 2007;24(2):125-43.14 World Health Organization. Physical status: The use and <strong>in</strong>terpretation ofanthropometry. 1995, WHO Technical Report Series World Health Organization, Geneva.15 Hark L, Bowman M, Bell<strong>in</strong>i L. Oversight of Nutrition <strong>in</strong> Cl<strong>in</strong>ical Care. In: Medical Nutrition &Disease (eds L. Hark & G. Morrison). 2003, National Health and Nutrition Exam<strong>in</strong>ation SurveyIV.16 Malnutrition Advisory Group. The Malnutrition Universal Screen<strong>in</strong>g Tool [MUST] ExplanatoryBooklet. 2003, BAPEN Redditch, Worcs.17 Hogan S E. Knee Height as a Predictor of Recumbent Length for Individuals <strong>with</strong> Mobility-Impaired Cerebral Palsy. Journal of American College of Nutrition. 1999;18:201–5.18 Madden AM, Tsikoura T, Stott DJ. The estimation of body height from ulnar length <strong>in</strong> adultsfrom different ethnic groups. J of Hum Nutr Diet. 2008;15;21(4):394.19 We<strong>in</strong>brenner T, Vioque J, Barber X, Asensio L. Estimation of height and body mass <strong>in</strong>dexfrom demi-span <strong>in</strong> elderly <strong>in</strong>dividuals. Gerontology. 2006;52(5):275-81.20 Duyar I & Pel<strong>in</strong> C. Body height estimation based on tibia length <strong>in</strong> different stature groups.Am J Phys Anthropol. 2003;122(1):23-27.Chapter 2 | 35


21 Stevenson RD. Measurement of Growth <strong>in</strong> Children <strong>with</strong> Developmental Disabilities. Dev MedChild Neurol. 1996;38:855-860.22 Gallagher D, Visser M, Sepúlveda D, Pierson RN, Harris T, Heymsfield SB. How useful is BMIfor comparison of body fatness across age, sex and ethnic groups? Am J Epidemiol.1996;143:228–239.23 Deurenberg-Yap M, Schmidt G, Staveren WA van, Deurenberg P. The paradox of low bodymass <strong>in</strong>dex and high body fat percentage among Ch<strong>in</strong>ese, Malays and Indians <strong>in</strong> S<strong>in</strong>gapore.Int J Obes. 2000;24(8):1011-1017.24 Savva SC, Tornaritis M, Savva ME, Kourides Y, Panagi A, Silikiotou N, Georgiou C, Kafatos A.Waist circumference and waist-to-height ratio are better predictors of cardiovasculardisease risk factors <strong>in</strong> children than body mass <strong>in</strong>dex. Int J Obes Rel Metabolic Dis.2000;24(11):1453-8.25 Dalton M, Cameron AJ, Zimmet PZ, Shaw JE, Jolley D, Dunstan DW, Welborn TA, Waistcircumference, waist-hip ratio and body mass <strong>in</strong>dex and their correlation <strong>with</strong> cardiovasculardisease risk factors <strong>in</strong> Australian adults. J Intern Med. 2003;254(6):555-63.26 Nadas J, Putz Z, Kolev G, Nagy S, Jermendy G. Intraobserver and <strong>in</strong>terobserver variability ofmeasur<strong>in</strong>g waist circumference. Med Sci Monitor. 2008;14(1):CR 15-18.27 Nooyens AC, Koppes LL, Visscher TL, Twisk JW, Kemper HC, Schuit AJ, van Mechelen W,Seidell JC. Adolescent sk<strong>in</strong>fold thickness is a better predictor of high body fatness <strong>in</strong> adultsthan is body mass <strong>in</strong>dex: the Amsterdam Growth and Health Longitud<strong>in</strong>al Study. Am J Cl<strong>in</strong>Nutr. 2007;85(6):1533-9.28 Bemben MG, Massay BH, Bemben DA, Boileau RA, Misner JE. Age-related variability <strong>in</strong> bodycomposition methods for assessment of percent fat and fat-free mass <strong>in</strong> men aged 20-74years. Age and Age<strong>in</strong>g. 1998;27:147-53.29 Stevenson RD, Conaway M, Chumlea WC, Rosenbaum P, O’Donnell M, Samson-Fang L,Stall<strong>in</strong>gs VA, Fung EB, Henderson RC, Worley G, Liptak G. Growth and Health <strong>in</strong> Children WithModerate-to-<strong>Severe</strong> Cerebral Palsy. Pediatrics. 2006;118:1010-1018.30 Spender QW, Cronk CE, Charney EB, Stall<strong>in</strong>gs VA. Assessment of l<strong>in</strong>ear growth of children<strong>in</strong> cerebral palsy: use of alternative measures to height or length. Dev Med Child Neurol.1989;31:206–214.31 Mei Z, Grummer-Strawn LM, Pietrobelli A, Gould<strong>in</strong>g A, Goran MI, Dietz WH. Validity of bodymass <strong>in</strong>dex compared <strong>with</strong> other body-composition screen<strong>in</strong>g <strong>in</strong>dexes for the assessment ofbody fatness <strong>in</strong> children and adolescents. Am J Cl<strong>in</strong>ic Nutr. 2002;7597–985.32 World Health Organization, “Waist circumference”, 2006b, World Health Organization.33 Bhaumik S, Watson JM, Thorp CF, Tyrer F, Mc Grother CW. Body mass <strong>in</strong>dex <strong>in</strong> adults <strong>with</strong><strong>in</strong>tellectual disability: distribution, association and service implications: a population-basedprevalence study. J Intellect Disabil Res. 2008;52(4):287-98.34 Emerson E. Underweight, obesity and exercise among adults <strong>with</strong> <strong>in</strong>tellectual disabilities <strong>in</strong>supported accommodation <strong>in</strong> Northern England. J Intellect Disabil Res.2005;49(2):134-4335 Melville CA, Cooper SA, McGrother CW, Thorp CF, Collacott R. Obesity <strong>in</strong> adults <strong>with</strong> Downsyndrome: a case-control study. J Int Dis Res. 2005;49(2):125-33.36 Merriman S, Haw C, Kirk J, Stubbs J. Risk factors for coronary heart disease among<strong>in</strong>patients who have mild <strong>in</strong>tellectual disability and mental illness. J Intellect Disabil Res..2005;49(5):309-16.36 | Chapter 2


37 Rimmer J, Kelly LE, Rosentswieg J. Accuracy of Anthropometric Equations Estimat<strong>in</strong>g BodyComposition of Mentally Retarded Adults. Am J Ment Retard. 1987;91(6):626-632.38 Luckacsson R, Borthwick-Duffy S, Bunt<strong>in</strong>x W, Coulter D, Craig P, Reeve A, Shalock R, SnellM, Spitalnik D, Spreat S, Tasse, M. Mental Retardation: Def<strong>in</strong>ition, Classification and Systemsof Supports. 2002, Wash<strong>in</strong>gton American Association on Mental Retardation.39 Draheim CC, Williams DP, McCubb<strong>in</strong> JA Prevalence of <strong>physical</strong> <strong>in</strong>activity and recommended<strong>physical</strong> activity <strong>in</strong> community-based adults <strong>with</strong> mental retardation. Ment Retard.2002;40(6):436-44.40 Temple VA, Frey GC, Stanish HI. Physical activity of adults <strong>with</strong> mental retardation: reviewand research needs. Am J Health Promot. 2006;21(1):2-12.41 Palisano R, Hanna SE, Rosenbaum PL, Rusell DJ, Walter SD, Wood EP, Ra<strong>in</strong>a PS, Galuppi BE.Validation of a model of Gross Motor Function for Children With Cerebral Palsy. PhysicalTherapy. 2000;80(10):974-985.41 Gorter JW. Gross Motor Function Classification System (Dutch translation), 2001,Revalidatiecentrum De Hoogstraat Utrecht.42 World Health Organization. International classification of function<strong>in</strong>g, disability and health.2001, Geneva43 Dutch Society for Doctors <strong>in</strong> the Care for people <strong>with</strong> an Intellectual Disability (NVAZ).Resistance among people <strong>with</strong> an <strong>in</strong>tellectual disability <strong>in</strong> the framework of the ActGovern<strong>in</strong>g Medical-Scientific Research Involv<strong>in</strong>g Humans, behavioural code for doctors <strong>in</strong> theassessment of resistance among people <strong>with</strong> an <strong>in</strong>tellectual disability, 1999.44 Bland JM & Altman DG. Statistical methods for assess<strong>in</strong>g agreement between two methodsof cl<strong>in</strong>ical measurement. The Lancet. 1986;8:307-10.45 Meadows Jantz L & Jantz RL. Secular change <strong>in</strong> long bone length and proportion <strong>in</strong> theUnited States, 1800–1970. Am J Phys Anthropol. 1999;110:57–67.46 Meadows L & Jantz RL. Allometric secular change <strong>in</strong> the long bones from the 1880s to thepresent. J For Sci. 1995;40:762–767.47 Konigsberg LW, Hens SM, Jantz LM, Jungers WL. Stature estimation and calibration:Bayesian and maximum likelihood perspectives <strong>in</strong> <strong>physical</strong> anthropology. Yearbook ofPhysical Anthropology. 1998;41:65–92.48 Breit<strong>in</strong>ger E. Zur Berechnung der Korperhohe aus den langen Gliedmassenknochen.Anthropologischer Anzeiger. 1937;14:249–274.49 Trotter M & Gleser G. Estimation of stature from long bones of American whites andNegroes. Am J Phys Anthropol. 1952;10:463–514.50 Trotter M & Gleser G. A re-evaluation of estimation of stature based on measurements ofstature taken dur<strong>in</strong>g life and long bones after death. Am J Phys Anthropol. 1958;16:79–123.51 Olivier G. Practical anthropology. 1969, Charles C. Thomas Spr<strong>in</strong>gfield, IL.52 Formicola V & Franceschi M. Regression equations for estimat<strong>in</strong>g stature from long bones ofearly Holocene European samples. Am J Phys Anthropol. 1996;100:83–88.53 De Mendonca MC. Estimation of height from the length of long bones <strong>in</strong> a Portuguese adultpopulation. Am J Phys Anthropol. 2000;112:39–48.54 Stevenson RD. Measurement of Growth <strong>in</strong> Children <strong>with</strong> Developmental Disabilities. Dev MedChild Neurol. 1996;38:855-860.Chapter 2 | 37


55 World Health Organization, BMI classification, 2006, World Health Organization.56 World Health Organization, Pan American Health Organization. Protocol for the NutritionalManagement of Obesity, Diabetes and Hypertension <strong>in</strong> the Caribbean, 2004, CaribbeanFood and Nutrition Institute Jamaica and PAHO/WHO Office of Caribbean ProgramCoord<strong>in</strong>ation, Barbados.57 Pr<strong>in</strong>ce SA, Janssen I, Tranmer JE. Self-Measured Waist Circumference <strong>in</strong> Older Patients WithHeart Failure: A Study of Validity and Reliability Us<strong>in</strong>g a Myo Tape(R), J CardiopulmRehabil Prev. 2008;28(1):43-47.38 | Chapter 2


Chapter 3<strong>Measur<strong>in</strong>g</strong> waist circumference <strong>in</strong> disabledadults.A. Wan<strong>in</strong>geK. A. M. LigthartJ. KramerS. HoeveC.P. van der SchansH.H. HaismaResearch <strong>in</strong> Developmental Disabilities 31(3):839-847.Reproduced by courtesy of ElsevierChapter 3 | 39


AbstractTo date, it is unknown whether waist circumference can be measured validly and reliably whena subject is <strong>in</strong> a sup<strong>in</strong>e position. This issue is relevant when <strong>in</strong>ternational standards for healthyparticipants are applied to persons <strong>with</strong> severe <strong>in</strong>tellectual, sensory, and motor disabilities. Thus,the aims of our study were (1) to determ<strong>in</strong>e the validity of waist circumference measurementsobta<strong>in</strong>ed <strong>in</strong> a sup<strong>in</strong>e position, (2) to formulate an equation that predicts stand<strong>in</strong>g waistcircumference from measurements obta<strong>in</strong>ed <strong>in</strong> a sup<strong>in</strong>e position, and (3) to determ<strong>in</strong>e thereliability of measur<strong>in</strong>g waist circumference <strong>in</strong> persons <strong>with</strong> severe <strong>in</strong>tellectual, sensory, andmotor disabilities. First, we performed a validity study <strong>in</strong> 160 healthy participants, <strong>in</strong> which wecompared waist circumference obta<strong>in</strong>ed <strong>in</strong> stand<strong>in</strong>g and sup<strong>in</strong>e positions. We also conducted atest-retest study <strong>in</strong> 43 participants <strong>with</strong> severe <strong>in</strong>tellectual, sensory, and motor disabilities, <strong>in</strong>which we measured the waist circumference <strong>with</strong> participants <strong>in</strong> the sup<strong>in</strong>e position. Validity wasassessed <strong>with</strong> paired t-test and Wilcoxon signed rank test. A prediction equation was estimated<strong>with</strong> multiple regression analysis. Reliability was assessed by Wilcoxon signed rank test, limits ofagreement (LOA), and <strong>in</strong>traclass correlation coefficients (ICC). Paired t-test and Wilcoxon signedrank test revealed significant differences between stand<strong>in</strong>g and sup<strong>in</strong>e waist circumferencemeasurements. We formulated an equation to predict waist circumference (R 2 =0.964, p


IntroductionChildren and adults <strong>with</strong> severe generalized cerebral palsy (CP) and <strong>in</strong>tellectual disability havean <strong>in</strong>creased risk for malnutrition [1]. This is a consequence of an altered energy metabolism[2] <strong>in</strong> comb<strong>in</strong>ation <strong>with</strong> feed<strong>in</strong>g difficulties such as gastro-esophageal reflux and dysphagia [3].Many of these subjects need to be fed by stomach tube. Malnutrition is associated <strong>with</strong> poorerhealth status and limitations <strong>in</strong> societal participation [4]. On the other hand, 40% of the adults<strong>with</strong> <strong>in</strong>tellectual disability <strong>in</strong> the Netherlands [5] and <strong>in</strong> other countries [6, 7] have been foundto be overweight. These adults have <strong>in</strong>creased risk for develop<strong>in</strong>g obesity [8, 9] and associateddegenerative diseases such as type 2 diabetes.Anthropometry provides techniques for assess<strong>in</strong>g the size, proportions, and compositionof the human body; these techniques are universally applicable, <strong>in</strong>expensive, and non-<strong>in</strong>vasive[10]. To assess an <strong>in</strong>dividual’s body composition, body mass <strong>in</strong>dex (BMI, kg/m 2 ) can be used. Thecorrelation between BMI and body fat content is fairly strong; however, this correlation variesaccord<strong>in</strong>g to gender, race, and age [11, 12]. Furthermore, BMI has some limitations, as it mayoverestimate body fat <strong>in</strong> very muscular people and underestimate body fat <strong>in</strong> some underweightpeople who have lost lean tissue, such as the elderly [13].Another means of assess<strong>in</strong>g body fat content is through waist circumference. Waistcircumference as an <strong>in</strong>dicator of abdom<strong>in</strong>al fat is an important predictor of health risks [13]such as heart and vascular diseases and type 2 diabetes [14, 15]. BMI and waist circumferenceare widely used measures <strong>in</strong> healthy participants and <strong>in</strong> patients [13, 16, 17, 18]. Pischon et al [19]described that ‘both general adiposity and abdom<strong>in</strong>al adiposity are associated <strong>with</strong> <strong>in</strong>creasedmorbidity and mortality and support the use of waist circumference <strong>in</strong> addition to BMI <strong>in</strong>assess<strong>in</strong>g the risk of death’.De Br<strong>in</strong>k is a residential care facility <strong>in</strong> the Netherlands, hous<strong>in</strong>g 200 persons <strong>with</strong> severe orprofound <strong>in</strong>tellectual, sensory, and <strong>in</strong> several cases, motor disabilities (PIMD). In a pilot study, wefound that the female residents of De Br<strong>in</strong>k appeared to be at a higher risk for develop<strong>in</strong>g healthproblems compared to male residents [20]. In that study, BMI as well as waist circumference weremeasured. Accord<strong>in</strong>g to BMI values, 10% of the female participants were obese, while none ofthe male participants were obese. However, when waist circumference was used as a criterion,39% of the female and 7% of the male participans were classified as be<strong>in</strong>g obese. Other authorsalso conclude that, if waist circumference is used as the criterion, then the prevalence of obesityamong these adults may be significantly greater than as <strong>in</strong>dicated by BMI [21, 22].Reliable measurements are critical for assess<strong>in</strong>g the nutritional status of patients <strong>with</strong><strong>in</strong>tellectual disabilities. Reliable measurements are also required to obta<strong>in</strong> reliable data onprevalence and to identify participants at risk of becom<strong>in</strong>g overweight or develop<strong>in</strong>g malnutrition.We determ<strong>in</strong>ed that measur<strong>in</strong>g waist circumference <strong>with</strong> a tape measure halfway betweenthe tenth rib and the hipbone is feasible and reliable <strong>in</strong> participants <strong>with</strong> <strong>in</strong>tellectual and sensorydisabilities who are able to stand upright [20]. However, due to severe generalized CP and motordisabilities, e.g., spasticity, many participants <strong>with</strong> <strong>in</strong>tellectual and sensory disabilities are unableto stand straight or stand at all [23]. In these participants, waist circumference can only bemeasured <strong>with</strong> the subject ly<strong>in</strong>g <strong>in</strong> a sup<strong>in</strong>e position. This raises the question of whether waistcircumference can be measured reliably and validly <strong>in</strong> a sup<strong>in</strong>e position. This issue is particularlyrelevant when <strong>in</strong>ternational standards for healthy <strong>in</strong>dividuals are applied to disabled persons.Therefore, the purpose of this study, was as follows:Chapter 3 | 41


(1) <strong>in</strong> healthy participants, to determ<strong>in</strong>e the validity of waist circumference measurementsobta<strong>in</strong>ed <strong>in</strong> participants ly<strong>in</strong>g <strong>in</strong> a sup<strong>in</strong>e position (sup<strong>in</strong>e waist circumference) by compar<strong>in</strong>gthese measurements <strong>with</strong> waist circumference measurements obta<strong>in</strong>ed <strong>in</strong> the sameparticipants <strong>in</strong> a stand<strong>in</strong>g position (stand<strong>in</strong>g waist circumference);(2) to formulate an equation that predicts stand<strong>in</strong>g waist circumference based on sup<strong>in</strong>e waistcircumference and based on covariates that can <strong>in</strong>fluence waist circumference, such asgender, age, BMI, or past pregnancy; and(3) <strong>in</strong> participants <strong>with</strong> severe <strong>in</strong>tellectual, sensory, and motor disabilities, to determ<strong>in</strong>e thereliability of measur<strong>in</strong>g waist circumference us<strong>in</strong>g a test-retest study design.MethodsValidity studyStudy designThe waist circumference of 160 healthy participants was measured while persons were <strong>in</strong> astand<strong>in</strong>g position and <strong>in</strong> a sup<strong>in</strong>e position.ParticipantsOne hundred sixty healthy persons <strong>with</strong>out disabilities served <strong>in</strong> the validity study, <strong>in</strong> which wecompared waist circumference measurements obta<strong>in</strong>ed while the participants were <strong>in</strong> stand<strong>in</strong>gand sup<strong>in</strong>e positions. Participants were recruited from a nurs<strong>in</strong>g school (students and teachers)and from a research organization where people receive medical exam<strong>in</strong>ations. All potentialparticipants received written and spoken <strong>in</strong>formation about the study. They were <strong>in</strong>cluded <strong>in</strong> thestudy if <strong>in</strong>formed consent was obta<strong>in</strong>ed. The participants had to be able to stand and to lie down.Exclusion criteria were pregnancy and hav<strong>in</strong>g scars, because these situations might alter theshape of the waist.To ensure that all ages were represented <strong>in</strong> the study population, we <strong>in</strong>cluded both men andwomen from three age categories: 20-35 years, 35-50 years, and 50-65 years. Similarly, all BMIcategories were <strong>in</strong>cluded <strong>in</strong> the study.Ethical statementThe participants of this study gave <strong>in</strong>formed consent.MeasurementsA non-stretchable tape measure (Seca 201 tape measure; Seca, Hamburg, Germany), accurate tothe 0.1 cm level, was used to determ<strong>in</strong>e waist circumference. Waist circumference was measuredat the po<strong>in</strong>t located halfway between the crista iliaca and the tenth rib. In healthy participants,measurements were obta<strong>in</strong>ed while the participants were <strong>in</strong> a stand<strong>in</strong>g position and <strong>in</strong> sup<strong>in</strong>eposition. We took two measurements, one as the participant breathed <strong>in</strong> and one as he/shebreathed out. The average of these two values was used for analysis.Data analysisThe number of participants required was based on a power analysis us<strong>in</strong>g data from a pilot study.In order to detect a statistically significant difference of 1.5 cm between the stand<strong>in</strong>g and sup<strong>in</strong>emeasurements, assum<strong>in</strong>g a standard deviation of 9 cm, the study needed to <strong>in</strong>clude at least 16042 | Chapter 3


participants. These calculations assume a type I error (alpha) of 0.05, two-tailed, and a type IIerror (beta) of 20%; that is, a statistical power of 80%. The data were analyzed us<strong>in</strong>g SPSS 14.0.To determ<strong>in</strong>e whether significant differences between sup<strong>in</strong>e waist circumference andstand<strong>in</strong>g waist circumference exist, we analyzed the differences us<strong>in</strong>g both a paired t-test andWilcoxon signed rank test. Wilcoxon signed rank tests were also used to get a better impression ofthe distribution of the data. The level of statistical significance was set at 0.05.Furthermore, limits of agreement (LOA) between sup<strong>in</strong>e and stand<strong>in</strong>g waist circumferencemeasurements were calculated accord<strong>in</strong>g to the procedure described by Bland and Altman [24].Predict<strong>in</strong>g stand<strong>in</strong>g waist circumferenceTo determ<strong>in</strong>e whether stand<strong>in</strong>g waist circumference can be predicted by us<strong>in</strong>g sup<strong>in</strong>e waistcircumference and to determ<strong>in</strong>e the <strong>in</strong>fluence of the covariates gender, age, BMI, or pastpregnancy, first we performed a simple l<strong>in</strong>ear regression analysis of stand<strong>in</strong>g waist circumferenceon each variable separately. Significance (p


54 persons6 persons lacked permission from representatives48 persons3 persons excluded for medical/behavioral reasons45 persons2 persons excluded at the time of the test43 personsFigure 1. Sampl<strong>in</strong>g scheme of subjects <strong>in</strong>cluded <strong>in</strong> the reliability studyThe participants <strong>with</strong> PIMD were classified accord<strong>in</strong>g to the Gross Motor Function ClassificationSystem (GMFCS) [25], a five-level system used to classify the severity of motor abilities <strong>in</strong> people<strong>with</strong> <strong>physical</strong> disabilities. For example, persons hav<strong>in</strong>g a Level I classification can generallywalk <strong>with</strong>out restrictions but tend to be limited <strong>in</strong> some more advanced motor skills. <strong>Persons</strong><strong>with</strong> a Level V classification generally have very limited mobility, even <strong>with</strong> the use of assistivetechnology. These persons always use a wheelchair.Ethical statementThis study was performed <strong>in</strong> agreement <strong>with</strong> the guidel<strong>in</strong>es of the Hels<strong>in</strong>ki Declaration, asrevised <strong>in</strong> 1975. Permission to carry out the study was obta<strong>in</strong>ed from the <strong>in</strong>stitutional ethicscommittee. Informed consent was obta<strong>in</strong>ed from representatives of the participants, because allparticipants were unable to give consent. The measurements were performed <strong>in</strong> accordance <strong>with</strong>the behavioral code section entitled, “Resistance among people <strong>with</strong> an <strong>in</strong>tellectual disability <strong>in</strong>the framework of the Govern<strong>in</strong>g Medical-Scientific Research Involv<strong>in</strong>g Humans Act” [26]. This isa behavioral code for doctors to help them assess the resistance of people <strong>with</strong> an <strong>in</strong>tellectualdisability. The code was drafted by the Dutch Society for Doctors <strong>in</strong> the Care of People <strong>with</strong> anIntellectual Disability (NVAZ). Consistent distress or unhapp<strong>in</strong>ess was <strong>in</strong>terpreted as a sign of lackof assent, and further participation <strong>in</strong> the study was reconsidered.MeasurementsA non-stretchable tape measure (Seca 201 tape measure; Seca, Hamburg, Germany), accurateto the 0.1 cm level, was used to determ<strong>in</strong>e waist circumference. Waist circumference wasmeasured at the po<strong>in</strong>t located halfway between the crista iliaca and the tenth rib, whilethe disabled participants were <strong>in</strong> a sup<strong>in</strong>e position. We took two measurements, one as theparticipant breathed <strong>in</strong> and one as he/she breathed out. The average of these two values wasused for analysis. Three testers—a dietary therapist, a <strong>physical</strong> therapist, and a student—took themeasurements after appropriate tra<strong>in</strong><strong>in</strong>g (three times).44 | Chapter 3


Data analysisThe data were analyzed us<strong>in</strong>g SPSS 14.0. First, to determ<strong>in</strong>e whether significant differencesbetween test and retest measurements exist, we analyzed the differences us<strong>in</strong>g the Wilcoxonsigned rank test. The level of statistical significance was set at 0.05. Limits of agreement (LOA)between two measurements of the same variables were calculated accord<strong>in</strong>g to the proceduredescribed by Bland and Altman [24]. The LOA is considered to be an <strong>in</strong>dicator of reliability. LOAsare expressed <strong>in</strong> units and as a percentage of the mean of the first measurement. Measurementswere considered reliable when the LOA was less than 10% of the mean of the first measurement.Afterward, the <strong>in</strong>traclass correlation coefficients (ICC; two-way random, absolute agreement)of test and retest measurements of the same variables were computed. Measurements wereconsidered reliable when the ICC values were greater than 0.80 and the 95% confidence <strong>in</strong>terval(CI) was 0.30 or less. F<strong>in</strong>ally, the test-retest was considered reliable if (1) there were no significantdifferences between test and retest measurements; (2) LOA was acceptable, as described above;and (3) ICC was acceptable, as described above.ResultsValidity studyThe characteristics of the subjects that participated <strong>in</strong> the validity study are shown <strong>in</strong> Table 1.Table 1. Validity study: subject characteristicsGenderBMI category


sup<strong>in</strong>e waist circumference was higher than stand<strong>in</strong>g waist circumference. In zero subjects, therewas no difference. The LOA was 5.34 cm (Figure 2.).difference stand<strong>in</strong>g - sup<strong>in</strong>e measured waistcircumference15,0010,000,005,00-5,0060,00 80,00 100,00 120,00mean stand<strong>in</strong>g - sup<strong>in</strong>e measured waist circumferenceFigure 2. Bland and Altman plot of the differences between stand<strong>in</strong>g and sup<strong>in</strong>e waist circumferencemeasurements. The mean difference is 1.48±5.34 (LOA) (-3.86; 6.82).Predict<strong>in</strong>g stand<strong>in</strong>g waist circumferenceA simple l<strong>in</strong>ear regression analysis was performed on stand<strong>in</strong>g waist circumference, sup<strong>in</strong>e waistcircumference, age, BMI, gender, and past pregnancy (Table 2). The normal P-P plots and theplots of the homogeneity of variance residuals showed that there was a normal distribution andhomogeneity of variance of the residuals.46 | Chapter 3


Table 2. Simple regression analysis of stand<strong>in</strong>g waist circumference us<strong>in</strong>g sup<strong>in</strong>e waist circumference, gender, age,BMI, and past pregnancy as predictors.*Simple regression analysisModel Beta 95% CI p-value R 2Waist circumference(sup<strong>in</strong>e)1.044 1.010 to 1.078


17 Nadas J, Putz Z, Kolev G, Nagy S, Jermendy G. Intraobserver and <strong>in</strong>terobserver variability ofmeasur<strong>in</strong>g waist circumference. Med Sci Mon. 2008;14(1):CR 15-18.18 Nooyens AC, Koppes LL, Visscher TL, Twisk JW, Kemper HC, Schuit AJ, van Mechelen W,Seidell JC. Adolescent sk<strong>in</strong>fold thickness is a better predictor of high body fatness <strong>in</strong> adultsthan is body mass <strong>in</strong>dex: the Amsterdam Growth and Health Longitud<strong>in</strong>al Study. Am J Cl<strong>in</strong>icNutr. 2007;85(6):1533-9.19 Pischon T, Boe<strong>in</strong>g H, Hoffmann K, Bergmann M, Schulze MB, Overvad K, et al. General andAbdom<strong>in</strong>al Adiposity and Risk of Death <strong>in</strong> Europe. New Engl J Med. 2008;20:2105-2120.20 Wan<strong>in</strong>ge A. Van der Weide W, Evenhuis, IJ, Van Wijck R,Van der Schans CP. Feasibility andreliability of body composition measurements <strong>in</strong> adults <strong>with</strong> severe <strong>in</strong>tellectual and sensorydisabilities. J Intellect Disabil Res. 2009;53:377-88.21 Pollers S, Bayate M, Miedema-Loo HH, Evenhuis HM, Penn<strong>in</strong>g C. Overgewicht bij volwassenmensen met een lichte of matige verstandelijke handicap wonend <strong>in</strong> een <strong>in</strong>stell<strong>in</strong>g: hetstellen van de diagnose en meetmethoden, 2007. Onderzoek <strong>in</strong> het kader van de opleid<strong>in</strong>gtot AVG, Erasmus Universiteit Rotterdam.22 Booth ML, HunterC, Gore CJ, Bauman A, Owen N. The relationship between body mass <strong>in</strong>dexand waist circumference: Implications for estimates of the population prevalence ofoverweight. Int J Obes Rel Metabol Dis. 2000;24:1058-1061.23 Rosenbaum P, Paneth N, Leviton A. A report: the def<strong>in</strong>ition and classification of cerebralpalsy. Dev Med Child Neur. 2007;109:8-14.24 Bland JM & Altman DG. Statistical methods for assess<strong>in</strong>g agreement between two methodsof cl<strong>in</strong>ical measurement. The Lancet. 1986;8:307-10.25 Palisano R, Hanna SE, Rosenbaum PL, Rusell DJ, Walter SD, Wood EP, Ra<strong>in</strong>a PS, Galuppi BE.Validation of a model of Gross Motor Function for Children With Cerebral Palsy. PhysTherapy. 2000;80(10):974-985.26 Dutch Society for Doctors <strong>in</strong> the Care for people <strong>with</strong> an Intellectual Disability (NVAZ).Resistance among people <strong>with</strong> an <strong>in</strong>tellectual disability <strong>in</strong> the framework of the ActGovern<strong>in</strong>g Medical-Scientific Research Involv<strong>in</strong>g Humans, behavioural code for doctors <strong>in</strong> theassessment of resistance among people <strong>with</strong> an <strong>in</strong>tellectual disability, 1999.27 Bhaumik S, Watson JM, Thorp CF, Tyrer F, Mc Grother CW. Body mass <strong>in</strong>dex <strong>in</strong> adults <strong>with</strong><strong>in</strong>tellectual disability: distribution, association and service implications: a population-basedprevalence study. J Intellect Disabil Res. 2008;52(4):287-98.28 Emerson E. Underweight, obesity and exercise among adults <strong>with</strong> <strong>in</strong>tellectual disabilities <strong>in</strong>supported accommodation <strong>in</strong> Northern England. J Int Dis Res. 2005;49(2):134-43.29 Melville CA, Cooper SA, McGrother CW, Thorp CF, Collacott R. Obesity <strong>in</strong> adults <strong>with</strong> Downsyndrome: a case-control study. J Intellect Disabil Res. 2005;49(2):125-33.30 Pr<strong>in</strong>ce SA, Janssen I, Tranmer JE. Self-Measured Waist Circumference <strong>in</strong> Older PatientsWith Heart Failure: A Study of Validity and Reliability Us<strong>in</strong>g a Myo Tape(R), J CardiopulmRehabil Prevention. 2008;28(1):43-47.31 Kong CK & Wong HS. Weight-for-height values and limb anthropometric composition oftube-fed children <strong>with</strong> quadriplegic cerebral palsy. Pediatrics. 2005;116, 839-845.32 Sullivan PB, Alder N, Bachlet AM Grant H, Juszczak E, Henry J, Vernon-Roberts A, Warner J,Wells J. Gastrostomy feed<strong>in</strong>g <strong>in</strong> cerebral palsy: Too much of a good th<strong>in</strong>g. Dev Med ChildNeurol. 2006;48:877-82.52 | Chapter 3


Chapter 4Feasibility and reliability of two different walk<strong>in</strong>gtests <strong>in</strong> subjects <strong>with</strong> severe <strong>in</strong>tellectual andsensory disabilities.A. Wan<strong>in</strong>geI. J. EvenhuisR. van WijckC.P. van der SchansJournal of Applied Research <strong>in</strong> Intellectual DisabilitiesAccepted for publication, July 2010Reproduced by courtesy of Wiley and BlackwellChapter 4 | 53


AbstractBackground. The purpose of this study is to describe feasibility and test-retest reliability of thesix-m<strong>in</strong>ute walk<strong>in</strong>g distance test (6MWD) and an adapted shuttle run test (aSRT) <strong>in</strong> persons <strong>with</strong>severe <strong>in</strong>tellectual and sensory (multiple) disabilities (SIMD).Materials and Methods. Forty-seven persons <strong>with</strong> SIMD, <strong>with</strong> Gross Motor Function ClassificationSystem (GMFCS) grade I and II and wear<strong>in</strong>g a heart rate monitor, performed the 6MWD and theaSRT twice.Results. 96% Of the participants completed both tests successfully. Wilcoxon signedrank test revealed no significant differences between test and retest (p


IntroductionPeople <strong>with</strong> <strong>in</strong>tellectual disabilities (ID) make up about 1% of the population of Europe [1]. Thispercentage is based on the WHO population prevalence estimate [1]. Comorbidity <strong>in</strong> persons<strong>with</strong> <strong>in</strong>tellectual disabilities is more frequent and patterns of comorbidity differ from the generalpopulation [2]. Obesity <strong>in</strong> women and underweight <strong>in</strong> both men and women is more common<strong>in</strong> adults <strong>with</strong> ID than <strong>in</strong> the general population after controll<strong>in</strong>g for differences <strong>in</strong> the agedistributions between the two populations [3]. Mc Guire et al. [4] found that 68% of their IDsample was overweight or obese, participation <strong>in</strong> exercise and adherence to a healthy diet arepoor. Other authors described these lifestyle problems <strong>in</strong> adults <strong>with</strong> low or moderate ID too:these persons often suffer from overweight and may have poor <strong>physical</strong> <strong>fitness</strong> [5, 6, 7]. Adults<strong>with</strong> ID often are not sufficiently active to achieve health benefits [8, 9].Accord<strong>in</strong>g to the Toronto model [10], <strong>physical</strong> <strong>fitness</strong> and health are related <strong>in</strong> the sensethat good <strong>physical</strong> <strong>fitness</strong> decreases health risks and improves wellbe<strong>in</strong>g and quality of life [11, 12,13]. Health can be def<strong>in</strong>ed as a state of complete <strong>physical</strong>, mental and social well-be<strong>in</strong>g and notmerely the absence of disease or <strong>in</strong>firmity (World Health Organization,WHO) [14, 15]. In addition,health is considered a resource for everyday life, not the objective of liv<strong>in</strong>g. Health is a positiveconcept emphasiz<strong>in</strong>g social and personal resources, as well as <strong>physical</strong> capacities [16]. Bouchardet al. [17] give the follow<strong>in</strong>g def<strong>in</strong>ition of health related <strong>physical</strong> <strong>fitness</strong>: ‘Health related <strong>physical</strong><strong>fitness</strong> is def<strong>in</strong>ed as a set of attributes that people have or achieve that relates to the ability toperform <strong>physical</strong> activity’. Accord<strong>in</strong>g to Caspersen et al. [18] and Pate [19], <strong>physical</strong> <strong>fitness</strong> is a setof attributes that are either health-related or skill-related that perta<strong>in</strong> more to athletic ability. Thehealth-related components of <strong>physical</strong> <strong>fitness</strong> are (a) cardiorespiratory endurance, (b) muscularendurance, (c) muscular strength, (d) body composition, and (e) flexibility. These components of<strong>physical</strong> <strong>fitness</strong> are more important to public health than are the components related to athleticability, especially <strong>in</strong> persons <strong>with</strong> multiple disabilities, therefore, we limit our discussion to these.Wuang et al. [20]) described that the IQ level substantially predicted overall performanceon motor tests. Physical <strong>fitness</strong> <strong>in</strong> persons <strong>with</strong> a visual disability is poorer than <strong>in</strong> persons<strong>with</strong>out disabilities [21, 22, 23]. Furthermore, a considerable number of persons <strong>with</strong> both severe<strong>in</strong>tellectual and sensory disabilities are at risk for a variety of health problems [24], among others<strong>in</strong>activity, overweight and obesity. The women appear at a higher risk for develop<strong>in</strong>g healthproblems compared to the men [25]. Apart from that, these health burdens often are associated<strong>with</strong> low levels of <strong>physical</strong> <strong>fitness</strong> [8]. Therefore, it is important to get <strong>in</strong>sight <strong>in</strong> the <strong>physical</strong><strong>fitness</strong> status <strong>in</strong> these <strong>in</strong>dividuals.Cardiorespiratory endurance, a component of health-related <strong>physical</strong> <strong>fitness</strong> [18], canbe divided <strong>in</strong>to aerobic power and cardiovascular capacity [17]. This implies that assessmentof health-related <strong>physical</strong> <strong>fitness</strong> <strong>in</strong>cludes measures of aerobic capacity as well as functionalexercise capacity [17], both objective measures of <strong>fitness</strong> level [26]. Aerobic capacity is the abilityof the cardiovascular system to deliver oxygen rich blood to body tissues [17], functional exercisecapacity is an objective measure of one’s ability to undertake the activities of day-to-day life [27].Timed walk<strong>in</strong>g tests are accepted methods to assess both above mentioned componentsof health-related <strong>physical</strong> <strong>fitness</strong> and to exam<strong>in</strong>e <strong>fitness</strong> level. Incremental speed walk<strong>in</strong>g tests(ISWT) are effective measures of aerobic capacity <strong>in</strong> healthy <strong>in</strong>dividuals and <strong>in</strong> <strong>in</strong>dividuals <strong>with</strong>chronic health conditions [28, 29]. These tests require participants to walk or run betweentwo markers that del<strong>in</strong>eate a 10-m course. Participants are to walk or run the course at a setChapter 4 | 55


<strong>in</strong>cremental speed determ<strong>in</strong>ed by a signal, which is played by a standard CD player. Two newlydeveloped shuttle run tests (SRT I, -II) for children <strong>with</strong> cerebral palsy also yield reliable and validdata for measur<strong>in</strong>g aerobic power [30]. In these SRTs, speed <strong>in</strong>creases every m<strong>in</strong>ute at 0.25 km/hsteps. The outcome measure is the number of steps successfully completed at the time the test isstopped [30].The six-m<strong>in</strong>ute walk<strong>in</strong>g distance test (6MWD) is accepted as a reliable test to measurefunctional exercise capacity <strong>in</strong> participants <strong>in</strong> various disease states [31, 32, 33, 34]. The 6MWDis self-paced and requires an <strong>in</strong>dividual to walk as far as possible <strong>in</strong> six m<strong>in</strong>utes on a course ofvarious lengths, <strong>with</strong>out runn<strong>in</strong>g. The distance walked dur<strong>in</strong>g the test, measured <strong>in</strong> feet or metres,is used as the outcome measure [35].The target population of this study are persons <strong>with</strong> severe or profound <strong>in</strong>tellectual andsensory disabilities (SIMD). Accord<strong>in</strong>g to the ICD-10 (World Health Organization, WHO) [36], theIQ of persons <strong>with</strong> severe <strong>in</strong>tellectual disabilities ranges from approximately 20 to 34, <strong>in</strong> adultsthis means an <strong>in</strong>tellectual age from 3 to under 6 years, which is likely to result <strong>in</strong> cont<strong>in</strong>uous needfor support. The IQ of persons <strong>with</strong> profound <strong>in</strong>tellectual disabilities is below 20, <strong>in</strong> adults thismeans an <strong>in</strong>tellectual age below 3 years, which results <strong>in</strong> severe limitation <strong>in</strong> self-care, cont<strong>in</strong>ence,communication and mobility.In particular persons <strong>with</strong> the comb<strong>in</strong>ation of severe ID and sensory disabilities are at riskfor both decrease of <strong>in</strong>dependence and quality of life, due to re<strong>in</strong>forcement of disabilities andless opportunities for compensation [37]. In these persons the level of health-related <strong>physical</strong><strong>fitness</strong> is difficult to reliably quantify, because they are not accustomed to the above-mentionedassessments, such as perform<strong>in</strong>g walk<strong>in</strong>g tests. To assess whether a test is feasible for thesepersons, it is therefore necessary to use specific <strong>in</strong>clusion criteria to each of the co-morbiditiese.g. locomotor disabilities and visual impairments. Furthermore, adjustments to test proceduresare necessary, as well as choos<strong>in</strong>g the tests carefully. For example, the SRT-I and II [30] maybe most feasible for these persons, because of its <strong>in</strong>crease of speed <strong>with</strong> 0.25 km/h, <strong>in</strong>stead ofthe 0.6 km/h <strong>in</strong>crease of speed of the ISWT [28, 29]. Another limit<strong>in</strong>g factor to determ<strong>in</strong>e thefeasibility and reliability of the measures <strong>in</strong> these persons are motivational problems. For <strong>in</strong>stance,some do not understand why they have to walk faster than they usually do, or why they have towear a heart rate monitor.The feasibility and reliability of timed walk<strong>in</strong>g tests, such as the 6MWD and SRT,<strong>in</strong> participants <strong>with</strong> SIMD have been unknown. Because good <strong>physical</strong> <strong>fitness</strong> decreases healthrisks and improves wellbe<strong>in</strong>g and quality of life [10, 11, 12], it is important to get comprehensive<strong>in</strong>sight <strong>in</strong> the health related <strong>physical</strong> <strong>fitness</strong> <strong>in</strong> persons <strong>with</strong> SIMD. With feasible and reliable tests,a specific tra<strong>in</strong><strong>in</strong>g <strong>in</strong>tervention aimed at promot<strong>in</strong>g <strong>physical</strong> <strong>fitness</strong> can be evaluated.Therefore, the purpose of this study was to exam<strong>in</strong>e the feasibility and the test-retest reliability ofthe 6MWD and SRT-I and II <strong>in</strong> persons <strong>with</strong> SIMD.MethodParticipantsThe participants were recruited from a residential care facility <strong>in</strong> the Netherlands, <strong>in</strong> which 200persons <strong>with</strong> severe or profound <strong>in</strong>tellectual and sensory disabilities live. Moreover, <strong>in</strong> 65%they also exhibit associated motor disabilities. We asked the representatives of 92 persons<strong>with</strong> sufficient motor capacities for permission for the persons to participate <strong>in</strong> this study.56 | Chapter 4


Eighty representatives gave permission. After <strong>in</strong>formed consent was obta<strong>in</strong>ed, we screenedthese participants based on the exam<strong>in</strong>ation f<strong>in</strong>d<strong>in</strong>gs of a physician specialised <strong>in</strong> <strong>in</strong>tellectualdisabilities and of a behaviour scholar and excluded seven participants. Another eight participantswere excluded as they did not live at the centre for people <strong>with</strong> severe <strong>in</strong>tellectual and sensorydisabilities where the tests were performed. Eighteen participants were excluded because theypresented <strong>with</strong> exclusion criteria at the time the tests were adm<strong>in</strong>istered (Figure 1).200 persons92 persons108 persons <strong>with</strong> <strong>in</strong>sufficient motor capacities12 persons lacked permission from representatives80 persons7 persons excluded for medical or behavioural reasons73 persons8 persons did not live at the exam<strong>in</strong>ation centre65 persons47 persons18 persons excluded because of exhibit<strong>in</strong>g exclusion criteriaat the time of the testFigure 1 Inclusion stepsIn all, 47 persons participated <strong>in</strong> this study: 18 were female, mean (SD) age 44 (10) years and29 were male, mean (SD) age 38 (11) years. Participants were classified accord<strong>in</strong>g to the adaptedGross Motor Function Classification System (GMFCS) [38]. Twenty-seven participants wereclassified as GMFCS level I, and 20 participants as GMFCS level II (see below for more <strong>in</strong>formationabout GMFCS). Eighty-seven percent (41) of the participants had severe <strong>in</strong>tellectual disabilities and13% (6) had profound <strong>in</strong>tellectual disabilities, accord<strong>in</strong>g to the classification of the ICD-10 [36].Most of the participants also had impaired vision. Accord<strong>in</strong>g to WHO guidel<strong>in</strong>es [39], 53% (25) ofthe participants were severely partially sighted, 40% (19) were partially sighted, and 7% (3) wereslightly limited <strong>in</strong> sight. Most participants had impaired motor abilities: 60% (28) had orthopaedicdefects and 8% (4) were diagnosed <strong>with</strong> spasticity. In addition, 28% (13) of the participants hadslight hear<strong>in</strong>g problems, 9% (4) had loss of hear<strong>in</strong>g, and 4% (2) had severe loss of hear<strong>in</strong>g orwere completely deaf.As a group, <strong>in</strong>dividuals <strong>with</strong> severe or profound <strong>in</strong>tellectual disabilities possess severalco-morbidities simultaneously, and thus comb<strong>in</strong>ations of co-morbidities are also present <strong>in</strong> ourChapter 4 | 57


participants (Table 1). Thirty-six percent (17) of the <strong>in</strong>tellectual disabled participants had bothhear<strong>in</strong>g problems and visual disabilities; 60% (28) had both visual and orthopaedic disabilities;19% (9) had hear<strong>in</strong>g problems and orthopaedic disabilities. 4 Participants were diagnosed <strong>with</strong>spasticity and they also had visual, and orthopaedic disabilities.Table 1. Comb<strong>in</strong>ations of co-morbidities of participants <strong>with</strong> severe <strong>in</strong>tellectual disabilitiesHear<strong>in</strong>gdisabilitiesOrthopaedicdefectsSpasticityVisual disabilities 36% 60% 4%Hear<strong>in</strong>g disabilities - 19% 2%Orthopaedic defects - - 9%Participants were classified accord<strong>in</strong>g to an adapted GMFCS [38], a five-level system usedto classify the severity of motor abilities <strong>in</strong> people <strong>with</strong> <strong>physical</strong> disabilities. Participants <strong>with</strong>a “Level I” classification can generally walk <strong>with</strong>out restrictions but tend to have limitations <strong>in</strong>some more advanced motor skills. Participants <strong>with</strong> a “Level V” classification generally havevery limited mobility, even <strong>with</strong> the use of assistive technology. These participants always usea wheelchair. The orig<strong>in</strong>al GMFCS was adapted because most of our participants had impairedvision, and as a result they could not jump and run spontaneously. If persons spontaneously<strong>in</strong>creased their speed dur<strong>in</strong>g walk<strong>in</strong>g, <strong>in</strong>stead of jump<strong>in</strong>g and runn<strong>in</strong>g, they were classified asGMFCS level I. Participants <strong>with</strong> a “Level II” classification can walk <strong>with</strong> slight restrictions and donot spontaneously <strong>in</strong>crease their speed dur<strong>in</strong>g walk<strong>in</strong>g. The adapted version of the GMFCS waspresented to the <strong>in</strong>vestigator, who translated the orig<strong>in</strong>al version of the GMFCS <strong>in</strong>to Dutch [40]and he concluded that the adaptations did not <strong>in</strong>fluence the reliability of the system.Study DesignParticipants were tested twice, <strong>with</strong> one week between the test and the retest. Test and retestwere conducted at the same po<strong>in</strong>t <strong>in</strong> time. The participants performed first the aSRT (Netchild,the Netherlands). In order to let the participants take sufficient rest, at least after 48 hours, the6MWD [35] was performed.Ethical statementThe study was performed <strong>in</strong> agreement <strong>with</strong> the guidel<strong>in</strong>es of the Hels<strong>in</strong>ki Declaration as revised<strong>in</strong> 1975. Permission to carry out the study was obta<strong>in</strong>ed from an <strong>in</strong>stitutional ethics committee. Allparticipants were unable to give consent. Therefore, extra care and attention was given to:1) Ask<strong>in</strong>g <strong>in</strong>formed consent: Informed consent was obta<strong>in</strong>ed from legal representatives of allparticipants and also the caregivers of all participants were asked for <strong>in</strong>formed consent;2) The construction of the study group by formulat<strong>in</strong>g exclusion criteria and contra<strong>in</strong>dications:We screened the participants based on the exam<strong>in</strong>ation f<strong>in</strong>d<strong>in</strong>gs of a physician specialised <strong>in</strong><strong>in</strong>tellectual disabilities and also of a behaviour scholar;58 | Chapter 4


