13.07.2015 Views

Study of radiation damage in silicon detectors for high ... - F9

Study of radiation damage in silicon detectors for high ... - F9

Study of radiation damage in silicon detectors for high ... - F9

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

UNIVERSITY OF LJUBLJANAFACULTY OF MATHEMATICS AND PHYSICSDejan Zontar<strong>Study</strong> <strong>of</strong> <strong>radiation</strong> <strong>damage</strong> <strong>in</strong> <strong>silicon</strong><strong>detectors</strong> <strong>for</strong> <strong>high</strong> lum<strong>in</strong>osityexperiments at LHCDoctoral ThesisSupervisors: pr<strong>of</strong>. dr. Ales Stanovnikdoc. dr. Marko MikuzLjubljana, 1998


UNIVERZA V LJUBLJANIFAKULTETA ZA MATEMATIKO IN FIZIKODejan ZontarStudij sevalnih poskodb silicijevihdetektorjev za eksperimente z visokolum<strong>in</strong>oznostjo na trkalniku LHCDisertacijaMentor: pr<strong>of</strong>. dr. Ales StanovnikSomentor: doc. dr. Marko MikuzLjubljana, 1998


Najprej gre moja zahvala delovnima mentorjema doc. dr. Vladimirju C<strong>in</strong>dru<strong>in</strong> doc. dr. Marku Mikuzu. Prvi mi je s svojimi bogatimi izkusnjamiz eksperimentalnim delom nudil neprecenjilvo pomoc predvsem v postavitvieksperimenta ter nacrtovanju <strong>in</strong> izvajanju meritev. Drugemu sese posebej zahvaljujemza neskoncne pogovore o <strong>in</strong>trepretaciji rezultatov <strong>in</strong>njihovih posledicah.Brez njune pomoci <strong>in</strong> potrpezljivosti to delo gotovo ne bi bilo mogoce.Univerzitetnemu mantorju pr<strong>of</strong>. dr. Alesu Stanovniku se zahvaljujem zaveckratno nadvse pozorno branje predstavljenega dela <strong>in</strong> stevilne koristnepripombe. S svojim sirokim pogledom je gotovo mocno pripomogel k celovitipredstavitvi opravljenega dela.Seveda ne smem pozabiti mag. Gregorja Krambergerja, ki je prispeval levjidelez pri vzpostavitvi racunalniskega nadzora nad meritvami. Hkrati se zahvaljujemtudi Eriku Marganu, ki je s svojim globokim a prakticnem poznavanjemelektronike, zgradil vse manjse elektronske komponente, potrebne zanemoten potek poskusov.To delo ne bi bilo mogoce tudi brez sodelovanja osebja reaktorskega centra vPodgorici. Mag. Marku Maucecu se zahvaljujem za simulacijo nevtronskegaspektra v obsevalnem kanalu F19, <strong>in</strong>g. Edvardu Krist<strong>of</strong>u pa za meritve spektra<strong>in</strong> nevtronsko dozimetrijo. Operaterjem reaktorja, med njimi se posebejBojanu Omanu, se zahvaljujem za izjemno sodelovanje <strong>in</strong> prilagajanje svojegadelovnega casa potrebam obsevanj.Iwould also liketothankA.Vasilescu <strong>for</strong> send<strong>in</strong>g me data <strong>for</strong> Ougouag <strong>damage</strong>function and cross-check<strong>in</strong>g my results with both Ougouag and Gr<strong>in</strong> values.My thanks also go to F. Lemmeilleur, who k<strong>in</strong>dly provided MESA samplesand helped with disscussion <strong>of</strong> results, obta<strong>in</strong>ed after their ir<strong>radiation</strong>.Nenazadnje pa se moram zahvaliti vsem sodelavcem odseka za eksperimentalnoziko osnovnih delcev za izjemno delovno vzdusje <strong>in</strong> vzorne medsebojneodnose, katerih je delezen le redko kdo.


AbstractRadiation <strong>damage</strong> <strong>of</strong> the <strong>silicon</strong> bulk will play an important role <strong>in</strong> the vertex <strong>detectors</strong><strong>in</strong> the future experiments at LHC. To study its macroscopic eects, <strong>high</strong> resistivityp + -n-n + diodes were irradiated with neutrons at the TRIGA research reactor <strong>of</strong> JozefStefan Institute <strong>in</strong> Ljubljana. Ir<strong>radiation</strong> uences were <strong>in</strong> the range from 10 13 to 2.510 14/cm 2 <strong>of</strong> equivalent 1 MeV neutrons. Development <strong>of</strong> eective dop<strong>in</strong>g concentration andreverse current dur<strong>in</strong>g and after ir<strong>radiation</strong>s was studied under controlled conditions (bias,temperature).Long term anneal<strong>in</strong>g <strong>of</strong> eective dop<strong>in</strong>g concentration was studied to determ<strong>in</strong>e thedynamics <strong>of</strong> the process responsible. Results obta<strong>in</strong>ed from a set <strong>of</strong> unbiased diodes keptat 20 Cgave conclusive evidence that, at least dur<strong>in</strong>g the <strong>in</strong>itial stage, time developmentcan be described by a rst order process.Flux dependence <strong>of</strong> defect creation has been checked <strong>in</strong> the ux range from 210 8 to 510 15 n/cm 2 s. No signicant dierence among the samples was observed <strong>in</strong> any <strong>of</strong>thestudied properties.Inuence <strong>of</strong> bias voltage on defect development was discovered. Fully biased sampleswere found to have about a factor 2 <strong>high</strong>er values <strong>of</strong> N eff after benecial anneal<strong>in</strong>g. Afterremoval <strong>of</strong> bias, the dierence anneals out exponentially with two time constants <strong>of</strong> about40h and 6weeks at 20 C. No <strong>in</strong>uence <strong>of</strong> bias voltage on reverse current was observed.Keywords: <strong>silicon</strong> <strong>detectors</strong>, <strong>radiation</strong> hardness, neutron ir<strong>radiation</strong>, LHCPACS 29.40.Gx, 29.40.Wk


PovzetekSevalne poskodbe v siliciju bodo znatno vplivale na delovanje verteks detektorjevv bodocih eksperimentih na velikem hadronskem trkalniku LHC. Pricujoce delo obsegarezultate obsevanj visoko upornostnih p + -n-n + diod v reaktorju TRIGA Instituta JozefStefan pri Ljubjani. Obsevalne uence so bile ekvivalentne 10 13 do 2.510 14 n/cm 2 1MeV nevtronom. Pod nadzorovanimi pogoji sem spremljal razvoj efektivne koncentracijedopantov <strong>in</strong> zapornega toka tako med kot tudi po obsevanju.Meritvepocasnega razvoja efektivne koncentracije dopantov so bile namenjene dolocanjud<strong>in</strong>amike odgovorne reakcije. Dobljeni rezultati meritev diod, ki so bile hranjene pri 20 Cbrez napajalne napetosti, so dal1 prepricljive dokaze, da lahko razvoj vsaj v zacetni fazipopisemo s procesom prvega reda.Odvisnost tvorjenja poskodb od nevtronskega uksa sem preverili za ukse med 210 8<strong>in</strong> 510 15 n/cm 2 s. V raziskanem podrocju med vzorci ni bilo opaznih razlik, ki bi jihlahko pripisali razlikam v uksu.V okviru dela je bil odkrit vpliv napajalne napetosti na casovni razvoj poskodb. Vplivse odraza kot razlika v efektivni koncentraciji dopantov. Ta je za vzorce pod polnodeplecijsko napetostjo po koncanem okrevanju priblizno dvakrat vecja kot za vzorce breznapetosti. Upadanje razlike po izklopu napetosti lahko popisemo z dvema eksponentnimafunkcijama s casovnima konstantama okoli 40 ur <strong>in</strong> 6 tednov pri 20 C. Rezultati kazejo,da na razvoj zapornega toka prisotnost napajalne napetosti nima zaznavnega vpliva.Kljucne besede: silicijevi detektorji, sevalne poskodbe, nevtroni, LHCPACS 29.40.Gx, 29.40.Wk


Contents1. Introduction 52. Operation and Radiation Damage <strong>of</strong> Silicon Detectors 112.1 Basics <strong>of</strong> Operation <strong>of</strong> Silicon Detectors . . . . . . . . . . . . . . . . . . . . 112.1.1 p ; n Junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.1.2 Inuence <strong>of</strong> External Voltage . . . . . . . . . . . . . . . . . . . . . 152.1.3 The Fermi Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.1.4 Diusion Current from the Neutral Bulk . . . . . . . . . . . . . . . 172.1.5 Generation Current <strong>in</strong> Depleted Region . . . . . . . . . . . . . . . . 192.1.6 N eff from C/V Measurements . . . . . . . . . . . . . . . . . . . . . 222.2 Radiation Induced Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . 242.2.1 Defect Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242.2.2 Compar<strong>in</strong>g Radiation Damage Measurements . . . . . . . . . . . . 252.2.3 Types <strong>of</strong> Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272.3 Eects on Bulk Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 272.3.1 Leakage Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282.3.2 Eective Dopant Concentration . . . . . . . . . . . . . . . . . . . . 292.3.3 Charge Collection Eciency . . . . . . . . . . . . . . . . . . . . . . 312.4 Time Evolution <strong>of</strong> Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . 312.4.1 Time Evolution <strong>of</strong> Leakage Current . . . . . . . . . . . . . . . . . . 332.4.2 Time Evolution <strong>of</strong> N eff . . . . . . . . . . . . . . . . . . . . . . . . . 343. Ir<strong>radiation</strong> Facility 353.1 The Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353.2 Selection <strong>of</strong> Ir<strong>radiation</strong> Site . . . . . . . . . . . . . . . . . . . . . . . . . . 353.3 Ir<strong>radiation</strong> Chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.3.1 Channel Description . . . . . . . . . . . . . . . . . . . . . . . . . . 373.3.2 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.3.3 Neutron Spectrum and Dosimetry . . . . . . . . . . . . . . . . . . . 383.4 Ir<strong>radiation</strong> Channel F19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413.4.1 Channel Description . . . . . . . . . . . . . . . . . . . . . . . . . . 413.4.2 Neutron Spectrum and Dosimetry . . . . . . . . . . . . . . . . . . . 421


3.5 Measurement Setup, Methods and Analysis . . . . . . . . . . . . . . . . . . 463.5.1 Laboratory Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463.5.2 C/V Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 473.5.3 Bulk Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534. Time Development <strong>of</strong> Defects 554.1 Fast Anneal<strong>in</strong>g <strong>of</strong> N eff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554.2 Reverse Anneal<strong>in</strong>g <strong>of</strong> N eff . . . . . . . . . . . . . . . . . . . . . . . . . . . 594.2.1 Reaction K<strong>in</strong>ematics Fit . . . . . . . . . . . . . . . . . . . . . . . . 594.2.2 Initial Slope Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634.2.3 Test <strong>of</strong> Boron Reactivation Model . . . . . . . . . . . . . . . . . . . 704.3 Results on Anneal<strong>in</strong>g <strong>of</strong> MESA Samples . . . . . . . . . . . . . . . . . . . 714.4 Anneal<strong>in</strong>g <strong>of</strong> Reverse Current . . . . . . . . . . . . . . . . . . . . . . . . . 744.4.1 Fast Anneal<strong>in</strong>g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744.4.2 Long Term Anneal<strong>in</strong>g . . . . . . . . . . . . . . . . . . . . . . . . . 764.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785. Dose Rate Dependence 815.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815.2 Results on N eff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825.3 Results on Reverse Current . . . . . . . . . . . . . . . . . . . . . . . . . . 855.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 866. Inuence <strong>of</strong> Bias Voltage 896.1 Inuence on N eff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 896.1.1 Time Development <strong>of</strong> Unbiased Samples . . . . . . . . . . . . . . . 896.1.2 Comparison <strong>of</strong> Biased and Unbiased Samples . . . . . . . . . . . . . 916.1.3 <strong>Study</strong> <strong>of</strong>aPartially Depleted Diode . . . . . . . . . . . . . . . . . . 946.2 Anneal<strong>in</strong>g <strong>of</strong> the Dierence <strong>in</strong> N eff . . . . . . . . . . . . . . . . . . . . . . 966.2.1 Time Constants and Activation Energy . . . . . . . . . . . . . . . . 996.2.2 Bistability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016.3 Inuence on Reverse Current . . . . . . . . . . . . . . . . . . . . . . . . . . 1026.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1037. Comparison with Other Groups 1058. Conclusions 1099. Povzetek doktorskega dela 1139.1 Uvod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1139.1.1 Osnove delovanja . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1149.1.2 Tvorba sevalnih poskodb . . . . . . . . . . . . . . . . . . . . . . . . 115


39.2 Reaktor, merilni sistem <strong>in</strong> metode . . . . . . . . . . . . . . . . . . . . . . . 1189.2.1 Reaktor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1189.2.2 Merilni sistem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1199.2.3 Opis meritve <strong>in</strong> analize podatkov . . . . . . . . . . . . . . . . . . . 1209.3 Casovni razvoj poskodb . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1229.3.1 Uvod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1229.3.2 Hitro okrevanje N eff . . . . . . . . . . . . . . . . . . . . . . . . . . 1249.3.3 Obratno okrevanje N eff . . . . . . . . . . . . . . . . . . . . . . . . 1279.3.4 Okrevanje zapornega toka . . . . . . . . . . . . . . . . . . . . . . . 1299.4 Vpliv uksa nevtronov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1319.5 Vpliv napajalne napetosti . . . . . . . . . . . . . . . . . . . . . . . . . . . 1339.6 Zakljucek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13710.Appendix: List <strong>of</strong> Symbols and Abbreviations 139References 143


1IntroductionSilicon <strong>detectors</strong> play an essential role <strong>in</strong> modern particle physics experiments. Theyexhibit fast and l<strong>in</strong>ear response to ionis<strong>in</strong>g particles, are compact and have good energyresolution. Highly developed techniques <strong>of</strong> semiconductor process<strong>in</strong>g allow production <strong>of</strong>complex structures on a micron scale. Silicon <strong>detectors</strong> are thus an obvious choice <strong>for</strong>compact and fast track<strong>in</strong>g <strong>detectors</strong> with excellent spatial resolution 1 and are a part <strong>of</strong>basically all modern particle physics <strong>detectors</strong>. They are usually used as the <strong>in</strong>nermostpart <strong>of</strong> track<strong>in</strong>g systems and play a crucial role <strong>in</strong> reconstruction <strong>of</strong> <strong>in</strong>teraction vertices.In the rst decade <strong>of</strong> the next millennium the Large Hadron Collider (LHC) [2](gure 1.1) will be <strong>in</strong> operation at the European laboratory <strong>for</strong> particle physics (CERN). Itwill provide <strong>high</strong> energy (14 TeV) proton-proton collisions with <strong>high</strong> lum<strong>in</strong>osity (10 33 /cm 2 sdur<strong>in</strong>g low and 10 34 /cm 2 s dur<strong>in</strong>g <strong>high</strong> lum<strong>in</strong>osity runn<strong>in</strong>g). This opens a wide range <strong>of</strong>physics opportunities, among which the orig<strong>in</strong> <strong>of</strong> mass is a major focus <strong>of</strong> <strong>in</strong>terest. One<strong>of</strong> the possible manifestations <strong>of</strong> the spontaneous symmetry-break<strong>in</strong>g, responsible <strong>for</strong> theorig<strong>in</strong> <strong>of</strong> mass, could be the existence <strong>of</strong> the Higgs boson. The ability to search <strong>for</strong> theHiggs boson is there<strong>for</strong>e used as a prime criterium <strong>in</strong> design<strong>in</strong>g the <strong>detectors</strong>. Togetherwith demands necessary <strong>for</strong> the study <strong>of</strong> some other processes (supersymmetry, B-physics)that will be accessible at LHC, it determ<strong>in</strong>es the basic design features <strong>of</strong> <strong>detectors</strong> at LHC[3, 4, 5]. Their ma<strong>in</strong> features are good electromagnetic calorimetry, ecient track<strong>in</strong>g at<strong>high</strong> lum<strong>in</strong>osity, tau and heavy-avour vertex reconstruction and stand-alone precisionmuon momentum measurements.This work was done <strong>in</strong> scope <strong>of</strong> the ATLAS collaboration, which is build<strong>in</strong>g one<strong>of</strong> the large experiments at LHC. The overall design <strong>of</strong> the ATLAS detector (gure 1.2)is described <strong>in</strong> [4] and will not be discussed here. We shall only briey describe the<strong>in</strong>ner detector (ID) [6], used <strong>for</strong> charged particle track<strong>in</strong>g. A superconduct<strong>in</strong>g solenoid is1Intr<strong>in</strong>sic resolutions as low as1m were obta<strong>in</strong>ed with <strong>silicon</strong> strip <strong>detectors</strong> [1].5


6 1. IntroductionFigure 1.1: Schematic layout <strong>of</strong> the LHC.conta<strong>in</strong>ed with<strong>in</strong> a cyl<strong>in</strong>der <strong>of</strong> 6.8 m length and 1.15 m radius, with a magnetic eld <strong>of</strong> 2 T.The <strong>in</strong>ner detector provides pattern recognition, momentum and vertex measurements andelectron identication. It consists <strong>of</strong> three parts (g. 1.3). The outer part <strong>of</strong> the track<strong>in</strong>gvolume conta<strong>in</strong>s the Transition Radiation Tracker (TRT), consist<strong>in</strong>g <strong>of</strong> cont<strong>in</strong>uous strawtubetrack<strong>in</strong>g <strong>detectors</strong> with transition <strong>radiation</strong> detection capability. The middle part(SCT - Semi-Conductor Tracker) consists <strong>of</strong> <strong>high</strong>-resolution semiconductor strip <strong>detectors</strong>,arranged <strong>in</strong> four concentric cyl<strong>in</strong>ders around the beam axis (Barrel SCT), and n<strong>in</strong>e disks oneach side (Forward SCT). Disks, used to cover the <strong>for</strong>ward directions, are perpendicularto the beam axis. The Semi-Conductor Tracker covers radii from 30 to 52 cm. The<strong>in</strong>nermost part consists <strong>of</strong> pixel <strong>detectors</strong>, arranged <strong>in</strong> three barrels at radii <strong>of</strong> 4, 11 and14 cm, and four disks between radii <strong>of</strong> 11 and 20 cm on each side.Their two-dimensionalsegmentation gives unambiguous space po<strong>in</strong>ts and the small active area <strong>of</strong> an <strong>in</strong>dividual


1. Introduction 7Figure 1.2: Schematic layout<strong>of</strong>theATLAS detector.segment provides better signal to noise ratio.High lum<strong>in</strong>osity and <strong>high</strong> <strong>in</strong>teraction energy at the LHC will result <strong>in</strong> extremely<strong>high</strong> <strong>in</strong>teraction rates. At maximum lum<strong>in</strong>osity about 30 primary <strong>in</strong>teractions will occur<strong>in</strong> every beam cross<strong>in</strong>g (every 25 ns) produc<strong>in</strong>g several hundred secondary particles. Thiswill result <strong>in</strong> signicant <strong>radiation</strong> <strong>damage</strong> <strong>of</strong> the <strong>in</strong>ner detector, especially <strong>for</strong> the layersat small radii. Results <strong>of</strong> the simulation <strong>of</strong> particle uxes and estimated consequent<strong>damage</strong> <strong>of</strong> the <strong>silicon</strong> are presented <strong>in</strong> [6] and [7] . Radiation doses at the SCT radiiare calculated to be around 1:5 10 13 equivalent 1MeV neutrons per cm 2 per year and 4kGy/year 2 (g. 1.4, 1.5). A careful study <strong>of</strong> <strong>radiation</strong> <strong>damage</strong> <strong>of</strong> <strong>silicon</strong> <strong>detectors</strong> is thusnecessary to enable proper design and operation scenaria that will provide operation <strong>of</strong>the semiconductor tracker over 10 years <strong>of</strong> data-tak<strong>in</strong>g. A considerable eort <strong>of</strong> manygroups has been already directed to this eld.2Numbers given are the typical values. Maximal values are estimated to 2 10 13 cm 2 /year <strong>of</strong> 1 MeVneutrons equivalent and 10 kGy/year [6].


8 1. IntroductionForward SCTBarrel SCTPixel DetectorsTRTFigure 1.3: Schematic layout <strong>of</strong> the ATLAS Inner Detector (ID).This work presents results obta<strong>in</strong>ed by the study <strong>of</strong> <strong>radiation</strong> <strong>in</strong>duced defects <strong>of</strong><strong>silicon</strong> bulk under controlled conditions. Bias<strong>in</strong>g voltage and temperature were controlleddur<strong>in</strong>g and after ir<strong>radiation</strong>s. Ir<strong>radiation</strong> ux was varied from about 10 8 to few times10 15 n/cm 2 s to search <strong>for</strong> a ux eect on defect creation. Frequent measurements <strong>of</strong>reverse current and full depletion voltage were per<strong>for</strong>med dur<strong>in</strong>g and immediately after their<strong>radiation</strong> to provide better <strong>in</strong>sight <strong>in</strong>to fast defect anneal<strong>in</strong>g. F<strong>in</strong>ally, abias dependentdefect anneal<strong>in</strong>g was discovered, result<strong>in</strong>g <strong>in</strong> about two times <strong>high</strong>er full depletion voltage<strong>of</strong> the biased samples after the end <strong>of</strong> benecial anneal<strong>in</strong>g.Radiation <strong>damage</strong> caused <strong>in</strong> <strong>silicon</strong> <strong>detectors</strong> can be separated to <strong>damage</strong> to <strong>silicon</strong>bulk and surface <strong>damage</strong>. The latter is ma<strong>in</strong>ly due to xed positive charges, collected atthe border between the semiconductor and the oxide. It <strong>in</strong>creases the conductivity <strong>of</strong> thesurface, giv<strong>in</strong>g rise to surface currents. Surface <strong>damage</strong> can also distort the eld belowthe surface structures, thus chang<strong>in</strong>g the operation properties <strong>of</strong> a detector. It dependsconsiderably on detector design and manufactur<strong>in</strong>g, which have been well studied andunderstood. Thus the surface <strong>damage</strong> seems to be manageable. Bulk <strong>damage</strong>, on theother hand, is much less understood. It causes an <strong>in</strong>crease <strong>of</strong> the leakage current and <strong>of</strong>the eective dopant concentration. This results <strong>in</strong> <strong>in</strong>creased operation voltage, <strong>in</strong>creasednoise due to leakage current and <strong>in</strong>creased power consumption and there<strong>for</strong>e heat. Allthose eects signicantly <strong>in</strong>uence the operational capability <strong>of</strong>a <strong>silicon</strong> detector.Due to the <strong>in</strong>teraction <strong>of</strong> <strong>radiation</strong> (n, p, , e, etc.)with <strong>silicon</strong> atoms the


1. Introduction 9R(cm)Z(cm)Figure 1.4: Flux <strong>in</strong> the <strong>in</strong>ner detector cavity <strong>in</strong> units <strong>of</strong> 1 MeV equivalent neutrons per cm 2per year [6].R(cm)Z(cm)Figure 1.5: Flux <strong>of</strong> charged hadrons <strong>in</strong> the <strong>in</strong>ner detector cavity percm 2 per year [6].periodic structure <strong>of</strong> the lattice is destroyed locally, i.e. <strong>silicon</strong> atoms are dislocated. Adislocated atom is called an <strong>in</strong>terstitial atom, whereas the lattice site, be<strong>in</strong>g empty, iscalled a vacancy. The <strong>in</strong>terstitials and vacancies <strong>for</strong>m defect complexes which establishenergy levels <strong>in</strong> the band gap. Most <strong>of</strong> the defect complexes conta<strong>in</strong> impurity atoms e.g.carbon and oxygen. S<strong>in</strong>ce the detector operation is <strong>for</strong>eseen to last 10 years, the long termbehaviour <strong>of</strong> bulk properties (eective dop<strong>in</strong>g concentration, reverse current) is <strong>of</strong> majorconcern. Understand<strong>in</strong>g which type <strong>of</strong> defect causes the deterioration <strong>of</strong> per<strong>for</strong>mance is


10 1. Introductionvery important <strong>in</strong>theattempt to build a <strong>radiation</strong> hard detector.In the next chapter the basics <strong>of</strong> detector operation and a simple microscopic view<strong>of</strong> the defects as understood so far is presented. In the third part ir<strong>radiation</strong> facilities atthe TRIGA nuclear reactor that were developed as a part <strong>of</strong> this work are described. Thefourth chapter is dedicated to time development <strong>of</strong> defects, where results on short termand reverse anneal<strong>in</strong>g are discussed. The fth chapter presents results <strong>of</strong> the study <strong>of</strong> doserate eect and <strong>in</strong> the sixth results at the <strong>in</strong>uence <strong>of</strong> detector bias on defect developmentare presented. In the last chapter, results from this work are compared with results fromother authors. The slovene summary is given after the conclusions and a list <strong>of</strong> symbolsand abbreviations used <strong>in</strong> this work can be found <strong>in</strong> the appendix.


2Operation and Radiation Damage <strong>of</strong> Silicon Detectors2.1 Basics <strong>of</strong> Operation <strong>of</strong> Silicon DetectorsA <strong>silicon</strong> position-sensitive detector is an array <strong>of</strong> diodes on a <strong>silicon</strong> wafer. When reversebiased, it is operat<strong>in</strong>g like an ionization chamber. Ionis<strong>in</strong>g particles pass<strong>in</strong>g a <strong>silicon</strong> detectorgenerate electron-hole pairs along their paths. The number <strong>of</strong> pairs is proportionalto the particles' energy loss. The creation <strong>of</strong> an electron-hole pair requires a mean energy<strong>of</strong> 3.6 eV with average energy loss <strong>in</strong> <strong>silicon</strong> <strong>of</strong> about 390 eV/m <strong>for</strong>am<strong>in</strong>imum-ionis<strong>in</strong>gparticle. For a typical detector thickness <strong>of</strong> about 300 m, one obta<strong>in</strong>s on average 3 10 4electron-hole pairs, a signal detectable with low-noise electronics.pad (p + ) guard r<strong>in</strong>g (p + )n bulk+backplane (n )Figure 2.1: Aschematic view <strong>of</strong> a pad detector. The <strong>high</strong>ly doped p + pad and guard r<strong>in</strong>g areshown on the p side <strong>of</strong> the diode.As the emphasis <strong>of</strong> this study was <strong>in</strong> the <strong>radiation</strong> <strong>damage</strong> <strong>of</strong> the <strong>silicon</strong> bulk,<strong>silicon</strong> pad <strong>detectors</strong> (diodes) proved to be the ideal device. Simple process<strong>in</strong>g providesgood reproducibility and low cost. Simple structure <strong>of</strong> pad <strong>detectors</strong> (gure 2.1) stronglyreduces the eects <strong>of</strong> surface <strong>radiation</strong> <strong>damage</strong>. Detectors consist <strong>of</strong> <strong>high</strong> resistivity bulk,<strong>high</strong>ly n doped (n + ) on one side (backplane). The other (p) side consists <strong>of</strong> a large <strong>high</strong>lydoped p + pad, <strong>of</strong>ten surrounded by one or more p + r<strong>in</strong>gs (guard r<strong>in</strong>gs). Due to simple11


12 2. Operation and Radiation Damage <strong>of</strong> Silicon Detectorsstructure, surface <strong>damage</strong> <strong>of</strong> the top and bottom plane has a negligible eect 3 and the<strong>in</strong>crease <strong>of</strong> the reverse current due to surface <strong>damage</strong> at the edge <strong>of</strong> <strong>detectors</strong> can beelim<strong>in</strong>ated by guard r<strong>in</strong>gs.The general equationnp = n 2 i = N C N V e ; Egk B T(2.1)gives <strong>in</strong> the <strong>in</strong>tr<strong>in</strong>sic case (n = p = n i ) the density <strong>of</strong> free carriers <strong>in</strong> non-depleted pure<strong>silicon</strong>. Here n and p are concentrations <strong>of</strong> free electrons and holes, respectively, N C andN V are eective densities <strong>of</strong> states at the conduction and valence band edges respectivelyN CV =2 2m 3eh k B2Th 2 (2.2)E g =1.12 eV is the band gap, k B the Boltzmann constant, h Planck constant, T temperatureand m eh eective masses <strong>of</strong> electrons and holes. At room temperature N CV is <strong>of</strong>the order 10 19 /cm 3 and n i around 10 10 /cm 3 . In a 300 m thick diode with an area <strong>of</strong> 1cm 2 this gives a few times 10 8 <strong>of</strong> free carriers with uctuations comparable to the signalfrom a m<strong>in</strong>imum ionis<strong>in</strong>g particle (3 10 4 pairs). In a reversely biased diode, on the otherhand, free carriers are swept out by the electric eld leav<strong>in</strong>g a space charge region (SCR)depleted <strong>of</strong> free carriers. 4 Thus to obta<strong>in</strong> a good signal/noise ratio the active volume hasto be depleted.2.1.1 p ; n JunctionThe number <strong>of</strong> free electrons and holes <strong>in</strong> <strong>silicon</strong> can be changed signicantly by dop<strong>in</strong>git with donors or acceptors. Donors usually are atoms that have <strong>in</strong> addition to the fourelectrons, needed <strong>for</strong> the covalent bond, one electron they donate to the conduction band.Acceptors have one electron miss<strong>in</strong>g to <strong>for</strong>m bond<strong>in</strong>g to all neighbours. So to completethe miss<strong>in</strong>g bond they accept an electron from the valence band, leav<strong>in</strong>g a hole there.Energies needed <strong>for</strong> those transitions are comparable to k B T at room temperature andalmost all dopants are ionised. Thus at <strong>high</strong> enough excess concentration <strong>of</strong> dopants<strong>of</strong> certa<strong>in</strong> type, the number <strong>of</strong> electrons <strong>in</strong> the conduction band equals the number <strong>of</strong>donors or the number <strong>of</strong> holes <strong>in</strong> the valence band equals the number <strong>of</strong> acceptors. Therelation n 2 i = np still holds as <strong>in</strong> pure <strong>silicon</strong>, while n = p = n i is no longer valid. Ifthe concentration <strong>of</strong> donors N D exceeds the concentration <strong>of</strong> acceptors N A (i.e. n > p)3S<strong>in</strong>gle large pad reduces the surface <strong>of</strong> the oxide-bulk contact. Absence <strong>of</strong> <strong>in</strong>tegrated decoupl<strong>in</strong>gcapacitors and bias resistors removes eects caused by <strong>radiation</strong> <strong>in</strong>duced changes <strong>in</strong> their per<strong>for</strong>mances.4In fact a small but permanent carrier generation due to emission and capture processes still rema<strong>in</strong><strong>in</strong> the SCR region as will be described later.


2. Operation and Radiation Damage <strong>of</strong> Silicon Detectors 13Acceptor ionDonor ionHoleElectronp type <strong>silicon</strong>n type <strong>silicon</strong>p-n junctionSCRDopantconcentrationSpacechargedensityNĀN D+-x xpnElectricfieldElectricpotentialFigure 2.2: The p-n junction: dopant concentration, space charge density, electric eld strengthand electric potential.the material is called n-type with electrons as majority carriers. If vice versa N A > N D(p > n) the material is called p-type and majority carriers are holes. Standard dop<strong>in</strong>gelements are phosphorus and boron as a donor and an acceptor, respectively, with energylevels E C (P )=0.044 eV 5 and E V (B)=0.046 eV. 6When the dopant concentration changes from a surplus <strong>of</strong> acceptors N A on the p-side to a surplus <strong>of</strong> donors N D on the n-side the p-n junction is obta<strong>in</strong>ed (gure 2.2). Thegradient <strong>of</strong> electron and hole densities results <strong>in</strong> a diusive migration <strong>of</strong> majority carriersacross the junction. This migration leaves the p region with a net negative charge and then region with a net positive charge due to unneutralised, immobile acceptor and donorions. This <strong>for</strong>ms the space charge or depletion region. The immobile ions <strong>in</strong> the spacecharge region generate an electric eld oppos<strong>in</strong>g the migration and thus an equilibrium isobta<strong>in</strong>ed <strong>in</strong> the system.5Energy gap from the phosphorus energy level to the bottom <strong>of</strong> the conduction band.6Energy gap from the top <strong>of</strong> the valence band to the boron level.


14 2. Operation and Radiation Damage <strong>of</strong> Silicon DetectorsThe electric properties <strong>of</strong> the junction can be calculated from the Poisson equation; d2 Vdx 2= e(x) Si 0: (2.3)Assum<strong>in</strong>g an abrupt junction(N D x>0N D (x) =0 x0N A x


2. Operation and Radiation Damage <strong>of</strong> Silicon Detectors 152.1.2 Inuence <strong>of</strong> External VoltageFor charged particle detection, the e;h pairs created <strong>in</strong> the depletion region by a travers<strong>in</strong>gparticle are separated by the electric eld, collected and read out. The charge created<strong>in</strong> the neutral, non-depleted region recomb<strong>in</strong>es with free carriers and is lost. Increas<strong>in</strong>gthe depth <strong>of</strong> the space charge region thus <strong>in</strong>creases the collected signal.To obta<strong>in</strong> maximal signal one would like tohave the whole thickness <strong>of</strong> the detectordepleted <strong>of</strong> free carriers. This can be achieved by apply<strong>in</strong>g an external voltage V withthe same polarity as the built <strong>in</strong> potential. In that case V bi <strong>in</strong> equation 2.7 is replaced byV bi + V . S<strong>in</strong>ce usually V V bi , V bi can be omitted and we obta<strong>in</strong>w(V ) =r2Si 0e 0 N DV : (2.9)The voltage necessary to deplete the full depth <strong>of</strong> the detector (W ), called the full depletionvoltage (FDV or V FD ), is thus given byV FD = e 0N D W 22 Si 0: (2.10)It can be seen that the relation between V FD and N D depends quadratically on sampledepth. For 300 m thick samples, the conversion constant isV FD =6:95 10 ;11 Vcm 3 N D .For a semiconductor with both electrons and holes as carriers, bulk resistivity isgiven by [8] =1e 0 ( e n + h p)(2.11)where e and h are electron and hole mobilities (1350 and 480 cm 2 /Vs at room temperature,respectively). For a fully ionised shallow-dopant n-type <strong>silicon</strong>, n N D and p n.Equation 2.11 can thus be simplied to =1e 0 e N D (2.12)relat<strong>in</strong>g resistivity and <strong>in</strong>itial donor concentration. For a typical value <strong>of</strong> = 5 kcm oneobta<strong>in</strong>s N D 9 10 11 cm ;3 .High resistivityn-type material ( >2 kcm), that is usually used <strong>for</strong> the low dopedn side <strong>of</strong> <strong>silicon</strong> track<strong>in</strong>g <strong>detectors</strong>, is obta<strong>in</strong>ed by donor compensation 7 . This means thatdonor and acceptor concentrations are <strong>of</strong> the same order <strong>of</strong> magnitude, and N D has to bereplaced by the dierence <strong>of</strong> the donor and acceptor concentrationsN D ! N eff = jN D ; N A j : (2.13)7Neutron dop<strong>in</strong>g is usually used to obta<strong>in</strong> <strong>high</strong> resistivity n-type material [8, 9].


16 2. Operation and Radiation Damage <strong>of</strong> Silicon Detectors2.1.3 The Fermi LevelThe occupation probability <strong>for</strong> electrons is given by theFermi-Dirac distribution function ;1f(E) = 1+e E;E Fk B T(2.14)For E C ;E F k B T (non-degenerate semiconductors) it converts to Boltzmann statistics,giv<strong>in</strong>gn = N C e ; E C ;E Fk B T(2.15)<strong>for</strong> the concentration <strong>of</strong> electrons <strong>in</strong> the conductive band [8]. Similarly, <strong>for</strong> the concentration<strong>of</strong> holes <strong>in</strong> the valence band holdsp = N V e ; E F ;E Vk B T: (2.16)The Fermi level <strong>for</strong> the <strong>in</strong>tr<strong>in</strong>sic case (n = p = n i ) can be determ<strong>in</strong>ed from the chargeneutrality conditionE F (<strong>in</strong>tr<strong>in</strong>sic) =E i = E C + E V2+ k BT2 ln NVN C(2.17)and the <strong>in</strong>tr<strong>in</strong>sic carrier density is as given <strong>in</strong> eq. 2.1. It can be seen that <strong>in</strong> an <strong>in</strong>tr<strong>in</strong>sicsemiconductor the Fermi level lies very close to the middle <strong>of</strong> the bandgap.In case <strong>of</strong> a doped semiconductor donor or acceptor impurities <strong>in</strong>troduce newenergy levels <strong>in</strong> the bandgap. To preserve charge neutrality <strong>in</strong> thermal equilibrium theFermi level must adjust. Charge neutrality demandsn + N ; A = p + N + D(2.18)where N + D and N ; Aare numbers <strong>of</strong> ionised donors and acceptors respectively. In a case<strong>of</strong> standard shallow level dopants (P ,B) most dopants are ionised at room temperature,thus N + D N D, N ; A N A. The concentration <strong>of</strong> electrons and holes <strong>in</strong> an n type sample(N D > N A ) follows from eq. 2.18 and 2.1 and <strong>for</strong> N D N A and N D ; N A n i theFermi level equalsE F = E C ; k B T lnNC(2.19)N Dwith the equivalent equationE F = E V + k B T lnNVN A(2.20)


2. Operation and Radiation Damage <strong>of</strong> Silicon Detectors 17<strong>for</strong> a p type semiconductor. For a 300 m thick detector with full depletion voltage <strong>of</strong>50 V ( 6 kcm) the donor concentration (N D N eff ) is about 710 11 /cm 3 . Us<strong>in</strong>gN C =10 19 /cm 3 (eq. 2.2) one gets E F about 15 k B T 0.4 eV below the conduction band,that is at about two thirds <strong>of</strong> the band gap (E g = E C ; E V =1:12eV ).Trap occupancy <strong>in</strong> the space charge region is, as will be shown later, given byeq. 2.34. If we write it <strong>in</strong>a<strong>for</strong>m<strong>of</strong>Fermi ocupancy probabilityf T =(1+e 2(E T ;ET F )k B T) ;1 (2.21)we obta<strong>in</strong> the follow<strong>in</strong>g value <strong>for</strong> a quasi Fermi level <strong>for</strong> a trap with energy E Tspace charge region EF T = E i + k BT T2 ln heT<strong>in</strong> the(2.22)The ratio <strong>of</strong> the hole and electron trapp<strong>in</strong>g cross-section h T /eT is <strong>in</strong> most cases <strong>of</strong> theorder 1, thus EF T E i. That means that traps below mid-gap are ma<strong>in</strong>ly occupiedwhile traps above mid-gap are ma<strong>in</strong>ly unoccupied with the transition width <strong>of</strong> a few k B T .There<strong>for</strong>e donors contribute to the space charge if <strong>in</strong> the upper half <strong>of</strong> the energy gap andacceptors if <strong>in</strong> the lower half.2.1.4 Diusion Current from the Neutral BulkBulk current runn<strong>in</strong>g through the depleted region comes from two ma<strong>in</strong> contributions:diusion <strong>of</strong> charge carriers from the non-depleted region (diusion current) and generation<strong>of</strong> carriers <strong>in</strong> the depleted region (generation current). Besides these two sources asignicant contribution can also come from the current runn<strong>in</strong>g on the surface <strong>of</strong> a sample(surface current). It is ma<strong>in</strong>ly due to xed positive charges at the semiconductor surface<strong>in</strong>duc<strong>in</strong>g surface channels, giv<strong>in</strong>g rise to the leakage current. It is strongly <strong>in</strong>uenced bymechanical <strong>damage</strong>, humidity or other contam<strong>in</strong>ation <strong>of</strong> detector surface, and is thus hardto control. However, <strong>in</strong> an operat<strong>in</strong>g device the surface current is most <strong>of</strong>ten collectedby a guard r<strong>in</strong>g structure 8 , mak<strong>in</strong>g this contribution less critical. The derivation <strong>of</strong> bothbulk-current contributions as compiled from [10], [8] and [11] is presented below. In thissection the diusion current will be discussed and the generation current is discussed <strong>in</strong>the next one.The diusion current describes the current through the p-n junction that is a consequence<strong>of</strong> diusion <strong>of</strong> the carriers from the neutral region on one side to the neutral region8Guard r<strong>in</strong>g structure is one or more p + r<strong>in</strong>gs (<strong>in</strong> a case <strong>of</strong> p on n device) surround<strong>in</strong>g the activeregion with a purpose <strong>of</strong> shield<strong>in</strong>g it from the surface currents.


