13.07.2015 Views

Modeling of Radiation Heat Transfer in Liquid Rocket Engines

Modeling of Radiation Heat Transfer in Liquid Rocket Engines

Modeling of Radiation Heat Transfer in Liquid Rocket Engines

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Model<strong>in</strong>g</strong> <strong>of</strong> <strong>Radiation</strong> <strong>Heat</strong><strong>Transfer</strong> <strong>in</strong> <strong>Liquid</strong> <strong>Rocket</strong> Eng<strong>in</strong>esM.H. NaraghiDepartment <strong>of</strong> Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, Manhattan College,Riverdale, NY 10471S. Dunn and D. CoatsSEA Inc., 1802 North Carson Street, Suite 200 Carson City, NV89701


Motivation• Design <strong>of</strong> cool<strong>in</strong>g circuits <strong>of</strong> regenaratively cooled rocketeng<strong>in</strong>es both a good physical <strong>in</strong>sight on the work<strong>in</strong>gs <strong>of</strong>the eng<strong>in</strong>e and a method <strong>of</strong> calculat<strong>in</strong>g the effects <strong>of</strong>design changes on the heat transfer via conjugatedconvection/conduction/radiation and cool<strong>in</strong>grequirements <strong>of</strong> LRE’s• Conjugated convection and conduction models for liquidrocket eng<strong>in</strong>es are well established (e.g., TDK-RTEmodel)• Combustion gases <strong>in</strong> liquid rocket eng<strong>in</strong>es consists <strong>of</strong>gases at very high temperatures (up to 7000R) withradiatively participat<strong>in</strong>g gases, e.g. water vapor, CO,CO 2 and soot.


Previous Works• Hammad, K.J., and Naraghi, M.H.N., “ExchangeFactor Model for Radiative <strong>Heat</strong> <strong>Transfer</strong> Analysis <strong>in</strong> <strong>Rocket</strong>Eng<strong>in</strong>es,” AIAA Journal <strong>of</strong> Thermophysics and <strong>Heat</strong> <strong>Transfer</strong>,Vol. 5, No. 3, pp. 327-334, 1991.• Liu, J., and Tiwari, S.N., “Radiative <strong>Heat</strong> <strong>Transfer</strong> Effects <strong>in</strong>Chemically React<strong>in</strong>g Nozzle Flows,” AIAA Journal <strong>of</strong>Thermophysics and <strong>Heat</strong> <strong>Transfer</strong>, Vol. 10, No. 3, 1996.• Bad<strong>in</strong>and, T. and Fransson, T.H., “Radiative <strong>Heat</strong> <strong>Transfer</strong> <strong>in</strong> FilmCooled LH/LO <strong>Rocket</strong> Eng<strong>in</strong>e Thrust Chamber”, AIAA Journal <strong>of</strong>Thermophysics and <strong>Heat</strong> <strong>Transfer</strong>, Vol. 17, No. 2, pp. 29-34, 2003.• Wang, Tee-See, “Multidimensional Unstructured-Grid <strong>Liquid</strong> <strong>Rocket</strong>Eng<strong>in</strong>e Nozzle Performance and <strong>Heat</strong> <strong>Transfer</strong> Analysis,”AIAA paper 2004-4016 presented at the 40th AIAA/ASME/SAE/ASEEJo<strong>in</strong>t Propulsion Conference and Exhibit July 11-14, 2004,Fort Lauderdale, Florida.


<strong>Radiation</strong> <strong>Heat</strong> <strong>Transfer</strong> fromHot-Gases• Combustion Gases consist <strong>of</strong> several radiativelyparticipat<strong>in</strong>g species• These species are: soot, CO, CO 2 , and watervapor• HITRAN and HITEMP database is used toevaluate absorption coefficients• Properties <strong>of</strong> the radiatively participat<strong>in</strong>g speciesare spectral, consist<strong>in</strong>g <strong>of</strong> a large number <strong>of</strong>bands• A Plank-mean approach is be used to evaluateabsorption factors


Exchange Factors betweengas and surface elementsr sirxr gidg ids ir gjr si dg j ds j ψjjijijijjjiddsrdssψτββπψψ∫−−=maxm<strong>in</strong>2)(coscos2),(rrrrrrjjijiijjjtjiddxdrrkdsgjψβ τπψψ∫−−=maxm<strong>in</strong>2)(cos2),(rrrrrrjjijijjjjiddsrdgsψτβπψψ∫−−=maxm<strong>in</strong>2)(cos2),(rrrrrrjjijijjjtjiddxdrrkdggjψτπψψ∫−−=maxm<strong>in</strong>2)(2),(rrrrrrjik tjierrr(r−−=− )τ