3) The measurement procedure: The measurements were performed <strong>in</strong> accordance <strong>with</strong> thebehavioural code section entitled ‘Resistance among people <strong>with</strong> an <strong>in</strong>tellectual disability <strong>in</strong> theframework of the Act Govern<strong>in</strong>g Medical-Scientific Research Involv<strong>in</strong>g Humans’ [42]. Consistentdistress or unhapp<strong>in</strong>ess was <strong>in</strong>terpreted as a sign of lack of assent and further participation <strong>in</strong> thestudy was reconsidered.ProtocolsBefore the tests took place, the test<strong>in</strong>g leaders and personal guides of the participants completeda checklist that <strong>in</strong>cluded all contra<strong>in</strong>dications. Participants were excluded from the study if theyexhibited any of the follow<strong>in</strong>g exclusion criteria at the time of the measurements: psychoses,depression, or other severe psychological problems; or somatic diseases, which were def<strong>in</strong>edas chronic diseases and/or diseases that do not resolve <strong>in</strong> the short term (e.g., osteoarthritis,osteoporosis, pneumonia, etc). Participants were also excluded for the follow<strong>in</strong>g reasons: generalillness or fever; tak<strong>in</strong>g antibiotics; worsen<strong>in</strong>g of asthma, epilepsy (recent <strong>in</strong>sult or epileptic fits),fresh wound(s)/bruise(s), or other factors caus<strong>in</strong>g pa<strong>in</strong> dur<strong>in</strong>g movement; or stress due to thesubject’s behaviour just before the measurement date. To reduce learn<strong>in</strong>g effects, the participantspractised twice before formal test<strong>in</strong>g began.Six-m<strong>in</strong>ute walk<strong>in</strong>g distance testParticipants performed the 6MWD test on a 36-m course (Figure 2), which was located <strong>in</strong> agymnasium. The participants walked six m<strong>in</strong>utes at a self-chosen pace and tried to cover as muchdistance as possible <strong>with</strong>out runn<strong>in</strong>g. Instructors accompanied all participants to help them f<strong>in</strong>dtheir way. This was necessary because of the participant’s visual disabilities. The participants wereencouraged <strong>in</strong> a standardized way. The total distance covered represented a participants level offunctional exercise capacity.3027242118331536/0start3 6 9 12Figure 2 6MWD courseChapter 4 | 59


SRT-I, II and adapted Shuttle Run Test (aSRT)Due to the severe multiple disabilities and the co-morbidities, practice sessions were performed<strong>in</strong> order to exam<strong>in</strong>e whether the protocols of the SRT I and II had to be adjusted. The SRT-Ihas a start<strong>in</strong>g speed of 5 km/h, whereas the SRT-II has a start<strong>in</strong>g speed of 2 km/h. Dur<strong>in</strong>g theabovementioned familiarisation period, we found that 5 km/h was too fast for our participants,but 2 km/h was too slow. Thus, we adjusted the start<strong>in</strong>g speed to 3 km/h. In this adapted SRT(aSRT), speed was <strong>in</strong>creased every m<strong>in</strong>ute at 0.25 km/h steps, conform the orig<strong>in</strong>al procedureby Verschuren [30]. Every <strong>in</strong>crease <strong>in</strong> speed is called a step. The number of steps successfullycompleted at the time the test is stopped, represents a participants level of aerobic capacity.The aSRT course was located <strong>in</strong> a gymnasium and was composed of an oval curve <strong>with</strong>two markers (Figure 3). The subjects walked between two markers that del<strong>in</strong>eated the 10-mcourse at a set <strong>in</strong>cremental speed determ<strong>in</strong>ed by an audio signal played from a standard CDplayer. Instructors accompanied all participants to help them pace themselves accord<strong>in</strong>g to theaudio signal. The course adaptations and the use of <strong>in</strong>structors were necessary because of theparticipants visual disabilities.At the end of each step, the participants were told to walk a little faster. The test wasf<strong>in</strong>ished when, on two consecutive paced signals, the participants were more than 1.5 m awayfrom the end marker.6,86 mF<strong>in</strong>ish3,14 m3,14 mStart6,86 mFigure 3 Shuttle test parcourseR=1 MetreDistance between Start and F<strong>in</strong>ish = 6.86 m + ½ (2πR)= 6.86 + 3.14= 10 mMotivationTo determ<strong>in</strong>e whether the participants pushed themselves to their limits and whether motivation<strong>in</strong>fluenced the tests, we used two strategies.First, we compared the registered heart rate at the end of the test or when the test wasstopped <strong>with</strong> the estimated peak heart rate. All participants wore a heart rate monitor (PolarAccurex plus, Kempele, F<strong>in</strong>land), so that we could measure their heart rate every m<strong>in</strong>ute dur<strong>in</strong>gperformance and immediately after performance. Dur<strong>in</strong>g the tests, peak heart rate <strong>in</strong> beats perm<strong>in</strong>ute (bpm) was registered on a heart-rate-monitor storage device; these data could later beread from a wrist monitor and recorded on a datasheet. Each participant’s peak heart rate wasestimated us<strong>in</strong>g the formula of Fernhall [42] for participants <strong>with</strong> <strong>in</strong>tellectual disabilities: 210 –0.56 (age) – 15.5 (DS). DS is 1, however if a participant has Down’s Syndrome, DS factor equals 2.The second strategy to exam<strong>in</strong>e whether the participants pushed themselves to their limits60 | Chapter 4


and whether motivation <strong>in</strong>fluenced the test results, was the use of the Visual Analogue Scale [43,44]. The Visual Analogue Scale (VAS) is an <strong>in</strong>strument on which an <strong>in</strong>structor could score thedegree of motivation on a 100-mm l<strong>in</strong>e <strong>with</strong> a stripe right-angled on the l<strong>in</strong>e. On one end of thel<strong>in</strong>e the maximum score was marked as ‘good motivation’ and on the other end was the m<strong>in</strong>imumscore, ’bad motivation’. The number of millimetres between the stripe scored by the <strong>in</strong>structorand the m<strong>in</strong>imum score, is the score on the VAS <strong>in</strong>strument. Two <strong>in</strong>structors scored the degree ofmotivation.Data analysisData were analysed us<strong>in</strong>g SPSS 14.0. Feasibility, test-retest reliability and motivation wereexam<strong>in</strong>ed as follows:FeasibilityTo assess feasibility, we compared the number of unsuccessful measurements <strong>with</strong> the totalnumber of measurements. The feasibility was considered to be sufficient when 95% of themeasurements were successful, which is strict, but only then it makes sense to use the test.Test-retest reliabilityFirst, to determ<strong>in</strong>e whether significant differences existed between the test and retest of the6MWD, aSRT, and peak heart rate, we compared the test and retest data us<strong>in</strong>g Wilcoxon signedrank tests. The level of statistical significance was set at 0.05.Limits of agreement (LOA) between the test and retest of the same variables were calculatedaccord<strong>in</strong>g to the procedure described by Bland and Altman (1986). The LOA is considered to bean <strong>in</strong>dicator of test – retest reliability. LOAs are expressed <strong>in</strong> units and as a percentage of themean of the 1 st test. Tests were considered to be reliable when the LOA was 30 % of the meanof the 1 st test, or less, which is based on cl<strong>in</strong>ical experience of the professionals work<strong>in</strong>g <strong>with</strong> thetarget group and the measurements as suggested by Bland and Altman [45]. F<strong>in</strong>ally, <strong>in</strong>traclasscorrelation coefficients (ICC, 2-way random, absolute agreement) of the test and retest of thesame three variables were computed. Reliability was considered acceptable when the ICC valuewas greater than .80 and the 95% confidence <strong>in</strong>tervals (CI) were 0.30 or less.MotivationTo get <strong>in</strong>sight <strong>in</strong>to the <strong>in</strong>fluence of motivation on the test results, we first compared the registeredheart rate at the end of both tests <strong>with</strong> the estimated peak heart rate us<strong>in</strong>g Wilcoxon signed ranktests. We also compared the registered heart rate at the end of the 6MWD <strong>with</strong> the registeredheart rate at the end of the aSRT us<strong>in</strong>g Wilcoxon signed rank test. The level of statisticalsignificance was set at 0.05.Second, we calculated Spearman correlation coefficients for the number of aSRT stepsachieved and motivation VAS score and for the 6MWD distance achieved and motivation VASscore. The level of statistical significance was set at 0.05. To calculate the <strong>in</strong>fluence of motivationon the test results we estimated the quadrate of the correlation coefficients and multiplied it <strong>with</strong>100%. This is the variation which can be clarified <strong>with</strong> motivation [46]. The <strong>in</strong>terrater reliability onthe VAS for the aSRT and for the 6MWD were estimated <strong>with</strong> Spearman correlation coefficients,the level of statistical significance was set at 0.05.Chapter 4 | 61


ResultsFeasibilityAll 47 (100%) participants completed the tests successfully, and 45 (96%) of them also wore aheart rate monitor which produced valid data.Test-retest reliability for all measurementsTable 2. summarizes the results of the Wilcoxon signed rank test, the LOA, the LOA as apercentage of the mean, and ICC analyses. There were no significant differences between the testand retest results <strong>in</strong> the 6MWD and aSRT. The LOAs and the LOAs expressed as a percentage ofthe means were less than or equal to 30% for all measurements, except for the aSRT of GMFCS-IIparticipants. The ICCs were .80 or above. The LOA of the 6MWD was 115 m and that of the aSRTfor GMFCS-I participants was 2.8 steps.Table 2. Results of Wilcoxon rank<strong>in</strong>g test, LOA, percentage LOA of mean, and ICC*Mean1(SD)Mean2 (SD)P valueWilcoxonLOA *LOA ofmean (%)ICC*95% CISRT stepsGMFCS I12(3.5)12(3.5)0.422 2*1.402323% 0.960.92-0.98SRT stepsGMFCS II6 (3) 7 (3) 0.363 2*2.443874% 0.820.54-0.936MWD distanceGMFCS I and II389(104)389(109)0.990 2*57.722130% 0.920.86-0.96Peak heart rateSRT125(20)125(19)0.587 2*14.34822% 0.840.60-0.91Peak heart rate6MWD117(26)119(17)0.907 2*21.06635% 0.840.71-0.91*LOA, Limits of Agreement, ICC, Intraclass correlation coefficient, CI, Confidence IntervalsMotivationTable 3. compares the mean peak heart rate achieved dur<strong>in</strong>g both tests. The Wilcoxon signedrank test revealed a significant difference at p


Table 3. Mean peak heart rate achieved <strong>with</strong> aSRT and 6MWD*Mean peak heartrate (SD)Mean estimatedpeak heart rate (SD)p Wilcoxon testaSRT 126 bpm (20) 172 bpm (6) P


the effects of considerable <strong>physical</strong> effort, due to their <strong>in</strong>tellectual disabilities and re<strong>in</strong>forcedby their visual disabilities. In order to get an adequate <strong>in</strong>terpretation of the test results, werecommend to <strong>in</strong>clude both the comparison of estimated peak heart rate <strong>with</strong> the achieved peakheart rate and the score on motivation <strong>in</strong>to the protocols of the aSRT and 6MWD.Another complex question <strong>in</strong> these participants is <strong>in</strong>formed consent: they are unable to giveconsent themselves. Therefore, extra care and attention was given to ask<strong>in</strong>g <strong>in</strong>formed consent,the measurement procedure and the construction of the study group by formulat<strong>in</strong>g exclusioncriteria and contra<strong>in</strong>dications. All persons <strong>in</strong>volved <strong>in</strong> the study were fully aware of the vulnerableposition of the participants. If a participant did not like the test<strong>in</strong>g, further participation wasstopped.In our study, the reliability of the 6MWD showed to be <strong>in</strong> l<strong>in</strong>e to that of similar measurements<strong>in</strong> other studies, and so was the aSRT. Several studies have used the 6MWD <strong>in</strong> participantshav<strong>in</strong>g a variety of diseases. For participants <strong>with</strong> fibromyalgia, the ICC of 6MWD test-retestmeasurements was 0.73 [47]. For participants <strong>with</strong> heart failure, the ICC was 0.91 [48] and 0.82[49]; and for participants <strong>with</strong> pulmonary disease, the ICC was 0.99 [50]. In our study, the ICC was0.92, which is notable, because the comorbidities of the participants under study could potentiallyaffect reliability. The reliability of the SRT-I and II was described by Verschuren et al.[30], whoobta<strong>in</strong>ed an ICC of 0.97 for GMFCS-I participants. In our study, the ICC for comparable participantswas 0.96. For GMFCS-II participants, Verschuren et al. [30] obta<strong>in</strong>ed an ICC of 0.99. In our study,the ICC was 0.82; however, the 95% CI were too wide and the LOA of the aSRT was unacceptablefor GMFCS-II participants. This suggests, that aerobic capacity cannot be reliably assessed <strong>in</strong>GMFCS-II participants. A hypotheses might be that their locomotor skills do not allow them to<strong>in</strong>crease their speed consequently.The participants <strong>in</strong> our study first practiced twice before we measured their performanceon the 6WMD and aSRT. Stevens et al. [51] described several studies that showed that practisesessions are necessary to promote optimal performance <strong>in</strong> participants. These <strong>in</strong>vestigators<strong>in</strong>dicated that two practise sessions are required <strong>in</strong> order to allow participants to learn and toestablish optimal performance when conduct<strong>in</strong>g repeated measures at relatively short <strong>in</strong>tervals.This was also necessary for the participants of our study.We compared the achieved mean distance <strong>in</strong> the 6MWD of our participants <strong>with</strong> that ofothers. The mean distance (SD) of our participants was 389 m (107). In healthy elderly persons,the mean distance was 631 m (93) [33]; <strong>in</strong> people <strong>with</strong> heart failure, the mean distance was 419m (120) [31]; and <strong>in</strong> people <strong>with</strong> COPD, the mean distance was 369 m (18) [32]. This comparison<strong>in</strong>dicates that persons <strong>with</strong> severe multiple disabilities performed poorer on the 6MWD than otherpersons <strong>with</strong> specific (chronic) health conditions.In conclusion, the 6MWD is feasible and reliable for measur<strong>in</strong>g functional exercise capacity <strong>in</strong>GMFCS-I and II participants <strong>with</strong> severe <strong>in</strong>tellectual and multiple disabilities. The aSRT is feasibleand reliable for measur<strong>in</strong>g aerobic capacity <strong>in</strong> GMFCS-I participants. The participant’s motivationallevel can <strong>in</strong>fluence test outcomes, so we recommend to <strong>in</strong>sert both heart rate monitor<strong>in</strong>g andmotivational score <strong>in</strong>to the protocols of the aSRT and 6MWD. The poor 6MWD results we observed<strong>in</strong>dicate that the poor functional exercise capacity of persons <strong>with</strong> severe multiple disabilities is aserious health problem, which may burden their <strong>in</strong>dependence <strong>in</strong> day-to-day activities. Based onthis result, further research should be aimed at develop<strong>in</strong>g, implement<strong>in</strong>g and evaluation of anappropriate <strong>in</strong>tervention to reduce problems <strong>in</strong> functional exercise and aerobic capacity <strong>in</strong> theseparticipants.64 | Chapter 4


AcknowledgementsThis research was f<strong>in</strong>anced by Hanze University Gron<strong>in</strong>gen, De Br<strong>in</strong>k, and <strong>with</strong> fund<strong>in</strong>g from theRegional Action-and-Attention Knowledge Circulation (RAAK).The authors k<strong>in</strong>dly acknowledge and thank the participants for their participation <strong>in</strong> this study,their representatives for giv<strong>in</strong>g permission to this and the gymnastic <strong>in</strong>structors of The Br<strong>in</strong>k, foraccompany<strong>in</strong>g the participants dur<strong>in</strong>g the walk<strong>in</strong>g tests.Heart rate was registered by a heart rate monitor of Polar Accurex plus, Kempele, F<strong>in</strong>land. Theprotocol of the Shuttle Run Test was provided by Netchild, the Netherlands. For the 6 MWD theprotocol of Butland et al (1982) was used.Chapter 4 | 65


References1 Walsh PN, Kerr M,Van Schrojenste<strong>in</strong> Lantman-de Valk HM. Health <strong>in</strong>dicators for people <strong>with</strong><strong>in</strong>tellectual disabilities: a European perspective. Eur J Public Health. 2003;13(3 Suppl):47-502 Van Schrojenste<strong>in</strong> Lantman-de Valk HMJ, Metsemakers JFM, Haveman MJ, Crebolder HFJM.Health problems <strong>in</strong> people <strong>with</strong> <strong>in</strong>tellectual disability <strong>in</strong> general practice: A comparativestudy. Family Practice. 2000;17:405–4073 Bhaumik S, Watson JM, Thorp CF, Tyrer F, Mc Grother CW. Body mass <strong>in</strong>dex <strong>in</strong> adults <strong>with</strong><strong>in</strong>tellectual disability: distribution, association and service implications: a population-basedprevalence study, J Intellect Disabil Res. 2008;52(4):287-98.4 McGuire BE, Daly P, Smyth F. Lifestyle and health behaviours of adults <strong>with</strong> an <strong>in</strong>tellectualdisability. J Intellect Disabil Res. 2007;51(7):497-510.5 Frey GC & Chow B. Relationship between BMI, <strong>physical</strong> <strong>fitness</strong>, and motor skills <strong>in</strong> youth <strong>with</strong>mild <strong>in</strong>tellectual disabilities. Int J Obes. 2006;30:861-867.6 Knijff-Raeven van AGM, Jansen-Jacobs CCM, Freen PJW, Hoekman J, Maaskant MA. BodyMass Index (BMI) bij mensen met een verstandelijke beperk<strong>in</strong>g. Nederlands Tijdschrift voorde Zorg aan mensen met verstandelijke beperk<strong>in</strong>gen. 2005;1:3-17.7 Laht<strong>in</strong>en U, R<strong>in</strong>tala P, Mal<strong>in</strong> A. Physical performance of <strong>in</strong>dividuals <strong>with</strong> <strong>in</strong>tellectual disability:a 30 year follow up. Adapt Phys Act Q. 2007;24: 125-143.8 Draheim CC, Williams DP, MCCubb<strong>in</strong> JA. Prevalence of <strong>physical</strong> <strong>in</strong>activity and recommended<strong>physical</strong> activity <strong>in</strong> community-based adults <strong>with</strong> mental retardation. Ment Retard.2002;40:436-444.9 Temple VA, Frey GC, Stanish HI. Physical activity of adults <strong>with</strong> mental retardation: reviewand research needs. Am J Health Prom. 2006;21:2-12.10 Bouchard C, Shepard RJ, Stephens T. Physical activity, Fitness and Health. 1994, HumanK<strong>in</strong>etics Publishers, ChampaignIL.11 Colcombe S, Erickson KI, Raz N, Webb AG, MC Auley EB, Kramer AF. Aerobic <strong>fitness</strong> reducesbra<strong>in</strong> tissue loss <strong>in</strong> ag<strong>in</strong>g humans. J Gerontol. 2003;58:176-180.12 Kramer AF, Hahn S, Cohen NJ, Banich MT, McAyley E, Harrison CR, Chason J, Vakil E, BardellL, Boileau RA, Colcombe A. Age<strong>in</strong>g, <strong>fitness</strong> and neurocognitive function. Nature.1999;400:418-41913 Sitskoorn, MM. Het plastische bre<strong>in</strong>; <strong>in</strong>vloed van gedrag. De Psycholoog. 2005;40(5):262-267.14 World Health Organization, Health for all, 1979.15 World Health Organization, WHO Chr, 1980;34(2):80.16 World Health Organization. Ottawa Charter for Health Promotion, 1986.17 Bouchard C, Shephard RJ, Stephens T.(Eds.). Physical Activity, Fitness and Health;International proceed<strong>in</strong>gs and consensus statement. Human K<strong>in</strong>etics Publishers, ChaimpaignIL. 1994;12:172-174.18 Capsersen CJ, Powell KE, Christenson GM. Physical Activity, Exercise, and Physical Fitness:Def<strong>in</strong>itions and Dist<strong>in</strong>ctions for Health-Related Research. Public Health Reports.1985;100(2):127-131.19 Pate RR, The evolv<strong>in</strong>g def<strong>in</strong>ition of <strong>fitness</strong>. Quest. 1988;40: 174-179.20 Wuang YP, Wang CC, Huang MH, Su CY. Profiles and cognitive predictors of motor functionsamong early school-age children <strong>with</strong> mild <strong>in</strong>tellectual disabilities. J Intellect Disabil Res.2008;52(12):1048-60.66 | Chapter 4


21 Hopk<strong>in</strong>s WG, Gaeta H, Thomas AC, Hill PM. Physical <strong>fitness</strong> of bl<strong>in</strong>d and sighted children. EurJ of Appl Phys Occ Phys. 1987;56: 69-73.22 Häkk<strong>in</strong>en A, Holopa<strong>in</strong>en E, Kautia<strong>in</strong>en H, Sillanpää E, Häkk<strong>in</strong>en K. Neuromuscularfunction and balance of prepubertal and pubertal bl<strong>in</strong>d and sighted boys. Acta Paediatrica2006;95(10):1277-83.23 Seemungal BM, Glasauwer S, Gresty MA, Bronste<strong>in</strong> AM. Vestibular perception and navigation<strong>in</strong> the congenitally bl<strong>in</strong>d. J of Neurophys. 2007;97(6):4341-56.24 Evenhuis HM, Sjoukes L, Koot HM, Kooijman AC. Does visual impairment lead to additionaldisability <strong>in</strong> adults <strong>with</strong> <strong>in</strong>tellectual disabilities? J Intellect Disabil Res. 2009;53(1):19-28.25 Wan<strong>in</strong>ge A. Van der Weide W, Evenhuis, IJ, Van Wijck R, Van der Schans CP. Feasibility andreliability of body composition measurements <strong>in</strong> adults <strong>with</strong> severe <strong>in</strong>tellectual and sensorydisabilities. J Intellect Disabil Res. 2009;53:377-88.26 Fernhall B, Millar AL, Tymeson GT, Burkett LN. Maximal exercise test<strong>in</strong>g of mentally retardedadolescents and adults: reliability study. Arch Phys Med Rehabil. 1990;71:1065-1068.27 Guyatt GH, Sullivan MJ, Thompson PJ, Fallen EL, Pugsley SO, Taylor D.W. The six-m<strong>in</strong>ute walk:a new measure of exercise capacity <strong>in</strong> patients <strong>with</strong> chronic heart failure. Can Med AssJournal. 1995;132:919-923.28 S<strong>in</strong>gh SJ, Morgan MD, Scott S, Walters D, Hardman AE. Development of shuttle walk<strong>in</strong>g testof disability <strong>in</strong> patients <strong>with</strong> chronic airways obstruction. Thorax. 1992;47:1019-1024.29 S<strong>in</strong>gh SJ, Morgan MD, Hardman AE, Rowe C, Bardsley PA. Comparison of oxygen uptakedur<strong>in</strong>g a conventional treadmill test and the shuttle walk<strong>in</strong>g test <strong>in</strong> chronic airflow limitation.Eur Resp Journal. 1994;7:2016-2020.30 Verschuren O, Takken T, Ketelaar M, Gorter JW, Helders PJM. Reliability and validity ofdata for 2 newly developed shuttle run tests <strong>in</strong> children <strong>with</strong> cerebral palsy. Physical Therapy.2006;86:1107-1117.31 Faggiano P, D’Aloia A, Gualena A, Lavatelli A, Giordano A. Assessment of oxygen uptakedur<strong>in</strong>g the 6-m<strong>in</strong>ute walk<strong>in</strong>g test <strong>in</strong> patients <strong>with</strong> heart failure: prelim<strong>in</strong>ary experience <strong>with</strong> aportable device. Am Heart Journal.1997;134: 203-206.32 Onorati P, Antonucci R, Valli G, Berton E, De Marco F, Serra P. Non-<strong>in</strong>vasive evaluation of gasexchange dur<strong>in</strong>g a shuttle walk<strong>in</strong>g test vs. a 6-m<strong>in</strong> walk<strong>in</strong>g test to assess exercise tolerance<strong>in</strong> COPD patients. Eur J Appl Phys. 2003;89:331-336.33 Troosters T, Gossel<strong>in</strong>k R, Decramer M. Six m<strong>in</strong>ute walk<strong>in</strong>g distance <strong>in</strong> healthy elderlysubjects. Eur Resp Journal. 1999;14:270-274.34 Troosters T, Vilaro J, Rab<strong>in</strong>ovich R, Casas A, Barbera JA, Rodriguez-Rois<strong>in</strong> R. Physiologicalresponses to the 6-m<strong>in</strong> walk test <strong>in</strong> patient <strong>with</strong> chronic obstructive pulmonary disease. EurResp Journal. 2002;20:564-569.35 Butland RJA, Pang J, Gross ER, Woodcock AA, Geddes DM. Two-, six- and 12-m<strong>in</strong>ute walk<strong>in</strong>gtest <strong>in</strong> respiratory disease. Brit Med Journal. 1982;284:1607-1608.36 World Health Organization. International statistical classification of diseases and relatedhealth problems: tenth revision (ICD-10). 1992;369–370.37 Kiestra T, De unieke handicap, referentiemodel voor meervoudige beperk<strong>in</strong>gen. 2005,ISBN 9080638420, Scholma Druk, Bedum38 Palisano R, Hanna SE, Rosenbaum PL, Rusell DJ, Walter SD, Wood EP, Ra<strong>in</strong>a PS, Galuppi BE.Validation of a model of Gross Motor Function for Children With Cerebral Palsy. PhysicalTherapy. 2000;80:974-985.Chapter 4 | 67


39 World Health Organization (WHO). International Classification of Function<strong>in</strong>g, Disability andHealth. Geneva, 200140 Gorter JW. Gross Motor Function Classification System (Dutch translation). 2001, Utrecht:Revalidatiecentrum De Hoogstraat.41 Dutch Society for Doctors <strong>in</strong> the Care for people <strong>with</strong> an Intellectual Disability (NVAZ).Resistance among people <strong>with</strong> an <strong>in</strong>tellectual disability <strong>in</strong> the framework of the ActGovern<strong>in</strong>g Medical-Scientific Research Involv<strong>in</strong>g Humans, behavioural code for doctors <strong>in</strong> theassessment of resistance among people <strong>with</strong> an <strong>in</strong>tellectual disability, 1999.42 Fernhall B, McCubb<strong>in</strong> J A, Pitetti KH, R<strong>in</strong>tala P, Rimmer JH, Millar AL, De Silva A. Predictionof maximal heart rate <strong>in</strong> <strong>in</strong>dividuals <strong>with</strong> mental retardation. Med Sci Sports Exerc.2001;33:1655-1660.43 Mc Cormack HM, Horne de DJL, Sheather S. Cl<strong>in</strong>ical applications of visual analogue scales:a critical review. Psych Med, 1988;18:1007-1019.44 Wewers ME & Lowe NK. A critical Review of Visual Analogue Scales <strong>in</strong> the Measurement ofCl<strong>in</strong>ical Phenomena. Res Nurs<strong>in</strong>g Health. 1990;13:227-236.45 Bland JM & Altman DG. Statistical methods for assess<strong>in</strong>g agreement between two methodsof cl<strong>in</strong>ical measurement. The Lancet. 1986;8:307-10.46 Baarda DB, Goede de MPM, Dijkom van CJ. Basisboek Statistiek met SPSS. Gron<strong>in</strong>gen/Houten (The Netherlands): Wolters-Noordhoff bv; 2003:177.47 K<strong>in</strong>g S, Wessel J, Bhambhani Y, Maikala R, Sholter D, Maksymowych W. Validity and reliabilityof the 6 m<strong>in</strong>ute walk <strong>in</strong> persons <strong>with</strong> fibromyalgia. J Rheumatol. 1999;26:2233-2237.48 O’Keeffe ST, Lye, M, Donnellan C, Carmichael DN. Reproducibility and responsivenessof quality of life assessment and six m<strong>in</strong>ute walk test <strong>in</strong> elderly heart failure patients. Heart.1998;80:377-382.49 Roul G, Germa<strong>in</strong> P, Bareiss P. Does the 6-m<strong>in</strong>ute walk test predict the prognosis <strong>in</strong> patients<strong>with</strong> NYHA class II or III chronic heart failure? Am Heart Journal. 1998;136:449-457.50 Cahal<strong>in</strong> LP, Mathier MA, Semigran MJ, Dec GW, Disalvo TG. The six m<strong>in</strong>ute walk test predictspeak oxygen uptake and survival <strong>in</strong> patients <strong>with</strong> advanced heart failure. Chest.1996;110:325-332.51 Stevens D, Elpern E, Sharma K, Szidon P, Ank<strong>in</strong> M, Kesten S. Comparison of hallway andtreadmill six-m<strong>in</strong>ute walk tests. Am J Resp Critic Care Med. 1999;160:1540–1543.68 | Chapter 4


Chapter 5Psychometric quality of a graded treadmillexercise test for people <strong>with</strong> severe or profound<strong>in</strong>tellectual and visual disabilities.C.H. SicklerA. Wan<strong>in</strong>geT. TakkenC.P. van der SchansR. van WijckSubmittedChapter 5 | 69


AbstractIntroduction Exercise tests us<strong>in</strong>g treadmills are valuable tools for assess<strong>in</strong>g exercise capacity.However, a treadmill protocol for persons <strong>with</strong> severe or profound <strong>in</strong>tellectual and visualdisabilities (severe or profound <strong>in</strong>tellectual and multiple disabilities, SIMD) is not yet available.Objective The present study <strong>in</strong>vestigated primarily the feasibility, validity and test-retest reliabilityof a graded treadmill exercise test (GXT) for people <strong>with</strong> SIMD and GMFCS level I.Method Thirty participants <strong>with</strong> SIMD and GMFCS level I performed a graded exercise test andretest. A supra maximal block test (SMBT) was adm<strong>in</strong>istered to assess validity. Two <strong>physical</strong>therapists alternated as test leaders, assisted by one of seven specially tra<strong>in</strong>ed <strong>physical</strong> education<strong>in</strong>structors.Results The participants’ mean (sd) age was 41 years (11 yrs). Feasibility was sufficient for thetest and retest of the GXT (86.6%). For the SMBT feasibility was less than sufficient (76.9%).Correlation of the peak heart rate (HR peak) between the 1 st GXT (GXT1) and 2 nd GXT (GXT2) wasgood and significant (ICC=0.95; 95%CI 0.88-0.98) <strong>with</strong> good agreement (t-statistic p=0.5). Limitsof agreement (LOA) were -16 to 14, which amounts to 19.5% of the mean HR peak. The number ofatta<strong>in</strong>ed levels of the GXT1 and GXT2 showed a highly significant correlation (ICC=0.95; 95%CI0.90-0.98). Correlation between HR peakGXT and HR peakSMBT was good (ICC=0.94; 95%CI 0.86-0.98) <strong>with</strong> good agreement (t-statistic p=0.7). LOA were from -17 to 15, be<strong>in</strong>g 20.5% of the meanHR peak. Validity of GXT was good. As a secondary result, correlations and agreements betweendirectly measured HR peakand estimated HR peak(us<strong>in</strong>g the Fernhall equation) were poor.Conclusion A GXT performed on a treadmill is a feasible, reliable and valid means of determ<strong>in</strong><strong>in</strong>gHR peakas well as number of atta<strong>in</strong>ed levels for people <strong>with</strong> SIMD and GMFCS level I. At the<strong>in</strong>dividual level, results may have fairly large variability. The Fernhall equation for estimat<strong>in</strong>gHR peakfor people <strong>with</strong> SIMD systematically overestimated HR peak.70 | Chapter 5


IntroductionIntellectual disability (ID) is characterized by significant limitations <strong>in</strong> both <strong>in</strong>tellectual function<strong>in</strong>gand adaptive behaviour as expressed <strong>in</strong> conceptual, social, and practical skills [1]. The disabilityorig<strong>in</strong>ates before the age of 18 [1]. Intellectual disabilities are categorized <strong>in</strong> four groups: mild,moderate, severe and profound. <strong>Persons</strong> <strong>with</strong> severe or profound ID have a prevalence of visualimpairments of 92% [2].People <strong>with</strong> <strong>in</strong>tellectual disabilities tend to have low activity and <strong>fitness</strong> levels whichdecl<strong>in</strong>e over the years when compared <strong>with</strong> those <strong>with</strong>out a disability [3, 4]. Like <strong>in</strong>dividuals<strong>with</strong> <strong>in</strong>tellectual disabilities, persons <strong>with</strong> visual impairments also display poor performance <strong>in</strong>locomotor skills [5] and have low levels of habitual activity [6]. Individuals who suffer from acomb<strong>in</strong>ation of severe or profound <strong>in</strong>tellectual and visual disabilities (severe or profound multipledisabilities, SIMD) are particularly at risk <strong>in</strong> terms of the potential development of deficits <strong>in</strong> bothlocomotor skills and daily function<strong>in</strong>g [7]. Furthermore, the comb<strong>in</strong>ation of these deficits suggeststhat persons hav<strong>in</strong>g SIMD are likely to have lower levels of habitual activity, than persons <strong>with</strong> ID<strong>with</strong>out visual impairment.Bouchard et al. [8] describes the relationship between <strong>physical</strong> activity, health-related<strong>fitness</strong> and health. Good <strong>physical</strong> <strong>fitness</strong> improves wellbe<strong>in</strong>g and quality of life [9, 10], anddecreases health risks, such as overweight and obesity [11]. Bouchard et al. described cardiorespiratory<strong>fitness</strong> as an important component of health-related <strong>fitness</strong> [8]. However, aconsiderable number of persons <strong>with</strong> SIMD achieved poor results compared to other persons <strong>with</strong>specific health conditions on health-related <strong>fitness</strong> as measured by the six m<strong>in</strong>utes walk<strong>in</strong>g test[12]. These f<strong>in</strong>d<strong>in</strong>gs hence underscore the importance of ga<strong>in</strong><strong>in</strong>g comprehensive <strong>in</strong>sight <strong>in</strong>to thehealth-related <strong>fitness</strong> of persons <strong>with</strong> SIMD, <strong>in</strong>clud<strong>in</strong>g the level of cardiorespiratory <strong>fitness</strong>.Wan<strong>in</strong>ge et al. [12] performed a feasibility and reliability study for an adapted Shuttle RunTest (aSRT) <strong>in</strong> adults <strong>with</strong> SIMD. Feasibility and test-retest reliability of this aSRT over groundwere good for participants classified on the Gross Motor Functional Classification Scale (GMFCS)as level I, yet not sufficient for those <strong>with</strong> GMFCS level II [12]. The peak heart rate (HR peak) foreach participant was estimated accord<strong>in</strong>g to the Fernhall equation [13]. However, a significantdifference (p


In order to confirm the validity of the aSRT [12], results of both the treadmill and aSR testshould be compared to a golden standard [18]. Midgley et al. [19] reviewed available literatureregard<strong>in</strong>g the verification phase follow<strong>in</strong>g a graded exercise test and suggested perform<strong>in</strong>g aSupra Maximal Block Test (SMBT) to set a gold standard for HR peakon an <strong>in</strong>dividual basis [19]. Ifthe heart rate of the SMBT differs by no more than two beats from the HR peakreached dur<strong>in</strong>g thecorrespond<strong>in</strong>g aSRT [12], the exertion dur<strong>in</strong>g the aSRT [12] is scored as maximal [19].The purpose of this study thus is twofold; it seeks to determ<strong>in</strong>e the feasibility, validity andtest-retest reliability of a graded treadmill test (GXT) for participants <strong>with</strong> SIMD and GMFCS levelI, us<strong>in</strong>g a Supra Maximal Block Test (SMBT) as golden standard. By do<strong>in</strong>g so, this study will alsoassess whether the formula of Fernhall overestimates HR peak<strong>in</strong> persons <strong>with</strong> SIMD.MethodsParticipantsThe participants were recruited from a residential care facility <strong>in</strong> the Netherlands, which ishome to 200 persons <strong>with</strong> severe or profound <strong>in</strong>tellectual and visual disabilities. Only personsfunction<strong>in</strong>g at GMFCS-I level were <strong>in</strong>cluded, because Wan<strong>in</strong>ge et al. have <strong>in</strong>dicated the aSRTperformed over ground is only reliable for persons <strong>with</strong> GMFCS level I [12]. Probably due tovisual impairments, the participants were not able to run and jump spontaneously [5, 7, 12].Subsequently, classification was adjusted so as to <strong>in</strong>clude people <strong>with</strong> GMFCS-I who were able to<strong>in</strong>crease walk<strong>in</strong>g speed [12].A total of 30 participants were recruited (17 males, 13 females), all classified as GMFCS-I.Twenty-three participants had a severe ID and seven a profound ID. Some could not walk alonebecause of a visual impairment. Table 1 presents the participants’ characteristics.Table 1. PopulationMale (n=17) Female (n=13) Total (n=30)Age Mean (SD) 40 (11) 42 (11) 41 (11)ID<strong>Severe</strong> ID(20≤IQ


Exclusion criteria were mental or <strong>physical</strong> health problems that prevented the client fromparticipat<strong>in</strong>g. A physician, specialised <strong>in</strong> the care for people <strong>with</strong> ID, approved participation.Exclusion criteria at the moment of test<strong>in</strong>g were illness or fever, recent epileptic <strong>in</strong>sult, stress,wound, concussion or pa<strong>in</strong> dur<strong>in</strong>g movement.DesignParticipants were tested twice, the first graded treadmill test (GXT1) was followed by a secondgraded treadmill test (GXT2) at least one week later. Both tests lasted 15-25 m<strong>in</strong>utes. The same<strong>in</strong>structor and the same test leader performed the test<strong>in</strong>g procedure at the same time of day.The test leader scored HR peak, atta<strong>in</strong>ed level and test time.A two-m<strong>in</strong>ute supra-maximal block test (SMBT) followed at random either GXT1 or GXT2(convenience sampl<strong>in</strong>g). A Triml<strong>in</strong>e T370HR treadmill (Tunturi, Almere, the Netherlands) wasused for test<strong>in</strong>g. A Polar RS 800 heart rate monitor (Polar Nederland, Almere, the Netherlands)measured heart rate dur<strong>in</strong>g the test.Ethical statementThe study was performed <strong>in</strong> agreement <strong>with</strong> the guidel<strong>in</strong>es of the Hels<strong>in</strong>ki Declaration as revised<strong>in</strong> 1975. Permission to carry out the study was obta<strong>in</strong>ed from an <strong>in</strong>stitutional ethics committee. Allparticipants were unable to give consent. Therefore extra care and attention was given to:1) Obta<strong>in</strong><strong>in</strong>g <strong>in</strong>formed consent. Informed consent was obta<strong>in</strong>ed from legal representatives andcaregivers of all participants;2) The construction of the study group by formulat<strong>in</strong>g exclusion criteria and contra<strong>in</strong>dications:We screened the participants based on the exam<strong>in</strong>ation f<strong>in</strong>d<strong>in</strong>gs of a physician specialised <strong>in</strong><strong>in</strong>tellectual disabilities and also of a behaviour scholar;3) The measurement procedure: The measurements were performed <strong>in</strong> accordance <strong>with</strong> thebehavioral code section entitled ‘Resistance among people <strong>with</strong> an <strong>in</strong>tellectual disability <strong>in</strong> theframework of the Act Govern<strong>in</strong>g Medical-Scientific Research Involv<strong>in</strong>g Humans’ [20]. Consistentdistress or unhapp<strong>in</strong>ess was <strong>in</strong>terpreted as a sign of lack of assent and further participation <strong>in</strong> thestudy was reconsidered.ProtocolsGraded treadmill test (GXT)The adjusted SRT protocol of Wan<strong>in</strong>ge et al. was used and performed on a treadmill [12]. Allparticipants practiced walk<strong>in</strong>g the treadmill at least twice before be<strong>in</strong>g tested. The speciallytra<strong>in</strong>ed <strong>physical</strong> education <strong>in</strong>structor (<strong>in</strong>structor) accompanied the participant to the treadmilland attached the safety cord. The <strong>in</strong>structor expla<strong>in</strong>ed the procedure and attached the belt of theheart rate monitor to the participant. To ensure safety the <strong>in</strong>structor positioned himself beh<strong>in</strong>dthe participant, <strong>with</strong> a foot on each side of the treadmill. The test leader checked the heart ratemonitor and stayed one meter on the side of the participant dur<strong>in</strong>g the whole test procedure.R<strong>in</strong>tala et al. reviewed the familiarization process <strong>in</strong> cardio-respiratory <strong>fitness</strong> test<strong>in</strong>g <strong>in</strong>persons <strong>with</strong> mild to moderate <strong>in</strong>tellectual disabilities, recommend<strong>in</strong>g a familiarization protocol[21]. To reduce stress due to unfamiliar situations, the participants walked the treadmill at leasttwice at regular walk<strong>in</strong>g speed before test<strong>in</strong>g. Participants did not reach their HR peaklevels dur<strong>in</strong>gthese practice sessions.Chapter 5 | 73


The treadmill stood <strong>in</strong> a gymnasium where other clients were do<strong>in</strong>g workouts. The testleader calibrated the treadmill once a week to guarantee reliability. The start<strong>in</strong>g speed was 3 km/hour for all participants. Each m<strong>in</strong>ute the speed <strong>in</strong>creased <strong>with</strong> alternat<strong>in</strong>g 0.3 and 0.2 km/hour<strong>in</strong>crements to reach the next level. Levels were comparable <strong>with</strong> the levels <strong>in</strong> the Wan<strong>in</strong>ge study[12], <strong>in</strong> which 0.5 km/h <strong>in</strong>crease of speed appeared not feasible for persons <strong>with</strong> SIMD.The test cont<strong>in</strong>ued until volitional exhaustion, similarly to the study of R<strong>in</strong>tala et al [16].The test was f<strong>in</strong>ished <strong>in</strong> three possible ways; when the participant <strong>in</strong>sisted he wanted to stopor refused to cont<strong>in</strong>ue, when the predicted HR peak[13] was reached, or when the safety p<strong>in</strong> waspulled. The level ma<strong>in</strong>ta<strong>in</strong>ed dur<strong>in</strong>g the last full m<strong>in</strong>ute stage counted as the highest atta<strong>in</strong>edlevel. After either GXT1 or GXT2, the participant rested for five m<strong>in</strong>utes and went on to performthe SMBT.Seven <strong>in</strong>structors participated <strong>in</strong> data collection. Two <strong>physical</strong> therapists acted as test leaders.They checked exclusion criteria at the moment of test<strong>in</strong>g on a form filled out by the participant’spersonal care professional.Supra Maximal Block Test (SMBT)The <strong>in</strong>dividual gold standard for HR peakwas set by SMBT [19]. Midgley et al [19] reported theutility of the verification phase, which was performed at a speed equivalent to one stage higherthan that atta<strong>in</strong>ed dur<strong>in</strong>g the last completed stage of the <strong>in</strong>cremental phase. They did notexactly def<strong>in</strong>e the <strong>in</strong>cremental phases and correspond<strong>in</strong>g speed, as they found that ‘despite the<strong>in</strong>cremental phases be<strong>in</strong>g dist<strong>in</strong>ctly different, the mean maximal VO2max values atta<strong>in</strong>ed <strong>in</strong> theappended verification phases were almost identical’ [19]. Therefore, <strong>in</strong> the present study, speeddur<strong>in</strong>g the verification phase was 0.2 or 0.3 km/h higher than speed dur<strong>in</strong>g the last completedstage, as <strong>in</strong> persons <strong>with</strong> SIMD only an <strong>in</strong>crease of speed of 0.2 or 0.3 km/h is feasible [12].This is considered an acceptable <strong>in</strong>crease of speed, because Midgley et al [19] stated that ‘theverification phase should <strong>in</strong>corporate a workload higher than that atta<strong>in</strong>ed <strong>in</strong> the <strong>in</strong>crementalphase to conform to the orig<strong>in</strong>al concept of VO2max’. If the heart rate of the SMBT differed bynot more than two beats from the HR peakreached dur<strong>in</strong>g the correspond<strong>in</strong>g GXT, the performancedur<strong>in</strong>g the GXT was scored as maximal [19]. Dur<strong>in</strong>g the two m<strong>in</strong>utes of the verification phase, theatta<strong>in</strong>ed HRpeak was registered <strong>in</strong> beats per m<strong>in</strong>ute.Two alternative protocols were developed. Criterion A was the SMBT [19]. The participant walkedfor another two m<strong>in</strong>utes at a level one step (0.2 or 0.3 km/hr) higher than the level atta<strong>in</strong>eddur<strong>in</strong>g the GXT. If the <strong>in</strong>structor thought, for <strong>in</strong>stance for behavioural reasons, an <strong>in</strong>crease <strong>in</strong> levelwas not feasible, the participant performed criterion B, which was a two m<strong>in</strong>utes maximal blocktest at the highest previously atta<strong>in</strong>ed level. The HR peakwas registered <strong>in</strong> beats per m<strong>in</strong>ute. Validitycalculation did not <strong>in</strong>clude results from criterion B.MotivationS<strong>in</strong>ce people <strong>with</strong> ID tend to have lower motivation for <strong>physical</strong> activity, motivation wasconsidered as a factor <strong>in</strong>fluenc<strong>in</strong>g the validity of the test [3, 16]. Paired modell<strong>in</strong>g and positivere<strong>in</strong>forcement have a positive effect on compliance to treadmill walk<strong>in</strong>g for people <strong>with</strong> moderateto severe ID [22]. Participants were encouraged to cont<strong>in</strong>ue walk<strong>in</strong>g us<strong>in</strong>g these techniques. Boththe <strong>in</strong>structor and the test leader observed <strong>in</strong>dependently the amount of encouragement givenas well as the compliance <strong>with</strong> the task. The observed motivation was def<strong>in</strong>ed as to how well the74 | Chapter 5


participant had fulfilled the task. This was drawn out us<strong>in</strong>g a 100 mm Visual Analogue Scale (VAS)[23, 24]. Zero corresponded to no motivation and 100 to the best possible motivation.Estimated peak heart rateSeveral researchers have found that the HR peakfor people <strong>with</strong> ID systematically differs fromthe HR peakof people <strong>with</strong>out ID [25,26]. Therefore, Fernhall et al. developed an equation to moreaccurately predict HR peakfor people <strong>with</strong> ID [13]. The estimated HR peakus<strong>in</strong>g the Fernhall formula[13] was calculated for each participant before test<strong>in</strong>g.Data AnalysisAll statistical analyses were performed us<strong>in</strong>g the Statistical Package for Social Studies (SPSS)version 16.0 for W<strong>in</strong>dows. All data was checked for normal distribution and homoscedasticity bystatistical analysis. Homoscedasticity was def<strong>in</strong>ed as no relation between the error and the size ofthe measured value [27]. A p-value of < 0.05 <strong>in</strong>dicated statistical significance for all tests.FeasibilityThe GXT and the SMBT were tested for feasibility. The percentage of the participants that f<strong>in</strong>ishedthe test successfully determ<strong>in</strong>ed feasibility. Interpretation of the feasibility scores was taken fromthe Gron<strong>in</strong>gen <strong>fitness</strong> test for the elderly [28]. A 95% score meant “good” feasibility and an 80%score meant “sufficient” feasibility [28].Test-retest reliabilityThe Intraclass Correlation Coefficient (ICC) (two-way random, absolute agreement) was calculatedfor HR peakand for the atta<strong>in</strong>ed GXT1 and GXT2 levels. An ICC