18 2. Operation and Radiation Damage <strong>of</strong> Silicon Detectorson the other side. When no external voltage is applied the net current <strong>of</strong> the charge carriers(electrons and holes) through the junction sums to zero. This is not a consequence<strong>of</strong> the absence <strong>of</strong> carrier ow across the junction but only means that as many carriers <strong>of</strong>each type ow <strong>in</strong> one direction as <strong>in</strong> the other. In the presence <strong>of</strong> an external voltage Vthis however is not the case.The diusion current <strong>of</strong> a given carrier (e.g. holes) can be divided <strong>in</strong>to two components:diusion generation current and recomb<strong>in</strong>ation current. The diusion generationcurrent <strong>of</strong> holes (J genh) ows from n to p side. It arises from pairs generated just on then side <strong>of</strong> the depleted region by thermal excitation <strong>of</strong> electrons out <strong>of</strong> the valence band.When such a hole diuses <strong>in</strong>to the depletion layer it is swept to the p side <strong>of</strong> the junctionby the strong eld <strong>in</strong> the junction. Diusion generation current does thus not depend onbias voltage. The recomb<strong>in</strong>ation current <strong>of</strong> holes (Jhrec ), on the other hand, ows from thep to the n side <strong>of</strong> the junction where it recomb<strong>in</strong>es with a free electron. This current ows<strong>in</strong> the direction opposite to the electric eld and thus only holes with a thermal energysucient to surmount the potential barrier contribute to the recomb<strong>in</strong>ation current. Thenumber <strong>of</strong> such holes is proportional to e ;e 0V=k B T , thusJ rech / e e 0(;V bi +V )=k B T (2.23)where V < 0 <strong>for</strong> reverse bias. The total diusion current <strong>of</strong> holes is a dierence <strong>of</strong> bothcomponents J h = Jhrec ; J genh. From the condition that there is no net current when noexternal voltage is applied follows Jhrecgen(V = 0) = Jhand taken together with 2.23 itgivesJ rech= J genhe eV=k BT : (2.24)Thus the total current <strong>of</strong> the holes equals toJ h = J rech; J genh= J genh(e eV=k BT ; 1) (2.25)The size <strong>of</strong> the diusion generation current J genhcan be estimated <strong>in</strong> terms <strong>of</strong> diusionlengths and carrier lifetimes. Holes are generated by thermal generation at a rate p n0 hper unit volume, where p n0 is the equilibrium hole density on the n side and h the holelifetime. They stand a considerable chance to enter the depleted region and to be sweptto the n side if generated with<strong>in</strong> a diusion length L h from the boundary <strong>of</strong> the depletedregion. Thus the ow <strong>of</strong> the thermally generated holes per unit area <strong>in</strong>to the depletedregion will be <strong>of</strong> order J genh L hp n0 h.The situation is analogous <strong>for</strong> the electrons except <strong>for</strong> <strong>in</strong>verted directions. But s<strong>in</strong>cealso the charge sign is opposite the total electric current is the sum <strong>of</strong> the electron and


2. Operation and Radiation Damage <strong>of</strong> Silicon Detectors 19hole component.j dif = e 0 (J h + J e ) = j sat (e eV=k BT ; 1) (2.26)where V is external voltage and j sat is the saturation 9 current density.The result <strong>of</strong> the derivation described here agrees well with a strict derivation asgiven <strong>in</strong> e.g. [8], with the saturation current equal toj sat = e 0n p0 L e e+ e 0p n0 L h h: (2.27)Us<strong>in</strong>g typical values L 1 m, 10 ;5 s and N D 10 12 cm ;3 one obta<strong>in</strong>s j sat 0:1nA/cm 2 .2.1.5 Generation Current <strong>in</strong> Depleted Regionrrechcrr h e eeEEECTVFigure 2.3: Emission and capture processes from an energy level E T . Arrows present electrontransitions.Generation current <strong>in</strong> the depleted region is the most important source <strong>of</strong> the bulkleakage current <strong>in</strong> <strong>high</strong>ly irradiated <strong>high</strong> resistivity diodes.In case <strong>of</strong> the diusion current, generated m<strong>in</strong>ority charge carriers have to diuseto the space charge region to be swept to the other side or, <strong>in</strong> the case <strong>of</strong> majoritycarriers, to diuse to the other side <strong>of</strong> the SCR surmount<strong>in</strong>g the potential barrier tocontribute to the leakage current. Electron-hole pairs generated <strong>in</strong> the depleted regionare however immediately swept to the neutral region. The generation current contributionthus depends mostly on the pair generation rate and generation volume. To determ<strong>in</strong>e itscontribution it is thus necessary to determ<strong>in</strong>e the pair generation rate <strong>in</strong> the space chargeregion.9It is called saturation current because this is the asymptotic value <strong>of</strong> the diusion current <strong>for</strong> a reversebiased diode when V !;1.


20 2. Operation and Radiation Damage <strong>of</strong> Silicon DetectorsThe generation current occurs via trapp<strong>in</strong>g centers <strong>in</strong> the depleted region. Thereare four processes that can change the occupancy <strong>of</strong> an energy level E T <strong>in</strong> the band gap(gure 2.3): electron capture from the conduction band electron emission to the conduction band hole capture from the valence band hole emission to the valence bandThe capture rates <strong>for</strong> electrons and holes are given byand the emission ratesr e c = T e nv e (1 ; f T )N T r h c = T h pv h f T N T (2.28)r e e = e e f T N T N C r h e = e h (1 ; f T )N T N V : (2.29)Here N T is trap concentration and f T =(1+e E T ;ET Fk B T) ;1 is the probability that the trapenergy level E T is occupied by an electron. eh T are capture cross sections <strong>for</strong> electronsand holes by atrapT,e eh are emission probabilities <strong>for</strong> electrons and holes, and v eh theirthermal velocitiesv eh =q3k B T=m eh : (2.30)From the condition that <strong>in</strong> thermal equilibrium emission and capture rates have to beequal followse e = T e v e e ;(E C ;E T )=k B Te h = T h v h e ;(E T ;E V )=k B T : (2.31)The change <strong>in</strong> concentration <strong>of</strong> occupied traps per time is the sum <strong>of</strong> the processes describeddn Tdt= r e c ; r e e ; r h c + r h e (2.32)where n T = f T N T is the concentration <strong>of</strong> occupied traps. But s<strong>in</strong>ce <strong>in</strong> the SCR almost n<strong>of</strong>ree charge carriers exist (n p 0) no capture will occur and only emission processestake placedn Tdt= r h e ; r e e : (2.33)


2. Operation and Radiation Damage <strong>of</strong> Silicon Detectors 21In a steady state, trap occupancy is constant <strong>in</strong> time ( dn T= 0) there<strong>for</strong>e emissions <strong>of</strong>dtelectrons and holes have to be balanced re h = re. e From that and equations (2.29) the trapoccupancy f T can be determ<strong>in</strong>edf T =e h N Ve e N C + e h N V(2.34)and by <strong>in</strong>sert<strong>in</strong>g this value back <strong>in</strong>to emission rates (2.29) the creation rate <strong>of</strong> electron-holepairs can be determ<strong>in</strong>edr e e = r h e = r pair =e hN V e e N Ce e N C + e h N VN T : (2.35)Insert<strong>in</strong>g (2.31) <strong>in</strong>to (2.35) and assum<strong>in</strong>g N C N V , eT h T and v e v h one obta<strong>in</strong>s 1r pair = N T ehv T eh N CV e ;Eg=2kBT cosh ;1 E T ; 1 k B T 2 (E V + E C ) : (2.36)Equation 2.36 shows that the creation rate <strong>of</strong> electron-hole pairs is maximal when E T =1(E 2 C + E V ). This means that the most ecient electron-hole pair generation centresare those located close to the middle <strong>of</strong> the bandgap. The situation is similar even ifN C N V , e T h T and v e v h are not assumed. In that case the trap energy <strong>for</strong>maximal r pair is shifted toE T (max) = 1 2E C + E V + k B T ln Te v e N Ch T v hN Vand the function deviates somewhat from the symmetrical <strong>for</strong>m 10 .(2.37)The total current density due to generation <strong>in</strong> the depleted region is given by an<strong>in</strong>tegral <strong>of</strong> the generation rate over the space charge regionj SCR = e 0 r pair w : (2.38)S<strong>in</strong>ce w(V ) / p V also the bulk generation current is proportional to p V as long as thediode is not fully depleted. To determ<strong>in</strong>e the temperature dependence, we use E T E i11eq. 2.36 and take <strong>in</strong>to account v eh / p T (eq. 2.30). Thus we obta<strong>in</strong>Egj SCR / T 2 e ; 2k B T: (2.39)The bulk generated reverse current <strong>in</strong> an unirradiated diode is <strong>of</strong> the order <strong>of</strong>nA/cm 2 , while <strong>for</strong> a diode irradiated to 10 14 n/cm 2 it is <strong>of</strong> the order <strong>of</strong> A/cm 2 . The10One <strong>of</strong> the exponential terms <strong>in</strong>cluded <strong>in</strong> cosh is multiplied by a factor T e veNC T h v hN V.11Only traps close to mid-gap are considered, s<strong>in</strong>ce they give the largest contribution to the leakagecurrent.


22 2. Operation and Radiation Damage <strong>of</strong> Silicon Detectorsdierence is due to the <strong>in</strong>crease <strong>of</strong> generation current, caused by additional traps closeto mid-gap, <strong>in</strong>troduced by ir<strong>radiation</strong>. Generation current is thus the ma<strong>in</strong> source <strong>of</strong> thereverse current <strong>in</strong> irradiated samples, so one should expect that temperature dependence<strong>of</strong> the reverse current is follow<strong>in</strong>g equation 2.39.The situation is however dierent if the major contribution to the leakage currentis from traps with <strong>high</strong> concentration but somewhat away from the mid-gap [12]. In thatcase, one <strong>of</strong> the exponential terms<strong>in</strong>cosh<strong>in</strong> eq. 2.36 prevails and one obta<strong>in</strong>sr pair = T ehv eh N CV e ;Eg2k B Te ; 1k B T jE T ; 1 2 (E V +E C )j : (2.40)This could account <strong>for</strong> a <strong>high</strong>er energy (1.2 eV [13, 14, 15] compared to E g =1.1 eV)observed <strong>in</strong> the scal<strong>in</strong>g <strong>of</strong> reverse current with temperature.2.1.6 N eff from C/V MeasurementsOne can dene the depletion layer capacitance as the ratio <strong>of</strong> dierential change <strong>of</strong> chargeper dierential change <strong>of</strong> applied voltageC(V 0 ) = dQdV j V =V 0: (2.41)In case <strong>of</strong> a one-sided abrupt junction the capacitance is given byC(V )= Si 0 Sw= rSi 0 e 0 N eff2VS (2.42)where Q = e 0 N eff Sw (S is the sample area) was used together with eq. 2.9. It shows that<strong>for</strong> N eff constant over the detector depth, the graph <strong>of</strong> 1=C 2 (V ) versus V is a straightl<strong>in</strong>e <strong>for</strong> reverse voltages below full depleted voltaged(1=C 2 (V ))dV=2e 0 Si 0 N eff S 2 (2.43)and a constant value <strong>for</strong> <strong>high</strong>er voltages. The position <strong>of</strong> the k<strong>in</strong>k determ<strong>in</strong>es FDV andthe slope determ<strong>in</strong>es N eff .A similar set <strong>of</strong> equations can be used to determ<strong>in</strong>e the N eff distribution overthe sample depth from a capacitance versus voltage (C/V) measurement <strong>in</strong> a case <strong>of</strong> anon-uni<strong>for</strong>m distribution. Equation 2.43 can be rewritten [8] asd(1=C 2 (V ))dV=2e 0 Si 0 N eff (V )S 2 (2.44)


2. Operation and Radiation Damage <strong>of</strong> Silicon Detectors 23Figure 2.4: C/V measurement <strong>of</strong> a diode, irradiated to 5 10 13 n/cm 2 and annealed <strong>for</strong> vemonths at 20 C. The dierence <strong>in</strong> signals obta<strong>in</strong>ed by dierent measurement frequencies isshown. The measurement was per<strong>for</strong>med at 5 C.giv<strong>in</strong>g the N eff value <strong>in</strong> terms <strong>of</strong> applied voltage. To determ<strong>in</strong>e it <strong>in</strong> terms <strong>of</strong> depth onecan use the relation [8]w(V )= Si 0 SC(V ) : (2.45)The situation is more complicated <strong>in</strong> case <strong>of</strong> deep energy levels. For those theemission time, dened as the <strong>in</strong>verse <strong>of</strong> emission probability T = 1e T N CV(eq. 2.31), canbe large compared to the oscillation time <strong>of</strong> the measur<strong>in</strong>g signal. In such a case deep trapsdo not contribute to the measured signal. As can be seen from eq. 2.31 the emission timedepends exponentially on the temperature. There<strong>for</strong>e a l<strong>in</strong>ear decrease <strong>in</strong> temperaturecorresponds to a logarithmic decrease <strong>in</strong> frequency. Achange <strong>in</strong> the measur<strong>in</strong>g frequencyor temperature thus aects the signal from deep energy levels and consequently the shape<strong>of</strong> the C/V curve (gure 2.4). It also results <strong>in</strong> somewhat <strong>high</strong>er full depletion voltage asdeterm<strong>in</strong>ed from the k<strong>in</strong>k <strong>in</strong> C/V plot at lower frequencies. This eect was systematicallystudied by [16, 17] who report about 10% <strong>in</strong>crease <strong>of</strong> FDV asfrequency changes from 10kHz to 1 kHz. It is suggested the reason may be the presence <strong>of</strong> a transition region betweenthe space charge region and the neutral bulk <strong>in</strong> heavily irradiated <strong>silicon</strong>. Measurementsignals <strong>of</strong> dierent frequencies might thus probe dierent parts <strong>of</strong> this transition region.To avoid the <strong>in</strong>uence <strong>of</strong> this eect when compar<strong>in</strong>g dierent samples, all measure-


24 2. Operation and Radiation Damage <strong>of</strong> Silicon Detectorsments <strong>in</strong> the laboratory were taken at 5 CandFDV as obta<strong>in</strong>ed from 10 kHz measurementwere used <strong>for</strong> comparison. Measurements at the reactor (i.e. dur<strong>in</strong>g and early after ir<strong>radiation</strong>)were however taken at the ir<strong>radiation</strong> temperature and were aected by thisphenomenon. A more detailed description <strong>of</strong> measur<strong>in</strong>g methods used <strong>in</strong> this work canbe found <strong>in</strong> section 3.5.2.2 Radiation Induced DefectsDamage caused by <strong>radiation</strong> can be divided <strong>in</strong>to two groups, surface <strong>damage</strong> and bulk<strong>damage</strong>. Due to the <strong>in</strong>terest <strong>of</strong> electronic <strong>in</strong>dustry, the surface <strong>damage</strong> is better understoodand can be controlled to a certa<strong>in</strong> extent by proper design and manufactur<strong>in</strong>gprocess. Surface <strong>damage</strong> ma<strong>in</strong>ly manifests as charge accumulation <strong>in</strong> the oxide andsubsequent breakdown. Charge accumulation at the <strong>silicon</strong>-oxide <strong>in</strong>terface signicantlydecreases the <strong>in</strong>ter-strip resistance <strong>of</strong> microstrip <strong>detectors</strong>. There<strong>for</strong>e the signal has to becollected very quickly to m<strong>in</strong>imise the loss due to leakage to neighbour<strong>in</strong>g strips.The bulk <strong>damage</strong> <strong>in</strong> <strong>high</strong> resistivity <strong>silicon</strong> is however much less understood. Anextensive study <strong>of</strong> the bulk <strong>damage</strong> <strong>for</strong> the purpose <strong>of</strong> experiments at <strong>high</strong> lum<strong>in</strong>ositycolliders is there<strong>for</strong>e ongo<strong>in</strong>g.In track<strong>in</strong>g <strong>detectors</strong> full depletion <strong>of</strong> the bulk is required. Accord<strong>in</strong>g to eq. 2.10,2.13 the full depletion voltage is proportional to the eective dopant concentration. S<strong>in</strong>celow operation voltages are sought to avoid breakdown and extensive heat<strong>in</strong>g, <strong>high</strong> resistivity<strong>silicon</strong> is used <strong>in</strong> track<strong>in</strong>g devices. There the concentration <strong>of</strong> ir<strong>radiation</strong> <strong>in</strong>duceddefects can be comparable or even much larger than the <strong>in</strong>itial dopant concentration.Thus construction <strong>of</strong> trackers <strong>for</strong> new large experiments, where they will operate <strong>in</strong> <strong>high</strong>ir<strong>radiation</strong> environments, demands an <strong>in</strong>tensive study <strong>of</strong> the ir<strong>radiation</strong> <strong>in</strong>duced bulkdefects and to those the further discussion is focused on.2.2.1 Defect GenerationThe energy loss by <strong>in</strong>teraction <strong>of</strong> an <strong>in</strong>com<strong>in</strong>g particle with matter can be divided <strong>in</strong>totwo parts: ionization and non-ionis<strong>in</strong>g energy loss (NIEL). Due to fast recomb<strong>in</strong>ation <strong>of</strong>charge carriers the ionis<strong>in</strong>g energy loss does not lead to bulk <strong>damage</strong>. NIEL conta<strong>in</strong>sdisplacements <strong>of</strong> lattice atoms and nuclear reactions. They both can result <strong>in</strong> long termbulk <strong>damage</strong> and will be described <strong>in</strong> the follow<strong>in</strong>g sections.


2. Operation and Radiation Damage <strong>of</strong> Silicon Detectors 25Nuclear Reactions The most important nuclear reaction result<strong>in</strong>g from neutron ir<strong>radiation</strong>is transmutation to phosphorus30 Si + n ! 31 Si + 31 Si ! 30 P + e ; +: (2.46)Transmutations to Al and Mg are also possible, but have a few orders <strong>of</strong> magnitude lowercross-sections, so we shall rst estimate the rate <strong>of</strong> phosphorus production.The <strong>in</strong>tegral radiative capture cross-section <strong>for</strong> the reaction 2.46 is 96 mb <strong>for</strong> athermal spectrum and 670 b <strong>for</strong> a typical ssion (Watt) spectrum. At the ir<strong>radiation</strong>sites used <strong>in</strong> this work the ux <strong>in</strong> both parts (thermal and fast) <strong>of</strong> the spectrum iscomparable 12 . Due to the larger cross-section thus only the thermal part needs to beconsidered. Change <strong>of</strong> phosphorus concentration N P after neutron uence is given asa product N P = R P where R P is the phosphorus <strong>in</strong>troduction rate. The <strong>in</strong>troductionrate can be estimated byR P = A( 30 Si)N Si : (2.47)With atomic percent abundance <strong>of</strong> 30 Si isotope A( 30 Si)=3.1% and N Si = N Av SiA=510 22cm ;3 we obta<strong>in</strong> 30 P <strong>in</strong>troduction rate <strong>of</strong> R P =1:5 10 ;4 cm ;1 . As will be shown later it ismore than two orders <strong>of</strong> magnitude lower compared to <strong>in</strong>troduction rates <strong>of</strong> active latticedefects and thus negligible. S<strong>in</strong>ce cross-sections <strong>for</strong> transmutation to Al and Mg are evensmaller they can also be neglected.Lattice Atoms Displacements The most important process <strong>for</strong> <strong>radiation</strong> <strong>damage</strong> <strong>in</strong><strong>silicon</strong> is the displacement <strong>of</strong> lattice atoms. An <strong>in</strong>com<strong>in</strong>g particle can transfer a signicantpart 13 <strong>of</strong> its energy to a Si atom. Bulk <strong>damage</strong> occurs when the transfer <strong>of</strong> k<strong>in</strong>etic energyis sucient to displace a <strong>silicon</strong> atom from its lattice site 14 . Displaced atoms may cometo rest <strong>in</strong> <strong>in</strong>terstitial positions (I), leav<strong>in</strong>g vacancies (V) at their orig<strong>in</strong>al locations. If thek<strong>in</strong>etic energy <strong>of</strong> the recoil<strong>in</strong>g atom is sucient it can displace further Si atoms, creat<strong>in</strong>ga cluster <strong>of</strong> displacements. Most <strong>of</strong> the result<strong>in</strong>g vacancies and <strong>in</strong>terstitials recomb<strong>in</strong>ewhile others diuse away and eventually create stable defects.2.2.2 Compar<strong>in</strong>g Radiation Damage MeasurementsOnly non-ionis<strong>in</strong>g energy loss (NIEL) is to be taken <strong>in</strong>to account when <strong>damage</strong>s causedby dierent particles or particles <strong>of</strong> dierent energies are compared. Accord<strong>in</strong>g to this12Measurements <strong>of</strong> the spectra are presented <strong>in</strong> chapter 3.13As much as 13% <strong>of</strong> the <strong>in</strong>com<strong>in</strong>g neutron energy can be transferred to the Si atom as can be seenfrom the equation E max =E n =4m n m Si =(m n + m Si ) 2 , describ<strong>in</strong>g the collision k<strong>in</strong>ematics.14Around 15 eV <strong>of</strong> recoil energy is required [24].


26 2. Operation and Radiation Damage <strong>of</strong> Silicon DetectorsFigure 2.5: The neutron <strong>damage</strong> function <strong>for</strong> <strong>silicon</strong> accord<strong>in</strong>g to Ougouag [27]."NIEL hypothesis"the <strong>radiation</strong> <strong>damage</strong> <strong>of</strong> the bulk depends on the non-ionis<strong>in</strong>g energyloss only. This has been experimentally demonstrated <strong>for</strong> protons, neutrons and pions[13, 18, 19, 20, 21, 22].Displacement <strong>damage</strong> scales l<strong>in</strong>early with NIEL. It is given by the <strong>damage</strong> functionD(E) [25]. The <strong>damage</strong> caused by dierent particles is usually compared with the <strong>damage</strong>caused by neutrons. S<strong>in</strong>ce D depends on neutron energy (gure 2.5), the <strong>damage</strong> doneby 1 MeV neutrons is taken as a reference po<strong>in</strong>t. The standard value <strong>for</strong> the neutron<strong>damage</strong> at 1 MeV is 95 MeVmb [26]. For an ir<strong>radiation</strong> with particles A with spectraldistribution ddE and cut-os E m<strong>in</strong> and E max a hardness factor can be dened as A =R EmaxhD A iD(1MeVn) = 1D n (1MeV) E m<strong>in</strong>D A (E) d A(E) dER EmaxE m<strong>in</strong>dEd AdE (E) dE : (2.48)In order to allow a universal comparison <strong>of</strong> results it is common practice to refer tothe equivalent uence eq <strong>of</strong> 1 MeV neutrons which would have caused the same <strong>damage</strong>as the uence <strong>of</strong> particles actually applied. is converted <strong>in</strong>to eq by multiply<strong>in</strong>g itwith the hardness factor eq = A A : (2.49)


2. Operation and Radiation Damage <strong>of</strong> Silicon Detectors 27Primary Vacancies Primary Interstitials Replaced impuritiesGroup AV +P! VP I+VP ! P C i + C s ! C i -C sV +O! VO I+VO ! O C i + O i ! C i -O iV +VO ! V 2 O I+V 2 ! V C i + P s ! C i -P sV +C i ! C s I+C s ! C iV +V 2 O ! V 3 O I+V 3 O ! V 2 OV 2 + V ! V 3Group BV +V! V 2 I+V ! SiV 2 + V ! V 3Table 2.1: Survey <strong>of</strong> possible defect reactions. Group A reactions are caused by diusion <strong>of</strong><strong>in</strong>terstitials and vacancies throughout the crystal. To group B belong the reactions, which havea signicant chance <strong>of</strong> occurr<strong>in</strong>g dur<strong>in</strong>g a primary cascade. Indexes i and s stand <strong>for</strong> <strong>in</strong>terstitialand substitutional.2.2.3 Types <strong>of</strong> DefectsAt the <strong>in</strong>teraction <strong>of</strong> the travers<strong>in</strong>g particle with the lattice an <strong>in</strong>terstitial-vacancy pair(Frenkel pair) or a cluster can be produced, depend<strong>in</strong>g on energy, transferred to the primaryatom. Though physical properties <strong>of</strong> clusters are not determ<strong>in</strong>ed yet, theoreticalmodels have been proposed [23]. In the rst phase the disordered region consists <strong>of</strong> many<strong>in</strong>terstitials and vacancies. Most <strong>of</strong> the vacancies and <strong>in</strong>terstitials recomb<strong>in</strong>e, some vacanciesmay <strong>in</strong>teract to <strong>for</strong>m stable divacancies or <strong>high</strong>er vacancy complexes while therest diuse away. Those can react with other <strong>radiation</strong> <strong>in</strong>duced defects, <strong>for</strong>m<strong>in</strong>g defectcomplexes, or react with impurity atoms such as carbon, oxygen and phosphorus, thosebe<strong>in</strong>g among the most common impurities <strong>in</strong> <strong>silicon</strong>. When only a Frenkel pair is createdonly reactions with exist<strong>in</strong>g defects are possible. Thus reactions <strong>of</strong> the defects can be divided<strong>in</strong>to two groups. In the group A are reactions <strong>of</strong> vacancies and <strong>in</strong>terstitials dius<strong>in</strong>gthroughout the crystal. Group B reactions only have a signicant chance <strong>of</strong> occurr<strong>in</strong>gwith<strong>in</strong> the cluster, where the defect density is<strong>high</strong>.Possible reactions <strong>of</strong> both groups arelisted <strong>in</strong> table 2.1 and the most relevant defect congurations are shown schematically <strong>in</strong>gure 2.6.2.3 Eects on Bulk PropertiesDefects generated dur<strong>in</strong>g the ir<strong>radiation</strong> have the follow<strong>in</strong>g eects on the bulk properties: They <strong>in</strong>troduce new energy levels <strong>in</strong> the band gap, contribut<strong>in</strong>g to emission and


28 2. Operation and Radiation Damage <strong>of</strong> Silicon Detectorsab c de f ghFigure 2.6: Various possible defect congurations. Simple defects are: a) vacancy V, b)<strong>in</strong>terstitial <strong>silicon</strong> atom I, c) <strong>in</strong>terstitial impurity atom, d) substitutional impurity atom (e.g.phosphorus as donor). Examples <strong>of</strong> defect complexes are: e) close pair I-V, f) divacancy V-V,g) substitutional impurity atom and vacancy (e.g. VP complex), h) <strong>in</strong>terstitial impurity atomand vacancy (e.g, VO complex)capture processes and thus aect<strong>in</strong>g the leakage current. They can act as donors or acceptors, chang<strong>in</strong>g the eective dopant concentrationN eff thus aect<strong>in</strong>g the full depletion voltage. Increased capture probability decreases charge carrier lifetime thus decreas<strong>in</strong>g thecharge collection eciency.2.3.1 Leakage CurrentDefects generated due to ir<strong>radiation</strong> may <strong>in</strong>troduce energy levels <strong>in</strong> the band gap. Mostdefects have one energy level with two charge states as was also assumed <strong>in</strong> the derivation<strong>of</strong> the generation rate <strong>in</strong> the depleted region (section 2.1.5). Acceptors are negativelycharged when occupied by an electron and neutral when empty, while donors are positivelycharged when unoccupied but neutral otherwise. Some <strong>of</strong> the defects however have morethan one energy level and more charge states. Such an example is divacancy (V 2 ) withthree energy levels <strong>in</strong> the band gap, giv<strong>in</strong>g four charge states [28].As shown <strong>in</strong> section 2.1.5 the largest contribution to the leakage current comes


2. Operation and Radiation Damage <strong>of</strong> Silicon Detectors 29~0.17 eV(- , 0) ~0.23 eV(= , - )~0.1 eV(- , 0)~0.17 eV ~0.09 eV(- , 0)(- , 0)Ec~0.4 eV(-, 0)~0.41 eV(- , 0)~0.25 eV(+ , 0)~0.5 eV (- , 0)~0.41 eV(- , 0)~0.28 eV(+ , 0)~0.38 eV(+ , 0)Ci - CsEiVPVOV2V2OV30CiCi-Oi~0.11 eV(- , 0)~0.05 eV (+ , 0)EvFigure 2.7: Energy levels <strong>of</strong> some vacancy and carbon related defects. The defect charge statesare shown <strong>in</strong> brackets, e.g. m<strong>in</strong>us and neutral (-,0). Above the dotted l<strong>in</strong>e the energy <strong>of</strong> thetrap is written <strong>in</strong> the lower half E V and <strong>in</strong> the upper half E C . Sign = means the doublecharged state. In the gure, data from [14] were used.from defects with energy levels close to the middle <strong>of</strong> the bandgap. While standarddop<strong>in</strong>g materials (P , B) have energy levels close to the conduction (donors) or valenceband (acceptors) this is not the case with the ir<strong>radiation</strong> <strong>in</strong>duced defects (gure 2.7). Thismeans that <strong>radiation</strong> <strong>in</strong>duced defects can contribute a major part <strong>of</strong> the leakage currentgenerated <strong>in</strong> the depleted region.S<strong>in</strong>ce the defect density is proportional to the total uence (N def = g def withg def the defect generation rate) and the generation current proportional to mid-gap defectconcentration (eq. 2.35, 2.38), also the ir<strong>radiation</strong> <strong>in</strong>duced leakage current is proportionalto the equivalent uence eqIV = eq (2.50)where is the leakage current <strong>damage</strong> constant and V the volume.2.3.2 Eective Dopant ConcentrationThe eective dopant concentration N eff is composed <strong>of</strong> ionised shallow levels (donorsand acceptors) and deep levels. Be<strong>for</strong>e ir<strong>radiation</strong>, the concentration <strong>of</strong> deep levels isnegligible and the eective dopant concentration is determ<strong>in</strong>ed by the dierence <strong>of</strong> donorand acceptor concentrations Neff 0 = N D 0 ; N A 0 . Dur<strong>in</strong>g the ir<strong>radiation</strong> two types <strong>of</strong>processes take place. One is the <strong>in</strong>troduction <strong>of</strong> new defects that may act either asdonors or acceptors and the second is the removal <strong>of</strong> <strong>in</strong>itial shallow levels by creation <strong>of</strong>


30 2. Operation and Radiation Damage <strong>of</strong> Silicon Detectorsdefect complexes. It is well proven by experiments that deep level acceptor-like statesare generated dur<strong>in</strong>g ir<strong>radiation</strong>. Accord<strong>in</strong>g to equations 2.10 and 2.13 the full depletionvoltage is proportional to jN eff j. It means that, <strong>for</strong> an <strong>in</strong>itially n type bulk, at low uencesFDV is decreas<strong>in</strong>g with uence until the <strong>in</strong>version po<strong>in</strong>t is reached and then it starts to<strong>in</strong>crease with uence. Thus at <strong>high</strong> total uences full depletion voltage may grow too<strong>high</strong> <strong>for</strong> a normal operation <strong>of</strong> the device. This <strong>in</strong>crease <strong>of</strong> depletion voltage is the ma<strong>in</strong>problem <strong>for</strong> operation <strong>of</strong> <strong>silicon</strong> <strong>detectors</strong> <strong>in</strong> a <strong>high</strong> <strong>radiation</strong> environment.The uence dependence <strong>of</strong> the <strong>in</strong>itially present shallow level dopants is however notwell understood yet. Dierent models have been proposed to expla<strong>in</strong> experimental results.R. Wunstorf et al. [29] reports on measurements <strong>of</strong> removal <strong>of</strong> both <strong>in</strong>itial shallowdonors and acceptors, together with deep level acceptor creation. Development <strong>of</strong> theeective dopant concentration with uence can thus be parametrised asN eff () = N 0 De ;c D ; N 0 Ae ;c A ; g (2.51)Donor removal constant has been determ<strong>in</strong>ed to be c D 2:5 10 ;13 cm 2 and acceptorremoval constant c A 1:98 10 ;13 cm 2 .F. Lemeilleur [30] however reports l<strong>in</strong>ear dependence <strong>of</strong> the <strong>in</strong>version uence on<strong>in</strong>itial dopant concentration with <strong>in</strong>v = (18 0:6cm) N eff (0). At the same time uencedependence <strong>of</strong> N eff is parametrised bywith c D 2:5 10 ;14 cm 2 and g 1:1 10 ;2 cm 2 .N eff () = N 0 De ;c D ; N 0 A ; g (2.52)H. Feick [20] assumes low level <strong>of</strong> compensation <strong>of</strong> his <strong>in</strong>itial material (N 0 A N O D )and is thus not sensitive to changes <strong>in</strong> concentration <strong>of</strong> <strong>in</strong>itial acceptors. Exponentialdependence <strong>of</strong> the donor concentration on uence is reported with removal rate equal toc D =(2:4 1:4) 10 ;13 cm 2 , but with only about a third <strong>of</strong> <strong>in</strong>itial donors be<strong>in</strong>g subjectto the removal. Reduced donor removal was also reported <strong>in</strong> [50].Watts [31] used numerical modell<strong>in</strong>g <strong>of</strong> deep acceptor creation to generate N effversus neutron uence <strong>for</strong> p and n type diodes. No <strong>in</strong>itial dopant removal was used <strong>in</strong>the calculations and good agreement with the data is reported. It is thus claimed that no<strong>in</strong>itial dopant removal is required to successfully expla<strong>in</strong> the uence dependence <strong>of</strong> N eff .Similarly, compensation <strong>of</strong> <strong>in</strong>itial donors by deep acceptors <strong>in</strong>stead <strong>of</strong> donor removal isalso suggested by [32].Due to lack <strong>of</strong> <strong>in</strong><strong>for</strong>mation about <strong>in</strong>itial donor and acceptor concentration, lowcompensation 15 has been assumed throughout this work. Initial donor concentration is15Assum<strong>in</strong>g low compensation N 0 A N 0 D , and with <strong>in</strong>itial donor concentration N 0 D < 4 1011 cm ;3 ,<strong>in</strong>itial acceptor concentration can be neglected.


