12.07.2015 Views

Water vapour diffusion at the boundary between ... - IARC Research

Water vapour diffusion at the boundary between ... - IARC Research

Water vapour diffusion at the boundary between ... - IARC Research

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>W<strong>at</strong>er</strong> <strong>vapour</strong> <strong>diffusion</strong> <strong>at</strong> <strong>the</strong> <strong>boundary</strong> <strong>between</strong> snow and groundPermafrost, Phillips, Springman & Arenson (eds)© 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 582 7N. Osokin, R. Samoilov, A. Sosnovskiy, V. ZhidkovInstitute of Geography, Russian Academy of Sciences, Moscow, RussiaABSTRACT: We evalu<strong>at</strong>ed <strong>the</strong> w<strong>at</strong>er <strong>vapour</strong> <strong>diffusion</strong> flux within <strong>the</strong> snow layer <strong>at</strong> <strong>the</strong> soil surface and from<strong>the</strong> upper layer of ground into <strong>the</strong> snow. We also determined approxim<strong>at</strong>e values of thinning of <strong>the</strong> snow layer <strong>at</strong>soil surface, taking into account various <strong>the</strong>rmal and physical properties of snow and conditions of snow accumul<strong>at</strong>ion,including w<strong>at</strong>er <strong>vapour</strong> super-s<strong>at</strong>ur<strong>at</strong>ion in snow.1 INTRODUCTIONSnow cover significantly influences cryogenicprocesses in <strong>the</strong> ground. On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> <strong>the</strong>rmaland physical st<strong>at</strong>es of <strong>the</strong> uppermost layer of <strong>the</strong>soil influence <strong>the</strong> <strong>the</strong>rmal regime of <strong>the</strong> snow layer <strong>at</strong>soil surface and he<strong>at</strong> and mass transfer fluxes.In this paper, we develop a m<strong>at</strong>hem<strong>at</strong>ical model todescribe <strong>the</strong> connections <strong>between</strong> <strong>the</strong> <strong>at</strong>mosphere, <strong>the</strong>snow cover and <strong>the</strong> ground. The model includes: (1)variability in meteorological parameters and snowaccumul<strong>at</strong>ion conditions (a lag <strong>between</strong> <strong>the</strong> momentwhen neg<strong>at</strong>ive mean daily temper<strong>at</strong>ure is reached – d ,and <strong>the</strong> beginning of snow accumul<strong>at</strong>ion and a regimeof snow accumul<strong>at</strong>ion); (2) changes in <strong>the</strong> density,<strong>the</strong>rmal and physical characteristics of snow; (3) variabilityin soil properties (<strong>the</strong>rmal conductivity, specifiche<strong>at</strong> and l<strong>at</strong>ent he<strong>at</strong>) due to freezing; (4)availability of a phase transform<strong>at</strong>ion layer and moisturemigr<strong>at</strong>ion to <strong>the</strong> freezing plane.2 THEORETICAL BASIS OF THE MODELNote: The following symbols are used in <strong>the</strong> equ<strong>at</strong>ions:– T temper<strong>at</strong>ure, °K;– t temper<strong>at</strong>ure, °C;– z, x, vertical coordin<strong>at</strong>es in snow cover andsoil, and a <strong>boundary</strong> of phase separ<strong>at</strong>ion;– h soil layer thickness;– time;– <strong>the</strong>rmal conductivity;– density;– w total moisture content;– c specific he<strong>at</strong> capacity;– moisture <strong>diffusion</strong> coefficient.The m<strong>at</strong>hem<strong>at</strong>ical model uses <strong>the</strong> followingequ<strong>at</strong>ions:Fourier’s equ<strong>at</strong>ion for he<strong>at</strong> conduction in snow,thawed and frozen ground with time-dependent <strong>the</strong>rmaland physical parameters for snow and ground:c rjj(1)An equ<strong>at</strong>ion for moisture movement within <strong>the</strong>thawed part of <strong>the</strong> ground:wTjTjlj ⎛ ⎞x⎝⎜ x⎠⎟th ⎛ x k w w th ⎞th( )⎝⎜x⎠⎟(2)in which index “j” is substituted for “s” in snow withthickness h s (), f – in a frozen zone (0 x ) and“th” in a thawed zone of <strong>the</strong> soil (x h). Moistureflow and he<strong>at</strong> flow <strong>at</strong> <strong>the</strong> bottom <strong>boundary</strong> of <strong>the</strong>thawed zone are assumed to be equal to zero.Stefan condition on <strong>the</strong> <strong>boundary</strong> <strong>between</strong> thawedand frozen ground:⎛ T ⎞l rLw w d j ⎛ L k w ⎞th w⎝⎜x⎠⎟ ( )d ⎝⎜x⎠⎟t(3)The dependence of effective volumetric he<strong>at</strong> capacityof <strong>the</strong> frozen ground on total moisture:c , ( T, w) c ( w) Lre f f fww( T)T(4)where <strong>the</strong> unfrozen moisture in <strong>the</strong> ground w w m(273 T) n <strong>at</strong> m 9.8325 and n 0.3221 (Osokinet al. 2000).To solve equ<strong>at</strong>ions (1)–(4), <strong>the</strong> following conditionsare set: <strong>boundary</strong> conditions <strong>at</strong> <strong>the</strong> surface and in <strong>the</strong>upper layer of <strong>the</strong> soil; <strong>the</strong> initial distribution of temper<strong>at</strong>ureand moisture in <strong>the</strong> thawed soil; <strong>the</strong> dynamicsof meteorological elements, snow accumul<strong>at</strong>ion;and <strong>the</strong> <strong>the</strong>rmal and physical parameters of snow.857


He<strong>at</strong> exchange with <strong>the</strong> <strong>at</strong>mosphere occurs <strong>at</strong> <strong>the</strong> soilsurface when h 0 (or on snow cover, when z h s ):l ms ( )Tms ( )xwhere: Q th ,Q e ,Q r , Q sn are he<strong>at</strong> flows resulting fromsensible he<strong>at</strong> transfer, e<strong>vapour</strong><strong>at</strong>ion, effective radi<strong>at</strong>ionand solar radi<strong>at</strong>ion, respectively.He<strong>at</strong> exchange as a result of effective radi<strong>at</strong>ion isdefined as:Q r T f 4 (0.254 5 10 5 e f )(1 nc r 4T f 3 (T m(s),0 T f )where: is <strong>the</strong> emissivity of <strong>the</strong> surface; is <strong>the</strong>Stefan–Boltzmann constant; T f ,T m(s) are <strong>the</strong> temper<strong>at</strong>uresof <strong>the</strong> air and soil surface, respectively, °K; n iscloud cover; e f is w<strong>at</strong>er <strong>vapour</strong> elasticity in air; c r is aconstant linearly dependent on l<strong>at</strong>itude th<strong>at</strong> equals 0.8and 0.7 <strong>at</strong> l<strong>at</strong>itudes 70° and 45°, respectively.Total he<strong>at</strong> flow is calcul<strong>at</strong>ed from <strong>the</strong> equ<strong>at</strong>ions:Q e,th (T m(s),0 T e,f ) e,th th (1 1.95 10 2 a 1 ) 0.205(T f /100) 3T e,f ( th (T f 1.95 10 2 (b 1 e f f ) 19.9(T f /100) 4 Q sn )/ e,thwhere: <strong>the</strong> coefficient of he<strong>at</strong> exchange in <strong>the</strong> ground th is calcul<strong>at</strong>ed according to Pavlov’s (1979) formula: th v 0.5 (7 7.2v 2 )and in snow according to <strong>the</strong> formula of Kuzmin(1961): th 3.4 2.2vwhere: v is wind speed; f is <strong>the</strong> humidity of air.The