ValidityValidity calculation only <strong>in</strong>cludes results of the SMBT, performed accord<strong>in</strong>g to criterion A (seeProtocols). To evaluate validity we compared the HR peakof the SMBT <strong>with</strong> the HR peakof thecorrespond<strong>in</strong>g GXT, which was either GXT1 or GXT2. The ICC was calculated for HR peak. Agreementwas analysed <strong>with</strong> a paired samples t-test.In a Bland-Altman plot the LOA was determ<strong>in</strong>ed [30]. The LOA expressed as a percentage ofthe mean described the variability of the results.Furthermore, to assess validity the SEM, SDD and ES were calculated for the HR peakof theSMBT and the HR peakof the correspond<strong>in</strong>g GXT.The Spearman correlation was calculated for the motivation scored by the <strong>in</strong>structor and bythe test leader.The ICC (two-way random, absolute agreement) for HR peakand level was used to comparethe results of the aSRT over ground of Wan<strong>in</strong>ge et al. and the GXT on the treadmill <strong>in</strong> the sameparticipants. Agreement was analysed <strong>with</strong> a Wilcoxon signed ranks test for both HR peakand level.Estimated peak heart rateWe analysed validity of the equation developed by Fernhall et al. <strong>in</strong> persons <strong>with</strong> SIMD, compar<strong>in</strong>gmeasured HR peak<strong>with</strong> the estimated HR peak[13]. The HR peakSMBT was used <strong>in</strong> a regression analysisto calculate β for each participant. To m<strong>in</strong>imize the <strong>in</strong>fluence of outliers the five highest and fivelowest heart rate scores of the SMBT were elim<strong>in</strong>ated. The equation developed by Fernhall et al.was adjusted by a new β-constant useful for our sample.ResultsFeasibilityThe test-retest feasibility of both GXTs was 86.6%, which can be considered as sufficient [28].Twenty-six out of thirty participants completed both GXT1 and GXT2 successfully. One participantdropped out because of a heart rate irregularity dur<strong>in</strong>g the first GXT. Two participants droppedout because the GXT1 caused stress and behavioural problems. One participant consistentlystepped on the sides of the treadmill and was not able to perform the GXT.The feasibility of the SMBT was 76.9%, which fails to be sufficient [28]. A total of twenty outof twenty-six participants who completed the GXT1 and GXT2 performed the SMBT successfully(criterion A). Two participants did not perform the SMBT because of a high stress level. Fourpersons performed the maximal block test accord<strong>in</strong>g to criterion B.76 | Chapter 5


Table 2. Descriptive results peak heart rate and levelsHR peakHR peakHR peakHR peakHR peakLevelLevelGXT1GXT2GXTSMBTcalculatedGXT1GXT2(n=26)(n=26)(n=20)(n=20)(n=26)(n=26)(n=26)Mean(beats/m<strong>in</strong>)(SD)154(16)155(17)156(19)157(16)171(7)13.54(3.9)13.77(3.7)Range(beats/m<strong>in</strong>)118-181 117-186 118-181 118-178 159-184 6-22 4-22HR: heart rate (beats/m<strong>in</strong>); GXT1: 1 st GXT; GXT2: 2 nd GXT; GXT: test correspond<strong>in</strong>g to the SMBT; SMBT:supra-maximal block test; SD: standard deviation (beats/m<strong>in</strong>)Test-retest reliabilityTable 2 represents the descriptive statistics of the HR peakand the atta<strong>in</strong>ed levels of GXT1, GXT2and SMBT. The HR peakdata <strong>in</strong> GXT1 and GXT2 were normally distributed.Pearson’s correlation between the HR peakGXT1 and the difference <strong>in</strong> HR peakbetween GXT1 andGXT2 was low (r =0.11), which is <strong>in</strong>dicative of the homoscedasticity of the results.The ICC (ICC=0.95; 95%CI 0.88-0.98) for the HR peakof the GXT1 and GXT2 was very good(Table 3). The t-test showed no significant difference between the measurements (p=0.5) (Table 3).difference HRpeak GXT1 and HRpeak GXT220100-10-20120 140 160 180mean HRpeak GXT1 and HRpeak GXT2 (beats/m<strong>in</strong>)Figure 1. Bland- Altman plot of HR peakGXT1 and HR peakGXT2 <strong>in</strong> beats/m<strong>in</strong>; n=26; LOA -16 to 14 (19.4% of mean);mean difference -1; Standard Deviation of the difference 8 beats/m<strong>in</strong>Chapter 5 | 77


The LOA are determ<strong>in</strong>ed <strong>in</strong> a Bland-Altman plot (Figure 1). The LOA for HR peakof GXT1 andGXT2 range from -16 to14, which is 19% of the mean HR peak(mean HR peak= 155). This means thatthe <strong>in</strong>dividual variability represented <strong>in</strong> the region between the dotted l<strong>in</strong>es has a width of 19% ofthe mean (Figure 1).The achieved levels of GXT1 and GXT2 were normally distributed. The ICC between theatta<strong>in</strong>ed levels was very good (ICC=0.95; 95%CI 0.90-0.98). The t-test showed no significantdifference between the atta<strong>in</strong>ed levels of GXT1 and GXT2 (p=0.56) (Table 3).difference reaches levels GXT1 and GXT22,000,00-2,00-4,005,00 10,00 15,00 20,00 25,00mean reached levels GXT1 and GXT2Figure 2. Bland and Altman plot of reached levels GXT1 and GXT2; n=26; LOA -3.4 to 2.9; (43.4% of mean); meandifference -0.19The LOA for the atta<strong>in</strong>ed levels of GXT1 and GXT2 range from -3.4 to 2.9 (Figure 2).The mean level reached <strong>in</strong> both tests was 13.6.The SDD was 2 levels <strong>in</strong>dicat<strong>in</strong>g that persons had to <strong>in</strong>crease or decrease their treadmillperformance <strong>with</strong> 2 levels to have a relevant change <strong>in</strong> endurance time.Table 3 presents the SEM, SDD and ES. The mean difference <strong>in</strong> HR peakbetween GXT1 and GXT2 was1 beat /m<strong>in</strong>ute. The mean difference <strong>in</strong> HR peakbetween the SMBT and the correspond<strong>in</strong>g GXT wasalso 1 beat /m<strong>in</strong>ute. These are both smaller than the SEM (5 beats/m<strong>in</strong>ute <strong>in</strong> both tests) (Table 3).The SDD for HR peakwas 6 beats/m<strong>in</strong>ute. Thus one can only speak of a significant difference whenconfronted <strong>with</strong> a difference larger than 6 beats/m<strong>in</strong>ute. The Effect Size (ES) for both HR peakandthe atta<strong>in</strong>ed level ranges from small to moderate (0.12) between GXT1 and GXT2 [32].78 | Chapter 5


Table 3. Test–retest reliability of HR peakand levels achievedHR peakGXT1–HR peakGXT2(n=26)HR peakGXT–HR peakSMBT(n=20)HR peakGXT1–HR peakcalculated(n=26)HR peakGXT2–HR peakcalculated(n=26)HR peakSMBT–HR peakcalculated(n=20)HR peakGXT1–HR peakGXT2(n=26)LOA% of mean-16 to 1419.5%-17 to 1520.5%-45 to 1335.8%-43 to 1334.5%-42 to 1434.1%-3.4 to 2.943.4%ICC(95%CI)0.95(0.88-0.98)0.94(0.86 – 0.98)0.28(-0.23 – 0.62)0.39(-0.21 – 0.72)0.36(-0.25- 0.72)0.95(0.90-0.98)t-test -0.6(p=0.5)-0.3(p=0.7)-5.4(p=0.001)-5.3(p=0.001)-4.6(p=0.001)-0.6(p=0.56)SEM 5 5 8 9 8 1SDD 6 6 8 8 8 2ES 0.12 0.07 0.73 0.73 0.73 0.12HR: heart rate; GXT: graded exercise test; LOA: Limits of Agreement; ICC: Intraclass Correlation Coefficient; SEM:Standard Error of Measurement SEM=SDx√(1-ICC)[27]; SDD: Smallest Detectable Difference SDD=1,96x√(2xSEM)[27]; ES: Effect Size; ES=√{t 2 /(t 2 +df)} [32]ValidityTwenty participants performed the SMBT, accord<strong>in</strong>g to criterion A. The ICC (ICC=0.94; 95%CI0.86-0.98) between the HR peakSMBT and the correspond<strong>in</strong>g HR peakGXT was very good (Table3). The t-test (p=0.7) revealed no significant differences between the HR peakof the SMBT andthe HR peakof the correspond<strong>in</strong>g GXT (Table 3). The LOA results range from -17 to 15. The LOArepresents 20.5% of the mean (157 beats/m<strong>in</strong>) (Figure 3). ).Eleven persons met the criterion of a maximal performance on the GXT, because the heartrate of the SMBT differed by not more than two beats from the HRpeak reached dur<strong>in</strong>g thecorrespond<strong>in</strong>g GXT. In four persons HRpeak SMBT was more than two beats more than HRpeakGXT, which means they did not meet the criterion of a maximal performance on the GXT. In fivepersons HRpeak SMBT was less than HRpeak GXT.Chapter 5 | 79


difference HRpeak GXT and HRpeakSMBT (beat/m<strong>in</strong>)20100-10-20-30120 140 160 180mean HRpeak GXT and HRpeak SMBT (beats/m<strong>in</strong>)Figure 3. Bland-Altman plot of HR peakGXT and HR peakSMBT <strong>in</strong> beats/m<strong>in</strong>; n=20; LOA -17 - 15; (20.5% of mean);mean difference -1; Standard Deviation of the difference 8 beats/m<strong>in</strong>However, the ICCs between the estimated HR peakand HR peakGXT1, HR peakGXT2 and HR peakSMBT were all poor (Table 3). The t-statistics compar<strong>in</strong>g estimated HR peak<strong>with</strong> HR peakGXT1,HR peakGXT2 and HR peakSMBT all showed a significant difference (Table 3). This means that theagreement between estimated HR peakaga<strong>in</strong>st HR peakGXT1, HR peakGXT2, and HR peakSMBT was poor(Table 3).The ES for HR peakbetween the SMBT and the correspond<strong>in</strong>g GXT was small (0.07) [32]. TheES for HR peakbetween GXT1, GXT2 and SMBT <strong>with</strong> the estimated HR peakwere all large (>0.5) [32].This <strong>in</strong>dicates a large difference between the measures for HR peakfound and estimated HR peak,which corresponds to the significant difference between these measures recorded by the t-test.Spearman’s correlation of the VAS motivation scores between the <strong>in</strong>structor and test leader<strong>in</strong> GXT1 was low (rho 0.3; p=0.09) but significant for GXT2 (rho 0.7; p


Table 4. Correlation scored motivation by Instructor or Test Leader and HR peakCorrelation scored motivation by INS or TL and HR peakGXT1 GXT2 SMBTscoreINS –HR peakscore score INS –TL –HR peakHR peakscore TL –HR peakscore InS –HR peakscore TL –HR peakSpearmanrho0.18p=0.37n=260.48p=0.01n=260.44p=0.02n=260.44p=0.03n=250.36p=0.11n=190.48p=0.03n=19Criticalvalue rhop=0.05;two-tailed0.390 0.390 0.390 0.398 0.460 0.460GXT: Graded Exercise Test; SMBT: Supra-Maximal Block Test; INS: Tra<strong>in</strong>ed <strong>physical</strong> education <strong>in</strong>structor; TL: testleader; p: significance value; n: participantsAll but one participant (96%) needed encouragement dur<strong>in</strong>g GXT1 or GXT2. Fourteen (54%)needed encouragement dur<strong>in</strong>g both tests and eleven participants (42%) needed encouragementdur<strong>in</strong>g one test. Out of the total of fifty-two tests of GXT1 and GXT2, a lot of encouragement wasgiven dur<strong>in</strong>g twelve tests and some encouragement was given dur<strong>in</strong>g twenty-seven tests.Both GXT1 and GXT2 lasted 14 m<strong>in</strong>utes (SD 3.8) on average, <strong>with</strong> a range of 4 to 22 m<strong>in</strong>utes.Correlation between HR peakof GXT1 on the treadmill and HR peakof the over ground test waspoor and not significant (ICC=0.21; 95%CI -0.24–0.59). For the GXT2 the correlation was also poorand not significant (ICC=0.24; 95%CI -0.22–0.63).The HR peakfor GXT1 and GXT2 treadmill were significantly higher than the tests performed overground, as was expected.Correlation between the levels of GXT1 treadmill and aSRT1 over ground was moderate butsignificant (ICC=0.67; 95%CI = 0.18-0.87). Correlation between the levels achieved for the GXT2was moderate and also significant (ICC=0.73; 95% CI = 0.22-0.90). The wide confidence <strong>in</strong>tervals<strong>in</strong>dicate diversity among the participants. The achieved levels show a significant differencebetween the treadmill and the over ground test for the GXT1 (Wilcoxon signed ranks, p=0.03) andthe GXT2 (Wilcoxon signed ranks, p=0.01).Estimated peak heart rateIn our sample the ICC for HR peakSMBT and the estimated HR peakwas poor (ICC=0.36; 95%CI -0.25–0.72). The t-statistic showed a significant difference (t=-4.6; p=0.001). Figure 4 shows a scatterplot of these f<strong>in</strong>d<strong>in</strong>gs. The equation seems to over-estimate HR peakfor people <strong>with</strong> SIMD. To adjustthe equation to be relevant to our sample a new constant β=0.88 was calculated.Chapter 5 | 81


190180HR supra-max test (beats/m<strong>in</strong>)170160150140130120110110120130 140 150 160 170180190HRpeak calculated (beats/m<strong>in</strong>)Figure 4 Scatter plot calculated HR peakand HR peakof supra-maximal block test (Pearson’s r=0.5; p≤0.05); t-statisticp=0.0001). The dotted l<strong>in</strong>e represent<strong>in</strong>g perfect correlation, l<strong>in</strong>e of identity and absolute agreement.DiscussionThis study <strong>in</strong>vestigated the feasibility, test-retest reliability and validity of the adapted ShuttleRun Test protocol performed on a treadmill (graded exercise test, GXT) for people <strong>with</strong> SIMD andGMFCS-I. The results <strong>in</strong>dicate that the GXT protocol performed on the treadmill has sufficientfeasibility, based on the 80% criterion [28]. The test-retest reliability and validity of the GXTtreadmill were sufficient for the sample. Furthermore, the results show that the Fernhall equationpredict<strong>in</strong>g HR peakconsistently overestimated the realized HR peak.High correlation (ICC=0.95; 95%CI 0.88–0.98) and good agreement (p=0.5) has beenshowed <strong>in</strong> this study between the GXT1 and GXT2 for HR peak, <strong>in</strong>dicat<strong>in</strong>g good test-retest reliability.This is <strong>in</strong> l<strong>in</strong>e <strong>with</strong> the results Fernhall et al. found <strong>in</strong> a reliability study performed <strong>with</strong> mentallyretarded adults [33]. A SEM of 5 and an SDD of 6 <strong>with</strong> a small ES <strong>in</strong>dicate that the marg<strong>in</strong>for error is 5 and hence only a difference of more than 6 beats/m<strong>in</strong>ute <strong>in</strong>dicates a significantdifference. The results of the GXT1 and GXT2 are not significantly different and the ES are small.This confirms good test retest reliability.A measure for variability is the LOA. With a 19.4% of the mean HR peak, the LOA can be saidto be wide. A wide LOA po<strong>in</strong>ts at a considerable variation at the <strong>in</strong>dividual level and may be dueto difficulties <strong>in</strong> motivation, behaviour or an <strong>in</strong>ability to cope <strong>with</strong> stress, all of which are typicallyprevalent <strong>in</strong> people <strong>with</strong> SIMD [1, 3, 33].In order to check the validity of the test protocol, the HR peakSMBT was compared <strong>with</strong> the82 | Chapter 5


preced<strong>in</strong>g GXT results on HR peak. Good correlation (ICC= 0.94; 95%CI 0.86-0.98) and agreement(p=0.7) for HR peakexists between SMBT and the preced<strong>in</strong>g GXT. These results might serve as<strong>in</strong>dicative for a gold standard accord<strong>in</strong>g to Midgley et al. [18, 19]. Midgley et al. reviewed availableliterature regard<strong>in</strong>g the verification phase follow<strong>in</strong>g a graded exercise test. In the present study,speed dur<strong>in</strong>g the verification phase was 0.2 or 0.3 km/h higher than speed dur<strong>in</strong>g the lastcompleted stage, as <strong>in</strong> persons <strong>with</strong> SIMD only an <strong>in</strong>crease of speed of 0.2 or 0.3 km/h is feasible[12]. This is considered an acceptable <strong>in</strong>crease of speed, because Midgley et al [19] stated that‘the verification phase should <strong>in</strong>corporate a workload higher than that atta<strong>in</strong>ed <strong>in</strong> the <strong>in</strong>crementalphase to conform to the orig<strong>in</strong>al concept of VO2max’. Furthermore, they <strong>in</strong>dicated that the meandifference <strong>in</strong> HR peakbetween the test and the SMBT should be maximal 1.9 beats/m<strong>in</strong>ute (SD 1.7)[19]. The results of our study show a mean difference of 1 beat/m<strong>in</strong>ute and a standard deviationof 1, which is <strong>with</strong><strong>in</strong> the limits drawn by Midgley [19]. The atta<strong>in</strong>ed performance levels thus werereached us<strong>in</strong>g maximal effort. When looked at the <strong>in</strong>dividual level, eleven persons met thecriterion of a maximal performance on the GXT, whereas four persons did not meet this criterion.The actual and estimated HR peakshow low correlation. This could <strong>in</strong>dicate that the equationdeveloped by Fernhall et al. [13] is not applicable to our sample of participants. In the Fernhallstudy, 144 of the 276 participants had mild ID [13]. Similar to the f<strong>in</strong>d<strong>in</strong>gs of Kittredge et al. [34]we found the HR peakto be significantly lower than the estimated HR peak[34], suggest<strong>in</strong>g that theformula’s constant (β=0.56 <strong>in</strong> the Fernhall equation) should be corrected and take a higher valuefor people <strong>with</strong> SIMD. Hence, a recommendation for future research is to adjust the equation forestimat<strong>in</strong>g HR peakfor <strong>in</strong>dividuals <strong>with</strong> SIMD, enabl<strong>in</strong>g a valid calculation of the estimated HR peak,which is crucial <strong>in</strong> assess<strong>in</strong>g whether target heart rate has been reached for this specific group ofparticpants.S<strong>in</strong>ce both HR peakand atta<strong>in</strong>ed levels are significantly higher <strong>in</strong> the treadmill test than <strong>in</strong> theover ground test, the treadmill test is valid for measur<strong>in</strong>g maximal exercise capacity <strong>in</strong> people<strong>with</strong> SIMD and GMFCS-I. Environmental factors may expla<strong>in</strong> the test results of the GXT protocolas performed on the treadmill [35]. The constra<strong>in</strong>ts-led approach limits the degrees of freedomdur<strong>in</strong>g test<strong>in</strong>g [35], result<strong>in</strong>g <strong>in</strong> a more restrictive test situation. The <strong>physical</strong> constra<strong>in</strong>ts of thetreadmill, the sound of the runn<strong>in</strong>g walk<strong>in</strong>g belt, the side bars and the <strong>in</strong>structor stand<strong>in</strong>g beh<strong>in</strong>dthe participant all may stimulate the participant to cont<strong>in</strong>ue walk<strong>in</strong>g.Furthermore, issues of motivation, stress and the ability to understand test directions shouldbe considered when <strong>in</strong>terpret<strong>in</strong>g test results [36]. For people <strong>with</strong> SIMD motivation for <strong>physical</strong>activity is low [36] and extr<strong>in</strong>sic encouragement and rewards often dictate activity performance[37]. This pattern of behavior is also evident <strong>in</strong> our study. All but one participant neededencouragement, fourteen dur<strong>in</strong>g both test sessions and eleven dur<strong>in</strong>g one of the test sessions.Moreover, unfamiliar situations caused stress <strong>in</strong> several participants. R<strong>in</strong>tala et al. reviewedthe familiarization process <strong>in</strong> cardiorespiratory <strong>fitness</strong> test<strong>in</strong>g <strong>in</strong> persons <strong>with</strong> mild to moderate<strong>in</strong>tellectual disabilities, recommend<strong>in</strong>g a familiarization protocol [21]. In our study the protocolconsisted of walk<strong>in</strong>g the treadmill at least twice at regular walk<strong>in</strong>g speed before test<strong>in</strong>g.Participants did not reach their HR peaklevels dur<strong>in</strong>g these practice sessions. Frey et al. describedhow people <strong>with</strong> ID are hardly challenged by their support systems to exert <strong>physical</strong>ly [3]. Dur<strong>in</strong>gdata collection most participants were challenged up to volitional exhaustion [16] for the first time<strong>in</strong> their lives. This may put forward an explanation for the <strong>in</strong>sufficient feasibility of the SMBT. Bylett<strong>in</strong>g future participants practice at a sub-maximal exercise level, the feasibility of the SMBTmay improve. Furthermore, <strong>in</strong> future studies a familiarization protocol should be established <strong>with</strong>Chapter 5 | 83


well def<strong>in</strong>ed criteria for advancement from one familiarization level to the next.S<strong>in</strong>ce people <strong>with</strong> <strong>in</strong>tellectual disabilities tend to have lower motivation for <strong>physical</strong>activity [3, 16], we <strong>in</strong>cluded a motivation score <strong>in</strong>to the testprotocol. An aspect that may have<strong>in</strong>fluenced the motivation scores was that both the test leader and the <strong>in</strong>structor were aware ofthe estimated HR peak. This may have <strong>in</strong>fluenced the encouragement given, and as a consequence,the scored motivation. A significant correlation between observed motivation and HR peakexisteddur<strong>in</strong>g GXT2 for both the <strong>in</strong>structor and the test leader (Table 4). Nonetheless, <strong>in</strong> future studiesthe <strong>in</strong>ter-observer reliability of scored motivation should be assessed as well.Handrail support dur<strong>in</strong>g steady-state treadmill exercise reduces the momentary aerobicdemands [38, 39]. All but one participant held on to the handrail dur<strong>in</strong>g the test procedure. Whenwalk<strong>in</strong>g speed <strong>in</strong>creased some participants leaned more heavily on the handrail which may havehad an <strong>in</strong>fluence on the levels or HR peak[39, 40]. The achieved levels <strong>in</strong> the GXT treadmill mayhave been relatively high as a consequence of lean<strong>in</strong>g on the handrail.A limitation of this study was how to decide when maximal exercise level or volitionalexhaustion was reached. As for now, realiz<strong>in</strong>g the estimated HR peakseems to be the only objectivemeasure of maximal performance, which <strong>in</strong> the present study none of the participants achieved.R<strong>in</strong>tala et al. described volitional exhaustion [16] by signals such as heavy breath<strong>in</strong>g, maximalheart rate, uncoord<strong>in</strong>ated walk<strong>in</strong>g, sweat<strong>in</strong>g or verbal protest, which is too wide a range for a clearand workable measure. In future studies the volitional exhaustion has to be def<strong>in</strong>ed <strong>in</strong> a moreaccurate way.The results of this project could be used to develop an experimental study <strong>in</strong>vestigat<strong>in</strong>g thetra<strong>in</strong>ability of exercise capacity <strong>in</strong> people <strong>with</strong> SIMD. Treadmill tra<strong>in</strong><strong>in</strong>g could possibly improvehealth related <strong>physical</strong> <strong>fitness</strong> and thereby health for people <strong>with</strong> multiple disabilities.Further experimental research on tra<strong>in</strong><strong>in</strong>g a population <strong>with</strong> SIMD is recommended.ConclusionThe ma<strong>in</strong> conclusion of our study is that a GXT protocol performed on a treadmill is a feasible,reliable and valid test for determ<strong>in</strong><strong>in</strong>g HR peakand exercise levels for people <strong>with</strong> SIMD andGMFCS-I. For this population, the GXT protocol has better validity for determ<strong>in</strong><strong>in</strong>g HR peakandmaximal level than the SRT over ground.For future research, we recommend a revision of Fernhall’s equation so as to enable a betterprediction of the HR peakfor people <strong>with</strong> SIMD.Furthermore, future studies should comprise of a familiarization protocol <strong>with</strong> well-def<strong>in</strong>edcriteria so as to reduce the <strong>in</strong>fluence of stress, stemm<strong>in</strong>g from unfamiliarity <strong>with</strong> the testsituation, on the test results. Moreover, volitional exhaustion should be def<strong>in</strong>ed more clearly us<strong>in</strong>gunambiguous variables. F<strong>in</strong>ally, an evaluation of <strong>in</strong>ter-tester reliability of scored motivation shouldbe established.AcknowledgementsThe authors k<strong>in</strong>dly acknowledge and thank the participants for their participation <strong>in</strong> this study,their representatives for giv<strong>in</strong>g permission for this and the <strong>physical</strong> education <strong>in</strong>structors for theireffort. The authors are grateful for the supportive and valuable feedback. The authors have noconflict of <strong>in</strong>terest to declare.84 | Chapter 5


References1 Schalock R, Brown I, Brown R, Cumm<strong>in</strong>s RA, Felce D, Matikka L, Keith KD, Parmenter T.Conceptualization, measurement, and application of quality of life for persons <strong>with</strong><strong>in</strong>tellectual disabilities: report of an <strong>in</strong>ternational panel of experts. Ment Retard.2002;40(6):457-70.2 Van den Broek EG, Janssen CG, van RT, Deen L. Visual impairments <strong>in</strong> people <strong>with</strong> severeand profound multiple disabilities: an <strong>in</strong>ventory of visual function<strong>in</strong>g. J Intellect Disabil Res.2006;50(Pt 6):470-5.3 Frey GC, Buchanan AM, Rosser Sandt DD. “I’d rather watch TV”: an exam<strong>in</strong>ation of <strong>physical</strong>activity <strong>in</strong> adults <strong>with</strong> mental retardation. Ment Retard. 2005;43(4):241-54.4 Graham A, Reid G. Physical <strong>fitness</strong> of adults <strong>with</strong> an <strong>in</strong>tellectual disability: a 13-year follow-upstudy. Res Q Exerc Sport. 2000;71(2):152-61.5 Houwen S, Visscher C, Lemm<strong>in</strong>k KA, Hartman E. Motor skill performance of school-agechildren <strong>with</strong> visual impairments. Dev Med Child Neurol. 2008;50(2):139-45.6 Hopk<strong>in</strong>s WG, Gaeta H, Thomas AC, Hill PM. Physical <strong>fitness</strong> of bl<strong>in</strong>d and sighted children. EurJ Appl Physiol Occup Physiol. 1987;56(1):69-73.7 Evenhuis HM, Sjoukes L, Koot HM, Kooijman AC. Does visual impairment lead to additionaldisability <strong>in</strong> adults <strong>with</strong> <strong>in</strong>tellectual disabilities? J Intellect Disabil Res. 2009;53(1):19-28.8 Bouchard C, Shephard RJ, Stephens T. Physical activity, <strong>fitness</strong>, and health : <strong>in</strong>ternationalproceed<strong>in</strong>gs and consensus statement. Human K<strong>in</strong>etics Proceed<strong>in</strong>gs of the 2 nd InternationalConference on Physical Activity, Fitness and Health. 1994, Champaign, Il.9 Angermayr L, Melchart D, L<strong>in</strong>de K. Multifactorial lifestyle <strong>in</strong>terventions <strong>in</strong> the primary andsecondary prevention of cardiovascular disease and type 2 diabetes mellitus--a systematicreview of randomized controlled trials. Ann Behav Med. 2010;40(1):49-64.10 Thomas GN, Jiang CQ, Taheri S et al. A Systematic Review of Lifestyle Modification andGlucose Intolerance <strong>in</strong> the Prevention of Type 2 Diabetes. Curr Diabetes Rev.2010;6(6):378-87.11 Wallman K, Goodman C, Morton A, Grove R, Dawson B. Test-retest reliability of the aerobicpower <strong>in</strong>dex component of the tri-level <strong>fitness</strong> profile <strong>in</strong> a sedentary population. J Sci MedSport. 2003;6(4):443-54.12 Wan<strong>in</strong>ge A, Evenhuis IJ, van Wijck R, van der Schans CP. Feasibility and reliability of twodifferent walk<strong>in</strong>g tests <strong>in</strong> persons <strong>with</strong> severe <strong>in</strong>tellectual and sensory disabilities. accepted2010.13 Fernhall B, McCubb<strong>in</strong> J A, Pitetti KH, R<strong>in</strong>tala P, Rimmer JH, Millar AL, De Silva A. Predictionof maximal heart rate <strong>in</strong> <strong>in</strong>dividuals <strong>with</strong> mental retardation. Med Sci Sports Exerc.2001;33:1655-1660.14 Froelicher VF, Jr, Thompson AJ Jr, Davis G, Stewart AJ, Triebwasser JH. Prediction ofmaximal oxygen consumption. Comparison of the Bruce and Balke treadmill protocols. Chest.1975;68(3):331-6.15 Millar AL, Fernhall B, Burkett LN. Effects of aerobic tra<strong>in</strong><strong>in</strong>g <strong>in</strong> adolescents <strong>with</strong> Downsyndrome. Med Sci Sports Exerc. 1993;25(2):270-4.16 R<strong>in</strong>tala P, Dunn JM, McCubb<strong>in</strong> JA, Qu<strong>in</strong>n C. Validity of a cardiorespiratory <strong>fitness</strong> test formen <strong>with</strong> mental retardation. Med Sci Sports Exerc. 1992;24(8):941-5.Chapter 5 | 85


17 Davids K, Button C, Bennett S. Dynamics of Skill Acquisition, a constra<strong>in</strong>ts-led approach.2008, Human K<strong>in</strong>etics, Champaign, IL.18 Bouter LM, van Dongen MCJM, Zielhuis GA. Epidemiologisch onderzoek. vijfde, herziene druked. 2005, Houten: Bohn Stafleu van Loghum.19 Midgley AW & Carroll S. Emergence of the verification phase procedure for confirm<strong>in</strong>g‘true’ VO2max. Scand J Med Sci Sports. 2009;(19):313-22.20 Dutch Society for Doctors <strong>in</strong> the Care for people <strong>with</strong> an Intellectual Disability (NVAZ)Resistance among people <strong>with</strong> an <strong>in</strong>tellectual disability <strong>in</strong> the framework of the ActGovern<strong>in</strong>g Medical-Scientific Research Involv<strong>in</strong>g Humans, behavioural code for doctors <strong>in</strong> theassessment of resistance among people <strong>with</strong> an <strong>in</strong>tellectual disability, 1999.21 R<strong>in</strong>tala P, McCubb<strong>in</strong> JA, Dunn JM. Familiarization process <strong>in</strong> cardiorespiratory <strong>fitness</strong> test<strong>in</strong>gfor persons <strong>with</strong> mental retardation. Sports Med Tra<strong>in</strong> Rehabil. 1995;6(1):15-27.22 Vashdi E, Hutzler Y, Roth D. Compliance of children <strong>with</strong> moderate to severe <strong>in</strong>tellectualdisability to treadmill walk<strong>in</strong>g: a pilot study. J Intellect Disabil Res. 2008;52(Pt 5):371-9.23 Mc Cormack HM, Horne de DJL, Sheather S. Cl<strong>in</strong>ical applications of visual analogue scales: acritical review. Psych Med. 1988;18:1007-101924 Wewers ME, & Lowe NK. A critical Review of Visual Analogue Scales <strong>in</strong> the Measurement ofCl<strong>in</strong>ical Phenomena. Research <strong>in</strong> Nurs<strong>in</strong>g & Health. 1990;13:227-236.25 Climste<strong>in</strong> M, Pitetti KH, Barrett PJ, Campbell KD. The accuracy of predict<strong>in</strong>g treadmillVO2max for adults <strong>with</strong> mental retardation, <strong>with</strong> and <strong>with</strong>out Down’s syndrome, us<strong>in</strong>g ACSMgender- and activity-specific regression equations. J Intellect Disabil Res.1993;37(Pt 6):521-31.26 Fernhall B, Pitetti KH, Rimmer JH et al. Cardiorespiratory capacity of <strong>in</strong>dividuals <strong>with</strong> mentalretardation <strong>in</strong>clud<strong>in</strong>g Down syndrome. Med Sci Sports Exerc. 1996;28(3):366-71.27 Atk<strong>in</strong>son G, Nevill AM. Statistical methods for assess<strong>in</strong>g measurement error (reliability) <strong>in</strong>variables relevant to sports medic<strong>in</strong>e. Sports Med. 1998;26(4):217-38.28 Lemm<strong>in</strong>k KAPM. De Gron<strong>in</strong>ger Fitheidstest voor Ouderen. Ontwikkel<strong>in</strong>g van eenmeet<strong>in</strong>strument. 1996, Dissertation, University of Gron<strong>in</strong>gen, Netherlands.29 Portney LG, Watk<strong>in</strong>s MP. Foundations of cl<strong>in</strong>ical research. 2 nd ed. Upper Saddle River, 2000,Prentice-Hall Inc, New Jersey.30 Bland JM & Altman DG. Statistical methods for assess<strong>in</strong>g agreement between two methodsof cl<strong>in</strong>ical measurement. The Lancet. 1986;1:307-310.31 de Groot JF, Takken T, Schoenmakers MA, Tummers L, Vanhees L, Helders PJ. Reproducibilityof energy cost of locomotion <strong>in</strong> ambulatory children <strong>with</strong> Sp<strong>in</strong>a Bifida. Gait Posture2010;31(2):159-63.32 Field A. Discover<strong>in</strong>g Statistics Us<strong>in</strong>g SPSS. SAGE Publications Ltd; 2005.33 Fernhall B, Millar AL, Tymeson GT, Burkett LN. Maximal exercise test<strong>in</strong>g of mentally retardedadolescents and adults: reliability study. Arch Phys Med Rehabil. 1990;71(13):1065-8.34 Kittredge JM, Rimmer JH, Looney MA. Validation of the Rockport Fitness Walk<strong>in</strong>g Test foradults <strong>with</strong> mental retardation. Med Sci Sports Exerc. 1994;26(1):95-102.35 Newell KM. Constra<strong>in</strong>ts on the development of coord<strong>in</strong>ation. In Motor Development <strong>in</strong>Children: Aspects of Coord<strong>in</strong>ation and Control . In: M.G.Wade & H.T.A.Whit<strong>in</strong>g, editor.Dordrecht, Netherlands: Mart<strong>in</strong>us Nijhoff; 1986:341-60.36 Pitetti KH, Rimmer JH, Fernhall B. Physical <strong>fitness</strong> and adults <strong>with</strong> mental retardation. Anoverview of current research and future directions. Sports Med. 1993;16(1):23-56.86 | Chapter 5


37 Stanish HI, Temple VA, Frey GC. Health-promot<strong>in</strong>g <strong>physical</strong> activity of adults <strong>with</strong> mentalretardation. Ment Retard Dev Disabil Res Rev. 2006;12(1):13-21.38 R<strong>in</strong>tala P, McCubb<strong>in</strong> JA, Dunn JM. Familiarization process <strong>in</strong> cardiorespiratory <strong>fitness</strong> test<strong>in</strong>gfor persons <strong>with</strong> mental retardation. Sports Med Tra<strong>in</strong> Rehabil. 1995;6(1):15-27.39 Christman SK, Fish AF, Bernhard L, Frid DJ, Smith BA, Mitchell L. Cont<strong>in</strong>uous handrailsupport, oxygen uptake, and heart rate <strong>in</strong> women dur<strong>in</strong>g submaximal step treadmill exercise.Res Nurs Health. 2000;23(1):35-42.40 McConnell TR, Foster C, Conl<strong>in</strong> NC, Thompson NN. Prediction of Functional Capacity Dur<strong>in</strong>gTreadmill Test<strong>in</strong>g: Effect of Handrail Support. J Cardiopulmonary Rehabil. 1991;11:255-60.Chapter 5 | 87


88 | Chapter 5


Chapter 6Feasibility and reliability of a modified BergBalance Scale <strong>in</strong> persons <strong>with</strong> severe <strong>in</strong>tellectualand visual disabilities.A. Wan<strong>in</strong>geR. van WijckB. SteenbergenC.P. van der SchansJournal of Intellectual Disability Research 2011;55(3):292-301Reproduced by courtesy of Wiley and BlackwellChapter 6 | 89


AbstractBackground The purpose of this study was to determ<strong>in</strong>e the feasibility and reliability of themodified Berg Balance Scale (mBBS) <strong>in</strong> persons <strong>with</strong> severe <strong>in</strong>tellectual and visual disabilities(severe <strong>in</strong>tellectual and multiple disabilities, SIMD) assigned Gross Motor Function ClassificationSystem (GMFCS) grade I and II.Method Thirty-n<strong>in</strong>e participants <strong>with</strong> SIMD and GMFCS grade I and II performed the mBBS twice<strong>with</strong> 1-week <strong>in</strong>terval. Feasibility was assessed by the percentage of successful measurements pertask and of the total score. First, test-retest reliability was determ<strong>in</strong>ed by <strong>in</strong>traclass correlationcoefficients (ICC) for each task and for the total score of all tasks comb<strong>in</strong>ed. Second, level ofagreement between test-retest scores was assessed <strong>with</strong> the proportion of equal scores for eachtask. F<strong>in</strong>ally, <strong>in</strong>ternal consistency of the dist<strong>in</strong>ct tasks was assessed by Cronbach’s alpha.Results The results <strong>in</strong>dicated that 92% of the measurements by the mBBS for all selected taskswere successful, <strong>in</strong>dicat<strong>in</strong>g that the mBBS is a feasible <strong>in</strong>strument for the tested target group. ICCfor the test-retest of the total score was 0.95. The proportion of equal scores for test-retest of thetasks was .80 or more, except for tasks 9 and 10. Cronbach’s alpha of dist<strong>in</strong>ct tasks was 0.84. Testretestreliability of tasks 9 and 10 was not acceptable.Conclusions Feasibility of all tasks and test-retest reliability of 10 out of 12 mBBS tasks isacceptable. The mBBS is a both feasible and reliable test for evaluat<strong>in</strong>g the functional balance ofpersons <strong>with</strong> SIMD and GMFCS grades I and II.90 | Chapter 6


IntroductionLocomotor skills <strong>in</strong> people <strong>with</strong> <strong>in</strong>tellectual disabilities are characterised by decreased accuracy,variation and active exploration when compared to locomotor skills of those <strong>with</strong>out <strong>in</strong>tellectualdisabilities [1]. Adults <strong>with</strong> mild or moderate <strong>in</strong>tellectual disabilities are often found to havesensory <strong>in</strong>tegration problems [2] and a sedentary lifestyle [3, 4, 5]. IQ level is reported to bethe ma<strong>in</strong> <strong>in</strong>dicator of overall performance on motor tests [6]. Furthermore, a study by Wuanget al. [6] <strong>in</strong>dicated that verbal comprehension and process<strong>in</strong>g speed <strong>in</strong>dexes specifically werereliable predictors of gross and f<strong>in</strong>e motor function. Sh<strong>in</strong>kfield et al. [7] reported that persons<strong>with</strong> <strong>in</strong>tellectual disabilities suffer from <strong>in</strong>adequacies <strong>in</strong> both perception and motor-reproduction.Moreover, data on force platforms and posturography have outl<strong>in</strong>ed the characteristic movementsof those <strong>with</strong> <strong>in</strong>tellectual disabilities [8].Like <strong>in</strong>dividuals <strong>with</strong> <strong>in</strong>tellectual disabilities, persons <strong>with</strong> visual impairments also displaypoor performance on locomotor skills [9] and have low levels of habitual activity [10]. Compared<strong>with</strong> normal children, children <strong>with</strong> impaired vision exhibit differences <strong>in</strong> motor control whichare not directly related to poor vision [11]. Reimer et al. [11] found that “children <strong>with</strong> visualimpairment seemed to have more difficulties <strong>with</strong> calibrat<strong>in</strong>g the sensory <strong>in</strong>formation andspecifically, they made larger errors along the lateral direction, when the target was not visible”.As a result, persons <strong>with</strong> visual impairments often display poor <strong>physical</strong> <strong>fitness</strong> compared <strong>with</strong>persons <strong>with</strong> normal eyesight [12, 13].Consequently, <strong>in</strong>dividuals that have both <strong>in</strong>tellectual and visual disabilities are particularlyat risk concern<strong>in</strong>g the potential development of deficits <strong>in</strong> both locomotor skills as <strong>in</strong> dailyfunction<strong>in</strong>g [14]. The high prevalence of visual impairment and bl<strong>in</strong>dness among persons <strong>with</strong>severe or profound <strong>in</strong>tellectual disabilities suggests this risk is serious [15]. For complex reasons,<strong>in</strong>dividuals <strong>with</strong> <strong>in</strong>tellectual disabilities frequently fall [16]. Visual deficits are identified as apotential factor for fall<strong>in</strong>g [16]. Furthermore, people <strong>with</strong> visual disabilities exhibit decreasedbalance [12, 13]. The comb<strong>in</strong>ation of these f<strong>in</strong>d<strong>in</strong>gs puts forward the suggestion that personshav<strong>in</strong>g both <strong>in</strong>tellectual and visual disabilities are likely to have decreased balance. It is imperativeto ga<strong>in</strong> <strong>in</strong>sight <strong>in</strong>to the severity and prevalence of balance problems <strong>in</strong> this population. In addition,<strong>in</strong>terventions need to be designed to improve balance control, <strong>physical</strong> activity, and eventually,participation <strong>in</strong> daily life.As to date, it rema<strong>in</strong>s unclear which specific balance test is feasible and reliable for test<strong>in</strong>gsubjects <strong>with</strong> severe <strong>in</strong>tellectual and visual disabilities. It is certa<strong>in</strong>, however, that many of thestandardized outcome measures to quantify balance capabilities commonly used <strong>in</strong> physiotherapyare not applicable to participants <strong>with</strong> <strong>in</strong>tellectual disabilities [16, 17]. If balance tests are tobe used to assess persons <strong>with</strong> severe or profound <strong>in</strong>tellectual and visual disabilities (severemultiple disabilities, SIMD), it follows that assess<strong>in</strong>g the feasibility of these tests is a priority. Ifa participant does not understand the tasks of a certa<strong>in</strong> test, the test will automatically fail toprovide a realistic impression of the functional balance of the participant. In that case, the test willbe <strong>in</strong>valid.Therefore, test <strong>in</strong>structions for <strong>in</strong>dividuals <strong>with</strong> both <strong>in</strong>tellectual and visual disabilitiesrequire our special focus. Two h<strong>in</strong>drances have to be taken <strong>in</strong>to account. Firstly, as a result ofsevere or profound <strong>in</strong>tellectual disability, test <strong>in</strong>structions are often not understood or <strong>with</strong> greatdifficulty (ICD-10, WHO) [16, 18]. Secondly, <strong>in</strong>dividuals <strong>with</strong> visual disabilities cannot see how testtasks are to be performed [15], render<strong>in</strong>g show<strong>in</strong>g them how to perform the task at hand useless.Chapter 6 | 91