2. Operation and Radiation Damage <strong>of</strong> Silicon Detectors 31thus given by full depletion voltage be<strong>for</strong>e ir<strong>radiation</strong> accord<strong>in</strong>g to eq. 2.10. Donorremoval with c D =2.410 ;13 cm 2 from [29] has been assumed, giv<strong>in</strong>g almost completeremoval <strong>of</strong> <strong>in</strong>itial donors <strong>for</strong> uences above 10 13 n/cm 2 . Thus only the acceptor creationpart g rema<strong>in</strong>s <strong>in</strong> eq. 2.51 or 2.52 while the contribution <strong>of</strong> <strong>in</strong>itial dop<strong>in</strong>g is neglected.However, even if the <strong>in</strong>itial donors are not completely removed dur<strong>in</strong>g the ir<strong>radiation</strong>, theirconcentration <strong>in</strong> most samples used <strong>in</strong> this work is small compared to the concentration<strong>of</strong> <strong>radiation</strong> <strong>in</strong>duced defects.2.3.3 Charge Collection EciencyDeep energy levels <strong>in</strong>troduced by ir<strong>radiation</strong> reduce the lifetime <strong>of</strong> charge carriers. Thistrapp<strong>in</strong>g eect can be described by <strong>in</strong>troduc<strong>in</strong>g a characteristic trapp<strong>in</strong>g time constant tr used to modify the number <strong>of</strong> charge carriers N ehN eh = N 0 ehe ;t treh (2.53)where the <strong>in</strong>verse overall trapp<strong>in</strong>g time constant ( treh );1 is given by a sum <strong>of</strong> all capturerates (eq. 2.28)X(e tr ) ;1 = e T v e (1 ; f T )N Ttraps( trh ) ;1 = X traps T h v h f T N T (2.54)where trap occupation <strong>for</strong> the SCR is determ<strong>in</strong>ed by (2.34). From 2.54 we see that thetrapp<strong>in</strong>g time constant is<strong>in</strong>versely proportional to the trap concentration N T . And s<strong>in</strong>ceN T is proportional to uence one gets a l<strong>in</strong>ear dependence <strong>of</strong> 1= tr with uence 1= tr =1= tr0+=K with the proportionality factor 1=K. This relation has been experimentallyconrmed up to 2.510 15 n/cm 2 [33]However, <strong>in</strong> determ<strong>in</strong><strong>in</strong>g the eect <strong>of</strong> dierent traps on the charge collection eciencyit has to be taken <strong>in</strong>to account that only traps with detrapp<strong>in</strong>g time large comparedto the charge collection time reduce the charge collection. For those with large detrapp<strong>in</strong>grates, most <strong>of</strong> the captured carriers are released with<strong>in</strong> the shap<strong>in</strong>g time <strong>of</strong> readoutelectronic, thus not aect<strong>in</strong>g the collected signal.The drop <strong>in</strong> the charge collection eciency at a uence around 10 14 n/cm 2 is around10% with fast shap<strong>in</strong>g (few 10 ns) [13, 34]. At the moment there is no means <strong>of</strong> avoid<strong>in</strong>gthis eect.2.4 Time Evolution <strong>of</strong> DefectsRegard<strong>in</strong>g their time development, ir<strong>radiation</strong> <strong>in</strong>duced defects can be divided <strong>in</strong>to threegroups (g. 2.8)


32 2. Operation and Radiation Damage <strong>of</strong> Silicon DetectorsNeffΣgi Φeqfastbeneficialanneal<strong>in</strong>greverse anneal<strong>in</strong>ggYΦ eqslowplateaudays at R.T.g CΦeqyears at R.T.time (l<strong>in</strong> scale)time (log scale)Figure 2.8: Schematic plot <strong>of</strong> time development <strong>of</strong> N eff . All three phases are shown with<strong>in</strong>troduction rates <strong>for</strong> responsible defects. Note that reverse anneal<strong>in</strong>g is shown <strong>in</strong> the logarithmictime scale. Defects stable <strong>in</strong> time Electrically active defects that change to non-active ones(anneal<strong>in</strong>g) Electrically non-active defects that change to active ones (reverse anneal<strong>in</strong>g)The change <strong>of</strong> a defect can be either due to dissociation or comb<strong>in</strong>ation <strong>of</strong> a defect complex.In case <strong>of</strong> the dissociation X ! Y the reaction can be described as a rst order processwith the general solution; dN Ydt= dN Xdt= ;k Y 1N X (2.55)N X (t) =N 0 Xe ;kY 1 t (2.56)N Y (t) =N 0 X(1 ; e ;kY 1 t ) : (2.57)When the new complex is due to a reaction <strong>of</strong> two defects X A + X Bdescribed by! Y it can be; dN Ydtwith the solution (N 0 X A>N 0 X B)= dN X Adt= dN X Bdt= ;k Y 2N XA N XB (2.58)N Y (t) =N 0 X B1 ; e ;kY 2 t(N 0 X A;N 0 X B)1 ; (N 0 X B=N 0 X A)e ;kY 2 t(N 0 X A;N 0 X B) : (2.59)


2. Operation and Radiation Damage <strong>of</strong> Silicon Detectors 33In the case <strong>of</strong> two defects with similar <strong>in</strong>itial concentrations N 0 X A= N 0 X Bor a reactionbetween defects <strong>of</strong> the same type one obta<strong>in</strong>sN X (t) =N 0 X1+N 0 X kY 2t(2.60)N Y (t) =N 0 X ; N X (t) =N 0 X(1 ;11+N 0 X kY 2t ) (2.61)describ<strong>in</strong>g a second order process. If, however, concentration <strong>of</strong> one type <strong>of</strong> <strong>in</strong>teract<strong>in</strong>gdefects is much larger than the concentration <strong>of</strong> the other (NX 0 A NX 0 B) the dynamics<strong>of</strong> the process can aga<strong>in</strong> be described by the rst order equation with k Y 1= k Y 2NX 0 A.In the equations, N 0 X is the <strong>in</strong>itial concentrations <strong>of</strong> defect X and k Y 1and k Y 2arethe reaction constants <strong>for</strong> the rst and second order processes. From equations 2.55 and2.58 it can be seen that <strong>in</strong> the rst order reaction, the reaction rate depends l<strong>in</strong>early ondefect concentration while <strong>in</strong> the second order case it depends quadratically.2.4.1 Time Evolution <strong>of</strong> Leakage CurrentTraditionally, measurements <strong>of</strong> the time development <strong>of</strong> the leakage current have beentted with an ansatz [46, 19, 14, 20]I(t) =I(0)[A C + X iA i e ;t= i ] (2.62)where A C represents the contribution <strong>of</strong> defects constant <strong>in</strong> time, A i contributions <strong>of</strong>decay<strong>in</strong>g defects, i their decay times and t time after ir<strong>radiation</strong>. To remove the eect<strong>of</strong> sample size and ir<strong>radiation</strong> uence, a more fundamental constant =I (eq. 2.50),V eqwhere V is the sample volume, is usually used. Thus eq. 2.62 can be rewritten <strong>in</strong> terms<strong>of</strong> the parameter as(t) = C + X i i e ;t= i : (2.63)Only the contribution <strong>of</strong> defects constant <strong>in</strong> time and anneal<strong>in</strong>g defects has been determ<strong>in</strong>ed<strong>in</strong> the leakage current, while no reverse anneal<strong>in</strong>g was observed. However recentresults [35] as well as results presented <strong>in</strong> this work are show<strong>in</strong>g also a long term anneal<strong>in</strong>gcomponent, that could be described by an eective logarithmic time dependence,described by an ansatz(t) = E e ;t= E ; L ln(t= L ) : (2.64)


34 2. Operation and Radiation Damage <strong>of</strong> Silicon Detectors2.4.2 Time Evolution <strong>of</strong> N effResults on the N eff time development show that all three types <strong>of</strong> defects are tak<strong>in</strong>g part<strong>in</strong> the time development <strong>of</strong> defects contribut<strong>in</strong>g to the space charge <strong>in</strong> the depleted region(g. 2.8). While the anneal<strong>in</strong>g part can be described with a sum <strong>of</strong> exponentials likethe leakage current and thus <strong>in</strong>dicates decays <strong>of</strong> active defects, the nature <strong>of</strong> the reverseanneal<strong>in</strong>g part is not fully understood yet. The time development <strong>of</strong> the N eff can thusbe parametrised asN eff (t) =N C + X iN i e ;t= i+ N Y (t) (2.65)where N C represents defects constant <strong>in</strong> time, N i defects that anneal with time constants i and N Y defects responsible <strong>for</strong> the reverse anneal<strong>in</strong>g. 16 Depend<strong>in</strong>g on the reactionsresponsible <strong>for</strong> reverse anneal<strong>in</strong>g, N Y (t) is described by equations 2.57, 2.59 or 2.61,depend<strong>in</strong>g on the type <strong>of</strong> reaction(s) responsible <strong>for</strong> the reverse anneal<strong>in</strong>g. Agreement <strong>of</strong>the measured results with dierent options will be presented later <strong>in</strong> this work.*16Defects contribut<strong>in</strong>g to the charge <strong>in</strong> the SCR are not necessarily the same as those contribut<strong>in</strong>g tothe leakage current, thus also time constants may dier.


3Ir<strong>radiation</strong> Facility3.1 The ReactorThe reactor research centre <strong>of</strong> the Jozef Stefan Institute is located <strong>in</strong> Podgorica nearLjubljana. It is the site <strong>of</strong> an experimental nuclear reactor <strong>of</strong> type TRIGA, constructedto provide neutrons <strong>for</strong> experimental purposes. It can be run with large span <strong>in</strong> operat<strong>in</strong>gpower (few Wto250kW),enabl<strong>in</strong>g ir<strong>radiation</strong>s with various neutron uxes at the sameir<strong>radiation</strong> site.The ma<strong>in</strong> part <strong>of</strong> the reactor is its core, consist<strong>in</strong>g <strong>of</strong> fuel and control rods. It issurrounded by a graphite reector and placed <strong>in</strong>to a reactor vessel lled with water, allwith<strong>in</strong> a thick concrete shield (g. 3.1). Ir<strong>radiation</strong> sites can roughly be divided <strong>in</strong>to twogroups. Vertical channels are giv<strong>in</strong>g access to ir<strong>radiation</strong> sites at the edge <strong>of</strong> the core oreven <strong>in</strong> its centre, occupy<strong>in</strong>g a fuel rod position. In those, space available <strong>for</strong> a sampleis <strong>high</strong>ly limited (less than 2.5 cm diameter and 15 cm length). Horizontal ir<strong>radiation</strong>channels are lead<strong>in</strong>g to ir<strong>radiation</strong> sites some distance from the core. They can conta<strong>in</strong>dierent materials to modify the neutron spectrum <strong>in</strong> the particular channel. In the scope<strong>of</strong> the present work, one horizontal and one vertical channel were exploited to achieve thedesired ir<strong>radiation</strong> conditions.3.2 Selection <strong>of</strong> Ir<strong>radiation</strong> SiteThe properties <strong>of</strong> ir<strong>radiation</strong> channels to be used were determ<strong>in</strong>ed by the requested ir<strong>radiation</strong>conditions. Those were: Neutron spectrum with a signicant portion <strong>of</strong> fast neutrons (above 0.1 MeV). Flux <strong>of</strong> fast neutrons <strong>of</strong> the order 10 9 n/cm 2 s or <strong>high</strong>er.35


36 3. Ir<strong>radiation</strong> Facility1 mconcreteF19RabbitSampleIrrad. ChamberwatergraphiteFission plateReactor coreFigure 3.1: Schematic view <strong>of</strong> the reactor cross-section. The reactor core consists <strong>of</strong> fuel rodsand control rods, surrounded by a graphite reector. It is placed <strong>in</strong>to a reactor vessel lled withwater. Among many ir<strong>radiation</strong> spots only those connected to this work are marked. Possibility to irradiate samples with dimensions up to 1010 cm 2 . Possibility to bias the samples and per<strong>for</strong>m C/V (capacitance versus voltage) andI/V (current versus voltage) measurements dur<strong>in</strong>g and after the ir<strong>radiation</strong>. Possibility tokeep the samples at a xed temperature dur<strong>in</strong>g and after ir<strong>radiation</strong>.The last two conditions can be reduced to free access <strong>for</strong> bias/measur<strong>in</strong>g cablesand cool<strong>in</strong>g pipes while the second and the third condition were un<strong>for</strong>tunately not compatible.For that reason two ir<strong>radiation</strong> channels had to be equipped. They were their<strong>radiation</strong> chamber and the vertical ir<strong>radiation</strong> channel F19. The vertical ir<strong>radiation</strong>channel equipped with a rabbit system (F24) was also used at the beg<strong>in</strong>n<strong>in</strong>g <strong>for</strong> fastir<strong>radiation</strong>s where cool<strong>in</strong>g and bias<strong>in</strong>g <strong>of</strong> the samples were not required (g. 3.1).


3. Ir<strong>radiation</strong> Facility 373.3 Ir<strong>radiation</strong> Chamber3.3.1 Channel DescriptionThe ir<strong>radiation</strong> chamber is one <strong>of</strong> the horizontal ir<strong>radiation</strong> channels, widen<strong>in</strong>g at theend to a small chamber (approx. 222 m 3 ) (g. 3.2). To <strong>in</strong>crease the fast neutronux, a ssion plate 17 is placed <strong>in</strong> front <strong>of</strong> the sample dur<strong>in</strong>g ir<strong>radiation</strong>s. Dur<strong>in</strong>g their<strong>radiation</strong>, samples were kept <strong>in</strong> an ir<strong>radiation</strong> box with controlled temperature. Thebox was mounted on a remote-driven trolley to move the sample <strong>in</strong>to the channel and out<strong>of</strong> it.1 mChamber gateirrad. boxbias/cool<strong>in</strong>gtrolleyReactorcorefissionplateir<strong>radiation</strong>channelFigure 3.2: Schematic view <strong>of</strong> the ir<strong>radiation</strong> chamber. The trolley with mounted ir<strong>radiation</strong>box is <strong>in</strong> the outside position.The ir<strong>radiation</strong> box conta<strong>in</strong>ed two <strong>in</strong>dependent cool<strong>in</strong>g slots, connected to Peltierelements. Each was powered by a 12V DC power supply controlled by aYokogawa UT15temperature controller. The warm side <strong>of</strong> the Peltier elements was water cooled to 5-10 C. The sample temperature was measured by a Pt100 sensor, placed with<strong>in</strong> a few mmfrom the sample and connected to the Yokogawa controller. Temperatures down to about-20 C could be obta<strong>in</strong>ed, stable with<strong>in</strong> 0.2 C.3.3.2 Measurement SetupThe reactor measurement setup enabled bias<strong>in</strong>g <strong>of</strong> the samples and C/V and I/V measurementsdur<strong>in</strong>g and after the ir<strong>radiation</strong>. It consisted <strong>of</strong> a Wentzel <strong>high</strong> voltage power17The ssion plate is made <strong>of</strong> 1468 g <strong>of</strong> 238 U, enriched to 20% 235 U, <strong>for</strong>m<strong>in</strong>g an active disc with adiameter <strong>of</strong> about 30 cm.


38 3. Ir<strong>radiation</strong> FacilityHP 4263BLCR meterWENTZELHV power supply-KEITHLEY 617as µ A-meterR=4.7kΩC=100nFcca. 10mBPPADGRFigure 3.3: Schematic view <strong>of</strong> the measurement setup at the ir<strong>radiation</strong> site. BP, TOP andGR are connections to sample back plane, pad and guard r<strong>in</strong>g, respectively.supply, computer controlled via a DAC converter, a KEITHLEY 617 source-measure unitused as a precise ampermeter and a HP4263B LCR-meter (gure 3.3). Decoupl<strong>in</strong>g capacitorswere used to shield LCR meter from the <strong>high</strong> bias voltage. Four dierent frequencies<strong>of</strong> measur<strong>in</strong>g voltage (100 Hz, 1 kHz, 10 kHz and 100 kHz) were used <strong>in</strong> C/V measurements.The sample temperature dur<strong>in</strong>g and after the ir<strong>radiation</strong> was measured by aPT100 sensor. The measurement method used <strong>in</strong> this work is discussed <strong>in</strong> more detail <strong>in</strong>section 3.5.A careful study <strong>of</strong> the activation had to be per<strong>for</strong>med on all materials used <strong>in</strong> the<strong>high</strong>ly radiative environment close to the reactor core. The selection was mostly reducedto pure alum<strong>in</strong>ium and a certa<strong>in</strong> type <strong>of</strong> plastic (Novilon Oilon, produced by Akripol,Slovenia). After ir<strong>radiation</strong>s, few days had to pass be<strong>for</strong>e activity <strong>of</strong> the sample andcool<strong>in</strong>g system decreased suciently to safely remove the sample and transfer it to thelaboratory. The conditions were even harsher <strong>in</strong> channel F19 due to much <strong>high</strong>er neutronuxes, lead<strong>in</strong>g to <strong>high</strong>er saturation activities.3.3.3 Neutron Spectrum and DosimetryThe low ux <strong>of</strong> fast neutrons (up to few times 10 8 n/cm 2 s) at this ir<strong>radiation</strong> site anddesired total uences around 10 14 n/cm 2 demanded <strong>for</strong> ir<strong>radiation</strong> times <strong>of</strong> over 100 hours.The long ir<strong>radiation</strong> time prohibited direct use <strong>of</strong> In foil activation ( 115 In + n ! 115In + n 0 , 115 In ! 115 In + , = 4:4 h) to monitor the fast neutron ux because <strong>of</strong>the short lifetime <strong>of</strong> the excited state. Thus an <strong>in</strong>direct way was established consist<strong>in</strong>g


3. Ir<strong>radiation</strong> Facility 39Fission platerRzza)Figure 3.4: Dependence <strong>of</strong> the fast neutron ux on the distance from the ssion plate. a)Schematical presentation <strong>of</strong> the setup. b) Comparison <strong>of</strong> measurements [36] and calculations.<strong>of</strong> a calibration and an ir<strong>radiation</strong> measurement. Dur<strong>in</strong>g short calibration measurementsan In foil <strong>in</strong> a Cd shield 18 was placed at the sample position and a Zn foil was put<strong>in</strong> the middle <strong>of</strong> the box. After the ir<strong>radiation</strong>, the activation <strong>of</strong> Zn (thermal neutroncapture, decay time 244 days) was measured and compared to the uence <strong>of</strong> fast neutronsas determ<strong>in</strong>ed from the activation <strong>of</strong> In with a well known activation cross-section. In their<strong>radiation</strong> run only the Zn foil was placed at the same position as <strong>in</strong> the calibration run.By comparison <strong>of</strong> Zn activations <strong>in</strong> both runs, the ir<strong>radiation</strong> uence was determ<strong>in</strong>ed.The error <strong>of</strong> this method was estimated to be about 15%.Due to the limited size <strong>of</strong> the ssion plate, the fast neutron ux depends on thedistance from the plate. Dependance on the distance can be determ<strong>in</strong>ed by geometricalconsiderations (g. 3.4) 19 . The follow<strong>in</strong>g relation is obta<strong>in</strong>ed(z 1 )(z 2 )R2ln(1 + )z= 2 1ln(1 + )R2z 2 2(3.1)where R is the radius <strong>of</strong> the ssion plate and z the on-axis distance from it (g. 3.4a).Measurements were per<strong>for</strong>med at three dierent distances from the ssion plate: 3.5cm(218Cd shield was used to reduce In activation due to thermal neutrons.19From the collision probability P 1 = 4rwhere is a reaction cross-section and r distance from2the neutron source one obta<strong>in</strong>s reaction probability as its <strong>in</strong>tegral over the surface <strong>of</strong> the ssion plateP = R dNf:pl: dS P 1dS. From this ux dependence can be determ<strong>in</strong>ed by (z) = P = R dN 1f:pl: dS 4rdS =2dN 1dSln z2 +R24 z 2:


40 3. Ir<strong>radiation</strong> FacilityFigure 3.5: a) Fast neutron spectrum as measured at 11 cm <strong>in</strong> front <strong>of</strong> the ssion plate [36].b) Watt spectrum [37].meas.), 8.2 cm and 33 cm. The measured uxes were 4.310 8 n/cm 2 s and 4.210 8 n/cm 2 s,2.110 8 n/cm 2 s and 2.510 7 n/cm 2 s, respectively. As can be seen <strong>in</strong> g. 3.4b the measuredvalues can be tted well with the calculated curve.To determ<strong>in</strong>e the relative <strong>damage</strong> factor (eq. 2.48), it is necessary to know theshape <strong>of</strong> the neutron spectrum. For the calculation <strong>of</strong> the value <strong>in</strong> the ir<strong>radiation</strong>chamber beh<strong>in</strong>d the ssion plate, the result from an exist<strong>in</strong>g measurement [36] (g. 3.5a)was used. The measurement was per<strong>for</strong>med <strong>in</strong> front <strong>of</strong> the ssion plate at the distance <strong>of</strong>11 cm, while samples were irradiated beh<strong>in</strong>d the ssion plate. Due to large absorption <strong>of</strong>slow neutrons <strong>in</strong> the ssion plate, only the fast part <strong>of</strong> the measured spectrum is valid <strong>for</strong>the ir<strong>radiation</strong>s beh<strong>in</strong>d the plate. Us<strong>in</strong>g the Ougouag <strong>damage</strong> function values [27] (g.2.5) a value IC =0:99 (3.2)was determ<strong>in</strong>ed, <strong>for</strong> the energy <strong>in</strong>terval (0.1 - 15 MeV). Contribution <strong>of</strong> the spectrumbelow 0.1 MeV was estimated to contribute less than 1% to NIEL <strong>damage</strong>.To estimate the possible error, the IC value (3.2) was compared with the value<strong>for</strong> a pure ssion (Watt [37], g. 3.5b). The value obta<strong>in</strong>ed was W att = 1:05. Wattspectrum gives the energy distribution <strong>of</strong> neutrons produced <strong>in</strong> the ssion plate and thediscrepancy is caused by slow neutrons, com<strong>in</strong>g directly from the core. The dierencebetween both values was used to estimate the error on the value from the measuredspectrum to less than 6%.


3. Ir<strong>radiation</strong> Facility 413.4 Ir<strong>radiation</strong> Channel F193.4.1 Channel DescriptionF19RabbitU rodGraphite rodControl rodIrrad. channelEmptyFigure 3.6: Schematic view <strong>of</strong> the reactor core as <strong>of</strong> 11.9.1996.Ir<strong>radiation</strong> channel F19 is one <strong>of</strong> the vertical channels lead<strong>in</strong>g to the edge <strong>of</strong> thereactor core where it is replac<strong>in</strong>g a rod (g. 3.6). The proximity <strong>of</strong> the core provides <strong>high</strong>neutron uxes with a relatively <strong>high</strong> portion <strong>of</strong> fast neutrons (about 1/3 <strong>of</strong> the ux isabove 0.1 MeV).Low diameter <strong>of</strong> the channel and a bend 20 constra<strong>in</strong> sample dimensions to thosett<strong>in</strong>g <strong>in</strong>to a cyl<strong>in</strong>der with 35 mm diameter and 12 cm length. A cool<strong>in</strong>g scheme thatfulls these space limitations was designed. A cool<strong>in</strong>g cyl<strong>in</strong>der as shown <strong>in</strong> gure 3.7was constructed and used as a part <strong>of</strong> a closed circuit liquid cool<strong>in</strong>g 21 . The lowest stabletemperature was limited by heat<strong>in</strong>g from the pump and surround<strong>in</strong>g air and was about0 C. Samples were mounted on Al 2 O 3 ceramic plates, support<strong>in</strong>g metalised kapton stripsused <strong>for</strong> contact<strong>in</strong>g. The sample temperature was monitored and stabilised byaYokogawaUT15 temperature controller. After ir<strong>radiation</strong>, samples were moved to a thermostatchamber with controlled temperature and held there until the activity <strong>of</strong> the sample andcool<strong>in</strong>g cyl<strong>in</strong>der was safe <strong>for</strong> handl<strong>in</strong>g and transport.The measurement setup used <strong>for</strong> C/V and I/V measurements was the same as used<strong>for</strong> ir<strong>radiation</strong>s <strong>in</strong> the ir<strong>radiation</strong> chamber (section 3.3.2). It provides measurements bothat the ir<strong>radiation</strong> site and <strong>in</strong> the thermostat chamber.Flux <strong>of</strong> the fast neutrons (above 0.1MeV) is about 210 12 n/cm 2 s at maximal reactorpower <strong>of</strong> 250 kW and scales with power down to few 10 W. Much <strong>high</strong>er neutron ux can20A bend about a meter above the core provides shield<strong>in</strong>g <strong>of</strong> the reactor plateau from the core.21Mixture <strong>of</strong> water and etylen glycol was used to provide cool<strong>in</strong>g below 0 C.


42 3. Ir<strong>radiation</strong> FacilityPt100 sensorCool<strong>in</strong>g liquid outletCool<strong>in</strong>g liquid <strong>in</strong>letDiodeAlum<strong>in</strong>aCool<strong>in</strong>g cyl<strong>in</strong>derKaptonBias/Pt100 connectorFigure 3.7: Schematic view <strong>of</strong> the cool<strong>in</strong>g cyl<strong>in</strong>der <strong>for</strong> sample cool<strong>in</strong>g <strong>in</strong> the F19 ir<strong>radiation</strong>channel. A sample mounted on Al 2 O 3 ceramics and a Pt100 temperature sensor is displayedtogether with the connector <strong>for</strong> bias/measurement l<strong>in</strong>es.be obta<strong>in</strong>ed <strong>in</strong> pulsed mode. To pulse the reactor one <strong>of</strong> the control rods is pneumaticallyred to a preset upper position, driv<strong>in</strong>g the reactor <strong>high</strong>ly over-critical. This results <strong>in</strong>a fast <strong>in</strong>crease <strong>of</strong> the neutron ux and heat<strong>in</strong>g <strong>of</strong> the reactor core. Temperature raisehowever causes an <strong>in</strong>crease <strong>of</strong> neutron absorption <strong>in</strong> 238 U and hardens the thermal part<strong>of</strong> the spectrum thus decreas<strong>in</strong>g the reaction rate <strong>in</strong> 235 U. Thus the pulse is stopped andthe reactor is shut down. In the pulsed mode a total uence <strong>of</strong> about 10 14 n/cm 2 can beobta<strong>in</strong>ed <strong>in</strong> around 20 ms (approximate pulse width).3.4.2 Neutron Spectrum and DosimetryThe neutron spectrum <strong>in</strong> the ir<strong>radiation</strong> channel F19 (g. 3.8) was determ<strong>in</strong>ed by simulation[38] and measurement [36].The simulated spectrum was obta<strong>in</strong>ed us<strong>in</strong>g the MCNP4B Monte Carlo simulationcode [39]. S<strong>in</strong>ce the reliability <strong>of</strong> the results depend crucially on the source description,a detailed description <strong>of</strong> the real TRIGA geometry [40] was used <strong>in</strong> the simulation. It<strong>in</strong>cluded the exact conguration <strong>of</strong> all 91 locations <strong>in</strong> the core and a detailed description<strong>of</strong> fuel elements as well as control rods. It was tested with experimental results <strong>of</strong> a criticalexperiment [41]. Very good agreement with experimental results conrms the reliability<strong>of</strong> the model developed.


3. Ir<strong>radiation</strong> Facility 43Figure 3.8: Measured [36] (full l<strong>in</strong>e) and simulated [38] (open circles) neutron spectrum <strong>in</strong> their<strong>radiation</strong> channel F19. In gure a) logarithmic scale is used to present the full energy rangewhile on the l<strong>in</strong>ear scale <strong>in</strong> gure b) only the fast neutron spectrum can be seen.The simulation uses an iterative method to determ<strong>in</strong>e the neutron eld <strong>in</strong> the reactorcore [39]. The <strong>in</strong>itial step assumes a po<strong>in</strong>t neutron source with Watt spectrum [37] <strong>in</strong> eachrod and the eect <strong>of</strong> the neutrons from those sources on the generation <strong>of</strong> new sources <strong>in</strong>the core elements is determ<strong>in</strong>ed. The calculation is repeated with recalculated elementproperties and source distribution until an equilibrium condition is reached. The neutronux <strong>in</strong> the selected ir<strong>radiation</strong> spot (<strong>in</strong> our case channel F19) is then determ<strong>in</strong>ed fromthe neutron eld <strong>in</strong> the equilibrium. A more detailed description <strong>of</strong> the procedure can befound <strong>in</strong> [41, 42].Experimentally, measurement <strong>of</strong> the neutron spectrum was per<strong>for</strong>med us<strong>in</strong>g theactivation method [43]. It exploits the activation <strong>of</strong> dierent materials <strong>in</strong> the neutroneld. Foil activation rate due to reaction i is determ<strong>in</strong>ed byr i =Z Emax0 i (E)(E)dE : (3.3)Foils with well known reaction cross-section <strong>for</strong> reaction i ( i (E)) are used <strong>for</strong> the measurement.Several foils <strong>of</strong> dierent materials are irradiated and activation rates are determ<strong>in</strong>ed.The neutron spectrum is obta<strong>in</strong>ed from the solution <strong>of</strong> the system <strong>of</strong> <strong>in</strong>tegralequations 3.3. The error on the result<strong>in</strong>g spectrum depends on the number <strong>of</strong> dierentactivated foils and on the sensitivity <strong>of</strong> the reaction cross-sections on neutron energy. Errorson the activation measurement, cross-section data, <strong>in</strong>uence <strong>of</strong> other reactions andsimilar eects also contribute to the precision <strong>of</strong> the spectrum determ<strong>in</strong>ation. Ten dif-


44 3. Ir<strong>radiation</strong> Facilityferent reactions were used <strong>in</strong> the neutron spectrum measurement at channel F19. Theywere 197 Au(n,), 197 Au(n,)+Cd, 115 In(n,n'), 115 In(n,)+Cd, 27 Al(n,), 58 Fe(n,)+Cd,63Cu(n,)+Cd, 63 Cu(n,), 59 Co(n,) and 59 Co(n,p) [43]. The result<strong>in</strong>g spectrum is shown<strong>in</strong> gure 3.8.Both simulation and measurement datawere used to determ<strong>in</strong>e the value <strong>for</strong> thisir<strong>radiation</strong> site. The same energy cuts were used as <strong>in</strong> the case <strong>of</strong> ir<strong>radiation</strong> chamber,i.e. 0.1 - 15 MeV. The <strong>damage</strong> functions <strong>of</strong> Ougouag [27] and Gr<strong>in</strong> [44] were used todeterm<strong>in</strong>e the value on measured data: OugouagF 19=0:90 (3.4) Griff<strong>in</strong>F 19=0:90 : (3.5)Due to good agreement <strong>of</strong> both calculations only the Ougouag <strong>damage</strong> function was usedwith the simulated spectrum simF 19=0:93 : (3.6)From these results, the value <strong>for</strong> ir<strong>radiation</strong> site F19 was determ<strong>in</strong>ed to be F 19 =0:90 0:03 (3.7)with error conservatively estimated from the dierence between values 3.4 and 3.6.To determ<strong>in</strong>e the contribution <strong>of</strong> neutrons with energy below 0.1 MeV, calculationswith<strong>in</strong> wider energy ranges were also per<strong>for</strong>med. They showed that neutrons with energybelow 0.1 MeV contribute an additional 1.5% to NIEL <strong>damage</strong>. Thus to determ<strong>in</strong>eneutron uence, equivalent to 1MeV neutrons (eq. 2.49) the follow<strong>in</strong>g equation was usedthroughout this work F 19eq = F 19 (1 + 0:015) (E > 0:1MeV) : (3.8)The dosimetry <strong>in</strong> the ir<strong>radiation</strong> channel was per<strong>for</strong>med us<strong>in</strong>g Au activation (thermalneutron capture, decay time 2.7 days). S<strong>in</strong>ce this was also one <strong>of</strong> the foils used todeterm<strong>in</strong>e the neutron spectrum it was possible to make a calibration <strong>of</strong> Au foil activationto ux above 0.1 MeV. The saturated activity <strong>for</strong> the reaction 197 Au(n,) <strong>of</strong>4:8 10 ;10 Bqper 197 Au atom was determ<strong>in</strong>ed to correspond to fast neutron ux <strong>of</strong> 1:8 10 12 n/cm 2 s.The systematic error <strong>of</strong> the method was estimated to about 15%.This method is <strong>high</strong>ly sensitive to changes <strong>of</strong> the spectrum s<strong>in</strong>ce Au activation issensitive to slow neutrons. There<strong>for</strong>e uence measurements <strong>for</strong> ir<strong>radiation</strong>s per<strong>for</strong>med


3. Ir<strong>radiation</strong> Facility 45Figure 3.9: Flux <strong>of</strong> fast neutrons (E > 0.1 MeV) divided by reactor power versus the reactorpower. The constant value <strong>of</strong> this ratio conrms the validity <strong>of</strong> the assumption that the neutronux scales l<strong>in</strong>early with the reactor power. The scatter<strong>in</strong>g <strong>of</strong> measurements (RMS=3%) is with<strong>in</strong>the error <strong>of</strong> the ux measurements.after April 1998 are less reliable s<strong>in</strong>ce the reactor core was go<strong>in</strong>g through a set <strong>of</strong> changesthat mayhave aected the spectrum. For that reason a new measurement <strong>of</strong> the spectrumis planned after the new core conguration is set.The homogeneity <strong>of</strong> the neutron eld was determ<strong>in</strong>ed by a separate measurement[43]. At the ir<strong>radiation</strong> spot F19, the radial gradient was measured to be about 4%/cmand the vertical gradient about 1%/cm. S<strong>in</strong>ce the dosimetry foil was attached to the wall<strong>of</strong> the cyl<strong>in</strong>der with rotational freedom, it <strong>in</strong>duced an additional error <strong>of</strong> about 5% to theuence measurement 22 .As already mentioned ir<strong>radiation</strong>s at the F19 channel were per<strong>for</strong>med at dierentreactor powers, thus vary<strong>in</strong>g the neutron ux. It is expected that the neutron ux scalesl<strong>in</strong>early with power. As can be seen <strong>in</strong> gure 3.9, measurements agree well with thisexpectation with 7:5 10 9 n/kWcm 2 s <strong>of</strong> fast neutrons (6:8 10 9 n/kWcm 2 s <strong>of</strong> 1 MeVneutron equivalent).22The radius <strong>of</strong> the ir<strong>radiation</strong> cyl<strong>in</strong>der was 1.3 cm.


46 3. Ir<strong>radiation</strong> Facility3.5 Measurement Setup, Methods and AnalysisIn the scope <strong>of</strong> this work, full depletion voltage (FDV) and bulk reverse current weremeasured on samples under study. The measurement setup as used <strong>in</strong> the laboratory isdescribed while the one used at the reactor was described <strong>in</strong> section 3.3.2. S<strong>in</strong>ce bothsetups are only slightly dierent, the same measurement method and analysis were used.3.5.1 Laboratory SetupHP 4284ALCR meterKEITHLEY 237HV meas. unitR=4.7kΩC=100nFcca. 3mBPPADGRFigure 3.10: Measurement setup as used <strong>in</strong> the laboratory. BP, TOP and GR are connectionsto sample back plane, pad and guard r<strong>in</strong>g, respectively.The ma<strong>in</strong> components <strong>of</strong> the measurement setup were a LCR meter, a precise ampermeterand a <strong>high</strong> voltage source (up to cca. 1000 V). All units were computer controlled.In the laboratory, a HP4284A LCR measure unit and a KEITHLEY 237 <strong>high</strong> voltagesource-measure unit were used. A Yokogawa UT15 temperature controller connected toa Pt100 sensor placed close to the sample was used to measure the sample temperature.All units were controlled and read out by a personal computer, where some on-l<strong>in</strong>e dataanalysis was also per<strong>for</strong>med.To measure the capacitance at dierent depletion depths, i.e. at dierent voltages,an external DC voltage has to be applied to the sample. In the laboratory, a KEITHLEY237 <strong>high</strong> voltage source-measure unit was used as an external power source. It can provideDC voltage up to 1100 V with a current limit <strong>of</strong> 1 mA. To shield the LCR meter from <strong>high</strong>DC bias<strong>in</strong>g voltages, decoupl<strong>in</strong>g capacitors were used as shown <strong>in</strong> gure 3.10. To reduce


3. Ir<strong>radiation</strong> Facility 47the <strong>in</strong>uence <strong>of</strong> changes <strong>in</strong> the small impedance <strong>of</strong> the voltage source on the measurements,decoupl<strong>in</strong>g resistors have been used (gure 3.10).Most <strong>of</strong> the measurements were per<strong>for</strong>med <strong>in</strong> a thermostat chamber at 5 C. Whenstored, samples were kept at stable temperature <strong>in</strong> one <strong>of</strong> the temperature stabilisedchambers. For bias<strong>in</strong>g dur<strong>in</strong>g storage Wentzel <strong>high</strong> voltage power supplies were used.Anneal<strong>in</strong>g and reverse anneal<strong>in</strong>g have been accelerated by heat<strong>in</strong>g <strong>in</strong> an oven stabilisedto 60 C, stable to about 2 C. Temperature history dur<strong>in</strong>g heat<strong>in</strong>g was measured by aPt100 sensor, placed close to the sample and connected to a Yokogawa controller. Thetemperature was read from the controller by computer and stored to a le. Measuredtemperature history was used to correct the equivalent heat<strong>in</strong>g time <strong>for</strong> temperaturevariations (eq. 4.5).3.5.2 C/V MeasurementsFull depletion voltage was determ<strong>in</strong>ed from the k<strong>in</strong>k <strong>in</strong> C/V plot (see section 2.1.6). Itwas used to determ<strong>in</strong>e the average eective dopant concentration accord<strong>in</strong>g to equations2.10 and 2.13.Capacitance versus voltage curves were measured by Hewlet-Packard LCR meter.Capacitance is determ<strong>in</strong>ed from the complex impedance. It is calculated from the measuredamplitude and phase shift <strong>of</strong> the current signal <strong>in</strong> response to an AC measur<strong>in</strong>gvoltage with user selected frequency. The AC voltage amplitude can be set from 5 mV to2V.High measurement voltages give theadvantage <strong>of</strong> better signal to noise ratio. Theyare however a signicant disturbance at bias voltages <strong>of</strong> few volts. Thus at the reactorthe amplitude <strong>of</strong> the measurement voltage was kept at 1 V due to harsh measurementconditions (long partially unshielded cables). At the laboratory, it was usually kept atlower values, typically 10 mV.Both HP4284A and HP4263B 23 LCR meters provide means to trans<strong>for</strong>m measuredcomplex impedance to dierent physical parameters accord<strong>in</strong>g to a selected model. S<strong>in</strong>cea partially depleted diode can be roughly described by an equivalent circuit as presented<strong>in</strong> gure 3.11, an adequate RC model should be selected. HP LCR-meters oer a serialand a parallel RC model, neither <strong>of</strong> them correspond<strong>in</strong>g to the equivalent circuit. Thusan approximate <strong>in</strong>uence <strong>of</strong> each component <strong>in</strong>themodel from g. 3.11 was estimated.Let us consider the most common case <strong>in</strong> these studies, a partially depleted diode<strong>of</strong> 1 cm 2 area and 300 m thickness, irradiated to about 10 14 n/cm 2 . Measurementtemperature <strong>of</strong> 5 C and measur<strong>in</strong>g frequency <strong>of</strong> 10 kHz are assumed.23A HP4263B LCR measure unit was used at the reactor, see section 3.3.2.


48 3. Ir<strong>radiation</strong> FacilityCR suruRuundepleted regionWCdRddepleted regionwFigure 3.11: A simple model <strong>of</strong> a partially biased diode. Both depleted region and undepletedregion are modelled by a capacitor C and a resistor R connected <strong>in</strong> parallel. Depleted andundepleted regions are connected <strong>in</strong> series with a parallel resistor to account <strong>for</strong> the surfacecurrent.Capacitance <strong>of</strong> the depleted region can be determ<strong>in</strong>ed by equationC d = Si 0 Sw = C 0pV0 (3.9)where w is the depletion depth, C 0 = 35 pF is capacitance <strong>of</strong> fully depleted diode andthe dimensionless parameter V 0 = V=V FD is the fraction <strong>of</strong> full depletion voltage, appliedacross the depleted region. Similarly, capacitance <strong>of</strong> the undepleted region is given byC u = Si 0 SW ; w = C 01 ; p V 0 (3.10)where W is the detector thickness. Correspond<strong>in</strong>g impedances Z = (2C) ;1 <strong>for</strong> a 10kHz measur<strong>in</strong>g signal areZ d 0:5 M p V 0 Z u 0:5 M (1 ; p V 0 ) (3.11)decreas<strong>in</strong>g <strong>in</strong>versely with measur<strong>in</strong>g frequency.Resistance <strong>of</strong> the undepleted bulk R u <strong>for</strong> an <strong>in</strong>verted diode can be determ<strong>in</strong>ed fromthe specic resistance <strong>for</strong> <strong>in</strong>tr<strong>in</strong>sic bulk <strong>in</strong>tr (5 C) 1 Mcm. Us<strong>in</strong>g this value, one canobta<strong>in</strong> the resistance <strong>of</strong> the undepleted region <strong>in</strong> dependence <strong>of</strong> the depletion voltageR u = W ; wS= W S (1 ; p V 0 )=30k (1 ; p V 0 ) : (3.12)The resistance <strong>of</strong> the depleted region can be determ<strong>in</strong>ed from the DC current, ow<strong>in</strong>gtrough the diode 24 . Accord<strong>in</strong>g to eq. 2.38, the reverse current is proportional to the24S<strong>in</strong>ce the reverse current is limited by the resistance <strong>of</strong> depleted region, this is a viable estimate.