model calcul<strong>at</strong>es changes in temper<strong>at</strong>ure in snowand ground during freezing. This allows us to estim<strong>at</strong>e<strong>the</strong> intensity of w<strong>at</strong>er <strong>vapour</strong> <strong>diffusion</strong> in snow and <strong>the</strong>upper layer of <strong>the</strong> ground. The w<strong>at</strong>er <strong>vapour</strong> <strong>diffusion</strong>flux I i <strong>at</strong> a depth h i is calcul<strong>at</strong>ed using <strong>the</strong> formula:I i D(t i )(e i e i 1 )/h Q Q Q Qth e r snwhere: e i is w<strong>at</strong>er <strong>vapour</strong> density in <strong>the</strong> layer “i ”; his a distance <strong>between</strong> nearby layers of snow; D is <strong>the</strong>temper<strong>at</strong>ure-dependent coefficient of w<strong>at</strong>er <strong>vapour</strong><strong>diffusion</strong> in snow derived by Pavlov (1979):D(t) 0.92 10 4 0.29 10 5 t 0.56 10 7 t 2 (5)The coefficient of <strong>diffusion</strong> in <strong>the</strong> soil is also calcul<strong>at</strong>edfrom this equ<strong>at</strong>ion.To define <strong>the</strong> w<strong>at</strong>er <strong>vapour</strong> concentr<strong>at</strong>ion in snowwe normally use <strong>the</strong> temper<strong>at</strong>ure-dependent s<strong>at</strong>ur<strong>at</strong>ion<strong>vapour</strong> density formula of Magnus:e h (t) e o exp[17t/(t 235)]where: e o is <strong>the</strong> s<strong>at</strong>ur<strong>at</strong>ion w<strong>at</strong>er <strong>vapour</strong> density, equalto 0.0049 kg/m 3 <strong>at</strong> t 0°C. However, experimentalresearch has shown th<strong>at</strong> super-s<strong>at</strong>ur<strong>at</strong>ion of w<strong>at</strong>er<strong>vapour</strong> can occur within snow (Golubev et al. 1997).Thus <strong>the</strong> absolute value of super-s<strong>at</strong>ur<strong>at</strong>ion remainspractically constant when <strong>the</strong> temper<strong>at</strong>ure changes, and<strong>the</strong> rel<strong>at</strong>ive super-s<strong>at</strong>ur<strong>at</strong>ion increases when <strong>the</strong> temper<strong>at</strong>urefalls. The experimental curve of rel<strong>at</strong>ivesuper-s<strong>at</strong>ur<strong>at</strong>ion K c e/e h (Golubev et al. 1997), weapproxim<strong>at</strong>e by:K c 1.0167 0.0067t (6)The opposite phenomenon, w<strong>at</strong>er <strong>vapour</strong> unders<strong>at</strong>ur<strong>at</strong>ion,occurs in <strong>the</strong> ground. Thus, when soil moistureincreases, w<strong>at</strong>er <strong>vapour</strong> amounts also increase,achieving s<strong>at</strong>ur<strong>at</strong>ion when humidity is 30%. Experimentalresults concerning w<strong>at</strong>er <strong>vapour</strong> rel<strong>at</strong>ive unders<strong>at</strong>ur<strong>at</strong>ionin pores of <strong>the</strong> ground, when <strong>the</strong> soilmoisture “w” changes in <strong>the</strong> range from 10 up to 30%(Golubev et al., 1997), are approxim<strong>at</strong>ed using <strong>the</strong>formula:K c 0.925 0.0025w (7)It is presumed th<strong>at</strong> if w<strong>at</strong>er <strong>vapour</strong> concentr<strong>at</strong>ionexceeds <strong>the</strong> s<strong>at</strong>ur<strong>at</strong>ion value, condens<strong>at</strong>ion occurs onice crystals and snow density increases. At w<strong>at</strong>er<strong>vapour</strong> under-s<strong>at</strong>ur<strong>at</strong>ion, ice sublim<strong>at</strong>ion and thinningof <strong>the</strong> snow occurs.The change of snow density in <strong>the</strong> layer “i” during time is estim<strong>at</strong>ed with well-known values of <strong>the</strong>intensity and <strong>the</strong> direction of w<strong>at</strong>er <strong>vapour</strong> <strong>diffusion</strong>employing <strong>the</strong> formula: t (I i I i 1 )/h3 MODEL USENumerical experiments were carried out with <strong>the</strong>model to estim<strong>at</strong>e <strong>the</strong> influence of snow <strong>the</strong>rmal andphysical properties and snow accumul<strong>at</strong>ion on <strong>the</strong><strong>the</strong>rmal regime and mass transfer in <strong>the</strong> snow layer <strong>at</strong><strong>the</strong> soil surface and in <strong>the</strong> upper layer of <strong>the</strong> soil.Snow and clim<strong>at</strong>e conditions were parameterized asfollows:The dependence of snow thickness h s on time s ,was defined with h s /h max ( s / max ) 0.5 , where h max 70 cm and max 180 days. The dependence of snow858


Table 1. Coefficients used to rel<strong>at</strong>e snow density to snowthickness.CoefficientsRegion a b Density valuesNorth West Siberia 83.06 0.355 HighChukotka 46.00 0.360 MeanYakutsk 59.20 0.302 Lowdensity s on <strong>the</strong> thickness h s was calcul<strong>at</strong>ed from <strong>the</strong>formula s (h s ) ah s b , where <strong>the</strong> coefficients a, b aretaken from different regions of Russia. “High”, “mean”and “low” values of density were employed based onTable 1.The coefficient of effective <strong>the</strong>rmal conductivity ofsnow was calcul<strong>at</strong>ed from formulae derived from morethan 20 published empirical rel<strong>at</strong>ionships (Osokinet al. 2000). The resulting curve of “mean” values isapproxim<strong>at</strong>ed with: s 9.165 10 2 3.814 10 4 s 2.905 10 6 s2“High” and “low” experimental curves s ( s ) F( s )are calcul<strong>at</strong>ed from:Freezing depth, m1,61,41,210,80,60,40,200 20 40 60 80 100 120 140 160 180 200Freezing time, daysFigure 1. Modeled snow cover thickness (m) (line 1) andsoil freezing depth (m) (line 2) against time (days).Temper<strong>at</strong>ure,ºC0-5-10-15-20-25-30-351 20 50 100 150 200Freezing time, daysFigure 2. Modeled soil surface temper<strong>at</strong>ure (line 1) andair temper<strong>at</strong>ure (line 2) against time (days).12 s h 1.36 10 2 1.110 3 s s 2 , s l 2.96 10 2 3 10 4 s 2 10 6 s 2 .In <strong>the</strong> calcul<strong>at</strong>ions, “high”, “low” or “mean” <strong>the</strong>rmaland physical parameters of snow are used to establishranges of results. They are determined from correspondingpairs of rel<strong>at</strong>ionships of density and <strong>the</strong>rmalconductivity (for example sh II sh ).The change of mean daily air temper<strong>at</strong>ure during<strong>the</strong> cold period is calcul<strong>at</strong>ed from a sine-wave functionused for <strong>the</strong> annual cycle.The temper<strong>at</strong>ure of falling snow is considered to beequal to <strong>the</strong> temper<strong>at</strong>ure of <strong>the</strong> air, wind speed is 5 m/s,moisture of <strong>the</strong> air is 70% and cloud cover is 0.65.The delay before <strong>the</strong> beginning of snow coverestablishment is equal to d 0, 8 and 16 days.Soil conditions were parameterized as follows:The ground is loamy soil with a density of1600 kg/m 3 , a moisture content of 25%, and a s<strong>at</strong>ur<strong>at</strong>edw<strong>at</strong>er