12.07.2015 Views

Wheat and Barley Production in Rainfed Marginal Environments of ...

Wheat and Barley Production in Rainfed Marginal Environments of ...

Wheat and Barley Production in Rainfed Marginal Environments of ...

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ContentsivvForewordAcknowledgements1 Part 1: <strong>Wheat</strong> <strong>and</strong> <strong>Barley</strong> <strong>Production</strong> <strong>in</strong> Ra<strong>in</strong>fed Marg<strong>in</strong>al <strong>Environments</strong> <strong>of</strong> the Develop<strong>in</strong>g WorldI What Is a "Marg<strong>in</strong>al Environment"?2 Dist<strong>in</strong>guish<strong>in</strong>g Types <strong>of</strong> Ra<strong>in</strong>fed Marg<strong>in</strong>al <strong>Environments</strong>3 Seven Examples <strong>of</strong> Ra<strong>in</strong>fed Marg<strong>in</strong>al <strong>Environments</strong> for <strong>Wheat</strong>6 Extent <strong>of</strong> Ra<strong>in</strong>fed Marg<strong>in</strong>al <strong>Environments</strong> <strong>in</strong> the Develop<strong>in</strong>g World7 <strong>Production</strong> Trends <strong>in</strong> Ra<strong>in</strong>fed Marg<strong>in</strong>al <strong>Environments</strong>11 Ra<strong>in</strong>fed Marg<strong>in</strong>al <strong>Environments</strong> <strong>of</strong> West Asia <strong>and</strong> North Africa19 Ra<strong>in</strong>fed Marg<strong>in</strong>al <strong>Environments</strong> <strong>of</strong> South Asia23 Toward a Research Strategy for Marg<strong>in</strong>al <strong>Environments</strong>29 Part 2: The Current World <strong>Wheat</strong> Situation29 <strong>Wheat</strong> <strong>Production</strong>29 <strong>Wheat</strong> Utilization29 International <strong>Wheat</strong> Prices30 Outlook for <strong>Wheat</strong>32 Part 3: Selected <strong>Wheat</strong> Statistics33 Eastern <strong>and</strong> Southern Africa34 West Africa35 North Africa36 West Asia38 South Asia39 Southeast Asia <strong>and</strong> Pacific40 East Asia41 Mexico, Central America, <strong>and</strong> Caribbean43 Andean Region, South America44 Southern Cone, South America45 Eastern Europe <strong>and</strong> USSR46 Developed Market Economies48 Regional Aggregates49 ReferencesAnnex 1: Regions Del<strong>in</strong>eated for This Studyiii


ForewordTwo years ago <strong>in</strong> the previous issue <strong>of</strong>World <strong>Wheat</strong> Facts <strong>and</strong> Trends, we tooka close look at how the "revolution" <strong>in</strong>wheat production had spread throughoutthe world <strong>in</strong> the twenty-odd years s<strong>in</strong>ceit began <strong>in</strong> Mexico <strong>and</strong> South Asia. Ourreport revealed that growth <strong>in</strong> ThirdWorld wheat production had beenimpressive; dur<strong>in</strong>g the 1980s, wheatyields <strong>and</strong> production rose almost asrapidly as <strong>in</strong> the first extraord<strong>in</strong>ary years<strong>of</strong> the Green Revolution. But we alsoobserved that the effects <strong>of</strong> the wheatrevolution were not equally felt amongthe different production environments <strong>in</strong>the develop<strong>in</strong>g world. In conclud<strong>in</strong>g ourreport we noted that "a cont<strong>in</strong>u<strong>in</strong>gchallenge...is to exploit the potential <strong>of</strong>drier environments where the pace <strong>of</strong>change has been slowest," <strong>and</strong> <strong>in</strong>dicatedthat the next issue <strong>of</strong> <strong>Wheat</strong> Facts <strong>and</strong>Trends would address that topic <strong>in</strong>greater detail.To assess the potential for improv<strong>in</strong>gcereal crop production <strong>in</strong> drierenvironments <strong>of</strong> the develop<strong>in</strong>g world,we decided to focus on two majorgeographical areas where suchenvironments predom<strong>in</strong>ate: West Asia<strong>and</strong> North Africa (WANA), where barleyas well as wheat is important <strong>in</strong> ra<strong>in</strong>fedcropp<strong>in</strong>g systems; <strong>and</strong> the areas <strong>of</strong> SouthAsia where wheat is grown on residualmoisture after the monsoon ra<strong>in</strong>s. Oncethe geographical scope <strong>of</strong> the report wasdeterm<strong>in</strong>ed, CIMMYT approached theInternational Center for AgriculturalResearch <strong>in</strong> the Dry Areas (lCARDA)about the possibility <strong>of</strong>jo<strong>in</strong>tlydevelop<strong>in</strong>g the study to <strong>in</strong>corporateICARDA's considerable experience <strong>in</strong>the WANA Region. This study isstronger because <strong>of</strong> that collaboration. Inaddition, our colleagues with the IndianCouncil <strong>of</strong> Agricultural Researchcontributed valuable <strong>in</strong>formation to thesections <strong>of</strong> this report on South Asia.By focus<strong>in</strong>g our attention on wheat <strong>and</strong>barley production <strong>in</strong> the Third World'smarg<strong>in</strong>al ra<strong>in</strong>fed environments, we havehighlighted some <strong>of</strong> the most acutedilemmas confront<strong>in</strong>g national <strong>and</strong><strong>in</strong>ternational research <strong>in</strong> recent years.The fact that agricultural change hasbeen slow <strong>in</strong> marg<strong>in</strong>al areas, whereenvironmental degradation is <strong>of</strong>ten saidto be proceed<strong>in</strong>g most rapidly, haspresented research with an urgentimperative: to effect positive change <strong>in</strong>agriculture <strong>and</strong> <strong>in</strong>comes <strong>in</strong> less favoredareas without endanger<strong>in</strong>g theirecological stability.As the reader will see, our studydemonstrates that this challenge is farfrom simple. The trade<strong>of</strong>fs <strong>in</strong> decid<strong>in</strong>ghow to allocate research resources to thegreatest benefit <strong>of</strong> marg<strong>in</strong>al areas are<strong>in</strong>evitably complex, s<strong>in</strong>ce they <strong>in</strong>volveweigh<strong>in</strong>g the potential benefits that maycome from devot<strong>in</strong>g research resourcesto favored areas (such as lower foodprices or <strong>in</strong>creased employmentopportunities) aga<strong>in</strong>st the benefits <strong>of</strong>research focused specifically onmarg<strong>in</strong>al areas. Furthermore, althoughthe follow<strong>in</strong>g pages strongly advocategreater attention to research for ra<strong>in</strong>fedmarg<strong>in</strong>al areas, the research strategiesthat met with success <strong>in</strong> more favoredareas are not necessarily best suited tothe ra<strong>in</strong>fed marg<strong>in</strong>al areas where wheat<strong>and</strong> barley are produced. More work oncrop <strong>and</strong> resource management relativeto plant breed<strong>in</strong>g research will be a keyto mitigat<strong>in</strong>g problems <strong>in</strong> marg<strong>in</strong>al areaswhose agriculture is characterized by<strong>in</strong>tercropp<strong>in</strong>g, crop rotations <strong>and</strong>fallow<strong>in</strong>g, <strong>and</strong> crop-livestock<strong>in</strong>teractions. Even so, it must berecognized that, <strong>in</strong> many cases,formidable agroclimatic constra<strong>in</strong>ts willlimit the potential for improv<strong>in</strong>gproductiVity despite strong contributionsfrom research.But research does not work <strong>in</strong> isolation.If research is to have an impact <strong>in</strong>marg<strong>in</strong>al areas, extension will need to beable to present farmers with a range <strong>of</strong>technical options. Farmers will requiregreater assistance from extension toacquire the managerial skills necessaryto adopt <strong>in</strong>creas<strong>in</strong>gly complextechnologies with success.Policy makers will also have to becommitted to strengthen<strong>in</strong>g agriculture<strong>in</strong> marg<strong>in</strong>al areas, perhaps throughpolicies designed to reduce the risk<strong>in</strong>ess<strong>of</strong> wheat <strong>and</strong> barley production. Theextreme diversity, variability, <strong>and</strong>vulnerability <strong>of</strong> marg<strong>in</strong>al environmentsmake the need for strong collaborationamong research, policy, <strong>and</strong> extensionmore urgent. We believe that this reportprovides <strong>in</strong>formation that will be useful<strong>in</strong> promot<strong>in</strong>g collaboration among allwho are <strong>in</strong>terested <strong>in</strong> effect<strong>in</strong>g positivechange <strong>in</strong> agriculture <strong>in</strong> the world'sra<strong>in</strong>fed marg<strong>in</strong>al areas.Donald L. W<strong>in</strong>kelmann,Director General, CIMMYT~asrat FaddaDirector General, ICARDAiv