Radiative Nodal Po<strong>in</strong>tsNodal po<strong>in</strong>ts <strong>in</strong> axialdirection, the sameas stationsNodal po<strong>in</strong>ts <strong>in</strong>radial direction


Total Exchange FactorsAccount for wall reflection and gas scatter<strong>in</strong>gDSS[ { [ ] } ]−1−1I − dss + dsgωW I − dggωW dgs ρW dss + dsgωW [ I − dss W ]{−1= ω dgs}α0g0g−1[ I − dggωW ] dgs I − ρW dss + dsgωW [ I − dgg W ]s[ { }] −1-1dgs αDGS = ω0gs0g0g0g0gWall heat flux at station nq2nr+ mm⋅nrr, n= ∑ ws,jDSjSnEs,j+ ∑ wg,jDGjSnEg,j−j=1j=1Es= εσT4n s nEgj=4 (1 ) 4Kt−ωl 0σTgjEs,nThis model is built <strong>in</strong> the TDK’s radiation module (RAD2005)


0.6Plank-Mean Properties for Water-Vapor0.5Ka/P (cm bar) -10.40.30.2HITEMPHITRAN0.100 500 1000 1500 2000 2500 3000T, K


Plank-Mean Properties for CO 20.40.35ka/P (cm bar) -10.30.250.20.15HITEMPHITRAN0.10.0500 500 1000 1500 2000 2500 3000T, K


Plank-Mean Properties for CO0.040.035Ka/P (cm bar) -10.030.0250.020.015HITEMPHITRAN0.010.00500 500 1000 1500 2000 2500 3000T (K)


Absorption Coefficient <strong>of</strong> SootWhen eng<strong>in</strong>es runn<strong>in</strong>g with rich hydrocarbon fuels soot is present<strong>in</strong> the combustion gases.As <strong>of</strong> today little is known about the nature <strong>of</strong> the production,Destruction, shape and size distribution. An approximate value<strong>of</strong> soot absorption coefficient can be obta<strong>in</strong>ed via:k = 3.72f C T / Ca v 0 2CWhere f v is volume fraction <strong>of</strong> soot0=( n2−k236+π2)nk2+ 4nC 2 =1.4388 cm K, n and k are real and imag<strong>in</strong>ary part <strong>of</strong> <strong>in</strong>dex <strong>of</strong>refraction2k2


Computer ModelThe properties and computational models(RAD2005) discussed were <strong>in</strong>corporated <strong>in</strong>the TDK-RTE.Naraghi, M.H.N., Dunn, S., and Coats, D., “A Model forDesign and Analysis <strong>of</strong> Regeneratively Cooled <strong>Rocket</strong>Eng<strong>in</strong>es,” AIAA paper 2005-3852, present at the Jo<strong>in</strong>tPropulsion Conference, Fort Lauderdale, July 2004.


Results for a LH2-LO2 Eng<strong>in</strong>e(SSME)The specifications <strong>of</strong> this eng<strong>in</strong>e are:Chamber pressure3027 psiaO/F 6.0Contraction ratio 3.0Expansion ratio 77.5Throat diameter10.3 <strong>in</strong>chesPropellantLH2-LO2CoolantLH2Total coolant flow rate29.06 lb/sCoolant <strong>in</strong>let temperature95RCoolant <strong>in</strong>let stagnation pressure 6452 psiaNumber <strong>of</strong> cool<strong>in</strong>g channels 430


Effects <strong>of</strong> radiation on the wallheat flux <strong>of</strong> the SSMEWall <strong>Heat</strong> Flux (Btu/<strong>in</strong> 2 s)11010090807060504030No <strong>Radiation</strong>With <strong>Radiation</strong>, HITRANWith <strong>Radiation</strong>, HITEMP20-15 -10 -5 0 5 10Axial Position (<strong>in</strong>)


Effects <strong>of</strong> radiation on the walltemperature <strong>of</strong> the SSME1600Wall Surface Temperature (R)140012001000800600No <strong>Radiation</strong>With <strong>Radiation</strong> HITRANWith <strong>Radiation</strong> HITEMP-15 -10 -5 0 5 10Axial Position (<strong>in</strong>)


Effects <strong>of</strong> radiation on the coolantstagnation temperature <strong>of</strong> the SSMECoolant Stagnation Temperature (R)700600500400300200100-15 -10 -5 0 5 10Axial Position (<strong>in</strong>)No radiationWith <strong>Radiation</strong>, HITRANWith <strong>Radiation</strong>, HITEMP