capacity of 35%. The maximum temper<strong>at</strong>urein <strong>the</strong> thawed soil is <strong>at</strong> <strong>the</strong> 1.5 m depth. Whenfreezing starts, <strong>the</strong> surface temper<strong>at</strong>ure is 4°C, and<strong>the</strong> freezing plane has a temper<strong>at</strong>ure of 0°C.The values of he<strong>at</strong> capacity and <strong>the</strong>rmal conductivityin thawed and frozen ground were calcul<strong>at</strong>eddepending on moisture content according to equ<strong>at</strong>ionsin Osokin et al. (2000).The results of <strong>the</strong> calcul<strong>at</strong>ions are shown in Figures1–4 and Table 2. For <strong>the</strong>se calcul<strong>at</strong>ions we used meanFigure 3. Modelled w<strong>at</strong>er <strong>vapour</strong> <strong>diffusion</strong> flux againsttime (days): from snow to soil (line 1), from <strong>the</strong> bottom snowlayer to upper snow layer (line 2), from soil to snow (line 3).Figure 4. Mean snow density (line 1) and <strong>the</strong> thinning of10 cm-thick snow layer <strong>at</strong> soil surface, taking into accountw<strong>at</strong>er <strong>vapour</strong> super-s<strong>at</strong>ur<strong>at</strong>ion in snow and under-s<strong>at</strong>ur<strong>at</strong>ionin <strong>the</strong> soil (line 2); without <strong>the</strong>se factors (line 3).859


Table 2. The influence of various parameters on thinningof 10 cm-thick snow layer <strong>at</strong> soil surface <strong>at</strong> <strong>the</strong> time of maximumfreezing depth.TimeDepth Thinning ofSnow shift t min Moisture hoar snow layer*parameters (d) (°C) migr<strong>at</strong>ion (cm) (kg/m 3 )M 8 30 137 377/137M 8 30 – 141 378/138M 8 15 77 315/97M 8 15 – 85 320/99M 0 30 108 401/160M 16 30 160 351/118L 8 30 33 407/215L 8 30 – 42 424/226L 0 30 8 477/299L 0 30 – 18 507/318L 16 30 69 401/211L 15 20 282/114Notes: M – mean; L – low; : taking moisture migr<strong>at</strong>ion intoaccount; : without accounting for moisture migr<strong>at</strong>ion; * numer<strong>at</strong>orshows results with w<strong>at</strong>er <strong>vapour</strong> super-s<strong>at</strong>ur<strong>at</strong>ion in snow andunder-s<strong>at</strong>ur<strong>at</strong>ion in soil; denomin<strong>at</strong>or shows results without <strong>the</strong>sefactors.<strong>the</strong>rmal and physical parameters for <strong>the</strong> snow, t shf was8 days, and <strong>the</strong> minimum air temper<strong>at</strong>ure was set to30°C. Figure 1 shows modelled snow accumul<strong>at</strong>ionand corresponding soil freezing which reaches a maximumdepth of 136 cm.Mean daily air and surface temper<strong>at</strong>ures are shownin Figure 2.The minimum surface temper<strong>at</strong>ure, about 6°C,occurs on <strong>the</strong> 8th day, when snow cover appears. Thetemper<strong>at</strong>ure <strong>the</strong>n rises to 2.4°C over 3 days and subsequentlyfalls to 5.2°C (on <strong>the</strong> 108th day). At <strong>the</strong> endof <strong>the</strong> freezing period <strong>the</strong> temper<strong>at</strong>ure of soil surfaceincreases to 2.5°C. Temper<strong>at</strong>ure gradients in <strong>the</strong> upperlayer of <strong>the</strong> soil average 5.5°C/m for <strong>the</strong> first half of<strong>the</strong> cold season and fall to 2°C/m during <strong>the</strong> secondhalf (on <strong>the</strong> 160th day). Temper<strong>at</strong>ure gradients in <strong>the</strong>snow near <strong>the</strong> <strong>boundary</strong> with <strong>the</strong> soil are ten timesgre<strong>at</strong>er, changing from 77°C/m <strong>at</strong> <strong>the</strong> beginning ofwinter (when snow thickness is small) to 18°C/m on <strong>the</strong>160th day.The w<strong>at</strong>er <strong>vapour</strong> <strong>diffusion</strong> flux in snow <strong>at</strong> <strong>the</strong><strong>boundary</strong> with <strong>the</strong> freezing soil is shown in Figure 3.The modeling showed th<strong>at</strong> w<strong>at</strong>er <strong>vapour</strong> <strong>diffusion</strong>could occur in ei<strong>the</strong>r direction, from snow to soilbecause of w<strong>at</strong>er <strong>vapour</strong> super-s<strong>at</strong>ur<strong>at</strong>ion in snow andunder-s<strong>at</strong>ur<strong>at</strong>ion in soil), and from soil to snow (without<strong>the</strong>se factors). In <strong>the</strong> former case, <strong>the</strong> <strong>diffusion</strong> fluxfrom snow to soil averages 14–16 10 7 kg/(m 2 c), andin <strong>the</strong> l<strong>at</strong>ter case, <strong>diffusion</strong> from soil to snow is1 10 7 kg/(m 2 c).In both cases, w<strong>at</strong>er <strong>vapour</strong> also transfers from <strong>the</strong>warmer bottom snow layer to <strong>the</strong> colder upper snowlayer. This <strong>diffusion</strong> flux is 18 10 7 kg/(m 2 c) <strong>at</strong> <strong>the</strong>beginning of winter and drops to 1 10 7 kg/(m 2 c) <strong>at</strong><strong>the</strong> end of winter (line 2 in Figure 3). In both casesw<strong>at</strong>er <strong>vapour</strong> transition is accompanied by a thinningof snow layers <strong>at</strong> <strong>the</strong> soil surface (in <strong>the</strong> second casebecause of <strong>the</strong> <strong>diffusion</strong> flux from snow to snow isgre<strong>at</strong>er than from soil to snow).According to experimental research (Golubev &Sokr<strong>at</strong>ov 1991), intensive w<strong>at</strong>er <strong>vapour</strong> transition generallyoccurs when snow thicknesses are gre<strong>at</strong>er than10 cm. From our calcul<strong>at</strong>ions, <strong>the</strong> intensity of w<strong>at</strong>er<strong>vapour</strong> <strong>diffusion</strong> in <strong>the</strong> bottom (5 and 10 centimeters)snow layers differs from <strong>the</strong> value in 1 centimeterlayer <strong>at</strong> <strong>the</strong> soil surface by 5% and 12%, respectively.This allows us to estim<strong>at</strong>e <strong>the</strong> intensity of <strong>the</strong> thinningof various thicknesses of snow layers <strong>at</strong> <strong>the</strong> soil surface.It should be noted th<strong>at</strong> settling of <strong>the</strong> snowpackunder <strong>the</strong> influence of structural reorganiz<strong>at</strong>ion andpressure from <strong>the</strong> upper layers is not considered in<strong>the</strong>se calcul<strong>at</strong>ions.The results of modeling for a 10 cm-thick snowlayer <strong>at</strong> <strong>the</strong> soil surface are shown in Figure 4.The increase in mean snow density, depending on<strong>the</strong> snow layer height is shown by line 1 (Figure 4).The reduction of <strong>the</strong> density of <strong>the</strong> bottom 10 cmlayer () without w<strong>at</strong>er <strong>vapour</strong> super-s<strong>at</strong>ur<strong>at</strong>ion insnow and under-s<strong>at</strong>ur<strong>at</strong>ion in soil is shown in line 3(Figure 4). If we take into account <strong>the</strong>se factors in ourcalcul<strong>at</strong>ions (line 1), this leads to an increase in <strong>the</strong>value of by 2–3 times, which can exceed <strong>the</strong> realamount of w<strong>at</strong>er in <strong>the</strong> calcul<strong>at</strong>ed layer.It is known th<strong>at</strong> w<strong>at</strong>er <strong>vapour</strong> <strong>diffusion</strong> promotesrecrystalliz<strong>at</strong>ion and <strong>the</strong> form<strong>at</strong>ion of depth hoar.According to published d<strong>at</strong>a (Golubev et al., 1991) <strong>the</strong>development of <strong>the</strong> edge and vertex of crystal-formspromotes an increase in <strong>vapour</strong> pressure above <strong>the</strong>crystal. However, in our opinion, a reduction prevailsbecause of <strong>the</strong> increase in <strong>the</strong> distance <strong>between</strong> crystalcolumnar structures in <strong>the</strong> depth hoar. Th<strong>at</strong> is why<strong>diffusion</strong> to <strong>the</strong> soil can lead to an increase of w<strong>at</strong>er<strong>vapour</strong> concentr<strong>at</strong>ion in it and to a reduction anda closing of some part of <strong>the</strong> pores th<strong>at</strong> complic<strong>at</strong>esw<strong>at</strong>er <strong>vapour</strong> <strong>diffusion</strong> to soil. Probably, w<strong>at</strong>er <strong>vapour</strong><strong>diffusion</strong> from snow to soil occurs <strong>at</strong> <strong>the</strong> beginning ofwinter and <strong>diffusion</strong> changes direction during <strong>the</strong> coldseason. In our opinion, <strong>the</strong> results of real <strong>diffusion</strong> arelikely to be closer to <strong>the</strong> calcul<strong>at</strong>ed curve, modeledwithout w<strong>at</strong>er <strong>vapour</strong> super-s<strong>at</strong>ur<strong>at</strong>ion in snow andunder-s<strong>at</strong>ur<strong>at</strong>ion in soil.In some model runs, <strong>the</strong> coefficient of w<strong>at</strong>er <strong>vapour</strong><strong>diffusion</strong> in soil was not calcul<strong>at</strong>ed from equ<strong>at</strong>ion (5),but was set equal to <strong>the</strong> coefficient of w<strong>at</strong>er <strong>vapour</strong><strong>diffusion</strong> in air in rel<strong>at</strong>ion to soil porosity –0.14 10 4 m 2 c. In this case, <strong>the</strong> 10 cm thick snowlayer <strong>at</strong> soil surface with w<strong>at</strong>er <strong>vapour</strong> super-s<strong>at</strong>ur<strong>at</strong>ionreduces from 380 kg/m 3 to 180 kg/m 3 by <strong>the</strong> end of860


winter (line 2 in Figure 4). During field research onSpitsbergen, <strong>the</strong> Hibini mountains, Caucasus and <strong>the</strong>Russian Plain, we have repe<strong>at</strong>edly observed <strong>the</strong> thinningof <strong>the</strong> snow layer <strong>at</strong> soil surface associ<strong>at</strong>ed with <strong>the</strong>form<strong>at</strong>ion of depth hoar. The process of <strong>the</strong> reducing<strong>the</strong> snow density, corresponding to curve 3 in fig.4, hasbeen observed in many different geographical areas.The consequences of w<strong>at</strong>er <strong>vapour</strong> <strong>diffusion</strong> onmodel runs with different initial parameters are shownin Table 2.The results show th<strong>at</strong> increasing <strong>the</strong> delay of <strong>the</strong>start of snow accumul<strong>at</strong>ion from 0 to 16 days reduces<strong>the</strong> value