3. Ir<strong>radiation</strong> Facility 49width <strong>of</strong> depleted region w and consequently to p V , i.e. I = A p V . The magnitude <strong>of</strong>the parameter A can be estimated from the conditions at full depletion A = p I FDVFD. Thenthe resistance <strong>of</strong> the depleted bulk at given depletion voltage is given byR d = V I =VpVA p V = A= V FDI FDpV0(3.13)Us<strong>in</strong>g reverse current <strong>of</strong> I FD 25 A at full depletion voltage 25 <strong>of</strong> V FD 250 V oneobta<strong>in</strong>sR d =10M p V 0 : (3.14)One can see that <strong>in</strong> the described case R d =Z d 20 and Z u =R u 15. Thus thedepleted region can be approximated by a capacitor and the undepleted by a resistor.The signicance <strong>of</strong> the resistance <strong>of</strong> the undepleted region is however decreas<strong>in</strong>g with<strong>in</strong>creas<strong>in</strong>g depletion depth. Thus at half <strong>of</strong> full depletion depth (V = V FD =4), one alreadyobta<strong>in</strong>s Z d =R u > 15. Thus <strong>for</strong> large depletion depths the bulk can be described well bya s<strong>in</strong>gle capacitor and both serial and parallel model should give the same result. Theparallel model however has the advantage that it can take <strong>in</strong>to account changes <strong>in</strong> thesurface current, presented by the surface resistor. They are hard to predict but can getvery important close to the breakdown where the dierential resistance is small. S<strong>in</strong>ce <strong>for</strong>determ<strong>in</strong>ation <strong>of</strong> full depletion voltage from the C/V characteristic, we are <strong>in</strong>terested <strong>in</strong>its shape close to full depletion, the parallel model suits better and was used throughoutthis work.The situation however changes dramatically when the measur<strong>in</strong>g frequency is <strong>in</strong>creased.This is reected <strong>in</strong> a decrease <strong>of</strong> impedance <strong>of</strong> both capacitors and at 1 MHz,Z u has the lead<strong>in</strong>g role also <strong>in</strong> the undepleted region. Then the equivalent circuit can beapproximated by two serial capacitors with a constant sum <strong>of</strong> capacitances. Thus at 1MHz the measured capacitance is almost <strong>in</strong>dependent <strong>of</strong> applied voltage, as seen <strong>in</strong> gure3.12. Similar eect is obta<strong>in</strong>ed by <strong>in</strong>creas<strong>in</strong>g the temperature. S<strong>in</strong>ce resistance <strong>of</strong> both depletedand undepleted region is approximately proportional 26 to e ;Eg=2k BT , <strong>in</strong>creas<strong>in</strong>g thetemperature by a few 10 C has the same relative eect as the above mentioned <strong>in</strong>crease<strong>in</strong> frequency.Static resistivities, used <strong>in</strong> the above estimation, do not describe the system veryaccurately. And although dynamic resistivities are somewhat dierent 27 , the qualitativeconclusions rema<strong>in</strong> the same.25Values <strong>of</strong> reverse current and full depletion voltage at the m<strong>in</strong>imum after benecial anneal<strong>in</strong>g wereused.26For depleted region see eq. 2.38 and <strong>for</strong> undepleted regions equations 2.11 and 2.1.27A dierence <strong>of</strong> up to about factor <strong>of</strong> two was estimated.


50 3. Ir<strong>radiation</strong> FacilityFigure 3.12: A comparison <strong>of</strong> a 1/C 2 vs. voltage characteristics as obta<strong>in</strong>ed by a a) paralleland b) serial RC model. Straight l<strong>in</strong>e ts to the slope at large depletion depths and to theplateau at full depletion are also shown. The <strong>in</strong>tersection <strong>of</strong> the l<strong>in</strong>es was used to determ<strong>in</strong>e thefull depletion voltage.A comparison <strong>of</strong> results obta<strong>in</strong>ed by both models is shown <strong>in</strong> gure 3.12. As expected,at low depletion voltages better results are obta<strong>in</strong>ed with the serial model whileresults at <strong>high</strong> depletion depths are similar. It can however be noticed that the serialmodel gives a larger error <strong>of</strong> the value at the plateau <strong>for</strong> the lowest frequency (1 kHz). Inthat case parallel resistance is no longer negligible compared to capacitor impedance 1!C ,lead<strong>in</strong>g to a larger error <strong>for</strong> the serial model. Full depletion voltages as obta<strong>in</strong>ed by bothmodels agree with<strong>in</strong> the errors.The eect <strong>of</strong> the decoupl<strong>in</strong>g capacitors and resistors was taken <strong>in</strong>to account bycalibration. HP4284A enables frequency dependent calibration <strong>in</strong> a large frequency rangewhile HP4263B can only be calibrated at one frequency, 10 kHz <strong>in</strong> our case. Calibrationis done at open and closed circuit and with known load 28 .The measurement <strong>of</strong> the C/V characteristic was run by a custom written LabViewprogram, runn<strong>in</strong>g on a PC. Bias voltage (DC) was raised <strong>in</strong> predened steps and samplecapacitance was measured at each step with dierent frequencies <strong>of</strong> measur<strong>in</strong>g (AC) voltage.Leakage current and sample temperature were also measured at each step. Measuredcapacitance was converted to 1/C 2 and plotted <strong>in</strong> dependence <strong>of</strong> the bias voltage.28A capacitor <strong>of</strong> 44 pF was used s<strong>in</strong>ce this is an approximate capacitance <strong>of</strong> fully depleted 300 mthick diodes with an area <strong>of</strong> 1 cm 2 , used <strong>in</strong> this study.


3. Ir<strong>radiation</strong> Facility 51The full depleti on voltage was determ<strong>in</strong>ed as the position <strong>of</strong> the k<strong>in</strong>k <strong>in</strong> 1/C 2 vs.voltage curve. The exact position <strong>of</strong> the k<strong>in</strong>k was determ<strong>in</strong>ed by the <strong>in</strong>tersection <strong>of</strong> twol<strong>in</strong>es, one tted to the slope at large depletion depths and the second to the plateauat full depletion (see g. 3.12). Fitted range was determ<strong>in</strong>ed manually after a visualexam<strong>in</strong>ation <strong>of</strong> the plot.To determ<strong>in</strong>e the eective dopant concentration N eff , a homogeneous distributionover the sample was assumed. In such case N eff can be determ<strong>in</strong>ed from the full depletionvoltage by the equationN eff = 2 Si 0e 0 W 2 V FD : (3.15)The conversion factor depends on sample thickness and <strong>for</strong> 300 m thick samples equation3.15 can be written with a xed numerical factor N eff =1:44 10 10 V ;1 cm ;3 V FD .The ma<strong>in</strong> sources <strong>of</strong> systematic error on determ<strong>in</strong>ation <strong>of</strong> the full depletion voltageare <strong>in</strong> the selection <strong>of</strong> the measur<strong>in</strong>g frequency and temperature. While measurementswere per<strong>for</strong>med at dierent frequencies (1 kHz, 3 kHz, 10 kHz, 30 kHz, 100 kHz, 300 kHzand 1 MHz <strong>in</strong> the laboratory and 100 Hz, 1 kHz, 10 kHz and 100 kHz at the reactor), afrequency <strong>of</strong> 10 kHz was most usually used to determ<strong>in</strong>e FDV. 10 kHz is a compromisebetween a good signal to noise ratio 29 , sensitivity to traps with long trapp<strong>in</strong>g times andapplicability <strong>of</strong> the simple RC model used. S<strong>in</strong>ce it is also the most commonly usedfrequency <strong>of</strong> other groups, it also enables better comparison.In the laboratory, all measurements were per<strong>for</strong>med at 5 Ctoavoid the temperatureeect. This was however not possible at the reactor, where measurements were per<strong>for</strong>medat storage temperature.The systematic error due to the sources listed above is estimated to be below 10%.The variations <strong>of</strong> FDV due to dierent selections <strong>of</strong> the tted range <strong>for</strong> ts <strong>of</strong> the l<strong>in</strong>earpart at <strong>high</strong> depletion depths is on a percent level. That means that the largest contributionto the error on <strong>in</strong>troduction rates <strong>of</strong> dierent defects comes from the 15% systematicerror <strong>of</strong> the dosimetry.3.5.3 Bulk CurrentThe time development <strong>of</strong> reverse bulk current has been studied together with N eff . Toseparate bulk-generated current from the surface generated one, only diodes with guardr<strong>in</strong>gs were used <strong>in</strong> the analysis. While both guard r<strong>in</strong>g and the pad were connected tothe same potential, only current ow<strong>in</strong>g through the pad was measured to reduce thecontribution <strong>of</strong> the surface current.29Impedance <strong>of</strong> capacitor is <strong>in</strong>versely proportional to the frequency <strong>of</strong> the measurement voltage.


52 3. Ir<strong>radiation</strong> FacilityFigure 3.13: I/V measurement <strong>of</strong> the diode K3. Guard r<strong>in</strong>gs were kept at the same potentialas the pad but their current is not <strong>in</strong>cluded <strong>in</strong> the measurement. Measurement a) was taken 5days after ir<strong>radiation</strong> (stored at 5 C) and was per<strong>for</strong>med at 5 C. The full depletion voltage fromthe C/V measurement at 10 kHz is 30610 V, agree<strong>in</strong>g well with the position <strong>of</strong> the m<strong>in</strong>imum<strong>in</strong> the I/V curve. Value <strong>in</strong> the m<strong>in</strong>imum after the bump (45 A) is taken as the value <strong>of</strong> thebulk generation current at full depletion. b) Measurement <strong>of</strong> the same diode taken after total<strong>of</strong> 5 days at 60 C.From equations 2.38 and 2.9 it follows that the bulk generation current is <strong>in</strong>creas<strong>in</strong>gas the square root <strong>of</strong> the depletion voltage until the sample is fully depleted and thevalues at the plateau could be used to determ<strong>in</strong>e (eq. 2.50). The I/V curve <strong>of</strong> an<strong>in</strong>verted p + -n-n + diode (g. 3.13) however deviates from the expected I / p V shape. Acharacteristic bump can be observed on all samples after <strong>in</strong>version. The explanation hasbeen proposed <strong>in</strong> [51]. After <strong>in</strong>version, the depleted region starts to grow from the n sidewhile guard r<strong>in</strong>gs are on the p side. For low depletion voltages, the surface current isthusnot fully collected by guard r<strong>in</strong>gs, contribut<strong>in</strong>g to the current measured on the centralpad. When the sample is fully depleted guard r<strong>in</strong>gs are fully operational aga<strong>in</strong> (g. 3.13).Thus throughout this work, the leakage current at the m<strong>in</strong>imum after the bump has beenused as the best estimate <strong>of</strong> the bulk generation current.The ma<strong>in</strong> contribution to the error comes from the surface current that rema<strong>in</strong>spresent at the m<strong>in</strong>imum after the bump. As can be seen from data presented later(e.g. g. 4.16), this contribution is rather small <strong>for</strong> diodes with work<strong>in</strong>g guard r<strong>in</strong>gs.The variations <strong>of</strong> the alpha parameter determ<strong>in</strong>ed by this method are at the level <strong>of</strong> few


3. Ir<strong>radiation</strong> Facility 53percent. Thus the ma<strong>in</strong> contribution to the error on comes aga<strong>in</strong> from 15% <strong>of</strong> systematicerror on dosimetry.3.6 SummaryTwo ir<strong>radiation</strong> sites at the TRIGA reactor at the reactor researchcenter <strong>in</strong> Ljubljana wereequipped to enable ir<strong>radiation</strong>s <strong>of</strong> <strong>silicon</strong> samples with fast neutrons. Ir<strong>radiation</strong> set-upsprovide mount<strong>in</strong>g, cool<strong>in</strong>g and bias<strong>in</strong>g <strong>of</strong> samples and on-l<strong>in</strong>e C/V and I/V measurements.Ir<strong>radiation</strong> chamber enables ir<strong>radiation</strong> <strong>of</strong> samples with dimensions up to about1015 cm 2 . Samples can be cooled down to about -20 C via Peltier cool<strong>in</strong>g. A ssionplate is used to <strong>in</strong>crease the fast neutron ux. Thus, the maximal ux <strong>of</strong> fast neutrons(above 0.1 MeV) is about 4 10 8 n/cm 2 s and is determ<strong>in</strong>ed with an error <strong>of</strong> about 15%.An exist<strong>in</strong>g measurement <strong>of</strong> the neutron spectrum was used to determ<strong>in</strong>e the relative<strong>damage</strong> factor to IC =0:99 0:06. The neutron dose equivalent to 1 MeV neutrons isthus determ<strong>in</strong>ed with an error <strong>of</strong> about 17%.Ir<strong>radiation</strong> channel F19 provides fast neutron uxes <strong>in</strong> the range from about10 9 n/cm 2 s to 2 10 12 n/cm 2 s and about 5 10 15 n/cm 2 s <strong>in</strong> the pulsed mode. Sampledimensions are limited to about 1550 mm 2 and liquid cool<strong>in</strong>g down to 0 C is provided.The neutron spectrum has been determ<strong>in</strong>ed by measurements and simulation, and <strong>damage</strong>factor relative to 1 MeV neutrons was determ<strong>in</strong>ed to F 19 =0:90 0:03. Fluence <strong>of</strong> thefast neutrons is determ<strong>in</strong>ed with a systematic error <strong>of</strong> about 15% and an additional error<strong>of</strong> about 5% on the dosimetry <strong>of</strong> <strong>in</strong>dividual sample. Thus ir<strong>radiation</strong> uence equivalent to1 MeV neutrons can be determ<strong>in</strong>ed with an error <strong>of</strong> approximately 15%(syst.) + 5%(<strong>in</strong>d.).At the time <strong>of</strong> conclud<strong>in</strong>g this work, another channel similar to F19 is be<strong>in</strong>g nished.It will enable ir<strong>radiation</strong> <strong>of</strong> larger samples (up to approximately 55 cm 2 ) and cool<strong>in</strong>g toabout -10 C.Full depletion voltage was determ<strong>in</strong>ed from C/V measurements. It has been qualitativelyshown, that a simple parallel RC model is an adequate description <strong>of</strong> an irradiateddiode <strong>for</strong> a measur<strong>in</strong>g an AC signal with a frequency <strong>of</strong> about 10 kHz. The error on themeasured full depletion voltage is estimated to be below 10%, while the error on reversecurrent is at the level <strong>of</strong> a few percent.


54 3. Ir<strong>radiation</strong> Facility


4Time Development <strong>of</strong> DefectsIn this chapter results <strong>of</strong> the study <strong>of</strong> time development <strong>of</strong> <strong>radiation</strong>-<strong>in</strong>duced defects arepresented. The study consists <strong>of</strong> measurements <strong>of</strong> two detector properties these defectscause, full depletion voltage and generation current (bulk reverse current). Time development<strong>of</strong> full depletion voltage (or N eff ) is described by equation 2.65. S<strong>in</strong>ce timeconstants <strong>for</strong> the anneal<strong>in</strong>g and reverse-anneal<strong>in</strong>g part dier by about two orders <strong>of</strong> magnitude(around room temperature order <strong>of</strong> days <strong>for</strong> anneal<strong>in</strong>g compared to about a year <strong>for</strong>reverse anneal<strong>in</strong>g) both phenomena have been studied separately. Due to large amounts<strong>of</strong> data available <strong>for</strong> the slow part <strong>of</strong> anneal<strong>in</strong>g (time scale <strong>of</strong> days at room temperature)[14, 18, 19, 21, 45, 46] this work is only deal<strong>in</strong>g with the fast part (time scale <strong>of</strong> hours)where data are rather scarce. Results <strong>of</strong> this study are presented <strong>in</strong> the rst section. Inthe second section reverse anneal<strong>in</strong>g <strong>of</strong> N eff is discussed with the purpose to determ<strong>in</strong>ethe dynamics <strong>of</strong> responsible processes (rst or second order). F<strong>in</strong>ally, <strong>in</strong> the third section,results on time development <strong>of</strong> reverse current are presented.4.1 Fast Anneal<strong>in</strong>g <strong>of</strong> NeffAccord<strong>in</strong>g to equation 2.65 and neglect<strong>in</strong>g reverse anneal<strong>in</strong>g on the time scale <strong>of</strong> measurements30 the <strong>in</strong>itial stage <strong>of</strong> N eff time development can be described byN eff (t) =g C eq + X ig i eq e ;t= i: (4.1)Here g i are <strong>in</strong>troduction rates and i decay time constants <strong>of</strong> unstable defects and g C<strong>in</strong>troduction rate <strong>of</strong> defects stable <strong>in</strong> time.30Reverse anneal<strong>in</strong>g contributes a few percent <strong>of</strong> constant level dur<strong>in</strong>g one week at 15 C and less atlower temperatures.55


56 4. Time Development <strong>of</strong> DefectsSample process No. <strong>of</strong> GR V 0 FD [V] T eq [n/cm 2 s] eq [n/cm 2 ]K3 planar 3 6 5 C 1:9 10 9 1:03 10 14I3 planar 3 24 5 C 1:9 10 9 4:4 10 13D3 planar 3 16 15 C 1:8 10 9 4:7 10 13D1 planar 3 26 15 C 1:9 10 10 4:2 10 13B3 planar 3 20 0 C 1:9 10 9 4:4 10 13G3 planar 3 23 0 C 1:8 10 9 8:3 10 12G2 planar 3 20 0 C 1:8 10 10 8:7 10 12Table 4.1: List <strong>of</strong> diodes used <strong>in</strong> study <strong>of</strong> fast anneal<strong>in</strong>g <strong>of</strong> N eff . Process<strong>in</strong>g type, no. <strong>of</strong> guardr<strong>in</strong>gs, full depletion voltage be<strong>for</strong>e ir<strong>radiation</strong>, ir<strong>radiation</strong>/storage temperature, ir<strong>radiation</strong> uxand uence normalised to 1 MeV neutrons are given <strong>for</strong> each sample. Thickness <strong>of</strong> samples was3005 m.In case <strong>of</strong> ir<strong>radiation</strong> times t irr comparable with decay time constants i , anneal<strong>in</strong>gdur<strong>in</strong>g the ir<strong>radiation</strong> should be taken <strong>in</strong>to account. In that case equation 4.1 is generalisedtoN eff (t) = [gC t + P i g i i (1 ; e ;t= i)] eq t


4. Time Development <strong>of</strong>Defects 57* Figure 4.1: Development <strong>of</strong>N eff a) dur<strong>in</strong>g and b) after ir<strong>radiation</strong> <strong>for</strong> samples D3, I3 and B3.The samples were treated identically except <strong>for</strong> the temperature that was 15 C, 5 Cand0 C,respectively. In gure a) type <strong>in</strong>version po<strong>in</strong>t can be seen at 0.2 h. In gure b) the t accord<strong>in</strong>gto eq. 4.3 (red l<strong>in</strong>es) ts the measured data perfectly.


58 4. Time Development <strong>of</strong> DefectsSample T [ C] g 0 [10 ;2 /cm] g 1 [10 ;2 /cm] 1 [h] g 2 [10 ;2 /cm] 2 [h]D3 15 C 4.3 3.6 4.0 1.7 170D1 15 C 4.5 2.5 3.9 1.3 37K3 5 C 4.3 1.7 9.3 1.1 79I3 5 C 5.1 3.9 3.7 1.3 68B3 0 C 5.5 4.1 4.4 1.1 110G3 0 C 6.4 7.3 3.5 4.3 16G2 0 C 4.3 8.0 3.8 4.9 47Table 4.2: List <strong>of</strong> samples and ir<strong>radiation</strong> temperatures with values <strong>of</strong> the t parametersaccord<strong>in</strong>g to eq. 4.3.Figure 4.1 <strong>in</strong>dicates systematically <strong>high</strong>er values <strong>of</strong> N eff <strong>for</strong> lower temperatures,attributed to defect freez<strong>in</strong>g [46]. This eect is however not obvious <strong>in</strong> the t resultsas given <strong>in</strong> table 4.2. They <strong>in</strong>dicate a fast component with a time constant <strong>of</strong> about 4hours with almost no temperature dependence. Its <strong>in</strong>troduction rate however shows nosystematic behaviour. A qualitative explanation could be found <strong>in</strong> the eect <strong>of</strong> reversebias as discussed <strong>in</strong> chapter 6. Namely, at the late stage <strong>of</strong> this work it was discoveredthat an applied bias voltage aects the anneal<strong>in</strong>g <strong>of</strong> defects, contribut<strong>in</strong>g to the eectivedopant concentration. As a consequence, biased samples have about a factor 2 <strong>high</strong>erN eff = eq at the plateau after benecial anneal<strong>in</strong>g, compared to unbiased samples. Thedierence is however dim<strong>in</strong>ish<strong>in</strong>g slowly when the bias is switched o. Thus a partiallydepleted diode conta<strong>in</strong>s two regions with dierent N eff . At a xed bias voltage, theirrelative contribution depends on ir<strong>radiation</strong> uence and anneal<strong>in</strong>g stage. The bias history<strong>in</strong>uences the measured FDV andthus its time development and alters the values <strong>of</strong> theparameters, derived from it.S<strong>in</strong>ce frequent measurements <strong>of</strong> the C/V characteristic caused samples to be onlypartially biased (not totally depleted) <strong>for</strong> a signicant portion <strong>of</strong> time, the anneal<strong>in</strong>gconstants presented <strong>in</strong> this chapter can not be claimed valid <strong>for</strong> fully biased samples.Also, the bias voltage <strong>of</strong> 200V, that was adopted as a standard, was not sucient t<strong>of</strong>ully bias all samples dur<strong>in</strong>g and immediately after the ir<strong>radiation</strong>. For that reason it isimportant to notice that the present results, especially dur<strong>in</strong>g ir<strong>radiation</strong> and <strong>in</strong> the veryearly stage <strong>of</strong> anneal<strong>in</strong>g, are aected by the anneal<strong>in</strong>g <strong>of</strong> bias-dependent defects.The situation is similar with the slow and constant component. There the reasonprobably lies also <strong>in</strong> the relatively short time-range <strong>of</strong> the t. There<strong>for</strong>e the temperaturedependence <strong>of</strong> the slow component as reported by Ziock et al. [45] could not bedeterm<strong>in</strong>ed. After heat<strong>in</strong>g to 60 C N eff at the m<strong>in</strong>imum is equal <strong>for</strong> all planar <strong>detectors</strong>with an <strong>in</strong>troduction constant <strong>for</strong> stable defects g C =0.04 cm ;1 . Temperature <strong>in</strong>dependent


4. Time Development <strong>of</strong>Defects 59values at m<strong>in</strong>imum were also reported by other authors [14, 21, 46].Development <strong>of</strong>N eff has also been monitored dur<strong>in</strong>g the ir<strong>radiation</strong> (g. 4.1a). Asthe ir<strong>radiation</strong> time is comparable with the lifetime <strong>of</strong> the fast component, the time development31 <strong>of</strong> N eff is expected to deviate from a straight l<strong>in</strong>e. Results <strong>of</strong> the measurementsdur<strong>in</strong>g the ir<strong>radiation</strong> (gure 4.1a) agree with those expectations. They can however notbe reproduced well us<strong>in</strong>g the <strong>in</strong>troduction rates and decay constants as obta<strong>in</strong>ed from thet after the end <strong>of</strong> ir<strong>radiation</strong>. This may be the consequence <strong>of</strong> <strong>in</strong>itial dopant removaland the bias eect.4.2 Reverse Anneal<strong>in</strong>g <strong>of</strong> NeffReverse anneal<strong>in</strong>g <strong>of</strong> N eff was studied to determ<strong>in</strong>e the type <strong>of</strong> the process responsible.This knowledge is important <strong>for</strong> a prediction <strong>of</strong> <strong>radiation</strong> <strong>damage</strong> at the LHC. In case <strong>of</strong>a rst order process (eq. 2.57) the reverse anneal<strong>in</strong>g time constant k Y 1does not dependon the uence while <strong>in</strong> case <strong>of</strong> a second order process (eq. 2.61) k Y 2N X depends on uencel<strong>in</strong>early (N X / ).Two dierent methods were used <strong>in</strong> this work to determ<strong>in</strong>e the type <strong>of</strong> the reactionresponsible. In the rst one, samples were fully reverse annealed and reaction equations<strong>for</strong> rst and second order processes were tted to the data. In the second only the slopeat the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> the reverse anneal<strong>in</strong>g was studied, with its dependence on ir<strong>radiation</strong>uence.4.2.1 Reaction K<strong>in</strong>ematics FitA set <strong>of</strong> 10 samples was used to study reverse anneal<strong>in</strong>g by tt<strong>in</strong>g reaction k<strong>in</strong>ematics.All samples were 11 cm 2 p + -n-n + diodes with 3 guard r<strong>in</strong>gs, produced by planar processat Micron on Wacker wafers. The ir<strong>radiation</strong> conditions are given <strong>in</strong> table 4.3. Abouta week after ir<strong>radiation</strong> the heat<strong>in</strong>g procedure was started, <strong>in</strong> order to accelerate defectdevelopment. Samples were heated to 60 C <strong>for</strong> <strong>in</strong>creas<strong>in</strong>g time <strong>in</strong>tervals <strong>in</strong>terrupted byC/V and I/V measurements at 5 C. The sample temperature was monitored and theheat<strong>in</strong>g time was corrected (eq. 4.5) <strong>for</strong> small deviations from 60 C. 32 Total heat<strong>in</strong>g timesfrom one month to few monthsat60 Cwere accumulated, depend<strong>in</strong>g on the sample. Allsamples were reverse biased to 200 V dur<strong>in</strong>g and after the ir<strong>radiation</strong> 33 , <strong>in</strong>clud<strong>in</strong>g the31S<strong>in</strong>ce samples were irradiated with a constant neutron ux, the accumulated uence is proportionalto the ir<strong>radiation</strong> time.32Sample temperature dur<strong>in</strong>g the heat<strong>in</strong>g periods was stable to about 2 C.33Except <strong>for</strong> the P0 samples (P0A and P0B, irradiated <strong>in</strong> the pulse mode) that were not biased all thetime dur<strong>in</strong>g the rst few days at -10 C.


60 4. Time Development <strong>of</strong> DefectsSample V 0 FD [V] T eq [n/cm 2 s] eq [n/cm 2 ]K3 6 5 C 1:9 10 9 1:03 10 14K1 32 5 C 3:7 10 11 1:02 10 14K0 32 5 C 1:6 10 12 1:04 10 14P0A,B 8 -10 C 5 10 15 1:12 10 14I3 24 5 C 1:9 10 9 4:4 10 13D3 16 15 C 1:8 10 9 4:2 10 13B3 20 0 C 1:9 10 9 4:4 10 13G3 23 0 C 1:8 10 9 8:3 10 12G2 20 0 C 1:8 10 10 8:7 10 12Table 4.3: List <strong>of</strong> diodes used <strong>in</strong> the study <strong>of</strong> reverse anneal<strong>in</strong>g <strong>of</strong> N eff with model ts.Full depletion voltage be<strong>for</strong>e ir<strong>radiation</strong>, ir<strong>radiation</strong>/storage temperature, ir<strong>radiation</strong> ux anduence normalised to 1MeV neutrons are given <strong>for</strong> each sample. The thickness <strong>of</strong> samples was3005 m.heat<strong>in</strong>g periods 34 . Though not all samples were irradiated at the same temperature theseeects could be neglected after a few hours at 60 C. Nevertheless, this was accounted <strong>for</strong>,us<strong>in</strong>g equationgiv<strong>in</strong>gk(T )=k 0 e ; Eak BT (4.4)k(T 2 )=k(T 1 )e Eak B( 1T 1; 1T 2 ) : (4.5)Value <strong>of</strong> the activation energy E a <strong>for</strong> the reverse anneal<strong>in</strong>g <strong>of</strong> N eff is about 1.3 eV [13, 14,15] and <strong>for</strong> anneal<strong>in</strong>g <strong>of</strong> reverse current about 1.1 eV [15]. Thus, the time development <strong>of</strong>N eff at 60 C is almost 500 times faster than at 20 and <strong>for</strong> time development <strong>of</strong> reversecurrent this factor is about 190.S<strong>in</strong>ce anneal<strong>in</strong>g time constants are much shorter than those <strong>for</strong> the reverse anneal<strong>in</strong>git is possible to study reverse anneal<strong>in</strong>g <strong>in</strong>dependently by wait<strong>in</strong>g <strong>for</strong> anneal<strong>in</strong>g tocomplete. The eect <strong>of</strong> reverse anneal<strong>in</strong>g dur<strong>in</strong>g the time <strong>in</strong>terval <strong>of</strong> benecial anneal<strong>in</strong>gis negligible as can be seen from gures 4.7, 4.5. Thus, assum<strong>in</strong>g anneal<strong>in</strong>g to be completedand us<strong>in</strong>g equations 2.65, 2.57 and 2.61 one can set an ansatz <strong>for</strong> both processesasN eff (t) =g C eq + g Y eq (1 ; e ;kY 1 t ) (4.6)34Due to voltage-source current limit <strong>of</strong> 3 mA <strong>for</strong> some <strong>high</strong>ly irradiated samples the bias voltagedur<strong>in</strong>g heat<strong>in</strong>g was somewhat lower, but never below 140 V.


4. Time Development <strong>of</strong>Defects 61<strong>for</strong> the rst order process andN eff (t) =g C eq + g Y eq (1 ;11+g Y eq k Y 2t ) (4.7)<strong>for</strong> the second order. There g C is the <strong>in</strong>troduction rate <strong>for</strong> defects constant <strong>in</strong> time, g Y<strong>for</strong> defects responsible <strong>for</strong> reverse anneal<strong>in</strong>g and eq the ir<strong>radiation</strong> uence normalised to1 MeV neutrons. Fits <strong>of</strong> rst and second order ansatz are shown <strong>in</strong> gure 4.2 and 4.3 andtheir results given <strong>in</strong> table 4.4.Sample g C g Y k Y (60 C) 2 /ndf[10 ;2 /cm] [10 ;2 /cm] [10 ;6 /s] [10 ;18 cm 3 /s]1 st or. 2 nd or. 1 st or. 2 nd or. 1 st or. 2 nd or. 1 st or. 2 nd or.K3 3.1 3.0 5.0 6.0 8.8 1.51 0.6 0.7K1 2.5 2.4 4.7 5.6 7.8 1.70 2.1 0.8K0 2.6 2.6 4.2 4.8 6.4 1.54 1.5 1.8P0A 2.3 2.3 4.2 5.1 7.6 1.45 3.1 2.0P0B 2.3 2.3 4.2 4.9 8.4 1.61 2.8 3.5I3 4.0 3.9 4.5 5.3 3.8 2.12 3.0 1.0D3 4.2 4.1 4.9 5.5 3.3 1.86 3.0 1.6B3 4.1 4.0 4.8 5.4 4.5 2.54 3.9 1.8G3 1.8 1.7 6.5 7.5 1.6 3.12 8.2 2.6G2 1.9 1.9 6.3 7.2 1.6 3.27 11.5 5.2Table 4.4: Results <strong>of</strong> the ts us<strong>in</strong>g rst order and second order models. Generation rates <strong>for</strong>defects constant <strong>in</strong>time(g C ) and ones responsible <strong>for</strong> reverse anneal<strong>in</strong>g (g Y ) are given togetherwith reverse anneal<strong>in</strong>g constants k Y 1and kY 2 . 2 /ndf (ndf - number <strong>of</strong> degrees <strong>of</strong> freedom) isgiven <strong>for</strong> both ts to compare agreement <strong>of</strong> both models with measured results. Errors on k Yare about 5%.Comparison <strong>of</strong> 2 /ndf values from table 4.4 shows that though <strong>in</strong> most cases thesecond order t is somewhat better than rst order, the dierence is not large enough toexclude a rst order reaction. Even more so because ts <strong>in</strong> gures 4.2 and 4.3 show thatrst order ma<strong>in</strong>ly fails at the late stage <strong>of</strong> reverse anneal<strong>in</strong>g.Another test to dierentiate between the models is the dependence <strong>of</strong> reaction constantsk Y 1and k Y 2on ir<strong>radiation</strong> uence. For the correct model they should be uence<strong>in</strong>dependent while <strong>for</strong> the wrong one they should depend on uence. As can be seen fromgure 4.4, the rst order reverse anneal<strong>in</strong>g constant k Y 1<strong>in</strong>dicates l<strong>in</strong>ear dependence onuence k Y 1/ eq while the second order constant k Y 2shows somewhat weaker uencedependence. Though these results might slightly favour second order dynamics aga<strong>in</strong>strst order one, we do not yet consider them as conclusive evidence.


62 4. Time Development <strong>of</strong> DefectsFigure 4.2: First order (red l<strong>in</strong>e) and second order (black l<strong>in</strong>e) ts <strong>for</strong> diodes K3, K1, K0,P0A, P0B and I3. N eff = eq versus heat<strong>in</strong>g time at 60 C is displayed.Fluence dependence <strong>of</strong> reverse anneal<strong>in</strong>g constants is however aected by partialbias <strong>of</strong> the samples. Namely, all samples were biased with 200 V. Thus samples irradiatedto low uences were strongly over-biased while those irradiated to <strong>high</strong> uence were onlypartially depleted. Also, <strong>for</strong> <strong>high</strong>ly irradiated samples, the depleted depth was decreas<strong>in</strong>gwith reverse anneal<strong>in</strong>g due to the raise <strong>of</strong> FDV. And s<strong>in</strong>ce biased regions have <strong>high</strong>erN eff than unbiased ones, this reects <strong>in</strong> time development <strong>of</strong> an average N eff . As this


4. Time Development <strong>of</strong>Defects 63Figure 4.3: First order (red l<strong>in</strong>e) and second order (black l<strong>in</strong>e) ts <strong>for</strong> diodes B3, D3, G3 andG2. N eff = eq versus heat<strong>in</strong>g time at 60 C is displayed.represents the quantity used <strong>in</strong> the study <strong>of</strong> reverse anneal<strong>in</strong>g, partial bias aects values<strong>of</strong> the reverse anneal<strong>in</strong>g parameters.4.2.2 Initial Slope FitDur<strong>in</strong>g the <strong>in</strong>itial stage <strong>of</strong> reverse anneal<strong>in</strong>g, i.e. <strong>for</strong> k Y 1t 1andg Y eq k Y 2t 1 <strong>for</strong> rstand second order processes respectively, equations 4.6 and 4.7 can be l<strong>in</strong>earised t<strong>of</strong>or the rst order andN eff (t) eq= g C + g Y k Y 1t (4.8)N eff (t) eq= g C + g 2 Y eq k Y 2t (4.9)


64 4. Time Development <strong>of</strong> DefectsFigure 4.4: a) First order and b) second order reverse anneal<strong>in</strong>g constants k Y 1and k Y 2<strong>in</strong>dependence <strong>of</strong> ir<strong>radiation</strong> uence. First order assumption shows k Y 1/ eq dependence while k Y 2shows somewhat weaker uence dependence.<strong>for</strong> the second order. Thus, if we writeN eff (t) eq= g C + k l<strong>in</strong>Y t (4.10)the slope kYl<strong>in</strong> at the <strong>in</strong>itial stage <strong>of</strong> reverse anneal<strong>in</strong>g is not uence dependent <strong>for</strong> therst order process and is <strong>in</strong>creas<strong>in</strong>g l<strong>in</strong>early with uence <strong>for</strong> the second order process andis the ma<strong>in</strong> dierence between rst and second order processes. A comparison <strong>of</strong> slopesk l<strong>in</strong>Y( eq ) can thus <strong>in</strong>dicate the process responsible <strong>for</strong> reverse anneal<strong>in</strong>g.Two sets <strong>of</strong> samples were used <strong>for</strong> this study. In the rst were the diodes K3,K1,K0, P0A, P0B, I3, B3, D3, G3 and G2 that were reverse annealed at 60 C under bias.Their characteristics and ir<strong>radiation</strong> conditions were presented <strong>in</strong> the previous subsection(table 4.3). In the second (RAN) set are 8 diodes irradiated and annealed with no bias.Those were planar S<strong>in</strong>tef p + -n-n + diodes with multiple non-connectable guard r<strong>in</strong>gs anddimensions 66 mm 2 (B diodes) and 55 mm 2 (M diodes). They were irradiated <strong>in</strong> fourpairs (one B and one M diode <strong>in</strong> each pair) to four dierent uences (table 4.6). To assureidentical conditions dur<strong>in</strong>g anneal<strong>in</strong>g and reverse anneal<strong>in</strong>g they were all mounted on thesame metalised glass plate and kept at 20 C.Time development <strong>of</strong> N eff at the <strong>in</strong>itial stage <strong>of</strong> the reverse anneal<strong>in</strong>g <strong>for</strong> diodesannealed at 60 C is shown <strong>in</strong> gure 4.5. Results <strong>of</strong> the t accord<strong>in</strong>g to eq. 4.10 are


4. Time Development <strong>of</strong>Defects 65Figure 4.5: Time dependence <strong>of</strong> N eff at the <strong>in</strong>itial stage <strong>of</strong> the reverse anneal<strong>in</strong>g <strong>for</strong> a) samplesG3 and G2, b) samples I3, D3 and B3, c) samples P0A and P0B and d) samples K3, K1 andK0.presented <strong>in</strong> table 4.5 and gure 4.6.Contrary to the results from the reaction k<strong>in</strong>ematics t, results from the t <strong>of</strong> the<strong>in</strong>itial slope slightly favours a rst order process. However both kYl<strong>in</strong> and kYl<strong>in</strong> = eq areuence dependent and do not give clear evidence <strong>for</strong> any <strong>of</strong> the two proposed models.The samples however are the same as used <strong>for</strong> reaction k<strong>in</strong>ematics t <strong>in</strong> the previoussection. Thus the <strong>in</strong>uence <strong>of</strong> partial bias as given there also applies to the results <strong>of</strong> the


66 4. Time Development <strong>of</strong> DefectsSample g C [10 ;2 cm ;1 ] kY l<strong>in</strong> [10 ;7 cm ;1 s ;1 ]K3 3.2 3.4K1 2.6 2.9K0 2.7 2.1P0A 2.4 2.5P0B 2.4 2.5I3 4.0 2.2D3 4.2 1.8B3 4.1 2.6G3 1.7 1.5G2 1.8 1.7Table 4.5: Results <strong>of</strong> the l<strong>in</strong>ear t <strong>for</strong> the <strong>in</strong>itial stage <strong>of</strong> reverse anneal<strong>in</strong>g <strong>for</strong> diodes annealedat 60 C under bias. Errors on kl<strong>in</strong> Y are about 5%.Figure 4.6:a) k l<strong>in</strong>Yand b) kYl<strong>in</strong>=eq <strong>for</strong> the group annealed at 60 C. In case <strong>of</strong> a rst orderdynamics, the distribution <strong>in</strong> gure a) should be at, while <strong>for</strong> second order, the distribution b)should be at.<strong>in</strong>itial slope t. The <strong>in</strong>uence <strong>of</strong> the bias eect is however somewhat reduced s<strong>in</strong>ce thechanges <strong>in</strong> FDV (andthus changes <strong>in</strong> the portion <strong>of</strong> the region undepleted at 200 V) aresmaller. To obta<strong>in</strong> a conclusive result, aset<strong>of</strong> diodes fully biased or unbiased dur<strong>in</strong>g thecomplete treatment was necessary. Thus a set <strong>of</strong> diodes was dedicated to this type <strong>of</strong>analysis (RAN set).The diodes from the RAN set were unbiased and kept at 20 C dur<strong>in</strong>g the study.


