13.07.2015 Views

Methodology for the Evaluation of Natural Ventilation in ... - Cham

Methodology for the Evaluation of Natural Ventilation in ... - Cham

Methodology for the Evaluation of Natural Ventilation in ... - Cham

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1.4 Goals <strong>of</strong> this ResearchMonitor<strong>in</strong>g alone provides <strong>in</strong>sight <strong>in</strong>to <strong>the</strong> operation <strong>of</strong> a particular build<strong>in</strong>g over a determ<strong>in</strong>edamount <strong>of</strong> time, but monitor<strong>in</strong>g alone does not enable that <strong>in</strong>sight to be extended and use topredict <strong>the</strong> per<strong>for</strong>mance <strong>of</strong> o<strong>the</strong>r build<strong>in</strong>gs. The focus <strong>of</strong> this research is to develop amethodology that can be used to evaluate and <strong>the</strong>n predict <strong>the</strong> per<strong>for</strong>mance <strong>of</strong> natural ventilation<strong>in</strong> o<strong>the</strong>r build<strong>in</strong>gs. The development starts with <strong>the</strong> monitor<strong>in</strong>g <strong>of</strong> an exist<strong>in</strong>g naturallyventilated build<strong>in</strong>g with certa<strong>in</strong> design characteristics. Through model<strong>in</strong>g and supported by datafrom monitor<strong>in</strong>g, <strong>the</strong> operation <strong>of</strong> <strong>the</strong> build<strong>in</strong>g under certa<strong>in</strong> environmental conditions can beunderstood. The natural ventilation strategies modeled are pure buoyancy-driven flow, w<strong>in</strong>ddrivenflow, and comb<strong>in</strong>ed w<strong>in</strong>d-buoyancy driven flow. By us<strong>in</strong>g data from a monitoredbuild<strong>in</strong>g to calibrate <strong>the</strong> results <strong>of</strong> a reduced-scale air model through dimensional analysis andsimilitude, <strong>the</strong> configuration <strong>of</strong> <strong>the</strong> model <strong>the</strong>n can be altered to determ<strong>in</strong>e what impact changes<strong>in</strong> certa<strong>in</strong> design characteristics would have under <strong>the</strong> three natural ventilation strategies. Inaddition, <strong>the</strong> reduced-scale air model can provide a validation <strong>of</strong> models us<strong>in</strong>g computationalfluid dynamic simulations. Once developed this new methodology will provide <strong>the</strong> framework<strong>for</strong> fur<strong>the</strong>r<strong>in</strong>g <strong>the</strong> understand<strong>in</strong>g <strong>of</strong> <strong>the</strong> per<strong>for</strong>mance <strong>of</strong> natural ventilation <strong>in</strong> build<strong>in</strong>gs andimprov<strong>in</strong>g current simulation methods to better predict temperatures and flow patterns with<strong>in</strong>naturally ventilated build<strong>in</strong>gs. First, <strong>the</strong> underly<strong>in</strong>g driv<strong>in</strong>g <strong>for</strong>ces <strong>of</strong> natural ventilation must beunderstood and applied to airflow <strong>in</strong> build<strong>in</strong>gs. Then key design characteristics will be moreeasily identified so that <strong>the</strong>ir affect on <strong>the</strong> <strong>in</strong>door environment can be enhanced. This <strong>in</strong>creasedpredictive ability <strong>in</strong> turn will help <strong>in</strong> <strong>the</strong> development <strong>of</strong> better simulation tools <strong>for</strong> designers andeng<strong>in</strong>eers to assess <strong>the</strong> benefits <strong>of</strong> <strong>in</strong>corporat<strong>in</strong>g passive cool<strong>in</strong>g <strong>in</strong> new or rehabilitatedcommercial build<strong>in</strong>gs.While this research has three parts (monitor<strong>in</strong>g, model<strong>in</strong>g, and simulation), each part is used <strong>for</strong>compar<strong>in</strong>g and evaluat<strong>in</strong>g a model<strong>in</strong>g procedure. Data from <strong>the</strong> monitor<strong>in</strong>g <strong>of</strong> a naturallyventilated build<strong>in</strong>g is used <strong>in</strong> <strong>the</strong> development and construction <strong>of</strong> a reduced-scale air model thatcan <strong>the</strong>n be utilized to evaluate design characteristics <strong>of</strong> <strong>the</strong> orig<strong>in</strong>al build<strong>in</strong>g. The numericalsimulations <strong>of</strong> <strong>the</strong> reduced-scale model provide verification <strong>of</strong> results from <strong>the</strong> experimentalwork, and identify issues <strong>in</strong> numerical model<strong>in</strong>g tools. The experimental work is nondimensionalizedto compare it to <strong>the</strong> orig<strong>in</strong>al data from <strong>the</strong> full-scale build<strong>in</strong>g and numericalsimulation <strong>of</strong> <strong>the</strong> full-scale build<strong>in</strong>g, and <strong>the</strong>n applied to determ<strong>in</strong>e <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> <strong>the</strong> threetypes <strong>of</strong> natural ventilation on temperature distribution and airflow patterns with<strong>in</strong> <strong>the</strong> build<strong>in</strong>g.1.5 Scope <strong>of</strong> documentThis <strong>the</strong>sis presents <strong>the</strong> foundation <strong>of</strong> <strong>the</strong> methodology <strong>for</strong> model<strong>in</strong>g natural ventilation airflow<strong>in</strong> build<strong>in</strong>gs. The focus is on <strong>the</strong> three natural ventilation cases: buoyancy-driven, w<strong>in</strong>d-driven,and comb<strong>in</strong>ed buoyancy-w<strong>in</strong>d driven ventilation. A methodology is developed and used toevaluate natural ventilation <strong>in</strong> a commercial <strong>of</strong>fice build<strong>in</strong>g, us<strong>in</strong>g a reduced-scale air model. Anumerical model us<strong>in</strong>g computational fluid dynamics was created to check <strong>the</strong> experimentalresults and better understand some <strong>of</strong> <strong>the</strong> heat transfer phenomena, not readily obta<strong>in</strong>ed throughexperimental work. With <strong>the</strong> validation <strong>of</strong> this methodology, o<strong>the</strong>r configurations <strong>of</strong> naturallyventilated build<strong>in</strong>gs can be evaluated us<strong>in</strong>g reduced-scale air models (or CFD with care <strong>in</strong>22

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!