AcknowledgementsNumerous <strong>in</strong>dividuals contributed to thisedition <strong>of</strong> World <strong>Wheat</strong> Facts <strong>and</strong>Trends. Michael Morris (CIMMYT),Abderrezak Belaid (ICARDA), <strong>and</strong>Derek Byerlee (CIMMYT) wrote thefeature report on wheat <strong>and</strong> barleyproduction <strong>in</strong> ra<strong>in</strong>fed marg<strong>in</strong>alenvironments (Part I). They wereassisted by several colleagues whocontributed orig<strong>in</strong>al material, <strong>in</strong>clud<strong>in</strong>gMark Bell <strong>of</strong> CIMMYT (crop simulationmodell<strong>in</strong>g), Elizabeth Bailey <strong>of</strong>ICARDA (farm<strong>in</strong>g systems <strong>of</strong> theWANA region), Tony Fischer <strong>of</strong>CIMMYT (the box on factors affect<strong>in</strong>gwater use efficiency), <strong>and</strong> MitchRenkow <strong>of</strong> CIMMYT (the box on<strong>in</strong>terregional effects <strong>of</strong> technologicalchange). The <strong>in</strong>formation on India couldnot have been compiled without theassistance <strong>of</strong> colleagues at ICAR whogave generously <strong>of</strong> their time <strong>and</strong>expertise, especially J.P. T<strong>and</strong>on <strong>of</strong> theAll India Coord<strong>in</strong>ated <strong>Wheat</strong> Project, aswell as many wheat scientists <strong>in</strong> Central<strong>and</strong> Southern India, especiallyR.P. Hanch<strong>in</strong>al, B.S. Jadon,R.P. Sheopuria, A.K. S<strong>in</strong>gh, <strong>and</strong>V.S. Tomar. Laura Saad, Daphne Taylor,<strong>and</strong> Stefan Keyler <strong>of</strong> CIMMYT providedvaluable research assistance.Part 2 was written by Michael Morris.Part 3 was compiled by Laura Saad us<strong>in</strong>gdata provided by FAO, by colleagues <strong>in</strong>CIMMYT <strong>and</strong> ICARDA, <strong>and</strong> bycollaborators throughout the world: D.Adrien, Z. Ahmed, J.M.H. Al Bader, R.G.Annes, N. Banisado,Z. Barabas, M.T. Barradas,A. Benbelkacem, B. Borghi, J. Brennan,0. Chicaiza, J. Davidson, J.A. Dieseth, R.Downey, D. Flores, D. Gogas,R.W. Gomez Qu<strong>in</strong>tanilla, A. Gul,M. Hanis, R. Hassan, He, Z.,C. Heustone, J.H. Helm, K. Hjortsholm,A.L. Katunsi, E.!. Kivi, C. Kl<strong>in</strong>g,B. Kristiansson, A. de Leon, B.Libereita,J. Lodga, G. Lohan, M. Ma<strong>in</strong>a,P.C.J. Maree, J.A. Mart<strong>in</strong>, J. MartInez,B.M. Maumbe, J.M. McEwan,M. McLell<strong>and</strong>, A. Me<strong>in</strong>el, D. Metzger, F.Montes, J.H. Nam, J.E. Nisi,R. Pedretti, R.B. Proud, N. Przulj,A. Razzaque, K. Raoudha, !. Rodriguez,M. Saade, M. Salazar, M.M. Saulescu,W. Sowa, L. Tanash, J.P. T<strong>and</strong>on,T. Tesemma, M. Trottet,<strong>and</strong> W.W. Wagoire.We are grateful to the numerousscientists from both CIMMYT <strong>and</strong>ICARDA who reviewed drafts <strong>of</strong> thereport, <strong>in</strong>clud<strong>in</strong>g Don W<strong>in</strong>kelmann,Tony Fischer, Eugene Saari, HansBraun, Bent Skovm<strong>and</strong>, Roger Rowe,Maarten van G<strong>in</strong>kel, Guillermo Ortiz­Ferrara, Byrd Curtis, Sanjaya Rajaram,Edmundo Acevedo, Renee Lafitte, Aartvon Schoonhoven, Rick Tutweiler, HugoVivar, <strong>and</strong> Elizabeth Bailey. In addition,we would like to thank Kutlu Somel <strong>of</strong>the World Bank for serv<strong>in</strong>g as externalreviewer.The publication was edited by KellyCassaday <strong>of</strong> CIMMYT. Design <strong>and</strong>production were done at CIMMYT byJose Luis Delgado <strong>and</strong> Miguel Mellado,with the assistance <strong>of</strong> Rocio Vargas <strong>and</strong>Ma. Concepcion Castro.v


Part 1: <strong>Wheat</strong> <strong>and</strong> <strong>Barley</strong> <strong>Production</strong><strong>in</strong> Ra<strong>in</strong>fed Marg<strong>in</strong>al <strong>Environments</strong> <strong>of</strong> the Develop<strong>in</strong>g WorldMichael L. Morris, Abderrezak Belaid, <strong>and</strong> Derek ByerleeThe events that precipitated the GreenRevolution <strong>in</strong> wheat are by now wellknown. Dur<strong>in</strong>g the late 1960s <strong>and</strong> early1970s, improved high yield<strong>in</strong>g wheatsdeveloped <strong>in</strong> Mexico (referred to <strong>in</strong> thisreport as modem varieties, or MVs) were<strong>in</strong>troduced <strong>in</strong>to a number <strong>of</strong> the world'smost populous develop<strong>in</strong>g countries,<strong>in</strong>clud<strong>in</strong>g India, Pakistan, <strong>and</strong> Turkey.When grown with <strong>in</strong>creased levels <strong>of</strong>fertilizer <strong>and</strong> an assured water supply,MVs performed significantly better thanolder materials, mak<strong>in</strong>g possibledramatic <strong>in</strong>creases <strong>in</strong> wheat production<strong>and</strong> higher <strong>in</strong>comes for the millions <strong>of</strong>small-scale farmers who adopted thetechnology.Despite these successes, the agriculturalresearch <strong>in</strong>stitutes credited withlaunch<strong>in</strong>g the Green Revolution cameunder attack from critics who suggestedthat its major beneficiaries were farmerslocated <strong>in</strong> favored productionenvironments. Indeed, some evidencesuggests that farmers <strong>in</strong> marg<strong>in</strong>alproduction environments who did notadopt the new technology may havebeen disadvantaged when rapidproduction <strong>in</strong>creases <strong>in</strong> favoredenvironments depressed cereal prices(Lipton 1989). S<strong>in</strong>ce these negativeprice effects were not <strong>of</strong>fset byproduction ga<strong>in</strong>s <strong>in</strong> marg<strong>in</strong>alenvironments, argued the critics,<strong>in</strong>terregional <strong>in</strong>equalities <strong>in</strong> rural <strong>in</strong>comedistribution were actually <strong>in</strong>creasedrather than reduced by the GreenRevolution.One problem <strong>in</strong> attempt<strong>in</strong>g to evaluatethis criticism is that the empirical recordis <strong>in</strong>complete. Although numerousstudies have documented the impacts <strong>of</strong>improved seed-fertilizer technologies <strong>in</strong>favored production environments whereearly <strong>and</strong> widespread adoption tookplace, relatively little research hasfocused on less favored environments.The issue is complicated by the fact that1 Throughout this report, the tenns "marg<strong>in</strong>alenvironments" <strong>and</strong> "marg<strong>in</strong>al areas" are used<strong>in</strong>terchangeably. "Dryl<strong>and</strong> production" refers tora<strong>in</strong>fed production tak<strong>in</strong>g place <strong>in</strong> marg<strong>in</strong>alenvironments.the adoption <strong>of</strong> technology is <strong>of</strong>ten agradual process spann<strong>in</strong>g many years,so that it is sometimes difficult to knowwhen adoption is still <strong>in</strong> a relativelyearly stage or has completely run itscourse.This Facts <strong>and</strong> Trends feature reportpresents an up-to-date picture <strong>of</strong> wheatproduction <strong>in</strong> marg<strong>in</strong>al environments,with emphasis on the past <strong>and</strong> future role<strong>of</strong> technical change <strong>in</strong> these areas. I<strong>Barley</strong>, a close substitute <strong>in</strong> production<strong>in</strong> ra<strong>in</strong>fed marg<strong>in</strong>al areas, is also<strong>in</strong>cluded <strong>in</strong> the analysis. The focus onmarg<strong>in</strong>al environments is motivated bythe fact that a large number <strong>of</strong> poorpeople currently depend on theseenvironments for their survival, <strong>and</strong> bythe concern that marg<strong>in</strong>al environmentspresent a special challenge for thedevelopment <strong>of</strong> production technologiesthat will be susta<strong>in</strong>able <strong>in</strong> the longer run.In the follow<strong>in</strong>g pages, we exam<strong>in</strong>edryl<strong>and</strong> wheat <strong>and</strong> barley production at anumber <strong>of</strong> different levels. First, wecharacterize marg<strong>in</strong>al environments forwheat <strong>and</strong> barley <strong>in</strong> terms <strong>of</strong> agroclimaticcircumstances <strong>and</strong> describe theimportance <strong>of</strong> these environments <strong>in</strong> themajor wheat- <strong>and</strong> barley-produc<strong>in</strong>gcountries <strong>of</strong> the develop<strong>in</strong>g world.Second, we provide an overview <strong>of</strong> thepr<strong>in</strong>cipal cereal-based farm<strong>in</strong>g systems<strong>in</strong> two regions where large amounts <strong>of</strong>wheat <strong>and</strong> barley are produced undermarg<strong>in</strong>al conditions-West Asia <strong>and</strong>North Africa (the WANA Region), <strong>and</strong>South Asia. Third, we pose threequestions that are addressed <strong>in</strong> therema<strong>in</strong>der <strong>of</strong> the report:I) What has been the impact <strong>of</strong>technological change <strong>in</strong> marg<strong>in</strong>alenvironments over the past threedecades?2) What types <strong>of</strong> research promise todeliver the most rapid future ga<strong>in</strong>s <strong>in</strong>wheat <strong>and</strong> barley production <strong>in</strong>marg<strong>in</strong>al environments?3) Should a larger share <strong>of</strong> researchresources be allocated to address<strong>in</strong>gthe special challenges <strong>of</strong> cerealproduction <strong>in</strong> marg<strong>in</strong>al environments,<strong>and</strong> if so, is a change <strong>in</strong> researchstrategy needed to address thespecific needs <strong>of</strong> marg<strong>in</strong>al areas?This report forms part <strong>of</strong> a larger effortby CIMMYT <strong>and</strong> ICARDA to betterdef<strong>in</strong>e the extent <strong>of</strong> marg<strong>in</strong>alenvironments for wheat, barley, <strong>and</strong>maize <strong>in</strong> the develop<strong>in</strong>g world; tocharacterize the conditions under whichthese cereals are grown <strong>in</strong> theseenvironments; <strong>and</strong> to identify promis<strong>in</strong>gresearch opportunities.What Is a"Marg<strong>in</strong>al Environment"?Although agricultural scientistsfrequently dist<strong>in</strong>guish between "favored"<strong>and</strong> "marg<strong>in</strong>al" productionenvironments, <strong>in</strong> fact there is littleconsensus on precise def<strong>in</strong>itions forthese terms. This is perhapsunderst<strong>and</strong>able, s<strong>in</strong>ce the growthrequirements <strong>of</strong> different plant speciesvary considerably, <strong>and</strong> an environmentthat is favorable for one species may bemarg<strong>in</strong>al for another.Most agriculturalists would probablyagree that a marg<strong>in</strong>al environment forcrop production is characterized byabiotic stresses which severely <strong>in</strong>hibitplant growth, such as extreme levels <strong>of</strong>moisture (drought or waterlogg<strong>in</strong>g),extreme temperatures (heat or cold),severe imbalances <strong>in</strong> soil fertility(absence <strong>of</strong> essential nutrients orpresence <strong>of</strong> toxicities), unfavorable soilphysical characteristics (shallow depth,degraded condition), <strong>and</strong>/ormeteorological conditions which cancause physical damage to grow<strong>in</strong>g plants(high w<strong>in</strong>ds, hail). However, thepresence <strong>of</strong> one or more <strong>of</strong> these stressesdoes not necessarily mean that anenvironment is marg<strong>in</strong>al. Many <strong>of</strong> thefactors caus<strong>in</strong>g abiotic stresses aresubject to manipulation; <strong>in</strong>deed, modern