Effects <strong>of</strong> radiation on coolantstagnation pressure <strong>of</strong> SSME70006500Coolant Stagnation Pressure (psi)600055005000With <strong>Radiation</strong>, HITEMPWith <strong>Radiation</strong>, HITRANNo <strong>Radiation</strong>45004000-15 -10 -5 0 5 10Axial Position (<strong>in</strong>)


Results for a RP1-LO2 Eng<strong>in</strong>eThe specifications <strong>of</strong> this eng<strong>in</strong>e are:Chamber pressure2,000 psiO/F (mixture ratio) 1.8Contraction ratio 3.4Expansion ratio 7.20Throat diameter2.6 <strong>in</strong>chPropellantRP1-LO2CoolantLO2Total coolant flow rate32.893 lb/sCoolant <strong>in</strong>let temperature 160°RCoolant <strong>in</strong>let pressure3,000 psiNumber <strong>of</strong> cool<strong>in</strong>g channels 100Throat region channel aspect ratio 2.5


Contour <strong>of</strong> the RP1-LOX eng<strong>in</strong>e108L<strong>in</strong>er radius ( <strong>in</strong> )6420-10 -8 -6 -4 -2 0 2 4Axial location (<strong>in</strong>)


Effects <strong>of</strong> radiation on the wallheat flux <strong>of</strong> the RP1-LOX eng<strong>in</strong>e5045QW, BTU/s <strong>in</strong> 24035302520No radiationWith <strong>Radiation</strong> HITEMP151050-10 -5 0 5Axial location (<strong>in</strong>)


Effects <strong>of</strong> radiation on the walltemperature <strong>of</strong> the RP1-LOXeng<strong>in</strong>e140012001000TW (R)800600No RaditionWith Radition HITEMP400200-10 -5 0 5Axial location (<strong>in</strong>)


Effects <strong>of</strong> radiation on the coolanttemperature <strong>of</strong> the RP1-LOXeng<strong>in</strong>e450400Coolant temperature, R350300250No <strong>Radiation</strong>With Rdiation HITEMP200150-10 -5 0 5Axial location, <strong>in</strong>


Effects <strong>of</strong> radiation on the coolantstagnation pressure <strong>of</strong> the RP1-LOX3000eng<strong>in</strong>e2900Coolant stagnation pressure, psi28002700260025002400No radiationWith radiation2300-10 -5 0 5Axial location, <strong>in</strong>


Effects <strong>of</strong> radiation on the coolant Mach0.35number <strong>of</strong> the RP1-LOX eng<strong>in</strong>e0.3Coolant Mach number0.250.20.150.1No radiationWith <strong>Radiation</strong>, HITEMP0.050-10 -5 0 5Axial location, <strong>in</strong>


Conclud<strong>in</strong>g Remarks• The effects <strong>of</strong> gas and surface radiation onthe wall temperature, coolant pressure,temperature and Mach number werestudied• The results presented demonstrate thatalthough the <strong>in</strong>crease <strong>in</strong> heat flux due toradiation is small, it can have a significanteffect on the wall temperature and coolantflow characteristics


Conclud<strong>in</strong>g Remarks• For a LH2/LO2 eng<strong>in</strong>e it is shown that theradiation has a small effect on the walltemperature <strong>of</strong> the diverg<strong>in</strong>g section <strong>of</strong> thenozzle• the radiation results <strong>in</strong> a substantial <strong>in</strong>crease <strong>in</strong>the wall temperature <strong>of</strong> the thrust chamber andconverg<strong>in</strong>g section <strong>of</strong> the nozzle, such that thelocal peak temperature is the same order <strong>of</strong>magnitude as the throat temperature


Conclud<strong>in</strong>g Remarks• For the RP1/LO2 eng<strong>in</strong>e, radiative heattransfer resulted <strong>in</strong> a 30% <strong>in</strong>crease <strong>in</strong> walltemperature. Additionally, it significantly<strong>in</strong>creased the coolant pressure drop andMach number• neglect<strong>in</strong>g radiation dur<strong>in</strong>g the designphase may result <strong>in</strong> a faulty cool<strong>in</strong>gsystem


Availability <strong>of</strong> the <strong>Radiation</strong> CodeRAD2005• The model presented is <strong>in</strong>corporated <strong>in</strong> aprogram (RAD2005) which can be l<strong>in</strong>kedto TDK and RTE• TDK from S<strong>of</strong>tware Eng<strong>in</strong>eer<strong>in</strong>gAssociates, Inc. (sea<strong>in</strong>c.com)• RTE from Tara Technologies, LLC(tara-technologies.com)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!