4. Time Development <strong>of</strong>Defects 67Figure 4.7: Development <strong>of</strong> N eff at the <strong>in</strong>itial stage <strong>of</strong> the reverse anneal<strong>in</strong>g <strong>for</strong> a) samplesR02B and R02M, b) samples R05B and R05M, c) samples R10B and R10M and d) samplesR20B and R20M.After the anneal<strong>in</strong>g stage was completed, time development <strong>of</strong> N eff was tted accord<strong>in</strong>gto equation 4.10. The development <strong>of</strong> N eff at the <strong>in</strong>itial stage <strong>of</strong> reverse anneal<strong>in</strong>g isshown <strong>in</strong> gure 4.7, together with the t. Results <strong>of</strong> the t are presented <strong>in</strong> table 4.6 andgure 4.8.Comparison <strong>of</strong> N eff = eq <strong>for</strong> all 8 samples annealed with no bias at 20 C is shown<strong>in</strong> gure 4.9 where it can be clearly seen that reverse anneal<strong>in</strong>g slopes k l<strong>in</strong> are not u-


68 4. Time Development <strong>of</strong> DefectsSample V 0 FD eq eq g C kYl<strong>in</strong>[V] [10 11 n/cm 2 s] [10 14 n/cm 2 ] [10 ;2 cm ;1 ] [10 ;10 cm ;1 s ;1 ]R02B 45 2.1 0.21 0.42 9.1R02M 41 2.1 0.21 0.57 11.3R05B 39 2.1 0.53 1.4 13.5R05M 40 2.1 0.53 1.2 12.0R10B 47 2.1 1.06 1.4 15.3R10M 47 2.1 1.06 1.8 14.9R20B 41 2.1 2.1 1.6 11.1R20M 44 2.1 2.1 1.6 11.8Table 4.6: Full depletion voltage, ir<strong>radiation</strong> conditions and results <strong>of</strong> the l<strong>in</strong>ear t <strong>for</strong> the<strong>in</strong>itial stage <strong>of</strong> the reverse anneal<strong>in</strong>g <strong>for</strong> diodes annealed at 20 C. Errors on kl<strong>in</strong> Y are about 5%.Figure 4.8:a) k l<strong>in</strong>Yand b) kYl<strong>in</strong>=eq <strong>for</strong> the group annealed at 20 C. In case <strong>of</strong> a rst orderdynamics, the distribution <strong>in</strong> gure a) should be at while <strong>for</strong> a second order, the distributionb) should be at.ence dependent. Disagreement <strong>in</strong> the <strong>in</strong>troduction rates <strong>of</strong> the stable defects g C can beexpla<strong>in</strong>ed by donor removal. While it has not been taken <strong>in</strong>to account it may have stillnot been completed <strong>for</strong> the samples irradiated to the low uences 35 . This explanation issupported by the uence dependence <strong>of</strong> eective g C as shown <strong>in</strong> gure 4.10.35It has to be considered that the RAN samples had <strong>in</strong>itial full depletion voltage (eective dopantconcentration) about a factor 2 <strong>high</strong>er than the rest <strong>of</strong> the samples used <strong>in</strong> this work, enhanc<strong>in</strong>g theeect <strong>of</strong> <strong>in</strong>complete donor removal.


4. Time Development <strong>of</strong>Defects 69Figure 4.9: Development <strong>of</strong> N eff = eq at the <strong>in</strong>itial stage <strong>of</strong> reverse anneal<strong>in</strong>g <strong>for</strong> unbiasedsamples kept at 20 C.Figure 4.10: Fluence dependence <strong>of</strong> eective g C <strong>for</strong> unbiased samples keptatat20 C. 15% <strong>of</strong>systematic error on the dosimetry is not <strong>in</strong>cluded <strong>in</strong> the error bars.


70 4. Time Development <strong>of</strong> DefectsMeasurements <strong>of</strong> the set annealed at 20 C clearly po<strong>in</strong>t to the rst order modeldur<strong>in</strong>g the <strong>in</strong>itial stage <strong>of</strong> reverse anneal<strong>in</strong>g. Disagreement <strong>of</strong> other samples with the therst order model can be expla<strong>in</strong>ed by the partial bias <strong>of</strong> some samples caused by a xedbias voltage, <strong>in</strong>dependent <strong>of</strong> the ir<strong>radiation</strong> uence.4.2.3 Test <strong>of</strong> Boron Reactivation ModelR. Wunstorf et al. [29] proposed a model <strong>for</strong> reverse anneal<strong>in</strong>g based on reactivation <strong>of</strong>boron. It is suggested that directly after ir<strong>radiation</strong> boron does not act as an acceptorbecause it has been removed from the substitutional to an <strong>in</strong>terstitial site. However,dur<strong>in</strong>g long term anneal<strong>in</strong>g (reverse anneal<strong>in</strong>g) boron is reactivated through the reactionB i + V ! B s where B i <strong>in</strong>dicates boron <strong>in</strong> an <strong>in</strong>terstitial position (not electrically active)and B s boron <strong>in</strong> a substitutional position (acceptor). The model thus predicts the acceptor<strong>in</strong>crease dur<strong>in</strong>g reverse anneal<strong>in</strong>g (g Y ) to be proportional to the concentration <strong>of</strong> boron<strong>in</strong> the orig<strong>in</strong>al material, assum<strong>in</strong>g sucient availability <strong>of</strong>mobile vacancies. This modelwould have important implications <strong>for</strong> eng<strong>in</strong>eer<strong>in</strong>g <strong>of</strong> <strong>radiation</strong> hard materials, s<strong>in</strong>ce thelevel <strong>of</strong> reverse anneal<strong>in</strong>g could be controlled by boron concentration <strong>in</strong> the <strong>in</strong>itial material.In the scope <strong>of</strong> this work an experimental test <strong>of</strong> the model has been per<strong>for</strong>med.From the model follows, that the rise <strong>of</strong> N eff dur<strong>in</strong>g reverse anneal<strong>in</strong>g should be removedby a subsequent ir<strong>radiation</strong>. Tocheck <strong>for</strong> such behaviour, an irradiated sample was reverseannealed to a late stage and irradiated aga<strong>in</strong>. Development <strong>of</strong> full depletion voltage dur<strong>in</strong>gthe process was monitored and compared to the model prediction.Sample I3 was irradiated to 4.410 13 n/cm 2 1 MeV neutron equivalent and completelyreverse annealed (two monthsat60 C). This was followed by a second ir<strong>radiation</strong>to 4.110 13 n/cm 2 1 MeV neutron equivalent with repeated anneal<strong>in</strong>g at 60 C. Time development<strong>of</strong> the full depletion voltage <strong>for</strong> both ir<strong>radiation</strong>s is shown <strong>in</strong> gure 4.11. Therst measurement data beg<strong>in</strong> after almost all benecial anneal<strong>in</strong>g has been completed.If the above model were correct, the substitutional boron responsible <strong>for</strong> the reverseanneal<strong>in</strong>g after the rst ir<strong>radiation</strong>, should be removed dur<strong>in</strong>g the second ir<strong>radiation</strong>.From acceptor (boron) removal rate c A = 1:98 10 13 cm 2 from the same article [29] andthe uence <strong>of</strong> the second ir<strong>radiation</strong> (4.110 13 n/cm 2 )onecanseethat basically all reactivatedboron should be removed by the second ir<strong>radiation</strong>, cancell<strong>in</strong>g the eect <strong>of</strong> reverseanneal<strong>in</strong>g after the rst ir<strong>radiation</strong>. This should reect <strong>in</strong> a drop <strong>of</strong> full depletion voltageequal to the contribution <strong>of</strong> the reverse anneal<strong>in</strong>g (about 160 V). The total change <strong>of</strong> FDVdur<strong>in</strong>g the ir<strong>radiation</strong> should thus be equal to the dierence between this drop (approx.160 V) and the FDV raise <strong>in</strong>duced by other ir<strong>radiation</strong> <strong>in</strong>duced defects (approx. 100 Vafter benecial anneal<strong>in</strong>g). The value <strong>of</strong> the FDV at the plateau after second ir<strong>radiation</strong>should equal the sum <strong>of</strong> defects constant <strong>in</strong>time<strong>in</strong>troduced dur<strong>in</strong>g both ir<strong>radiation</strong>s


4. Time Development <strong>of</strong>Defects 71Figure 4.11: Time development <strong>of</strong>FDV <strong>for</strong> the diode I3 after the rst and the second neutronir<strong>radiation</strong> (4.410 13 n/cm 2 and 4.110 13 n/cm 2 1MeVneutron equivalent, respectively). Opencircles are used to compare the eect <strong>of</strong> the rst and the second ir<strong>radiation</strong>. They representthe change <strong>in</strong> full depletion voltage <strong>in</strong>duced by the second ir<strong>radiation</strong> (i.e. FDV after secondir<strong>radiation</strong> reduced <strong>for</strong> the value <strong>of</strong> the FDV be<strong>for</strong>e the second ir<strong>radiation</strong>).(approx. 240 V). Results <strong>in</strong> gure 4.11 however show this is not the case, so our resultscontradict the boron reactivation model.The disagreement with the model can also be seen from the comparison <strong>of</strong> the full(rst ir<strong>radiation</strong>) and open circles (second ir<strong>radiation</strong>) <strong>in</strong> the rst part <strong>of</strong> the gure, wherethe open circles were obta<strong>in</strong>ed by subtract<strong>in</strong>g the FDV just be<strong>for</strong>e the second ir<strong>radiation</strong>from the FDV after it. The comparison shows good agreement <strong>of</strong> defect generation andanneal<strong>in</strong>g from both ir<strong>radiation</strong> steps.4.3 Results on Anneal<strong>in</strong>g <strong>of</strong> MESA SamplesAn eect <strong>of</strong> the production process to the <strong>radiation</strong> hardness was reported by variousgroups [32, 47, 48, 49, 50]. Thus a comparison <strong>of</strong> diodes produced by a planar and MESAprocess was per<strong>for</strong>med <strong>in</strong> the scope <strong>of</strong> this work.Two MESA processed 11 cm 2 diodes on Polovodice wafers were irradiated to5 10 13 n/cm 2 . The diodes are oxygen enriched due to the process [47]. Their ir<strong>radiation</strong>


72 4. Time Development <strong>of</strong> DefectsFigure 4.12: Comparison <strong>of</strong> short-term anneal<strong>in</strong>g <strong>of</strong> planar (I3, D3) and MESA (R4, R3)samples at 5 C (I3, R4) and 15 C (D3, R3).Sample process No. <strong>of</strong> GR V 0 FD [V] T eq [n/cm 2 s] eq [n/cm 2 ]R3 mesa 0 100 15 C 1:8 10 9 4:4 10 13R4 mesa 0 110 5 C 1:8 10 9 4:2 10 13Table 4.7: List <strong>of</strong> MESA processed diodes used <strong>in</strong> the study <strong>of</strong> fast anneal<strong>in</strong>g <strong>of</strong> N eff . Process<strong>in</strong>gtype, number <strong>of</strong> guard r<strong>in</strong>gs, full depletion voltage be<strong>for</strong>e ir<strong>radiation</strong>, ir<strong>radiation</strong>/storagetemperature, ir<strong>radiation</strong> ux and uence normalised to 1MeV neutrons are given <strong>for</strong> each sample.Thickness <strong>of</strong> samples was 3005 m.Sample T [ C] g 0 [10 ;2 cm ;1 ] g 1 [10 ;2 cm ;1 ] 1 [h] g 2 [10 ;2 cm ;1 ] 2 [h]R3 15 C 2.2 4.7 3.5 1.6 370R4 5 C 4.2 5.1 2.8 2.2 21Table 4.8: List <strong>of</strong> MESA samples with their ir<strong>radiation</strong> temperatures and values <strong>of</strong> the tparameters accord<strong>in</strong>g to eq. 4.3.conditions are listed <strong>in</strong> table 4.7. Sample R4 was irradiated under the same conditions assample I3 and sample R3 same as sample D3 (compare with table 4.1).Short term anneal<strong>in</strong>g was tted with expression 4.3 and results <strong>of</strong> the t are given <strong>in</strong>table 4.8. Comparison <strong>of</strong> the fast anneal<strong>in</strong>g <strong>of</strong> planar and mesa samples is shown <strong>in</strong> gure


4. Time Development <strong>of</strong>Defects 73Figure 4.13: Comparison <strong>of</strong> N eff development <strong>of</strong> planar (I3,D3) and MESA (R4,R3) samplesafter heat<strong>in</strong>g to 60 C.Figure 4.14: FDV comparison <strong>of</strong> diodes I3 (planar) and R4 (MESA) dur<strong>in</strong>g the ir<strong>radiation</strong> at5 C.4.12. Together with gure 4.14 it shows that <strong>in</strong> the <strong>in</strong>itial stage <strong>of</strong> the anneal<strong>in</strong>g a 20-30% dierence <strong>in</strong> the eective dop<strong>in</strong>g concentration develops, that persists also throughlatter anneal<strong>in</strong>g and reverse anneal<strong>in</strong>g (gure 4.13). This dierence however can not beattributed to the <strong>in</strong>itial dierence <strong>in</strong> N eff that reected <strong>in</strong> about 80 V dierence <strong>in</strong> FDVbe<strong>for</strong>e ir<strong>radiation</strong>. As shown <strong>in</strong> gure 4.14, the dierence <strong>in</strong> <strong>in</strong>itial FDV disappeareddur<strong>in</strong>g the ir<strong>radiation</strong>. This could be a consequence <strong>of</strong> shallow donor removal.


74 4. Time Development <strong>of</strong> DefectsLower full depletion voltages <strong>for</strong> MESA processed samples as compared to planarones have also been reported by G. Casse et al. [48]. They observed systematically better<strong>radiation</strong> hardness <strong>of</strong> MESA samples as compared to planar ones. The dierence shows asan about factor <strong>of</strong> two lower <strong>in</strong>troduction rate <strong>of</strong> acceptor-like defects, lower <strong>in</strong>troductionrate <strong>of</strong> reverse anneal<strong>in</strong>g defects and lower <strong>damage</strong> constant. Those eects are howevernot <strong>in</strong>duced by <strong>in</strong>creased oxygen concentration only, s<strong>in</strong>ce results on oxygenated planarsamples (up to several 10 17 cm ;3 ) show no decrease <strong>in</strong> FDV or value as compared tonon-oxygenated planar samples [48]. Agreement <strong>of</strong> FDV after ir<strong>radiation</strong> <strong>for</strong> standardand oxygenated materials was also reported by L. Beattie et al. [49], while B. Dezillie etal. [32] reports better <strong>radiation</strong> resistivity <strong>of</strong> MESA samples and M. Moll et al. [50] <strong>for</strong>Czochralski samples, both hav<strong>in</strong>g an <strong>in</strong>creased oxygen concentration (order <strong>of</strong> 10 18 cm ;3 ).4.4 Anneal<strong>in</strong>g <strong>of</strong> Reverse CurrentAs with N eff , the time development <strong>of</strong> bulk generation current was studied <strong>in</strong> two parts:fast anneal<strong>in</strong>g at various temperatures dur<strong>in</strong>g the rst week after ir<strong>radiation</strong> and longterm anneal<strong>in</strong>g at 60 C to accelerate time development.4.4.1 Fast Anneal<strong>in</strong>gSample T 0 0 1 1 2 2[ C] [10 ;17 A/cm] [10 ;17 A/cm] [h] [10 ;17 A/cm] [h]D3 15 C 4.6 2.0 4.2 1.9 55D1 15 C 4.1 1.2 15. 1.4 180B3 0 C 4.1 1.2 9.7 1.1 220K0 5 C 5.4 14. 1.4 2.5 20K3 5 C 5.1 7.4 2.2 1.9 38Table 4.9: List <strong>of</strong> samples and ir<strong>radiation</strong> temperatures with values <strong>of</strong> the t parametersaccord<strong>in</strong>g to eq. 4.11. For easier comparison between samples and with other authors, values <strong>of</strong>the parameter are normalised to 20 C.Fast anneal<strong>in</strong>g <strong>of</strong> reverse current was studied on samples D3, D1, B3, K0 and K3.Their ir<strong>radiation</strong> conditions are given <strong>in</strong> tables 4.1 and 4.3. The rest <strong>of</strong> the diodes had noguard r<strong>in</strong>g structures, guard r<strong>in</strong>gs were not connectable or had some other problems thatprevented reliable determ<strong>in</strong>ation <strong>of</strong> the bulk current.As with N eff , short term anneal<strong>in</strong>g can be tted with a constant part and two


4. Time Development <strong>of</strong>Defects 75Figure 4.15: Short term development <strong>of</strong> the bulk current. Values <strong>of</strong> the parameter arenormalised to 20 C <strong>for</strong> easier comparison (eq. 2.39), though measurements were per<strong>for</strong>med atvarious temperatures as given <strong>in</strong> the table 4.9. Fits accord<strong>in</strong>g to eq. 4.11 are shown togetherwith measurements. Note the suppressed zero.exponentials (eq. 2.63).(t) = 0 0+ 1 e ;t= 1+ 2 e ;t= 2(4.11)and <strong>for</strong> ir<strong>radiation</strong> times comparable to defect decay times i , an ansatz equivalent to4.3was used. Measurement data together with ts accord<strong>in</strong>g to eq. 4.11 are shown <strong>in</strong> gure4.15 and the results <strong>of</strong> the ts are given <strong>in</strong> table 4.9.


76 4. Time Development <strong>of</strong> DefectsSample eq eq E E L L[n/cm 2 s] [n/cm 2 ] [10 ;17 A/cm] [h] [10 ;17 A/cm] [years]K3 1:9 10 9 1:03 10 14 1.4 0.7 0.32 2.K0 1:6 10 12 1:04 10 14 1.1 1.8 0.26 6.I3 1:9 10 9 4:4 10 13 1.3 1.8 0.26 14.B3 1:9 10 9 4:4 10 13 1.4 1.3 0.29 8.G3 1:8 10 9 8:3 10 12 1.2 1.6 0.28 9.G2 1:8 10 10 8:7 10 12 1.2 1.9 0.24 12.U3A 1:8 10 9 4:1 10 13 1.2 2.1 0.31 2.U3B 1:8 10 9 4:1 10 13 1.2 2.1 0.32 3.Table 4.10: List <strong>of</strong> diodes used to study long term anneal<strong>in</strong>g <strong>of</strong> bulk current. All samples areplanar p + -n-n + 11 cm 2 diodes, 3005 m thick with three guard r<strong>in</strong>gs. In the rst part <strong>of</strong> thetable are given ir<strong>radiation</strong> ux and uence normalised to 1 MeV neutrons. In the second part arevalues <strong>of</strong> the t parameters accord<strong>in</strong>g to ansatz 4.12. Values <strong>of</strong> the parameters are normalisedto 20 C to simplify comparison with other results. Time constants E and L are given <strong>for</strong> 60 C.Errors on E , E and L are about 20% and on L as large as 50%. The systematic error <strong>of</strong> thedosimetry is not <strong>in</strong>cluded <strong>in</strong> the given errors.Results from the present ts show no systematic behaviour with no clear temperaturedependence while measured leakage currents agree with<strong>in</strong> about 20%. Discrepanciesbetween samples may be expla<strong>in</strong>ed by contribution <strong>of</strong> surface current, <strong>high</strong> ir<strong>radiation</strong>environment and long, partially unshielded, measurement cables. Measurements <strong>of</strong> theleakage current at the laboratory with shorter cables give the same value <strong>for</strong> all samplesafter a time equivalent toafewweeks at 20 C (see next section on long term anneal<strong>in</strong>g).For LHC experiments short term anneal<strong>in</strong>g is irrelevant anyway. It is however importantto be aware <strong>of</strong> its extent when results from dierent sources are compared.4.4.2 Long Term Anneal<strong>in</strong>gLong term anneal<strong>in</strong>g <strong>of</strong> the bulk current has been studied on diodes K3, K0, I3, B3, G3,G2, U3A and U3B. Their ir<strong>radiation</strong> conditions are given <strong>in</strong> table 4.10. To accelerateanneal<strong>in</strong>g, the samples were heated to 60 C <strong>for</strong> <strong>in</strong>creas<strong>in</strong>g time periods, <strong>in</strong>termited withC/V and I/V measurements at 5 C. As can be seen <strong>in</strong> gure 4.16, after almost threemonths at 60 C there was still no evidence <strong>of</strong> reach<strong>in</strong>g a plateau.A constant slope <strong>in</strong> log-l<strong>in</strong> plot at large heat<strong>in</strong>g times (over 10 h at 60 C) <strong>in</strong>dicatedthat a logarithmic time dependence could parametrise the late stage <strong>of</strong> anneal<strong>in</strong>g. An


4. Time Development <strong>of</strong>Defects 77Figure 4.16: Long term development <strong>of</strong> the bulk current. Values<strong>of</strong>the parameter are normalisedto 20 C <strong>for</strong> easier comparison with other sources, though measurements were per<strong>for</strong>medat 5 C. Fits accord<strong>in</strong>g to eq. 4.12 are shown together with measurements.eective ansatz(t) = E e ;t= E ; L ln(t= L ) (4.12)has thus been attempted. Agreement <strong>of</strong> measured data and ansatz 4.12 can be seen<strong>in</strong> gure 4.16 and result<strong>in</strong>g t parameters are given <strong>in</strong> table 4.10. It can be seen thatagreement among the samples is reasonably good except <strong>for</strong> the time constant <strong>of</strong> thelogarithmic part. Large discrepancies <strong>in</strong> L should not be a surprise and reect the fact


78 4. Time Development <strong>of</strong> Defectsthat the logarithmic parametrisation lacks natural explanation. It is however a work<strong>in</strong>gansatz <strong>for</strong> late anneal<strong>in</strong>g stages that can be used until the true nature <strong>of</strong> the process isunveiled.The logarithmic part has a time constant equal to few years at 60 C and an <strong>in</strong>troductionconstant about a fourth <strong>of</strong> the exponential part. Though its temperature dependenceis still to be determ<strong>in</strong>ed, it can be expected to be signicantly longer at lower temperatures.It is thus probably irrelevant <strong>for</strong> the LHC operation. It is however important torealise that the bulk current is decreas<strong>in</strong>g steadily even after extremely long heat<strong>in</strong>g timeswithout saturation on this time scale. For comparison <strong>of</strong> results from dierent sourcesit is thus important to state at what po<strong>in</strong>t <strong>in</strong> time the value <strong>of</strong> the parameter wasmeasured.The logarithmic behaviour <strong>of</strong> the leakage current at late stages <strong>of</strong> anneal<strong>in</strong>g wasalso reported by [35]. Tak<strong>in</strong>g <strong>in</strong>to account their somewhat dierent parametrisation(t) = 1 e ;t= 1+ 0 ; ln(t= 0 ) (4.13)here 0 is set to 1 m<strong>in</strong>, one translates L = 0 exp( 0 =), while the rest <strong>of</strong> parameterscan be compared directly. Values reported by [35] are: 1 = 1:01 0:38 10 ;17 A/cm, 1 =93 24 m<strong>in</strong>, 0 =5:03 0:09 10 ;17 A/cm and =3:34 0:26 10 ;18 A/cm, giv<strong>in</strong>g L 6:6 +45;4:6years. Comparison shows that results agree with<strong>in</strong> errors except <strong>for</strong> L ()where discrepancy is about twice the value <strong>of</strong> given errors.Results presented <strong>in</strong> [35] can also be used to check the uence measurement. S<strong>in</strong>ceonly weak material dependence 36 was observed, values <strong>of</strong> the parameter at a givenanneal<strong>in</strong>g stage can be compared to cross check the dosimetry from dierent ir<strong>radiation</strong>sources. (20 C) value after 2880 m<strong>in</strong>utes at 60 C as obta<strong>in</strong>ed with the TRIGA reactorequals 2:00:310 ;17 . Good agreement with the expectation from [35] <strong>of</strong>about2:210 ;17conrms the absolute scale <strong>of</strong> the dosimetry used <strong>in</strong> this work.4.5 ConclusionA systematic study <strong>of</strong> the time development <strong>of</strong> N eff and reverse current has been per<strong>for</strong>medunder controlled conditions. Results on short-term anneal<strong>in</strong>g show that bothN eff and reverse bulk-current are subject to signicant fast anneal<strong>in</strong>g <strong>in</strong> the rst dayafter ir<strong>radiation</strong>. Although this anneal<strong>in</strong>g has no <strong>in</strong>uence on the operation <strong>of</strong> <strong>detectors</strong><strong>in</strong> LHC experiments, it has however to be taken <strong>in</strong>to account when compar<strong>in</strong>g results <strong>of</strong>ir<strong>radiation</strong> <strong>damage</strong> studies from dierent sources.36Discrepancy <strong>of</strong> about 6% (1 ) <strong>in</strong> among dierent materials has been observed after 80 m<strong>in</strong>utes at60 C[35].


4. Time Development <strong>of</strong>Defects 79An extensive study <strong>of</strong> reverse anneal<strong>in</strong>g was per<strong>for</strong>med to unveil the nature <strong>of</strong> theresponsible process. While from most <strong>of</strong> the samples no conclusive evidence could beobta<strong>in</strong>ed due to bias-eect <strong>in</strong>terference (see chapter 6), a dedicated set <strong>of</strong> 8 unbiasedsamples annealed at 20 C is clearly show<strong>in</strong>g a l<strong>in</strong>ear dependence <strong>of</strong> <strong>in</strong>itial slope <strong>of</strong> N effreverse anneal<strong>in</strong>g on ir<strong>radiation</strong> uence. Thus at least dur<strong>in</strong>g the <strong>in</strong>itial stage <strong>of</strong> thereverse anneal<strong>in</strong>g, relevant <strong>for</strong> the LHC operation, the reaction dynamics is described bya rst order process. Further studies are however necessary to determ<strong>in</strong>e the <strong>in</strong>uence <strong>of</strong>reverse bias on the reverse anneal<strong>in</strong>g constants.Reverse leakage current shows similar short-term anneal<strong>in</strong>g behaviour to that <strong>of</strong>N eff . In agreement with results from previous sources [46, 21, 19, 14, 18] no reverse anneal<strong>in</strong>gwas observed. Long term anneal<strong>in</strong>g at 60 Chowever does not lead to the expectedsaturation <strong>of</strong> reverse current, but shows cont<strong>in</strong>uous anneal<strong>in</strong>g with an eective logarithmictime dependence. The true nature <strong>of</strong> this eect is at the present not understood.


80 4. Time Development <strong>of</strong> Defects


5Dose Rate Dependence5.1 MotivationIr<strong>radiation</strong> <strong>of</strong> <strong>silicon</strong> <strong>detectors</strong> <strong>in</strong> the environment <strong>of</strong> future <strong>detectors</strong> will be a slow process,tak<strong>in</strong>g many years to accumulate the predicted uence <strong>of</strong> the order <strong>of</strong> 10 14 n/cm 21 MeV neutrons equivalent. For obvious reasons it is unpractical, if not impossible, toper<strong>for</strong>m studies <strong>of</strong> ir<strong>radiation</strong> <strong>damage</strong> eects with uxes that low. Most <strong>of</strong>ten samplesare irradiated to those uences <strong>in</strong> a few hours or days. It is thus important tocheck <strong>for</strong> apossible ux eect. Even more so because results on ion implantation with Br, Si and Care show<strong>in</strong>g considerable decrease <strong>in</strong> trap generation rates <strong>for</strong> uxes above a threshold <strong>of</strong>about 10 7 cm ;2 s ;1 , 10 8 cm ;2 s ;1 and few times 10 8 cm ;2 s ;1 , respectively [52]. This canbe expla<strong>in</strong>ed by clusters overlapp<strong>in</strong>g at <strong>high</strong> uxes, enhanc<strong>in</strong>g prompt vacancy-<strong>in</strong>terstitial<strong>silicon</strong> recomb<strong>in</strong>ation, thus reduc<strong>in</strong>g <strong>radiation</strong> <strong>in</strong>duced <strong>damage</strong>.The reactor where the present ir<strong>radiation</strong>s were per<strong>for</strong>med can cover a wide range<strong>of</strong> uxes. The maximal ux is determ<strong>in</strong>ed by a uence <strong>of</strong> about 10 14 n/cm 2 that can beobta<strong>in</strong>ed <strong>in</strong> an about 20 ms long pulse, giv<strong>in</strong>g a ux <strong>of</strong> about 510 15 n/cm 2 s. The lowerux was limited by practical reasons (about 150 h <strong>for</strong> 10 14 n/cm 2 )toabout210 8 n/cm 2 s.Thus, a range <strong>of</strong> more than seven orders <strong>of</strong> magnitude <strong>in</strong> ux can be <strong>in</strong>vestigated.A set <strong>of</strong> 7 samples was used to study the ux <strong>in</strong>uence. They were all irradiated toabout 10 14 n/cm 2 with neutron uxes cover<strong>in</strong>g the above mentioned range. All sampleswere 11 cm 2 p + -n-n + planar Micron diodes. Except <strong>for</strong> samples SA1 and SA2 that had1 and 2 guard r<strong>in</strong>gs respectively, all diodes had 3 guard r<strong>in</strong>gs. Details about ir<strong>radiation</strong>and storage are listed <strong>in</strong> table 5.1. For samples K0, K1 and K3, about a week afterir<strong>radiation</strong>, the time development was accelerated by heat<strong>in</strong>g to 60 C. In case <strong>of</strong> SA andP0 diodes, heat<strong>in</strong>g started 8 and 4 months after the ir<strong>radiation</strong>. In the meanwhile they81


82 5. Dose Rate DependenceSample V 0 FD [V] T eq [n/cm 2 s] eq [n/cm 2 ] bias [V]SA1 12 -10 C + 2:2 10 8 1:3 10 14 0SA2 12 -10 C + 2:2 10 8 1:3 10 14 150 K3 6 5 C 1:9 10 9 1: 10 14 200K1 32 5 C 3:7 10 11 1: 10 14 200K0 32 5 C 1:6 10 12 1: 10 14 200P0A 8 -5 C + 5 10 15 1:1 10 14 0 P0B 8 -5 C + 5 10 15 1:1 10 14 200 Table 5.1: List <strong>of</strong> diodes used <strong>in</strong> the study <strong>of</strong> dose rate <strong>in</strong>uence. Full depletion voltage be<strong>for</strong>eir<strong>radiation</strong>, ir<strong>radiation</strong>/storage temperature, ir<strong>radiation</strong> ux and uence normalised to 1 MeVneutrons and bias voltage are given <strong>for</strong> each sample. Thickness <strong>of</strong> samples was 3005 m.+ Sample was heated to 20 C several times <strong>for</strong> a few hour periods to repair brokenbias/measurement l<strong>in</strong>es. Bias<strong>in</strong>g <strong>of</strong> SA2 was lost several times dur<strong>in</strong>g the rst 6 months due to lost contact. Whenheat<strong>in</strong>g to 60 C started, 200 V bias was used. Sample P0A was biased to 350 V <strong>for</strong> about rst 30 m<strong>in</strong>, then the contact was lost. Sample P0B was not biased <strong>for</strong> the rst few days.were kept at -10 C and -5 C, respectively, as <strong>in</strong>dicated <strong>in</strong> table 5.1 37 .Development <strong>of</strong>N eff and reverse current <strong>of</strong> samples was compared to observe possibledierences due to a dose rate eect. Results <strong>of</strong> the study are presented <strong>in</strong> the follow<strong>in</strong>gsections.5.2 Results on NeffTime development <strong>of</strong>N eff <strong>for</strong> samples listed <strong>in</strong> table 5.1 after start <strong>of</strong> heat<strong>in</strong>g to 60 Cisshown <strong>in</strong> gure 5.1. The second order ansatz 4.7 was used <strong>in</strong> the t. The second orderparametrisation was chosen because it describes the late stage <strong>of</strong> reverse anneal<strong>in</strong>g betterthan the rst order one. The uence dependence <strong>of</strong> the time constant, that is the ma<strong>in</strong>dierence between the two models, was not important <strong>in</strong> this case, because all samples,used <strong>for</strong> the study <strong>of</strong> the ux eect, were irradiated to similar uences (table 5.1). Results<strong>of</strong> the ts are given <strong>in</strong> table 5.2 and compared <strong>in</strong> gures 5.2 to 5.4.Neither plots <strong>of</strong> N eff time development dur<strong>in</strong>g reverse anneal<strong>in</strong>g nor t resultsshow any systematic variations that could be correlated with ux. Discrepancies betweendierent samples can be attributed to dierent bias<strong>in</strong>g conditions (see chapter 6) and37In this time samples were not yet fully annealed and thus storage had negligible <strong>in</strong>uence on study<strong>of</strong> reverse anneal<strong>in</strong>g.


5. Dose Rate Dependence 83Figure 5.1: Time development <strong>of</strong>N eff at 60 C <strong>for</strong> <strong>detectors</strong>, irradiated with dierent neutronuxes.Sample g C [10 ;2 cm ;1 ] g Y [10 ;2 cm ;1 ] k Y 2(60 C) [10 ;18 cm 3 s ;1 ]SA1 2.9 4.0 3.1SA2 2.4 5.5 1.5K3 3.0 6.0 1.5K1 2.4 5.6 1.7K0 2.6 4.8 1.5P0A 2.3 5.1 1.5P0B 2.3 4.9 1.6Table 5.2: Results <strong>of</strong> the second order t. Generation rates <strong>for</strong> defects constant <strong>in</strong> time (g C )and those responsible <strong>for</strong> reverse anneal<strong>in</strong>g (g Y ) are given together with the reverse anneal<strong>in</strong>gconstant k Y 2 . Errors on kY 2 are about 5%. Errors on kY 2 and g Y are larger <strong>for</strong> SA1 and SA2samples due to the low number <strong>of</strong> measurement po<strong>in</strong>ts on the slope and breakdown below FDVat late stage <strong>of</strong> reverse anneal<strong>in</strong>g.


84 5. Dose Rate DependenceFigure 5.2: Introduction rate <strong>of</strong> stable defects g C versus ir<strong>radiation</strong> ux.Figure 5.3: Introduction rate <strong>of</strong> defects, activated dur<strong>in</strong>g the reverse anneal<strong>in</strong>g (g Y ), versusir<strong>radiation</strong> ux.


5. Dose Rate Dependence 85Figure 5.4: Reverse anneal<strong>in</strong>g constant k Y 2versus ir<strong>radiation</strong> ux.errors on dosimetry. SA and P0 samples also have a larger error on FDV at late stages <strong>of</strong>reverse anneal<strong>in</strong>g. Its source is extrapolation <strong>of</strong> C ;2 versus Vcurve to the plateau value.This was necessary because <strong>of</strong> breakdown below full depletion voltage.5.3 Results on Reverse Current<strong>Study</strong> <strong>of</strong> the leakage current could un<strong>for</strong>tunately not be per<strong>for</strong>med on the full range <strong>of</strong> doserates. The reason were problems with guard r<strong>in</strong>g connections that occurred with samplesSA and P0. With guard r<strong>in</strong>gs not connected it was not possible to separate the bulkgeneration current from surface current generated on the edge. S<strong>in</strong>ce its contribution canbe much larger than the bulk generation current (see g. 3.13), those samples are useless<strong>for</strong> comparisons <strong>of</strong> the reverse current. Thus only samples K0, K1 and K3, irradiatedwith neutron uxes <strong>of</strong> 2:310 12 n/cm 2 s, 4:210 11 n/cm 2 sand2:110 9 n/cm 2 s are shown <strong>in</strong>gure 5.5. The reverse currents were tted accord<strong>in</strong>g to eq. 4.12 and results are given <strong>in</strong>table 5.3. Some measured po<strong>in</strong>ts with bad guard r<strong>in</strong>g connection <strong>for</strong> sample K1 on thatgure <strong>in</strong>dicate the variability <strong>of</strong>thesurface current contribution.Though one can notice some dierence among the samples it is attributed to themeasurement error. It is also not correlated with the ir<strong>radiation</strong> ux.


86 5. Dose Rate DependenceFigure 5.5: Time development <strong>of</strong>reverse bulk current at60 C <strong>for</strong> diodes K0, K1 and K3. Thebulk current generation constant (eq. 2.50) normalised to 20 C is used to compare dierentsamples.Sample E [10 ;17 Acm ;1 ] E [h] L [10 ;17 Acm ;1 ] L [10 4 h]K3 1.4 0.7 0.32 2.K0 1.1 1.8 0.26 6.0Table 5.3: Results <strong>of</strong> anneal<strong>in</strong>g <strong>of</strong> bulk current. Errors on E , E and L are about 20% andon L around 50%. For sample K1 the t does not converge properly. The systematic error <strong>of</strong>dosimetry is not <strong>in</strong>cluded <strong>in</strong> the given errors.5.4 ConclusionsInuence <strong>of</strong> the ux on <strong>radiation</strong> <strong>in</strong>duced bulk <strong>damage</strong> has been studied <strong>for</strong> 1 MeV neutronequivalent uxes from 210 8 n/cm 2 s to about 5 10 15 n/cm 2 s. No systematic eect that


5. Dose Rate Dependence 87could be correlated to ux has been observed <strong>in</strong> this range neither <strong>in</strong> the eective dop<strong>in</strong>gconcentration nor <strong>in</strong> the reverse bulk current. Results from [52] show thatachange occursat uxes around 10 7 ; 10 9 cm ;2 s ;1 <strong>for</strong> ir<strong>radiation</strong>s with heavier elements (Br, Si andC) and that this threshold is <strong>in</strong>creas<strong>in</strong>g with decreas<strong>in</strong>g mass number. For neutrons onewould there<strong>for</strong>e expect a <strong>high</strong>er threshold, but even up to 5 10 15 n/cm 2 s no eect wasobserved. It thus seems safe to extrapolate the <strong>damage</strong> <strong>in</strong>duced by available neutronsources to the expected ux at LHC <strong>of</strong> about 10 6 n/cm 2 s.