2crop production technologies haveenabled some <strong>of</strong> the world's most<strong>in</strong>hospitable regions to be transformed<strong>in</strong>to highly productive agriculturalzones.In this report, we adopt a conceptualdef<strong>in</strong>ition <strong>of</strong> marg<strong>in</strong>al environmentsused by the CIMMYT <strong>Wheat</strong> Program:marg<strong>in</strong>al environments for wheat <strong>and</strong>barley are def<strong>in</strong>ed as those <strong>in</strong> whichirremediable climatic or soil conditionslimit yields to less than 40% <strong>of</strong> potentialyields as def<strong>in</strong>ed by available solarradiation (CIMMYT 1989b). Conditionsare considered irremediable when thecost <strong>of</strong> ameliorat<strong>in</strong>g them is prohibitive,i.e., beyond the ability <strong>of</strong> a farmer ornation to pay, except perhaps <strong>in</strong> the verylong run (Fischer 1988).Based on this def<strong>in</strong>ition, most marg<strong>in</strong>alenvironments for wheat <strong>and</strong> barley arecharacterized by severe drought, <strong>of</strong>tencomb<strong>in</strong>ed with extreme temperatures(heat or cold). Other types <strong>of</strong> stresses,such as unfavorable soil chemical <strong>and</strong>physical conditions, can also def<strong>in</strong>emarg<strong>in</strong>al environments for wheat <strong>and</strong>barley, but the major focus <strong>of</strong> this reportwill be on moisture stress. Generallyspeak<strong>in</strong>g these environments are located<strong>in</strong> regions that receive less than 350 mmra<strong>in</strong>fall <strong>in</strong> the grow<strong>in</strong>g season (sometimesmuch less, as <strong>in</strong> areas where wheat<strong>and</strong> barley are grown on residualmoisture).Dist<strong>in</strong>guish<strong>in</strong>g Types <strong>of</strong> Ra<strong>in</strong>fedMarg<strong>in</strong>al <strong>Environments</strong>In ra<strong>in</strong>fed cereal cropp<strong>in</strong>g systems, waterused by grow<strong>in</strong>g plants comes from twopr<strong>in</strong>cipal sources: ra<strong>in</strong> fall<strong>in</strong>g dur<strong>in</strong>g thegrow<strong>in</strong>g season, <strong>and</strong> residual moisturestored <strong>in</strong> the soil at plant<strong>in</strong>g time. Therelative importance <strong>of</strong> these two sources<strong>of</strong> water varies depend<strong>in</strong>g on precipitationpatterns, soil characteristics, <strong>and</strong>farmers' management practices. Twobasic types <strong>of</strong> ra<strong>in</strong>fed marg<strong>in</strong>al environmentscan be dist<strong>in</strong>guished based on theseasonal distribution <strong>of</strong> precipitation. Inw<strong>in</strong>ter ra<strong>in</strong>fall environments, moistureavailability is usually closely related tora<strong>in</strong> fall<strong>in</strong>g dur<strong>in</strong>g the grow<strong>in</strong>g season(although sometimes significant amounts<strong>of</strong> water may be stored <strong>in</strong> the soil atplant<strong>in</strong>g time as the result <strong>of</strong> fallow<strong>in</strong>g<strong>and</strong> other practices that facilitatemoisture storage). In theseenvironments, evapotranspiration <strong>of</strong>tenexceeds ra<strong>in</strong>fall at the beg<strong>in</strong>n<strong>in</strong>g <strong>and</strong> endPrecipitation (mm)<strong>of</strong> the grow<strong>in</strong>g season, when ra<strong>in</strong>fall islower <strong>and</strong> also highly variable (FigureI). By contrast, <strong>in</strong> residual moistureenvironments, very little ra<strong>in</strong> falls dur<strong>in</strong>gthe grow<strong>in</strong>g season, <strong>and</strong> the crop derivesvirtually all <strong>of</strong> its water requirementsfrom moisture stored <strong>in</strong> the soil from thepreced<strong>in</strong>g monsoon ra<strong>in</strong>fall period. In500 ...,.---------------------------,Aleppo 'yria (w<strong>in</strong>ter ra<strong>in</strong>ran spr<strong>in</strong>g habit)400300200Harve l<strong>in</strong>gHarvest<strong>in</strong>gPrecipitation (mm)500 ...,.--------------------------,Ankara. Turkey (w<strong>in</strong>ter ra<strong>in</strong>fall. w<strong>in</strong>ter habit)PlanungPlant<strong>in</strong>g1000L-~~~~~~Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug400300H


