13.07.2015 Views

Methodology for the Evaluation of Natural Ventilation in ... - Cham

Methodology for the Evaluation of Natural Ventilation in ... - Cham

Methodology for the Evaluation of Natural Ventilation in ... - Cham

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Table 19. Summary <strong>of</strong> Values and Dimensionless Parameters <strong>for</strong> Full-Scale Build<strong>in</strong>g, Scaled Airand Scaled Water ModelsAir-Build<strong>in</strong>g Air-Model Water Model Water ModelScale 1 12 12 100g (m/s 2 ) 9.8 9.8 9.8 9.8β (1/°K) 0.0033 0.0034 0.0002 0.0002ΔT (°K) 5 30 6 6g'=gβΔT 0.1655 0.9800 0.0118 0.0118H=height <strong>of</strong> Atrium (m) 15 1.2 1.2 0.75α (m 2 /s) 2.16x10 -5 2.40 x10 -5 1.44 x10 -7 1.44x10 -7ν (m 2 /s) 1.477 x10 -5 1.60 x10 -5 1.01 x10 -6 1.01 x10 -6A CS (m 2 ) 6.32 0.522 0.559 0.037Pr 0.7 0.7 7.0 7.0Re 6.74x10 5 3.54 x10 4 1.10 x10 4 1.70 x10 4Pe=PrRe 4.72 x10 5 2.47 x10 4 7.68 x10 4 1.19 x10 5Gr 3.84 x10 13 7.94 x10 9 2.05 x10 8 3.65 x10 9Ra=PrGr 2.69 x10 13 5.56 x10 9 1.43 x10 9 2.55 x10 10For <strong>the</strong> reduced scale air model, <strong>the</strong> primary characteristic length used <strong>in</strong> evaluat<strong>in</strong>g <strong>the</strong> occupiedzones is <strong>the</strong> hydraulic diameter <strong>of</strong> <strong>the</strong> cross section <strong>of</strong> a s<strong>in</strong>gle floor. This parameter accuratelydescribes <strong>the</strong> ma<strong>in</strong> flow through <strong>the</strong> model and provides a characteristic length <strong>of</strong> 0.52m.However, <strong>the</strong> height <strong>of</strong> <strong>the</strong> atrium is used <strong>in</strong> evaluat<strong>in</strong>g <strong>the</strong> buoyancy velocity, s<strong>in</strong>ce it is <strong>the</strong>height difference between <strong>the</strong> <strong>in</strong>let and <strong>the</strong> outlet, at <strong>the</strong> top <strong>of</strong> <strong>the</strong> stack, which drives <strong>the</strong> airflow. The Reynolds number <strong>for</strong> <strong>the</strong> model was approximately 3.54x10 4 , us<strong>in</strong>g <strong>the</strong> hydraulicdiameter <strong>of</strong> a s<strong>in</strong>gle heated zone. This falls <strong>in</strong> <strong>the</strong> turbulent regime. The Grash<strong>of</strong> number <strong>for</strong> <strong>the</strong>scale model is on <strong>the</strong> order <strong>of</strong> 1.2x10 8 . When compar<strong>in</strong>g both <strong>the</strong> Reynolds number and Grash<strong>of</strong>number to those calculated <strong>for</strong> <strong>the</strong> prototype build<strong>in</strong>g <strong>for</strong> buoyancy-driven flow, <strong>the</strong> prototypebuild<strong>in</strong>g is also <strong>in</strong> <strong>the</strong> turbulent regime (Re=7.1x10 5 ) and buoyancy dom<strong>in</strong>ated flow(Gr=9.1x10 10 ). F<strong>in</strong>ally, <strong>for</strong> <strong>the</strong>rmal similarity <strong>the</strong> temperature differences and heat flow mustrema<strong>in</strong> proportional. The <strong>in</strong>ternal heat load per square meter (W/m 2 ) is scaled us<strong>in</strong>g <strong>the</strong> same12 th scale to provide <strong>the</strong> similar buoyancy effect. The temperatures recorded from <strong>the</strong> reducedscaleair model are non-dimensionalized us<strong>in</strong>g <strong>the</strong> ΔT ref to obta<strong>in</strong> <strong>the</strong> result<strong>in</strong>g full-scale build<strong>in</strong>gtemperatures <strong>for</strong> analysis.From Table 19, <strong>the</strong> critical Reynolds number, 2.3x10 3 is achieved <strong>for</strong> all models and <strong>the</strong> fullscaleprototype build<strong>in</strong>g. The air model achieves a slightly closer value <strong>of</strong> Reynolds number thanei<strong>the</strong>r <strong>of</strong> <strong>the</strong> water models, but is still <strong>of</strong>f by a factor <strong>of</strong> 10. When <strong>the</strong> Prandtl number isaccounted <strong>for</strong> us<strong>in</strong>g <strong>the</strong> Peclet number, Pe, <strong>the</strong> small-scale water model achieves a closer matchto <strong>the</strong> full-scale prototype than ei<strong>the</strong>r <strong>of</strong> <strong>the</strong> o<strong>the</strong>r models. It is assumed that each <strong>of</strong> <strong>the</strong> models,as well as <strong>the</strong> prototype build<strong>in</strong>g, is operat<strong>in</strong>g <strong>in</strong> a turbulent regime <strong>for</strong> <strong>the</strong> airflow <strong>in</strong> <strong>the</strong> heatedzone. For <strong>the</strong> buoyancy-driven case, equality <strong>of</strong> Grash<strong>of</strong> number is required after meet<strong>in</strong>g <strong>the</strong>critical Reynolds number condition. The twelfth-scale air model and 100 th scale water modelmore closely match <strong>the</strong> Grash<strong>of</strong> number, but none <strong>of</strong> <strong>the</strong> models matches it exactly. Someresearch (E<strong>the</strong>ridge and Sandberg 1996) that <strong>in</strong>dicates that <strong>for</strong> buoyancy-driven flow it issufficient to achieve critical values <strong>of</strong> Grash<strong>of</strong> number when us<strong>in</strong>g air as <strong>the</strong> work<strong>in</strong>g fluid.They propose a critical value <strong>of</strong> Grash<strong>of</strong> number <strong>in</strong> <strong>the</strong> range <strong>of</strong> 10 6 to 10 9 based on someexperimental work, and us<strong>in</strong>g <strong>the</strong> height <strong>of</strong> a room as <strong>the</strong> characteristic length. When <strong>the</strong> room90

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!