88 5. Dose Rate Dependence


6Inuence <strong>of</strong> Bias VoltageIt was a general belief that bias voltage does not aect creation or time development<strong>of</strong> <strong>radiation</strong> <strong>in</strong>duced defects <strong>in</strong> <strong>silicon</strong>. It also seemed consistent with the rst ir<strong>radiation</strong>smade <strong>in</strong> the scope <strong>of</strong> this work (diodes SA and P0). As we understand so far thereasons that the bias eect was not seen were <strong>in</strong> only partially bias<strong>in</strong>g the samples andfrequent time <strong>in</strong>tervals with no bias at all. This must have reduced the eect <strong>of</strong> the biassuciently to attribute the rema<strong>in</strong><strong>in</strong>g dierence between biased and unbiased samples toother parameters (dosimetry, measurement errors etc). Thus it was rather late be<strong>for</strong>e thiseect was observed and systematically studied. This reects <strong>in</strong> the results <strong>of</strong> previouschapters, where most <strong>of</strong> the samples were only partially biased. Parameters obta<strong>in</strong>ed bythose measurements are thus a comb<strong>in</strong>ation <strong>of</strong> those <strong>for</strong> biased and those <strong>for</strong> unbiasedsamples.6.1 Inuence on Neff6.1.1 Time Development <strong>of</strong> Unbiased SamplesTo study reverse anneal<strong>in</strong>g <strong>of</strong> unbiased samples a pair <strong>of</strong> oat-zone Micron planar processed11cm 2 diodes, with <strong>in</strong>itial FDV <strong>of</strong> about 18 V, were irradiated and stored withoutbias. Diodes were irradiated <strong>in</strong> parallel, to a uence <strong>of</strong> 4:1 10 13 n/cm 2 1 MeV neutronequivalent (ir<strong>radiation</strong> ux 1:8 10 9 n/cm 2 s). After 1 day at room temperature, timedevelopment was accelerated by heat<strong>in</strong>g to 60 C. Time development together with a rstorder (eq. 2.57) and a second order (eq. 2.61) t <strong>for</strong> both diodes is shown <strong>in</strong> g. 6.1.Results <strong>of</strong> the ts are given <strong>in</strong> table 6.1.Comparison <strong>of</strong> the ts with measured data (g. 6.1) shows better agreement <strong>for</strong> thesecond order expression. This is conrmed by an about 5 times lower 2 /ndf <strong>for</strong> the secondorder ansatz (table 6.1). S<strong>in</strong>ce the complete volume <strong>of</strong> both samples was undepleted dur<strong>in</strong>g89


90 6. Inuence <strong>of</strong> Bias VoltageFigure 6.1: First order (red l<strong>in</strong>e) and second order (black l<strong>in</strong>e) ts <strong>for</strong> diodes U3A and U3B(unbiased dur<strong>in</strong>g ir<strong>radiation</strong> and storage). N eff = eq versus heat<strong>in</strong>g time at 60 C is displayed.Sam g C g Y k Y (60 C) 2 /ndf kY l<strong>in</strong>(60C)ple [10 ;2 /cm] [10 ;2 /cm] [10 ;6 /s] [10 ;18 cm 3 /s] 1 st /2 nd [10 ;7 /cms]1 st o. 2 nd o. 1 st o. 2 nd o. 1 st or. 2 nd or. orderU3A 2.4 2.3 4.8 5.5 8.0 4.6 2.1 / 0.4 3.2U3B 2.2 2.1 5.0 5.8 8.4 4.5 2.3 / 0.5 3.4Table 6.1: Fit parameters <strong>for</strong> reverse anneal<strong>in</strong>g <strong>of</strong> diodes U3A and U3B us<strong>in</strong>g rst and secondorder models. Generation rates <strong>for</strong> defects constant <strong>in</strong> time (g C ) and <strong>for</strong> those responsible <strong>for</strong>reverse anneal<strong>in</strong>g (g Y ) are given together with reverse anneal<strong>in</strong>g constants k Y 1and kY 2 . 2 /ndfis given <strong>for</strong> both ts to compare agreement <strong>of</strong> both models with measured results. Reverseanneal<strong>in</strong>g constant kYl<strong>in</strong> was obta<strong>in</strong>ed by the l<strong>in</strong>ear t <strong>of</strong> the ansatz 4.10 dur<strong>in</strong>g the <strong>in</strong>itial stage<strong>of</strong> reverse anneal<strong>in</strong>g.the treatment, the better agreement <strong>of</strong> the second order expression cannot be attributedto partial bias. This <strong>in</strong>dicates that another process becomes signicant at the late stage<strong>of</strong> reverse anneal<strong>in</strong>g, with properties still to be determ<strong>in</strong>ed. It is however not important<strong>for</strong> the LHC operation, where only the <strong>in</strong>itial stage <strong>of</strong> reverse anneal<strong>in</strong>g will take place.The slope <strong>of</strong> the l<strong>in</strong>ear t at the <strong>in</strong>itial stage <strong>of</strong> reverse anneal<strong>in</strong>g at 60 C kY l<strong>in</strong> (20 C) =(12:4 2) 10 ;10 =cm s can be compared with the slope <strong>for</strong> unbiased diodes, annealed at20 C kY l<strong>in</strong> (60 C)=(3:3 0:15) 10 ;7 =cm s (table 4.6). The comparison shows about 270times faster reverse anneal<strong>in</strong>g at 60 C compared to 20 C, consistent with an activation


6. Inuence <strong>of</strong> Bias Voltage 91energy <strong>of</strong> 1:17 0:04 eV (eq. 4.5). While it is far from 1:3 0:04 eV [13, 14, 15], whichwould yield a factor <strong>of</strong> about 500, it agrees well with 1.18 eV, reported by Z.Lietal.[53]6.1.2 Comparison <strong>of</strong> Biased and Unbiased SamplesFigure 6.2: Comparison time development <strong>of</strong>N eff <strong>for</strong> biased (B3, D3, I3) and unbiased (U3A,U3B) samples. All samples were kept under same conditions except <strong>for</strong> bias voltage.Most suitable <strong>for</strong> comparison with samples U3 are diodes I3, D3 and B3 (g. 6.2).They were irradiated to the same uence with the same neutron ux and treated identicallyexcept <strong>for</strong> the bias voltage and storage temperature be<strong>for</strong>e the warm-up treatment(table. 4.3). Comparison <strong>of</strong> plateaus after benecial anneal<strong>in</strong>g shows that values <strong>of</strong>N eff = eq are about a factor 2 smaller <strong>for</strong> unbiased samples. Reverse anneal<strong>in</strong>g parameters(g. 4.2, 4.3 and table 4.4) show that the <strong>in</strong>troduction rate <strong>of</strong> the defects, responsible<strong>for</strong> reverse anneal<strong>in</strong>g (g Y ), is comparable <strong>for</strong> both bias<strong>in</strong>g conditions. The reaction constantsk Y and kYl<strong>in</strong> are however about twice larger <strong>for</strong> unbiased samples. This could be


92 6. Inuence <strong>of</strong> Bias VoltageSample producer V 0 FD [V] T [ C] eq [n/cm 2 s] eq [10 14 n/cm 2 ] V bias [V]S3A Micron 32. 15 + 1.910 9 0.45 200/0 S3B Micron 34. 15 + 1.910 9 0.45 0/200 D2A Micron 17. 15 1.810 10 0.42 300D2B Micron 17. 15 1.810 10 0.42 0UO6B S<strong>in</strong>tef 35. 20 1.810 11 1.7 1000/600 yUO6S S<strong>in</strong>tef 35. 20 1.810 11 1.7 0BA2B S<strong>in</strong>tef 44. 15 2.110 11 # 1.0 # 500BA2S S<strong>in</strong>tef 44. 15 2.110 11 # 1.0 # 0BA4B S<strong>in</strong>tef 40. 20 2.110 11 # 1.0 # 600BA4S S<strong>in</strong>tef 36. 20 2.110 11 # 1.0 # 0Table 6.2: List <strong>of</strong> diodes used to study the eect <strong>of</strong> bias voltage on defect development.Thickness <strong>of</strong> samples was 3005 m.+ ) Diodes S3 were kept at bout 27 C after transfer to the laboratory to accelerate anneal<strong>in</strong>g.When annealed, they were moved to 20 C to study anneal<strong>in</strong>g <strong>of</strong> the dierence <strong>in</strong> N eff . )DiodeS3Awas biased dur<strong>in</strong>g and unbiased after the ir<strong>radiation</strong>. ) Diode S3B was unbiased dur<strong>in</strong>g and biased after the ir<strong>radiation</strong>.y Diode UO6A was biased to 1000V at the reactor and to 600V at the laboratory. Bias voltagecould be reduced due to anneal<strong>in</strong>g <strong>of</strong> FDV.# ) Due to frequent changes <strong>in</strong> the reactor core at the time <strong>of</strong> ir<strong>radiation</strong>, the neutron spectrumwas not well known. This <strong>in</strong>duced an error on dosimetry, larger than the usual 15%.a consequence <strong>of</strong> slow anneal<strong>in</strong>g <strong>of</strong> bias dependent dierence. It could also be expla<strong>in</strong>edif reverse anneal<strong>in</strong>g was caused by reaction <strong>of</strong> charged defects and consequently sloweddown <strong>in</strong> electric eld. Available data however do not allow <strong>for</strong> unambiguous dist<strong>in</strong>ctionbetween these two possibilities. The dierence could not be expla<strong>in</strong>ed by partial bias,s<strong>in</strong>ce it develops already at an early stage <strong>of</strong> reverse anneal<strong>in</strong>g, when bias<strong>in</strong>g voltage <strong>of</strong>200 V was still above FDV <strong>of</strong> the biased samples. This dierence <strong>in</strong> reverse anneal<strong>in</strong>g <strong>of</strong>biased and unbiased samples also contributes to the error <strong>in</strong> determ<strong>in</strong>ation <strong>of</strong> the reverseanneal<strong>in</strong>g reaction constants <strong>of</strong> the partially biased samples as discussed <strong>in</strong> section 4.2.For further studies we wished to m<strong>in</strong>imise the <strong>in</strong>uence <strong>of</strong> any uncontrolled parametersand to avoid errors from uence measurements. Thus diodes were irradiated andmonitored <strong>in</strong> pairs, with a biased and unbiased diode <strong>in</strong> each pair. Both diodes were takenfrom the same wafer to m<strong>in</strong>imise the risk <strong>of</strong> dierence caused by material. Five pairs aslisted <strong>in</strong> table 6.2 were studied this way. Samples S3 and D2 were Micron oat-zone p + -n-n + diodes with 3 guard r<strong>in</strong>gs and an active area <strong>of</strong> 11 cm 2 . Samples UO6, BA2 andBA4 were p + -n-n + planar diodes processed by S<strong>in</strong>tef. They had a multiple guard-r<strong>in</strong>gstructure that was not connectable and thus oat<strong>in</strong>g. Samples marked with last letter


6. Inuence <strong>of</strong> Bias Voltage 93Figure 6.3: Comparison time development <strong>of</strong> N eff <strong>for</strong> a sample biased (D2A) and unbiased(S3A) after ir<strong>radiation</strong>. Both samples were biased dur<strong>in</strong>g ir<strong>radiation</strong> and keptat15 C.B had 66mm 2 active area and those marked S 33 mm 2 active area. All diodes were300 m thick.Diodes D2A and S3A were used to determ<strong>in</strong>e the orig<strong>in</strong> <strong>of</strong> the dierence betweenbiased and unbiased samples. It could orig<strong>in</strong>ate <strong>in</strong> bias dependent creation rates or be aconsequence <strong>of</strong> defect reactions be<strong>in</strong>g aected by the electric eld. To dist<strong>in</strong>guish thesetwo scenaria, D2A was biased dur<strong>in</strong>g and after ir<strong>radiation</strong>, while diode S3A was biaseddur<strong>in</strong>g and unbiased after ir<strong>radiation</strong>. Time development <strong>of</strong> N eff at 15 dur<strong>in</strong>g the rstfew days after ir<strong>radiation</strong> is shown <strong>in</strong> gure 6.3. The diode unbiased after ir<strong>radiation</strong>exhibits alower N eff than the biased one 38 .At later stages <strong>of</strong> anneal<strong>in</strong>g we can also compare those two samples with theirpartners, unbiased dur<strong>in</strong>g ir<strong>radiation</strong> (gure 6.4). While diode D2B was unbiased bothdur<strong>in</strong>g and after the ir<strong>radiation</strong>, diode S3B was biased with 200 V after the ir<strong>radiation</strong>.Comparison <strong>of</strong> N eff <strong>for</strong> all four samples at the plateau shows that both samples, unbiasedafter the ir<strong>radiation</strong> (S3A and D2B), annealed to an equal N eff . It also agrees well withthe m<strong>in</strong>imal N eff <strong>of</strong> the U3 samples (g. 6.2). Plateau <strong>of</strong> the D2A sample is about twotimes <strong>high</strong>er and agrees well with biased samples B3, I3 and D3 (g. 6.2). The plateau38The dierence at the end <strong>of</strong> ir<strong>radiation</strong> can be expla<strong>in</strong>ed by anneal<strong>in</strong>g dur<strong>in</strong>g ir<strong>radiation</strong>, s<strong>in</strong>ce their<strong>radiation</strong> time was 39 m<strong>in</strong>utes <strong>for</strong> diode D2A and 6.5 hours <strong>for</strong> S3A. This dierence however becomesirrelevant after a few days <strong>of</strong> anneal<strong>in</strong>g.


94 6. Inuence <strong>of</strong> Bias VoltageFigure 6.4: Comparison <strong>of</strong> plateaus <strong>of</strong> N eff = eq <strong>for</strong> a sample biased dur<strong>in</strong>g and after ir<strong>radiation</strong>(D2A), biased dur<strong>in</strong>g (6.5 h) and unbiased after the ir<strong>radiation</strong> (S3A), unbiased dur<strong>in</strong>g (6.5 h)and biased after ir<strong>radiation</strong> (S3B) and sample unbiased dur<strong>in</strong>g and after ir<strong>radiation</strong> (D2B).value <strong>of</strong> the sample S3B is <strong>in</strong>-between. This can be expla<strong>in</strong>ed by fast anneal<strong>in</strong>g that tookplace dur<strong>in</strong>g the ir<strong>radiation</strong> when this sample was unbiased.This behaviour could be expla<strong>in</strong>ed by assum<strong>in</strong>g that the presence <strong>of</strong> electric elddoes not aect the defect <strong>in</strong>troduction rates, while it <strong>in</strong>uences their time development.This could be easily understood if defects are charged and reactions responsible <strong>for</strong> timedevelopment are diusion limited. Then the electric eld would <strong>in</strong>uence defect movementthrough the crystal, thus aect<strong>in</strong>g reaction rates responsible <strong>for</strong> anneal<strong>in</strong>g. A reaction <strong>of</strong>the typeA + B ! C (6.1)where A is an active defect, B a charged, mobile defect and C an <strong>in</strong>active defect couldpresent aviablemodel.6.1.3 <strong>Study</strong> <strong>of</strong> a Partially Depleted DiodeDiode I3 was irradiated to 510 13 n/cm 2 and annealed at 60 C <strong>for</strong> two months. Afterthat it was irradiated to 4.610 13 n/cm 2 , followed by three weeks at 60 C. Dur<strong>in</strong>g all


6. Inuence <strong>of</strong> Bias Voltage 95Figure 6.5: a) 1/C 2 vs. V plot and b) N eff distribution <strong>for</strong> the sample I3 after the end <strong>of</strong> heattreatment. Two regions with dierent N eff , correspond<strong>in</strong>g to dierent bias<strong>in</strong>g conditions,, canbe clearly seen.this time it was biased to 200 V. This means that at least after the second ir<strong>radiation</strong> thesample was only partially biased dur<strong>in</strong>g all <strong>of</strong> the anneal<strong>in</strong>g stage, caus<strong>in</strong>g part <strong>of</strong> it toanneal depleted and part undepleted. 1/C 2 vs. V plot after this procedure is shown <strong>in</strong>gure 6.5, together with the distribution <strong>of</strong> N eff through the sample width as determ<strong>in</strong>edfrom the C/V measurement accord<strong>in</strong>g to equations 2.44 and 2.45. At 200 V a k<strong>in</strong>k <strong>in</strong>the slope <strong>of</strong> the 1/C 2 vs. V curve can be clearly seen. S<strong>in</strong>ce the sample was kept at 200V dur<strong>in</strong>g all the time, the position <strong>of</strong> the k<strong>in</strong>k agrees well with the border between thedepleted and non-depleted regions. The correspond<strong>in</strong>g dierence <strong>in</strong> N eff is about a factor<strong>of</strong> two (gure 6.5b).To conrm the correlation between the dierence <strong>in</strong> N eff and bias<strong>in</strong>g conditions,the bias was switched o. About one third <strong>of</strong> the dierence annealed out <strong>in</strong> the rst dayat 20 C (g. 6.6 red po<strong>in</strong>ts) but no additional change developed <strong>in</strong> the follow<strong>in</strong>g twoweeks. To accelerate the processes, the sample was heated to 60 C. Measurements after7 h (green po<strong>in</strong>ts), one day (blue po<strong>in</strong>ts) and 4.5 days (magenta po<strong>in</strong>ts) are also shown<strong>in</strong> gure 6.6. One can see that N eff concentration <strong>in</strong> the region that used to be depletedis slowly decreas<strong>in</strong>g towards the value <strong>of</strong> the non-depleted region where no signicantchange <strong>in</strong> N eff is observed. This shows that defects, whose anneal<strong>in</strong>g is <strong>in</strong>hibited by theelectric eld, rema<strong>in</strong> <strong>in</strong> <strong>silicon</strong> also dur<strong>in</strong>g long term anneal<strong>in</strong>g. They start anneal<strong>in</strong>g out,however, upon switch<strong>in</strong>g o the bias.


96 6. Inuence <strong>of</strong> Bias VoltageFigure 6.6: a) 1/C 2 vs. V plot and b) N eff distribution <strong>for</strong> the sample I3. Black dots showthe measurements be<strong>for</strong>e switch<strong>in</strong>g o the bias. Time development after switch<strong>in</strong>g the bias ois shown with coloured circles.After prolonged heat treatments, <strong>in</strong> the rst few days at 5 C a slight decrease(about 5%) <strong>in</strong> FDV as determ<strong>in</strong>ed from C/V measurement has been noticed. To avoidthe <strong>in</strong>uence <strong>of</strong> this eect, C/V measurements at the late stage <strong>of</strong> reverse anneal<strong>in</strong>g weretaken about a week after transfer to 5 C, when a stable state was reached.6.2 Anneal<strong>in</strong>g <strong>of</strong> the Dierence <strong>in</strong> NeffAs shown <strong>in</strong> section 6.1.2 the m<strong>in</strong>imal value <strong>of</strong> N eff as reached under bias is about twicelarger from the one with no bias applied. In this section results on anneal<strong>in</strong>g <strong>of</strong> thisdierence are presented.Samples D2, UO6, BA2 and BA4 were used to determ<strong>in</strong>e time constants <strong>of</strong> anneal<strong>in</strong>g<strong>of</strong> the dierence between biased and unbiased samples. In all four pairs biased diodes werekept under bias until the end <strong>of</strong> benecial anneal<strong>in</strong>g i.e. until the plateau <strong>in</strong> N eff wasreached. Dur<strong>in</strong>g this time they had been kept at 15 or 20 C as <strong>in</strong>dicated <strong>in</strong> table 6.2. After


6. Inuence <strong>of</strong> Bias Voltage 97Figure 6.7: a) Time development <strong>of</strong> N eff <strong>for</strong> the biased and unbiased diode from the pairBA2. They were kept at 15 C until the end <strong>of</strong> benecial anneal<strong>in</strong>g. Then they were movedto -7 C and bias <strong>of</strong> the diode BA2B was switched o. b) Time development <strong>of</strong> the dierence.Dierence <strong>in</strong> N eff normalised to the <strong>in</strong>itial value is shown versus time from switch<strong>in</strong>g o thebias. Agreement <strong>of</strong>atwo exponentials t (eq. 6.2) with the measured data is also shown.Figure 6.8: a) Time development <strong>of</strong> N eff <strong>for</strong> the biased and unbiased diode from the pairBA4. They were kept at 20 C until the end <strong>of</strong> benecial anneal<strong>in</strong>g. Then they were movedto 5 C and bias <strong>of</strong> the diode BA4B was switched o. b) Time development <strong>of</strong> the dierence.Dierence <strong>in</strong> N eff normalised to the <strong>in</strong>itial value is shown versus time from switch<strong>in</strong>g o thebias. Agreement <strong>of</strong>atwo exponentials t (eq. 6.2) with the measured data is also shown.


98 6. Inuence <strong>of</strong> Bias VoltageFigure 6.9: a) Time development <strong>of</strong> N eff <strong>for</strong> the biased and unbiased diode from the pairUO6. They were kept at 20 C be<strong>for</strong>e and after the bias <strong>of</strong> the diode UO6B was switched o. b)Time development <strong>of</strong> the dierence. Dierence <strong>in</strong> N eff normalised to the <strong>in</strong>itial value is shownversus time from switch<strong>in</strong>g o the bias. Agreement <strong>of</strong> a two exponentials t (eq. 6.2) with themeasured data is also shown.Figure 6.10: a) Time development <strong>of</strong> N eff <strong>for</strong> the biased and unbiased diode from the pairD2. They were kept at 15 C until the end <strong>of</strong> benecial anneal<strong>in</strong>g. Then they were moved to20 C and 350V <strong>of</strong> reverse bias <strong>of</strong> the diode D2A was replaced by approximately 10V <strong>of</strong> <strong>for</strong>wardbias. b) Time development <strong>of</strong> the dierence. Dierence <strong>in</strong> N eff normalised to the <strong>in</strong>itial valueis shown versus time from switch<strong>in</strong>g o the bias.


6. Inuence <strong>of</strong> Bias Voltage 99that they were stored at -7 C (samples BA2), 5 C (samples BA4) and 20 C (samples UO6and D2). Storage temperatures were chosen to determ<strong>in</strong>e time constants <strong>of</strong> the decrease<strong>of</strong> bias <strong>in</strong>duced dierence at the operation (-7 C) and ma<strong>in</strong>tenance (20 C) temperaturescorrespond<strong>in</strong>g to the ATLAS operation scenario [6]. The measurement at 5 C providesan additional po<strong>in</strong>t <strong>for</strong> determ<strong>in</strong>ation <strong>of</strong> the activation energy. Bias voltage was switchedo on the biased samples, except <strong>for</strong> the diode D2A, where 350V <strong>of</strong> reverse bias has beenreplaced by approximately 10V <strong>of</strong> <strong>for</strong>ward bias 39 . Time development <strong>of</strong> the dierencebetween the <strong>for</strong>merly biased and unbiased samples was observed. To reduce the error<strong>in</strong> determ<strong>in</strong>ation <strong>of</strong> the dierence, values from a l<strong>in</strong>ear t to the <strong>in</strong>itial stage <strong>of</strong> reverseanneal<strong>in</strong>g were used <strong>for</strong> the time development <strong>of</strong>unbiased samples. In gures 6.7a to 6.9atime development <strong>of</strong>N eff <strong>for</strong> each pair from the end <strong>of</strong> ir<strong>radiation</strong> is shown. Figures 6.7bto 6.9b show time development <strong>of</strong> the dierence normalised to the value be<strong>for</strong>e the biaswas switched o.One can see that <strong>in</strong> samples, where the bias voltage was switched o, the dierencetends to anneal out completely. Time constants <strong>for</strong> the anneal<strong>in</strong>g are <strong>in</strong>creas<strong>in</strong>g with thedecreas<strong>in</strong>g temperature (table 6.3). Dierence <strong>for</strong> the <strong>for</strong>ward biased sample (D2) is atthe beg<strong>in</strong>n<strong>in</strong>g show<strong>in</strong>g the same behaviour as <strong>in</strong> the unbiased sample kept at the sametemperature (UO6). However, after about four days at 20 C, when approximately a half<strong>of</strong> the dierence has annealed out, it starts <strong>in</strong>creas<strong>in</strong>g aga<strong>in</strong>. This eect will be furtherdiscussed <strong>in</strong> section 6.2.2.6.2.1 Time Constants and Activation EnergySample T [ C] C 1 1 [h] C 2 2 [h]BA2 -7 0.200.04 22020 0.710.05 90001500BA4 5 0.220.04 605 0.650.05 2100200UO6 20 0.440.04 4210 0.410.05 1050100Table 6.3: Results <strong>of</strong> the two exponential ts (eq. 6.2) <strong>for</strong> samples BA2, BA4 and UO6.All samples show a fast 40 anneal<strong>in</strong>g <strong>of</strong> approximately 10% <strong>of</strong> the <strong>in</strong>itial dierence.Anneal<strong>in</strong>g <strong>of</strong> the rema<strong>in</strong><strong>in</strong>g dierence can be described by atwo-exponential tN eff (t)N eff (t 0 ) = C 1e ; t;t 0 1 + C 2 e ; t;t 0 2 (6.2)391mA<strong>for</strong>ward current limit was used.40With<strong>in</strong> the rst 4 hours after switch<strong>in</strong>g the bias o, that be<strong>in</strong>g the time <strong>in</strong>terval between the rstmeasurements.


100 6. Inuence <strong>of</strong> Bias VoltageFigure 6.11: Arrhenius plots <strong>for</strong> a) fast and b) slow component <strong>of</strong> the anneal<strong>in</strong>g <strong>of</strong> the dierencebetween biased and unbiased samples.where t 0 is the time <strong>of</strong> switch<strong>in</strong>g the bias o. Agreement <strong>of</strong> the t with the measurementscan be seen <strong>in</strong> gures 6.8b to 6.9b and t results are given <strong>in</strong> the table 6.3.orTo determ<strong>in</strong>e activation energies <strong>for</strong> both processes, the Arrhenius relation(T )= 0 e Eak B T(6.3)ln (T )=ln 0 + 1k B T E a (6.4)is used. If one plots ln((T )) versus 1=k B T (Arrhenius plot), the activation energy canbe determ<strong>in</strong>ed as the slope (g. 6.11). One obta<strong>in</strong>s an activation energy <strong>of</strong> E 1 =0:54 0:15 eV <strong>for</strong> the fast component and E 2 = 0:47 0:15 eV <strong>for</strong> the slow one. Those arehowever only very prelim<strong>in</strong>ary results and further studies are necessary to obta<strong>in</strong> properunderstand<strong>in</strong>g <strong>of</strong> the described processes and to determ<strong>in</strong>e their parameters with betterprecision.The conclusion that the activation energies <strong>of</strong> bias dependent defects are signicantlylower than the activation energy <strong>for</strong> reverse anneal<strong>in</strong>g (about 1.3 eV [13, 14, 15])can also be seen from gures 6.7a to 6.9a. At 20 C, the eect <strong>of</strong> decreas<strong>in</strong>g <strong>of</strong> the slowcomponent <strong>of</strong> bias-eect anneal<strong>in</strong>g is comparable to the eect <strong>of</strong> reverse anneal<strong>in</strong>g (seeg. 6.9a). This is however not the case <strong>for</strong> the samples at lower temperatures (5 C and-7 C). At those temperatures reverse anneal<strong>in</strong>g is frozen on the time scale <strong>of</strong> bias-eectanneal<strong>in</strong>g (gures 6.7a and 6.8a). The decay constant <strong>of</strong> the slow component at -7 C


6. Inuence <strong>of</strong> Bias Voltage 101(about a year) is however still long enough to play an important role <strong>for</strong> the detectoroperation <strong>in</strong> the ATLAS environment. A careful plan<strong>in</strong>g <strong>of</strong> the operation scenario is thusnecessary to obta<strong>in</strong> optimal operation conditions <strong>for</strong> the vertex detector.6.2.2 BistabilityFigure 6.12: Time development <strong>of</strong> N eff <strong>for</strong> both diodes from the S3 set. Samples were keptat room temperature.Bistability <strong>of</strong> the defects, responsible <strong>for</strong> bias dependent anneal<strong>in</strong>g, was checked ondiodes S3. The test was started about 2 months (at 20 C) after the bias <strong>in</strong>duced <strong>in</strong>uenceannealed out (see gure 6.12). It can also be seen that both samples have an equal reverseanneal<strong>in</strong>g constant after the anneal<strong>in</strong>g <strong>of</strong> bias dependent defects was completed. First thediode S3A (biased dur<strong>in</strong>g, unbiased after ir<strong>radiation</strong>) was biased with 200 V <strong>for</strong> about 3weeks and then the bias was switched o. Then the same procedure was repeated <strong>for</strong> thediode S3B (unbiased dur<strong>in</strong>g, biased after ir<strong>radiation</strong>). The results <strong>of</strong> the test are shown<strong>in</strong> gure 6.12. One can see that <strong>for</strong> both samples about a 15% raise <strong>in</strong> N eff appeareddur<strong>in</strong>g the biased time <strong>in</strong>terval, that disappeared with<strong>in</strong> a day after the bias had beenremoved.A similar behaviour was observed with the sample UO6B. After bias dependentdefects annealed out, reverse bias <strong>of</strong> 500 V was applied aga<strong>in</strong>. As shown <strong>in</strong> gure 6.9,N eff started to <strong>in</strong>crease. However, after two weeks, when the raise amounted to about30% <strong>of</strong> the <strong>in</strong>itial dierence, an accidental power cut-o caused the sample to rema<strong>in</strong>


102 6. Inuence <strong>of</strong> Bias Voltageunbiased. It is thus not possible yet to determ<strong>in</strong>e the portion <strong>of</strong> the <strong>in</strong>itial dierence thatrecovers after restoration <strong>of</strong> the bias voltage.The bistable nature <strong>of</strong> the defect is also shown <strong>in</strong> the time development <strong>of</strong> thedierence <strong>of</strong> the diode D2A (g. 6.10), where reverse bias was replaced by a small (about10 V) <strong>for</strong>ward bias. One can see that the <strong>in</strong>itial dierence between the biased (D2A) andunbiased (D2B) sample was anneal<strong>in</strong>g out at the beg<strong>in</strong>n<strong>in</strong>g, but started to <strong>in</strong>crease aga<strong>in</strong>after afewdays at 20 C.Bistable behaviour <strong>of</strong> all presented samples could also be expla<strong>in</strong>ed by reaction 6.1,assum<strong>in</strong>g it can proceed both waysA + B $ C (6.5)the equilibrium balance be<strong>in</strong>g distorted by the electric eld sweep<strong>in</strong>g out the mobilereaction <strong>in</strong>gredient. Two time constants <strong>of</strong> the bias eect anneal<strong>in</strong>g <strong>in</strong>dicate two suchreactions responsible <strong>for</strong> its anneal<strong>in</strong>g. In that case results <strong>of</strong> the sample D2 are consistentwith an assumption that the fast reaction can proceed both ways (6.5) while the slow onecan not be reversed (reaction 6.1) and is thus, contrary to the fast one, not signicantlyaected by a weak <strong>for</strong>ward bias.Bias dependent anneal<strong>in</strong>g <strong>of</strong> bistable defects has also been reported by M. Moll etal. [54]. There are however a few major dierences between the observed properties, <strong>in</strong>dicat<strong>in</strong>gdierent defects compared to those reported <strong>in</strong> this work. First, defects reported<strong>in</strong> [54] are only seen <strong>in</strong> irradiated samples, activated by heat treatment, charge <strong>in</strong>jectionby <strong>for</strong>ward bias or illum<strong>in</strong>ation. The eect reported <strong>in</strong> this work are present s<strong>in</strong>ce their<strong>radiation</strong> and no special treatment is needed to activate them. Second, though bothanneal only if no reverse bias is applied, there is a big dierence <strong>in</strong> time constants. While[54] reports simple exponential anneal<strong>in</strong>g with a time constant <strong>of</strong> about 10h at 20 C andan activation energy <strong>of</strong> 1.040.06 eV we observe anneal<strong>in</strong>g with two exponentials. Thetime constants <strong>of</strong> the fast component at 20 C is four times <strong>high</strong>er (40 h) and its activationenergy about two times lower (0.5 eV). The slow component is even further o(about 1000 h at 20 C) with about the same activation energy as the fast component. Allthose dierences <strong>in</strong>dicate that processes responsible <strong>for</strong> the reported phenomena are notidentical.6.3 Inuence on Reverse CurrentS<strong>in</strong>ce diodes, dedicated to the study <strong>of</strong> the dierence between biased and unbiased samples,had no connectable guard r<strong>in</strong>gs they could not be used to study the bias voltageeect on the reverse current. However, results presented <strong>in</strong> section 4.4.2, where time


6. Inuence <strong>of</strong> Bias Voltage 103Figure 6.13: Comparison <strong>of</strong> reverse current time development <strong>for</strong> biased (black) and unbiased(red) diodes.development <strong>of</strong> reverse current is discussed, can give conclusive results also on the bias effect.While no measurements <strong>of</strong> the short term anneal<strong>in</strong>g were per<strong>for</strong>med <strong>for</strong> the unbiaseddiodes U3A and U3B, results on anneal<strong>in</strong>g at 60 C have been used to study long termanneal<strong>in</strong>g <strong>of</strong> the leakage current. Results presented there show no systematic dierenceamong the samples. They are summarised <strong>in</strong> gure 6.13 where the identical behaviour <strong>of</strong>biased and unbiased samples is clearly shown.6.4 ConclusionThe <strong>in</strong>uence <strong>of</strong> bias voltage on defect development was studied on neutron irradiated p + -n-n + diodes. It was shown that the presence <strong>of</strong> electric eld aects anneal<strong>in</strong>g <strong>of</strong> N eff whileno <strong>in</strong>uence on the reverse current was observed. Dierence <strong>in</strong> N eff between fully biasedand unbiased samples amounts to a factor <strong>of</strong> two after the end <strong>of</strong> benecial anneal<strong>in</strong>gwith the <strong>high</strong>er value <strong>for</strong> biased samples. The dierence scales with total ir<strong>radiation</strong>uence and persists also dur<strong>in</strong>g reverse anneal<strong>in</strong>g. Results on comparison <strong>of</strong> dierent


104 6. Inuence <strong>of</strong> Bias Voltagebias<strong>in</strong>g schemes are consistent with the assumption that electric eld <strong>in</strong>uences timedevelopment <strong>of</strong> defects created dur<strong>in</strong>g the ir<strong>radiation</strong> and not their <strong>in</strong>troduction rates.When the bias voltage is switched o, the dierence starts to anneal. The timedependence is consistent with two exponentially decay<strong>in</strong>g defects. Contributions <strong>of</strong> eachdefect type agree <strong>for</strong> samples annealed at -7 C and 5 C (about 20% <strong>for</strong> the fast andabout 70% <strong>for</strong> the slow component). They however dier <strong>for</strong> the sample annealed at 20 C(about 40% <strong>of</strong> each component). More systematic studies are there<strong>for</strong>e necessary be<strong>for</strong>erm conclusions on this eect can be made. Decay times at 20 C are about 40 h <strong>for</strong> thefast component and six weeks <strong>for</strong> the slow one. Time development <strong>of</strong> the dierence canbe scaled to other temperatures us<strong>in</strong>g activation energies. First measurements <strong>of</strong> thosewere per<strong>for</strong>med giv<strong>in</strong>g activation energies <strong>of</strong> E 1 = 0:54 0:15 and E 2 = 0:47 0:15 <strong>for</strong>the fast and slow component, respectively.As <strong>detectors</strong> <strong>in</strong> the LHC environment can be left unbiased <strong>for</strong> a signicant portion<strong>of</strong> time, a proper bias<strong>in</strong>g and temperature scheme could reduce the observed eect. S<strong>in</strong>ceit takes more than a month at 20 C to anneal out 90% <strong>of</strong> the dierence, the planned14 days at 17 C will not be sucient. And s<strong>in</strong>ce the activation energy <strong>for</strong> the slowdecrease <strong>of</strong> the bias <strong>in</strong>duced dierence is about twice lower than <strong>for</strong> the reverse anneal<strong>in</strong>g,prolonged warm periods would <strong>in</strong>uence reverse anneal<strong>in</strong>g stronger than anneal<strong>in</strong>g <strong>of</strong> thebias dependent dierence. The rema<strong>in</strong><strong>in</strong>g 8 monthsat-7 C when the detector will not beoperat<strong>in</strong>g and can be kept without bias, amount onlyto about half <strong>of</strong> the lifetime <strong>of</strong> theslow component. Due to long operation time and low ir<strong>radiation</strong> ux this can howeversuce to remove most <strong>of</strong> the eect. The bistable component may, on the other hand,amount to a signicant <strong>in</strong>crease <strong>of</strong> the full depletion voltage dur<strong>in</strong>g the operation periods.A detailed study <strong>of</strong> the bias voltage eect is thus necessary. The data it will provideshould be used to develop a scheme that will m<strong>in</strong>imise the <strong>in</strong>uence <strong>of</strong> bias eect andreverse anneal<strong>in</strong>g.


7Comparison with Other GroupsWhile no previous measurements <strong>of</strong> bias voltage eect and neutron ux <strong>in</strong>uence havebeen reported, a comparison <strong>of</strong> defect time-development parameters with values, reportedby other groups, is given below.A comparison <strong>of</strong> reverse anneal<strong>in</strong>g parameters as obta<strong>in</strong>ed from the second order twith a global survey, reported by A. Chil<strong>in</strong>garov et al. [15] and results obta<strong>in</strong>ed by S.J.Bates et al. [21] is given <strong>in</strong> table 7.1. A similar comparison was made <strong>for</strong> the rst ordert, us<strong>in</strong>g data reported by H.J. Ziock etal. [45] (table 7.2).The slope at the <strong>in</strong>itial stage <strong>of</strong> reverse anneal<strong>in</strong>g can be compared with the resultsfrom Ziock [45] and ROSE report [13]. While Ziock uses a rst order model, second orderdynamics with the time constant <strong>in</strong>versely proportional to the uence is suggested <strong>in</strong> theROSE reportk Y ( eq )=k Y 01 eq e ; Eak B T(7.1)with k Y 0=(1:91:2)10 16 cm/s and E a =1.31 eV. From equations 4.9 and 4.10 one obta<strong>in</strong>skY l<strong>in</strong> = gY 2 k Y 0<strong>for</strong> the given model. A comparison with kYl<strong>in</strong> <strong>for</strong> 20 C (from table 4.6) and<strong>for</strong> 60 C (from table 4.5) is given <strong>in</strong> the table 7.3.Results on long term anneal<strong>in</strong>g <strong>of</strong> reverse current were compared with results fromM. Moll et al. [35] (table 7.4). As already shown <strong>in</strong> section 4.4.2, all parameters agreewell with<strong>in</strong> the given errors.To conclude, <strong>in</strong> all observed parameters good agreement <strong>of</strong> values <strong>for</strong> unbiasedsamples with results from other sources was found. This is however not the case <strong>for</strong> thebiased samples. For those, the value <strong>of</strong> g C is about twice the value from other sources,while reverse anneal<strong>in</strong>g constants as obta<strong>in</strong>ed by dierent methods show a systematicallylower values as compared to data from the literature. Those observations agree well with105


106 7. Comparison with Other GroupsParameter biased unbiased global Batesg C [10 ;2 cm ;1 ] 4.00.6 2.20.4 1.770.07 2.50.3g Y [10 ;2 cm ;1 ] 5.40.8 5.60.9 4.60.3 5.90.3k Y 2(60 ) [10 ;18 cm 3 /s] 2.20.4 4.60.1 7.5 +15;2/Table 7.1: A comparison <strong>of</strong> reverse anneal<strong>in</strong>g parameters g C , g Y and k Y 2as obta<strong>in</strong>ed fromthe second order t (eq. 4.7). Values <strong>for</strong> biased samples is the average <strong>of</strong> samples I3, D3 andB3, table 4.4. g Y and k Y 2are however ambiguous due to partial bias at late stage <strong>of</strong> reverseanneal<strong>in</strong>g. Values <strong>for</strong> unbiased samples is the average <strong>for</strong> samples U3A and U3B, table 6.1. Inboth data 15% systematic error on the dosimetry is <strong>in</strong>cluded <strong>in</strong> the quoted error. Results arecompared with a recent global survey [15] and results from S.J. Bates et al. [21].Parameter biased unbiased Ziockg C [10 ;2 cm ;1 ] 4.10.6 2.30.4 2.1g Y [10 ;2 cm ;1 ] 4.70.7 4.90.7 7.5k Y 1(60 )[10 ;6 s ;1 ] 3.90.6 8.20.3 12Table 7.2: A comparison <strong>of</strong> reverse anneal<strong>in</strong>g parameters g C , g Y and k Y 1as obta<strong>in</strong>ed from therst order t (eq. 4.6). Values <strong>for</strong> biased samples is the average <strong>of</strong> samples I3, D3 and B3, table4.4. g Y and k Y 1are ambiguous due to partial bias at late stage <strong>of</strong> reverse anneal<strong>in</strong>g. Values <strong>for</strong>unbiased samples is average <strong>for</strong> samples U3A and U3B, table 6.1. In both data 15% systematicerror on the dosimetry is <strong>in</strong>cluded <strong>in</strong> the quoted error. Results are compared with values fromZiock parametrisation [45]. A relative <strong>damage</strong> factor 0.72 [57] was used to normalise Ziock data(647 and 800 MeV protons) to 1 MeV neutrons. Errors <strong>for</strong> Ziock datawere not given <strong>in</strong> [45].Parameter biased unbiased Ziock ROSEY (20 C) [10 ;10 cm ;1 s ;1 ] / 123 5.6 129Y (60 C) [10 ;7 cm ;1 s ;1 ] 2.20.5 3.30.5 2.5 64.5k l<strong>in</strong>k l<strong>in</strong>Table 7.3: A comparison <strong>of</strong> reverse anneal<strong>in</strong>g parameters kYl<strong>in</strong> (see equation 4.10) at 20 C and60 C with results from ROSE report [13] and Ziock etal. [45]. g Y =(4:60:3)10 ;2 cm ;1 fromthe global data (table 7.1) was used with ROSE reverse anneal<strong>in</strong>g time constant. A relative<strong>damage</strong> factor 0.72 [57] was used to normalise Ziock data (647 and 800 MeV protons) to 1 MeVneutrons. Errors <strong>for</strong> Ziock datawere not given <strong>in</strong> [45]. A 15% systematic error on the dosimetryis <strong>in</strong>cluded <strong>in</strong> the error on our data.the eect <strong>of</strong> bias voltage as reported <strong>in</strong> this work. Parameters <strong>of</strong> long term anneal<strong>in</strong>g <strong>of</strong>reverse current agree well with values, reported by M. Moll et al. [35].