Out of the several balance tests described <strong>in</strong> the literature only a couple are feasible forour target group. Tests were assessed on the basis of the difficulty of test <strong>in</strong>structions and thefunctionality <strong>with</strong> regard to the target group. The follow<strong>in</strong>g tests seemed adequate at first sight:the Functional Reach test [19], the Timed Up and Go Test (TUG) [20], the Performance OrientedMobility Assessment (POMA) [21], the FICSIT-4 (Frailty and Injuries: Cooperative Studies ofIntervention Techniques) [22] and the Berg Balance Scale (BBS) [23].The Functional Reach Test [19] measures the difference between a subject’s arm lengthand his/her maximal forward reach, as the subject sits or stands <strong>in</strong> a stationary position. Foryoung subjects <strong>with</strong>out disabilities, this test has a test-retest reliability of 0.89 and an <strong>in</strong>terrateragreement of 0.98. Furthermore, this test is strongly associated <strong>with</strong> measurements of centre-ofpressureexcursion, hav<strong>in</strong>g a correlation coefficient of 0.71. However, after a few practice sessionsthe conclusion was reached that the Functional Reach Test is not suitable for the target group asthey have difficulty understand<strong>in</strong>g how to perform this task.Podsiadlo and Richardson [20] modified the Get Up and Go Test [24] by <strong>in</strong>corporat<strong>in</strong>g atimed component and co<strong>in</strong>ed it the Timed Up and Go Test or TUG. In this test, the subject isobserved and timed while he/she rises, walks, turns around and sits down aga<strong>in</strong>. The TUG has atest-retest reliability of 0.99 and an <strong>in</strong>terrater agreement of 0.99. Moreover, TUG times correlatemoderately well <strong>with</strong> the Barthel Index at 0.78 and scores on the BBS at 0.81. However, the speedof movement is <strong>in</strong>fluenced by a subject’s comprehension time and reaction time, two factors thatare <strong>in</strong>herently affected by <strong>in</strong>tellectual and <strong>physical</strong> disabilities [1, 16]. Therefore, the abilities ofpersons <strong>with</strong> SIMD are underestimated if time is used as an outcome measure.The POMA [21] evaluates balance when a subject stands, stands up, sits down, sits, andwalks. Smits-Engelsman et al. [25] concluded that the sensitivity of the POMA is less than thesensitivity of the BSS, mak<strong>in</strong>g the latter the preferred test.The FICSIT-4 [22] comprises of four tests of static balance. These tests evaluate the ability toma<strong>in</strong>ta<strong>in</strong> balance <strong>in</strong> parallel, semi-tandem, tandem, and one-legged stances, alternately <strong>with</strong> eyesopen and eyes closed. Test-retest reliability was good (r = .66) as was validity, show<strong>in</strong>g moderateto high correlations <strong>with</strong> <strong>physical</strong> function measures and three balance assessment systems.However, after a few practice sessions it became clear that the subjects failed to understand thesemi-tandem and tandem components of the FICSIT.The BBS [23, 26, 27] evaluates a subject’s functional balance dur<strong>in</strong>g daily situations—suchas when the subject stands up, stands still, sits down, picks someth<strong>in</strong>g up from the ground, andturns around—us<strong>in</strong>g ratio scales when possible. The BBS has a test-retest reliability of 0.98 andan <strong>in</strong>terrater agreement of 0.98. The BBS correlates well <strong>with</strong> the Barthel Index at 0.98 and<strong>with</strong> TUG scores at 0.70. This test has been proven to be sufficient for assess<strong>in</strong>g different targetpopulations, such as the elderly [28] and stroke patients [29]. The BBS was considered to besuitable for participants <strong>with</strong> SIMD because it assesses a person’s functional balance dur<strong>in</strong>gdaily situations, which can be scored <strong>in</strong>dependently by observ<strong>in</strong>g the participant’s spontaneousmovements throughout the day. This way of scor<strong>in</strong>g elim<strong>in</strong>ates the risk of a patient notunderstand<strong>in</strong>g the task. Yet, a few practice sessions showed some tasks to be too difficult forthe participants, which led to a slight adaptation of the protocol by exclud<strong>in</strong>g four and add<strong>in</strong>gtwo items. We co<strong>in</strong>ed the adapted BBS the modified Berg Balance Scale (mBBS). With theseadaptations, the mBBS seems to be feasible for assess<strong>in</strong>g balance <strong>in</strong> our target population.To sum up, out of the five potential tests the literature search put forward, solely the BBSseems suitable for our target population, albeit only <strong>in</strong> its modified version. Hence, the purpose of92 | Chapter 6


this study was to evaluate the feasibility and reliability of the modified Berg Balance Scale (mBBS)<strong>in</strong> persons <strong>with</strong> <strong>in</strong>tellectual and visual disabilities classified Gross Motor Function ClassificationSystem (GMFCS) grade I and II.MethodsParticipantsParticipants were recruited from a residential care facility for the profound or severe <strong>in</strong>tellectuallyand visually disabled <strong>in</strong> the Netherlands. Of the residents of this facility, 65% also suffers frommotor disabilities. The participants were classified accord<strong>in</strong>g to their motor skills us<strong>in</strong>g the GrossMotor Function Classification System (GMFCS) [30], a five-level system used to classify the motorabilities of the <strong>physical</strong>ly disabled. Participants <strong>with</strong> a “Level I” classification can generally walk<strong>with</strong>out restrictions but tend to have limitations <strong>in</strong> more advanced motor skills. Participants <strong>with</strong>a “Level II” classification can walk <strong>with</strong> slight restrictions and do not spontaneously <strong>in</strong>crease theirspeed dur<strong>in</strong>g walk<strong>in</strong>g. The locomotor skills of those assigned GMFCS levels III to V are very limitedand they were therefore excluded from perform<strong>in</strong>g the balance test.Written consent was requested from the representatives of 92 candidates and obta<strong>in</strong>ed from80. After <strong>in</strong>formed consent was obta<strong>in</strong>ed, the subjects were screened based on an exam<strong>in</strong>ationby both a special needs physician and a behavioral scholar. The screen<strong>in</strong>g itself excluded sevensubjects. Another eight participants were excluded, as they did not live at the centre where thetests were to be performed. Eight other participants were excluded as they could not attend allfive practice sessions. Another 18 participants were excluded as they exhibited one or more of theexclusion criteria at the time of measurement (Fig. 1). These exclusion criteria were: psychoses,depression or other severe psychological problems; somatic diseases, which were def<strong>in</strong>ed aschronic diseases and/or diseases that do not resolve <strong>in</strong> the short term (e.g., osteoarthritis,osteoporosis, pneumonia, etc); general illness or fever; tak<strong>in</strong>g antibiotics; worsen<strong>in</strong>g of asthma,epilepsy (recent <strong>in</strong>sult or epileptic fits), fresh wound(s)/bruise(s) or other factors caus<strong>in</strong>g pa<strong>in</strong>dur<strong>in</strong>g movement; and f<strong>in</strong>ally stress due to the participant’s behavior shortly prior to the date ofmeasurement.Chapter 6 | 93


92 participants12 participants lacked permission from representatives80 participants7 participants excluded for medical or behavioral reasons73 participants8 participants did not live at the exam<strong>in</strong>ation centre65 participants8 participants did not practice five times57 participants18 participants were excluded for exhibit<strong>in</strong>g exclusion criteria atthe time of the test39 participantsFigure 1. Inclusion steps.Out of the rema<strong>in</strong><strong>in</strong>g 39 participants <strong>in</strong> this study 28 were male and 11 were female. Themean (SD) age was 38 (11) years for the men and 44 (10) years for their female counterpart.Twenty-three participants were classified GMFCS level I and 16 participants GMFCS level II.Accord<strong>in</strong>g to the classification scheme of the ICD-10 (WHO, 1992), 92% (n=36) had severe<strong>in</strong>tellectual disabilities, and 8% (n=3) suffered from profound <strong>in</strong>tellectual disabilities. Accord<strong>in</strong>gto the WHO guidel<strong>in</strong>es [31], all participants suffered from impaired vision: 44% (n=17) of theparticipants was severely partially sighted, 38% (n=15) was partially sighted and 18% (n=7)was slightly limited <strong>in</strong> sight. Most participants had impaired motor abilities: 67% (n=26) hadorthopedic defects and 5% (n=2) had severe motor handicap of neurological orig<strong>in</strong>. In addition,23% (n=9) of the participants had slight hear<strong>in</strong>g problems, 2% (n=1) had loss of hear<strong>in</strong>g, and 5%(n=2) had either severe hear<strong>in</strong>g loss or was completely deaf.DesignThe participants performed the mBBS twice, <strong>with</strong> a one-week <strong>in</strong>terval between test and retest.Both tests were performed at the same time of day, under the same circumstances and under thesupervision of the same personal caretaker and observer.Ethical StatementThe study was performed <strong>in</strong> agreement <strong>with</strong> the guidel<strong>in</strong>es of the Hels<strong>in</strong>ki Declaration as revised<strong>in</strong> 1975. Permission was obta<strong>in</strong>ed from the <strong>in</strong>stitutional ethics committee. Informed consent was94 | Chapter 6


obta<strong>in</strong>ed from the legal representatives of the participants, as the participants themselves wereunable to give consent. The measurements were performed <strong>in</strong> accordance <strong>with</strong> the guidel<strong>in</strong>esof the Dutch Society of Special Needs Specialists (NVAZ) which are outl<strong>in</strong>ed <strong>in</strong> a code called“Resistance among people <strong>with</strong> an <strong>in</strong>tellectual disability <strong>in</strong> the framework of the Act Govern<strong>in</strong>gMedical-Scientific Research Involv<strong>in</strong>g Humans” [32]. This code <strong>in</strong>tends to guide doctors <strong>in</strong>assess<strong>in</strong>g resistance <strong>in</strong> persons <strong>with</strong> an <strong>in</strong>tellectual disability. Follow<strong>in</strong>g this code, consistentdistress or unhapp<strong>in</strong>ess of the participant was <strong>in</strong>terpreted as a sign of lack of assent, and furtherparticipation <strong>in</strong> the study was reconsidered.Measures and ProtocolsPrior to the measurements, the observers and personal caretakers of the participants completeda checklist that <strong>in</strong>cluded all exclusion criteria. Participants were to be excluded from the study ifthey exhibited any of the exclusion criteria at the time of measurement.As familiarisation, the participants practiced five times prior to formal test<strong>in</strong>g. As Hale et al.[16] have noted, allow<strong>in</strong>g a participant to become familiarized <strong>with</strong> both test and tester may easeproblems concern<strong>in</strong>g misunderstand<strong>in</strong>g of the required tasks ahead. In these practice sessionsthe follow<strong>in</strong>g tasks were found too difficult for the participants to perform: tandem stand<strong>in</strong>g,reach<strong>in</strong>g forward while stand<strong>in</strong>g, turn<strong>in</strong>g one’s trunk while feet are fixed and stand<strong>in</strong>g <strong>with</strong> eyesclosed. Therefore, the protocol was slightly adapted by exclud<strong>in</strong>g these four components whileadd<strong>in</strong>g two new items: walk<strong>in</strong>g on a th<strong>in</strong> l<strong>in</strong>e and walk<strong>in</strong>g on a gymnastic beam (width 30 cm, 40cm above the floor). These two items were added s<strong>in</strong>ce the participants were already familiar <strong>with</strong>these tasks. We co<strong>in</strong>ed the adapted BBS the modified Berg Balance Scale (mBBS). Includ<strong>in</strong>g theaforementioned adaptations, the feasibility and test-retest reliability of the mBBS was exam<strong>in</strong>ed.The mBBS consisted of 12 items, as shown <strong>in</strong> Table 1. The performance on each of these itemswas scored on a 5-po<strong>in</strong>t ord<strong>in</strong>al scale (0-4 po<strong>in</strong>ts), where a score of 0 denotes the <strong>in</strong>ability ofthe participant to perform the task, and a score of 4 is assigned when the participant is able tocomplete the task based on the criterion that has been assigned to it. The maximum score of themBBS is 48 po<strong>in</strong>ts. If a subject did not understand a task, the score of that task was excluded fromthe total score.Dur<strong>in</strong>g test<strong>in</strong>g, two observers completed the score forms <strong>in</strong>dependently and a personalcaretaker <strong>in</strong>structed the participants. In total, two observers and four caretakers participated<strong>in</strong> the study. The observers were physiotherapist students, who performed the study for theirbachelor thesis and were supervised by the first and second author. All observers and caretakerswere <strong>in</strong>structed dur<strong>in</strong>g two separate tra<strong>in</strong><strong>in</strong>g sessions so as to ensure consistency among them.The first tra<strong>in</strong><strong>in</strong>g session was supervised by the first and second author and took 2 h. Theprotocol of the orig<strong>in</strong>al BBS was the topic of the first tra<strong>in</strong><strong>in</strong>g session and a detailed manual wasprovided to each observer. Dur<strong>in</strong>g the five aforementioned practice sessions, both the observersand caretakers practiced us<strong>in</strong>g the <strong>in</strong>structions and scor<strong>in</strong>g procedures. The scor<strong>in</strong>g procedurewas accurately determ<strong>in</strong>ed and the scores of the two observers were compared. The level ofconsistency appeared to be sufficient. After the aforementioned adaptations of the BBS protocol,the second tra<strong>in</strong><strong>in</strong>g session was organised <strong>with</strong> the adapted protocol, which was supervised by thefirst and second author too. This tra<strong>in</strong><strong>in</strong>g session focused on the two new test items.Chapter 6 | 95


Table 1. The 12 items of the mBBS*NumberTest item1. Sitt<strong>in</strong>g unsupported2. Change of position: sitt<strong>in</strong>g to stand<strong>in</strong>g3. Change of position: stand<strong>in</strong>g to sitt<strong>in</strong>g4. Transfers5. Stand<strong>in</strong>g unsupported6. Stand<strong>in</strong>g <strong>with</strong> feet together7. Turn<strong>in</strong>g 360 degrees8. Retriev<strong>in</strong>g objects from floor9. Stool stepp<strong>in</strong>g10. Walk<strong>in</strong>g on a th<strong>in</strong> l<strong>in</strong>e11. Stand<strong>in</strong>g on one leg12. Walk<strong>in</strong>g on a gymnastic beammBBS, modified Berg Balance ScaleData analysesThe data were analyzed us<strong>in</strong>g SPSS 14.0.FeasibilityTo assess feasibility, we held the number of successful measurements per task aga<strong>in</strong>st thetotal number of measurements. As it only makes sense to use a test if there is a reasonablepercentage of successful measurements, feasibility was considered to be sufficient if 85% of themeasurements were successful [33].Test-retest reliabilityTo determ<strong>in</strong>e the test-retest reliability, we computed <strong>in</strong>traclass correlation coefficients (ICC;two-way random, absolute agreement). Reliability was considered to be moderate, if the ICC wasbetween .41 and .60, strong if the ICC was between .61 and .80, good if the ICC was greater than.81 [34] and very good if the ICC was greater than .90 [35]. To assess the <strong>in</strong>ternal consistencybetween the 12 test tasks, we computed Cronbach’s alpha. Internal consistency was acceptableif Cronbach’s alpha was .70 or more [36]. To analyse the level of agreement between the scoresfor test and retest of the dist<strong>in</strong>ct tasks, the proportion of equal scores and its Wilson confidence<strong>in</strong>tervals (CI) were computed, as suggested by Brown et al [37]. The level of agreement wasconsidered to be sufficient if the proportion of equal scores is .80 or more and the Wilson CI(95 % CI) are between .60 and 1.0. Furthermore, we computed the power of the study <strong>with</strong> thehypothesis that the population proportion of agreement is 0.50, tak<strong>in</strong>g a one-sided test andsample size 39 [38, 39].96 | Chapter 6


Modified Berg Balance Scale scoresIn the BBS, a score of 80% (45 po<strong>in</strong>ts) <strong>in</strong>dicates sufficient balance [26]. However, this cut-offvalue cannot simply be applied to the mBBS, as the modifications <strong>in</strong>fluence the cut-off valueand thus render a comparison mean<strong>in</strong>gless. For that reason, we will describe the scores of theparticipants <strong>with</strong>out the cut-off values.ResultsFeasibilityTasks 1, 3, 4, 7, and 8 were completed by all 39 participants; tasks 2, 5 and 12 by 38 participants,tasks 9 and 11 by 37 participants, and tasks 6 and 10 by 36 participants (Table 2). Thirty-six out of39 participants (=92%) completed all tasks. The duration of the test was about 30 m<strong>in</strong>utes.Table 2. Percentage successful mBBS measurements <strong>in</strong> GMFCS level I and II participants (n=39)*Tasks1, 3, 4, 7, 8Tasks2, 5, 12Tasks9, 11Tasks6, 10Percentagesuccessfulmeasurements100% 97% 95% 92%*mBBS, modified Berg Balance Scale; GMFCS, Gross Motor Function Classification SystemTest-retest reliabilityTable 3 summarizes the medians of test and retest, the results of the ICC analysis, and theproportion of equal scores.The ICC for the tasks 1, 4, and 5 was considered moderate, for the tasks 2, 7, 9, 10 strong, forthe tasks 6, 8, 11, 12, and the total score very good, whereas the ICC for the task 3 could not becomputed, because the scale has zero variance items. The ICC for the total score <strong>with</strong>out tasks9 and 10 was 0.97 (0.94-0.98), which is very good [35]. Cronbach’s alpha for tasks 1–12 was 0.84[36]. The obta<strong>in</strong>ed proportions of equal scores were greater than or equal to 0.80 <strong>with</strong> Wilson95% CI between 0.60 and 1.00 for tasks 1, 2, 3, 4, 5, 6, 7, 8, 11, and 12 (Table 3). However, theproportion of equal scores was


Table 3. Medians of test and retest, results of the ICC analysis <strong>with</strong> 95% confidence <strong>in</strong>tervals, and the proportionof equal scores <strong>with</strong> Wilson confidence <strong>in</strong>tervals.*MedianTestMedianRetestICC95% CIP of equalscores95% CITask 1 4 4 0.680.40-0.84Task 2 4 4 0.760.53-0.88Task3 4 4 Could not becomputedTask 4 4 4 0.45-0.46-0.71Task 5 4 4 0.640.31-0.81Task 6 0 0 0.910.81-0.95Task 7 4 4 0.740.49-0.86Task 8 2 2 0.990.98-0.99Task 9 3 3 0.860.72-0.93Task 10 2 2 0.720.48-0.86Task 11 0 0 0.950.89-0.97Task 12 4 4 0.980.95-0.99Total score 35 35 0.950.92-0.980.820.67-0.910.840.69-0.920.970.87-1.000.900.76-0.960.840.70-0.930.880.72-0.950.900.76-0.960.920.79-0.970.680.51-0.810.540.39-0.680.830.67-0.920.940.82-0.98-*Two-way random; total agreement; ICC, Intra Class Correlation Coefficient, CI, confidence <strong>in</strong>tervals;P, proportion.98 | Chapter 6


Modified Berg Balance Scale scoresThe median score of the GMFCS level I participants was 36 (24-47) and that of the GMFCS level IIparticipants 29 (17-44).DiscussionAs to date, it is unclear which specific balance test can be feasibly and reliably used for <strong>in</strong>dividuals<strong>with</strong> SIMD. The results of the present study show that the feasibility of all mBBS tasks wasacceptable for participants <strong>with</strong> SIMD and GMFCS level I and II. The test-retest reliability assessed<strong>with</strong> the ICC, was acceptable for 7 of the 12 mBBS tasks (<strong>in</strong>dicat<strong>in</strong>g strong to very good reliability),as was the total score. Of the tasks 1, 4, and 5 the ICC was moderate. The level of agreementassessed <strong>with</strong> proportion of equal scores was acceptable (higher than .80) for 10 out of 12 mBBStasks. The proportion of equal scores for tasks 9 and 10 was lower than .80. Taken the ICC and theproportion of equal scores together, we consider the reliability of the mBBS sufficient, except fortasks 9 and 10. The reliability of the total score computed <strong>with</strong> ICC when correct<strong>in</strong>g for tasks 9 and10 was very strong. Internal consistency between the tasks was acceptable.The mBBS appears to be a feasible and suitable test, given the challenges <strong>in</strong> obta<strong>in</strong><strong>in</strong>g testresults from participants <strong>with</strong> severe <strong>in</strong>tellectual and visual disabilities [16].The reliability of 10 of the 12 mBBS tasks (ICC 0.97) was comparable to the reliability ofcorrespond<strong>in</strong>g BBS tasks reported <strong>in</strong> other studies <strong>with</strong> other populations: a very good <strong>in</strong>traraterreliability was found by Berg et al. [26] <strong>in</strong> the elderly (ICC 0.97) and by Listen and Brouwer [40]on stroke patients too (ICC 0.98). The study of Blum & Korner-Bitensky [29] on stroke patients,reported an ICC of 0.97 for test-retest reliability. This is considered a satisfactory result fortest-retest reliability too, given the aforementioned difficulties <strong>in</strong> obta<strong>in</strong><strong>in</strong>g test results fromparticipants <strong>with</strong> SIMD [16].In the present study, Cronbach’s alpha was 0.84 for the mBBS, which is less reliable than theCronbach’s alpha of 0.98 reported by Blum & Korner-Bitensky [29]. Nonetheless, our Cronbach’salpha value is still <strong>with</strong><strong>in</strong> the acceptable range, accord<strong>in</strong>g to Field [36].The proportion of equal scores for the test-retest of task 9 was relatively low, which mightbe expla<strong>in</strong>ed by the fact that the subjects had trouble understand<strong>in</strong>g task 9, which <strong>in</strong>volvedstepp<strong>in</strong>g on to a seat. It was observed that subjects, plac<strong>in</strong>g one foot on the seat, either <strong>in</strong>tuitivelyplaced the other foot on the seat next to their first foot as if climb<strong>in</strong>g stairs, or <strong>in</strong>tuitively steppedover the seat. Task 11, stand<strong>in</strong>g on one leg, which is also <strong>in</strong>cluded <strong>in</strong> FICSIT-4 [22], could act as afeasible and reliable alternative for task 9, as both tasks require a subject to stand on one leg.Also the proportion of equal scores for the test-retest of task 10 was relatively low.Perform<strong>in</strong>g the task of walk<strong>in</strong>g on a th<strong>in</strong> l<strong>in</strong>e proved difficult for the subjects, who often werenot able to see the l<strong>in</strong>e. It was tried to solve this problem by replac<strong>in</strong>g the l<strong>in</strong>e by a th<strong>in</strong> rope,but it was found that the subjects still did not manage to complete the task. Task 12, walk<strong>in</strong>gon a gymnastic beam (width 30 cm, 40 cm above the floor), could act as a feasible and reliablealternative. Participants are more familiar <strong>with</strong> this task and it would therefore ease problemsconcern<strong>in</strong>g understand<strong>in</strong>g. Consider<strong>in</strong>g these observations, we recommend exclud<strong>in</strong>g tasks 9and 10 because of their low proportion of equal scores and their relatively low percentage ofsuccessful measurements. The ICC of tasks 1, 4, and 5 was moderate, although the proportion ofequal scores was acceptable. Furthermore, these tasks also proved to be feasible. Tak<strong>in</strong>g thesef<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>to consideration, we recommend susta<strong>in</strong><strong>in</strong>g tasks 1, 4 and 5 <strong>in</strong> the mBBS. Consequently,the f<strong>in</strong>al mBBS consists of 10 tasks.Chapter 6 | 99


Accord<strong>in</strong>g to Berg et al. [41], the BSS cannot reliably estimate the probability of fall<strong>in</strong>g. Forthat reason, we propose to use the mBBS for evaluat<strong>in</strong>g the effects of <strong>in</strong>tervention on balance.However, for this purpose, future research should aim to exam<strong>in</strong>e the sensitivity to change ofthe mBBS. We have the impression that the mBBS has floor and ceil<strong>in</strong>g effects, imply<strong>in</strong>g that themBBS may not always detect mean<strong>in</strong>gful changes when evaluat<strong>in</strong>g an <strong>in</strong>tervention. These effectsare also described by Blum & Korner-Bitensky [29]. However, there were differences betweenthe median scores of the GMFCS level I and II participants, 36 to 29, respectively. This might be<strong>in</strong>dicative of the potentials of the mBBS to be discrim<strong>in</strong>ative. Further research on this topics maybe useful.A rather small number of participants participated <strong>in</strong> the present study, which could bea limitation. However, given the width of the Wilson confidence <strong>in</strong>tervals of the proportion ofequal scores, the power is sufficient except for Task 9 and 10 [38, 39]. Furthermore, our poweranalysis revealed a sufficient power of 0.91, <strong>with</strong> the hypothesis that the population proportion ofagreement is 0.50, the alternative and true hypothesis is 0.75, tak<strong>in</strong>g a one-sided test and samplesize 39 [38, 39]. Although 65 subjects were <strong>in</strong>itially <strong>in</strong>cluded <strong>in</strong> the study, only 39 met all <strong>in</strong>clusioncriteria and were able to complete both test and retest. Some were excluded because they wereunable to perform the mBBS test and retest <strong>with</strong><strong>in</strong> one week, others because they exhibited oneor more of the exclusion criteria dur<strong>in</strong>g retest<strong>in</strong>g.In conclusion, the results show that the mBBS is both a feasible and reliable test forevaluat<strong>in</strong>g the functional balance of <strong>in</strong>dividuals <strong>with</strong> severe <strong>in</strong>tellectual and visual disabilities.Even though the Berg Balance Scale is widely used, its reliability for <strong>in</strong>dividuals <strong>with</strong> SIMD hadnot yet been evaluated. This research extends the knowledge for researchers and cl<strong>in</strong>icians <strong>in</strong> thefield us<strong>in</strong>g the BBS. As mentioned, us<strong>in</strong>g a modified version of the BSS rendered the standardBBS’ cut-off scores mean<strong>in</strong>gless. Further research should aim to develop cut-off values for themBBS, to exam<strong>in</strong>e the validity of the mBBS, <strong>in</strong>clud<strong>in</strong>g the sensitivity to change, and the presenceof floor and ceil<strong>in</strong>g effects. Furthermore, research focused on the development of <strong>in</strong>terventionsaimed at improv<strong>in</strong>g balance control <strong>in</strong> persons <strong>with</strong> SIMD is recommended.AcknowledgementsThe authors k<strong>in</strong>dly acknowledge and thank the participants for their participation <strong>in</strong> this study,their representatives for giv<strong>in</strong>g permission for this and the gymnastic <strong>in</strong>structors of RoyalDutch Visio The Br<strong>in</strong>k for practis<strong>in</strong>g <strong>with</strong> the participants dur<strong>in</strong>g the practice sessions and foraccompany<strong>in</strong>g the participants dur<strong>in</strong>g the tests. Furthermore, the authors k<strong>in</strong>dly acknowledgeW. Krijnen, PhD, for help<strong>in</strong>g <strong>with</strong> statistical analyses.100 | Chapter 6


References1 Van Erkelens-Zwets JHJ & Kars H. Problemen met het gedrag van zwakz<strong>in</strong>nige mensen.1988, Samsom Stafleu, Alphen aan den Rijn.2 Carmeli E, Bar-Yossef T, Ariav C, Paz R, Sabbaq H, Levy R. Sensorimotor impairments andstrategies <strong>in</strong> adults <strong>with</strong> <strong>in</strong>tellectual disabilities. Motor Control. 2008;12(4):348-61.3 Frey GC & Chow B. Relationship between BMI, <strong>physical</strong> <strong>fitness</strong>, and motor skills <strong>in</strong> youth <strong>with</strong>mild <strong>in</strong>tellectual disabilities. Int J Obes. 2006;30:861-867.4 Laht<strong>in</strong>en U, R<strong>in</strong>tala P, Mal<strong>in</strong> A. Physical performance of <strong>in</strong>dividuals <strong>with</strong> <strong>in</strong>tellectual disability:a 30 year follow up. Adapt Phys Act Q. 2007;24: 125-143.5 Temple VA, Frey GC, Stanish HI. Physical activity of adults <strong>with</strong> mental retardation: reviewand research needs. Am J Health Prom. 2006;21:2-12.6 Wuang YP, Wang CC, Huang MH, Su CY. Profiles and cognitive predictors of motor functionsamong early school-age children <strong>with</strong> mild <strong>in</strong>tellectual disabilities. J Intellect Disabil Res.2008;52(12):1048-60.7 Sh<strong>in</strong>kfield AJ, Sparrow WA, Day RH. Visual discrim<strong>in</strong>ation and motor reproduction ofmovement by <strong>in</strong>dividuals <strong>with</strong> mental retardation. American Journal of Mental Retardation.1997;102(2):172-81.8 Bodfish JW, Parker DE, Lewis MH, Sprague RL, Newell KM. Stereotypy and motor control:differences <strong>in</strong> the postural stability dynamics of persons <strong>with</strong> stereotyped and dysk<strong>in</strong>eticmovement disorders. Am J Ment Retard. 20011;06(2):123-34.9 Houwen S, Visscher C, Lemm<strong>in</strong>k KAPM, Hartman E. Motor skill performance of school-agechildren <strong>with</strong> visual impairments. Dev Med and Child Neur. 2008;50(2):139-45.10 Hopk<strong>in</strong>s WG, Gaeta H, Thomas AC, Hill PM. Physical <strong>fitness</strong> of bl<strong>in</strong>d and sighted children. EurJ of Appl Phys Occ Phys. 1987;56: 69-73.11 Reimer AM, Cox RF, Boonstra NF, Smits-Engelsman BC. Effect of visual impairment on goaldirectedaim<strong>in</strong>g movements <strong>in</strong> children. Dev Med Child Neur. 2008;50(10):778-83.12 Häkk<strong>in</strong>en A, Holopa<strong>in</strong>en E, Kautia<strong>in</strong>en H, Sillanpää E, Häkk<strong>in</strong>en K. Neuromuscularfunction and balance of prepubertal and pubertal bl<strong>in</strong>d and sighted boys. Acta Paediatrica.2006;95(10):1277-83.13 Seemungal BM, Glasauwer S, Gresty MA, Bronste<strong>in</strong> AM. Vestibular perception and navigation<strong>in</strong> the congenitally bl<strong>in</strong>d. J of Neurophys. 2007;97(6):4341-56.14 Evenhuis HM, Sjoukes L, Koot HM, Kooijman AC. Does visual impairment lead to additionaldisability <strong>in</strong> adults <strong>with</strong> <strong>in</strong>tellectual disabilities? J Intellect Disabil Res. 2009;53(1):19-28.15 Van Splunder J, Stilma JS, Bernsen RM, Evenhuis HM. Prevalence of visual impairment<strong>in</strong> adults <strong>with</strong> <strong>in</strong>tellectual disabilities <strong>in</strong> the Netherlands: cross-sectional study. Eye (Lond)2006;20(9):1004-10.16 Hale L, Bray A, Littmann A. Assess<strong>in</strong>g the balance capacities of people <strong>with</strong> profound<strong>in</strong>tellectual disabilities who have experienced a fall. J Intellect Disabil Res.2007;51(Pt 4):260-8.17 Hilgenkamp TIM, Van Wijck R, Evenhuis HM. Physical <strong>fitness</strong> <strong>in</strong> older people <strong>with</strong> ID—Conceptand measur<strong>in</strong>g <strong>in</strong>struments: A review. Res Dev Dis. 2010;31:1027–1038.18 World Health Organization. International statistical classification of diseases and relatedhealth problems: tenth revision (ICD-10). 1992;369–370.Chapter 6 | 101


19 Duncan PW, We<strong>in</strong>er DK, Chandler J, Studenski S. Functional reach: a new cl<strong>in</strong>ical measure ofbalance. J Gerontol. 1990;45(6):192-197.20 Podsiadlo D. & Richardson S. The timed ‘up and go: a test of basic functional mobility for frailelderly persons. Journal of the American Geriatrics Society. 1991;39:142-14821 T<strong>in</strong>etti M. Performance oriented assessment of mobility problems <strong>in</strong> elderly patients.Journal of the American Geriatrics Society. 1986;34:119-126.22 Rossiter-Fornoff JE, Wolf SL, Wolfson LI, Buchner DM. A cross-sectional validation study ofthe FICSIT common data base static balance measures. Frailty and Injuries: CooperativeStudies of Intervention Techniques Journals of Gerontology. Series A: Biological Sciencesand Medical Sciences. 1995;50(6).23 Berg K. Balance and its measure <strong>in</strong> the elderly: a review. Phys Can. 1989;41:240-6.24 Mathias S, Nayak US, Isaacs B. Balance <strong>in</strong> elderly patients: the “Get-up and Go” test. ArchPhys Med Rehab. 1986;67:387-389.25 Smits-Engelsman BCM, Bekker<strong>in</strong>g GE, Hendriks HJM. (Eds.). Fysiotherapie and osteoporose.Amersfoort / Houten. Kon<strong>in</strong>klijk Nederlands Genootschap voor Fysiotherapie. 2000, BohnStafleu Van Loghum (KNGF richtlijnen).26 Berg K, Wood-Dauph<strong>in</strong>ee S, Williams JI, Maki B. <strong>Measur<strong>in</strong>g</strong> Balance <strong>in</strong> the Elderly: Prelim<strong>in</strong>arydevelopment of an Instrument. Physiotherapy Canada. 1989;41:304-311.27 Berg K, Wood-Dauph<strong>in</strong>ee S, Williams JI, Gayton D. <strong>Measur<strong>in</strong>g</strong> Balance <strong>in</strong> the Elderly:Validation of an Instrument. Can J Public Health. 1992;Supp2:07-11.28 Steffen TM, Hacker TA, Moll<strong>in</strong>ger L. Age – and Gender-Related Test Performance <strong>in</strong>Community-Dwell<strong>in</strong>g Eldery People: Six-M<strong>in</strong>ute Walk Test, Berg Balance Scale, Timed Up AndGo Test, and Gait Speed. Physical Therapy. 2002;82:128-136.29 Blum L & Korner-Bitensky N. Usefulness of the Berg Balance Scale <strong>in</strong> stroke rehabilitation: asystematic review. Physical Therapy. 2008;88(5):559-66.30 Palisano R, Hanna SE, Rosenbaum PL, Rusell DJ, Walter SD, Wood EP, Ra<strong>in</strong>a PS, Galuppi BE.Validation of a model of Gross Motor Function for Children With Cerebral Palsy. PhysicalTherapy. 2000;80:974-985.31 World Health Organization (WHO). International Classification of Function<strong>in</strong>g, Disabilityand Health. Geneva, 2001.32 Dutch Society for Doctors <strong>in</strong> the Care for people <strong>with</strong> an Intellectual Disability (NVAZ)Resistance among people <strong>with</strong> an <strong>in</strong>tellectual disability <strong>in</strong> the framework of the ActGovern<strong>in</strong>g Medical-Scientific Research Involv<strong>in</strong>g Humans, behavioural code for doctors <strong>in</strong> theassessment of resistance among people <strong>with</strong> an <strong>in</strong>tellectual disability, 1999.33 Malmberg JJ, Miilunpalo SI, Vuori IM, Pasanen ME, Oja P, Haapanen-Niemi NA.A health-related <strong>fitness</strong> and functional performance test battery for middle-aged and olderadults: feasibility and health-related content validity. Arch Phys Med. 2002;83(5):666-677.34 Fe<strong>in</strong>ste<strong>in</strong> AR. Cl<strong>in</strong>imatrics. 1987, New Haven, Yale University Press, 184-185.35 Portney LG, Watk<strong>in</strong>s MP. Foundations of cl<strong>in</strong>ical research. 2 nd ed. Upper Saddle River, 2000,Prentice-Hall Inc, New Jersey.36 Field A. Discover<strong>in</strong>g Statistics Us<strong>in</strong>g SPSS. SAGE Publications Ltd; 2005.37 Brown LD, Cai TT, DasGupta A. Interval estimation for a b<strong>in</strong>omial proportion. Statist Sci.2001;16:101-133.38 Brown LD, Cai TT, DasGupta A. Confidence Intervals for a B<strong>in</strong>omial Proportion 377 andAsymptotic Expansions. Ann Stat. 2002;30:160-201.102 | Chapter 6


39 Dorai-Raj S. B<strong>in</strong>omial Confidence Intervals For Several Parameterizations. R Package 387version 1.0-5. http://CRAN.R-project.org/package=b<strong>in</strong>om (retrieved May 26 th , 2009).40 Liston RA & Brouwer BJ. Reliability and validity of measures obta<strong>in</strong>ed from stroke patientsus<strong>in</strong>g the Balance Master. Archives of Physical Medic<strong>in</strong>e and Rehabilitation. 1996;77: 425-430.41 Berg K, Chesworth B, Muir SW, Speechley M. Use of the Berg Balance Scale for predict<strong>in</strong>gmultiple falls <strong>in</strong> community-dwell<strong>in</strong>g elderly people: a prospective study. Physical Therapy.2008;88(4):449-59.Chapter 6 | 103


104 | Chapter 6


Chapter 7Feasibility, test-retest reliability and <strong>in</strong>terraterreliability of the Modified Ashworth Scale andModified Tardieu Scale <strong>in</strong> persons <strong>with</strong> profound<strong>in</strong>tellectual and multiple disabilities.A. Wan<strong>in</strong>geR.A. RookA. DijkhuizenE. GielenC.P. van der SchansResearch <strong>in</strong> Developmental Disabilities 2011;32(2):613-620Reproduced by courtesy of ElsevierChapter 7 | 105


AbstractCaregivers of persons <strong>with</strong> profound <strong>in</strong>tellectual and multiple disabilities (PIMD) often describethe quality of the daily movements of these persons <strong>in</strong> terms of flexibility or stiffness. Objectiveoutcome measures for flexibility and stiffness are muscle tone or level of spasticity. Two<strong>in</strong>struments used to grade muscle tone and spasticity are the Modified Ashworth Scale (MAS) andthe Modified Tardieu Scale (MTS). To date, however, no research has been performed to determ<strong>in</strong>ethe psychometric properties of the MAS and MTS <strong>in</strong> persons <strong>with</strong> PIMD. Therefore, the purposeof this study was to determ<strong>in</strong>e the feasibility, test-retest reliability, and <strong>in</strong>terrater reliability of theMAS and MTS <strong>in</strong> persons <strong>with</strong> PIMD. We assessed 35 participants on the MAS and MTS twice, firstfor the test and second a week later for the retest. Two observers performed the measurements.Feasibility was assessed based on the percentage of successful measurements. Test-retest and<strong>in</strong>terrater reliability were determ<strong>in</strong>ed by us<strong>in</strong>g the Wilcoxon signed rank test, <strong>in</strong>traclass correlationcoefficients (ICC), Spearman’s correlation, and either limits of agreement (LOA) or quadraticallyweighted kappa. The feasibility of the measurements was good, because an acceptable percentageof successful measurements were performed. MAS measurements had substantial to almostperfect quadratically weighted kappa (>0.8) and an acceptable ICC (>0.8) for both test-retest and<strong>in</strong>terrater reliability. However, MTS measurements had <strong>in</strong>sufficient ICCs, Spearman’s correlations,and LOAs for both test-retest and <strong>in</strong>terrater reliability. Our data <strong>in</strong>dicated that the feasibilityof the MAS and MTS for measur<strong>in</strong>g muscle tone <strong>in</strong> persons <strong>with</strong> PIMD was good. The MAS hadsufficient test-retest and <strong>in</strong>terrater reliability; however, the MTS had an <strong>in</strong>sufficient test-retest and<strong>in</strong>terrater reliability <strong>in</strong> persons <strong>with</strong> PIMD. Thus, the MAS may be a good method for evaluat<strong>in</strong>gthe quality of daily movements <strong>in</strong> persons <strong>with</strong> PIMD. Provid<strong>in</strong>g test adm<strong>in</strong>istrators <strong>with</strong> tra<strong>in</strong><strong>in</strong>gand clear <strong>in</strong>structions will improve test reliability.106 | Chapter 7


Introduction<strong>Persons</strong> <strong>with</strong> profound <strong>in</strong>tellectual and multiple disabilities (PIMD) generally have very limitedmobility, always use a wheelchair [1], and often have a Gross Motor Function ClassificationSystem (GMFCS) level of IV or V [2]. Spasticity, dysk<strong>in</strong>esia, or ataxia <strong>with</strong> hypotony frequentlyoccurs <strong>in</strong> <strong>in</strong>dividuals <strong>in</strong> these GMFCS levels [3]. Lance [4] def<strong>in</strong>ed spasticity as “a motor disorder,characterised by a velocity-dependent <strong>in</strong>crease <strong>in</strong> tonic stretch reflexes (muscle tone) <strong>with</strong>exaggerated tendon jerks, result<strong>in</strong>g from hyper-excitability of the stretch reflex as one componentof the upper motor neurone syndrome”. Muscle tonus or muscle tone is “the state of activity ortension of a muscle beyond that related to its <strong>physical</strong> properties, that is, its active resistance tostretch. In skeletal muscle, tonus is dependent upon efferent <strong>in</strong>nervation” [5].<strong>Persons</strong> <strong>with</strong> PIMD are at risk for a variety of limitations <strong>in</strong> daily function<strong>in</strong>g [6], such as<strong>in</strong>activity, unsteady movement, and dim<strong>in</strong>ished <strong>in</strong>itiative. However, research <strong>in</strong>to the quality ofdaily movements of persons <strong>with</strong> PIMD is limited, and related knowledge is scarce. Caregiversof persons <strong>with</strong> PIMD often describe the quality of daily movements <strong>in</strong> terms of flexibility orstiffness. Objective outcome measures for flexibility and stiffness are muscle tone or level ofspasticity.Bohannon and Smith [7] <strong>in</strong>troduced the Modified Ashworth Scale (MAS) as a scale forgrad<strong>in</strong>g spasticity. The MAS is a cl<strong>in</strong>ical measure of muscle tone and a nom<strong>in</strong>al-level measure ofresistance to passive movement [8]. The reliability of the scale appears to be better for measur<strong>in</strong>gmuscle tone of upper limbs [8]. Although one study found the reliability of the MAS to be verygood (kappa was .84 for <strong>in</strong>terrater and .83 for <strong>in</strong>trarater comparisons) [9], other studies found itto be <strong>in</strong>sufficient [10, 11, 12, 13].Haugh, Pandayan, and Johnson [14] suggested that the Modified Tardieu Scale (MTS) isa more appropriate cl<strong>in</strong>ical measure of spasticity than the MAS. The MTS assesses resistanceto passive movement at both slow and fast speeds, and therefore adheres more closely toLance’s def<strong>in</strong>ition of spasticity [4, 14]. Both parameters of the MTS have excellent test-retest and<strong>in</strong>terrater reliability <strong>in</strong> children <strong>with</strong> cerebral palsy [15]. However, as <strong>with</strong> the MAS, other studiesfound the MTS to have <strong>in</strong>sufficient reliability [12, 16, 17].Both the MTS and the MAS show sufficient test-retest and <strong>in</strong>terrater reliability <strong>in</strong> adults<strong>with</strong> <strong>in</strong>tellectual disabilities [18], but the MTS seems to be more feasible and reliable than theMAS. The MTS also shows more reliability than the MAS <strong>in</strong> adults <strong>with</strong> severe bra<strong>in</strong> <strong>in</strong>jury andspasticity [19. Haugh et al. [14] stated that further studies need to be undertaken to clarify thevalidity and reliability of the MTS and the MAS for a variety of muscle groups <strong>in</strong> adult neurologicalpatients. Thus far, no research has been performed to determ<strong>in</strong>e the psychometric properties ofthe MTS and MAS <strong>in</strong> persons <strong>with</strong> PIMD. Therefore, the purpose of this study was to determ<strong>in</strong>ethe feasibility, test-retest reliability, and <strong>in</strong>terrater reliability of the MAS and MTS <strong>in</strong> persons <strong>with</strong>PIMD.MethodsParticipantsWe asked the representatives of 42 persons <strong>with</strong> PIMD for written permission for these personsto participate <strong>in</strong> our study. Forty representatives gave permission. After <strong>in</strong>formed consent wasobta<strong>in</strong>ed, the subjects were screened based on an exam<strong>in</strong>ation by both a special needs physicianand a behavioral scholar. The screen<strong>in</strong>g exclusion criteria were severe psychological problemsChapter 7 | 107


or somatic diseases, which were def<strong>in</strong>ed as chronic diseases and/or diseases that do not resolve<strong>in</strong> the short term. Two persons were excluded because they exhibited one of these problemsor diseases. The exclusion criteria at the time the measurements were be<strong>in</strong>g performed weregeneral illness or fever; tak<strong>in</strong>g antibiotics; recently started tak<strong>in</strong>g muscle relaxants; worsen<strong>in</strong>g ofasthma, epilepsy (recent <strong>in</strong>sult or epileptic fits); fresh wound(s)/bruise(s) or other factors caus<strong>in</strong>gpa<strong>in</strong> dur<strong>in</strong>g movement; or stress due to the subject’s behavior just before the measurement date.Three persons were excluded because they exhibited one of these criteria. Figure 1 presents thesampl<strong>in</strong>g scheme of persons <strong>in</strong>cluded <strong>in</strong> the study.42 persons40 persons2 persons lacked permission from representatives2 persons excluded for medical/behavioral reasons38 persons3 persons excluded at the time of the test35 personsFigure 1. Sampl<strong>in</strong>g scheme of subjects <strong>in</strong>cluded <strong>in</strong> the study.The participants <strong>with</strong> PIMD were classified as GMFCS IV or V [2]. Furthermore, the <strong>in</strong>tellectuallevel or <strong>in</strong>telligence quotient (IQ) of each participant was classified accord<strong>in</strong>g to the InternationalClassification of Diseases (ICD-10) of the World Health Organization (WHO) [20]. The presence orabsence of epilepsy was also recorded, because we assumed that seizures greatly affect muscletone. We also classified the visual impairments of the participants accord<strong>in</strong>g to WHO guidel<strong>in</strong>es[21]. F<strong>in</strong>ally, the presence or absence of orthopedic disorders was recorded.Ethical statementThe study was performed <strong>in</strong> agreement <strong>with</strong> the guidel<strong>in</strong>es of the Hels<strong>in</strong>ki Declaration asrevised <strong>in</strong> 1975. Permission to carry out the study was obta<strong>in</strong>ed from the <strong>in</strong>stitutional ethicscommittee. Informed consent was obta<strong>in</strong>ed from legal representatives of the participants,because all participants were unable to give consent. The measurements were performed <strong>in</strong>accordance <strong>with</strong> the guidel<strong>in</strong>es of the Dutch Society for Doctors <strong>in</strong> the Care for people <strong>with</strong> anIntellectual Disability (NVAZ), which are outl<strong>in</strong>ed <strong>in</strong> a code called “Resistance among people<strong>with</strong> an <strong>in</strong>tellectual disability <strong>in</strong> the framework of the Act Govern<strong>in</strong>g Medical-Scientific ResearchInvolv<strong>in</strong>g Humans” [22]. The purpose of this code is to guide doctors <strong>in</strong> assess<strong>in</strong>g resistance <strong>in</strong>persons <strong>with</strong> an <strong>in</strong>tellectual disability. In l<strong>in</strong>e <strong>with</strong> this code, a participant’s consistent distress orunhapp<strong>in</strong>ess was <strong>in</strong>terpreted as a sign of lack of assent, and further participation <strong>in</strong> the study wasreconsidered.108 | Chapter 7