3these environments, potential evapotranspirationgenerally exceeds ra<strong>in</strong>fallthroughout the season (Figure I).The w<strong>in</strong>ter ra<strong>in</strong>fall environments areconcentrated <strong>in</strong> the WANA Region,where they can be further broadlyclassified <strong>in</strong>to Mediterranean climates(<strong>in</strong> which average m<strong>in</strong>imum temperaturesdo not usually fall below ODC <strong>in</strong> thecoldest month) <strong>and</strong> Cont<strong>in</strong>ental climates(<strong>in</strong> which, because <strong>of</strong> elevation <strong>and</strong>distance from the coast, a significantproportion <strong>of</strong> precipitation occurs assnow). Not all w<strong>in</strong>ter ra<strong>in</strong>fall environmentsare marg<strong>in</strong>al. Those classified asmarg<strong>in</strong>al usually lie <strong>in</strong> the zonereceiv<strong>in</strong>g between 200 <strong>and</strong> 400 mm <strong>of</strong>precipitation annually.The residual moisture environments areconcentrated <strong>in</strong> South Asia. Here annualprecipitation is much higher (<strong>of</strong>ten over1,000 mm), but usually less than 100mm falls dur<strong>in</strong>g the grow<strong>in</strong>g season.It is important to dist<strong>in</strong>guish betweenthese two basic types <strong>of</strong> marg<strong>in</strong>alenvironments, because they areassociated with very different levels <strong>of</strong>production risk. In all low ra<strong>in</strong>fallenvironments, crop production dependson uncerta<strong>in</strong> <strong>and</strong> highly variable ra<strong>in</strong>fall.However, where crops are grown onresidual moisture, the amount <strong>of</strong>available water is already known at thetime <strong>of</strong> plant<strong>in</strong>g, which means thatfanners can modify the area planted <strong>and</strong>technologies used (<strong>in</strong>clud<strong>in</strong>g use <strong>of</strong>purchased <strong>in</strong>puts <strong>and</strong> crop husb<strong>and</strong>ry). Incontrast, where crop production dependson ra<strong>in</strong> fall<strong>in</strong>g dur<strong>in</strong>g the grow<strong>in</strong>gseason, the amount <strong>of</strong> available water isnot known at the time <strong>of</strong> plant<strong>in</strong>g, <strong>and</strong>farmers must therefore select technologiesbased on expectations which mayor may not be fulfilled. (For a discussion<strong>of</strong> how drought stress <strong>in</strong>fluences theyield <strong>of</strong> cereal crops, see the box, p. 5.)Other, less extensive marg<strong>in</strong>alenvironments for wheat <strong>and</strong> barley arefound elsewhere <strong>in</strong> the develop<strong>in</strong>g world2 For documentation <strong>of</strong> the EPIC model, seeWilliams et al. (1990) <strong>and</strong> Sharpley <strong>and</strong>Williams (1990).<strong>and</strong> feature somewhat different ra<strong>in</strong>fall<strong>and</strong> temperature patterns. In SouthAmerica. a significant amount <strong>of</strong> wheatis sown <strong>in</strong> areas where little ra<strong>in</strong> fallsdur<strong>in</strong>g the early part <strong>of</strong> the grow<strong>in</strong>gseason, although late-season ra<strong>in</strong>fall is<strong>of</strong>ten adequate or even excessive. Innortheast Ch<strong>in</strong>a, wheat is grown <strong>in</strong> areaswhere w<strong>in</strong>ters are so severe that onlyspr<strong>in</strong>g wheats can be planted; <strong>in</strong> many <strong>of</strong>these areas, ra<strong>in</strong>fall is <strong>of</strong>ten light <strong>in</strong> theearly part <strong>of</strong> the season, <strong>and</strong> wheatgerm<strong>in</strong>ates us<strong>in</strong>g residual moisture fromsnow melt. Ra<strong>in</strong>fall dur<strong>in</strong>g the secondhalf <strong>of</strong> the crop cycle can be excessive,however.Seven Examples <strong>of</strong>Ra<strong>in</strong>fed Marg<strong>in</strong>al<strong>Environments</strong> for <strong>Wheat</strong><strong>Wheat</strong> breed<strong>in</strong>g at CIMMYT is targetedtoward particular mega-environments,which are def<strong>in</strong>ed as "broad, notnecessarily contiguous areas, usuallyTable 1. Types <strong>of</strong> ra<strong>in</strong>fed marg<strong>in</strong>al environments for wheatMega- Moisture Temperature <strong>Wheat</strong> . ow<strong>in</strong>g Ma<strong>in</strong>envirnmnent regime regime type date locationME4A Ra<strong>in</strong>fall, Temperate Spr<strong>in</strong>g Autumn North Africa,late drought habit West AsiaME4B Ra<strong>in</strong>fall, Temperate Spr<strong>in</strong>g Autumn Southearly drought habit AmericaME4C Residual Temperate Spr<strong>in</strong>g Autumn Southmoisture to hot habit AsiaME5B Residual Hot Spr<strong>in</strong>g Autumn Southmoisture (dry) habit AsiaME6B Grow<strong>in</strong>g season Moderate Facultative, Autumn Westra<strong>in</strong>fall cold w<strong>in</strong>ter habit AsiaME6D Grow<strong>in</strong>g season Severe Facultative, Autumn Westra<strong>in</strong>fall cold w<strong>in</strong>ter habit AsiaME7 Grow<strong>in</strong>g season Severe Spr<strong>in</strong>g Spr<strong>in</strong>g Northeastra<strong>in</strong>fall cold habit Ch<strong>in</strong>aSource:IMMYT <strong>Wheat</strong> Program.<strong>in</strong>ternational <strong>and</strong> frequentlytranscont<strong>in</strong>ental, with similar biotic <strong>and</strong>abiotic stresses, cropp<strong>in</strong>g systemrequirements, <strong>and</strong> consumerpreferences" (CIMMYT 1989b). Of theseven mega-environments recognized forwheat, three <strong>in</strong>clude areas generallyconsidered marg<strong>in</strong>al because <strong>of</strong> moisturestress. When these three are subdividedaccord<strong>in</strong>g to the ra<strong>in</strong>fall patternsdiscussed above, seven ra<strong>in</strong>fed marg<strong>in</strong>alenvironments can be dist<strong>in</strong>guished(Table I).To illustrate the similarities <strong>and</strong>differences between these seven ra<strong>in</strong>fedmarg<strong>in</strong>al environments <strong>and</strong> highlight thesevere limit<strong>in</strong>g effect <strong>of</strong> moisture stresson yields, a representative site wasselected for each environment, <strong>and</strong> theEPIC crop model was used to simulatepotential wheat yields over 50 years. 2Potential yields are def<strong>in</strong>ed by moisture<strong>and</strong> temperature conditions <strong>and</strong> are notconstra<strong>in</strong>ed by other abiotic <strong>and</strong> bioticstresses, such as soil fertility problems,


4Table 2. Simulated potential wheat yields <strong>in</strong> seven marg<strong>in</strong>al mega-environments(ra<strong>in</strong>fed vs. irrigated)Averag Averagepotential potential Pot ntialra<strong>in</strong>red irrigated ra<strong>in</strong>fed/Mega- Dom<strong>in</strong>ant yield A yield A potentiaJenviron- Representative wheat (t/hs) (tJha) irrigatedment _ite type( ) ( (CV) yieldME4A Kasba Tadla, Autumn sown, 1.09 8.17 0.13Morocco spr<strong>in</strong>g habit (44) (8)ME4B Marcos Juarez, Autumn sown, 2.21 10.38 0.21Argent<strong>in</strong>a spr<strong>in</strong>g habit (52) (7)ME4C Mirzapur, Autumn sown, 1.11 6.05 0.18India spr<strong>in</strong>g habit (14) (3)ME5B Sagar, Autumn sown, 2.29 6.72 0.34India spr<strong>in</strong>g habit (25) (6)ME6B Diyarbakir, Autumn sown, 2.99 6.07 0.49Turkey facultative (27) (8)ME6D Ankara, Autumn sown, 2.05 7.82 0.26Turkey w<strong>in</strong>ter habit (41 ) (4)ME7 Harb<strong>in</strong>, Spr<strong>in</strong>g sown, 3.64 6.95 0.52Ch<strong>in</strong>a spr<strong>in</strong>g habit (28) (12)alculaled frOID EPIC model simulation results (SO-year imul:i1ion).Cumulative probability (0/0)100 T---:::=::-:~~P"'""""-~::;;--::;,-----:----,9080diseases, <strong>in</strong>sects, <strong>and</strong> weeds; thus,simulated potential yields will always behigher than actual recorded yields. J Todemonstrate the limit<strong>in</strong>g effect <strong>of</strong> low<strong>and</strong> uncerta<strong>in</strong> ra<strong>in</strong>fall, the EPIC modelwas run twice for each site: once under ara<strong>in</strong>fed production scenario <strong>in</strong> which thecrop received only natural precipitation, ,<strong>and</strong> once under an irrigation scenario <strong>in</strong>which water was added to the soilwhenever the crop began to experiencemoisture stress. Average potential yields<strong>and</strong> coefficients <strong>of</strong> variation (CY) foreach <strong>of</strong> these sites under both ra<strong>in</strong>fed<strong>and</strong> irrigated scenarios appear <strong>in</strong>Table 2. 4 Cumulative probabilitydistributions <strong>of</strong> the simulated potentialyields under the ra<strong>in</strong>fed scenario appear<strong>in</strong> Figure 2.The simulated potential yield data revealconsiderable differences betweenmarg<strong>in</strong>al environments, depend<strong>in</strong>gamong other th<strong>in</strong>gs on temperaturesdur<strong>in</strong>g the grow<strong>in</strong>g season, as well as onthe amount <strong>and</strong> distribution <strong>of</strong> ra<strong>in</strong>fall.In temperate to hot ra<strong>in</strong>fed megaenvironments(4A, 4B, 4C, 5B), averagepotential yields are generally low, withyield variability higher <strong>in</strong> climateswhere the crop depends on ra<strong>in</strong>falldur<strong>in</strong>g the grow<strong>in</strong>g season (4A, 48) ascompared to climates where the crop isgrown on residual moisture (4C, 58). Incold mega-environments (6B, 6D),average potential yields are roughlycorrelated with the amount <strong>of</strong> availablemoisture; yield variability <strong>in</strong> thesemega-environments likewise is<strong>in</strong>fluenced by the distribution <strong>of</strong> ra<strong>in</strong>fall,show<strong>in</strong>g greater stability where ra<strong>in</strong>fall70605040302010~Diyarbaki:.-.Harb<strong>in</strong>o~~k~~=--....,......-----.--------r-~0.01.02.03.0 4.05.0Yield (t/ha)Figure 2. Cumulative probability distributions for simulated wheat yields <strong>in</strong> sevenra<strong>in</strong>fed marg<strong>in</strong>al environments._3 In these simulations, the EPIC model wasadjusted for each site to take <strong>in</strong>to account soiltype, wheat variety, <strong>and</strong> local crop rotations.4 Follow<strong>in</strong>g conventional practice, throughoutthis report the coefficient <strong>of</strong> variation aroundtrend (CV) is used as a measure <strong>of</strong> yieldvariability. It should be noted that the CV is arelative measure <strong>of</strong> variability, not an absolutemeasure. Thus, a decl<strong>in</strong>e <strong>in</strong> yield variability as6.0 <strong>in</strong>dicated by a decrease <strong>in</strong> CV may resull froman <strong>in</strong>crease <strong>in</strong> the mean yield. from a decrease<strong>in</strong> the st<strong>and</strong>ard error term. or from acomb<strong>in</strong>ation <strong>of</strong> the two.