7. Comparison with Other Groups 107 E E L L[10 ;17 A/cm] [h] [10 ;17 A/cm] [years]This work 1.25 0.3 1.7 0.6 0.29 0.08 7 6Moll 1.01 0.38 1.5 0.4 0.33 0.026 6.6 +45;4:6Table 7.4: A comparison <strong>of</strong> parameters <strong>of</strong> the long term anneal<strong>in</strong>g <strong>of</strong> reverse current (eq. 8.1)with results from M. Moll et al. [35]. A 15% systematic error on the dosimetry is <strong>in</strong>cluded <strong>in</strong>the error on our data.


108 7. Comparison with Other Groups


8ConclusionsA systematic study <strong>of</strong> <strong>radiation</strong> <strong>damage</strong> <strong>in</strong> <strong>silicon</strong> bulk was per<strong>for</strong>med under controlledconditions. Two ir<strong>radiation</strong> sites at the TRIGA reactor near Ljubljana were equippedto provide mount<strong>in</strong>g, cool<strong>in</strong>g, bias<strong>in</strong>g and measurements <strong>of</strong> samples dur<strong>in</strong>g neutron ir<strong>radiation</strong>s.They were used to irradiate a number <strong>of</strong> <strong>high</strong> resistivity ( = 3 ; 30 kcm)p + -n-n + diodes used <strong>in</strong> this work. Ir<strong>radiation</strong> ux, sample temperature and bias voltagewere carefully controlled dur<strong>in</strong>g ir<strong>radiation</strong>s to obta<strong>in</strong> good control over ir<strong>radiation</strong>conditions.The resented results were obta<strong>in</strong>ed from more than two years <strong>of</strong> measurements<strong>of</strong> bulk properties <strong>of</strong> irradiated samples. Full depletion voltage and reverse current weremeasured <strong>in</strong> regular <strong>in</strong>tervals both dur<strong>in</strong>g and after ir<strong>radiation</strong>. To follow defect anneal<strong>in</strong>gand reverse anneal<strong>in</strong>g under well dened conditions, storage temperature and bias voltagewere controlled dur<strong>in</strong>g ir<strong>radiation</strong> and storage.In the scope <strong>of</strong> this work, the rst systematic study <strong>of</strong> the dependence <strong>of</strong> the <strong>radiation</strong><strong>in</strong>duced bulk <strong>damage</strong> <strong>in</strong> <strong>silicon</strong> on the neutron ux has been per<strong>for</strong>med. Fastanneal<strong>in</strong>g <strong>of</strong> N eff and reverse current were studied at temperatures from 0 to 15 C. Afterwards,most samples were heated to 60 C to accelerate time development. Long termanneal<strong>in</strong>g <strong>of</strong> reverse current and reverse anneal<strong>in</strong>g <strong>of</strong> N eff were studied and k<strong>in</strong>ematics<strong>of</strong> the responsible processes was searched <strong>for</strong>. F<strong>in</strong>ally, the eect <strong>of</strong> the bias voltage ondefect development was discovered [55] and rst results <strong>of</strong> its study are presented.Fast anneal<strong>in</strong>g <strong>of</strong> N eff and reverse current A signicant anneal<strong>in</strong>g <strong>of</strong> both N effand reverse current on a day scale even at 0 C was observed [56]. Though it bears nogreat importance <strong>for</strong> LHC experiments, it should be taken <strong>in</strong>to account when results fromdierent groups are compared.109


110 8. ConclusionsReverse anneal<strong>in</strong>g <strong>of</strong> N eff A study <strong>of</strong> the <strong>in</strong>itial phase <strong>of</strong> reverse anneal<strong>in</strong>g <strong>of</strong> N eff ona set <strong>of</strong> dedicated samples gave clear evidence <strong>for</strong> a l<strong>in</strong>ear dependence <strong>of</strong> reverse anneal<strong>in</strong>gtime constant kYl<strong>in</strong> on ir<strong>radiation</strong> uence. This means that at least at the <strong>in</strong>itial stage,relevant <strong>for</strong> the LHC experiments, the reverse anneal<strong>in</strong>g rate is governed by a rst orderprocess.Long term anneal<strong>in</strong>g <strong>of</strong> reverse current <strong>Study</strong> <strong>of</strong> the long term anneal<strong>in</strong>g <strong>of</strong> reversecurrent showed no saturation up toafewmonths at 60 C. An eective ansatz(t) = E e ;t= E ; L ln(t= L ) (8.1)was found to t the results. Lack <strong>of</strong> a natural explanation <strong>of</strong> the logarithmic behaviourhowever <strong>in</strong>dicates the need <strong>for</strong> better understand<strong>in</strong>g <strong>of</strong> the processes responsible.Eect <strong>of</strong> neutron ux Ir<strong>radiation</strong> ux was varied from a few times 10 8 n/cm 2 s to afew times 10 15 n/cm 2 s to check <strong>for</strong> the eect <strong>of</strong> neutron ux on defect generation. Nosignicant dierence among samples irradiated with dierent uxes was observed neither<strong>in</strong> <strong>radiation</strong> <strong>in</strong>duced change <strong>of</strong> N eff nor <strong>in</strong> generated reverse current [56]. The <strong>in</strong>vestigatedux range covers all presently available neutron sources and it seems safe to extrapolateresults from neutron ir<strong>radiation</strong> studies to the expected ux at LHC <strong>of</strong> about 10 6 n/cm 2 s.Eect <strong>of</strong> bias voltage Strict control <strong>of</strong> the bias<strong>in</strong>g condition both dur<strong>in</strong>g and afterir<strong>radiation</strong> lead to the discovery <strong>of</strong> bias <strong>in</strong>uence on defect development. Its orig<strong>in</strong> wasfound not to be <strong>in</strong> the creation <strong>of</strong> defects but <strong>in</strong> their anneal<strong>in</strong>g. Fully biased samplesgave about a factor <strong>of</strong> two <strong>high</strong>er N eff values at the plateau after benecial anneal<strong>in</strong>gas compared to unbiased ones. The dierence, however, annealed out if the bias voltagewas removed. Decrease <strong>of</strong> the dierence can be described by two exponentials with timeconstants at 20 C <strong>of</strong> about 40 h <strong>for</strong> the fast component ( 45%) and six weeks <strong>for</strong> theslow one ( 40%). Activation energy <strong>of</strong> both reactions is around 0.5 eV. The rema<strong>in</strong><strong>in</strong>gdierence anneals out <strong>in</strong> less than 4 hours at all measured temperatures (-7, 5 and 20 C).Few ten percent <strong>of</strong> the dierence however recovers if the sample is biased aga<strong>in</strong>. No eect<strong>of</strong> the bias voltage on time development <strong>of</strong> reverse current was observed.Comparison with previous results In all parameters, previously studied by othergroups (reverse anneal<strong>in</strong>g <strong>of</strong> N eff and long term anneal<strong>in</strong>g <strong>of</strong> reverse current), a goodagreement <strong>of</strong> our results with reported values was found. The rst systematic search <strong>for</strong>an eect <strong>of</strong> neutron ux on defect creation was per<strong>for</strong>med <strong>in</strong> this work. F<strong>in</strong>ally, <strong>in</strong> thescope <strong>of</strong> this work the eect <strong>of</strong> bias voltage on anneal<strong>in</strong>g <strong>of</strong> eective dopant concentrationwas discovered.


8. Conclusions 111Implications <strong>for</strong> LHC experiments Signicant eect <strong>of</strong> bias voltage on anneal<strong>in</strong>g<strong>of</strong> eective dopant concentration has to be taken <strong>in</strong>to account when estimat<strong>in</strong>g <strong>radiation</strong><strong>in</strong>duced changes <strong>of</strong> detector properties dur<strong>in</strong>g LHC operation. Decreas<strong>in</strong>g <strong>of</strong> the dierenceafter switch<strong>in</strong>g o the bias implies that <strong>detectors</strong> should not be biased except dur<strong>in</strong>gdata tak<strong>in</strong>g. Long time constant <strong>of</strong> the dierence anneal<strong>in</strong>g (about 1 year at -7 C) andlow activation energy <strong>for</strong> the responsible process ( 0:5 eV) limits its anneal<strong>in</strong>g dur<strong>in</strong>g<strong>in</strong>tervals with no applied bias. Furthermore, the observed bistability <strong>of</strong> at least one <strong>of</strong>the defects, responsible <strong>for</strong> the bias eect, reduces the benet <strong>of</strong> the anneal<strong>in</strong>g <strong>of</strong> the bias<strong>in</strong>uenced dierence. Result<strong>in</strong>g data should be used <strong>in</strong> a revised operation scenario tom<strong>in</strong>imise comb<strong>in</strong>ed <strong>in</strong>uences <strong>of</strong> bias eect and reverse anneal<strong>in</strong>g.


112 8. Conclusions


9Povzetek doktorskega dela9.1 UvodSilicijevi pozicijsko obcutljivi detektorji igrajo pomembno vlogo pri sodobnih eksperimentihs podrocja zike osnovnih delcev. Zaradi izjemno dobre krajevne locljivosti 41 , hitregaodziva <strong>in</strong> majhne kolic<strong>in</strong>e materiala se uporabljajo predvsem kot detektorji vozlisc. Ti senahajajo najblize tocki <strong>in</strong>terakcije <strong>in</strong> so namenjeni cim natancnejsi rekonstrukciji tockerazpada primarnih <strong>in</strong> sekundarnih delcev.V vlogi detektorjev sledi bodo silicijevi detektorji igrali pomembno vlogo v nacrtovaniheksperimentih na trkalniku LHC. Ta bo pricel delovati v pricetku naslednjega tisocletjav Evropskem centru za ziko delcev CERN pri Zenevi. Trkalnik bo omogocal trke medprotoni s teziscno energijo 14 TeV <strong>in</strong> lum<strong>in</strong>oznostjo od 10 33 do 10 34 /cm 2 s. Razpolozljiveenergije bodo omogocale studij vrste novih procesov, med katerimi je najpomembnejseiskanje Higgsovega bozona, s katerim bi lahko razlozili izvor mase.Posledica izjemno visoke lum<strong>in</strong>oznosti <strong>in</strong> razpolozljive energije bo visoko sevalnoozadje, se posebej v bliz<strong>in</strong>i <strong>in</strong>terakcijske tocke, kjer se bodo nahajali detektorji sledi 42 . Tobo povzrocilo znatne sevalne poskodbe. Da bi omogocili njihovo delovanje tekom desetihlet, kolikor bo trajal eksperiment, je potrebno dobro razumevanje nastanka <strong>in</strong> razvojasevalnih poskodb. Le dobro nacrtovani detektorji <strong>in</strong> pretehtan scenarij delovanja lahkoobdrze posledice sevalnih poskodb na sprejemljivi ravni.Sevalne poskodbe silicijevih detektorjev se izrazajo na dvanac<strong>in</strong>a. Poskodbe povrs<strong>in</strong>eso posledica naboja, zbranega na meji med polprevodnikom <strong>in</strong> oksidom. Te povecajopovrs<strong>in</strong>ske tokove<strong>in</strong>zmanjsajo upornost med pasovi, kar vpliva na zbiranje naboja. Druga41S silicijevimi pasovnimi detektorji so dosegli locljivosti do 1 m [1].42Pri eksperimentu ATLAS, v okviru katerega je bilo opravljeno pricujoce delo, se bo silicijev pasovnidel detektorja sledi (SCT - Semi-Conductor Tracker) nahajal na radijih od 30 do 52 cm. Pricakovanesevalne poskodbe, nastale v 10 letih delovanja, bodo ekvivalentne poskodbam priblizno 10 14 n/cm 2 .113


114 9. Povzetek doktorskega delavrsta poskodb so glob<strong>in</strong>ske poskodbe 43 , to so poskodbe po celotni prostorn<strong>in</strong>i polprevodnika.Posledica le-teh je povecanje zapornega toka, visja napetost polnega osiromasenja 44<strong>in</strong> slabse zbiranje naboja.Predstavljeno delo je posveceno studiju glob<strong>in</strong>skih poskodb v siliciju, nastalih priobsevanju z nevtroni. Novi rezultati so posledica natancnega nadzora pogojev tako medkot po obsevanju. Se posebej je treba omeniti natancen nadzor napajalne napetosti, kije vodil do odkritja vpliva napetosti na razvoj poskodb. Moznost sprem<strong>in</strong>janja mociuporabljenega reaktorja 45 je omogocila tudi studij vpliva hitrosti obsevanja na nastaneksevalnih poskodb.9.1.1 Osnove delovanjaSilicijevi pozicijsko obcutljivi detektorji so v osnovi polje diod z izbrano geometrijo nasilicijevi rez<strong>in</strong>i. Kadar je na njih napetost v zaporni smeri delujejo podobno ionizacijskicelici. Pare elektron-vrzel, ki nastanejo ob prehodu ionizirajocega delca, zaznamokot tokovni sunek, segmentacija diod pa omogoci dolocitev mesta prehoda ionizirajocegadelca.p stran (p + )v vvzascitni obroc (p + )vkristalna mreza (n)zadnja stran (n + )Slika 9.1: Shematicni prikaz diod, uporabljanih v tem delu. Prikazana je tudi struktura pstrani z zascitnim obrocem. Zaradi visoke koncentracije primesi je p stran oznacena kot p + .Predstavljeno delo je bilo namenjeno studiju glob<strong>in</strong>skih poskodb silicijeve mreze,zato smo zeleli vpliv poskodb povrs<strong>in</strong>e cim bolj omejiti. V ta namen so preproste diodes povrs<strong>in</strong>o reda 1 cm 2 mnogo primernejse kot detektorji z <strong>in</strong>tegriranimi povrs<strong>in</strong>skimielementi, kot so uporniki <strong>in</strong> kondenzatorji. Poleg manjsega vpliva povrs<strong>in</strong>skih poskodbpa je prednost tudi preprostejsa izdelava, saj ta omogoca vecjo ponovljivost <strong>in</strong> nizjo ceno.43ang. bulk <strong>damage</strong>44Napetost polnega osiromasenja (V FD ) je napetost, potrebna za osiromasenje celotne prostorn<strong>in</strong>evzorca.45Vzorci so bili obsevani v reaktorju TRIGA v Podgorici, ki je del reaktorskega centra Instituta JozefStefan.


9. Povzetek doktorskega dela 115Skica preproste diode, kakrsne smo uporabljali v predstavljenem delu, je prikazana nasliki 9.1.K izmerjenemu signalu prispevajo le pari, zbrani v osiromasenem podrocju diode.Za cim vecje razmerje med signalom <strong>in</strong> sumom je torej potrebno osiromasiti celotno prostorn<strong>in</strong>odetektorja. Da bi to dosegli s cim nizjimi napetostmi, se na eni strani spojap-n (obicajno n) uporablja sibko dopiran polprevodnik. V tem primeru velja za glob<strong>in</strong>oosiromasenega podrocja w(V )w(V ) =s2 Si 0e 0 N effV : (9.1)kjer je N eff efektivna koncentracija primesi 46 , e 0 osnovni naboj, Si 0 dielekrticnost silicija<strong>in</strong> V napetost v zaporni smeri. Napetost polnega osiromasenja V FD je tako dolocena zenacboV FD = e 0N eff W 22 Si 0 (9.2)kjer je W debel<strong>in</strong>a diode oz. detektorja. Tipicna debel<strong>in</strong>a pozicijsko obcutljivih silicijevihdetektorjev je 300 m, napetosti polnega osiromasenja pa se gibljejo med 10 <strong>in</strong> 100 V.Napetost polnega osiromasenja merjenega vzorca lahko dolocimo z merjenjem C=Vkarakteristike (kapaciteta v odvisnosti od napetosti). Ce je N eff konstantna po glob<strong>in</strong>ivzorca, je odvisnost kapacitete od zaporne napetosti podana zC(V )= Si 0 Sw= rSi 0 e 0 N eff2VS (9.3)kjer je S povrs<strong>in</strong>a vzorca. Za izpeljavo smo uporabili C(V 0 ) = ( dQ ) dV V =V 0, enacbo 9.1 <strong>in</strong>zvezo Q = e 0 N eff Sw. Iz enacbe 9.3 je razvidno, da dokler ne osiromasimo celotnegavzorca, kapaciteta upada z narascajoco napetostjo. Za napetosti, visje od napetosti polnegaosiromasenja, pa je kapaciteta od napetosti neodvisna. Tako lahko napetost polnegaosiromasenja dolocimo s polozajem preloma, N eff pa iz strm<strong>in</strong>e grafa 1=C 2 proti Vd(1=C 2 (V ))dV=2e 0 Si 0 N eff S 2 : (9.4)9.1.2 Tvorba sevalnih poskodbEnergijske izgube ob prehodu delca skozi silicijev kristal lahko razdelimo na ionizirajoce <strong>in</strong>neionizirajoce. Zaradi hitre rekomb<strong>in</strong>acije prostih nosilcev naboja ionizirajoce poskodbe46Efektivna koncentracija primesi je dolocena kot absolutna vrednost razlike med koncentracijo donorjev(N D )<strong>in</strong>akceptorjev (N A ) N eff = jN D ; N A j.


116 9. Povzetek doktorskega delane povzroce dolgotrajnejsih sprememb mreze. V nasprotju z njimi pa neionizirajoci deloddane energije (NIEL - non-ioniz<strong>in</strong>g energy loss) povzroci trajne poskodbe kristalnemreze <strong>in</strong> sicer premik atomov iz kristalne mreze <strong>in</strong> jedrske reakcije. Vpliv spremembzaradi jedrskih reakcij je pri obsevanjih, ki so del predstavljenega dela, zanemarljiv. Takoje ed<strong>in</strong>i za nas pomemben proces premik Si atomovznjihovega mesta v kristalni mrezi, pricemer nastanejo vrzeli (V ) <strong>in</strong> medmrezni silicijevi atomi (I). Vec<strong>in</strong>a le-teh se rekomb<strong>in</strong>ira,del jih medsebojno reagira (npr. tvorba para vrzel-vrzel V 2 ), del pa jih potuje po mrezi<strong>in</strong> reagira z ostalimi primesmi (npr. tvorba kompleksa vrzel-fos<strong>for</strong> VP).Ce k sevalnim poskodbam prispeva le neionizirajoci del oddane energije (tako imenovanaNIEL hipoteza), lahko odvisnost od vrste delca popisemo s poskodbeno funkcijo(<strong>damage</strong> function) D(E). Le-ta za izbrano vrsto vpadnega delca <strong>in</strong> kristala popise NIELv odvisnosti od energije vpadnega delca. Za lazjo primerjavo poskodb z razlicnimi delcise poskodbe obicajno primerjajo s poskodbami, ki bi jih povzrocili nevtroni z energijo 1MeV. Tako lahko dolocimo ekvivalentno uenco eq , to je uenco nevtronov z energijo 1MeV, ki bi povzrocila enake sevalne poskodbe kot uenca A delcev vrste A z energijskoporazdelitvijo d AdETu je A faktor poskodb (hardness factor) deniran z A = eq = A A : (9.5)R EmaxhD A iD(1MeVn) = 1D n (1MeV) E m<strong>in</strong>D A (E) d A(E) dER EmaxE m<strong>in</strong>dEd AdE (E) dE : (9.6)Napake kristalne mreze, ki nastanejo pri obsevanju, lahko vplivajo na njene makroskopskelastnosti na vec nac<strong>in</strong>ov.Zaporni tok Zaradi sevanja nastale poskodbe lahko v energijsko rezo vnesejo noveenergijske nivoje. S tem se poveca verjetnost za zajetje elektrona iz valencnega pasu <strong>in</strong>njegovo emisijo v prevodni pas, to je verjetnost za tvorbo para elektron-vrzel. Pri tem ktvorbi parov najvec prispevajo energijski nivoji v bliz<strong>in</strong>i sred<strong>in</strong>e energijske reze.Glavni prispevek k zapornemu toku v obsevani diodi je dolocen z generacijo parovv osiromasenem podrocjuj SCR = e 0 r pair w (9.7)kjer je j SCR gostota generacijskega toka, e 0 osnovni naboj, w debel<strong>in</strong>a osiromasenegapodrocja <strong>in</strong> r pair hitrost tvorbe parov. Ker je r pair sorazmerna z gostoto nivojev v bliz<strong>in</strong>i


9. Povzetek doktorskega dela 117sred<strong>in</strong>e energijske reze, ta pa s uenco, lahko povezavo med zapornim tokom <strong>in</strong> uencoopisemo z enacboj SCRw = I V = eq (9.8)kjer je koecient narascanja zapornega toka <strong>in</strong>V prostorn<strong>in</strong>a osiromasenega podrocja.Efektivna koncentracija primesi Primesi lahko leze v bliz<strong>in</strong>i (reda velikosti k B T )prevodnega oz. valencnega pasu (plitve primesi) ali pa so od njiju bolj oddaljene (globokeprimesi). Vpliv globokih primesi na efektivno koncentracijo dopantov je pomemben le vosiromasenem podrocju, kjer k prostorskemu naboju prispevajo donorji iz zgornje polovice<strong>in</strong> akceptorji iz spodnje polovice energijske reze. Ti torej povecajo efektivno gostotoprimesi N eff <strong>in</strong> s tem zvecajo napetost polnega osiromasenja.V neobsevanih polprevodnikih je koncentracija globokih primesi obicajno zanemarljiva,pomembne so le plitve primesi kot sta P <strong>in</strong> B. Pri obsevanju nastajajo tudi globokeprimesi, predvsem akceptorji, njihovakoncentracija je sorazmerna s uenco. Pri obsevanjusilicija tipa n torej efektivna koncentracija primesi zaradi nastajanja akceptorskih stanjv pricetku upada, v tocki <strong>in</strong>verzije se spremeni v tip p, nato pa N eff zopet narasca.Pri visokih uencah lahko N eff <strong>in</strong> s tem napetost polnega osiromasenja tako narasteta,da onemogocita normalno delovanje detektorja. To narascanje je ena najhujsih ovir zadelovanje silicijevih detektorjev v visoko sevalnem okolju.Medtem ko je narascanje koncentracije globokih akceptorjev s uenco eksperimentalnodobro potrjeno [14, 20,29, 30, 46], pa vpliv obsevanja na zacetne plitve donorje se nidokoncno razjasnjen. Po nekaterih modelih njihova koncentracija s uenco eksponentnoupada [29, 30], medtem ko se po drugih le kompenzirajo z nastalimi akceptorji [31].Zbiranje naboja Globoki nivoji, nastali pri obsevanju, zmanjsajo zivljenjski cas prostihnosilcev naboja <strong>in</strong> s tem izmerjen signal. Ker je zivljenjski cas obratno sorazmeren skoncentracijo globokih nivojev, le-ta pa je sorazmerna s uenco, je torej zivljenjski casobratno sorazmeren s uenco. Vendar na zbiranje naboja vplivajo le nivoji z emisijskimcasom, dolgim v primerjavi s casom zbiranja naboja.Meritve kazejo, da je padec signala zaradi slabsega zbiranja naboja pri uencahokoli 10 14 n/cm 2 priblizno 10% za zbiralne case reda 10 ns [13, 34].


118 9. Povzetek doktorskega dela9.2 Reaktor, merilni sistem <strong>in</strong> metode9.2.1 ReaktorVzorci, uporabljeni za predstavljeno delo, so bili obsevani v eksperimentalnem reaktorjuTRIGA Instituta Jozef Stefan v Ljubljani. Moc reaktorja je nastavljiva v obsegu odnekaj W do 250 kW, mogoce pa je tudi delovanje v pulznem nac<strong>in</strong>u. Tako je na danemobsevalnem mestu mozno obsevanje vzorcev s uksi nevtronov, ki se razlikujejo za 7 redovvelikosti (10 8 ; 10 15 n/cm 2 s).Na reaktorju TRIGA sta bili za studij sevalnih poskodb v siliciju opremljeni dveobsevalni mesti:Suha celica V suhi celici je mogoce obsevanje vzorcev z dimenzijami do 1015 cm 2 .Mogoce je hlajenje do -20 C, napajanje ter C=V <strong>in</strong> I=V meritve 47 med <strong>in</strong> po obsevanju.Kljub uporabi sijske plosce, ki zveca ux hitrih nevtronov (nad 0.1 MeV), pa le-ta nepreseze 4 10 8 n/cm 2 s.Faktor sevalnih poskodb je bil dolocen na osnovi obstojecih meritev nevtronskegaspektra [36] na SC =0:99 0:06 : (9.9)Skupaj z napako na meritvi uence, ki je okoli 15%, je torej ekvivalentna uenca 1 MeVnevtronov dolocena s priblizno 17% napako.Obsevalni kanal F19 V obsevalnem kanalu F19 je mogoce obsevanje vzorcev z dimenzijamido priblizno 1550 mm 2 . Zvodnim hlajenjem lahko hladimo vzorce do 0 C. Tuditu je poskrbljeno za napajanje vzorcev ter C/V <strong>in</strong> I/V meritve.Ob normalnem obratovanju reaktorja je uks hitrih nevtronov (nad 0.1 MeV) pripolni moci reaktorja (250 kW) priblizno 2 10 12 n/cm 2 s <strong>in</strong> je sorazmeren z mocjo. Vpulznem nac<strong>in</strong>u lahko dosezemo uenco hitrih nevtronov okoli 10 14 n/cm 2 v pulzu dolz<strong>in</strong>epriblizno 20 ms, cemur ustreza povprecni uks okoli 5 10 15 n/cm 2 s.Spekter nevtronov je bil dolocen z meritvijo <strong>in</strong> s simulacijo.sevalnih poskodb jeVrednost faktorja F 19 =0:90 0:03 : (9.10)Sistematska napaka na meritvi uence je okoli 15%, dodatna napaka posamezne meritvepa okoli 5%.47Meritve odvisnosti kapacitete C <strong>in</strong> zapornega toka I od napajalne napetosti V.


9. Povzetek doktorskega dela 1199.2.2 Merilni sistemHP 4284ALCR meterKEITHLEY 237napetostni izvor<strong>in</strong> merilnik tokaR=4.7kΩC=100nFcca. 3mZSPADZOSlika 9.2: Povezava laboratorijskega merilnega sistema z merjenim vzorcem. Oznake merilnihzic pomenijo: ZS - zadnja (n + ) stran, ZO - zascitni obroc, PAD - p + stran diode.Merilni sistem v laboratoriju Glavni komponenti laboratorijskega merilnega sistemasta HP4284A LCR meter <strong>in</strong> KEITHLEY 237 visoko-napetostni izvor <strong>in</strong> merilnik toka.Njuna povezava z merjenim vzorcem je prikazana na sliki 9.2. Kondenzatorji <strong>in</strong> uporiscitijo LCR meter pred visoko napetostjo <strong>in</strong> spremembami impedance napetostnega izvora.Tako HP4284A kot KEITHLEY 237 sta povezana z osebnim racunalnikom, ki vodimeritev ter bere <strong>in</strong> hrani rezultate. Program vzporedno spremlja tudi temperaturo vzorca.To merimo s toplotnim senzorjem Pt100, povezanim s temperaturnim kontrolerjem YokogawaUT15. Med meritvami so vzorci v hladilni skr<strong>in</strong>ji, stabilizirani na 5 C. Temperaturnostabilizirane omare uporabljamo tudi za shranjevanje vzorcev. Za pospesevanje casovnegarazvoja poskodb smo vzorce segrevali v pecici pri 60 C, s temperaturo stabilizirano na2 C.Merilni sistem na reaktorju Merilni sistem na reaktorju je v osnovi enak sistemu, kismo ga uporabljali v laboratoriju. Glavna razlika je v tem, da je KEITHLEY 237, ki jehkrati izvor napetosti <strong>in</strong> merilnik toka, nadomescen z dvema enotama <strong>in</strong> sicer KEITHLEY617 kot merilnikom toka <strong>in</strong> visoko-napetostnim izvorom Wentzel. Poleg tega je HP4284Anadomescen s preprostejso izvedbo HP4263B, ki omogoca meritve le pri stirih vnaprejdolocenih frekvencah merilne napetosti (100 Hz, 1 kHz, 10 kHz <strong>in</strong> 100 kHz). Vendar terazlike nimajo opaznega vpliva napotek meritev <strong>in</strong> analizo podatkov.


120 9. Povzetek doktorskega dela9.2.3 Opis meritve <strong>in</strong> analize podatkovSlika 9.3: C/V meritev pri razlicnih frekvencah merilnega signala. Napetost polnega osiromasenja(455 V) je dolocena kot presecisce premic, prilagajanih na narascajoci del pred prelomom<strong>in</strong> ravni del po njem.C/V meritve Kapaciteto vzorca merimo z Hewlet-Packard LCR metrom. Ta meriamplitudo <strong>in</strong> fazni zamik toka kot odziv na izmenicno merilno napetost. Tako dolocenokompleksno impedanco lahko po enem od vgrajenih modelov ekvivalentnih vezij pretvori vdruge parametre. Ker merjene diode blizu polnega osiromasenja najbolje opiseta paralelnovezana kondenzator <strong>in</strong> upor, smo za pretvorbo izbrali paralelni RC model.Pri meritvah odvisnosti kapacitete od zaporne napetosti nalozimo izmenicno merilnonapetost 48 na enosmerno zaporno napetost visoko-napetostnega izvora. Merilni programv izbranih korakih dviga napetost <strong>in</strong> pri vsaki izmeri kapaciteto vzorca. Rezultat meritvepoda v obliki krivulje C ;2 (V) (slika 9.3, barvne tocke). Napetost polnega osiromasenjadolocimo iz presecisca premic, prilagajanih na narascajoci del pred prelomom <strong>in</strong> ravni delpo njem (slika 9.3). Kerjetakodolocena napetost odvisna od frekvence merilne napetosti<strong>in</strong> temperature [16, 17], so vse laboratorijske meritve potekale pri referencni temperaturi(5 C). Kapaciteta je bila merjena pri sedmih razlicnih frekvencah (1 kHz, 3 kHz, 10 kHz,30 kHz, 100 kHz, 300 kHz <strong>in</strong> 1 MHz), za dolocitev napetosti polnega osiromasenjapasmouporabljali meritev pri 10 kHz.V.48Amplituda merilne napetosti je nastavljiva vobmocju med 5 mV <strong>in</strong> 2 V, obicajno smo uporabljali 1


9. Povzetek doktorskega dela 121Slika 9.4: Primer I/V meritve diode a) v zacetni fazi (po 5 dneh pri 5 C) <strong>in</strong> b) v pozni fazi(po 5 dneh 60 C) okrevanja zapornega toka. Generacijski tok je dolocen kot vrednost zapornegatoka v m<strong>in</strong>imumu za hrbtom.Glavni vir napake uporabljene metode je sistematska napaka zaradi izbora merilnefrekvence <strong>in</strong> temperature, ki smo jo ocenili na pod 10%. Tako k napaki na konstantahhitrosti tvorbe poskodb (g) najvec prispeva sistematska napaka dozimetrije (15%).Meritve zapornega toka Medtem ko je prispevek generacijskega toka sorazmeren skorenom zaporne napetosti (glej enacbi 9.7 <strong>in</strong> 9.1) <strong>in</strong> narasca sorazmerno s uenco, jepovrs<strong>in</strong>ski tok mocno odvisen od zunanjih pogojev <strong>in</strong> izdelave 49 . Zato smo raziskaveomejili na studij generacijskega toka. Vendar pri <strong>in</strong>vertiranih vzorcih locevanje obeh prispevkovni preprosto, saj so zascitni obroci polno uc<strong>in</strong>koviti sele pri polnem osiromasenju[51]. To se v I/V krivulji izraza kot hrbet, ki se zravna pri napetosti polnega osiromasenja(slika 9.4). Tako je generacijski tok dolocen kot vrednost zapornega toka vm<strong>in</strong>imumu zahrbtom. Pri diodah z dobro delujocimi zascitnimi obroci je napaka opisane metode nekajodstotkov. Napaka parametra je tako dolocena z napako dozimetrije (okoli 15%).49Vlage, nac<strong>in</strong>a rezanja diode itd.


122 9. Povzetek doktorskega dela9.3 Casovni razvoj poskodb9.3.1 UvodN effΣgΦieqhitrookrevanjepocasnoobratno okrevanjegYΦ eqplatodnevi pri sobni Tg CΦ eqleta pri sobni Tcas (l<strong>in</strong>. skala)cas (log skala)Slika 9.5: Shematski prikaz casovnega razvoja efektivne koncentracije primesi.Casovni razvoj poskodb, nastalih pri obsevanju, lahko poteka po treh scenarijih: Poskodbe so lahko casovno stabilne. Elektricno aktivne poskodbe se lahko spremene v neaktivne (okrevanje). Elektricno neaktivne poskodbe se lahko spremene v elektricno aktivne (obratnookrevanje).Vzrok za spremembo poskodbe je lahko njen razpad ali pa reakcija z drugo poskodbo. Odvrste reakcije, ki je odgovorna za spremembo, je odvisen njen casovni razvoj.V primeru razpada X ! Y lahko sprem<strong>in</strong>janje koncentracije poskodbe X pokoncanem obsevanju opisemo kot proces prvega reda; dN Ydt= dN Xdt= ;k Y 1N X (9.11)z resitvijoN X (t) =N 0 Xe ;kY 1 t (9.12)N Y (t) =N 0 X(1 ; e ;kY 1 t ) : (9.13)


9. Povzetek doktorskega dela 123Ce pa je za spremembo odgovorna reakcija dveh poskodb, X A +X B ! Y , jo lahko opisemoz enacboV primeru N 0 X A>N 0 X B; dN Ydtje resitev= dN X Adt= dN X Bdt= ;k Y 2N XA N XB : (9.14)N Y (t) =N 0 X B1 ; e ;kY 2 t(N 0 X A;N 0 X B)1 ; (N 0 X B=N 0 X A)e ;kY 2 t(N 0 X A;N 0 X B) : (9.15)Ce imata obe poskodbi enaki zacetni koncentraciji, NX 0 Amed dvema poskodbama iste vrste, X A = X B , slediN X (t) =N 0 X1+N 0 X kY 2t= N 0 X B, ali pa gre za reakcijo(9.16)N Y (t) =N 0 X ; N X (T )=N 0 X(1 ;11+N 0 X kY 2t ) : (9.17)Enacba 9.17 opisuje proces drugega reda. V primeru, da je koncentracija ene vrsteposkodb mnogo vecja od koncentracije druge (NX 0 A NX 0 B), pa lahko casovni razvojzopet opisemo z enacbo prvega reda, kjer velja k Y 1= k Y 2NX 0 A.V gornjih enacbah je bila N 0 X zacetna koncentracija poskodb tipa X, k Y 1<strong>in</strong> k Y 2pareakcijski konstanti za reakcijo prvega oz. drugega reda. Enacbi9.11<strong>in</strong>9.14kazeta, da jepri reakcijah prvega reda hitrost reakcije sorazmerna s koncentracijo poskodb, pri procesihdrugega reda pa je odvisnost kvadraticna.Zaporni tokObicajno je casovni razvoj zapornega toka opisan z nastavkomI(t) =I(0)[A 0 + X iA i e ;t= i ] (9.18)kjer je A 0 prispevek stabilnih poskodb, A i pa popisujejo poskodbe, ki scasom razpadajo(okrevanje poskodb). Da bi izlocili vpliv velikosti vzorca <strong>in</strong> uence se namesto tokaobicajno podaja parameter = (en. 9.8). Znjimenacbo 9.18 prepisemo vIV eq(t) = 0 + X i i e ;t= i : (9.19)Gornji enacbi opisujeta okrevanje <strong>in</strong> stabilno komponento zapornega toka, saj obratnookrevanje le-tega ni bilo opazeno.


124 9. Povzetek doktorskega delaNovi rezultati [35] <strong>in</strong> meritve predstavljene v tem delu pa kazejo, da tudi domnevnostabilna komponenta ( 0 ) s casom pocasi upada. Casovno odvisnost lahko opisemo zlogaritemskim nastavkom(t) = E e ;t= E ; L ln(t= L ) : (9.20)Zavedati se je treba, da logaritemski nastavek nima smiselnega zikalnega ozadja, ampakje le uporaben opis casovnega razvoja pocasne komponente.Efektivna koncentracija primesi V casovnem razvoju N eff so opazne vse tri prejnastete komponente: casovno stabilne poskodbe, okrevanje <strong>in</strong> obratno okrevanje (slika9.5). Tudi pri N eff lahko okrevanje opisemo z vsoto eksponentnih funkcij, kar kaze nareakcije prvega reda, medtem ko d<strong>in</strong>amika obratnega okrevanja se ni nedvoumno dolocena.Tako lahko casovni razvoj N eff opisemo z nastavkomN eff (t) =N C + X iN i e ;t= i+ N Y (t) (9.21)kjer so N C casovno stabilne poskodbe, N i poskodbe, odgovorne za okrevanje, i casovnekonstante okrevanja <strong>in</strong> N Y poskodbe, odgovorne za obratno okrevanje. Glede na vrstoreakcije, casovni potek N Y (t) popisujejo enacbe 9.13, 9.15 ali 9.17.Meritve Poglavje ocasovnem razvoju sevalnih poskodb vkljucuje studij razvoja napetostipolnega osiromasenja oziroma efektivne koncentracije primesi (N eff ) <strong>in</strong> studij razvojazapornega toka. Pri tem sem se loceno posvetil hitremu okrevanju na casovni skalido nekaj dni <strong>in</strong> pocasnemu delu razvoja zapornega toka oziroma obratnemu okrevanju vprimeru N eff (casovna skala nekaj mesecev pri 60 C) 50 .Loceno obravnavanje okrevanja <strong>in</strong> obratnega okrevanja N eff je mozno zato, ker socasovne konstante obeh procesov bistveno razlicne. Medtem ko je tipicni cas okrevanja prisobni temperaturi nekaj dni, je casovna konstanta obratnega okrevanja priblizno leto prisobni temperaturi. Tako je prispevek obratnega okrevanja vcasu okrevanja zanemarljiv.9.3.2 Hitro okrevanje N effPri studiju okrevanja N eff sem se posvetil predvsem zelo hitrim komponentam (redavelikosti nekaj ur). Studij le teh namrec zahteva moznost C=V meritev med <strong>in</strong> takoj po50Temperaturna odvisnost reakcijskih konstant je podana z enacbo k(T ) = k 0 e ;Ea=kBT , kjer je E aaktivacijska energija. Vrednost E a za obratno okrevanje N eff v literaturi je 1.3 eV [13, 14, 15] <strong>in</strong> zapocasno okrevanje zapornega toka 1.1 eV [15]. Tako je razvoj N eff pri 60 C priblizno 500-krat hitrejsikot pri 20 C , za zaporni tok pa je to razmerje priblizno 190.