DesignThe muscle tone and spasticity of 35 participants were measured twice (test and retest) <strong>with</strong> theMAS and MTS. The retest was conducted one week after the <strong>in</strong>itial test. The participants were firstassessed <strong>with</strong> the MAS and afterwards <strong>with</strong> the MTS. For each participant, both measurementswere conducted at the same time of day and under the same conditions. Two observersperformed the measurements. The <strong>in</strong>terrater reliability of the MAS and MTS was determ<strong>in</strong>edfrom the measurements of the two observers. The test-retest reliability of the MAS and MTS wasdeterm<strong>in</strong>ed by us<strong>in</strong>g the test-retest measurements of observer 1.MeasuresPrior to the measurements, the observers and personal guides of the participants completeda checklist conta<strong>in</strong><strong>in</strong>g the exclusion criteria. Both observers were present at the time of themeasurements. So that test<strong>in</strong>g would not cause additional stress to the participants, we madesure that the participants were familiar <strong>with</strong> observer 2. We created a protocol describ<strong>in</strong>g howto adm<strong>in</strong>ister the MAS and MTS based on the protocol of Gielen [18]. Gracies et al. [15] statedthat tra<strong>in</strong><strong>in</strong>g was associated <strong>with</strong> a highly significant improvement <strong>in</strong> reliability, so the observerswere tra<strong>in</strong>ed on how to perform the protocol. The tra<strong>in</strong><strong>in</strong>g consisted of a brief explanation of theprotocol and practical exercises. Dur<strong>in</strong>g the practical exercises, the results were compared anddiscussed. In the present study, we measured the most restricted jo<strong>in</strong>t motion of both the elbowand the knee.Modified Ashworth Scale (MAS)The MAS was carried out as follows. Dur<strong>in</strong>g five repetitions of a passive motion <strong>with</strong><strong>in</strong> one second,resistance was scored on the follow<strong>in</strong>g 6-po<strong>in</strong>t scale [7]:0 = No <strong>in</strong>creased resistance1 = Slightly <strong>in</strong>creased resistance (catch followed by relaxation or m<strong>in</strong>imal resistance at the endof the range of motion)1 + = Slightly <strong>in</strong>creased resistance (catch followed by m<strong>in</strong>imal resistance throughout less than halfof the range of motion)2 = Clear resistance throughout most of the range of motion3 = Strong resistance; passive movement is difficult4 = Rigid flexion or extensionCatch is the phenomenon that suddenly a strong resistance occurs dur<strong>in</strong>g a fast passivemovement.Modified Tardieu Scale (MTS)The MTS consists of two measurements: R2 and R1 [16]. A goniometer was used for measur<strong>in</strong>g therange of motion. The measurements were accurate to the 5-degree level. The R2 measurementconsisted of slow motion performed <strong>with</strong><strong>in</strong> one second. The range of motion was measured <strong>with</strong>a goniometer. The R1 measurement consisted of fast motion performed <strong>with</strong><strong>in</strong> half a second. Therange of motion immediately after the catch was measured <strong>with</strong> a goniometer.Chapter 7 | 109


Data analysesThe data were analysed us<strong>in</strong>g SPSS 15.0. The distribution of the data was determ<strong>in</strong>ed and checkedfor normal distribution.FeasibilityTo assess feasibility, we compared the number of successful measurements per task to the totalnumber of measurements. S<strong>in</strong>ce it only makes sense to use a test if a reasonable percentage ofsuccessful measurements can be made, this aspect of feasibility was considered to be sufficient if85% of the measurements were successful [23, 24].Test-retest reliabilityFirstly, to determ<strong>in</strong>e whether significant differences between test and retest measurements exist,we analyzed the differences us<strong>in</strong>g the t-test or, <strong>in</strong> case of non-normally distributed data, theWilcoxon signed rank test. The level of statistical significance was set at 0.05.Secondly, <strong>in</strong>traclass correlation coefficients (ICC; two-way random, absolute agreement) ofmeasurements 1 and 2 were computed. Reliability was considered to be acceptable if the ICC wasgreater than 0.75 and the 95% confidence <strong>in</strong>terval (CI) was 0.3 or less. Reliability was consideredto be very good if the ICC was greater than 0.9 [25].Thirdly, Spearman correlation coefficients of measurements 1 and 2 were computed.Spearman’s correlation was used because the data were not normally distributed. A correlation of0.61 or more is considered good [26].Fourthly, for the MTS, limits of agreement (LOA) between measurements 1 and 2 werecalculated accord<strong>in</strong>g to the procedure described by Bland and Altman [27]. LOAs were expressedtogether <strong>with</strong> the mean differences between measurements 1 and 2, and were judged whetherthey were narrow enough for the test to be of practical use, accord<strong>in</strong>g to Atk<strong>in</strong>son and Nevill[28]. For the MAS, quadratically weighted kappa for measurements 1 and 2 was calculated.The quadratically weighted kappa is a measure of the proportion of agreement greater thanthat expected by chance. Values of kappa below .40 are generally considered to be cl<strong>in</strong>icallyunacceptable, those <strong>with</strong><strong>in</strong> .41-.60 to be moderate, those <strong>with</strong><strong>in</strong> .61-.80 to be substantial, andthose .81-1.00 to be almost perfect [29]. To obta<strong>in</strong> 95% confidence <strong>in</strong>tervals (CIs) for the weightedkappa coefficients, we used the adjusted bootstrap percentile (BCa) method [30, 31] by employ<strong>in</strong>gthe statistical programm<strong>in</strong>g language R [32].F<strong>in</strong>ally, the test-retest reliability of the MTS was considered reliable if (1) there were nosignificant differences between the test and retest measurements; (2) ICC was acceptable, asdescribed above; (3) Spearman correlation coefficient was acceptable, as described above; and(4) LOA was acceptable, as described above. The test-retest reliability of the MAS was consideredreliable if (1) there were no significant differences between the test and retest measurements; (2)ICC was acceptable, as described above; (3) Spearman correlation coefficient was acceptable, asdescribed above; and (4) quadratically weighted kappa was almost perfect, <strong>with</strong> a 95% CI fromsubstantial to almost perfect, as described above.110 | Chapter 7


Interrater reliabilityFirstly, to determ<strong>in</strong>e whether significant differences between the measurements of observers 1and 2 exist, we analyzed the differences across measurements us<strong>in</strong>g a t-test or, <strong>in</strong> case of nonnormallydistributed data, the Wilcoxon signed rank test. The level of statistical significance wasset at 0.05.Secondly, the ICCs (two-way random, absolute agreement) of the measurements ofobservers 1 and 2 were computed. Reliability was considered to be acceptable if the ICC wasgreater than 0.75. Reliability was considered to be very good if the ICC was greater than 0.9 [25].Thirdly, Spearman correlation coefficients of the measurements of observers 1 and 2 werecomputed. Spearman’s correlation was used because the data were not normally distributed. Acorrelation of 0.61 or more is considered good [26].Fourthly, for the MTS, LOAs between the measurements of observer 1 and 2 were calculatedaccord<strong>in</strong>g to the procedure described by Bland and Altman [27]. LOAs were expressed together<strong>with</strong> the mean differences between the measurements of observers 1 and 2, and were judgedwhether they were narrow enough for the test to be of practical use, accord<strong>in</strong>g to Atk<strong>in</strong>son andNevill [28]. For the MAS, quadratically weighted kappa for the measurements of observers 1 and 2was calculated. Values of kappa below .40 are generally considered to be cl<strong>in</strong>ically unacceptable,those <strong>with</strong><strong>in</strong> .41-.60 to be moderate, those <strong>with</strong><strong>in</strong> .61-.80 to be substantial, and those <strong>with</strong><strong>in</strong>.81-1.00 to be almost perfect [29]. We calculated 95% CIs for the weighted kappa coefficients(adjusted BCa method) [30, 31] by employ<strong>in</strong>g the statistical programm<strong>in</strong>g language R [32].F<strong>in</strong>ally, the <strong>in</strong>terrater reliability of the MTS was considered acceptable if (1) there were nosignificant differences between the measurements of observers 1 and 2; (2) LOA was acceptable,as described above; (3) Spearman correlation coefficient was acceptable as described above; and(4) ICC was acceptable, as described above. The <strong>in</strong>terrater reliability of the MAS was consideredreliable if (1) there were no significant differences between the measurements of observers 1and 2; (2) ICC was acceptable, as described above; (3) Spearman correlation coefficient wasacceptable, as described above; and (4) quadratically weighted kappa was almost perfect, <strong>with</strong> a95% CI from substantial to almost perfect, as described above.ResultsThe data were not normally distributed; therefore, non-parametric tests were used to analyzethe data. In all, 35 subjects participated <strong>in</strong> this study; 22 were male (62.9%), and 13 were female(37.1%). The mean age (SD) of the men was 35 (15) years, and that of the women was 31 (12) years.The characteristics of the study population are shown <strong>in</strong> Table 1.Table 1. Characteristics of the study population.CharacteristicsIntellectualdisabilityVisualimpairmentGMFCS level Spasticity OrthopedicdefectsEpilepsy<strong>Severe</strong> 22 Bl<strong>in</strong>d/severe 25 Level 4 11 Yes 17 Yes 30 Yes 32<strong>Profound</strong> 13 Partially 10 Level 5 24 No 18 No 5 No 3Chapter 7 | 111


FeasibilityThe percentages of successful measurements are shown <strong>in</strong> Table 2. Both the MAS and MTSshowed a sufficient percentage of successful measurements.Table 2. Percentages of successful measurements for the MTS and MAS.Modified TardieuScale (MTS)Successfulmeasurementsweek 1Successfulmeasurementsweek 2Observer 1 Observer 1Arm R2 100 % 97.1 %Arm R1 100 % 97.1 %Leg R2 97.1 % 94.3%Leg R1 97.1 % 94.3%Modified AshworthScale (MAS)Arm 100% 97.1 %Leg 97.1 % 94.3%Test-retest reliability of the MTSTable 3 summarizes the statistical analyses for measurements 1 and 2 of the MTS.There were no significant differences between measurements 1 and 2 (p


Table 3. Summary of the statistical analyses for measurements 1 and 2 of the MTS for test-retest reliability.*ModifiedTardieuScaleNumberofsubjectsMedianM1(m<strong>in</strong>-max)MedianM2(m<strong>in</strong>-max)p levelWilcoxonICCMeandifference± LOASpearmancoefficient(MTS)Arm R2 34 30(0-95)32.50(0-95)0.592 0.815 2.353± 35.20.792Arm R1 34 55(0-100)57.50(0-90)0.890 0.627 6.029± 57.70.624Leg R2 33 70(0-135)70(0-120)0.779 0.741 1.818± 440.402Leg R1 33 67.50(0-110)75(0-115)0.089 0.850 -5.75± 29.80.680*ICC, Intra Class Correlation Coefficient; LOA, Limits of agreement; m, measurementTest-retest reliability of the MASTable 4 summarizes the statistical analyses for measurements 1 and 2 of the MAS.There were no significant differences between measurements 1 and 2 (p


Interrater reliability of the MTSTable 5 summarizes the statistical analyses for the MTS measurements of observers 1 and 2.There were no significant differences between the measurements made by observers 1 and 2(p


Table 6. Summary of the statistical analyses for the MAS measurements of observers 1 and 2. *ModifiedAshworthScale(MAS)NumberofsubjectsMedian O1(m<strong>in</strong>-max)Median O2(m<strong>in</strong>-max)p levelWilcoxonICCQuadraticallyweightedkappaSpearmancoefficientArm 23 10-410-40.350 0.894 .880.75-0.970.907Leg 23 1+0-41+0-40.390 0.895 .88.67-.960.858* O, observer; ICC, Intraclass Correlation coefficientDiscussionThe purpose of our study was to determ<strong>in</strong>e the feasibility, the test-retest, and <strong>in</strong>terrater reliabilityof the MAS and MTS <strong>in</strong> persons <strong>with</strong> PIMD. Our results demonstrated that the feasibility ofthe measurements was good, as an acceptable percentage of successful measurements wasperformed. The <strong>in</strong>terrater reliability of the MAS was sufficient, <strong>with</strong> a substantial to almost perfectquadratically weighted kappa and an acceptable ICC. However, we found the <strong>in</strong>terrater reliabilityof the MTS not to be cl<strong>in</strong>ically acceptable. Although the ICC <strong>in</strong>dicated that the <strong>in</strong>terrater reliabilityof the MTS was sufficient, the LOAs for both arm and leg measurements relative to median valueswere considerably large, which is cl<strong>in</strong>ically not acceptable. The MAS showed a sufficient test-retestreliability, <strong>with</strong> a substantial to almost perfect quadratically weighted kappa and an acceptableICC . However, the test-retest reliability of the MTS was not sufficient due to its <strong>in</strong>sufficient ICC,Spearman’s correlations, and cl<strong>in</strong>ically unacceptable LOAs for both arm and leg measurements.In our target group, the MAS showed a better test-retest and <strong>in</strong>terrater reliability than theMTS, which contradicts the results of Gielen [18] and Mehrholz et al. [19]. In the study of Gielen[18], for the MAS the test-retest reliability calculated <strong>with</strong> Spearman’s rho ranged from 0.66to 0.81 (our study: 0.76-0.86) and the <strong>in</strong>terrater reliability from 0.67 to 0.80 (our study: 0.86-0.91). For the MTS, Gielen’s Spearman’s rho was slightly better, <strong>with</strong> a range of 0.70 to 0.88 for<strong>in</strong>trarater reliability (our study: 0.40-0.79) and 0.70 to 0.82 for <strong>in</strong>terrater reliability (our study:0.70-0.83). As mentioned <strong>in</strong> the <strong>in</strong>troduction, these contradictory f<strong>in</strong>d<strong>in</strong>gs also occurred <strong>in</strong> othertarget groups. All participants <strong>in</strong> our study population had impaired vision. Impaired vision mayhave contributed to differences <strong>in</strong> the faster movements of the MTS R2 measurements. Oursubjects could not anticipate fast movements as well as their peers <strong>with</strong>out visual impairments.Compared to the study of Clopton et al. [13] <strong>in</strong> children <strong>with</strong> hypertonia, our ICC values forthe MAS (0.81-0.85 for <strong>in</strong>trarater; 0.89-0.89 for <strong>in</strong>terrater) were more sufficient than their ICCvalues (0.5-0.75 for <strong>in</strong>trarater;


persons <strong>with</strong> hemiplegia. In the study of Gregson et al. [9], which <strong>in</strong>volved post-stroke patients,the kappa score for <strong>in</strong>terrater reliability was 0.84 and for <strong>in</strong>trarater reliability was 0.83, which iscomparable to the quadratically weighted kappa scores of the present study.In our target group, the MTS had ICCs of 0.76-0.88 for <strong>in</strong>terrater reliability and 0.63-0.85for <strong>in</strong>trarater reliability, which is better than the <strong>in</strong>terrater scores of Ansari et al. [17] <strong>in</strong> patients<strong>with</strong> hemiplegia (


RecommendationsThe feasibility of conduct<strong>in</strong>g MAS measurements <strong>in</strong> persons <strong>with</strong> PIMD is good. Adjustments<strong>in</strong> implement<strong>in</strong>g the MAS are not necessary. Further research <strong>in</strong>volv<strong>in</strong>g more participants mayprovide additional <strong>in</strong>formation.AcknowledgementsThis research was f<strong>in</strong>anced by Hanze University Gron<strong>in</strong>gen and Royal Dutch Visio De Br<strong>in</strong>k.The authors k<strong>in</strong>dly acknowledge and thank the participants for their participation <strong>in</strong> this study,their representatives for given permission to this and the <strong>physical</strong> therapists of Royal DutchVisio The Br<strong>in</strong>k, for their participation and for accompany<strong>in</strong>g the participants dur<strong>in</strong>g the tests.Furthermore, the authors k<strong>in</strong>dly acknowledge W. Krijnen, PhD, for help<strong>in</strong>g <strong>with</strong> statistical analyses.Chapter 7 | 117


References1 Van der Putten A, Vlaskamp C, Reynders K, Nakken H. Children <strong>with</strong> profound <strong>in</strong>tellectualand multiple disabilities: the effects of functional movement activities. Cl<strong>in</strong>ic Rehabil.2005;19, 613-620.2 Palisano R, Hanna SE, Rosenbaum PL, Rusell DJ, Walter SD, Wood EP, Ra<strong>in</strong>a PS, Galuppi BE.Validation of a model of Gross Motor Function for Children With Cerebral Palsy. PhysicalTherapy. 2000;80:974-985.3 Shevell MD, Dagenais L, Hall N. Comorbidities <strong>in</strong> cerebral palsy and their relationship toneurologic subtype and GMFCS level. Neurology. 2009;72:2090-2096.4 Lance JW. What is spasticity? The Lancet. 1990;335:606.5 Stedman TL. Stedman’s Medical Dictionary, 27 th Edition. 1999, Philadelphia: Lipp<strong>in</strong>cott,Williams and Wilk<strong>in</strong>s Company.6 Evenhuis HM, Sjoukes L, Koot HM, Kooijman AC. Does visual impairment lead to additionaldisability <strong>in</strong> adults <strong>with</strong> <strong>in</strong>tellectual disabilities? J Intellect Disabil Res. 2009;53:19-28.7 Bohannon RW & Smith MB. Interrater Reliability of a Modified Ashworth Scale of MuscleSpasticity. Physical Therapy. 1987;67:206-207.8 Pandyan AD, Johnson GR, Price CI, Curless RH, Barnes MP, Rodgers HA. Review of theproperties and limitations of the Ashworth and modified Ashworth Scales as measures ofspasticity. Cl<strong>in</strong>icRehabil. 1999;13:373-383.9 Gregson JM, Leathley M, Moore AP, Sharma AK, Smith TL, & Watk<strong>in</strong>s CL. Reliability of theTone Assessment Scale and the Modified Ashworth Scale as cl<strong>in</strong>ical tools for assess<strong>in</strong>gpoststroke spasticity. Arch Phys Med Rehab.1999;80:1013-1016.10 Mutlu A, Livanelioglu A, Gunel MK. Reliability of Ashworth and Modified Ashworth scales <strong>in</strong>children <strong>with</strong> spastic cerebral palsy. BMC Musculoskel Dis. 2008;10:9-44.11 Ansari NN, Naghdi S, Arab TK, Jalaie S. The <strong>in</strong>terrater and <strong>in</strong>trarater reliability of theModified Ashworth Scale <strong>in</strong> the assessment of muscle spasticity: limb and muscle groupeffect. NeuroRehabilitation. 2008;23:231-237.12 Yam WK & Leung MS. Interrater reliability of Modified Ashworth Scale and Modified TardieuScale <strong>in</strong> children <strong>with</strong> spastic cerebral palsy. J Child Neurol. 2006;21:1031-1035.13 Clopton N, Dutton J, Featherston T, Grigsby A, Mobley J, Melv<strong>in</strong> J. Interrater and <strong>in</strong>traraterreliability of the Modified Ashworth Scale <strong>in</strong> children <strong>with</strong> hypertonia. Pediatric <strong>physical</strong>therapy. 2005;17:268-274.14 Haugh AB, Pandyan AD, Johnson GR. A systematic review of the Tardieu Scale for themeasurement of spasticity. Dis Rehabil. 2006;28:899-907.15 Gracies JM, Burke K, Clegg NJ, Browne R, Rush<strong>in</strong>g C, Fehl<strong>in</strong>gs D, Matthews D, Tilton A,Delgado MR. Reliability of the Tardieu Scale for assess<strong>in</strong>g spasticity <strong>in</strong> children <strong>with</strong> cerebralpalsy. Arch Phys Med Rehabil. 2010;91:421-428.16 Mackey AH, Walt SE, Lobb G, Stott NS. Intraobserver reliability of the Modified Tardieu Scale<strong>in</strong> the limb of children <strong>with</strong> Hemiplegia. Dev Med Child Neurol. 2004;46:267-272.17 Ansari NN, Naghdi S, Hasson S, Azarsa MH, Azarnia S. The Modified Tardieu Scale forthe measurement of elbow flexor spasticity <strong>in</strong> adult patients <strong>with</strong> hemiplegia. Bra<strong>in</strong> Injury.2008;22:1007-1012.118 | Chapter 7


18 Gielen EJJM. Is spasticiteit te meten bij mensen met een verstandelijke beperk<strong>in</strong>g?Een betrouwbaarheids- en validiteitsonderzoek van de Modified Ashworth Scale en deTardieu Schaal bij mensen met een verstandelijke beperk<strong>in</strong>g. Scriptie <strong>in</strong> het kader van decursus Schol<strong>in</strong>g <strong>in</strong> Wetenschap III; Amersfoort, Nederlands Paramedisch Instituut, 2005.19 Mehrholz J, Wagner K, Meiβner D, Grundmann K, Zange C, Koch R, Pohl M. Reliability ofthe Modified Tardieu Scale and the Modified Ashworth Scale <strong>in</strong> adults patients <strong>with</strong> severebra<strong>in</strong> <strong>in</strong>jury: a comparison study. Cl<strong>in</strong>ic Rehabil. 2005;19:751.20 World Health Organization (1992). International statistical classification of diseases andrelated health problems: tenth revision (ICD-10), 369–370.21 World Health Organization (WHO). International Classification of Function<strong>in</strong>g,Disability and Health. Geneva, 2001.22 Dutch Society for Doctors <strong>in</strong> the Care for people <strong>with</strong> an Intellectual Disability (NVAZ)Resistance among people <strong>with</strong> an <strong>in</strong>tellectual disability <strong>in</strong> the framework of the ActGovern<strong>in</strong>g Medical-Scientific Research Involv<strong>in</strong>g Humans, behavioural code for doctors <strong>in</strong> theassessment of resistance among people <strong>with</strong> an <strong>in</strong>tellectual disability, 1999.23 Lemm<strong>in</strong>k KAPM. De Gron<strong>in</strong>ger Fitheidstest voor Ouderen. Ontwikkel<strong>in</strong>g van eenmeet<strong>in</strong>strument. 1996, RUG.24 Malmberg JJ, Miilunpalo SI, Vuori IM, Pasanen ME, Oja P, Haapanen-Niemi NA. A healthrelated<strong>fitness</strong> and functional performance test battery for middle-aged and older adults:feasibility and health-related content validity. Arch Phys Med. 2002;83(5):666-677.25 Portney LG, Watk<strong>in</strong>s MP. Foundations of cl<strong>in</strong>ical research. 2 nd ed. Upper Saddle River, 2000,Prentice-Hall Inc, New Jersey.26 Fe<strong>in</strong>ste<strong>in</strong> AR. Cl<strong>in</strong>imatrics. 1987, New Haven, Yale University Press, 184-185.27 Bland JM & Altman DG. Statistical methods for assess<strong>in</strong>g agreement between two methodsof cl<strong>in</strong>ical measurement. The Lancet. 1986;1:307-310.28 Atk<strong>in</strong>son G, Nevill AM. Statistical methods for assess<strong>in</strong>g measurement error (reliability) <strong>in</strong>variables relevant to sports medic<strong>in</strong>e. Sports Med. 1998;26(4):217-38.29 Sim J & Wright CC. The Kappa Statistic <strong>in</strong> Reliability Studies: Use, Interpretation, and SampleSize Requirements. Physical Therapy. 2005;85;257-268.30 Efron B. Better bootstrap confidence <strong>in</strong>tervals. J Am Statist Ass. 1987;82:171-185.31 Davison AC & H<strong>in</strong>kley DV. Bootstrap Methods and Their Application. 1997, CambridgeUniversity Press.32 R Development Core Team. R: A language and environment for statistical comput<strong>in</strong>g. RFoundation for Statistical Comput<strong>in</strong>g. 2009, Vienna, Austria. URL http://www.R-project.org.33 Fleuren JF, Voerman GE, Erren-Wolters CV, Snoek GJ, Rietman JS, Hermens HJ, NeneAV. Stop us<strong>in</strong>g the Ashworth Scale for the assessment of spasticity. J Neurol NeurosurgPsych. 2010;81:46-52.34 Ghotbi N, Ansari NN, Naghdi S, Hasson S, Jamshidpour B, Amiri S, Inter-rater reliability ofthe Modified Ashworth Scale <strong>in</strong> assess<strong>in</strong>g lower limb muscle spasticity. Bra<strong>in</strong> Injury.2009;23:815-819.Chapter 7 | 119


120 | Chapter 7


Chapter 8Heart Rate Pattern as an Indicator of Physicalactivity <strong>in</strong> persons <strong>with</strong> <strong>Profound</strong> Intellectual,and Multiple Disabilities.A. Wan<strong>in</strong>geA.A.J. van der PuttenR.E. StewartB.SteenbergenR. van WijckC.P. van der SchansSubmittedChapter 8 | 121


AbstractBackground As <strong>physical</strong> <strong>fitness</strong> is related to <strong>physical</strong> activity, it is important to ga<strong>in</strong> <strong>in</strong>sight <strong>in</strong>to the<strong>physical</strong> activity levels of persons <strong>with</strong> <strong>Profound</strong> Intellectual and Multiple Disabilities (PIMD). Heartrate monitor<strong>in</strong>g may be used as an <strong>in</strong>dicator of activity levels, yet a correct method for dat<strong>in</strong>gheart rate patterns of subjects <strong>with</strong> PIMD has so far not been researched.Objective The purpose of this study was twofold. First, this study exam<strong>in</strong>es the activity levelsof persons <strong>with</strong> <strong>Profound</strong> Intellectual and Multiple Disabilities (PIMD) based on their heart ratepatterns, contrasted aga<strong>in</strong>st American College of Sports Medic<strong>in</strong>e (ACSM) guidel<strong>in</strong>es of healthy<strong>physical</strong> activity. Second, this study describes the relation between various covariates and heartrate patterns and proposes adherent classification.Method Us<strong>in</strong>g a heart rate monitor, heart rate patterns of 24 subjects <strong>with</strong> PIMD were measureddur<strong>in</strong>g 6 days. Heart rate <strong>in</strong>tensity was calculated us<strong>in</strong>g heart rate reserves. Physical activitylevels were also measured <strong>with</strong> questionnaires. Data were analyzed us<strong>in</strong>g multilevel analysis.Results The results show that the mean heart rate zone of the participants over six days is3.196, <strong>in</strong>dicat<strong>in</strong>g 32 % of the heart rate reserve. The <strong>in</strong>tensity ranged over a heart rate reservefrom 1 to 62 %. Wide ranges <strong>in</strong> heart rate between participants and <strong>with</strong><strong>in</strong> one day have beenshown. However, between days we found small ranges <strong>in</strong> heart rate. Heart rate monitor<strong>in</strong>g is areliable measurement for measur<strong>in</strong>g <strong>physical</strong> activity. Participants could be classified <strong>in</strong> 4 classesaccord<strong>in</strong>g to heart rate. Time of day, <strong>physical</strong> activity and age have significant <strong>in</strong>fluence on heartrate.Conclusions In conclusion, persons <strong>with</strong> PIMD are not sufficiently <strong>physical</strong>ly active based on theguidel<strong>in</strong>es of ACSM. Heart rate monitor<strong>in</strong>g seems to be a reliable <strong>in</strong>dicator of <strong>physical</strong> activity,but exploration of the other <strong>in</strong>fluential factors, such as emotions and personal factors, isrecommended.122 | Chapter 8


IntroductionIt is important to ga<strong>in</strong> <strong>in</strong>sight <strong>in</strong>to the <strong>physical</strong> activity levels of persons <strong>with</strong> profound <strong>in</strong>tellectual,visual, and severe motor disabilities (profound <strong>in</strong>tellectual and multiple disabilities, PIMD).<strong>Persons</strong> <strong>with</strong> PIMD risk low levels of <strong>physical</strong> activity [1, 2] and the associated negative effectson health. Physical activity improves both mental health, <strong>physical</strong> health, <strong>physical</strong> <strong>fitness</strong> [3], andparticipation <strong>in</strong> daily life [4]. Physical activity is def<strong>in</strong>ed as any bodily movement produced byskeletal muscles that results <strong>in</strong> energy expenditure [5]. However, for a substantial ga<strong>in</strong> <strong>in</strong> <strong>physical</strong><strong>fitness</strong>, the ACSM guidel<strong>in</strong>es state that <strong>physical</strong> activity has to be performed 5 days a week for atleast 30 m<strong>in</strong>utes a day <strong>with</strong> an <strong>in</strong>tensity of more than 55 % of the heart rate reserve [6].<strong>Persons</strong> <strong>with</strong> <strong>in</strong>tellectual disabilities are often not sufficiently active to achieve benefits<strong>in</strong> health or improve <strong>fitness</strong> levels [2, 7, 8]. Additionally, <strong>physical</strong> <strong>fitness</strong> <strong>in</strong> persons <strong>with</strong> a visualdisability is poorer than <strong>in</strong> persons <strong>with</strong>out disabilities [9, 10, 11], and persons <strong>with</strong> both severe<strong>in</strong>tellectual and visual disabilities have a high chance of experienc<strong>in</strong>g a variety of limitations <strong>in</strong>daily function<strong>in</strong>g such as <strong>in</strong>activity, <strong>in</strong>secure movement and little <strong>in</strong>itiative [12]. However, research<strong>in</strong>to the <strong>physical</strong> activity levels <strong>in</strong> persons <strong>with</strong> PIMD is limited and knowledge on the topic is scarce.Due to severe multiple disabilities, <strong>physical</strong> activity levels of persons <strong>with</strong> PIMD are difficultto reliably quantify [13]. These persons often also suffer from sensory <strong>in</strong>tegration problems [14],and <strong>in</strong>adequacies <strong>in</strong> perception and motor-reproduction [15, 16]. Furthermore, co-morbidity,such as cerebral palsy, is more frequent <strong>in</strong> those <strong>with</strong> <strong>in</strong>tellectual disabilities than <strong>in</strong> the generalpopulation [17]. As a result, persons <strong>with</strong> PIMD have generally very limited mobility, use awheelchair [18], and have a Gross Motor Function Classification System level IV and V (GMFCS)[19]. Consequently, normal tests, such as the usage of walk<strong>in</strong>g, are not applicable for persons<strong>with</strong> PIMD [13]. Moreover, the presumed low levels of activity <strong>in</strong> persons <strong>with</strong> such profounddisabilities are often not accurately presented by relatively <strong>in</strong>sensitive measurement devices, likeactivity monitors [13]. In addition, there are no exist<strong>in</strong>g algorithms for predict<strong>in</strong>g activity energyexpenditure of persons <strong>with</strong> PIMD.Physical activity studies often use a comb<strong>in</strong>ation of assessment methods [20, 21] <strong>in</strong>clud<strong>in</strong>gheart rate monitor<strong>in</strong>g, which is an objective method [22], comb<strong>in</strong>ed <strong>with</strong> direct observation,which is a criterion method [22]. Heart rate monitor<strong>in</strong>g may be used as an <strong>in</strong>dicator of activitylevels when assum<strong>in</strong>g a relationship between activity <strong>in</strong>tensity and heart rate [23, 24]. Heart ratemonitor<strong>in</strong>g appears to be sufficiently valid to use <strong>in</strong> creat<strong>in</strong>g broad <strong>physical</strong> activity categories(e.g. highly active, somewhat active, sedentary) [25]. As stated before, only heart rates of morethan 55% of the heart rate reserve may ga<strong>in</strong> profit for <strong>physical</strong> <strong>fitness</strong>, if obta<strong>in</strong>ed dur<strong>in</strong>g 5 days<strong>in</strong> a week [6]. Thus, heart rate monitor<strong>in</strong>g may tell us if we can actually <strong>in</strong>crease the persons’<strong>fitness</strong>.However, the correct method of dat<strong>in</strong>g heart rate patterns of <strong>in</strong>dividuals <strong>with</strong> PIMD aswell as the correlation between heart rate monitor<strong>in</strong>g and activity levels for this specific grouphave so far not been subject to research. What is more, also the <strong>in</strong>fluence of covariates such asgender and age on the heart rate patterns of <strong>in</strong>dividuals <strong>with</strong> PIMD is unknown. For persons <strong>with</strong>and <strong>with</strong>out disabilities, <strong>physical</strong> activity is gender related [18]. Heart rate is related to age [26],gender and activity [27]. As persons <strong>with</strong> PIMD often suffer from co-morbidity such as motordisability, spasticity and sensory disabilities, it seems useful to exam<strong>in</strong>e the <strong>in</strong>fluence of thesecovariates on heart rate height as well.Chapter 8 | 123


Furthermore, practical experience learns that as a consequence of co-morbidity, the skillsof persons <strong>with</strong> PIMD vary greatly. Moreover, Vlaskamp et al. [28] found days <strong>in</strong> the PIMD activitycentres to be highly structured, <strong>with</strong> each activity tak<strong>in</strong>g place at the same time and day. Thesef<strong>in</strong>d<strong>in</strong>gs suggest the possibility of a relation between heart rate patterns and subgroups plus timeof day.The purpose of this study, therefore, was fourfold: firstly, to determ<strong>in</strong>e the activity levels ofpersons <strong>with</strong> PIMD based on heart rate patterns when compared to ACSM guidel<strong>in</strong>es of healthy<strong>physical</strong> activity; secondly, to analyze heart rate patterns accord<strong>in</strong>g to group differences, days,time of day and to establish adherent classification <strong>in</strong> heart rate height and patterns; thirdly, todeterm<strong>in</strong>e the relation between heart rate patterns and observed level of activity <strong>in</strong> persons <strong>with</strong>PIMD; and, fourthly, to exam<strong>in</strong>e the <strong>in</strong>fluence of covariates such as gender, age, and common comorbidity(motor disabilities, spasticity and sensory disabilities) on heart rate patterns.Materials and methodsParticipantsThe target population of our study comprises of persons <strong>with</strong> PIMD, characterized by severeor profound <strong>in</strong>tellectual disability <strong>in</strong>dicated by an <strong>in</strong>telligence quotient under 40 po<strong>in</strong>ts. Theparticipants have a developmental level lower than six years (International Association for theScientific Study of Intellectual Disabilities, IASSID) [29], and are thus severely limited <strong>in</strong> self-care,cont<strong>in</strong>ence, communication, and mobility [30].All participants were recruited from a Dutch residential care facility, which houses 200persons <strong>with</strong> severe or profound <strong>in</strong>tellectual and visual disabilities. The <strong>in</strong>clusion criteria were:presence of severe or profound <strong>in</strong>tellectual disability, visual disability, and motor disability <strong>with</strong>GMFCS level IV or V [19]. For 48 persons, representatives were requested to give a writtenpermission for participation <strong>in</strong> this study, of which 30 were obta<strong>in</strong>ed. Both a physician specialised<strong>in</strong> mental disabilities and a behaviour scholar screened the participants for our exclusion criteria,be<strong>in</strong>g severe psychological problems or somatic diseases def<strong>in</strong>ed as chronic diseases and/ordiseases that do not resolve <strong>in</strong> the short term.Four persons were excluded from the study because they showed one of these problems ordiseases. The exclusion criteria at the time of the measurements were: general illness or fever;tak<strong>in</strong>g antibiotics; worsen<strong>in</strong>g of asthma, epilepsy (recent <strong>in</strong>sult or epileptic fits), fresh wound(s)/bruise(s), or other factors caus<strong>in</strong>g pa<strong>in</strong> dur<strong>in</strong>g movement; or stress due to the subject’s behaviorjust before the measurement dates. Two persons were excluded because they presented one ofthese signals. Figure 1 presents the sampl<strong>in</strong>g scheme of persons <strong>in</strong>cluded <strong>in</strong> the study.124 | Chapter 8


48 persons18 persons lacked permission from representatives30 persons4 persons excluded for medical/behavioral reasons26 persons2 persons excluded at the time of the measurements24 personsFigure 1. Sampl<strong>in</strong>g scheme of subjects <strong>in</strong>cluded <strong>in</strong> the studyAll participants were classified accord<strong>in</strong>g to the GMFCS [19]. Furthermore, visual and auditiveimpairments of the participants were classified accord<strong>in</strong>g to WHO guidel<strong>in</strong>es [4]: a dist<strong>in</strong>ctionwas made between be<strong>in</strong>g severely partially sighted and be<strong>in</strong>g partially sighted as well as betweensevere hear<strong>in</strong>g loss, slight hear<strong>in</strong>g loss and normal hear<strong>in</strong>g. Spasticity was classified as unilateral,bilateral or unknown [31]. Orthopedic defects were used as an <strong>in</strong>dicator of locomotor disabilitiesand classified as present or not present.Ethical statementThis study was performed <strong>in</strong> agreement <strong>with</strong> the guidel<strong>in</strong>es of the Hels<strong>in</strong>ki Declaration as revised<strong>in</strong> 1975. Permission to carry out the study was obta<strong>in</strong>ed from the <strong>in</strong>stitutional ethics committee.Informed consent was obta<strong>in</strong>ed from representatives of the participants, because the participantswere not able to give consent. The measurements were performed <strong>in</strong> accordance <strong>with</strong> thebehavioural code section entitled ‘Resistance among people <strong>with</strong> an <strong>in</strong>tellectual disability <strong>in</strong> theframework of the Act Govern<strong>in</strong>g Medical-Scientific Research Involv<strong>in</strong>g Humans’ [32]. Consistentdistress or unhapp<strong>in</strong>ess was <strong>in</strong>terpreted as a sign of lack of assent and further participation <strong>in</strong> thestudy was reconsidered.Study designHeart rate patterns were measured <strong>in</strong> each participant 8 hours a day for a period of six days.Every 15 m<strong>in</strong>utes measurements were conducted, result<strong>in</strong>g <strong>in</strong> a total amount of measurements aday of 32 (8 hours, 4 times 15 m<strong>in</strong>utes). 5 Out of the 6 test days were weekly, the rema<strong>in</strong><strong>in</strong>g dayfell <strong>in</strong> the weekend. Parallel <strong>with</strong> heart rate measurements, <strong>physical</strong> activities were registeredus<strong>in</strong>g direct observation, noted down <strong>in</strong> score lists.MeasuresHeart rate patterns were measured <strong>with</strong> a heart rate monitor (Polar RS 800, Kempele, F<strong>in</strong>land)whose heartbeat data were transferred later to a computer. Heart rate was monitored <strong>in</strong> everyparticipant dur<strong>in</strong>g 6 days dur<strong>in</strong>g 8 hours a day.Chapter 8 | 125


Data regard<strong>in</strong>g <strong>physical</strong> activity were registered <strong>with</strong> the use of a questionnaire, which wasfilled out by both personal caregivers at the liv<strong>in</strong>g group as support staff of the activity centre.Physical activity was coded as ‘Targeted <strong>physical</strong> activity Yes’ or ‘Targeted <strong>physical</strong> activity No’.Mov<strong>in</strong>g <strong>with</strong> the wheelchair <strong>in</strong>side or outside, transfer, active sitt<strong>in</strong>g <strong>with</strong>out support, gymnastics<strong>with</strong> a gymnastic <strong>in</strong>structor, <strong>physical</strong> therapy, play<strong>in</strong>g <strong>with</strong> a ball, and ‘danc<strong>in</strong>g’ on music were allexamples of ‘Targeted <strong>physical</strong> activity Yes’. Listen<strong>in</strong>g to music, watch<strong>in</strong>g television or ly<strong>in</strong>g downon a bed were all examples of “Targeted <strong>physical</strong> activity No’.Data analysisHeart rate zonesPeak heart rate, rest heart rate and heart rate reserves differ for each person, which makes themdifficult to compare. By calculat<strong>in</strong>g heart rate zones accord<strong>in</strong>g to the equation of Karvonen [33], itis possible to compare the zones of the participants <strong>with</strong> each other.Heart rate zones are calculated as follows. First, each participant’s peak heart rate wasestimated us<strong>in</strong>g the formula of Fernhall [34] for participants <strong>with</strong> <strong>in</strong>tellectual disabilities: 210 –0.56 (age) – 15.5. Due to the motor disabilities of the participants, no other non-<strong>in</strong>vasive measurecould be performed. Secondly, the participants rest<strong>in</strong>g heart rate was determ<strong>in</strong>ed by tak<strong>in</strong>g themedian of fifteen morn<strong>in</strong>g heart rate measurements. Thirdly, us<strong>in</strong>g the participants rest<strong>in</strong>g heartrate, the heart rate reserve was calculated by subtract<strong>in</strong>g rest<strong>in</strong>g heart rate of estimated peakheart rate. F<strong>in</strong>ally, the heart rate reserve was divided <strong>in</strong> 10 zones, each zone consist<strong>in</strong>g of 10%of the heart rate reserve. The heart rate of a participant dur<strong>in</strong>g each 15 m<strong>in</strong>utes was classified <strong>in</strong>these zones. For <strong>in</strong>stance: rest<strong>in</strong>g heart rate of 50 beats per m<strong>in</strong>ute (bpm), maximum heart rate of180 bpm; heart rate reserve is 130 bpm; each heart rate zone exists of 13 heart rates, the first zoneis from 50 to 63; the second from 63 to 76; and so on (Table 1).Table 1. Example of the heart rate zones for healthy personsHeart Rate Zone Activity Percentage of heart rate reserve (HRV)1 50-63 Rest 1-102 63-77 10-203 77-90 Quiet mov<strong>in</strong>g 20-304 90-103 30-405 103-116 Moderately <strong>in</strong>tensive activity 40-506 116-129 ACSM guidel<strong>in</strong>e of healthy <strong>physical</strong> activity 50-607 129-142 Intensive activity 60-708 142-155 70-809 155-168 Very <strong>in</strong>tensive activity 80-9010 168-180 90-100Patterns and classes <strong>in</strong> heart rateHeart rate of the 24 participants was measured eight hours a day dur<strong>in</strong>g six days, <strong>with</strong>measurements be<strong>in</strong>g conducted every 15 m<strong>in</strong>utes. In order to determ<strong>in</strong>e the activity levels ofpersons <strong>with</strong> PIMD compared <strong>with</strong> ACSM guidel<strong>in</strong>es of healthy <strong>physical</strong> activity, an overview ofthe heart rate zones is presented, along <strong>with</strong> a day to day outl<strong>in</strong>e of the mean prevalence of heartrate zones of the participants.126 | Chapter 8


Furthermore, the mean and the ranges of heart rate zones of the participants are calculated.To ga<strong>in</strong> <strong>in</strong>sight <strong>in</strong>to the heart rate patterns of persons <strong>with</strong> PIMD, three decompos<strong>in</strong>g variancecomponents are <strong>in</strong>volved, us<strong>in</strong>g l<strong>in</strong>ear mixed model: 1) between persons, 2) <strong>with</strong><strong>in</strong> personsbetween days, and 3) <strong>with</strong><strong>in</strong> days. The mean heart rate and variance proportion component (VPC)were calculated between persons, <strong>with</strong><strong>in</strong> persons and between days. The VPC as an <strong>in</strong>dicator ofvariance <strong>in</strong> heart rate zone, is calculated by divid<strong>in</strong>g variance by the total variance. Us<strong>in</strong>g thevariance proportion component the generalizability coefficient for the relative differences [35]was calculated. A generalizability coefficient of 0.80 or more <strong>in</strong>dicates a sufficient reliability.Furthermore, <strong>in</strong> order to identify dist<strong>in</strong>ct groups of heart rate patterns and to exam<strong>in</strong>e theseclasses <strong>in</strong> heart rate, we used a latent class analysis [36, 37]. As the dependent variable was acount variable, a Poisson distribution was used for this analysis.Relations between heart rate patterns and level of activityTo determ<strong>in</strong>e how heart rate relates to the level of <strong>physical</strong> activity, we estimated equations of<strong>physical</strong> activity as a dependent variable of heart rate. Furthermore, we exam<strong>in</strong>ed the <strong>in</strong>fluence of‘time of the day’ on this relation.Influence of covariatesThe <strong>in</strong>fluence of the covariates gender, age, time of day, daily activities, motor disabilities,spasticity, and sensory disabilities were evaluated <strong>in</strong> the mixed model.ResultsThe data were analysed us<strong>in</strong>g SPSS 16.0 and multilevel analysis <strong>with</strong> the computerprogram Mlw<strong>in</strong>[38].In total, 24 persons <strong>with</strong> PIMD participated <strong>in</strong> this study. Six women participated <strong>with</strong> a meanage (SD) of 30 years (17), the mean age (SD) of the men was 36 years (15). Table 2 shows thecharacteristics of the participants.Chapter 8 | 127


Table 2. Characteristics of the participantsGenderMenWomen<strong>Severe</strong> 9 3Intellectualdisability<strong>Profound</strong> 9 3Total 18 6Bl<strong>in</strong>d/<strong>Severe</strong> 13 3Visual impairmentsPartially 5 3Total 18 6Yes 16 6OrthopedicdefectsNo 2 0Total 18 6Yes 16 6SpasticityNo 2 0Total 18 6IV 5 1GMFCSlevelV 13 5Total 18 6Patterns and classes <strong>in</strong> heart rateTable 3 shows a day to day outl<strong>in</strong>e of the mean prevalence of heart rate zones <strong>in</strong> persons <strong>with</strong>PIMD, <strong>in</strong>dicat<strong>in</strong>g that the participants reach no heart rates more than 55% of their heart ratereserves for a consecutive 30 m<strong>in</strong>utes.128 | Chapter 8


Table 3. Day-to-day outl<strong>in</strong>e of the mean prevalence of heart rate zones <strong>in</strong> persons <strong>with</strong> PIMDPercentage of time <strong>in</strong> zonePercentages ofHeart rate reserveDay 1 Day 2 Day 3 Day 4 Day 5 Day 61-10% 9% 7% 6% 10% 1% 6%11-20% 28% 26% 26% 23% 29% 23%21-30% 26% 26% 24% 18% 32% 30%31-40% 25% 29% 23% 28% 27% 28%41-50% 11% 10% 15% 18% 10% 11%51-60% 1% 2% 4% 3% 1% 2%61-70% 2%71-80%81-90%91-100%Total time 100% 100% 100% 100% 100% 100%The mean heart rate zone over the six test days is shown under the head<strong>in</strong>g ‘<strong>in</strong>tercept’ model 0 <strong>in</strong>table 4, and is 3.196, <strong>in</strong>dicat<strong>in</strong>g 32 % of the heart rate reserve. The results range from 1 to 62 % ofthe heart rate reserve (see table 3).The model <strong>in</strong> table 4 shows the variance between participants (0.911), between days (0.161)and <strong>with</strong><strong>in</strong> one day (0.429). As the total variance is the sum of these variances (1.501), the VPCbetween the participants is 60.7%, between days 10.7%, and between different times of the day28.6%. These VPC’s <strong>in</strong>dicate that the variation between the test days is relatively low, suggest<strong>in</strong>gthat future research can do <strong>with</strong> one test day <strong>in</strong>stead of six. The generalizability coefficient for therelative differences, calculated <strong>with</strong> the variance proportion components, is 0.85, <strong>in</strong>dicat<strong>in</strong>g thatheart rate monitor<strong>in</strong>g is a reliable measurement.Chapter 8 | 129


Table 4. Variability of heart rate and l<strong>in</strong>ear mixed models.FixedModel(person level) B-value SEIntercept 4.217 0.655Time of day -0.007 0.001ActivityTargeted activity vs no targeted (ref)0.021 0.021Age -0.023 0.012GenderMale vs female (ref)Orthopaedic defectsNo orth defects vs orth defects (ref)SpasticityBilateral vs unilateral parese (ref)Visual impair<strong>Severe</strong> partially vs partially impaired vision (ref)-0.041 0.409-0.257 0.5770.499 0.8670.185 0.39Auditive impairment<strong>Severe</strong> hear<strong>in</strong>g loss vs slight hear<strong>in</strong>g loss vs normal hear<strong>in</strong>g-0.606-0.7350.5930.462RandomParticipant 0.911Days 0.161Time of day 0.429Total var 1.5012Loglikelihood 10302B-value, the regression-coefficient; SE, standard error; vs, versus; ref, reference value.With the variable age, time of the day and the observations measured at six different days,we found a four class solution that gives a clear cl<strong>in</strong>ical <strong>in</strong>terpretation [36, 37]. The four classclasses were: high heart rate zone (class 1), middle stable heart rate zone (class 2), low heart ratezone (class 3) and variation <strong>in</strong> the middle heart rate zone (class 4).130 | Chapter 8