Factors Affect<strong>in</strong>g Water Use EfficiencyThe word "drought" conjures up visions<strong>of</strong> stunted plants; wilted, rolled, orprematurely withered leaves; <strong>and</strong>heavily constra<strong>in</strong>ed yield components(e.g., low spike numbers, fewer gra<strong>in</strong>sper spike, <strong>and</strong> reduced gra<strong>in</strong> size). Whilethese symptoms are <strong>in</strong>deed the predictableconsequences <strong>of</strong> severe drought,there exist as well a whole range <strong>of</strong> Iedramatic physiological effects caused bylack <strong>of</strong> water which can reduce gra<strong>in</strong>yield <strong>in</strong> cereal crops.Water is fundamental to crop growth,because CO 2uptake by leaves dur<strong>in</strong>gphotosynthesis is necessarily accompaniedby H 20 vapor loss throughtranspiration. In addition to water usedby the plant <strong>in</strong> transpiration, moisture islost directly from the soil throughevaporation - generally about 75-120mm for typical cereal crops (the exactamount depends largely on ra<strong>in</strong> frequency).Evapotranspiration (ET), theconventional measure <strong>of</strong> crop water use,is the sum <strong>of</strong> both types <strong>of</strong> water loss,i.e., transpiration plus evaporation.The relation 'hip between ET <strong>and</strong> gra<strong>in</strong>yield is generally speak<strong>in</strong>g direct <strong>and</strong>l<strong>in</strong>ear, although the mechanisms relat<strong>in</strong>gthe two are far from simple. The ratio <strong>of</strong>photosynthesis to transpiration, <strong>of</strong>tenreferred to as the transpirationefficiency, is usually fairly stable for agiven crop 'pecies (although it is<strong>in</strong>versely related to the prevail<strong>in</strong>g dryness<strong>of</strong> the air). A stable transpirationefficiency means that crop dry matterproduction is more or I directlyrelated to total transpiration <strong>and</strong> hence,assum<strong>in</strong>g a given amount <strong>of</strong> evaporation,to ET. S<strong>in</strong>ce the ratio <strong>of</strong> gra<strong>in</strong> yield tototal dry matter yield (known as theharvest <strong>in</strong>dex) also tends to be fairlystable, then the relationship <strong>of</strong> gra<strong>in</strong>yield to ET is also basically l<strong>in</strong>ear. Putsimply, for each ton <strong>of</strong> gra<strong>in</strong> produced, acerta<strong>in</strong> fixed amount <strong>of</strong> water must beused for ET.In temperate environments, modern highyield<strong>in</strong>g spr<strong>in</strong>g wheat varieties grownwithout water limitations under excellentmanagement have a (potential) ET <strong>of</strong>around 500 mm, giv<strong>in</strong>g a potential orwater-unlimited yield <strong>of</strong> around 7 t/ha.In drought-prone environments, yield isreduced by lack <strong>of</strong> water <strong>in</strong> proportion tothe amount by which actual E1' fallsbelow potential ET. Farmers' yields areusually well below the ET-determ<strong>in</strong>edmaximum potential yield because <strong>of</strong> lessthan-perfectcrop management.The performance <strong>of</strong> a crop <strong>in</strong> moisturelimitedenvironments is <strong>of</strong>ten assessed <strong>in</strong>terms <strong>of</strong> water use efficiency (WUE),def<strong>in</strong>ed by agronomi t a gra<strong>in</strong> yielddivided by ET. WUE i <strong>in</strong>fluenced byavailable water supply, def<strong>in</strong>ed as totalwater supply m<strong>in</strong>us losses due to soilevaporation, run<strong>of</strong>f, <strong>and</strong> dra<strong>in</strong>age. Whilethe amount <strong>of</strong> available water i mostcritical, it distribution relative to thecrop cycle can also be importliDI. s<strong>in</strong>ceyields may fall below the theoreti almaximum if water shortage is concentratedsharply around flower<strong>in</strong>g, or ifra<strong>in</strong>s come too lnte <strong>in</strong> gra<strong>in</strong> fill<strong>in</strong>g. Infavorable production environments, acrop that uses all potential ET achieves amaximum WUE <strong>of</strong> around 14 kg/ha/mm(7,000 kg/ha yield divided by 500 mmwater).Average farmers' yields <strong>in</strong> southernAustralia exhibit the exp ct d response <strong>of</strong>yield to ET, but they also reveal a largeeffect <strong>of</strong> crop management on WUE(Corni h <strong>and</strong> Murray 1989, French <strong>and</strong>Schultz 1984). WUE i low relative topotential, e pecially <strong>in</strong> years <strong>of</strong> high ET,becRu e <strong>of</strong> <strong>in</strong>adequate fertility, poor weedcontrol, poor disease control, poor cropst<strong>and</strong>, <strong>in</strong>correct sow<strong>in</strong>g date, <strong>and</strong> soildiseases (see Figure). Average WUE (asdef<strong>in</strong>ed) for the whole <strong>of</strong> Australia isestimated at around 6 kg/ha/mm (Fischer1988); WUE levels achieved by farmers<strong>in</strong> develop<strong>in</strong>g countries grow<strong>in</strong>g ra<strong>in</strong>fedwheat may be even les .In an attempt to determ<strong>in</strong>e whetherprogr S8 has been made <strong>in</strong> breed<strong>in</strong>g for<strong>in</strong>creased WUE, La<strong>in</strong>g <strong>and</strong> Fischer(L977) explored the r lationship betweenvarieties <strong>and</strong> water stre S. us<strong>in</strong>g meansite yield at a large set <strong>of</strong> m<strong>in</strong>fed sites asa surrogate for ET amount. Older tallvarieties were found to have a loweryield potential <strong>of</strong> around 4-5 t/ha withunlimited wliter, <strong>and</strong> yield fell withreduced IT much a expected. Thedifference between th older tall varieties<strong>and</strong> first-generation semidwarfs wasthat the relative rate at which yields fellwith reduced ET was less with the olderwheats, presumably due to their droughtre i 'lance mechanisms. At severe stresslevels (plot yields below 1.5 t/ha), theolder varieties actually yielded morethan the semidwarfs. For many years, agreat deal <strong>of</strong> controversy surrounded thequestion as to the exact level <strong>of</strong> stre s atwhich older varieties began to show theiradvantage over first-generation semidwarfs.This controversy has now abated,as the second-generation semidwarfsreleased dur<strong>in</strong>g the 1980s have clearlymoved the MY yield l<strong>in</strong>e upwards,apparently at all ET levels. Recent workby Perry <strong>and</strong> D'Antuono (1989) sugge tsthat MYs now outperform older varietieseven under very dry Mediterraneanconditions.Gra<strong>in</strong> yield t/ha)7-.-----------------------........---.......65432Fanner averageo-t------y&o-----,-----,----"'T""'"----r-------'o 100500200 300 400Crop evapotranspiration (ET, mm)Relationship <strong>of</strong> gra<strong>in</strong> yield to crop evapotranspiration for spr<strong>in</strong>g-habit wheatcrops <strong>in</strong> temperate regions <strong>in</strong> Australia with best management <strong>and</strong> with averagefarmer management.


