13.07.2015 Views

Theoretical HDO emission from low-mass protostellar envelopes

Theoretical HDO emission from low-mass protostellar envelopes

Theoretical HDO emission from low-mass protostellar envelopes

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

B. Parise et al.: Models of <strong>HDO</strong> <strong>emission</strong> 179Table 3. Integration time required to detect the <strong>HDO</strong> lines with a peaksignal over noise of 5 (see text). Note that only one receiver was assumed,so in principle those times can be <strong>low</strong>ered by a factor √ 2byusing a double polarization setup.Transition IRAM 30 m JCMT HSO/HIFIIRAS 16293 (30 L ⊙ )80 GHz 5.6 h225 GHz 15 min241 GHz 30 min464 GHz 29 min490 GHz 21 min 7 min509 GHz 34 h ∗ 104 min893 GHz 16 min995 GHz 5 minL1448 mm (5 L ⊙ )80 GHz 3500 h225 GHz 110 h241 GHz 227 h464 GHz 185 h490 GHz 132 h 73 h509 GHz 1562 h ∗ 471 h893 GHz 59 h995 GHz 16 h∗ The sensibility drops on the edge of the band.6. ConclusionsWe reported theoretical predictions of the deuterated water line<strong>emission</strong> <strong>from</strong> the <strong>envelopes</strong> of <strong>low</strong> <strong>mass</strong> protostars. In thisstudy, we have focused only on the envelope <strong>emission</strong>, neglectingany <strong>HDO</strong> <strong>emission</strong> <strong>from</strong> the outf<strong>low</strong>s, which is expected tobe of minor importance based on theoretical and observationalarguments. We have shown that the simultaneous observationsof appropriately selected transitions permit us to approximatelyconstrain the <strong>HDO</strong> abundance in the outer cold and inner warmparts of the envelope. The uncertainty on the evaporation temperaturemostly translates into an uncertainty on the inner abundance.The inner abundance can however be quite accuratelydetermined using the 225 GHz line for which the <strong>emission</strong> hasbeen shown to be independent of the evaporation temperature.The most important result of the present study is that,for bright <strong>low</strong>-<strong>mass</strong> protostars (L > 10 L ⊙ ), observationsfeasible <strong>from</strong> ground telescopes are sufficient to constrainthe <strong>HDO</strong> abundance profile and evaporation temperature,and no HSO observations are required. In the case of <strong>low</strong>luminosityprotostars (L < 10 L ⊙ ), both present ground-basedtelescopes and HSO seem to lack the sensitivity necessary toobserve <strong>HDO</strong> lines in a reasonable integration time. The <strong>HDO</strong>abundance profile and evaporation temperature will probablybe directly constrained by future high resolution observationswith the large sub/millimeter interferometer ALMA.Acknowledgements. We wish to thank the anonymous referee for veryuseful comments that helped to improve this article.ReferencesBergin, E. A., Neufeld, D. A., & Melnick, G. J. 1999, ApJ, 510, L145Bottinelli, S., Ceccarelli, C., Lefloch, B., et al. 2004a, ApJ, 615, 354Bottinelli, S., Ceccarelli, C., Neri, R., et al. 2004b, ApJ, 617, L69Caux, E., et al. in prep., A&ACazaux, S., Tielens, A. G. G. M., Ceccarelli, C., et al. 2003, ApJ, 593,L51Ceccarelli, C., Hollenbach, D. J., & Tielens, A. G. G. M. 1996, ApJ,471, 400Ceccarelli, C., Castets, A., Loinard, L., Caux, E., & Tielens, A. G.G. M. 1998, A&A, 338, L43Ceccarelli, C., Castets, A., Caux, E., et al. 2000a, A&A, 355, 1129Ceccarelli, C., Loinard, L., Castets, A., Tielens, A. G. G. M., & Caux,E. 2000b, A&A, 357, L9Ceccarelli, C., Maret, S., Tielens, A. G. G. M., Castets, A., & Caux,E. 2003, A&A, 410, 587Clough, S. A., Beers, Y., Klein, G. P., & Rothman, L. S. 1973, J. Chem.Phys., 59, 2254Dartois, E., Thi, W.-F., Geballe, T. R., et al. 2003, A&A, 399, 1009Gibb, E. L., Whittet, D. C. B., Boogert, A. C. A., & Tielens,A. G. G. M. 2004, ApJS, 151, 35Green, S. 1989, ApJS, 70, 813Jørgensen, J. K., Schöier, F. L., & van Dishoeck, E. F. 2002, A&A,389, 908Kuan, Y., Huang, H., Charnley, S. B., et al. 2004, ApJ, 616, L27Lis, D. C., Roueff, E., Gérin, M., et al. 2002, ApJ, 571, L55Maret, S., Ceccarelli, C., Caux, E., Tielens, A. G. G. M., & Castets,A. 2002, A&A, 395, 573Maret, S., Ceccarelli, C., Caux, E., et al. 2004, A&A, 416, 577Maret, S., Ceccarelli, C., Tielens, A., et al. 2005, A&A, submittedNeufeld, D. A., & Kaufman, M. J. 1993, ApJ, 418, 263Parise, B., Ceccarelli, C., Tielens, A. G. G. M., et al. 2002, A&A, 393,L49Parise, B., Simon, T., Caux, E., et al. 2003, A&A, 410, 897Parise, B., Castets, A., Herbst, E., et al. 2004, A&A, 416, 159Parise, B., Caux, E., Castets, A., et al. 2005, A&A, 431, 547Roberts, H., & Millar, T. J. 2000, A&A, 361, 388Roberts, H., Herbst, E., & Millar, T. J. 2003, ApJ, 591, L41Rodgers, S. D., & Charnley, S. B. 2003, ApJ, 585, 355Schöier, F. L., Jørgensen, J. K., van Dishoeck, E. F., & Blake, G. A.2002, A&A, 390, 1001Schöier, F. L., Jørgensen, J. K., van Dishoeck, E. F., & Blake, G. A.2004, A&A, 418, 185Shu, F. H. 1977, ApJ, 214, 488Stark, R., Sandell, G., Beck, S. C., et al. 2004, ApJ, 608, 341van der Tak, F. F. S., Schilke, P., Müller, H. S. P., et al. 2002, A&A,388, L53Vastel, C., Phillips, T. G., Ceccarelli, C., & Pearson, J. 2003, ApJ, 593,L97

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!