Relation between heart rate patterns and level of activityThe relation between time of the day and heart rate is significant (regression-coefficient-0.007<strong>with</strong> SE 0.001; p< 0.01) (see model <strong>in</strong> table 4). The relation between <strong>physical</strong> activity and heart rateshows a regression-coefficient of 0.041 <strong>with</strong> SE of 0.021 (p= 0.02), which is a significant relationtoo. However, if ‘time of the day’ is brought <strong>in</strong>to the equation, there is no significant <strong>in</strong>fluence of‘<strong>physical</strong> activity’ on heart rate anymore (regression-coefficient 0.022 <strong>with</strong> SE 0.021; p=0.147),only ‘time of the day’ rema<strong>in</strong>s of <strong>in</strong>fluence (-0.007 <strong>with</strong> SE 0.001; p


DiscussionThis study exam<strong>in</strong>ed firstly the activity levels of participants <strong>with</strong> PIMD based on their heart ratepatterns when contrasted aga<strong>in</strong>st ACSM guidel<strong>in</strong>es of healthy <strong>physical</strong> activity [6]. Secondly, thisstudy researched the relation between various covariates and heart rate patterns and proposedadherent classification.Our study shows that the participants reach no heart rates more than 55% of their heartrate reserves for a consecutive 30 m<strong>in</strong>utes, which <strong>in</strong>dicates that they are not sufficient <strong>physical</strong>active based on the guidel<strong>in</strong>es of ACSM [6]. Wide ranges <strong>in</strong> heart rate between participants havebeen shown. In addition, <strong>with</strong><strong>in</strong> one day wide ranges <strong>in</strong> heart rate are present. However, betweendays we found small ranges <strong>in</strong> heart rate. The generalizability coefficient (>0.80) <strong>in</strong>dicates thatheart rate monitor<strong>in</strong>g is a reliable method for measur<strong>in</strong>g <strong>physical</strong> activity. Participants couldbe classified <strong>in</strong> 4 groups accord<strong>in</strong>g to heart rate. Time of day, <strong>physical</strong> activity and age have asignificant <strong>in</strong>fluence on heart rate. However, the relation between time of day and <strong>physical</strong> activityis very strong and when corrected for ‘time of day’, ‘<strong>physical</strong> activity’ ceases to have a significant<strong>in</strong>fluence on heart rate. As a consequence, heart rate seems to be an <strong>in</strong>dicator of <strong>physical</strong> activityof <strong>in</strong>dividuals <strong>with</strong> PIMD, but further exploration of other possible factors is still needed.This study is an important first step <strong>in</strong> explor<strong>in</strong>g heart rate patterns of the <strong>in</strong>tellectuallydisabled for a full day. Due to their locomotor disabilities, exam<strong>in</strong>ation of the peak heart rate <strong>with</strong>a maximal heart rate test is not possible. Therefore, we had to use the formula of Fernhall [34],which is an estimate and may therefore be less reliable. Based on our results we recommendfurther exploration of heart rate patterns <strong>in</strong> this target group.The mean heart rate zone of all participants over six days is 3.2. This <strong>in</strong>dicates theyuse relatively little, only 20 to 30 percent, of their heart rate reserves. Although the range ofpercentages of heart rate reserves was found to be between 1 and 62 %, levels higher than 55% for at least a consecutive 30 m<strong>in</strong>utes were not reached. It appeared to be difficult to activatethese persons <strong>in</strong>to <strong>physical</strong> activity. This may be expla<strong>in</strong>ed by the multiple disabilities of our targetgroup. <strong>Persons</strong> <strong>with</strong> GMFCS levels IV and V have little skills to move actively and are h<strong>in</strong>dered byvisual impairment and lack of comprehension. The <strong>in</strong>dividual comb<strong>in</strong>ations of these limitationsmay expla<strong>in</strong> the four classes we dist<strong>in</strong>guished <strong>in</strong> heart rate patterns. Future research should bedirected towards the exam<strong>in</strong>ation of these classes and the possible <strong>in</strong>fluence of <strong>in</strong>terventions onthese classes.Caregivers <strong>in</strong> the liv<strong>in</strong>g situation as well as caregivers <strong>in</strong> the activity centre filled outthe questionnaires for registration of <strong>physical</strong> activity used <strong>in</strong> our analysis. Analysis of thisregistration br<strong>in</strong>gs forward a figure similar to that of the heart rate patterns. The mean numberof offered motor activities was 0.8 per day (range: 0-3.3; SD: 1.1) and the mean duration ofmotor activation was 26 m<strong>in</strong>utes per day (range: 0-163; SD: 35) [39]. The present study yieldeda negative correlation between heart rate and age. Van der Putten & Vlaskamp [39] found anegative correlation between daily activity and age. As heart rate height and <strong>physical</strong> activity aresupposed to be related [3], our results are <strong>in</strong> l<strong>in</strong>e <strong>with</strong> the results of Van der Putten & Vlaskamp[39].Furthermore, the majority of observed motor activation took place dur<strong>in</strong>g ‘daily caresituations’, whereas only 18% of these situations existed of targeted motor activation. 61 % Ofthe activities were passive <strong>in</strong> nature [40]. The conclusions of these authors were that motoractivation is a m<strong>in</strong>or part of the support of persons <strong>with</strong> PIMD. Moreover, analys<strong>in</strong>g the heart rate132 | Chapter 8


patterns <strong>in</strong> this study we can conclude that they do not meet the ACSM recommendations forhealth related <strong>physical</strong> <strong>fitness</strong> [6].The significant relation between time of the day and heart rate may partly be declared bythe circadian rhythms. The circadian system, driven by the suprachiasmatic nucleus, regulatesproperties of cardiovascular function, like blood pressure and heart rate [41, 42].Furthermore, the relation between time of day and heart rate may be an illustration of thehighly structured days <strong>in</strong> the activity centres of our participants. This is <strong>in</strong> l<strong>in</strong>e <strong>with</strong> the f<strong>in</strong>d<strong>in</strong>gsof Vlaskamp et al [28]: <strong>in</strong> 6 care facilities <strong>in</strong> the Netherlands it seemed to be common practiceto have one activity <strong>in</strong> the morn<strong>in</strong>g, mostly between 10 and 11 AM, and one <strong>in</strong> the afternoon,roughly between 2 and 3 PM. This degree of structure already made us expect a low difference<strong>in</strong> heart rate patterns between days. Yet, is such structure desirable? Would an alternat<strong>in</strong>g dayrhythm result <strong>in</strong> more activation of persons <strong>with</strong> PIMD? On the other hand, the advantage of thelow difference <strong>in</strong> test results between days is that for future research one day of test<strong>in</strong>g suffices,which is efficient.We found no significant relation between heart rate and gender, <strong>in</strong>tellectual level or comorbidityas motor disabilities, spasticity and sensory disabilities when look<strong>in</strong>g at 8-hours heartrate patterns. In order to test for any possible significant relation future research could set upsubcategories, controll<strong>in</strong>g for groups <strong>with</strong> a specific co-morbidity us<strong>in</strong>g groups <strong>with</strong>out thatspecific co-morbidity.Heart rate height as a predictor of antisocial behavior <strong>in</strong> adolescents was exam<strong>in</strong>ed <strong>in</strong> astudy of Sijtsema et al [43]. Their f<strong>in</strong>d<strong>in</strong>gs showed that heart rate measures obta<strong>in</strong>ed <strong>with</strong> astrict acquisition and analysis protocol were associated <strong>with</strong> antisocial behavior <strong>in</strong> boys but not<strong>in</strong> girls. In other studies it was found that <strong>in</strong> childhood and adolescence, low heart rate is one ofthe strongest correlates of antisocial behavior [44]. Furthermore, accord<strong>in</strong>g to the stimulationseek<strong>in</strong>gtheory, some adolescents are constantly under aroused, which is presumably markedby a low heart rate and a subjective unpleasant state [45]. Given the low heart rate zones <strong>in</strong> ourstudy population, aforementioned research suggests exam<strong>in</strong><strong>in</strong>g the subjective well-be<strong>in</strong>g of theseparticipants may be of crucial importance.Physiological outcome measures as an <strong>in</strong>dicator of subjective well-be<strong>in</strong>g were alreadyexplored by Vos et al [46] <strong>in</strong> persons <strong>with</strong> PIMD. People <strong>with</strong> PIMD showed more parasympathicactivation when experienc<strong>in</strong>g negative emotions. Most likely this is due to attention regulat<strong>in</strong>gprocesses. They also show a higher heart rate when the emotion <strong>in</strong>tensifies. Nevertheless, theauthors caused the readers to be careful when <strong>in</strong>terpret<strong>in</strong>g their f<strong>in</strong>d<strong>in</strong>gs s<strong>in</strong>ce there were severallimitations to their research. Tak<strong>in</strong>g all these f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>to account, further research on therelation between heart rate of persons <strong>with</strong> PIMD and psychosocial variables such as emotions isrecommended.In conclusion, persons <strong>with</strong> PIMD do not atta<strong>in</strong> sufficient activity levels accord<strong>in</strong>g to ACSMguidel<strong>in</strong>es. Heart rate monitor<strong>in</strong>g seems to be a reliable <strong>in</strong>dicator of <strong>physical</strong> activity. Time ofday and age have considerable <strong>in</strong>fluence on heart rate patterns. However, the observed classes<strong>in</strong> heart rate patterns suggest other, probably more personal and psychosocial factors to havea significant <strong>in</strong>fluence on heart rate patterns as well. Further research <strong>in</strong>to these factors isrecommended.Chapter 8 | 133


AcknowledgementsThis research was f<strong>in</strong>anced by Hanze University Gron<strong>in</strong>gen and Royal Dutch Visio De Br<strong>in</strong>k.The authors k<strong>in</strong>dly acknowledge and thank the participants for their participation <strong>in</strong> this study,their representatives for given permission to this and both personal caregivers at the liv<strong>in</strong>ggroup and support staff of the activity centre of Royal Dutch Visio The Br<strong>in</strong>k, for fill<strong>in</strong>g out thequestionnaires. Furthermore, the authors k<strong>in</strong>dly acknowledge and thank Floor J. Hett<strong>in</strong>ga, PhD,for advice on physiological topics.134 | Chapter 8


References1 Emerson E. Underweight, obesity and exercise among adults <strong>with</strong> <strong>in</strong>tellectual disabilities <strong>in</strong>supported accommodation <strong>in</strong> Northern England. J Intellect Disabil Res. 2005;49;134-43.2 Laht<strong>in</strong>en U, R<strong>in</strong>tala P, Mal<strong>in</strong> A. Physical performance of <strong>in</strong>dividuals <strong>with</strong> <strong>in</strong>tellectual disability:a 30 year follow up. Adapt Phys Act Q. 2007;24: 125-143.3 Bouchard C, Shepard RJ, Stephens T. Physical activity, Fitness and Health. 1994, HumanK<strong>in</strong>etics Publishers, ChampaignIL.4 World Health Organization (WHO). International Classification of Function<strong>in</strong>g, Disabilityand Health. Geneva, 2001.5 Capsersen CJ, Powell KE, Christenson GM. Physical Activity, Exercise, and Physical Fitness:Def<strong>in</strong>itions and Dist<strong>in</strong>ctions for Health-Related Research. Public Health Reports.1985;100(2);127-131.6 American College of Sports Medic<strong>in</strong>e Position Stand. The recommended quantity and qualityof exercise for develop<strong>in</strong>g and ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g cardiorespiratory and muscular <strong>fitness</strong>, andflexibility <strong>in</strong> healthy adults. Med Sci Sports Exerc. 1998;30: 975-91.7 Frey GC & Chow B. Relationship between BMI, <strong>physical</strong> <strong>fitness</strong>, and motor skills <strong>in</strong> youth <strong>with</strong>mild <strong>in</strong>tellectual disabilities. Int J Obes. 2006;30:861-867.8 Temple VA, Frey GC, Stanish HI. Physical activity of adults <strong>with</strong> mental retardation: reviewand research needs. Am J Health Promot. 2006;21:2-12.9 Häkk<strong>in</strong>en A, Holopa<strong>in</strong>en E, Kautia<strong>in</strong>en H, Sillanpää E, Häkk<strong>in</strong>en K. Neuromuscular functionand balance of prepubertal and pubertal bl<strong>in</strong>d and sighted boys. Acta Paediatr.2006;95(10):1277-83.10 Hopk<strong>in</strong>s WG, Gaeta H, Thomas AC, Hill PM. Physical <strong>fitness</strong> of bl<strong>in</strong>d and sighted children. EurJ of Appl Phys Occ Phys. 1987;56: 69-73.11 Seemungal BM, Glasauwer S, Gresty MA, Bronste<strong>in</strong> AM. Vestibular perception and navigation<strong>in</strong> the congenitally bl<strong>in</strong>d. J of Neurophys. 2007;97(6):4341-56.12 Evenhuis HM, Sjoukes L, Koot HM, Kooijman AC. Does visual impairment lead to additionaldisability <strong>in</strong> adults <strong>with</strong> <strong>in</strong>tellectual disabilities? J Intellect Disabil Res. 2009;53(1):19-28.13 Warms C. Physical Activity Measurement <strong>in</strong> <strong>Persons</strong> <strong>with</strong> chronic and disabl<strong>in</strong>g conditions,methods, strategies and issues. Fam Community Health. 2006;29:788-799.14 Carmeli E, Bar-Yossef T, Ariav C, Paz R, Sabbaq H, Levy R. Sensorimotor impairments andstrategies <strong>in</strong> adults <strong>with</strong> <strong>in</strong>tellectual disabilities. Motor Control. 2008;12(4):348-61.15 Reimer AM, Cox RF, Boonstra NF, Smits-Engelsman BC. Effect of visual impairment on goaldirectedaim<strong>in</strong>g movements <strong>in</strong> children. Dev Med Child Neur. 2008;50(10):778-83.16 Sh<strong>in</strong>kfield AJ, Sparrow WA, Day RH. Visual discrim<strong>in</strong>ation and motor reproduction ofmovement by <strong>in</strong>dividuals <strong>with</strong> mental retardation. Am J Ment Retard. 1997;102(2):172-81.17 Van Schrojenste<strong>in</strong> Lantman-de Valk HMJ, Metsemakers JFM, Haveman MJ, Crebolder HFJM.Health problems <strong>in</strong> people <strong>with</strong> <strong>in</strong>tellectual disability <strong>in</strong> general practice: A comparativestudy. Family Practice. 2000;17:405–40718 Putten AAJ van der, Vlaskamp C, Reynders K, Nakken H. Children <strong>with</strong> <strong>Profound</strong> Intellectualand Multiple Disabilities: the effects of functional movement activities. Cl<strong>in</strong> Rehabil.2005;19:613-620.19 Palisano R, Hanna SE, Rosenbaum PL, Rusell DJ, Walter SD, Wood EP, Ra<strong>in</strong>a PS, Galuppi BE.Validation of a model of Gross Motor Function for Children With Cerebral Palsy. PhysTherapy. 2000;80:974-985.Chapter 8 | 135


20 Gu<strong>in</strong>houya BC, Apété GK, Hubert H. Evaluation of habitual <strong>physical</strong> activity of children dur<strong>in</strong>gcl<strong>in</strong>ical and epidemiological trials. Sante Publique. 2009;21(5):465-78.21 Bock De F, Menze J, Becker S, Litaker D, Fischer J, Seidel I. Comb<strong>in</strong><strong>in</strong>g Accelerometry andHeart Rate for Assess<strong>in</strong>g Preschoolers’ Physical Activity. Med Sci Sports Exerc.2010;42(12):2237-43.22 Vanhees L, Lefevre J, Philippaerts R, Martens M, Huygens W, Troosters T, Beunen G. Howto assess <strong>physical</strong> activity? How to assess <strong>physical</strong> <strong>fitness</strong>? Eur J Cardiovasc Prev Rehabil.2005;12(2):102-1423 Hunter J. Energy costs of wheelchair propulsion by elderly and disabled people. Int J RehabilRes. 1987;50-54.24 Littlewood RA, Davies PSW, Cleghorn GJ, Grote RH. Physical activity cost <strong>in</strong> childrenfollow<strong>in</strong>g an acquired bra<strong>in</strong> <strong>in</strong>jury—a comparative study. Cl<strong>in</strong> Nutrition. 2004;23;99-104.25 Sirard JR, Pate RR. Physical activity assessment <strong>in</strong> children and adolescents. Sports Med.2001;31(6):439-54.26 Baynard T, Pitetti KH, Guerra M, Unnithan VB, Fernhall B. Age-related changes <strong>in</strong>aerobic capacity <strong>in</strong> <strong>in</strong>dividuals <strong>with</strong> mental retardation: a 20-yr review. Med Sci Sports Exerc.2008;40(11):1984-9.27 Climste<strong>in</strong> M, Pitetti KH, Barrett PJ, Campbell KD. The accuracy of predict<strong>in</strong>g treadmillVO2max for adults <strong>with</strong> mental retardation, <strong>with</strong> and <strong>with</strong>out Down’s syndrome, us<strong>in</strong>g ACSMgender- and activity-specific regression equations. J Intellect Disabil Res. 1993;37:521-3.28 Vlaskamp C, Hiemstra SJ, Wiersma LA & Zijlstra BJH. Extent, duration, and content of dayservices’activities for persons <strong>with</strong> profound <strong>in</strong>tellectual and multiple disabilities. J PolicyPractice Int Dis. 2007;4:152-159.29 Luckasson R, Borthwick-Duffy S, Bunt<strong>in</strong>x W, Coulter D, Craig P, Reeve A. et al. MentalRetardation:Def<strong>in</strong>ition, Classification and Systems of Supports. 2002, American Associationon Mental Retardation, Wash<strong>in</strong>gton.30 Schalock R, Brown I, Brown R, Cumm<strong>in</strong>s RA, Felce D, Matikka L, Keith KD, Parmenter T.Conceptualization, Measurement, and Application of Quality of Life for <strong>Persons</strong> WithIntellectual Disabilities: Report of an International Panel of Experts. Ment Retard2002;40(6):457-470.31 Dutch Society for Doctors <strong>in</strong> Revalidation, 2006, Protocol for diagnosis and treatment ofchildren <strong>with</strong> cerebral palsy and spasticity.32 Dutch Society for Doctors <strong>in</strong> the Care for people <strong>with</strong> an Intellectual Disability (NVAZ)Resistance among people <strong>with</strong> an <strong>in</strong>tellectual disability <strong>in</strong> the framework of the ActGovern<strong>in</strong>g Medical-Scientific Research Involv<strong>in</strong>g Humans, behavioural code for doctors <strong>in</strong> theassessment of resistance among people <strong>with</strong> an <strong>in</strong>tellectual disability, 1999.33 Karvonen MJ, Kentala E, Mustala, O. The effects of tra<strong>in</strong><strong>in</strong>g on heart rate: a longitud<strong>in</strong>alstudy. Ann Med Exp Fenn. 1957;35(3):307-315.34 Fernhall B, Millar AL, Tymeson GT, Burkett LN. Maximal exercise test<strong>in</strong>g of mentally retardedadolescents and adults: reliability study. Arch Phys Med Rehabil. 1990;71(13):1065-8.35 Brennan RL. Generalizability theory. 2001, New York: Spr<strong>in</strong>ger-Verlag36 Vermunt JK & Magidsen J. Latent class models for classification. Computational Statistics &Data Analysis. 2003;41(3-4):531-53737 Vermunt J., Tran B, Magidsen J. Latent class models <strong>in</strong> longitud<strong>in</strong>al research. In: Menard S,editor. Handbook of longitud<strong>in</strong>al research: design, measurement, and analysis Burl<strong>in</strong>gton:Elsevier. 2007:373-385.136 | Chapter 8


38 Multilevel Models Project (2004) A user’s guide to MLwiN [computer program]. Version 2.10.London.39 Putten AAJ van der & C Vlaskamp. Motor activation <strong>in</strong> people <strong>with</strong> PIMD. J App Res Int Dis.2010;23:496.40 Vlaskamp C & Putten AAJ van der. Physical activities <strong>in</strong> people <strong>with</strong> PIMD: when and how arethey offered. J App Res Int Dis. 2010;23: 496.41 Lemmer B. Importance of circadian rhythms for regulation of the cardiovascular systemstudies<strong>in</strong> animal and man. IEEE Eng<strong>in</strong>eer<strong>in</strong>g <strong>in</strong> Medic<strong>in</strong>e and Biology, Annual Conference 1.2006;168-70.42 Schroeder A, Loh DH, Jordan MC, Roos KP, Colwell CS. Circadian Regulation ofCardiovascular Function: a role for vasoactive <strong>in</strong>test<strong>in</strong>al peptide. J Am Phys Heart Circ Phys.2010; 15. [Epub ahead of pr<strong>in</strong>t]43 Sijtsema JJ, Veenstra R, L<strong>in</strong>denberg S, Van Roon AM, Verhulst FC, Ormel J,Riese H. Mediation of Sensation Seek<strong>in</strong>g and Behavioral Inhibition on the RelationshipBetween Heart Rate and Antisocial Behavior: The TRAILS Study. J Am Acad Child AdolescPsychiatry. 2010;49:493-501.44 Ortiz J & Ra<strong>in</strong>e A. Heart rate level and antisocial behavior <strong>in</strong> children and adolescents: ameta-analysis. J Am Acad Child Adolesc Psychiatry. 2004;43:154-162.45 Ra<strong>in</strong>e A. Annotation: the role of prefrontal deficits, low autonomic arousal, and early healthfactors <strong>in</strong> the development of antisocial and aggressive behavior <strong>in</strong> children. J Child PsycholPsychiatry. 2002;43:417-434.46 Vos P, De Cock P, Petry K, Van Den Noortgate W, Maes B. Do You Know What I Feel? A FirstStep Towards a Physiological Measure of the Subjective Well-Be<strong>in</strong>g of <strong>Persons</strong> With <strong>Profound</strong>Intellectual and Multiple Disabilities. J App Res Int Dis. 2010;23:366–378.Chapter 8 | 137


138 | Chapter 9


Chapter 9General DiscussionChapter 9 | 139


As this thesis is comprised of multiple studies related to psychometric characteristics ofmeasurements concepts when test<strong>in</strong>g for a multiple disabled target group, a solid overview ofthe results and their relations is a necessary and natural last step. This discussion is roughlydivided <strong>in</strong>to four parts. The first part touches upon general f<strong>in</strong>d<strong>in</strong>gs, which deal <strong>with</strong> classification,test sett<strong>in</strong>g and adjustments <strong>in</strong> formulas. Then, this discussion goes <strong>in</strong>to more detail discuss<strong>in</strong>gresults grouped per studied concept: body composition, functional exercise and aerobic capacity,balance, flexibility and <strong>physical</strong> activity respectively. Additionally, the third part deals <strong>with</strong> themethodological issues encountered dur<strong>in</strong>g research; lack of standards and cutt-off scores, smallsample size and heterogeneity of the study population. The f<strong>in</strong>al part of this discussion seeks togive an overview of the implications of the different studies comprised <strong>in</strong> this thesis, as well as to<strong>in</strong>dicate recommended areas of further research.General F<strong>in</strong>d<strong>in</strong>gsClassification and Test Sett<strong>in</strong>gThe subjects of this thesis have severe or profound <strong>in</strong>tellectual as well as visual disabilities andthe study population is thus referred to as persons <strong>with</strong> severe or profound <strong>in</strong>tellectual andmultiple disabilities (SPIMD). The term ‘multiple’ <strong>in</strong>cludes locomotor disabilities, neurologicalproblems, sensory disabilities, and/or problems <strong>with</strong> food <strong>in</strong>gestion.An important topic that came up dur<strong>in</strong>g the studies of this thesis [all chapters] is the importanceof comb<strong>in</strong><strong>in</strong>g both severity of <strong>in</strong>tellectual disabilities as locomotor levels (GMFCS) to classify theabilities of persons <strong>with</strong> severe or profound <strong>in</strong>tellectual disabilities. Only if both classificationsare used, the appropriate <strong>physical</strong> <strong>fitness</strong> tests can be <strong>in</strong>dividually selected. Contrary to commonassumptions, persons <strong>with</strong> profound <strong>in</strong>tellectual disabilities do not automatically have lowlocomotor levels. The ability to walk varies considerably <strong>in</strong> persons <strong>with</strong> severe <strong>in</strong>tellectualdisabilities as well as <strong>in</strong> those <strong>with</strong> profound <strong>in</strong>tellectual disabilities. Specifically, 75 % of thesubjects <strong>with</strong> severe <strong>in</strong>tellectual disabilities were able to walk, leav<strong>in</strong>g 25 % which were not ableto walk. In contrast, 56 % of the subjects <strong>with</strong> profound <strong>in</strong>tellectual disabilities is able to walk,whereas 44 % is not able to walk [1, 2]. Not test<strong>in</strong>g for GMFCS levels thus means ignor<strong>in</strong>g a bigpotential for both research as improvement of <strong>in</strong>dividiual <strong>physical</strong> <strong>fitness</strong>.Also, contrary to common beliefs, persons <strong>with</strong> SPIMD can become accustomed to test andmeasurement situations despite their severe or profound <strong>in</strong>tellectual and multiple disabilities,if optimal test environment and conditions are created. Test<strong>in</strong>g <strong>in</strong> persons <strong>with</strong> SPIMD <strong>in</strong> afeasible, valid and reliable way is possible –albeit challeng<strong>in</strong>g due to the limitations <strong>in</strong> <strong>in</strong>tellectualfunction<strong>in</strong>g, adaptive behaviour [3] visual impairment [4], low motivation and adherent stress [5,6].This thesis made use of environmental cues to counter these limitations. Environmental cues<strong>in</strong>cluded adaptations of exist<strong>in</strong>g test protocols, perform<strong>in</strong>g practice sessions <strong>with</strong> a familiarizationprotocol, test<strong>in</strong>g at the regular <strong>physical</strong> activity hours <strong>in</strong> the regular sports hall accompanied byfamiliar gymnastic <strong>in</strong>structors, who were used to motivate the participants. In addition, the useof a treadmill to assess cardiorespiratory <strong>fitness</strong> is shown to be an effective environmental cue.Follow<strong>in</strong>g theories about perception-action coupl<strong>in</strong>g [7, 8], these environmental cues may havefacilitated the performance of the subjects by both reduc<strong>in</strong>g stress as enhanc<strong>in</strong>g motivation.Technology could be used to develop other environmental cues such as auditive or other sensorystimuli, which may even further ameliorate the test<strong>in</strong>g situation. Future research should focus140 | Chapter 9


on this. To sum up, test<strong>in</strong>g <strong>in</strong> persons <strong>with</strong> SPIMD <strong>in</strong> a feasible, valid and reliable way is possible,if participants are classified accord<strong>in</strong>g to both GMFCS levels and level of disability, and if optimaltest environment and conditions are created.Adjusted FormulasThis thesis has brought forth a couple of important f<strong>in</strong>d<strong>in</strong>gs regard<strong>in</strong>g formulas or equationsapplicable to research on this specific target group. First of all, it proposes a new reliable equationto calculate body height from tibia length [1]. Second, a simple prediction equation is suggestedfor predict<strong>in</strong>g stand<strong>in</strong>g waist circumference from sup<strong>in</strong>e waist circumference measurement [2].The latter equation allows the comparison of sup<strong>in</strong>e measurements of waist circumference <strong>in</strong>disabled persons <strong>with</strong> <strong>in</strong>ternational standards [9]. Third, we also found that the Fernhall’s formula[10, 11] for calculat<strong>in</strong>g peak heart rate for people <strong>with</strong> ID, systematically overestimates peak heartrate for people <strong>with</strong> SIMD [chapter 5]. The subheader “Functional exercise and aerobic capacity”discusses this f<strong>in</strong>d<strong>in</strong>g <strong>in</strong> more detail.Overall, whereas for other specific target groups such as the elderly, children <strong>with</strong> cerebralpalsy, and persons <strong>with</strong> mild or moderate ID feasible and reliable <strong>fitness</strong> tests already wereavailable [5, 12, 13, 14, 15], the feasibility and reliability of <strong>physical</strong> <strong>fitness</strong> measurements and testsfor participants <strong>with</strong> SPIMD had so far not been established. Us<strong>in</strong>g the feasible and reliable <strong>fitness</strong>tests described <strong>in</strong> this thesis, <strong>physical</strong> <strong>fitness</strong> levels can now be objectively evaluated. Moreover,specific <strong>in</strong>terventions aimed at promot<strong>in</strong>g <strong>physical</strong> <strong>fitness</strong> of participants <strong>with</strong> SPIMD can beevaluated objectively as well.Not only does this study thus contribute to exist<strong>in</strong>g literature, it also, quite practicallydelivers tools for the work floor. For <strong>in</strong>stance, the <strong>fitness</strong> tests that were evaluated <strong>in</strong> chapters 2 to8 of this thesis have proven to be feasible, valid and reliable for persons <strong>with</strong> severe or profound<strong>in</strong>tellectual and multiple disabilities, and could thus immediately be implemented <strong>in</strong> daily practice.What follows is a more detailed overview of the results per studied <strong>fitness</strong> concept.Body compositionAnthropometric measurements are widely used to reliably quantify body composition and toestimate risk of overweight <strong>in</strong> both healthy subjects and patients. Body composition of persons<strong>with</strong> ID is described <strong>in</strong> several studies [16, 17, 18]. However, <strong>in</strong>formation about the reliability ofanthropometric measurements <strong>in</strong> persons <strong>with</strong> SIMD had so far not been subject to research. In45 participants <strong>with</strong> SIMD, body mass <strong>in</strong>dex, waist circumference, sk<strong>in</strong>folds, and tibia length weremeasured twice [1]. The results of this study show that for <strong>in</strong>dividuals <strong>with</strong> SIMD and GMFCS levelsI and II, feasibility and test-retest reliability for body composition measurements were acceptable,<strong>with</strong> exception of the sk<strong>in</strong>fold measurements. Body Mass Index is calculated us<strong>in</strong>g body heightand body weight. However, body height is difficult to measure for those subjects unable to standupright. Therefore, a study was set up <strong>in</strong> order to calculate body height from tibia length. Thisstudy [1, chapter 2] revealed a new reliable equation to calculate body height from tibia length.<strong>Measur<strong>in</strong>g</strong> tibia length is more feasible, accurate, and reliable than measur<strong>in</strong>g the total bodyheight of participants <strong>with</strong> SIMD- both for those able to stand as for those not able to do so.Waist circumference as an <strong>in</strong>dicator of abdom<strong>in</strong>al fat is an important predictor of healthrisks and is usually measured <strong>in</strong> stand<strong>in</strong>g position. We found that measur<strong>in</strong>g waist circumference<strong>in</strong> participants <strong>with</strong> SIMD who are able to stand upright is feasible and reliable. However,Chapter 9 | 141


due to motor disabilities, many <strong>in</strong>dividuals <strong>with</strong> PIMD and GMFCS levels IV and V are unable tostand straight or to stand at all. When deal<strong>in</strong>g <strong>with</strong> these participants, waist circumference canonly be measured <strong>with</strong> the participant ly<strong>in</strong>g <strong>in</strong> a sup<strong>in</strong>e position. It had so far been unknownwhether measur<strong>in</strong>g waist circumference of a participant <strong>in</strong> a sup<strong>in</strong>e position is valid and reliable.This issue is particularly relevant when <strong>in</strong>ternational standards [10] for healthy <strong>in</strong>dividualsare applied to the disabled. The results of a test-retest study [2, chapter 3] performed <strong>in</strong> 43participants <strong>with</strong> PIMD and GMFCS levels IV and V <strong>in</strong>dicated that sup<strong>in</strong>e waist circumferencecan be reliably measured for this target group. Our validity study [2, chapter 3] performed <strong>in</strong>160 healthy participants, compared waist circumference obta<strong>in</strong>ed <strong>in</strong> both stand<strong>in</strong>g and sup<strong>in</strong>epositions. This study shows that sup<strong>in</strong>e waist circumference is biased towards higher values (1.5cm) when compared <strong>with</strong> stand<strong>in</strong>g waist circumference. A simple equation could be put forward,which predicts stand<strong>in</strong>g waist circumference based on sup<strong>in</strong>e measurements. Such an equationallows for the comparison of waist circumference measurements of disabled persons <strong>with</strong> the<strong>in</strong>ternational standards [10]. Based on BMI and waist circumference values, 10% of the femaleSPIMD subjects are obese and 39% are abdom<strong>in</strong>al obese, while 0% of the male persons are obeseand only 7% are abdom<strong>in</strong>al obese. Thus, women <strong>with</strong> SPIMD are at a higher risk for develop<strong>in</strong>goverweight related health problems compared to SPIMD classified men. Compared to outcomesof measurements <strong>in</strong> persons <strong>with</strong> mild or moderate ID, persons <strong>with</strong> SPIMD show a more healthybody composition status [18, 19, 20]. Further research <strong>in</strong>to the expla<strong>in</strong><strong>in</strong>g mechanisms beh<strong>in</strong>d this<strong>in</strong>terest<strong>in</strong>g observation is recommended.Another issue related to body composition stems from the fact that children and adultswho have SPIMD and GMFCS level IV or V are often fed by stomach tube [21]. Tube feed<strong>in</strong>g may<strong>in</strong>crease body weight ma<strong>in</strong>ly through fat deposition [22]. Children and adults <strong>with</strong> severe CP haverelatively high body-fat/muscle-content ratio. When the relatively low energy expenditure is alsotaken <strong>in</strong>to account, we see a potential risk of overfeed<strong>in</strong>g [23]. To establish a healthy body weight<strong>in</strong> persons <strong>with</strong> PIMD, it is necessary to take <strong>in</strong>to account both BMI and waist circumference.Rieken et al [24] suggest to use bioelectrical impedance analysis as an alternative measurementof body composition and present a prelim<strong>in</strong>ary cl<strong>in</strong>ical guidel<strong>in</strong>e on diagnos<strong>in</strong>g undernutritionand overnutrition <strong>in</strong> children <strong>with</strong> severe neurological impairment and ID. We recommend thata similar guidel<strong>in</strong>e will be designed for adults <strong>with</strong> SPIMD and GMFCS levels IV and V, so as toprevent over- or undernutrution <strong>in</strong> this target group.Functional exercise and aerobic capacityCardiorespiratory <strong>fitness</strong> can be divided <strong>in</strong>to functional exercise and aerobic capacity [35].Several tests are available for measur<strong>in</strong>g functional exercise and aerobic capacity, <strong>in</strong>clud<strong>in</strong>g thesix-m<strong>in</strong>ute walk<strong>in</strong>g test (6 MWD) and the shuttle run test (SRT). However, it was unclear whetherthese tests are feasible and reliable when test<strong>in</strong>g subjects <strong>with</strong> SIMD.Our studies [10, chapter 4] showed that the 6 MWD is feasible and reliable for test<strong>in</strong>g participants<strong>with</strong> SIMD and GMFCS levels I and II. An adapted SRT (aSRT) performed overground as well as ona treadmill has proven to be feasible and reliable for a target group <strong>with</strong> SIMD and GMFCS level I[chapters 4 and 5]. Moreover, the aSRT performed on a treadmill [chapter 5] appeared to be morevalid for determ<strong>in</strong><strong>in</strong>g peak heart rate than the aSRT performed overground for people <strong>with</strong> SIMDand GMFCS level I. We also found that the Fernhall’s formula [11] for calculat<strong>in</strong>g peak heart rateof subjects <strong>with</strong> ID systematically overestimates peak heart rate of subjects classified <strong>with</strong> SIMD.Thus,142 | Chapter 9


for future research it is recommended to adjust this equation so as to ensure a valid prediction ofthe maximal heart of this specific group.Furthermore, we compared the achieved mean distance <strong>in</strong> the 6MWD of our participants<strong>with</strong> values reported <strong>in</strong> other studies [25, 26, 27]. This comparison <strong>in</strong>dicated that persons <strong>with</strong>SIMD perform poorer on the 6MWD than those <strong>with</strong> other specific (chronic) health conditions<strong>in</strong>clud<strong>in</strong>g heart failure or COPD. The poor 6MWD results we observed suggest that the lowfunctional exercise capacity of <strong>in</strong>dividuals <strong>with</strong> SIMD is a serious health problem, which <strong>in</strong> turn cannegatively affect their <strong>in</strong>dependence <strong>in</strong> day-to-day activities.Based on this result, further research should be directed towards develop<strong>in</strong>g, implement<strong>in</strong>gand evaluat<strong>in</strong>g <strong>in</strong>terventions aimed at <strong>in</strong>creas<strong>in</strong>g functional exercise and aerobic capacity of SIMDclassified subjects thereby reduc<strong>in</strong>g related health problems.BalanceSufficient balance is necessary to perform daily activities. However, <strong>in</strong>dividuals <strong>with</strong> SIMD areparticularly at risk when it comes to the development of deficits <strong>in</strong> locomotor skills [28] and arelikely to have decreased balance. Yet, the feasibility and reliability of balance tests for subjects<strong>with</strong> SIMD had so far not been subject of research. The Berg Balance Scale (BSS) is a widely usedtest to quantify balance. Our study [29, chapter 6] revealed a sufficient percentage of successfulmeasurements by the modified BBS (mBBS), <strong>in</strong>dicat<strong>in</strong>g this test to be a feasible <strong>in</strong>strument fortest<strong>in</strong>g subjects <strong>with</strong> SIMD and GMFCS levels I and II. In addition, <strong>with</strong> exception of two out of thetwelve mBBS tasks to be performed by the participants, reliability for test and retest appeared tobe sufficient.In the BBS, a score of 80% (45 po<strong>in</strong>ts) <strong>in</strong>dicates sufficient balance [30]. As its modifications<strong>in</strong>fluence the cut-off value, it was impossible to apply the same cut-off value to the mBBS. Acomparison <strong>with</strong> scores <strong>in</strong> other target groups was hence not possible. Future research should bedirected towards establish<strong>in</strong>g accurate cut-off values.FlexibilityMuscle flexibility is a relevant part of <strong>physical</strong> <strong>fitness</strong> and can be measured us<strong>in</strong>g the ModifiedAshworth Scale (MAS) and the Modified Tardieu Scale (MTS). The results of our study [31, chapter7] showed the feasibility of the MAS and MTS to be sufficient for test<strong>in</strong>g participants <strong>with</strong> PIMD.For both <strong>in</strong>ter and <strong>in</strong>trarater reliability, measurements of the MAS revealed acceptable agreement.However, the measurements of the MTS showed <strong>in</strong>sufficient agreement for both test-retest and<strong>in</strong>terrater reliability.For our target group the MAS showed a better test-retest and <strong>in</strong>terrater reliability than theMTS, which contradicts the results of both Gielen [32] and Mehrholz et al. [33] who found theopposite to be true for subjects <strong>with</strong> respectively ID and adult patients <strong>with</strong> severe bra<strong>in</strong> <strong>in</strong>jury.In their studies the psychometric properties of the MTS were better than those of the MAS. Ourmeasurements of the MTS however, put forward LOAs not narrow enough to <strong>in</strong>dicate agreementbetween the two measurements of the same subject, lead<strong>in</strong>g us to conclude the LOAs for the MTSmeasurements to be cl<strong>in</strong>ically unacceptable.Other authors [34] have suggested the MTS to be a more appropriate cl<strong>in</strong>ical measure ofspasticity than the MAS. We thus assessed whether the LOA of the MTS measurements of oursubjects <strong>with</strong> spasticity was narrower than that of our subjects <strong>with</strong>out spasticity.Chapter 9 | 143