6is more reliable. F<strong>in</strong>ally, <strong>in</strong> the highlatitudemega-environment (7),relatively abundant ra<strong>in</strong>fall results <strong>in</strong>high yield potential compared to theother ra<strong>in</strong>fed mega-environments.When the results achieved under thera<strong>in</strong>fed production scenarios arecompared with the results achievedunder the irrigation scenarios, strik<strong>in</strong>gdifferences emerge. Under simulatednatural precipitation, at most <strong>of</strong> the sitesdrought stress depresses potential yieldsto less than half the potential determ<strong>in</strong>edTable 3. <strong>Wheat</strong> production <strong>in</strong> ra<strong>in</strong>fed marg<strong>in</strong>al mega-environments <strong>in</strong> develop<strong>in</strong>gcountries, mid-1980sBread wheatDurum wheatArea Yield <strong>Production</strong> Area Yield <strong>Production</strong>Mega-environment (mill ha) (tlha) (mill l) (mill ha Wha) (mill t)ME4A Low ra<strong>in</strong>fall, 5.40 0.83 4.50 4.70 0.94 4.41temperate,late droughtME48 Low ra<strong>in</strong>fall, 3.15 1.27 4.00 0 0temperate,early droughtME4C Low ra<strong>in</strong>fall, 4.34 1.09 4.75 0 0temperate,residual moistureME58 Low ra<strong>in</strong>fall, 3.17 0.90 2.84 1.49 0.81 1.20hot, residualmoistureME68 Low ra<strong>in</strong>fall, 4.48 0.88 3.92 0 0moderate coldME6D Low ra<strong>in</strong>fall, 5.91 1.48 8.73 1.21 1.40 1.69severe coldME7 Variable ra<strong>in</strong>fall, 0.99 1.51 1.49 0 0severe coldDevelop<strong>in</strong>g country total 28.46 1.09 31.04 7.46 0.98 7.35Percent <strong>of</strong> develop<strong>in</strong>gcountry total or average (32%) (50%) (16%) (72%) (74%) (53%)Source: IMMY mega-environment. database.by available solar radiation (as revealedby the irrigated simulation runs).5 Inaddition, yield variability underirrigation as measured by the CV is verylow, confirm<strong>in</strong>g that moisture stress isthe major factor account<strong>in</strong>g for highyield variability <strong>in</strong> these environments(any rema<strong>in</strong><strong>in</strong>g variability <strong>in</strong> yields isdue to year-to-year temperaturefluctuations).While simulated potential yields do notreflect yields actually achieved byfarmers, the simulation results are useful<strong>in</strong> that they graphically display the large<strong>in</strong>fluence <strong>of</strong> a s<strong>in</strong>gle climatic factor(moisture) <strong>in</strong> determ<strong>in</strong><strong>in</strong>g yield potential<strong>and</strong> variability across a set <strong>of</strong> representativera<strong>in</strong>fed sites. (A historical analysis<strong>of</strong> yield variability <strong>in</strong> marg<strong>in</strong>al environmentsis presented <strong>in</strong> the box, p. 8).Extent <strong>of</strong> Ra<strong>in</strong>fedMarg<strong>in</strong>al <strong>Environments</strong><strong>in</strong> the Develop<strong>in</strong>g WorldApproximately one-quarter <strong>of</strong> the areaplanted to bread wheat <strong>in</strong> develop<strong>in</strong>gcountries <strong>and</strong> nearly three-quarters <strong>of</strong> thearea planted to durum wheat is located<strong>in</strong> ra<strong>in</strong>fed marg<strong>in</strong>al environments(Table 3).6 Because <strong>of</strong> low yields, theseenvironments account for a less-thanproportional(but still significant)amount <strong>of</strong> total production; ra<strong>in</strong>fedmarg<strong>in</strong>al environments produce about16% <strong>of</strong> the bread wheat <strong>and</strong> 53% <strong>of</strong> thedurum wheat grown <strong>in</strong> the develop<strong>in</strong>gworld. (Because much more bread wheatis produced <strong>in</strong> the world than durumwheat, these percentages are somewhatmislead<strong>in</strong>g. Even though a relativelysmall proportion <strong>of</strong> bread wheat isgrown <strong>in</strong> marg<strong>in</strong>al environments, thetotal amount <strong>of</strong> bread wheat produced <strong>in</strong>marg<strong>in</strong>al environments is still over fourtimes as large as the amount <strong>of</strong> durumwheat produced <strong>in</strong> marg<strong>in</strong>alenvironments.) Similar data are not5 Strictly speak<strong>in</strong>g, two <strong>of</strong> the sites may not betruly marg<strong>in</strong>al, s<strong>in</strong>ce the ratio <strong>of</strong> ra<strong>in</strong>fed toirrigated potential yields exceeds 40%.However, the sites which clearly conform to the40% criterion are located <strong>in</strong> the megaenvironmentson which this report focuses.6 The data on wheat production <strong>in</strong> marg<strong>in</strong>alenvironments presented <strong>in</strong> Tables 3 <strong>and</strong> 4 arebased on subjective estimates made dur<strong>in</strong>g themid-1980s by knowledgeable wheat scientistsfrom national agricultural research programs<strong>and</strong> CIMMYT. While the estimates are believedto be reasonably accurate, occasionally theydiffer from published government statistics orFAO production data (on which all subsequentanalysis conta<strong>in</strong>ed <strong>in</strong> this report is based). Theestimates are nevertheless reproduced herebecause they represent the only comprehensiveset <strong>of</strong> production data disaggregated by megaenvironment.


7available for barley, but the proportion<strong>of</strong> barley area located <strong>in</strong> ra<strong>in</strong>fedmarg<strong>in</strong>al environments is undoubtedlyeven higher, s<strong>in</strong>ce barley is consideredthe more drought-resistant <strong>of</strong> the twocrops <strong>and</strong> is frequently planted <strong>in</strong> drierproduction zones.?Table 4 presents additional data on thearea sown to wheat <strong>in</strong> low ra<strong>in</strong>fall zones,broken down by region. Althoughra<strong>in</strong>fed marg<strong>in</strong>al environments arewidely distributed throughout thedevelop<strong>in</strong>g world, it can be seen thatwheat production <strong>in</strong> these environmentsis concentrated <strong>in</strong> the WANA Region<strong>and</strong> South Asia.<strong>Production</strong> Trends <strong>in</strong> Ra<strong>in</strong>fedMarg<strong>in</strong>al <strong>Environments</strong>Evidence <strong>of</strong> divergent rates <strong>of</strong> progressbetween favorable <strong>and</strong> marg<strong>in</strong>alproduction environments exists atseveral levels. When a broad dist<strong>in</strong>ctionis made between develop<strong>in</strong>g countries <strong>in</strong>which most wheat is grown under wellwateredconditions <strong>and</strong> develop<strong>in</strong>gcountries <strong>in</strong> which most wheat is grownunder low ra<strong>in</strong>fall, it becomes apparentthat wheat area <strong>and</strong> yields <strong>in</strong> the lowra<strong>in</strong>fall group <strong>of</strong> countries have grown atonly half the rates recorded <strong>in</strong> the wellwateredgroup (Figure 3).Similar discrepancies are apparentwith<strong>in</strong> <strong>in</strong>dividual countries. Perhaps themost detailed picture <strong>of</strong> productiontrends <strong>in</strong> favorable vs. marg<strong>in</strong>alenvironments is available for India,where the past three decades have seen adramatic shift <strong>in</strong> wheat production fromra<strong>in</strong>fed to irrigated areas (Figure 4).Between 1961-65 <strong>and</strong> 1984-86, ra<strong>in</strong>fedwheat area <strong>in</strong> India decl<strong>in</strong>ed from about9 million hectares to 6 million hectares,while irrigated wheat area rose from 4million hectares to 17 million hectares.Hence the conventional wisdom thatcrop cultivation is exp<strong>and</strong><strong>in</strong>g <strong>in</strong>to7 However. <strong>in</strong> several major barley produc<strong>in</strong>gcountries such as Turkey. Tunisia, <strong>and</strong> India,over half <strong>of</strong> all barley is produced <strong>in</strong> irrigated orhigh ra<strong>in</strong>fall zones.Average annual rate <strong>of</strong> growth,1961-65 to 1987-89 (%)6.....------------.-.Proclll lion ( .4)54Table 4. Area planted to wheat <strong>in</strong> low ra<strong>in</strong>fall zones <strong>of</strong>selected develop<strong>in</strong>g countries,mid-1980sA percent Low As percentLow ra<strong>in</strong>fall <strong>of</strong> total ra<strong>in</strong>fall <strong>of</strong> totalbread wheat bread wheat durum durumarea area area area(000 ha) <strong>in</strong> region (000 ha) <strong>in</strong> regionWest Asia/North Africa 12,464 63 5,913 74South Asia 6,785 23 1,500 94East Asia 4,730 16 0 0South America 3,225 38 0 0Develop<strong>in</strong>g country total 28,459 32 7,463 72Source: CIMMYT mega- nvironmen dalaba e.3Vi Id ( .0)Producti n (2.5)Million ha20-r------------------------.......------,2Yi Id (2.0>15Img'lIed areaoCountries that Countries thatgrow wheat grow wheat mostlymostly under underdryJ<strong>and</strong> 5well-watered conditions conditionsJOFigure 3. Growth <strong>of</strong> wheat area <strong>and</strong> yields<strong>in</strong> two groups <strong>of</strong> develop<strong>in</strong>g countriesdist<strong>in</strong>guished by moisture regime, 1961-65to 1987-89.O+...........--'T___,.___..__""T"'"_._...........~___,.___..__""T"'"_._ ...........~___,.___..__""T"'"_._"""T"~___,.___~1963 1966 1969 1972 1975 1978 1981 1984Figure 4. Trends <strong>in</strong> ra<strong>in</strong>fed <strong>and</strong> irrigated wheat area <strong>in</strong> India, 1963-86.