9. Povzetek doktorskega dela 125Slika 9.6: Casovni razvoj N eff a) med obsevanjem <strong>in</strong> b) po obsevanju. Prikazani so vzorci D3,I3 and B3, ki so bili obsevani pod enakimi pogoji z izjemo temperature. Rdeca krivulja na slikib) prikazuje rezultate prilagajanja z nastavkom 9.23.obsevanju, tako da so meritve teh komponent dokaj redke. Analizirane so bile meritvesedmih diod pri temperaturah 0, 5 <strong>in</strong> 15 C. Meritve hitre komponente so potekale pribliznoteden dni.


126 9. Povzetek doktorskega delaVzorec eq T gC 0 g 1 1 g 2 2[n/cm 2 ] [ C] [10 ;2 cm ;1 ] [10 ;2 cm ;1 ] [h] [10 ;2 cm ;1 ] [h]D3 4:2 10 13 15 C 4.3 3.6 4.0 1.7 170D1 4:5 10 13 15 C 4.5 2.5 3.9 1.3 37K3 1:03 10 14 5 C 4.3 1.7 9.3 1.1 79I3 4:4 10 13 5 C 5.1 3.9 3.7 1.3 68B3 4:4 10 13 0 C 5.5 4.1 4.4 1.1 110G3 8:3 10 12 0 C 6.4 7.3 3.5 4.3 16G2 8:7 10 12 0 C 4.3 8.0 3.8 4.9 47Tabela 9.1: Rezultati prilagajanja nastavku 9.23 meritvam hitre komponente casovnega razvojaN eff . Ob vsakem vzorcu sta podani se uenca normalizirana na 1 MeV nevtrone <strong>in</strong> temperaturaobsevanja <strong>in</strong> shranjevanja.Casovni potek razvoja efektivne koncentracije primesi za vzorce B3, I3 <strong>in</strong> D3 med<strong>in</strong> po obsevanju je prikazan na sliki 9.6. Zaradi dolgega casa obsevanja (6.5 ur) je prislodo delnega okrevanja poskodb ze med samim obsevanjem, zato odvisnost N eff od uenceoz. casa obsevanja ni l<strong>in</strong>earna. Zdruzen vpliv obsevanja <strong>in</strong> okrevanja lahko opisemo zenacboN eff (t) =[g C t + X ig i i (1 ; e ;t= i)] eq t


9. Povzetek doktorskega dela 127Ceprav hitro okrevanje N eff za delovanje eksperimentov na trkalniku LHC ni pomembno,pa je njegov vpliv pomemben pri primerjavi rezultatov, izmerjenih kmalu po obsevanju.9.3.3 Obratno okrevanje N effVzorec eq g C kYl<strong>in</strong>[10 14 n/cm 2 ] [10 ;2 cm ;1 ] [10 ;8 cm ;1 s ;1 ]R02B 0.21 0.42 9.1R02M 0.21 0.57 11.3R05B 0.53 1.4 13.5R05M 0.53 1.2 12.0R10B 1.06 1.4 15.3R10M 1.06 1.8 14.9R20B 2.1 1.6 11.1R20M 2.1 1.6 11.8Tabela 9.2: Fluenca <strong>in</strong> rezultati prilagajanja po enacbi 9.26 za diode, namenjene studijud<strong>in</strong>amike obratnega okrevanja.Analiza obratnega okrevanja je bila usmerjena predvsem v dolocanje d<strong>in</strong>amike odgovornereakcije (prvi ali drugi red). V ta namen sta bili uporabljeni dve metodi. Priprvi sem enacbi za prvi <strong>in</strong> drugi red prilagajal casovnemu poteku obratnega okrevanjado pozne faze le-tega. Pri tem sem opazoval tako ujemanje napovedi z meritvami kottudi odvisnost od uence. V primeru procesa prvega reda je namrec hitrost sprem<strong>in</strong>janjaefektivne koncentracije primesi pri obratnem okrevanju sorazmerna s uenco, v primeruprocesa drugega reda pa z njenim kvadratom (enacbi 9.11 <strong>in</strong> 9.14). Vendar pa meritvevzorcev, hranjenih pod napajalno napetostjo, niso omogocile jasne dolocitve tipa reakcije.To je bila posledica le delnega osiromasenja vzorcev <strong>in</strong> vpliva napajalne napetost<strong>in</strong>a casovni razvoj poskodb, ki bo opisan v podpoglavju 9.5.Pri drugi metodi sem opazoval le zacetni del obratnega okrevanja. Omejil semse na case, majhne v primerjavi s casovno konstanto obratnega okrevanja <strong>in</strong> casovnipotek (enacbi 9.13 <strong>in</strong> 9.17) l<strong>in</strong>eariziral. Tedaj lahkocasovni razvoj efektivne koncentracijeprimesi opisemo z enacbamaza prvi red <strong>in</strong>N eff (t) eq= g C + g Y k Y 1t (9.24)N eff (t) eq= g C + g 2 Y eq k Y 2t (9.25)


128 9. Povzetek doktorskega delaSlika 9.7: Razvoj Neff= eq v zacetni stopnji obratnega okrevanja za diode brez napajalnenapetosti pri 20 C.za proces drugega reda. Tu sta g C hitrost tvorbe stabilnih poskodb, g Y pa hitrost tvorbeposkodb, odgovornih za obratno okrevanje. Enacbi lahko posplosimo v oblikoN eff (t) eq= g C + k l<strong>in</strong>Y t (9.26)kjer je kYl<strong>in</strong> za reakcije prvega reda neodvisen od uence (g Y k Y 1), za reakcije drugega redapa sorazmeren s uenco (gY 2 k Y 2 eq ). Tako lahko z meritvami odvisnosti parametra kYl<strong>in</strong> oduence dolocimo tip reakcije.Tudi po tej metodi analiza vzorcev, hranjenih pod zaporno napetostjo, ni dalanedvoumnih rezultatov, kar je posledica ze omenjenega vpliva napajalne napetosti narazvoj poskodb. Zato je bila tej studiji namenjena posebna skup<strong>in</strong>a diod. Ta je bilasestavljena iz stirih parov, obsevanih do stirih razlicnih uenc (tabela 4.6). Vseh 8 diodje bilo obsevanih <strong>in</strong> hranjenih brez napajalne napetosti pri 20 C. Da bi se izognili vplivuneznanih parametrov, so bile diode ves cas hranjene pod enakimi pogoji.


9. Povzetek doktorskega dela 129Meritve obratnega okrevanja teh diod so prikazane na sliki 9.7, rezultati prilagajanjanastavku 9.26 pa v tabeli 9.2. Iz prikazanih rezultatov je razvidno, da hitrost narascanjaN eff = eq ni odvisna od uence. To kaze, da vsaj v zacetni fazi, ki je pomembna zadelovanje detektorjev v nacrtovanih eksperimentih, obratno okrevanje dobro popisemo zreakcijo prvega reda.9.3.4 Okrevanje zapornega tokaSlika 9.8: Hitro okrevanje zapornega toka. Vrednosti parametra so normalizirane na 20 C 2po enacbi j(T 2 )=j(T 1 )T2; E0 gT 1e2k(T ;1;T ;1) B2 1. Za Eg 0 je bila uporabljena vrednost 1.2 eV [14].Opozoriti velja, da se na sliki ord<strong>in</strong>atna os ne zacne pri nicli.Hitro okrevanje zapornega toka nekaterih diod iz tabele 9.1 je prikazano na sliki9.8. Zaradi visokega sevalnega ozadja meritve zapornega toka med obsevanjem niso uporabne.Casovni razvoj v zacetni fazi po obsevanju lahko, tako kot okrevanje efektivnekoncentracije primesi, lepo popisemo Xz nastavkom(t) =[ 0 t + i i (e t irr=i ; 1)e ;t= i ] eq t irr < t : (9.27)i=12Kot pri razvoju N eff , tudi tu rezultati prilagajanja ne kazejo sistematicnega obnasanja.Pomanjkanje sistematike <strong>in</strong> razlike med vzorci lahko razlozimo s prispevki povrs<strong>in</strong>skih


130 9. Povzetek doktorskega delaSlika 9.9: Casovni razvoj pocasnih komponent zapornega toka. V tabeli so navedeni pogojiobsevanja <strong>in</strong> rezultati prilagajanja po enacbi 9.28. Vrednosti parametra so normalizirane na20 C.tokov, visokim sevalnim ozadjem <strong>in</strong> dolgimi merilnimi kabli. Pomembna pa je ugotovitev,da je tudi pri 0 C opazno znatno okrevanje zapornega toka ze v prvem dnevu po obsevanju.Meritve v laboratoriju po ekvivalentu nekaj tednov pri 20 C (ure pri 60 C) <strong>in</strong> priugodnejsih merilnih pogojih pa kazejo, da imajo tokovi vseh diod z delujocimi zascitnimiobroci enake vrednosti (slika 9.9).Za studij razvoja pocasnih komponent zapornega toka je bil razvoj poskodb po-


9. Povzetek doktorskega dela 131Sample eq E E (60 C) L L (60 C)[n/cm 2 ] [10 ;17 A/cm] [h] [10 ;17 A/cm] [leta]K3 1:03 10 14 1.4 0.7 0.32 2.K0 1:04 10 14 1.1 1.8 0.26 6.I3 4:4 10 13 1.3 1.8 0.26 14.B3 4:4 10 13 1.4 1.3 0.29 8.G3 8:3 10 12 1.2 1.6 0.28 9.G2 8:7 10 12 1.2 1.9 0.24 12.U3A 4:1 10 13 1.2 2.1 0.31 2.U3B 4:1 10 13 1.2 2.1 0.32 3.Tabela 9.3: Casovni razvoj pocasnih komponent zapornega toka. Vtabelijenavedena uenca<strong>in</strong> rezultati prilagajanja po enacbi 9.28. Vrednosti parametra so normalizirane na 20 C.Napake na L , E <strong>in</strong> E so okoli 20% <strong>in</strong> na L okoli 50%.spesen s segrevanjem vzorcev na 60 C. Medtem ko je v prvih desetih urah se opazenznaten prispevek eksponentno razpadajoce komponente (enacba 9.27), pa je pri daljsihcasih segrevanja upadanje zapornega toka l<strong>in</strong>earno v semilogaritemski skali (slika 9.9). Takaze na efektivno logaritemsko casovno odvisnost, tako da smo rezultate skusali popisatiz nastavkom(t) = E e ;t= E ; L ln(t= L ) : (9.28)Primerjava rezultatov prilagajanja z merjenimi vrednostmi (slika9.9)kaze dobro ujemanjemeritev z rezultati prilagajanja nastavku 9.28. Vrednosti parametrov po prilagajanju sopodane v tabeli 9.3. O enakih meritvah pocasnih komponent poroca tudi [35], s sledecimivrednostmi parametrov: E = (1:01 0:38) 10 ;17 A/cm, E = 93 24 m<strong>in</strong>, L =(5:03 0:09) 10 ;17 A/cm <strong>in</strong> L 6:6 +45;4:6let. Razen casovnih konstant logaritemskekomponente se vrednosti iz [35] dobro ujemajo z vrednostmi iz tabele 9.3. Potrebne paso nadaljne raziskave, ki bi razkrile zikalno ozadje logaritemske komponente.9.4 Vpliv uksa nevtronovMedtem ko bo obsevanje detektorjev v novih eksperimentih zelo pocasen proces 51 , jetipicen cas obsevanja vzorcev za studij sevalnih poskodb nekaj ur. Zato je bilo potrebnopreveriti, kako hitrost obsevanja z nevtroni vpliva na tvorbo poskodb. O vplivu hitrostiobsevanja pri ionski implantaciji poroca [52], medtem ko za nevtrone ti podatki niso bili51Ekvivalentna uenca 1 MeV nevtronov reda 10 14 n/cm 2 bo dosezena v desetih letih obsevanja, cemurustreza ekvivalenten uks 10 6 n/cm 2 s.


132 9. Povzetek doktorskega delaSlika 9.10:razlicnimi uksi nevtronov. Casovni razvoj efektivne koncentracije primesi pri 60 C za diode, obsevane zVzorec eq [n/cm 2 s] eq [n/cm 2 ]SA1 2:2 10 8 1:3 10 14SA2 2:2 10 8 1:3 10 14K3 1:9 10 9 1: 10 14K1 3:7 10 11 1: 10 14K0 1:6 10 12 1: 10 14P0A 5 10 15 1:1 10 14P0B 5 10 15 1:1 10 14Tabela 9.4: Seznam diod uporabljenih za studij vpliva nevtronskega uksa <strong>in</strong> pogoji obsevanja.znani. Rezultati [52] za obsevanje z Br, Si <strong>in</strong> C kazejo znatno upadanje hitrosti tvorbeposkodb pri ionskih uksih nad 10 7 cm ;2 s ;1 ,10 8 cm ;2 s ;1 <strong>in</strong> nekajkrat 10 8 cm ;2 s ;1 . Opaznoje upadanje mejnega uksa z narascajoco maso, tako da lahko za nevtrone pricakujemomejo nad 10 9 n/cm 2 s.


9. Povzetek doktorskega dela 133Slika 9.11: Casovni razvoj zapornega toka pri 60 C za diode, obsevane z razlicnimi uks<strong>in</strong>evtronov. Vrednosti parametra so normalizirane na 20 C.Za studij vpliva nevtronskega uksa je bilo uporabljenih sedem vzorcev, obsevanihs uksi od 2 10 8 do priblizno 5 10 15 n/cm 2 s (tabela 9.4). Razvoj efektivne koncentracijeprimesi (slika 9.10) <strong>in</strong> zapornega toka (slika 9.11) pri 60 Cnikazal sistematskih razlik, kibi jih lahko povezali s hitrostjo obsevanja. Na osnovi teh rezultatov lahko domnevamo,da je varno ekstrapolirati sevalne poskodbe z razpolozljivih nevtronskih izvorov na pogojev eksperimentih na LHC.9.5 Vpliv napajalne napetostiDo nedavnega je veljalo splosno prepricanje, da je nastanek <strong>in</strong> razvoj sevalnih poskodbneodvisen od napajalne napetosti. Natancen nadzor nad pogoji obsevanja <strong>in</strong> shranjevanjav okviru meritev tega dela, ki je vkljuceval tudi napajalno napetost, pa je pokazalnasprotne rezultate. Vzorci s polno napajalno napetostjo kazejo po koncanem okrevanju


134 9. Povzetek doktorskega delaSlika 9.12: Primerjava casovnega razvoja efektivne koncentracije primesi za vzorce z (B3, D3,I3) <strong>in</strong> brez napajalne napetosti (U3A, U3B). Razen napajalne napetosti so bili vzorci hranjenipod enakimi pogoji.priblizno za faktor 2 vecjo efektivno koncentracijo primesi od tistih brez napetosti (slika9.12).Izvor razlikevN eff med vzorci z <strong>in</strong> brez zaporne napetosti je lahko vtvorbi poskodbali pa v njihovem casovnem izvoru. Da bi locili med tema dvema moznostima, smoprimerjali stiri diode, obsevane <strong>in</strong> hranjene pod razlicnimi pogoji napajanja. Prva (D2A)je bila pod napetostjo tako med kot po obsevanju, druga (S3A) je bila med obsevanjempod napetostjo, po njem pa ne, tretja (S3B) med obsevanjem ni bila pod napetostjo, ponjem pa <strong>in</strong> zadnja (D2B) ni bila pod napetostjo ne med ne po obsevanju. Primerjavaokrevanja vseh stirih vzorcev (slika 9.13) je za vzorca S3A <strong>in</strong> D2B (oba brez napetostipo obsevanju) dala enako N eff po koncanem okrevanju, medtem ko imata vzorca S3B<strong>in</strong> D2A visjo N eff . Razliko med vzorcema S3B <strong>in</strong> D2A lahko pripisemo okrevanju medobsevanjem (6.5 ure brez zaporne napetosti za vzorec S3B). Iz predstavljenih rezultatov


9. Povzetek doktorskega dela 135Slika 9.13: Primerjava vrednosti N eff = eq za vzorce z razlicnimi pogoji napajanja. VzorecD2A je bil pod napetostjo med <strong>in</strong> po obsevanju, vzorec S3B le po obsevanju (6.5 ure), vzorecS3Alemedobsevanjem <strong>in</strong> vzorec D2B ne med ne po obsevanju.lahko sklepamo, da razlika med vzorci nastane med okrevanjem, torej, da zaporna napetostne vpliva na nastajanje ampak na okrevanje poskodb.Za vpliv odkritega pojava nadelovanje silicijevih detektorjev v bodocih eksperimentihpa je pomembno tudi obnasanje nastale razlike po izklopu napajalne napetosti. Kot jerazvidno s slike 9.14, po izklopu napajalne napetosti razlika upada. Upadanje lahko dobropopisemo s hitrim padcem ob izklopu (okoli 10% razlike) <strong>in</strong> vsoto dveh eksponentnihfunkcijN eff (t)N eff (t 0 ) = C 1e ; t;t 0 1 + C 2 e ; t;t 0 2 : (9.29)Da bi dolocili vpliv temperature, smo upadanje razlike opazovali na treh vzorcih prirazlicnih temperaturah <strong>in</strong> sicer pri -7 C, 5 C <strong>in</strong> 20 C. Casovni razvoj razlike smo prilagajaliz nastavkom 9.29, rezultati prilagajanja pa so podani v tabeli 9.5. Iz izmerjenihvrednosti smo ocenili aktivacijsko energijo obeh komponent na 0:5 0:15 eV.Meritve so pokazale, da ob ponovnem priklopu napajalne napetosti efektivna koncentracijanaboja zopet narasca (slika 9.14). Tovrstno obnasanje kaze, da je vsaj delposkodb bistabilnih, oziroma da reakcija, ki pretvarja aktivno stanje v neaktivno, potekav obe smeri.


136 9. Povzetek doktorskega delaSlika 9.14: a) Casovni razvoj N eff za diodo z (polni krogci) <strong>in</strong> brez (prazni krogci) napajalnenapetosti. Razen napajalne napetosti sta bili diodi obsevani <strong>in</strong> hranjeni pod enakimi pogoji pritemperaturi 20 C. b) Casovni razvoj razlike vN eff po izklopu napajalne napetosti. Razlika jenormalizirana na vrednost tik pred izklopom. Upadanje razlike lahko lepo popisemo z dvemaeksponentnima funkcijama (polna crta). Po ponovnem vklopu napajalne napetosti (priblizno1800 ur po izklopu) opazimo ponovno narascanje N eff .T [ C] C 1 1 [h] C 2 2 [h]-7 0.200.04 22020 0.710.05 900015005 0.220.04 605 0.650.05 210020020 0.440.04 4210 0.410.05 1050100Tabela 9.5: Rezultati prilagajanja nastavka 9.29 upadanju razlike med vzorcema z <strong>in</strong> breznapajalne napetosti.Predstavljeno odkritje ima lahko pomembne posledice za delovanje silicijevih detektorjevv bodocih eksperimentih z visoko lum<strong>in</strong>oznostjo. Medtem ko morajo biti v casuzbiranja podatkov (priblizno 4 mesece letno) detektorji pod napetostjo, pa to v preostalemcasu ni potrebno. Zato je pomembo, da bo v tem casu temperatura detektorjev izbranatako, da bo dosezeno optimalno razmerje med upadanjem N eff po izklopu napetosti <strong>in</strong>obratnim okrevanjem.Primerjava zapornega toka diod pod napajalno napetostjo <strong>in</strong> brez nje ni pokazalanobenih sistematskih razlik. Tako zakljucujemo, da je vpliv napajalne napetosti omejenna poskodbe, ki vplivajo na efektivno koncentracijo primesi.


9. Povzetek doktorskega dela 1379.6 ZakljucekDelo predstavlja studijo sevalnih poskodb silicijevih detektorjev pod kontroliranimi pogoji.Za obsevanje z nevtroni sta bili prilagojeni dve obsevalni mesti na reaktorju TRIGAInstituta Jozef Stefan. Tako sta bili nadzorovani temperatura <strong>in</strong> napajalna napetost,razvoj poskodb pa je bil spremljan tako med kot tudi po obsevanju.Del doktorskega dela je bil posvecen casovnemu razvoju efektivne koncentracijeprimesi <strong>in</strong> zapornega toka. Hitre komponente so bile izmerjene pri temperaturah med0 <strong>in</strong> 15 C, pri cemer je bilo opazeno znatno okrevanje v prvih dneh ze pri 0 C. Razvojpocasnih komponent je bil pospesen z gretjem vzorcev na 60 C. Pri tem so bili dobljenijasni dokazi, da lahko obratno okrevanje N eff vsaj v zacetni fazi opisemo z reakcijo prvegareda.Meritve zapornega toka so pokazale, da v nekaj mesecih pri 60 C (ekvivalent priblizno50 let pri 20 C) ni prislo do ustalitve le-tega. Casovni razvoj lahko popisemo zefektivnim nastavkom(t) = E e ;t= E ; L ln(t= L ) : (9.30)Pri tem za logaritemski clen, ki nastopa v nastavku, ni znano zikalno ozadje.Primerjava vzorcev, obsevanih z nevtronskimi uksi od 2 10 8 n/cm 2 s do priblizno5 10 15 n/cm 2 s ni pokazala vpliva hitrosti obsevanja ne na efektivno koncentracijo primes<strong>in</strong>e na zaporni tok. Tako domnevamo, da lahko rezultate, dobljene z razpolozljivim<strong>in</strong>evtronskimi izvori, ekstrapoliramo na ukse v detektorjih na trkalniku LHC.Natancen nadzor nad napajalno napetostjo med <strong>in</strong> po obsevanju je vodil do odkritjavpliva le-te na razvoj efektivne koncentracije primesi. Tako imajo vzorci, hranjeni podnapetostjo polnega osiromasenja, po koncanem okrevanju dvakrat vecjo efektivno koncentracijoprimesi kot vzorci, hranjeni brez napetosti. Ob izklopu napajalne napetosti serazlika pocasi zmanjsuje, vendar se je ob ponovnem vklopu vsaj del ponovno vzpostavi.Primerjave vrednosti nekaterih parametrov, izmerjenih v predstavljenem delu, zrezultati drugih skup<strong>in</strong> (tabele 7.1 do 7.4) kazejo dobro ujemanje vseh parametrov zavzorce brez napajalne napetosti, medtem ko za vzorce pod napetostjo vrednosti bistvenoodstopajo. Ti rezultati se ujemajo z odkritim vplivom napajalne napetosti na casovnirazvoj poskodb (podpoglavje 9.5).Za nacrtovanje eksperimentov na trkalniku LHC so pomembni predvsem sledecirezultati predstavljenega dela: Poskodbe silicijeve mreze za nevtronske ukse od 2 10 8 n/cm 2 s do priblizno 5 10 15 n/cm 2 s niso odvisne od uksa. Tako lahko domnevamo, da je varna ekstrapolacijarezultatov na pogoje na LHC.


138 9. Povzetek doktorskega dela Napajalna napetost na detektorju vodi do vecje N eff po koncanem koristnem okrevanju.Presezek v primerjavi z vzorcem brez napajanja se po izklopu napetostimanjsa, vendar se ob ponovnem vklopu povrne. Program delovanja detektorjev jetreba prilagoditi tako, da bo skodljivi vpliv tega pojava cim manjsi. Dokazano je bilo, da obratno okrevanje vsaj v zacetni fazi, ki je pomembna za LHC,dobro popisemo z reakcijo prvega reda.


10Appendix: List <strong>of</strong> Symbols and AbbreviationsACD(E)D n (E)E CE FEFTE TE VE aE gE iE CE VIJ hJ eJ genhJhrecL eL hN ANA0N AvN CN DND0N effatomic numberdepletion layer capacitance<strong>damage</strong> functionneutron <strong>damage</strong> functionenergy at bottom <strong>of</strong> conduction bandFermi levelquasi Fermi level <strong>for</strong> a trap <strong>in</strong> the SCRenergy <strong>of</strong>atraplevelenergy at top <strong>of</strong> valence bandactivation energyenergy gap E C ; E V<strong>in</strong>tr<strong>in</strong>sic Fermi levelE C ; E TE T ; E Velectrical currenttotal current <strong>of</strong> holestotal current <strong>of</strong> electronsgeneration current <strong>of</strong> holesrecomb<strong>in</strong>ation current <strong>of</strong> holeselectron diusion lenghthole diusion lenghtacceptor concentration<strong>in</strong>itial acceptor concentrationAvogadro numberdensity <strong>of</strong> states <strong>in</strong> the conduction banddonor concentration<strong>in</strong>itial donor concentrationeective dopant concentration139


140 10. Appendix: List <strong>of</strong> Symbols and AbbreviationsN SiN TN VN XNX0QSR PTVV FDV biWc Ac De 0e ee hf Tgg Cg Yhj difj satj SCRk Bk Y 1k Y 2kYl<strong>in</strong>m em hnn <strong>in</strong> p0n Tpp n0rcerchr pairconcentration <strong>of</strong> Si atoms <strong>in</strong> the crystalconcentration <strong>of</strong> traps Tdensity <strong>of</strong> states <strong>in</strong> the valence bandconcentration <strong>of</strong> defect X<strong>in</strong>itial concentration <strong>of</strong> defect Xchargesample areaphosphorus <strong>in</strong>troduction ratetemperaturevoltagefull depletion voltagebuilt-<strong>in</strong> voltagedetector thicknessacceptor removal constantdonor removal constantelectron charge magnitudeemission probability <strong>for</strong> electrons from a trapemission probability <strong>for</strong> holes from a trapprobability <strong>for</strong>a trap to be occupieddefect generation rategeneration rate <strong>of</strong> stable defectsgeneration rate <strong>of</strong> defects responsible <strong>for</strong> reverse anneal<strong>in</strong>gPlanck constantdiusion currentsaturation currentgeneration current density <strong>in</strong> SCRBoltzmann constantrst order reaction constantsecond order reaction constantslope <strong>of</strong> reverse anneal<strong>in</strong>g at <strong>in</strong>itial stageeective mass <strong>of</strong> electronseective mass <strong>of</strong> holesconcentration <strong>of</strong> electrons <strong>in</strong> the conduction band<strong>in</strong>tr<strong>in</strong>sic carrier concentrationequilibrium electron density on p sideconcentration <strong>of</strong> occupied trapsconcentration <strong>of</strong> holes <strong>in</strong> the valence bandequilibrium hole density on n sideelectron capture rate by a traphole capture rate by a trapelectron-hole pair creation rate


10. Appendix: List <strong>of</strong> Symbols and Abbreviations 141v ev hx nx pw Si e Si e h e h iietrhtr eqFDVSCRC/VI/VNIELelectron thermal velocityhole thermal velocitydepth <strong>of</strong> the depleted region on n sidedepth <strong>of</strong> the depleted region on p sidetotal depth <strong>of</strong> the depleted regionleakage current <strong>damage</strong> constantdielectric constant od <strong>silicon</strong>hardness factorspecic resistivitycharge densitydensity <strong>of</strong> <strong>silicon</strong>electron capture cross-section <strong>of</strong>atraphole capture cross-section <strong>of</strong> a trapradiative capture cross-sectionelectron lifetimehole lifetimeN eff anneal<strong>in</strong>g time constantsreverse current anneal<strong>in</strong>g time constantselectron trapp<strong>in</strong>g time constanthole trapp<strong>in</strong>g time constantuxuenceequivalent uencefull depletion voltagespace charge regioncapacitance vs. voltagecurrent vs. voltagenon-ionis<strong>in</strong>g energy loss


142 10. Appendix: List <strong>of</strong> Symbols and Abbreviations


References[1] J. Straver et al., Nucl. Instr. Meth. A348 (1994) 485.[2] The LHC Conceptual Design Report -TheYellow Book, CERN/AC/95-05 (LHC)(1995).[3] ATLAS Letter <strong>of</strong> Intent <strong>for</strong> a General Purpose pp Experiment at the Large HadronCollider at CERN, CERN/LHCC/92-4, LHCC/I2 (1992).[4] ATLAS Technical Proposal <strong>for</strong> a General Purpose pp Experiment at the LargeHadron Collider at CERN, CERN/LHCC/94-43, LHCC/P2 (1994).[5] CMS Technical Proposal, CERN/LHCC/94-38, LHCC/P1 (1994).[6] ATLAS Inner Detector Technical Design Report, CERN/LHCC/97-16, ATLASTDR 4, (1997).[7] G. Gorne et al., ATLAS Internal Note INDET-NO-030, UM-P-93/103 (1993).[8] S.M. Sze: Physics <strong>of</strong> Semiconductor Devices, John Wiley & Sons (1981).[9] A. Peisert: Silicon Microstrip Detectors (1992)[10] N.A. Ashcr<strong>of</strong>t, N.D. Merm<strong>in</strong>: Solid State Physics, Holt, R<strong>in</strong>ehard and W<strong>in</strong>ston(1976).[11] W. Shockley et al., Phy. Rev. 87 (1952) 835.[12] G. Hall, IC/HEP/96-1 (1996).[13] V. Angelli et al., (ROSE Collab.): RD48 StatusReport, CERN/LHCC 97-39, June1997.143


[14] T. Schulz: Investigation on the Long term Behaviour <strong>of</strong> Damage Eects andCorrespond<strong>in</strong>g Defects <strong>in</strong> Detector Grade Silifon after Neutron Ir<strong>radiation</strong>, Ph.D.Thesis, DESY 96-027 (1995).[15] A. Chil<strong>in</strong>garov etal., Nucl. Instr. Meth. A 360 (1995) 432.[16] L. Beattie et al., ROSE Technical Note 97/4 (1997).[17] A. Chil<strong>in</strong>garov etal, 3 rd ROSE Workshop on Radiaton Harden<strong>in</strong>g <strong>of</strong> SiliconDetectors, DESY-PROCEEDINGS-1998-02 (1998).[18] A. Chil<strong>in</strong>garov etal., Nucl. Instr. Meth. A 360 (1995) 432.[19] R. Wunsdorf, Systematische Untersuchungen zur Strahelenresitenz vonSilizium-Detektoren fur die Verwendung <strong>in</strong> Hochenergiephysik-Experimenten, Ph.D.thesis, DESY FHIK-92-01 (1992).[20] H. Feick: Radiation Tolerance <strong>of</strong> Silicon Particle <strong>detectors</strong> <strong>for</strong> High-Energy PhysicsExperiments, Ph.D. Thesis, DESY F35D-97-08 (1997).[21] S.J. Bates et al., CERN-ECP/95-26 (1995).[22] P.A. Aarnio et al., Nucl. Instr. Meth. A360 (1995) 521,Rogalla, M. et al.:Radiation <strong>damage</strong> to neutron and proton irradiated GaAs particle<strong>detectors</strong>, (1997) to be published <strong>in</strong> Nucl. Instr. Meth.,K. Riechmann et al., Nucl. Instr. Meth A377 (1996) 276,S.J. Bates et al., CERN-ECP/95-03 (1995),J.A.J. Matthews, ATLAS Internal note INDET-NO-118 (1995),M. Huht<strong>in</strong>en et al., Nucl. Instr. Meth A335 (1993) 580,A. Van G<strong>in</strong>neken, FN-522 (1989).[23] B.R. Gossick, Journal <strong>of</strong> Applied Physics 30 (1959) 6.L.S. Smirnov A Survey <strong>of</strong> Semiconductor Radiation Techniques, Mir Publishers,Moscow, 1983.[24] G. K<strong>in</strong>ch<strong>in</strong> et al., Rep. Prog. Phys. Vol. 18., (1959).[25] M.S.Lazo et al.: Silicon and <strong>silicon</strong> dioxide neutron <strong>damage</strong> functions, Proc.FastBurt. React. Workshop, Sandia National Laboratories 1987, SAND-87-009 8 Vol.185-103.[26] Annual Book <strong>of</strong> ASTM Standards, Vol 12.02, chapter ASTM E722-85, pages324-329. ASTM Commitee E-10 on Nuclear Technology and Application, May 1985.144


[27] A.M. Ougang et al.: Dierential displacement kerma cross sections <strong>for</strong> neutron<strong>in</strong>teractions <strong>in</strong> Si and GaAs, IEEE Transactions on Nuclear Science, NS-37 (1990)2219-2228.[28] K. Hill et al., CERN-PPE/97-11 (1997).[29] R. Wunstorf et al., Nucl. Instr. Meth. A 377 (1996) 228.[30] S.J. Bates et al.: Proton Ir<strong>radiation</strong> <strong>of</strong> Silicon Detectors with Dierent Resistivities,Fourth International Workshop on Vertex Detectors, E<strong>in</strong> Gedi 1995,WIS-96/18/June-PH (1996).[31] J. Matheson et al., RD 20 Tech<strong>in</strong>cal Report RD20/TN/36 (1995).[32] B. Dezillie et al., 3 rd ROSE Workshop on Radiaton Harden<strong>in</strong>g <strong>of</strong> Silicon Detectors,DESY-PROCEEDINGS-1998-02 (1998).[33] G.C. Messenger, IEEE Trans. Nucl. Sci. 391 (1992) 468-473.[34] V. C<strong>in</strong>dro, G. Kramberger, M. Mikuz, D. Zontar: Readout <strong>of</strong> non irradiated andirradiated strip <strong>detectors</strong> with fast analogue electronic presented at 8 th EuropeanSymposium on Semiconductor Detectors Jun, Schloss Elmau, Germany, 1998, to bepublished <strong>in</strong> Nucl. Instr. Meth.[35] M. Moll et al.: Leakage current <strong>of</strong> hadron irradiated <strong>silicon</strong> <strong>detectors</strong> - materialdependence (Presented at 2 nd International Conference on Radiation Eects onSemiconductor Materials, <strong>detectors</strong> and Devices, Florence 1998, submitted to Nucl.Instr. Meth.).[36] E.S. Krist<strong>of</strong>, private communication[37] J.J. Duderstadt,L.J. Hamilton: Nuclear Reactor Analysis, J.Wiley & Sons, 1976.[38] M. Maucec, private communication[39] V.F. Briemeister, Ed.: MCNP - A General Monte Carlo N - Particle TransportCode, LosAlamos National Lab. Report LA-12625-M (1997).[40] R. Jeraj et al., Nucl. Technol. Vol. 120 (1997) 179.[41] I. Mele et al., Nucl. Technol. Vol. 105 (1994) 37.[42] M. Maucec: Varnostna analiza kriticnosti bazenov za izrabljeno gorivo, Magistrskodelo (1996).145


[43] E.S. Krist<strong>of</strong>, Characterization <strong>of</strong> Neutron Flux <strong>in</strong> the Exposure Channel F19 <strong>of</strong> theTRIGA Mark II Reactor <strong>in</strong> Ljubljana, Presented at Nuclear Energy <strong>in</strong> CentralEurope '98, Terme Catez, Slovenia, 1998, to be published <strong>in</strong> conference proceed<strong>in</strong>gs.[44] P. Gr<strong>in</strong> (SANDIA), data from ENDF/B-VI, unpublished,A. Vasilescu, INPE Bucharest, Romania, private communication.[45] H.J. Ziock etal., Nucl. Instr. Meth. A342 (1994) 96[46] F. Lemeilleur et al., CERN-ECP/94-8 (1994).[47] A. Ruz<strong>in</strong> et al: Presented at 2 nd International Conference on Radiation Eects onSemiconductor Materials, Detectors and Devices, Florence 1998, submitted to Nucl.Instr. Meth..[48] G. Casse et al, 3 rd ROSE Workshop on Radiaton Harden<strong>in</strong>g <strong>of</strong> Silicon Detectors,DESY-PROCEEDINGS.-1998-02 (1998).[49] L. Beattie et al., 3 rd ROSE Workshop on Radiaton Harden<strong>in</strong>g <strong>of</strong> Silicon Detectors,DESY-PROCEEDINGS-1998-02 (1998).[50] M. Moll et al., 3 rd ROSE Workshop on Radiaton Harden<strong>in</strong>g <strong>of</strong> Silicon Detectors,DESY-PROCEEDINGS-1998-02 (1998).[51] P.Fischer et al., ATLAS Internal Note INDET-NO-086 (1994),A. Brandl et al., CDF Internal Note CDF/DOC/SEC-VXT/PUBLIC/3512,G. Gorne et al., ATLAS Internal Note, INDET-No-139 (1996).[52] B.G.Swensson et al., 2 nd ROSE Workshop on Radiaton Harden<strong>in</strong>g <strong>of</strong> SiliconDetectors, CERN 1997, unpublished.[53] Z. Li et al., IEEE Trans. Nucl. Sci. Vol. 42 (1995) 219[54] M. Moll et al., Nuclear Phy. B 44 (1995) 468-474.[55] V. C<strong>in</strong>dro, G. Kramberger, M. Mikuz, D. Zontar: Bias-Dependent Anneal<strong>in</strong>g <strong>of</strong>Radiation Damage <strong>in</strong> Neutron-Irradiated Silicon p + -n-n + diodes, accepted <strong>for</strong>publication <strong>in</strong> Nucl. Instr. Meth..[56] V. C<strong>in</strong>dro, G. Kramberger, M. Mikuz, D. Zontar: Time Development and FluxDependence <strong>of</strong> Neutron-Ir<strong>radiation</strong> Induced Defects <strong>in</strong> Silicon Pad Detectors,(Presented at 2 nd International Conference on Radiation Eects on SemiconductorMaterials, <strong>detectors</strong> and Devices, Florence 1998, submitted to Nucl. Instr. Meth.).146


[57] M. Huht<strong>in</strong>en et al, HU-SEFT-R-1993-02 (1993)147


148


Izjavljam, da je disertacija rezultat samostojnegaraziskovalnega dela.Dejan ZontarLjubljana, oktober 1998

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!