Yet, no difference was found between these groups. For our target group, <strong>in</strong>clud<strong>in</strong>g thosesuffer<strong>in</strong>g from spasticity, MAS seems the preferred measurement <strong>in</strong>strument. This preferencemay be accounted for by the <strong>in</strong>teraction beween multiple disabilities <strong>in</strong> our study population,which may differ <strong>in</strong> that respect from the study populations those of Mehrholz [34] and Gielen[33].However, the validity of the aforementioned <strong>in</strong>struments for measur<strong>in</strong>g spasticity andmuscle tone is beyond the scope of this study. We recommend the validity of the MAS to beexam<strong>in</strong>ed <strong>in</strong> future studies, <strong>with</strong> a focus on measur<strong>in</strong>g the quality of daily movement rather thanmeasur<strong>in</strong>g spasticity, as the MAS may be more suitable for measur<strong>in</strong>g the first.Physical activityDaily <strong>physical</strong> activity contributes directly to health [35] and is an important factor <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>gand improv<strong>in</strong>g <strong>physical</strong> <strong>fitness</strong>. Monitor<strong>in</strong>g daily <strong>physical</strong> <strong>fitness</strong> <strong>in</strong> persons <strong>with</strong> SPIMD is thus animportant step <strong>in</strong> identify<strong>in</strong>g those at health risks.Our research [chapter 8] has shown that daily <strong>physical</strong> activity can be reliably monitoredthrough measur<strong>in</strong>g heart rate patterns. Yet, further exploration of other <strong>in</strong>fluential factors suchas emotions [36] is still recommended. Time of day and age have considerable <strong>in</strong>fluence on heartrate patterns. However, the analysis of heart rate patterns suggests other, probably more personalfactors to have a significant <strong>in</strong>fluence on heart rate patterns [37] which can be explored <strong>in</strong> futureresearch. F<strong>in</strong>ally, our study shows that based on measur<strong>in</strong>g heart rate patterns, <strong>in</strong>dividuals<strong>with</strong> PIMD do not meet the standards of sufficient activity as proposed by the guidel<strong>in</strong>es of theAmerican College of Sports Medic<strong>in</strong>e [38]. Future research can shed a light on the suitability andvalidity of these guidel<strong>in</strong>es for a population <strong>with</strong> PIMD or SPIMD.Methodological issuesThe first methodological issue we encountered had to do <strong>with</strong> the lack of a golden standard.As validity can only be exam<strong>in</strong>ed aga<strong>in</strong>st a golden standard, it would have been convenient anddesirable for a golden standard to be available for every s<strong>in</strong>gle <strong>in</strong>strument measur<strong>in</strong>g a certa<strong>in</strong>concept. Yet realistically, golden standards for our research population are unfortunately simplynot available. If feasible, we attempted to assess validity, for example by perform<strong>in</strong>g a supramaximal block test on the treadmill.Moreover, often neither standard values nor cut-off scores are available, as was the case for theaSRT nor the mBBS.Another methodological issue is related to statistical power. Due to both the relativelysmall group of persons <strong>with</strong> SPIMD and a number of exclusion criteria, a rather small numberof subjects were able to participate <strong>in</strong> the studies described <strong>in</strong> this thesis. However, despite therelatively small study groups the test-retest reliability of mBBS, walk<strong>in</strong>g tests, bodycompositionmeasurements and the MAS were comparable to those of other and larger target groups. In futureresearch, more care facilities and thus subjects should be <strong>in</strong>cluded and classified on both of levelof ID and locomotor skills. This may improve sample size and thereby power. Then it might bepossible to formulate golden standards, group specific standard values and cut-off scores, <strong>with</strong>which the validity of tests can be exam<strong>in</strong>ed and the testscores can be compared.Despite the fact that only cross-sectional designs are used <strong>in</strong> this research, we will touchupon the problems of heterogeniety <strong>in</strong> samples <strong>with</strong> SPIMD <strong>in</strong> the framework of <strong>in</strong>tervention144 | Chapter 9


studies. Randomized Controlled Trials (RCT’s) are considered to be the most reliable and valid wayto perform <strong>in</strong>tervention studies <strong>in</strong> various populations. Comparison between groups is thought toreflect differences <strong>in</strong> effect of the <strong>in</strong>terventions. The required sample size <strong>in</strong> RCT’s depends partlyon the variation between participants: a large variation calls for a larger sample size. Therefore,many studies <strong>in</strong>clude homogeneous groups. However, due to the variety of their co-morbidities,it is difficult to compose a homogeneous study population <strong>with</strong> sufficient power composedof persons <strong>with</strong> SPIMD. Neither is it possible to compose a large heterogeneous SPIMD studypopulation. As a consequence, both the experimental and control group will consist of participants<strong>with</strong> much variation <strong>in</strong> their co-morbidities, result<strong>in</strong>g <strong>in</strong> a wide array of responses to the same<strong>in</strong>tervention. In such circumstances detect<strong>in</strong>g significant effects of an <strong>in</strong>tervention is ratherdifficult. An anecdote from practical experience will illustrate this.To subject three participants <strong>with</strong> SPIMD to passive or assistive active movements, poweredexercise equipment (Shapemaster®, Barth Fidder, Shapemaster Benelux) was used. Thesemach<strong>in</strong>es are fitted <strong>with</strong> motors and gearboxes, and controlled by microchip technology. Themach<strong>in</strong>es automatically move selected levers and handles at pre-determ<strong>in</strong>ed speeds through apre-determ<strong>in</strong>ed range of motion. Each mach<strong>in</strong>e provides multi-function movements. The outcomemeasures are bodycomposition, muscle tone, heart rate, oxygen saturation and alertness [39]. Atthe <strong>in</strong>dividual level, relevant improvements were found for the different outcome measures.1. A woman of 38 years old, <strong>with</strong> profound ID, GMFCS level IV, no spasticity, totally bl<strong>in</strong>d,epilepsy, and be<strong>in</strong>g overweight, participated <strong>in</strong> the study. Her BMI before the <strong>in</strong>terventionwas 27.7 kg/cm 2 , after the <strong>in</strong>tervention 26.2 kg/cm 2 , which means a difference of 1.5 kg/cm 2 .Her waist circumference decreases from 89 cm, which means abdom<strong>in</strong>al obesitas, to 83 cm,which is <strong>in</strong>dicat<strong>in</strong>g ‘healthy weight but attention needed’ [7]. Oxygen saturation dur<strong>in</strong>g andafter mov<strong>in</strong>g on the mach<strong>in</strong>es <strong>in</strong>creased from 95% before the <strong>in</strong>tervention program, to 99 %after 20 weeks. However, muscle tone, alertness and hart frequency showed no differences.2. A girl of 17 years old, <strong>with</strong> profound ID, GMFCS level V, severe partially sighted, <strong>with</strong>spasticity, epilepsy and orthopedic defects also participated <strong>in</strong> the study. Her muscle tone<strong>in</strong> the legs decreased <strong>in</strong> 20 weeks <strong>with</strong> two po<strong>in</strong>ts on the six po<strong>in</strong>t scale of the ModifiedAshworth Scale. After every <strong>in</strong>crease <strong>in</strong> <strong>in</strong>tensity <strong>in</strong> a five weeks period, her heart rate<strong>in</strong>creased first one or two heart rate zones dur<strong>in</strong>g mov<strong>in</strong>g, but after three weeks, heart ratedecreased aga<strong>in</strong> to the first level. This might <strong>in</strong>dicate a tra<strong>in</strong><strong>in</strong>g effect. However, saturation,alertness, BMI and waist circumference showed no differences.3. A man of 43 years old, <strong>with</strong> profound ID, GMFCS level V, totally bl<strong>in</strong>d, spasticity, epilepsy,and orthopedic defects, also participated <strong>in</strong> the study. His muscle tone <strong>in</strong> both arms andlegs decreased <strong>in</strong> 20 weeks <strong>with</strong> one po<strong>in</strong>t on the six po<strong>in</strong>t scale of the Modified AshworthScale. Oxygen saturation dur<strong>in</strong>g mov<strong>in</strong>g on the mach<strong>in</strong>es <strong>in</strong>creased from 91% before the<strong>in</strong>tervention program, to 95 % after 20 weeks. BMI decreased after the <strong>in</strong>tervention <strong>with</strong>0.5 kg/cm 2 , but before and after the <strong>in</strong>tervention he already had a healthy BMI. Alertness<strong>in</strong>creased dur<strong>in</strong>g <strong>in</strong>tervention <strong>with</strong> one po<strong>in</strong>t on a four po<strong>in</strong>t scale [39]. However, heart rateshowed no differences dur<strong>in</strong>g and after the <strong>in</strong>tervention period.As shown, <strong>in</strong>dividuals benefit from the <strong>in</strong>tervention but not <strong>in</strong> the same way nor to the sameextent. Individual differences <strong>in</strong> characteristics of locomotor skills, visual impairment, comorbidities,and basel<strong>in</strong>e measurements of the outcome measures account for this result. Yet,there were benefits, albeit different ones for different subjects. In group comparison studies therelevant <strong>in</strong>dividual benefits can be overlooked. Consequently, next to traditional research designs,Chapter 9 | 145


alternative research designs such as multiple case studies or program evaluation and adherentstatistical analysis [40, 41] should be used for <strong>in</strong>tervention studies aimed at participants <strong>with</strong>SPIMD.ImplicationsIn the <strong>in</strong>troduction we presented an <strong>in</strong>tegration of models and concepts describ<strong>in</strong>g quality of life,participation, <strong>physical</strong> well-be<strong>in</strong>g, <strong>physical</strong> <strong>fitness</strong>, <strong>physical</strong> activity and health, so as to illustratetheir mutual relatedness (figure 1).Quality of lifeIParticipationPhysical well-be<strong>in</strong>gIIIPhysical activityPhysical <strong>fitness</strong>HealthFigure 1. Integration of models and concepts of participation, quality of life, <strong>physical</strong> well-be<strong>in</strong>g, <strong>physical</strong> activity,<strong>physical</strong> <strong>fitness</strong>, and health [3, 35, 42, 43, 44].As we put forward <strong>in</strong> the <strong>in</strong>troduction, out of the concepts <strong>in</strong>troduced <strong>in</strong> this model, thisthesis ma<strong>in</strong>ly focused on the measurement of <strong>physical</strong> activity and <strong>fitness</strong>, operationalized bybody composition, functional exercise and aerobic capacity, balance, muscle flexibility and heartrate patterns.Now that <strong>physical</strong> <strong>fitness</strong> and <strong>physical</strong> activity can be evaluated <strong>in</strong> persons <strong>with</strong> SPIMD, thenext step to take <strong>in</strong> future research is to look at the relation of <strong>physical</strong> activity and <strong>fitness</strong> <strong>with</strong>the concepts on the right hand side of the figure, <strong>in</strong>clud<strong>in</strong>g health, <strong>physical</strong> well-be<strong>in</strong>g, and qualityof life. Also, further research should elaborate on the relation between phyiscal <strong>fitness</strong> and theconcepts <strong>in</strong> the left hand side of the figure, <strong>in</strong>clud<strong>in</strong>g participation. This however can be a hardnut to crack, as evidence on the concept of participation is lack<strong>in</strong>g. The direct relation between<strong>physical</strong> activity / <strong>fitness</strong> and participation <strong>in</strong> persons <strong>with</strong> SPIMD has so far been unknown as thelevel of participation is difficult to def<strong>in</strong>e and quantify for this specific group[45]. The question iswhether persons <strong>with</strong> SPIMD are really able to participate <strong>in</strong> daily activities. Can they take part <strong>in</strong>or have <strong>in</strong>fluence on situations and contexts important to them personally? A complicat<strong>in</strong>g factor<strong>in</strong> this respect is the fact that these persons are often not able to verbalize what is importantto them and, what’s more, to verbalize what to them ‘tak<strong>in</strong>g part’ or ‘hav<strong>in</strong>g <strong>in</strong>fluence’ actuallymeans. It is often observed that a person merely sitt<strong>in</strong>g <strong>in</strong> a wheelchair placed <strong>in</strong> an activity room<strong>with</strong> others, is considered to ‘take part’ <strong>in</strong> that activity or society [45]. Or does “participation”146 | Chapter 9


of these <strong>in</strong>dividuals require more? It is imperative and essential to <strong>in</strong>vestigate to which extent aperson <strong>with</strong> SPIMD really participates <strong>in</strong> liv<strong>in</strong>g habits, ‘work’, leisure activities, sports etc. However,so far knowledge on this topic is not available neither are <strong>in</strong>struments aimed at <strong>in</strong>vestigat<strong>in</strong>g theconcept of participation <strong>in</strong> persons <strong>with</strong> SPIMD.RecommendationsThe vast majority of recommendations for future research have been mentioned previouslyeitherunder the studied concepts or <strong>in</strong> general f<strong>in</strong>d<strong>in</strong>gs. These however all amount to a call fortailored <strong>in</strong>terventions. Interventions aim<strong>in</strong>g at promot<strong>in</strong>g <strong>physical</strong> <strong>fitness</strong> are generally carriedout <strong>with</strong> participants suffer<strong>in</strong>g from mild or moderate ID. Perform<strong>in</strong>g similar <strong>in</strong>terventions <strong>with</strong>participants classified as hav<strong>in</strong>g severe or profound ID is thought to be more difficult, firstlybecause of the assumption that most of these persons are not able to walk, and secondly becausethese persons have more problems understand<strong>in</strong>g the tasks required of them. We recommenddevelop<strong>in</strong>g, perform<strong>in</strong>g and evaluat<strong>in</strong>g tailored <strong>in</strong>terventions geared to promote <strong>physical</strong> activityand <strong>fitness</strong> <strong>in</strong> persons <strong>with</strong> severe or profound ID who may or may not be able to walk. Asenvironmental cues facilitate performance <strong>in</strong> persons <strong>with</strong> SPIMD, exam<strong>in</strong><strong>in</strong>g environmental cuesprovided by technological adaptations, like auditive or other pleasant sensory stimuli can be ofsignificant help.As knowledge on the concept of participation of <strong>in</strong>dividuals <strong>with</strong> SPIMD is lack<strong>in</strong>g, furtherresearch should aim on feasible <strong>in</strong>struments to identify and quantify outcome measures ofparticipation. Furthermore, research aimed on explor<strong>in</strong>g the relations between <strong>physical</strong> <strong>fitness</strong>and <strong>physical</strong> activity on one side, and participation on the other, is recommended.Previous paragraphs have discussed the shortcom<strong>in</strong>gs, questions and suggestions that cameup dur<strong>in</strong>g the various studies comprised by this thesis. This thesis functions as a basic first step toenhance and strenghten the role of <strong>physical</strong> activity and <strong>fitness</strong> for this target group, by enabl<strong>in</strong>gsound academic test<strong>in</strong>g of <strong>physical</strong> <strong>fitness</strong>. We strongly advocate to consider the major role<strong>physical</strong> activity and <strong>fitness</strong> can play <strong>in</strong> well-be<strong>in</strong>g.Chapter 9 | 147


References1 Wan<strong>in</strong>ge A, van der Weide W, Evenhuis IJ, van Wijck R, van der Schans CP. Feasibility andreliability of body composition measurements <strong>in</strong> adults <strong>with</strong> severe <strong>in</strong>tellectual and sensorydisabilities. J Intellect Disabil Res. 2009;53(4):377-88.2 Wan<strong>in</strong>ge A, Ligthart KA, Kramer J, Hoeve S, van der Schans CP, Haisma HH. <strong>Measur<strong>in</strong>g</strong> waistcircumference <strong>in</strong> disabled adults. Res <strong>in</strong> Dev Dis. 2010;31(3):839-47.3 Schalock R, Brown I, Brown R, Cumm<strong>in</strong>s RA, Felce D, Matikka L, Keith KD, Parmenter T.Conceptualization, Measurement, and Application of Quality of Life for <strong>Persons</strong> WithIntellectual Disabilities: Report of an International Panel of Experts. Ment Retard.2002;40(6):457-470.4 Van Splunder J, Stilma JS, Bernsen RM & Evenhuis HM. Prevalence of visual impairment<strong>in</strong> adults <strong>with</strong> <strong>in</strong>tellectual disabilities <strong>in</strong> the Netherlands: cross-sectional study. Eye (Lond).2006;9:1004-10.5 R<strong>in</strong>tala P, Dunn JM, McCubb<strong>in</strong> JA, Qu<strong>in</strong>n C. Validity of a cardiorespiratory <strong>fitness</strong> test formen <strong>with</strong> mental retardation. Med Sci Sports Exerc 1992;24(8):941-5.6 Frey GC, Buchanan AM, Rosser Sandt DD. “I’d rather watch TV”: an exam<strong>in</strong>ation of <strong>physical</strong>activity <strong>in</strong> adults <strong>with</strong> mental retardation. Ment Retard. 2005;43(4):241-54.7 Newell KM. Constra<strong>in</strong>ts on the development of coord<strong>in</strong>ation. In Motor Development <strong>in</strong>Children: Aspects of Coord<strong>in</strong>ation and Control . In: M.G.Wade & H.T.A.Whit<strong>in</strong>g, editor.Dordrecht, Netherlands: Mart<strong>in</strong>us Nijhoff;.1986;341-60.8 Davids K, Button C, Bennett S. Dynamics of Skill Acquisition, a constra<strong>in</strong>ts-led approach.2008, Human K<strong>in</strong>etics, Champaign, IL.9 World Health Organization, Waist circumference. 2006, World Health Organization.10 Wan<strong>in</strong>ge A., Evenhuis IJ, van Wijck R, van der Schans CP. Feasibility and reliability of twodifferent walk<strong>in</strong>g tests <strong>in</strong> subjects <strong>with</strong> severe <strong>in</strong>tellectual and sensory disabilities. Acceptedfor publication <strong>in</strong> Journal of Applied Research <strong>in</strong> Intellectual Disabilities, July 201011 Fernhall B, McCubb<strong>in</strong> J A, Pitetti KH, R<strong>in</strong>tala P, Rimmer JH, Millar AL, De Silva A. Predictionof maximal heart rate <strong>in</strong> <strong>in</strong>dividuals <strong>with</strong> mental retardation. Med Sci Sports Exerc.2001;33:1655-1660.12 Millar AL, Fernhall B, Burkett LN. Effects of aerobic tra<strong>in</strong><strong>in</strong>g <strong>in</strong> adolescents <strong>with</strong> Downsyndrome. Med Sci Sports Exerc.1993;25(2):270-4.13 Verschuren O, Takken T, Ketelaar M, Gorter JW, Helders PJM. Reliability and validity ofdata for 2 newly developed shuttle run tests <strong>in</strong> children <strong>with</strong> cerebral palsy. Physical Therapy.2006;86:1107-1117.14 Troosters T, Gossel<strong>in</strong>k R, Decramer M. Six m<strong>in</strong>ute walk<strong>in</strong>g distance <strong>in</strong> healthy elderlysubjects. Eur Resp Journal. 1999;14:270-274.15 Berg K. Balance and its measure <strong>in</strong> the elderly: a review. Phys Can. 1989;41:240-6.16 Bhaumik S, Watson JM, Thorp CF, Tyrer F, Mc Grother CW. Body mass <strong>in</strong>dex <strong>in</strong> adults <strong>with</strong><strong>in</strong>tellectual disability: distribution, association and service implications: a population-basedprevalence study. J Intellect Disabil Res. 2008;52(Pt 4):287-98.17 Frey GC & Chow B. Relationship between BMI, <strong>physical</strong> <strong>fitness</strong>, and motor skills <strong>in</strong> youth <strong>with</strong>mild <strong>in</strong>tellectual disabilities. Int J Obes. 2006;30:861-867.18 Knijff-Raeven van AGM, Jansen-Jacobs CCM, Freen PJW, Hoekman J, Maaskant MA. BodyMass Index (BMI) bij mensen met een verstandelijke beperk<strong>in</strong>g. Nederlands Tijdschrift voorde Zorg aan mensen met verstandelijke beperk<strong>in</strong>gen. 2005;1:3-17.148 | Chapter 9


19 Laht<strong>in</strong>en U, R<strong>in</strong>tala P, Mal<strong>in</strong> A. Physical performance of <strong>in</strong>dividuals <strong>with</strong> <strong>in</strong>tellectual disability:a 30 year follow up. Adapt Phys Act Q. 2007;24: 125-143.20 McGuire BE, Daly P, Smyth F. Lifestyle and health behaviours of adults <strong>with</strong> an <strong>in</strong>tellectualdisability. J Intellect Disabil Res. 2007;51(Pt 7):497-510.21 Stevenson RD, Conaway M, Chumlea WC, Rosenbaum, O’Donnell, Samson-Fang L, Stall<strong>in</strong>gsVA, Fung EB, Henderson RC, Worley G, Liptak G. Growth and Health <strong>in</strong> Children WithModerate-to-<strong>Severe</strong> Cerebral Palsy. Pediatrics. 2006;118:1010-101822 Kong CK & Wong HS. Weight-for-height values and limb anthropometric composition of tubefedchildren <strong>with</strong> quadriplegic cerebral palsy. Pediatrics. 2005;116, 839-845.23 Sullivan PB, Alder N, Bachlet AM Grant H, Juszczak E, Henry J, Vernon-Roberts A, Warner J,Wells J. Gastrostomy feed<strong>in</strong>g <strong>in</strong> cerebral palsy: Too much of a good th<strong>in</strong>g. Dev Med ChildNeurol. 2006;48:877-82.24 Rieken R. Assess<strong>in</strong>g body composition and energy expenditure <strong>in</strong> children <strong>with</strong> severeneurological impairment and <strong>in</strong>tellectual disability. 2010, Optima Grafische Communicatie,Rotterdam.25 Troosters T, Vilaro J, Rab<strong>in</strong>ovich R, Casas A, Barbera JA, Rodriguez-Rois<strong>in</strong> R. Physiologicalresponses to the 6-m<strong>in</strong> walk test <strong>in</strong> patient <strong>with</strong> chronic obstructive pulmonary disease. EurResp Journal. 2002;20:564-569.26 Faggiano P, D’Aloia A, Gualena A, Lavatelli A, Giordano A. Assessment of oxygen uptakedur<strong>in</strong>g the 6-m<strong>in</strong>ute walk<strong>in</strong>g test <strong>in</strong> patients <strong>with</strong> heart failure: prelim<strong>in</strong>ary experience <strong>with</strong> aportable device. Am Heart Journal.1997;134: 203-206.27 Onorati P, Antonucci R, Valli G, Berton E, De Marco F, Serra P. Non-<strong>in</strong>vasive evaluation of gasexchange dur<strong>in</strong>g a shuttle walk<strong>in</strong>g test vs. a 6-m<strong>in</strong> walk<strong>in</strong>g test to assess exercise tolerance<strong>in</strong> COPD patients. Eur J Appl Phys. 2003;89:331-336.28 Evenhuis HM, Sjoukes L, Koot HM, Kooijman AC. Does visual impairment lead to additionaldisability <strong>in</strong> adults <strong>with</strong> <strong>in</strong>tellectual disabilities? J Intellect Disabil Res. 2009;53(1):19-28.29 Wan<strong>in</strong>ge A, van Wijck R, Steenbergen B, van der Schans CP. Feasibility and reliability ofa modified Berg Balance Scale <strong>in</strong> persons <strong>with</strong> severe <strong>in</strong>tellectual and sensory disabilities.J.Int Disabil Res. 2011;55(3):292-301.30 Berg K, Wood-Dauph<strong>in</strong>ee S, Williams JI, Maki B. <strong>Measur<strong>in</strong>g</strong> Balance <strong>in</strong> the Elderly: Prelim<strong>in</strong>arydevelopment of an Instrument. Physiotherapy Canada. 1989;41:304-311.31 Wan<strong>in</strong>ge A, Rook RA, Dijkhuizen A, Gielen E, van der Schans CP. Feasibility, test-retestreliability and <strong>in</strong>terrater reliability of the Modified Ashworth Scale and Modified TardieuScale <strong>in</strong> persons <strong>with</strong> profound <strong>in</strong>tellectual and multiple disabilities. Res Dev Dis.2011;32(2):613-620.32 Gielen EJJM. Is spasticiteit te meten bij mensen met een verstandelijke beperk<strong>in</strong>g?Een betrouwbaarheids- en validiteitsonderzoek van de Modified Ashworth Scale en deTardieu Schaal bij mensen met een verstandelijke beperk<strong>in</strong>g. Scriptie <strong>in</strong> het kader van decursus Schol<strong>in</strong>g <strong>in</strong> Wetenschap III; Amersfoort, Nederlands Paramedisch Instituut, 2005.33 Mehrholz J, Wagner K, Meiβner D, Grundmann K, Zange C, Koch R, Pohl M. Reliability ofthe Modified Tardieu Scale and the Modified Ashworth Scale <strong>in</strong> adults patients <strong>with</strong> severebra<strong>in</strong> <strong>in</strong>jury: a comparison study. Cl<strong>in</strong>ic Rehabili. 2005;19:751.34 Haugh AB, Pandyan AD, Johnson GR. A systematic review of the Tardieu Scale for themeasurement of spasticity. Dis Rehabil. 2006;28:899-907.Chapter 9 | 149


35 Bouchard C, Shepard RJ, Stephens T. Physical activity, Fitness and Health. 1994, HumanK<strong>in</strong>etics Publishers, ChampaignIL.36 Vos P, De Cock P, Petry K, Van Den Noortgate W, Maes B. Do You Know What I Feel? A FirstStep Towards a Physiological Measure of the Subjective Well-Be<strong>in</strong>g of <strong>Persons</strong> With <strong>Profound</strong>Intellectual and Multiple Disabilities. J App Res Int Dis. 2010;23:366–378.37 Ra<strong>in</strong>e A. Annotation: the role of prefrontal deficits, low autonomic arousal, and early healthfactors <strong>in</strong> the development of antisocial and aggressive behavior <strong>in</strong> children. J Child PsycholPsychiatry. 2002;43:417-434.38 American College of Sports Medic<strong>in</strong>e Position Stand. The recommended quantity and qualityof exercise for develop<strong>in</strong>g and ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g cardiorespiratory and muscular <strong>fitness</strong>, andflexibility <strong>in</strong> healthy adults. Med Sci Sports Exerc. 1998;30: 975-91.39 Munde VS, Vlaskamp C, Ruijssenaars AJ, Nakken H. Alertness <strong>in</strong> <strong>in</strong>dividuals <strong>with</strong> profound<strong>in</strong>tellectual and multiple disabilities: a literature review. Res Dev Disabil. 2009;30(3):462-80.40 St Pierre RG, Rossi PH. Randomize groups, not <strong>in</strong>dividuals: a strategy for improv<strong>in</strong>g earlychildhood programs. Eval Rev. 2006;30(5):656-85.41 Y<strong>in</strong> RK. Enhanc<strong>in</strong>g the quality of case studies <strong>in</strong> health services research. Health Serv Res.1999;34(5 Pt 2):1209-24.42 Kramer AF, Hahn S, Cohen NJ, Banich MT, McAyley E, Harrison CR, Chason J, Vakil E, BardellL, Boileau RA, Colcombe A. Age<strong>in</strong>g, <strong>fitness</strong> and neurocognitive function. Nature.1999;400:418-41943 Sitskoorn, MM. Het plastische bre<strong>in</strong>; <strong>in</strong>vloed van gedrag. De Psycholoog. 2005;40(5):262-267.44 Colcombe S, Erickson KI, Raz N, Webb AG, MC Auley EB, Kramer AF. Aerobic <strong>fitness</strong> reducesbra<strong>in</strong> tissue loss <strong>in</strong> ag<strong>in</strong>g humans. J Gerontol. 2003;58:176-180.45 Kiestra T. (2005), De unieke handicap, referentiemodel voor meervoudige beperk<strong>in</strong>gen,Bedum, Scholma Druk, ISBN 9080638420.150 | Chapter 9


SummarySummary | 151


IntroductionPhysical <strong>fitness</strong>, <strong>physical</strong> activity and health are related <strong>in</strong> the sense that good <strong>physical</strong> <strong>fitness</strong>and a sufficient level of <strong>physical</strong> activity may improve both mental and <strong>physical</strong> health. In turn,good <strong>physical</strong> <strong>fitness</strong> and health may have a positive effect on wellbe<strong>in</strong>g, participation, and qualityof life.Therefore, it is imperative to ga<strong>in</strong> a comprehensive <strong>in</strong>sight <strong>in</strong>to <strong>physical</strong> <strong>fitness</strong> and <strong>physical</strong>activity levels of persons <strong>with</strong> severe or profound <strong>in</strong>tellectual and visual (multiple) disabilities(SPIMD). These persons are at risk to develop health problems and are <strong>in</strong> danger of be<strong>in</strong>gexcluded from many situations and opportunities usually available to people not suffer<strong>in</strong>g from<strong>in</strong>tellectual disabilities (ID). However, due to limitations <strong>in</strong> <strong>in</strong>tellectual function<strong>in</strong>g and adaptivebehaviour on one hand, and visual and locomotor function<strong>in</strong>g on the other hand, the level ofhealth-related <strong>physical</strong> <strong>fitness</strong> of persons <strong>with</strong> SPIMD is difficult to quantify <strong>in</strong> a feasible, valid andreliable manner. As a consequence, knowledge of the <strong>physical</strong> <strong>fitness</strong> levels and locomotor skills ofpersons <strong>with</strong> SPIMD is scarce.Thus, the purpose of this thesis is to exam<strong>in</strong>e the feasibility, validity and reliability of <strong>physical</strong><strong>fitness</strong> tests for persons <strong>with</strong> SPIMD.<strong>Persons</strong> <strong>with</strong> <strong>in</strong>tellectual disabilitiesFour levels of ID can be dist<strong>in</strong>guished: mild, moderate, severe or profound. Adults <strong>with</strong> severe IDhave an <strong>in</strong>tellectual age rang<strong>in</strong>g from 3 to 6 years, which is likely to result <strong>in</strong> a cont<strong>in</strong>uous needfor support. Adults <strong>with</strong> profound ID have an <strong>in</strong>tellectual age below 3 years, which results <strong>in</strong>serious limitations <strong>in</strong> self-care, cont<strong>in</strong>ence, communication and mobility.When compared to the general population, persons <strong>with</strong> ID have twice as much healthproblems and significantly higher levels of co-morbidity such as epilepsy, neurological problems,visual or auditive impairment and locomotor disabilities. Moreover, the level of co-morbidity <strong>in</strong>persons <strong>with</strong> severe or profound ID is even higher than co-morbidity levels <strong>in</strong> persons <strong>with</strong> mild ormoderate ID.Research showed that persons <strong>with</strong> ID display <strong>in</strong>adequacies <strong>in</strong> perception, motorreproductionand sensorimotor control. Furthermore, persons <strong>with</strong> ID are often not sufficientlyactive to achieve health benefits, and more than 50 % of the persons <strong>with</strong> ID of all age categories<strong>in</strong> Europe have a sedentary lifestyle. In addition, those classified <strong>with</strong> ID are more prone toexperience lifestyle related diseases such as diabetes mellitus II or cardiovascular diseases. Thesepersons often suffer from overweight or malnutrition. As a consequence, these persons may havepoor <strong>physical</strong> <strong>fitness</strong>.Physical <strong>fitness</strong> of persons <strong>with</strong> severe or profound <strong>in</strong>tellectualand visual disabilitiesSimilar to <strong>in</strong>dividuals <strong>with</strong> ID, persons <strong>with</strong> visual impairments display poor performance onlocomotor skills and have low levels of habitual activity, result<strong>in</strong>g <strong>in</strong> poor <strong>physical</strong> <strong>fitness</strong> whencompared to the control group, <strong>in</strong> this case persons <strong>with</strong> normal eyesight.Prevalence of visual impairment <strong>in</strong> persons <strong>with</strong> severe or profound ID is 92%. As thecomb<strong>in</strong>ation of ID and visual impairment is even more detrimental, thereby creat<strong>in</strong>g lessopportunity for compensation, the comb<strong>in</strong>ation of visual impairment <strong>with</strong> ID aggravates152 | Summary


problems <strong>in</strong> both locomotor skills as <strong>in</strong> daily function<strong>in</strong>g. These f<strong>in</strong>d<strong>in</strong>gs together put forward thesuggestion that persons hav<strong>in</strong>g SPIMD are likely to display <strong>in</strong>sufficient <strong>physical</strong> <strong>fitness</strong>.However, the feasibility and reliability of <strong>physical</strong> <strong>fitness</strong> measurements and tests forparticipants <strong>with</strong> SPIMD have until now not been properly scrut<strong>in</strong>ized, result<strong>in</strong>g <strong>in</strong> little reliableknowledge on the <strong>physical</strong> <strong>fitness</strong> levels and locomotor skills of persons <strong>with</strong> SPIMD.Due to the limitations related to SPIMD, the level of health-related <strong>physical</strong> <strong>fitness</strong> is difficult toquantify <strong>in</strong> a feasible, valid and reliable manner. Therefore, improv<strong>in</strong>g feasibility of <strong>physical</strong> <strong>fitness</strong>tests for <strong>in</strong>dividuals <strong>with</strong> SPIMD needs to be prioritized. <strong>Persons</strong> <strong>with</strong> SPIMD are not accustomedto assessments and have difficulty comprehend<strong>in</strong>g what is required of them. Furthermore,persons <strong>with</strong> visual disabilities cannot see how test tasks need to be performed, hence show<strong>in</strong>gthem how to perform the task at hand is useless. In general, if a participant does not understandthe tasks <strong>with</strong><strong>in</strong> a certa<strong>in</strong> test, the test will automatically fail to provide a realistic impression ofthe capabilities of the participant, render<strong>in</strong>g the test <strong>in</strong>valid. Thus, test <strong>in</strong>structions for persons<strong>with</strong> SPIMD require our special focus.Another factor of <strong>in</strong>fluence when determ<strong>in</strong><strong>in</strong>g the feasibility, reliability and validity of<strong>physical</strong> <strong>fitness</strong> tests for participants <strong>with</strong> SPIMD is the prevalence of locomotor disabilitiesand motivational problems. As persons <strong>with</strong> SPIMD are not able to stand straight or to standat all, adapted test procedures and specific <strong>in</strong>clusion criteria are required. Also, persons <strong>with</strong>SPIMD are often not motivated to exert themselves fully, which necessitates adjustments to andfamiliarization <strong>with</strong> test protocols.The required attributes of <strong>physical</strong> <strong>fitness</strong> for persons <strong>with</strong> SPIMD described by caregivers,professionals and scientists <strong>in</strong> the field of SPIMD are: body composition, cardiorespiratory <strong>fitness</strong>,balance, muscle strength and muscle flexibility.As stated before, the locomotor skills of persons <strong>with</strong> ID vary considerably and thismay <strong>in</strong>fluence protocols for measur<strong>in</strong>g <strong>physical</strong> <strong>fitness</strong>. Thus, next to the level of ID, persons<strong>with</strong> SPIMD are also grouped accord<strong>in</strong>g to a motor function classification used to classifythe locomotor skills <strong>in</strong> people <strong>with</strong> <strong>physical</strong> disabilities. In the studies exam<strong>in</strong><strong>in</strong>g a populationconsist<strong>in</strong>g <strong>in</strong> majority of persons <strong>with</strong> severe <strong>in</strong>tellectual disabilities, the term severe <strong>in</strong>tellectualand multiple disabilities (SIMD) is used. In the studies exam<strong>in</strong><strong>in</strong>g a population consist<strong>in</strong>g <strong>in</strong>majority of persons <strong>with</strong> profound <strong>in</strong>tellectual disabilities, the term profound <strong>in</strong>tellectual andmultiple disabilities (PIMD) is used.Summary | 153


Aim and research questions of the thesisThe ma<strong>in</strong> aim of the research reported <strong>in</strong> this thesis is to exam<strong>in</strong>e the feasibility, validity andreliability of <strong>physical</strong> <strong>fitness</strong> tests for <strong>in</strong>dividuals <strong>with</strong> SPIMD.This research addresses the follow<strong>in</strong>g research questions:1. Are body composition measurements of participants <strong>with</strong> SIMD feasible and reliable[chapter 2]?2. Are waist circumference measurements of participants <strong>with</strong> PIMD valid and reliable[chapter 3]?3. Is cardiorespiratory <strong>fitness</strong> of persons <strong>with</strong> SIMD measured feasibly and reliably <strong>with</strong> eitheror both of two different walk<strong>in</strong>g tests? [chapter 4]?4. Is a walk<strong>in</strong>g test performed on a treadmill feasible, valid and reliable for persons <strong>with</strong> SIMD[chapter 5]?5. Is a balancetest feasible and reliable for persons <strong>with</strong> SIMD [chapter 6]?6. Are two tests to measure muscle tone and spasticity feasible and reliable when test<strong>in</strong>gpersons <strong>with</strong> PIMD [chapter 7]?7. What is the level of <strong>physical</strong> activity of persons <strong>with</strong> PIMD based on heart rate patterns whencompared to the American College of Sports Medic<strong>in</strong>e guidel<strong>in</strong>es of healthy <strong>physical</strong> activity?Is there a relation between heart rate patterns and observed level of activity <strong>in</strong> persons <strong>with</strong>PIMD? What is the <strong>in</strong>fluence of covariates such as gender, age, and common co-morbidity(motor disabilities, spasticity and sensory disabilities) on heart rate patterns [chapter 8]?Body composition measurementsAnthropometric measurements are widely used to reliably quantify body composition andto estimate risks of overweight <strong>in</strong> both healthy subjects as <strong>in</strong> patients. However, <strong>in</strong>formationabout the reliability of anthropometric measurements of persons <strong>with</strong> severe <strong>in</strong>tellectual andvisual disabilities is lack<strong>in</strong>g. Chapter 2 addresses the feasibility and test-retest reliability of bodycomposition measurements of persons <strong>with</strong> SIMD.Test–retest reliability and feasibility for most measurements of persons <strong>with</strong> SIMD areacceptable. Sk<strong>in</strong>fold measurements, however, could not be reliably performed <strong>with</strong> theseparticipants. Therefore, assess<strong>in</strong>g body fat composition <strong>in</strong> adults <strong>with</strong> SIMD through sk<strong>in</strong>foldmeasurements is not recommended. <strong>Measur<strong>in</strong>g</strong> tibia length and us<strong>in</strong>g the determ<strong>in</strong>ed formulato calculate body height from tibia length is a reliable alternative for measur<strong>in</strong>g body height.Although measur<strong>in</strong>g body height of persons <strong>with</strong> SIMD as outl<strong>in</strong>ed <strong>in</strong> our protocol was feasible,the feasibility of perform<strong>in</strong>g tibia length measurements was much better.Furthermore, our results <strong>in</strong>dicate that accord<strong>in</strong>g to Body Mass Index (ratio between bodyheight and body weight, BMI) values, 10% of the female participants was obese while none ofthe male participants was obese. When waist circumference was used as a criterion, 39% of thefemale and 7% of the male participants was classified as obese.Waist circumference measured <strong>in</strong> sup<strong>in</strong>e positionWaist circumference as an <strong>in</strong>dicator of abdom<strong>in</strong>al fat is an important predictor of health risks. Inhealthy participants, waist circumference is measured <strong>in</strong> stand<strong>in</strong>g position. It is unknown whetherwaist circumference can be measured validly and reliably when a participant is <strong>in</strong> a sup<strong>in</strong>eposition. This assumption however is a critical one when <strong>in</strong>ternational standards for healthy154 | Summary


subjects are to be applied to persons <strong>with</strong> profound <strong>in</strong>tellectual, visual, and motor disabilities.Chapter 3 deals <strong>with</strong> the validity and reliability of measur<strong>in</strong>g waist circumference of persons <strong>with</strong>PIMD.The validity study performed <strong>with</strong> healthy participants, dur<strong>in</strong>g which we compared waistcircumference obta<strong>in</strong>ed <strong>in</strong> stand<strong>in</strong>g and sup<strong>in</strong>e positions, revealed significant differences betweenstand<strong>in</strong>g and sup<strong>in</strong>e waist circumference measurements. We found that the validity of sup<strong>in</strong>ewaist circumference is biased towards higher values (1.5 cm) of stand<strong>in</strong>g waist circumference.However, stand<strong>in</strong>g waist circumference can be predicted from sup<strong>in</strong>e measurements us<strong>in</strong>g asimple prediction equation. This equation allows the comparison of sup<strong>in</strong>e measurements ofdisabled persons <strong>with</strong> <strong>in</strong>ternational standards of waist circumference.The test-retest study <strong>with</strong> PIMD participants, <strong>in</strong> which we measured the waist circumferenceof subjects <strong>in</strong> sup<strong>in</strong>e position, revealed no significant differences and showed good agreementbetween test and retest waist circumference values. It was concluded that sup<strong>in</strong>e waistcircumference can be reliably measured <strong>in</strong> participants <strong>with</strong> PIMD.Functional exercise and aerobic capacity measured <strong>with</strong> overgroundtestsCardiorespiratory <strong>fitness</strong> can be divided <strong>in</strong>to functional exercise and aerobic capacity. Timedwalk<strong>in</strong>g tests are a valuable tool for assess<strong>in</strong>g these components of <strong>physical</strong> <strong>fitness</strong>. Howeverfeasibility, validity and reliability of walk<strong>in</strong>g tests for persons <strong>with</strong> SIMD are so far unknown.Chapter 4 seeks to address the issue of the cardiorespiratory component of <strong>physical</strong> <strong>fitness</strong>.Therefore, a study is put forward <strong>with</strong> the purpose of exam<strong>in</strong><strong>in</strong>g the feasibility and test-retestreliability of both the six-m<strong>in</strong>ute walk<strong>in</strong>g distance test (6MWD) as an adapted shuttle run test(aSRT) for participants <strong>with</strong> SIMD. SIMD participants performed the 6MWD and the aSRT twicewhile wear<strong>in</strong>g a heart rate monitor.The results show that the 6MWD is feasible and reliable for measur<strong>in</strong>g functional exercisecapacity of all participants <strong>with</strong> SIMD. The aSRT is feasible and reliable for measur<strong>in</strong>g aerobiccapacity of participants <strong>with</strong> the highest motor function<strong>in</strong>g level <strong>in</strong> the study population. Inaddition, we found that the participant’s motivational level can <strong>in</strong>fluence test outcomes, so werecommend to <strong>in</strong>clude both heart rate monitor<strong>in</strong>g and motivational score <strong>in</strong>to the protocols of theaSRT and 6MWD.Furthermore, we compared the mean distance of the 6MWD as executed by ourparticipants <strong>with</strong> values reported <strong>in</strong> other studies. This comparison <strong>in</strong>dicated that persons<strong>with</strong> SIMD performed poorer on the 6MWD than those <strong>with</strong> other specific (chronic) healthconditions <strong>in</strong>clud<strong>in</strong>g heart failure or COPD. The poor 6MWD results we observed suggest thata low functional exercise capacity of persons <strong>with</strong> severe multiple disabilities is a serioushealth problem, which <strong>in</strong> turn can burden their <strong>in</strong>dependence <strong>in</strong> day-to-day activities. Based onthis result, further research should be aimed at develop<strong>in</strong>g, implement<strong>in</strong>g and evaluat<strong>in</strong>g anappropriate <strong>in</strong>tervention aimed at reduc<strong>in</strong>g health problems related to low functional exercisecapacity and low aerobic capacity.Summary | 155


Aerobic capacity measured <strong>with</strong> a graded treadmill testExercise tests us<strong>in</strong>g treadmills are a valuable tool for assess<strong>in</strong>g aerobic capacity. However, atreadmill protocol for persons <strong>with</strong> SIMD is not yet available.Chapter 5 exam<strong>in</strong>es the feasibility, validity and reliability of the adapted Shuttle Run Testperformed on a treadmill by participants <strong>with</strong> SIMD.Participants <strong>with</strong> SIMD performed the aSRT on a treadmill twice and a validity test wasperformed afterwards. Our results show that the feasibility, validity and test-retest reliability weresufficient for the aSRT on the treadmill when test<strong>in</strong>g participants <strong>with</strong> SIMD. For determ<strong>in</strong><strong>in</strong>g peakheart rate of SIMD <strong>in</strong>dividuals, the validity of the aSRT on the treadmill was better than that of theaSRT performed over ground.An equation used for estimat<strong>in</strong>g peak heart rate for people <strong>with</strong> ID systematicallyoverestimates peak heart rate for people <strong>with</strong> SIMD. Therefore, it is recommended to adjust thisequation <strong>in</strong> future research so as to enable a better prediction of the peak heart rate of thisspecific group.Balance ScaleSufficient balance is necessary to perform daily activities. S<strong>in</strong>ce the feasibility and reliability ofbalance tests are so far unknown for persons <strong>with</strong> SIMD, chapter 6 describes a study <strong>with</strong> thepurpose of determ<strong>in</strong><strong>in</strong>g the feasibility and reliability of the modified Berg Balance Scale (mBBS)for this specific group.Participants <strong>with</strong> SIMD performed the mBBS twice <strong>with</strong> a one week <strong>in</strong>terval. The resultsshow that the test-retest reliability of 10 out of 12 mBBS tasks is acceptable. The mBBS is thus areliable test for evaluat<strong>in</strong>g the functional balance of persons <strong>with</strong> SIMD. Furthermore, the mBBS isa feasible <strong>in</strong>strument for the tested target group.Tests to measure muscle tone and level of spasticityThe quality of daily movement depends partly on muscle tone or level of spasticity, which can bemeasured by the Modified Ashworth Scale (MAS) and the Modified Tardieu Scale (MTS). However,no research has been performed to determ<strong>in</strong>e the psychometric properties of the MTS and theMAS for persons <strong>with</strong> PIMD. The purpose of the study described <strong>in</strong> Chapter 7 was to determ<strong>in</strong>e thefeasibility, the test-retest and <strong>in</strong>terrater reliability of the MAS and the MTS <strong>in</strong> persons <strong>with</strong> PIMD.Participants <strong>with</strong> PIMD were measured twice us<strong>in</strong>g both the MAS and the MTS, <strong>with</strong> a oneweek<strong>in</strong>terval between test and retest. Two observers performed the measurements.The data <strong>in</strong>dicated that the feasibility of the MAS and MTS for measur<strong>in</strong>g muscle tone <strong>in</strong>persons <strong>with</strong> PIMD was good. For both test-retest and <strong>in</strong>terrater reliability, measurements ofthe MAS revealed acceptable agreement. However, for both test-retest and <strong>in</strong>terrater reliability,the measurements of the MTS showed <strong>in</strong>sufficient agreement. The MAS may be a good methodto evaluate the quality of daily movements of <strong>in</strong>dividuals <strong>with</strong> PIMD. A good <strong>in</strong>struction maycontribute to a better reliability.Heart rate patternsAssess<strong>in</strong>g <strong>physical</strong> activity levels of persons <strong>with</strong> PIMD is important, but these levels are difficultto reliably quantify when deal<strong>in</strong>g <strong>with</strong> participants who are not able to walk. Heart rate monitor<strong>in</strong>g156 | Summary


may be an <strong>in</strong>dicator of activity levels, however, both the method of dat<strong>in</strong>g heart rate patterns asthe correlation between heart rate and activity level for this specific group had so far not beensubject to research.Chapter 8 describes heart rate monitor<strong>in</strong>g and heart rate patterns of persons PIMD.Furthermore, this chapter exam<strong>in</strong>es the relative activity of persons <strong>with</strong> profound <strong>in</strong>tellectual andmultiple disabilities when compared to the American College of Sports Medic<strong>in</strong>e guidel<strong>in</strong>es ofhealthy <strong>physical</strong> activity. It also looks at the correlation between heart rate patterns and level ofactivity of this specific target group. F<strong>in</strong>ally, the <strong>in</strong>fluence of covariates such as gender, age, andcommon co-morbidity on heart rate height are exam<strong>in</strong>ed and participants are classified accord<strong>in</strong>gto heart rate height dur<strong>in</strong>g <strong>physical</strong> activity.Us<strong>in</strong>g a heart rate monitor, heart rate patterns were measured 8 hours dur<strong>in</strong>g 6 days.Heart rate <strong>in</strong>tensity was calculated us<strong>in</strong>g heart rate reserves. Physical activity levels were alsomeasured <strong>with</strong> questionnaires filled out by the caregivers of the participants.Our study shows that persons <strong>with</strong> PIMD are not sufficiently <strong>physical</strong>ly active based onthe guidel<strong>in</strong>es of American College of Sports Medic<strong>in</strong>e. Time of day and age have considerable<strong>in</strong>fluence on heart rate patterns. We observed four classes <strong>in</strong> heart rate patterns of persons <strong>with</strong>PIMD.DiscussionChapter 9 summarizes the ma<strong>in</strong> f<strong>in</strong>d<strong>in</strong>gs of this research and puts them <strong>in</strong> perspective. The mostimportant results are mentioned and discussed aga<strong>in</strong>st the background of other research.The ma<strong>in</strong> products of this thesis are feasible, valid and reliable tests of <strong>physical</strong> <strong>fitness</strong> forpersons <strong>with</strong> SPIMD, which can directly be implemented <strong>in</strong>to daily practice. The ma<strong>in</strong> conclusionis that persons <strong>with</strong> SPIMD are able to learn and become accustomed to test and measurementsituations if an optimal test environment is created. Various tested ways to enhance testenvironment are described, and suggestions for further possible enhancement of test conditionsare put forward. Furthermore, this thesis has brought forth a couple of important f<strong>in</strong>d<strong>in</strong>gsregard<strong>in</strong>g formulas or equations applicable to research on this specific target group.The benefit of comb<strong>in</strong><strong>in</strong>g both severity of ID and GMFCS level to classify the abilities ofpersons <strong>with</strong> severe or profound ID is once more underscored. Moreover, the steps necessaryto explore the concept of participation for persons <strong>with</strong> SPIMD as well as the relation betweenparticipation and <strong>physical</strong> <strong>fitness</strong>, activity and health are described.F<strong>in</strong>ally, methodological issues are discussed, followed by the implications for cl<strong>in</strong>ical practiceand recommendations for further research. The ma<strong>in</strong> recommendation of this research is todevelop, perform and evaluate tailored <strong>in</strong>terventions <strong>with</strong> the aim of promot<strong>in</strong>g components of<strong>physical</strong> <strong>fitness</strong> and participation for <strong>in</strong>dividuals <strong>with</strong> SPIMD.Summary | 157


158 | Summary


Samenvatt<strong>in</strong>gSamenvatt<strong>in</strong>g | 159


Lijst met afkort<strong>in</strong>gen en betekenissenZEVMBZEVBZEMBValiditeitBetrouwbaarheidACSMBMI6MWTaSRTmBBSMASMTS(Zeer) ernstige verstandelijke, visuele en motorische (meervoudige)beperk<strong>in</strong>gen: term voor de hele doelgroep van dit proefschrift.(Zeer) ernstige verstandelijke en visuele beperk<strong>in</strong>gen.(Zeer) ernstige verstandelijke, visuele en motorische (meervoudige)beperk<strong>in</strong>gen: de groep mensen voor wie deze aanduid<strong>in</strong>g geldt, kunnen <strong>in</strong>het algemeen niet staan en lopen.Een test is valide, als deze meet wat deze beoogt te meten.Een test is betrouwbaar, 1) als twee keer kort na elkaar meten, dezelfdeuitkomst geeft (test-hertestbetrouwbaarheid); en/of 2) als twee mensendezelfde uitkomst scoren op de test (<strong>in</strong>terbeoordelaarsbetrouwbaarheid).American College of Sports Medic<strong>in</strong>e: centrum waar<strong>in</strong> begrippenrondom fysieke fitheid en beweg<strong>in</strong>gsactiviteiten voor verschillendedoelgroepen worden gedef<strong>in</strong>ieerd.Body Mass Index, de verhoud<strong>in</strong>g tussen lichaamslengte en lichaamsgewicht6 M<strong>in</strong>uten Wandel Test: afstand die een persoon <strong>in</strong> 6 m<strong>in</strong>uten aflegt,waarmee het uithoud<strong>in</strong>gsvermogen kan worden bepaald.aangepaste Shuttle Run Test: wandeltest met oplopende snelheid om hetuithoud<strong>in</strong>gsvermogen te bepalen.aangepaste Berg Balans Schaal: balans test.Modified Ashworth Scale: een test om spierspann<strong>in</strong>g mee te meten.Modified Tardieu Scale: een test om spierspann<strong>in</strong>g mee te meten160 | Samenvatt<strong>in</strong>g