Variability <strong>in</strong> <strong>Wheat</strong> Yields <strong>in</strong> Marg<strong>in</strong>al <strong>Environments</strong>In low ra<strong>in</strong>fall environments, wheatyields are nol only low, but they tend tobe highly variable. Variability <strong>in</strong> yieldsis <strong>of</strong>concern both at the farm level(s<strong>in</strong>ce farmers seek stability <strong>in</strong> foodproduction <strong>and</strong> <strong>in</strong>come), as well as at thenational level (s<strong>in</strong>ce national food securityis a major goal <strong>of</strong> policy makers).S<strong>in</strong>gh <strong>and</strong> Byerlee (1990 recentlyanalyzed wheat yield variability <strong>in</strong> 57countries over 35 years (1951-86). Yieldvariability was measured by calculat<strong>in</strong>gcoefficients <strong>of</strong> variation (CY) <strong>of</strong> yieldsaround l<strong>in</strong>ear trend. S<strong>in</strong>gh <strong>and</strong> Byerleeconcluded that ra<strong>in</strong>fall is thepredom<strong>in</strong>ant factor <strong>in</strong>fluenc<strong>in</strong>g yieldvariability: countries <strong>in</strong> which at leasthalf the wheat area is own <strong>in</strong> dryl<strong>and</strong>conditions experience twice as muchyield variability as countries <strong>in</strong> whichwheat is mostly grown under wellwateredcondition (see Figure). Therelationship j particularly trong <strong>in</strong>small countrie ; <strong>in</strong> large countrie ,drought <strong>in</strong> one region may be <strong>of</strong>f et byaverage or above-average ra<strong>in</strong>fall <strong>in</strong>another region, lead<strong>in</strong>g to lower overallyield variability ( ee Figure). Yieldvariability also tends to be higher <strong>in</strong>warmer, subtropicaJ countries because <strong>of</strong>heat stress. ize <strong>of</strong> national wheat area,percentage <strong>of</strong> national wheat areasubject to moisture, tress, <strong>and</strong> location<strong>of</strong> the country <strong>in</strong> the warmer tropicsexpla<strong>in</strong> over two-thirds <strong>of</strong> the variation<strong>in</strong> CYs <strong>of</strong> yield across countries.Significantly, <strong>and</strong> somewhaturpris<strong>in</strong>gly, technologi al variablessuch as use <strong>of</strong> MYs <strong>and</strong> fertilizerexpla<strong>in</strong>ed none <strong>of</strong> the variation <strong>in</strong> CYs.ot all ra<strong>in</strong>fed marg<strong>in</strong>al environmentsare characterized by high yieldvariability. In the residual moistureenvironment <strong>of</strong>central <strong>and</strong> southernIndia, wheat yields are generally quitestable; <strong>in</strong> fact, yields <strong>in</strong> this environmentare no more unstable tban <strong>in</strong> adjacentirrigated area' where irrigation watersupplies tend to be unreliable (Byerlee1991). However, among countries <strong>in</strong> theWANA Region the variability <strong>in</strong> cerealproduction (mo tly wheat) averages 25­30%, two to three times higher than <strong>in</strong>most <strong>of</strong> Asia <strong>and</strong> Lat<strong>in</strong> America. Thehigh production variability <strong>in</strong> theWANA Region poses special challengesto policy makers charged with manag<strong>in</strong>gnational fi od upplies.S<strong>in</strong>gh <strong>and</strong> Byerlee also analyzedchanges over time <strong>in</strong> wheat yieldvariability <strong>in</strong> order to evaluate the claimthat yields have become more unstableas a result <strong>of</strong> widespread adoption <strong>of</strong>Green Revolution technologies,particularly <strong>in</strong>put-responsive MYs. Inthe case <strong>of</strong> wheat, no evidence wasfound to upport this hypothesis. Indeed,<strong>in</strong> the irrigated <strong>and</strong> well-wateredprodu tion zones where the GreenRevolution had its greatest impact, yieldvariability has decl<strong>in</strong>ed sharply <strong>in</strong> recentyears, especially <strong>in</strong> the Indian Punjab(see Table). Even <strong>in</strong> dryl<strong>and</strong> areas,wheat yield variability seems to havedecl<strong>in</strong>ed slightly dur<strong>in</strong>g the most recentdecade, the period when seed-fertilizertechnology began to spread <strong>in</strong>to moremarg<strong>in</strong>al environments. These f<strong>in</strong>d<strong>in</strong>gsconfirm that yield risk is higher <strong>in</strong>marg<strong>in</strong>al areas, but they do not supportthe assertion that this risk is exacerbatedby the use <strong>of</strong> improved technology.CV <strong>of</strong> wheat yields (%)50.,..--------------------------,• • • Dry countries CY = 43.2 - 3.01 Ln (WA)R'=0.S7(4.13)***n= IS40302010o•••-.e.-..• a..A.-.A.Wet countries CY = 14.3 - .64 Ln (WA)R'= 0.11 (2.16)** n = 36.A. Tropical countries•• • -.,-.-. - .. •-•• •••Relationship between coefficient <strong>of</strong> variation (CV) <strong>of</strong> wheat yields <strong>and</strong> wheat area(WA) by climatic regime, 1966-86.Changes <strong>in</strong> the variability <strong>of</strong> wheat yields <strong>in</strong> selected groups <strong>of</strong> countries, 1951-86Percent changeCoefficient <strong>of</strong> variation <strong>in</strong>CV,Number <strong>of</strong> around trend (%) 1951-65 tocountries 1951-65 1966-75 1976-86 1976-86Irri[ated <strong>and</strong>weI -watered temperate 36 10.6 8.5 6.4 - 38Dryl<strong>and</strong> temperate 15 16.2 [5.2 14.4 - 9Tropical 6 22.6 23.6 18.9 - 16All countries 57 13.3 11.8 10.1 - 23Indian Punjab 18.9 12.6 6.2 - 6712


9marg<strong>in</strong>al areas is certa<strong>in</strong>ly not valid forwheat <strong>in</strong> India; on the contrary, asra<strong>in</strong>fed production zones have beenconverted to irrigation, the proportion <strong>of</strong>dryl<strong>and</strong> wheat area has decl<strong>in</strong>ed from67% to 25%.An exam<strong>in</strong>ation <strong>of</strong> yield trends <strong>in</strong> Indiahelps expla<strong>in</strong> the <strong>in</strong>creas<strong>in</strong>gconcentration <strong>of</strong> production <strong>in</strong> irrigatedzones (Figure 5). <strong>Wheat</strong> yields <strong>in</strong>irrigated areas averaged 2.2 t/ha <strong>in</strong> 1985,more than double the 0.9 t/ha achieved<strong>in</strong> ra<strong>in</strong>fed areas. Significantly, thedifference between yields <strong>of</strong> irrigated<strong>and</strong> ra<strong>in</strong>fed wheat has been widen<strong>in</strong>g;from 1972 to 1985, yields <strong>of</strong> irrigatedwheat grew at an average annual rate <strong>of</strong>2.8%, compared to only 1.4% for yields<strong>of</strong> ra<strong>in</strong>fed wheat. This comb<strong>in</strong>ation <strong>of</strong> adecl<strong>in</strong><strong>in</strong>g proportion <strong>of</strong> ra<strong>in</strong>fed area <strong>and</strong>a higher growth rate <strong>in</strong> yields <strong>of</strong> irrigatedwheat has caused the share <strong>of</strong> ra<strong>in</strong>fedwheat production to fall sharply <strong>in</strong> India,from around 50% <strong>in</strong> 1960 to 15% <strong>in</strong>1986.<strong>Production</strong> data from a number <strong>of</strong>WANA countries provide furtherevidence that progress has been slower<strong>in</strong> dryl<strong>and</strong> areas. For example, cerealyields <strong>in</strong> irrigated areas <strong>of</strong> Syria havegrown at more than double the rate <strong>of</strong>yields <strong>in</strong> ra<strong>in</strong>fed areas (Table 5).Farmers <strong>in</strong> Syria have responded to themore difficult production conditions <strong>in</strong>ra<strong>in</strong>fed areas by plant<strong>in</strong>g less wheat <strong>and</strong>more barley. The decrease <strong>in</strong> ra<strong>in</strong>fedwheat area has been accompanied by asteady expansion <strong>in</strong> irrigated wheat area,primarily through the <strong>in</strong>stallation <strong>of</strong>tubewells. As a result <strong>of</strong> these yield <strong>and</strong>area trends, the percentage <strong>of</strong> total wheatproduction grown under irrigatedconditions <strong>in</strong>creased from around 15% <strong>in</strong>the late 1960s to over 40% by the late1980s (Figure 6). Similar trends lead<strong>in</strong>gto the concentration <strong>of</strong> wheat production<strong>in</strong> higher ra<strong>in</strong>fall regions are evidentelsewhere <strong>in</strong> the WANA Region,<strong>in</strong>clud<strong>in</strong>g Morocco <strong>and</strong> Tunisia (Belaid<strong>and</strong> Morris 1991).The picture is slightly different <strong>in</strong>Turkey, the country with the largestwheat <strong>and</strong> barley areas <strong>in</strong> the WANARegion. <strong>Wheat</strong> <strong>and</strong> barley production <strong>in</strong>Yield (t/ha)2.5 -.----------------~-------__,21.5•.... -------­•Ra<strong>in</strong>fed(growth = 1.4%/yr)0-+-------,.-----.,-------.-----.,.------119651970197519801990Figure S. Trends <strong>in</strong> ra<strong>in</strong>fed <strong>and</strong> irrigated wheat yields <strong>in</strong> India, 1968-86.Table S. Cereal production data for Syria by moisture regime, 1968-87<strong>Wheat</strong>1985-871970Wbeatrca <strong>and</strong> yield1968-70<strong>Barley</strong> to1985-87 19711-861972197419761978Growth rates1978·80to1985-8719801968-70to1978·801982<strong>Barley</strong>1978-80to1985-87Area (000 ha) (%/yr)Ra<strong>in</strong>fed 946 1,490 2.0 -4.0 3.5 3.9Irrigated 236 12 8.5 3.8 0.5 -3.4Yield (t/ha) (%/yr)Ra<strong>in</strong>fed 1.12 0.53 4.9 1.4 1.6 -4.7Irrigated 3.07 1.85 7.9 3.0 5.2 0.9S ume: Calculated from data provided by Ihe<strong>of</strong> Agriculture (I 8 ).yrian M<strong>in</strong>i tryMillon t2.4 -r----------------------------,2.22.01.81.61.41.21.00.80.60.40.2O-+--,.---,r---r-.....,...--r-r--..,...-r---T-r-"'T"""-,---r-T--r--,.---,r--~ ...1968Figure 6. <strong>Production</strong> <strong>of</strong> ra<strong>in</strong>fed <strong>and</strong> irrigated wheat <strong>in</strong> Syria, 1968-87.1984 1986