by 12 or 26% (with super-s<strong>at</strong>ur<strong>at</strong>ion/without it) using mean snow parameters, and by 16 or29% using low parameters. Taking account of moisturemigr<strong>at</strong>ion in soil essentially reduces <strong>the</strong> value.When <strong>the</strong> minimum temper<strong>at</strong>ure of <strong>the</strong> air is increasedfrom 30°C to 15°C, <strong>the</strong> value reduces by 16 or29% <strong>at</strong> mean snow parameters and by 31 or 47% <strong>at</strong>low parametersA higher air temper<strong>at</strong>ure or a longer snowfall leadsto a reduction in <strong>the</strong> temper<strong>at</strong>ure gradient and consequentlyto a reduction in w<strong>at</strong>er <strong>vapour</strong> <strong>diffusion</strong>.Consequently, <strong>the</strong> temper<strong>at</strong>ure rising from 50th till80th day up to 3°C reduces <strong>the</strong> value by approxim<strong>at</strong>ely10–12%. When <strong>the</strong> maximum thickness ofsnow cover (70 cm) is doubled (or halved), <strong>the</strong> valuereduces (increases) by approxim<strong>at</strong>ely 20% (15%), dueto a change in temper<strong>at</strong>ure gradients in <strong>the</strong> basal partof <strong>the</strong> snow cover.We determined approxim<strong>at</strong>e values of thinning of<strong>the</strong> snow layer <strong>at</strong> soil surface for various <strong>the</strong>rmal andphysical properties of snow cover and conditions ofsnow accumul<strong>at</strong>ion.We have shown th<strong>at</strong> w<strong>at</strong>er <strong>vapour</strong> super-s<strong>at</strong>ur<strong>at</strong>ionin snow and under-s<strong>at</strong>ur<strong>at</strong>ion in <strong>the</strong> upper layer of soil,frequently leads to increasing snow thinning as aresult of <strong>diffusion</strong>. However, fur<strong>the</strong>r research is neededth<strong>at</strong> incorpor<strong>at</strong>es all <strong>the</strong> factors which influence thisprocess.REFERENCESGolubev V.N., Seliverstov Yu.G., Sokr<strong>at</strong>ov S.A. 1997.Peculiarities of w<strong>at</strong>er <strong>vapour</strong> migr<strong>at</strong>ion on <strong>the</strong> frozenground-snow interface. Cryosphere of <strong>the</strong> Earth, vol.I,N 3; 39–43.Golubev V.N., Sokr<strong>at</strong>ov S.A. 1991. E<strong>vapour</strong><strong>at</strong>ion of snowunder iso<strong>the</strong>rmal conditions. D<strong>at</strong>a of glaciologicalstudies, N71, p. 27–31.Kuzmin P.P. 1961. Protses tayaniya snezhnogo pokrova. L.Gidrometeoizd<strong>at</strong>,.345p.Osokin N.I., Samoilov R.S., Sosnovskii A.V., Sokr<strong>at</strong>ov S.A.,Zhidkov V.A. 1999. On estim<strong>at</strong>ion <strong>the</strong> influence ofsnow cover characteristics variability on soils freezing.Cryosphere of <strong>the</strong> Earth, vol.III, N1; 3–10.Osokin N.I., Samoilov R.S., Sosnovskiy A.V., Sokr<strong>at</strong>ov S.A.,Zhidkov V.A. 2000. Model of <strong>the</strong> influence of snowcover on soil freezing. Annals of Glaciology, 31,p. 417–421.Pavlov A.V. 1979. Teplophizika landshaftov. Novosibirsk,izd-vo “Nauka”, 286p.4 CONCLUSIONSWe estim<strong>at</strong>ed w<strong>at</strong>er <strong>vapour</strong> <strong>diffusion</strong> in <strong>the</strong> snow layer<strong>at</strong> soil surface and <strong>the</strong> upper layer of soil using a m<strong>at</strong>hem<strong>at</strong>icalmodel th<strong>at</strong> we developed.861

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!