Inleid<strong>in</strong>gVoldoende bewegen en fitheid zijn voor iedereen van groot belang voor een goede gezondheid,welbev<strong>in</strong>den en kwaliteit van leven. Daarnaast zorgen bewegen en fysieke fitheid voor beteremogelijkheden om actief mee te kunnen doen aan dagelijkse activiteiten en situaties. Deze actievedeelname aan dagelijkse bezigheden en situaties wordt participatie genoemd.Voor mensen met (zeer) ernstige verstandelijke en visuele beperk<strong>in</strong>gen bestaat participatievooral uit het hebben van <strong>in</strong>vloed op dagelijkse bezigheden en situaties. Voorbeelden hiervanzijn het kiezen van kled<strong>in</strong>g, broodbeleg, gaan zwemmen of gaan wandelen; het uitvoeren van eenbepaalde deeltaak b<strong>in</strong>nen een grotere taak; het zelf meehelpen met aankleden. Het is belangrijkdat deze mensen, met de beperkte mogelijkheden die ze hebben, actief mee kunnen doen aandagelijkse bezigheden en situaties of <strong>in</strong> ieder geval <strong>in</strong>vloed hebben op het verloop van hunactiviteiten. Dit is echter voor hen niet vanzelfsprekend door de comb<strong>in</strong>atie van de (zeer) ernstigeverstandelijke en visuele beperk<strong>in</strong>gen. Daarnaast hebben deze mensen een verhoogd risico ophet krijgen van gezondheidproblemen, vaak ook als gevolg van beperk<strong>in</strong>gen <strong>in</strong> het bewegen(motorische beperk<strong>in</strong>gen).Dit roept de volgende vragen op: ‘Als fit zijn van groot belang is, hoe is het dan gesteld metde fitheid van mensen met (zeer) ernstige verstandelijke, visuele en motorische beperk<strong>in</strong>gen?’En: ‘Hoe kan dit gemeten worden?’ ‘Als een persoon niets tot heel we<strong>in</strong>ig ziet en daarnaastwe<strong>in</strong>ig begrijpt van zijn of haar omgev<strong>in</strong>g, hoe is het dan om gemeten en getest te worden? Enhoe gemotiveerd is die persoon dan om met<strong>in</strong>gen te ondergaan en testen zo goed mogelijk uit tevoeren?’Deze vragen vormden de aanleid<strong>in</strong>g voor het opzetten van de onderzoeken voor ditproefschrift, met als doel het verkrijgen van <strong>in</strong>zicht <strong>in</strong> de mate van fitheid van mensen met(zeer) ernstige verstandelijke, visuele en motorische beperk<strong>in</strong>gen. In eerste <strong>in</strong>stantie richt ditproefschrift zich op het aanpassen van bestaande testprocedures en meetmethodes voor dezespecifieke doelgroep. In de tweede plaats richt dit proefschrift zich op de uitvoerbaarheid,betrouwbaarheid en validiteit van met<strong>in</strong>gen en testen voor fysieke fitheid en hoeveelheidbeweg<strong>in</strong>gsactiviteiten bij mensen met (zeer) ernstige verstandelijke, visuele en motorischebeperk<strong>in</strong>gen.Mensen met verstandelijke beperk<strong>in</strong>genEr zijn verschillende niveaus <strong>in</strong> de mate van verstandelijke beperk<strong>in</strong>gen te onderscheiden:lichte, matige, ernstige en zeer ernstige verstandelijke beperk<strong>in</strong>gen. Dit onderzoek beperkt zichtot mensen met ernstige en zeer ernstige verstandelijke beperk<strong>in</strong>gen. Mensen met ernstigeverstandelijke beperk<strong>in</strong>gen hebben een <strong>in</strong>telligentie vergelijkbaar met die k<strong>in</strong>deren van tussende 3 en 6 jaar en zijn daardoor aangewezen op cont<strong>in</strong>ue begeleid<strong>in</strong>g bij dagelijkse bezigheden.Mensen met zeer ernstige verstandelijke beperk<strong>in</strong>gen hebben een <strong>in</strong>telligentie die vergelijkbaar ismet k<strong>in</strong>deren jonger dan 3 jaar oud. Mensen met een zodanige verstandelijke beperk<strong>in</strong>g hebbenproblemen met hun eigen verzorg<strong>in</strong>g, z<strong>in</strong>delijkheid, communicatie en mobiliteit en zijn volledigaangewezen op hulp en begeleid<strong>in</strong>g van anderen.In het algemeen zijn bij mensen met verstandelijke beperk<strong>in</strong>gen gezondheidsrisico’sgroter en zij hebben een grotere kans op bijkomende stoornissen als beperk<strong>in</strong>gen <strong>in</strong> hetgezichtsvermogen of het gehoor (visuele of auditieve beperk<strong>in</strong>gen), epilepsie, neurologische enmotorische beperk<strong>in</strong>gen. Naarmate de ernst van de verstandelijke beperk<strong>in</strong>g toeneemt,komen deze bijkomende stoornissen ook vaker voor.Samenvatt<strong>in</strong>g | 161


Uit onderzoek is gebleken dat mensen met lichte of matige verstandelijke beperk<strong>in</strong>gen vaakonvoldoende bewegen om fysiek fit en gezond te blijven. De kwaliteit van bewegen is m<strong>in</strong>der goeddan bij mensen zonder beperk<strong>in</strong>gen. Het is zelfs zo, dat naarmate de ernst van de verstandelijkebeperk<strong>in</strong>g toeneemt, de kwaliteit van bewegen verder afneemt. De samenwerk<strong>in</strong>g tussen z<strong>in</strong>tuigenen het bewegen is <strong>in</strong> veel gevallen verstoord. Vaak leiden deze mensen een <strong>in</strong>actief bestaan: 50%van de mensen met een verstandelijke beperk<strong>in</strong>g <strong>in</strong> Europa is <strong>in</strong>actief. Mede daardoor neemt dekans op (ernstig) overgewicht toe, hetgeen onder andere hart- en vaatziekten en diabetes mellitustype II kan veroorzaken. Concluderend kunnen we stellen dat door <strong>in</strong>activiteit en verm<strong>in</strong>derdekwaliteit van bewegen, de fysieke fitheid van mensen met verstandelijke beperk<strong>in</strong>gen vaakonvoldoende is.Fysieke fitheid van mensen met (zeer) ernstige verstandelijke envisuele beperk<strong>in</strong>genHet blijkt, dat ook mensen met visuele beperk<strong>in</strong>gen vaak onvoldoende bewegen om fit te blijvenen dat de kwaliteit van bewegen m<strong>in</strong>der goed is dan bij mensen met een goede visus. Hierdoorhebben mensen met visuele beperk<strong>in</strong>gen vaak een lagere fitheid dan mensen met een goedevisus. 92% Van de mensen met (zeer) ernstige verstandelijke beperk<strong>in</strong>gen heeft ook een visuelebeperk<strong>in</strong>g. Deze mensen hebben m<strong>in</strong>der compensatiemogelijkheden en de twee beperk<strong>in</strong>genversterken elkaar: daarom wordt er niet gesproken van een dubbele, maar van een meervoudigebeperk<strong>in</strong>g. Een logisch gevolg van de voorgaande bev<strong>in</strong>d<strong>in</strong>gen is dat mensen met een comb<strong>in</strong>atievan verstandelijke en visuele beperk<strong>in</strong>gen een nog groter risico hebben op problemen met hetbewegen, fitheid en participatie.Echter, er is nog we<strong>in</strong>ig bekend over de hoeveelheid beweg<strong>in</strong>gsactiviteiten en de fysiekefitheid bij mensen met (zeer) ernstige verstandelijke, visuele en motorische beperk<strong>in</strong>gen(ZEVMB), omdat er nog geen uitvoerbare, betrouwbare en valide testen beschikbaar zijn. Alsgevolg van beperk<strong>in</strong>gen <strong>in</strong> verstandelijk en sociaal functioneren, is het moeilijk om de fysiekefitheid en activiteit te meten bij deze mensen. Een belangrijke reden is dat mensen met ZEVMBallereerst niet begrijpen wat het woord ‘testen’ <strong>in</strong>houdt en wat er van hen verwacht wordt.Daarnaast zijn ze niet gewend aan testen en ze begrijpen vaak de test<strong>in</strong>structies niet. De visuelebeperk<strong>in</strong>g versterkt dit alles nog omdat voordoen van een testopdracht daarbij niet kan helpen.Als een persoon test<strong>in</strong>structies niet begrijpt, dan geeft de betreffende test geen goed beeldvan wat iemand werkelijk kan. In dat geval meet de test niet wat deze zou moeten meten en isdaardoor niet valide. De uitvoerbaarheid van fysieke fitheidtesten en – met<strong>in</strong>gen heeft daaromextra aandacht nodig. Het is van groot belang dat er aandacht is voor de testomgev<strong>in</strong>g en detest<strong>in</strong>structies: is er een veilige en bekende omgev<strong>in</strong>g, zijn de <strong>in</strong>structies begrijpelijk over tedragen en wie draagt ze over? Verder is een persoon met ZEVMB vaak niet gemotiveerd omoptimaal te presteren, omdat hij of zij niet begrijpt wat het doel is van zo’n test of met<strong>in</strong>g. Hetkan helpen om deze mensen te laten oefenen voor de testen, zodat ze gewend raken aan detestprocedure.Een andere factor die het testen en meten van mensen met ZEVMB bemoeilijkt, zijnproblemen met het bewegen en vergroei<strong>in</strong>gen van de wervelkolom of andere gewrichten.Als gevolg hiervan kunnen deze mensen vaak niet voldoende of helemaal niet rechtop staan,waardoor meetprocedures aangepast moeten worden. Daarom is het van belang om voor elke testaf te spreken voor welke doelgroep deze bedoeld is, bijvoorbeeld voor mensen met een bepaald162 | Samenvatt<strong>in</strong>g


verstandelijk niveau en bepaalde motorische vaardigheden.In samenspraak met experts uit het werkveld voor mensen met ZEVMB zijn devolgende relevante kenmerken van fysieke fitheid gedef<strong>in</strong>ieerd: lichaamsverhoud<strong>in</strong>gen,uithoud<strong>in</strong>gsvermogen, balans, spierspann<strong>in</strong>g en spierkracht.Zoals eerder opgemerkt, zijn de motorische vaardigheden van deze doelgroep ergverschillend. Het zijn juist deze vaardigheden die ook bepalen welke testen en met<strong>in</strong>gen vanbelang zijn voor en uitgevoerd kunnen worden door deze mensen.Daarom wordt voor deze mensen een motoriekclassificatiesysteem gehanteerd, waarbij demensen naar motorische mogelijkheden <strong>in</strong> categorieën worden <strong>in</strong>gedeeld.In de studies waaraan vooral mensen met ernstige verstandelijke beperk<strong>in</strong>gen deelnemen,wordt de doelgroep genoemd: mensen met zeer ernstige verstandelijke en visuele beperk<strong>in</strong>gen(ZEVB). In de studies waaraan vooral mensen met zeer ernstige verstandelijke beperk<strong>in</strong>gendeelnemen, wordt de doelgroep genoemd: mensen met (zeer) ernstige verstandelijke, visuele enmotorische (meervoudige) beperk<strong>in</strong>gen (ZEMB).Doel en onderzoeksvragen van dit proefschriftHet doel van dit proefschrift is het bepalen van de uitvoerbaarheid, de validiteit en debetrouwbaarheid van fitheidtesten bij mensen met ZEVB [hoofdstukken 2, 4, 5 en 6] en ZEMB[hoofdstukken 3, 7 en 8]. De volgende zeven hoofdonderzoeksvragen zijn opgesteld:1. Zijn met<strong>in</strong>gen om de lichaamsverhoud<strong>in</strong>gen te bepalen bij mensen met ZEVB uitvoerbaar enbetrouwbaar [hoofdstuk 2]?2. Is de tailleomvang <strong>in</strong> liggende positie valide en betrouwbaar te meten bij mensen met ZEMB[hoofdstuk 3]?3. Is het meten van uithoud<strong>in</strong>gsvermogen met twee verschillende wandeltesten bij mensen metZEVB uitvoerbaar en betrouwbaar [hoofdstuk 4]?4. Is een aangepaste wandeltest op de loopband bij mensen met ZEVB uitvoerbaar, valide enbetrouwbaar [hoofdstuk 5]?5. Is een aangepaste balansschaal bij mensen met ZEVB uitvoerbaar en betrouwbaar[hoofdstuk 6]?6. Zijn twee testen om de spierspann<strong>in</strong>g te meten uitvoerbaar en betrouwbaar bij mensen metZEMB [hoofdstuk 7]?7. Zijn mensen met ZEMB voldoende fysiek actief op basis van hartslagpatronen vergelekenmet de norm van de American College of Sports Medic<strong>in</strong>e; kan de mate van fysieke activiteitbetrouwbaar bepaald worden met hartslagmet<strong>in</strong>g; zijn de hartslagpatronen te classificerenen beïnvloedende factoren op de hartslaghoogte te v<strong>in</strong>den [hoofdstuk 8]?Met<strong>in</strong>gen van lichaamsverhoud<strong>in</strong>genMet<strong>in</strong>gen van de lichaamsverhoud<strong>in</strong>gen worden algemeen gebruikt om bij gezonde mensen delichaamsverhoud<strong>in</strong>gen en daarmee gerelateerde gezondheidsrisico’s te bepalen. Echter, het isniet bekend of deze met<strong>in</strong>gen bij mensen met ZEVB uitvoerbaar en betrouwbaar zijn. Daaromzijn <strong>in</strong> het tweede hoofdstuk de uitvoerbaarheid en test-hertest betrouwbaarheid onderzocht vanverschillende met<strong>in</strong>gen om lichaamsverhoud<strong>in</strong>gen te bepalen bij mensen met ZEVB.Het blijkt dat de uitvoerbaarheid en de test-hertest betrouwbaarheid voor de meestemet<strong>in</strong>gen acceptabel waren bij mensen met ZEVB. Echter,Samenvatt<strong>in</strong>g | 163


het wordt afgeraden om vetpercentage bij mensen met ZEVB te meten met de huidplooimethodeomdat deze met<strong>in</strong>g niet betrouwbaar was bij de deelnemers aan het onderzoek. Het meten vande onderbeenlengte en het daarmee berekenen van de lichaamslengte, bleek een veel beteruitvoerbaar en betrouwbaar alternatief voor het op de reguliere wijze meten van lichaamslengte.Verder is uit de resultaten gebleken dat de verhoud<strong>in</strong>g tussen lichaamslengte enlichaamsgewicht, de Body Mass Index (BMI) bij 10% van de vrouwelijke deelnemers duidt opobesitas, terwijl geen van de mannen obesitas heeft. Echter, gemeten met de tailleomvang, blijktdat 39% van de vrouwelijke en 7% van de mannelijke deelnemers obesitas heeft.Liggend gemeten tailleomvangTailleomvang is een met<strong>in</strong>g die gebruikt wordt om gezondheidsrisico’s ten gevolge vanovergewicht <strong>in</strong> kaart te brengen. Met de tailleomvang kan een <strong>in</strong>schatt<strong>in</strong>g van de hoeveelheidbuikvet worden gemaakt. Een te hoge tailleomvang betekent een grotere kans op bijvoorbeeldhart- en vaatziekten en diabetes mellitus type II. Bij mensen zonder beperk<strong>in</strong>gen wordttailleomvang gemeten <strong>in</strong> staande positie. Echter, als mensen als gevolg van motorischebeperk<strong>in</strong>gen niet <strong>in</strong> staat zijn om te staan, kan de met<strong>in</strong>g <strong>in</strong> rugligg<strong>in</strong>g uitgevoerd worden. Devraag is of deze met<strong>in</strong>g valide is en betrouwbaar bij mensen met ZEMB. Deze vraag is relevantomdat alleen dan de liggend gemeten tailleomvang vergeleken kan worden met <strong>in</strong>ternationaalvastgestelde normen. Hoofdstuk 3 beschrijft de studie naar validiteit- en betrouwbaarheid van deliggend gemeten tailleomvang.Om de validiteit van de liggend gemeten tailleomvang te bepalen, zijn bij 160 gezondedeelnemers staand en liggend verkregen met<strong>in</strong>gen vergeleken met elkaar.Het bleek dat tussen deze twee met<strong>in</strong>gen duidelijke verschillen bestonden, waarbij deliggend gemeten tailleomvang gemiddeld 1,5 cm kle<strong>in</strong>er was. Met een statistisch bepaalde formulebleek het echter mogelijk om te voorspellen uit de liggend gemeten tailleomvang, wat de staandgemeten tailleomvang zou zijn geweest. Hierdoor is het mogelijk om de <strong>in</strong>ternationaal geldendenormen toe te passen bij mensen met ZEMB.In een test-hertest studie zijn daarna bij mensen met ZEMB twee met<strong>in</strong>gen die <strong>in</strong> liggendepositie verkregen waren met een week tussenpauze, met elkaar vergeleken. Het blijkt dat dezemet<strong>in</strong>gen betrouwbaar zijn bij deze doelgroep.Inspann<strong>in</strong>gsvermogen getest met een veldtestBij mensen zonder beperk<strong>in</strong>gen worden een 6 M<strong>in</strong>uten Wandel Test (6MWT) of een Shuttle RunTest vaak gebruikt om <strong>in</strong>spann<strong>in</strong>gsvermogen <strong>in</strong> kaart te brengen. Het is echter niet bekend ofde uitvoerbaarheid en betrouwbaarheid van deze testen bij mensen met ZEVB voldoende is.Hoofdstuk 4 beschrijft de test-hertest studie van de 6MWT en een aangepaste Shuttle Run Test(aSRT) bij mensen met ZEVB. Mensen met ZEVB hebben de 6MWT en de aSRT twee keer, met eenweek tussenpauze, uitgevoerd. Alle deelnemers droegen een hartslagmeter.De 6MWT bleek uitvoerbaar en betrouwbaar bij alle mensen met ZEVB. Echter, bij de groepmensen die m<strong>in</strong>der goed kan lopen, bleek de aSRT niet betrouwbaar te zijn.De deelnemers aan het onderzoek hebben nog niet optimaal gepresteerd. Dit blijkt uit hetfeit dat zij niet hun maximale hartslagen behaalden tijdens de testen. De begeleiders, die dedeelnemers goed kennen, hebben ook <strong>in</strong>geschat hoe de motivatie van de deelnemers tijdens detesten was.164 | Samenvatt<strong>in</strong>g


Hieruit bleek, dat de motivatie van de deelnemers de testuitkomsten beïnvloedt en daarom is hetvan belang de motivatiescores <strong>in</strong> beide testprotocollen te <strong>in</strong>tegreren.Daarnaast zijn de gemiddeld behaalde afstand van de deelnemers tijdens de 6MWTvergeleken met de afstanden behaald door andere doelgroepen. Deze vergelijk<strong>in</strong>g wijst uitdat mensen met ZEVB veel m<strong>in</strong>der goed presteerden dan mensen met andere chronischeaandoen<strong>in</strong>gen, bijvoorbeeld mensen met longproblemen of hartfalen. Onvoldoende<strong>in</strong>spann<strong>in</strong>gsvermogen zou tot ernstige gezondheidsproblemen kunnen leiden, waardoorparticipatie aan dagelijkse bezigheden zou kunnen afnemen. Gebaseerd op deze bev<strong>in</strong>d<strong>in</strong>genis het van belang om passende beweegprogramma’s gericht op het verbeteren van<strong>in</strong>spann<strong>in</strong>gsvermogen voor mensen met ZEVB te ontwikkelen en te evalueren.Inspann<strong>in</strong>gsvermogen getest op de loopbandAndere doelgroepen behalen tijdens een Shuttle Run Test uitgevoerd op de loopband hunmaximale hartslag en daardoor ontstaat een valide beeld van hun <strong>in</strong>spann<strong>in</strong>gsvermogen. Tijdensde aSRT <strong>in</strong> de gymzaal bleek dat mensen met ZEVB niet hun maximale hartslag behaalden.De vraag is nu of dit wel lukt op de loopband, waardoor de validiteit van deze test toeneemt.De uitvoerbaarheid, validiteit en betrouwbaarheid van de aSRT op de loopband waren nog nietgeëvalueerd bij mensen met ZEVB. Het onderzoek naar deze aspecten staat beschreven <strong>in</strong>hoofdstuk 5. De aSRT is twee keer met een week tussenpauze uitgevoerd door mensen met ZEVBom de uitvoerbaarheid en de test-hertest betrouwbaarheid van de aSRT te kunnen bepalen.Daarnaast is aan de hand van de hoogte van de maximale hartslag gekeken of de aSRT op deloopband ook valide is om uithoud<strong>in</strong>gsvermogen van mensen met ZEVB te bepalen.De uitvoerbaarheid en de test-hertest betrouwbaarheid van de aSRT bleken voldoende. Devaliditeit van de aSRT op de loopband bleek beter te zijn dan van de aSRT <strong>in</strong> de gymzaal. Voor hetberekenen van de maximale hartslag wordt bij mensen zonder beperk<strong>in</strong>gen vaak de formule: ‘220–leeftijd’ gehanteerd. Voor mensen met een verstandelijke beperk<strong>in</strong>g is een aangepaste formuleberekend <strong>in</strong> eerder onderzoek. Echter, deze formule blijkt systematisch de maximale hartslag vanmensen met ZEVB te overschatten. Daarom wordt aanbevolen om deze formule <strong>in</strong> een volgendonderzoek aan te passen, zodat er een betere voorspell<strong>in</strong>g van de maximaal te behalen hartslagbij mensen met ZEVB te maken is.BalanstestVoldoende evenwicht, of balans, is voorwaarde voor het uitvoeren van dagelijkse bezigheden. DeBerg Balans Test evalueert de balans bij verschillende doelgroepen. Echter, de uitvoerbaarheid enbetrouwbaarheid van een balanstest zijn nog niet geëvalueerd bij mensen met ZEVB. Hoofdstuk 6beschrijft het onderzoek hiervan bij een aangepaste Berg Balans Schaal (mBBS). Deze test is tweekeer met een week tussenpauze uitgevoerd door mensen met ZEVB.De uitvoerbaarheid en de test-hertest betrouwbaarheid van 10 van de 12 taken van de mBBSbleken voldoende bij mensen met ZEVB. De 2 taken die niet betrouwbaar waren, zijn uit hetprotocol van de mBBS gehaald.Samenvatt<strong>in</strong>g | 165


Spierspann<strong>in</strong>gstestenDe hoogte van de spierspann<strong>in</strong>g bepaalt hoe gemakkelijk een persoon met ZEMB meehelpt metbijvoorbeeld de dagelijkse bezigheden als douchen en aankleden. De hoogte van de spierspann<strong>in</strong>gkan gemeten worden met de Modified Ashworth Scale (MAS) en de Modified Tardieu Scale (MTS).Echter, de uitvoerbaarheid en betrouwbaarheid van de MAS en de MTS zijn nog niet geëvalueerdbij mensen met ZEMB. Hoofdstuk 7 beschrijft het onderzoek hiernaar.De met<strong>in</strong>gen van de MAS en de MTS zijn bij 35 mensen met ZEMB twee keer met een weektussenpauze door twee beoordelaars uitgevoerd. Van de MAS bleken de uitvoerbaarheid en debetrouwbaarheid voldoende, echter van de MTS onvoldoende bij mensen met ZEMB. De conclusieis dat de MAS een goede methode is om de spierspann<strong>in</strong>g te beoordelen. Een goede <strong>in</strong>structie vanbeoordelaars bevordert de betrouwbaarheid.Met<strong>in</strong>gen van hartslagpatronenHet bepalen van de hoeveelheid beweg<strong>in</strong>gsactiviteiten van mensen met ZEMB is van belang. Hetgebruik van een stappenteller hiervoor is niet mogelijk omdat deze mensen niet kunnen lopen.Hierdoor is de hoeveelheid beweg<strong>in</strong>gsactiviteiten moeilijk vast te stellen bij mensen met ZEMB.Hartslagmet<strong>in</strong>g zou een aanwijz<strong>in</strong>g kunnen geven van de hoeveelheid beweg<strong>in</strong>gsactiviteiten bijdeze mensen. Hoofdstuk 8 beschrijft de hartslagmet<strong>in</strong>g en hartslagpatronen bij mensen metZEMB. Daarnaast wordt op basis van deze hartslagmet<strong>in</strong>g de hoeveelheid beweg<strong>in</strong>gsactiviteitenbeschreven en vergeleken met de norm voor voldoende beweg<strong>in</strong>gsactiviteiten van de AmericanCollege of Sports Medic<strong>in</strong>e. Tot slot beschrijft dit hoofdstuk een classificatie van hartslagpatronenen beïnvloedende factoren op hartslagpatronen.De hartslagpatronen werden per kwartier gemeten bij 24 mensen met ZEMB, gedurendezes dagen en 8 uren per dag. Het g<strong>in</strong>g daarbij om vijf doordeweekse dagen en een weekenddag.Gelijk met de hartslagmet<strong>in</strong>gen, werd door woon- en activiteitenbegeleiders <strong>in</strong> een dagboekjebijgehouden hoe fysiek actief de deelnemers aan het onderzoek waren.Hartslagmet<strong>in</strong>g blijkt wel een betrouwbaar meet<strong>in</strong>strument te zijn om beweg<strong>in</strong>gsactiviteitente meten bij mensen met ZEMB. De resultaten van het onderzoek laten verder zien dat dedeelnemers aan het onderzoek niet voldoende beweg<strong>in</strong>gsactiviteiten hebben, vergeleken metde norm. Er zijn 4 categorieën op basis van hartslagpatronen voor mensen met ZEMB. De<strong>in</strong>druk bestaat dat dit door de <strong>in</strong>vloed van emoties en persoonlijke factoren veroorzaakt wordt.Daarnaast blijken de tijd op de dag en leeftijd een duidelijke <strong>in</strong>vloed op hartslagpatronen tehebben, evenals bij mensen zonder beperk<strong>in</strong>gen.DiscussieIn hoofdstuk 9 wordt een algemene discussie gevoerd over de <strong>in</strong>houd van dit proefschrift. Deresultaten van het onderzoeksproject worden nog eens kort genoemd en bediscussieerd <strong>in</strong> hetlicht van ander onderzoek.De belangrijkste resultaten van dit proefschrift zijn uitvoerbare, betrouwbare en valide testen omde fysieke fitheid bij mensen met ZEVB en ZEMB vast te stellen, die direct toepasbaar zijn <strong>in</strong> dedagelijkse praktijk van de zorg voor deze mensen. Er zijn twee nieuwe formules berekend, die tegebruiken zijn bij onderzoek van deze bijzondere doelgroep.166 | Samenvatt<strong>in</strong>g


Verder is duidelijk geworden dat mensen met ZEVB en ZEMB aan testen kunnen wennen, alsde omgev<strong>in</strong>g maar de juiste voorwaarden creëert. Deze juiste voorwaarden worden beschreven <strong>in</strong>de discussie. Voorbeelden hiervan zijn:- aanpass<strong>in</strong>gen aan bestaande testprotocollen;- het uitvoeren van oefensessies om vertrouwd te raken met dit protocol;- testen op een logische tijd, bijvoorbeeld tijdens een gymuurtje;- vertrouwde en geschoolde begeleid<strong>in</strong>g, bijvoorbeeld beweg<strong>in</strong>gsagogen.De motorische vaardigheden van mensen met mensen met ZEVMB bepalen welketesten en met<strong>in</strong>gen van belang zijn voor een persoon. In de discussie komt aan de orde dathet van belang is dat naast de <strong>in</strong>del<strong>in</strong>g naar verstandelijke beperk<strong>in</strong>g, ook een <strong>in</strong>del<strong>in</strong>g naarbeweg<strong>in</strong>gsmogelijkheden gehanteerd wordt bij mensen met ZEVMB.Het verband tussen fysieke fitheid, beweg<strong>in</strong>gsactiviteiten, gezondheid en participatiewordt nader toegelicht. Daarnaast worden statistische aspecten bij onderzoek bij mensen metZEVB en ZEMB nader belicht. Tot slot worden aanbevel<strong>in</strong>gen gedaan voor verder onderzoek bijmensen met ZEVB en ZEMB. Hierbij komt met name de aanbevel<strong>in</strong>g voor het ontwikkelen vanbeweegprogramma’s speciaal voor mensen met ZEVB en ZEMB nadrukkelijk naar voren.Samenvatt<strong>in</strong>g | 167


168 | Samenvatt<strong>in</strong>g


DankwoordDankwoord | 169


Bij het opzetten en uitvoeren van toegepast wetenschappelijk onderzoek is samenwerken encommuniceren van groot belang. Toen ik begon aan de onderzoeken voor dit proefschrift, heb ikontdekt dat dit voor mij een van de leuke aspecten van onderzoek is.Aan het e<strong>in</strong>d van dit proefschrift wil ik dan ook graag alle mensen die op wat voor manier dan ookbetrokken zijn geweest bij de onderzoeken, bedanken.Allereerst bedank ik mijn begeleiders, promotores professor C.P. van der Schans en professor B.Steenbergen en copromotor dr. R. van Wijck.Beste Cees, vanaf het eerste moment van onze kennismak<strong>in</strong>g <strong>in</strong> 2005 viel mij op hoe jemogelijkheden en kansen ziet voor onderzoek, en hoe je onderzoek bereikbaar maakt voor dedirecte praktijk. Je vaardigheden om samenwerken te stimuleren en verb<strong>in</strong>d<strong>in</strong>gen te leggentussen onderzoek en praktijk, hebben de basis gelegd voor dit toegepaste wetenschappelijkeonderzoek. Ik wil je dan ook bedanken voor de kansen die je me gegeven hebt!Ik waardeer het vertrouwen dat je <strong>in</strong> mij en mijn vaardigheden stelde. Ik v<strong>in</strong>d het juist daarom ookzo mooi dat je s<strong>in</strong>ds september 2010 hoogleraar en daarmee mijn eerste promotor bent. Ik hebontzettend veel geleerd van je kennis over opzet van onderzoek, je statistische kennis en je altijdpositieve en opbouwende feedback op mijn artikelen. Het is heel prettig dat je altijd snel reageerten feedback geeft. Ik ben blij dat we <strong>in</strong> de toekomst blijven samenwerken en hoop nog veel van jete leren!Beste Bert, hoewel je pas vanaf 2009 bij ons onderzoek betrokken bent, heb ik heel veel vanje duidelijke aanwijz<strong>in</strong>gen geleerd. Ik bedank je voor je open m<strong>in</strong>d voor samenwerken en dekansen die je mij met deze samenwerk<strong>in</strong>g gaf. Ik ben heel blij met jou als tweede promotor en jeNijmeegse en toch ook een beetje Gron<strong>in</strong>gse <strong>in</strong>put <strong>in</strong> het onderzoek. Ik heb heel veel bewonder<strong>in</strong>gvoor jouw kennis en vaardigheden <strong>in</strong> het schrijven van subsidievoorstellen: van het samenschrijven van het subsidievoorstel voor Inzicht heb ik veel geleerd! Maar ook de artikelen waar<strong>in</strong>je hebt meegeschreven, zijn verbeterd door jouw <strong>in</strong>put. Ik ben blij met je <strong>in</strong>breng <strong>in</strong> de GeneralDiscussion, het is zo echt beter dan het eerst was!Beste Ruud, jij bent mijn grote <strong>in</strong>spirator voor het onderwerp van de onderzoeken vanafhet eerste beg<strong>in</strong>. Je lez<strong>in</strong>g op de NGBZ dag voor fysiotherapeuten over jouw onderzoek bijmensen met lichte en matige verstandelijke beperk<strong>in</strong>gen op het gebied van fysieke fitheid,heeft mijn belangstell<strong>in</strong>g gewekt en nieuwsgierigheid geprikkeld. De samenwerk<strong>in</strong>g tussen deHanzehogeschool en Beweg<strong>in</strong>gswetenschappen b<strong>in</strong>nen dit onderzoek is heel waardevol envruchtbaar gebleken. Ik heb veel van je geleerd over de <strong>in</strong>houdelijke kant van fysieke fitheid, jestatistische kennis, je kennis van de literatuur en de doelgroep. Je waardevolle opmerk<strong>in</strong>genover de artikelen en de tips voor relevante tijdschriften zijn van onschatbare waarde gebleken. Ikhoop dat ik nog gebruik mag blijven maken van je expertise! Bijzonder was de rol die Fleur, jouwdochter, aan het e<strong>in</strong>d van het promotietraject nog speelde. Zij heeft niet alleen verschillendestukken gecorrigeerd op Engels, maar ook samen met jou en mij meegedacht over de <strong>in</strong>houd, wateen grote meerwaarde bleek!170 | Dankwoord


De leden van de leescommissie, professor H. M. Evenhuis, professor C. Vlaskamp en professor G.Lancioni dank ik hartelijk voor het beoordelen van het proefschrift, helemaal geweldig dat het zosnel kon!Kon<strong>in</strong>klijke Visio De Br<strong>in</strong>k, haar cliënten en cliëntvertegenwoordigers en al haar medewerkers benik veel dank verschuldigd voor alle kansen die mij geboden zijn. Ik ben trots op De Br<strong>in</strong>k, omdatze dit onderzoek heeft aangedurfd en mogelijk gemaakt om daarmee extra expertise over onzebijzondere doelgroep te vergaren.Allereerst wil ik dan ook onze cliënten heel hartelijk bedanken voor het meedoen aan hetonderzoek en de grote groep cliëntvertegenwoordigers voor het toestemm<strong>in</strong>g geven hiervoor. Ikvond het vertrouwen dat men hiermee <strong>in</strong> mij stelde hartverwarmend! Ik geniet nog iedere dag vanhet werken met onze bijzondere doelgroep!G<strong>in</strong>i Verheggen, eerst als collega fysiotherapie, later als manager, heb jij dit onderzoek altijdondersteund en toegejuicht: ‘Ga dit project maar trekken’, was toen je advies waar ik nu nog heelblij mee ben. Loes Hogenhuis, manager van het Expertisecentrum van De Br<strong>in</strong>k, ik heb enormveel bewonder<strong>in</strong>g voor de wijze waarop jij het expertisecentrum van De Br<strong>in</strong>k hebt vormgegeven,opgebouwd en uitgebouwd. Je bent ontzettend goed <strong>in</strong> het leggen van verb<strong>in</strong>d<strong>in</strong>gen en <strong>in</strong> hetfaciliteren van werkzaamheden van professionals. Samen met Ymkje de Vries, coörd<strong>in</strong>erendbegeleider van het Expertisecentrum, vormde je een super goed team. Ik heb met heel veelplezier met jullie samen gewerkt. Bedankt voor alle kansen en het plaveien van de weg!Sanny van der Steen, mijn begeleider tijdens de laatste twee jaren van het onderzoek, jouwbegeleid<strong>in</strong>g vormde een heel waardevolle aanvull<strong>in</strong>g, van je goede ideeën en het <strong>in</strong>houdelijkmeedenken heb ik veel geleerd! Dank je wel! Ik ben je ook heel dankbaar voor je <strong>in</strong>zet voor mijnvervolgtraject bij Kon<strong>in</strong>klijke Visio. Voor de manier waarop je dit hebt voorbereid heb ik grotebewonder<strong>in</strong>g. Ook KEI wil ik bedanken voor het waarborgen van de voortgang van het onderzoekde afgelopen twee jaren.Jo Triepels, eerst <strong>in</strong> de Raad van Bestuur van De Br<strong>in</strong>k, nu van Kon<strong>in</strong>klijke Visio, ik dank jouallereerst heel hartelijk voor je <strong>in</strong>zet voor dit onderzoek en je <strong>in</strong>houdelijke <strong>in</strong>teresse, en tentweede voor je visie op de toekomst van onderzoeksmogelijkheden b<strong>in</strong>nen Kon<strong>in</strong>klijke Visio en demogelijkheden die je mij hiermee biedt.Lex van Hemert, directeur van De Br<strong>in</strong>k, ik bedank jou voor de wijze waarop je het onderzoek hebtondersteund en ook nu nog het vervolg ondersteunt en faciliteert.De managers van de won<strong>in</strong>gen en dagbested<strong>in</strong>g wil ik bedanken voor alle support en z<strong>in</strong>volle tipsbij het uitvoeren van de onderzoeken. De medewerkers Wonen en Dagbested<strong>in</strong>g hebben veel werkvoor het onderzoek verzet <strong>in</strong> de vorm van <strong>in</strong>vullen van allerlei vragenlijsten, feed back geven,meedenken met plannen van onderzoeken en niet te vergeten het begeleiden en geruststellen vande cliënten, bedankt hiervoor! En jullie zijn nog niet van me af!Dankwoord | 171


Voor de collega´s van beweg<strong>in</strong>g, Jan<strong>in</strong>e Wolt<strong>in</strong>g, Eric van Gelderen, Henny Honebeek, Jackievan Dalfsen, Marjan Gritter, Marije Warners en vervangers heb ik tijdens het onderzoek nog meerbewonder<strong>in</strong>g gekregen dan ik al had: dankzij de vanzelfsprekende en uitlokkende begeleid<strong>in</strong>g vanalle cliënten tijdens toch vaak spannende testen zijn de onderzoeken succesvol en uitvoerbaargebleken. Ik weet wel dat jullie af en toe zuchtten als ik weer aankwam met een onderzoek, maarjullie hebben het steeds klaar gespeeld om ieder onderzoek tot een succes te maken. Bedankt!Jullie kunnen trots zijn op jullie expertise en het is goed dat jullie dit blijven uitdragen!En dan mijn collega’s van fysiotherapie, G<strong>in</strong>eke Hanzen, Peter Dijkhuis en Jetty Mensies, heel heelhartelijk dank voor deze kans die jullie mij zo van harte gunden en ook voor alle ondersteun<strong>in</strong>g,support, de luisterende oren en humor. Ik tref het maar enorm met zulke collega’s. Jullie hebbenmeegedacht en meegewerkt met het onderzoek, studenten <strong>in</strong>gewerkt, heel veel namen vanstudenten getracht te onthouden en het kantoor gedeeld met ze. Maar zeker ook hebben julliebijgedragen aan de <strong>in</strong>houd en de vorm van de onderzoeken. Ik had jullie graag alle drie alsparanimf gekozen.Theo Kiestra, wat heb ik veel van jou geleerd, ik her<strong>in</strong>ner me nog de eerste gesprekken over decliënten <strong>in</strong> jouw kamer <strong>in</strong> de Boerderij toen ik net begon bij De Br<strong>in</strong>k. Van jou heb ik de betekenisvan een meervoudige beperk<strong>in</strong>g geleerd. Daarnaast heb je een waardevolle bijdrage geleverd aande eerste artikelen op het gebied van statistiek. Heel hartelijk dank voor alles!De collega’s van orthopedagogiek wil ik heel hartelijk danken voor de <strong>in</strong>houdelijke support enhet steeds weer kijken naar lijsten met cliënten om contra-<strong>in</strong>dicaties te bepalen. Ik wil graag metname Mariska van Panhuis noemen, die vanaf het beg<strong>in</strong> betrokken is geweest bij de onderzoekenen adviseerde om de motoriek van de cliënten naar GMFCS niveaus <strong>in</strong> te delen.Ook de Artsen Verstandelijk Gehandicapten, Jeroen Auener en Marijke Nieberg hebben ergbijgedragen aan de <strong>in</strong>houd van de onderzoeken. De medische contra-<strong>in</strong>dicaties zijn zo heel goedverwoord en staan <strong>in</strong> alle artikelen vermeld.Jeromia Kramer, diëtiste, heeft meegedacht over en meegeholpen met alle onderzoeken op hetgebied van lichaamssamenstell<strong>in</strong>g. Jeromia, het was heel leerzaam om jouw relativerende visie opde onderzoeken te horen, dank je wel!Herman Bezema, jou wil ik van harte bedanken voor het aanvragen en verkrijgen van de tweesubsidies die de eerste twee jaren van dit onderzoek hebben mogelijk gemaakt. Joke ter Maat,Henny Kannegieter, Janny de Vries en Janny Merema, ik wil jullie allen heel hartelijk danken vooralle ondersteun<strong>in</strong>g. De samenwerk<strong>in</strong>g met jou, Marjan van Slageren, heb ik als heel bijzonder en<strong>in</strong>spirerend ervaren, dank hiervoor!Het lectoraat van de Hanzehogeschool wil ik bedanken voor de uren die ik <strong>in</strong> het onderzoekmocht steken. De contacten met de collega´s van de onderzoeksgroep zijn heel waardevol enleerzaam. Er heerst een prettige werksfeer <strong>in</strong> de onderzoekskamer en ik v<strong>in</strong>d het altijd gezelligen <strong>in</strong>spirerend om hier te komen werken. Het is heerlijk om van gedachten te wisselen met envragen te kunnen stellen aan mensen die zoveel kennis van zaken hebben en hetzelfde procesdoormaken.172 | Dankwoord


Judith van der Boom, dank je wel voor al het ondersteunen, het maken van afspraken en hetmeedenken met de verschillende regelzaken. Het is heerlijk om zo’n rustgevende vraagbaak tehebben en ik vond het vooral ook gezellig om af en toe even aan te wippen en een praatje temaken!Ik ben veel dank verschuldigd aan alle studenten van verschillende opleid<strong>in</strong>gen van deHanzehogeschool, fysiotherapie, voed<strong>in</strong>g- en diëtetiek en sportstudies, die een bijdrage aan hetonderzoek hebben geleverd. Alleen met jullie hulp was het mogelijk om zoveel werk <strong>in</strong> zo kortetijd te verzetten! Een paar voorbeelden: het maken van plann<strong>in</strong>gen, meedenken over protocollenvan de testen, het uitvoeren van testen en met<strong>in</strong>gen <strong>in</strong> samenwerk<strong>in</strong>g met de afdel<strong>in</strong>g beweg<strong>in</strong>g,<strong>in</strong>voeren van data <strong>in</strong> SPSS. Irma Evenhuis, jij hebt als eerste studente een wel heel wezenlijkebijdrage aan het beg<strong>in</strong> van het project geleverd.De samenwerk<strong>in</strong>g met de faculteiten beweg<strong>in</strong>gswetenschappen en orthopedagogiek van deRijksuniversiteit heeft een bijdrage aan de wetenschappelijke kwaliteit van het onderzoekgeleverd, ik ben heel blij met de hulp van de studenten van deze faculteiten, hartelijk dank!Wim Krijnen, jou wil ik heel hartelijk danken voor je vakkundige hulp bij de statistiek van tweeartikelen. Geweldig hoe je steeds zo snel reageerde, maar ook het antwoord voor de reviewer zogoed verwoordde! Roy Stewart, van jou heb ik veel geleerd over multilevel analysis, het was mooidat je zoveel geduld met mij had, bedankt! Daarnaast heb je ook nog waardevolle analyses voorme uitgevoerd. Het was altijd heel gezellig om met je te bellen!Familie en vrienden, jullie zijn zo belangrijk voor mij, dat heb ik de afgelopen jaren goed gemerkt.Het is heerlijk om successen en kle<strong>in</strong>e tegenslagen te kunnen delen. Heel erg bedankt voor eveneen luisterend oor, maar ook voor alle afleid<strong>in</strong>g, die m<strong>in</strong>stens net zo belangrijk is. Een korteopsomm<strong>in</strong>g: Leuke familiebijeenkomsten met Kerst. Met Marga en Theresa weekendjes weg,naar de pizzeria en samen kopjes koffie dr<strong>in</strong>ken en vooral veel kletsen! Janny, altijd even gezelligkletsen bij een kop thee of een wijntje, bijzonder dat jij het proefschrift zo mooi hebt gemaakt.Akke, jij bent altijd zo positief en enthousiast, leuk om van alles uit te wisselen over onze k<strong>in</strong>derenen ons werk. Mirjam, heerlijk om tijdens het lopen te kletsen en vooral te lachen en zo het hoofdweer leeg te maken!Papa en mama Heiligers, geweldig en hartverwarmend hoe jullie me <strong>in</strong> jullie gez<strong>in</strong> hebbenopgenomen. Jullie zijn heel bijzonder! Wat missen we je allemaal mama en wat ongelofelijkjammer dat je er niet meer bij kunt zijn.Papa en mama Wan<strong>in</strong>ge, wat ben ik ontzettend blij met jullie. Jullie onvoorwaardelijke liefde enzorg vormen een heel belangrijke basis! Het is heel geweldig hoe jullie altijd voor ons klaarstaanen ik ben ook heel erg trots op jullie!Jelmer, Robb<strong>in</strong>, Demi en Kuki: ik ben ontzettend blij met en trots op jullie! Ik weet dat jullie somsniet snappen waar ik toch allemaal mee bezig ben. Sorry als ik weer eens met mijn hoofd niethelemaal bij jullie was, evengoed was ik met mijn hart er altijd wel!Dankwoord | 173


En dan Rudy, liefste, hoewel je niet <strong>in</strong> het boekje genoemd wilde worden, hoor je er natuurlijk alsgeen ander <strong>in</strong>.Jij hebt vanaf het beg<strong>in</strong> al mijn verhalen aan moeten horen en had steeds een luisterend oorvoor de hobbels die op het pad kwamen. Heerlijk om met jou te kunnen praten over onze cliënten.Je zegt steeds dat je niets hebt bijgedragen, maar door mijn gesprekken met jou en je kennisvan onze doelgroep, kwamen de ideeën over de uitvoer<strong>in</strong>g van de onderzoeken. Ook je visie oplichamelijk actief zijn van de cliënten, die je steeds dagelijks <strong>in</strong> praktijk brengt, en je creativiteitdaar<strong>in</strong>, vormen een voorbeeld: mogelijkheden zien <strong>in</strong> plaats van beperk<strong>in</strong>gen, dat heb ik vanjou geleerd. Ik hoop op nog vele gesprekken, waar<strong>in</strong> we het over participatie van onze cliëntenhebben!174 | Dankwoord


Dankwoord | 175


176 | Dankwoord


Curriculum vitaeCurriculum vitae | 177


Aly Wan<strong>in</strong>ge werd op 25 juni 1964 geboren <strong>in</strong> Zuidlaren. Na afrond<strong>in</strong>g van het VWO aan de Dr.Aletta Jacobsscholengemeenschap <strong>in</strong> Hoogezand <strong>in</strong> 1982, studeerde zij fysiotherapie aan deAcademie voor Fysiotherapie, nu Hanzehogeschool Gron<strong>in</strong>gen. Na het afronden hiervan <strong>in</strong> 1986,g<strong>in</strong>g zij als fysiotherapeut deeltijd werken bij De Br<strong>in</strong>k <strong>in</strong> Vries. Deze deeltijd baan comb<strong>in</strong>eerdezij tot 1999 met het werken <strong>in</strong> een particuliere praktijk <strong>in</strong> Zuidlaren. In 1989 heeft ze deNeuro Developmental Treatment cursus voor K<strong>in</strong>deren gevolgd, <strong>in</strong> 1992 heeft ze de opleid<strong>in</strong>gManuele Therapie aan de SOMT <strong>in</strong> Amersfoort afgerond en daarnaast heeft ze verschillendeverdiep<strong>in</strong>gscursussen op het gebied van fysiotherapie gedaan.Van 2007 tot 2011 had Aly een deeltijdaanstell<strong>in</strong>g als onderzoeker bij De Br<strong>in</strong>k en bij het LectoraatTransparante Zorgverlen<strong>in</strong>g van de Hanzehogeschool Gron<strong>in</strong>gen. Haar promotieonderzoek voerdeze uit onder begeleid<strong>in</strong>g van prof. dr. C.P. van der Schans, lector Transparante Zorgverlen<strong>in</strong>gHanzehogeschool Gron<strong>in</strong>gen en hoogleraar Revalidatiegeneeskunde UMCG, prof. dr. B.Steenbergen, hoogleraar Perception and Action Problems en dr. R. van Wijck, orthopedagoog,universitair docent en senior-onderzoeker Centrum voor Beweg<strong>in</strong>gswetenschappen UMCG.Het is de bedoel<strong>in</strong>g dat Aly na haar promotie actief zal blijven met toegepast wetenschappelijkonderzoek b<strong>in</strong>nen Kon<strong>in</strong>klijke Visio, waarbij de samenwerk<strong>in</strong>g met de lectoraten TransparanteZorgverlen<strong>in</strong>g en Rehabilitatie van de Hanzehogeschool wordt geïntensiveerd.178 | Curriculum vitae


Curriculum vitae | 179

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!