10Turkey are distributed across bothfavored areas (e.g., the well-wateredtemperate zones along the Mediterraneancoast <strong>and</strong> <strong>in</strong> Thrace) <strong>and</strong>marg<strong>in</strong>al areas (e.g., the dry, coldAnatolian Plateau) (Figure 7). Highyield<strong>in</strong>g semidwarf spr<strong>in</strong>g wheatvarieties <strong>and</strong> fertilizer were adoptedrapidly <strong>in</strong> the favored areas beg<strong>in</strong>n<strong>in</strong>g <strong>in</strong>the mid-1960s (Demir 1976), lead<strong>in</strong>g todramatic <strong>in</strong>creases <strong>in</strong> wheat yieldsthroughout these environments(Table 6). Although MVs were notadopted nearly as rapidly <strong>in</strong> the marg<strong>in</strong>alproduction zones <strong>of</strong> Central Anatolia,significant progress nevertheless wasachieved <strong>in</strong> rais<strong>in</strong>g yields throughimprovements <strong>in</strong> crop management,<strong>in</strong>clud<strong>in</strong>g improved tillage practices,<strong>in</strong>creased fertilizer use, <strong>and</strong> better weedcontrol.Evidence from a number <strong>of</strong> countriesthus appears to confirm the widespreadperception that the rate <strong>of</strong> growth <strong>in</strong>wheat yields achieved <strong>in</strong> ra<strong>in</strong>fedmarg<strong>in</strong>al environments has not kept pacewith that achieved <strong>in</strong> favoredenvironments (<strong>in</strong>clud<strong>in</strong>g irrigated areas).Farmers have responded by <strong>in</strong>creas<strong>in</strong>gthe area planted to wheat <strong>in</strong> favoredzones <strong>and</strong> by concentrat<strong>in</strong>g relativelymore production <strong>in</strong> these zones.In an attempt to uncover the reasons forthese apparent differential rates <strong>of</strong> yieldgrowth, the next two sections <strong>of</strong> thisreport exam<strong>in</strong>e <strong>in</strong> some detail theexperiences <strong>of</strong> two regions conta<strong>in</strong><strong>in</strong>gextensive dryl<strong>and</strong> wheat <strong>and</strong> barleyproduction zones-the WANA Region (aw<strong>in</strong>ter ra<strong>in</strong>fall environment), <strong>and</strong> central<strong>and</strong> southern India <strong>and</strong> parts <strong>of</strong> Pakistan(a residual moisture environment).Table 6. Historical growth <strong>in</strong> wheat yields <strong>in</strong> four production zones <strong>of</strong> Turkey,1967-87Average wheatAnnual growthyield (tlha) <strong>in</strong> yield (%)ProduCtion zone a 1965·69 1974-78 1983-87 1967-76 1976-85Favored environmentsMediterranean Coast 1.68 2.71 3.28 5.3 2.1Thrace 1.23 2.80 2.96 9.2 0.6Marg<strong>in</strong>al environmentsCentral Anatolia 1.24 1.69 1.98 3.5 1.7Eastern Anatolia 0.88 1.01 1.15 1.6 1.5a Based n data from the How<strong>in</strong>g pro <strong>in</strong>ee : Adana, Hatay (Mediterranean Coast);Edirne. Kicklareli, Tekirdag (Thrace); Ankara. Eskesehir (Central Anatolia); Artv<strong>in</strong>,Kars. Erzurum, Agri. Mus, Billi , Siirt. Hakkari. Van (Eastern An3tolia).D W<strong>in</strong>ter- facultative wheat areaFigure 7. <strong>Wheat</strong> production zones <strong>in</strong> Turkey.


11Ra<strong>in</strong>fed Marg<strong>in</strong>al <strong>Environments</strong><strong>of</strong> West Asia <strong>and</strong> North Africa 8By far the greatest concentration <strong>of</strong>dryl<strong>and</strong> wheat <strong>and</strong> barley production <strong>in</strong>the develop<strong>in</strong>g world is found <strong>in</strong> theWANA Region, where approximately 25million hectares are planted to wheat, <strong>of</strong>which only about 20% is irrigated _(mostly <strong>in</strong> Egypt <strong>and</strong> Saudi Arabia). Ofthe rest. nearly three-quarters is located<strong>in</strong> areas receiv<strong>in</strong>g less than 500 mmannual ra<strong>in</strong>fall. An additional 12 millionhectares are planted to barley <strong>in</strong> theWANA Region, <strong>of</strong> which an even higherproportion is located <strong>in</strong> low ra<strong>in</strong>fallzones.Types <strong>of</strong> Fa~m<strong>in</strong>gSystems <strong>in</strong> the WANA RegionA broad overview <strong>of</strong> the ra<strong>in</strong>fedagricultural systems <strong>of</strong> WANA, ignor<strong>in</strong>glocal variations imposed by topography,shows a transition from crop cultivation<strong>in</strong> wetter areas to livestock-based8 This section draws on Belaid <strong>and</strong> Morris (1991).systems <strong>in</strong> drier areas. In general, coastalareas are wettest <strong>and</strong> support <strong>in</strong>tensivehorticulture <strong>and</strong> agriculture. Ra<strong>in</strong>falldecl<strong>in</strong>es with <strong>in</strong>creased distance fromthe coast, so that mov<strong>in</strong>g <strong>in</strong>l<strong>and</strong> one firstencounters ra<strong>in</strong>fed systems dom<strong>in</strong>atedby wheat <strong>and</strong> then systems dom<strong>in</strong>ated bybarley. Where annual ra<strong>in</strong>fall dropsbelow 200 mm, ra<strong>in</strong>fed farml<strong>and</strong> givesway to large expanses <strong>of</strong> steppe thatprovide graz<strong>in</strong>g for nomadic ortranshumant flocks <strong>of</strong> small rum<strong>in</strong>ants.Deserts predom<strong>in</strong>ate <strong>in</strong> the <strong>in</strong>terior <strong>of</strong>the region, where only irrigatedagriculture is possible (Figure 8).Ra<strong>in</strong>fall <strong>in</strong> the dryl<strong>and</strong> wheat <strong>and</strong> barleyzones <strong>of</strong> the WANA Region is not onlylow but highly variable. In addition tovary<strong>in</strong>g from year to year, ra<strong>in</strong>fall alsovaries through space; steep gradients <strong>in</strong>precipitation frequently occur acrossshort distances, with changes sometimesas large as 3-4 mm/km. This markedspatial <strong>and</strong> temporal variability <strong>in</strong>ra<strong>in</strong>fall, <strong>and</strong> the correspond<strong>in</strong>gvariability <strong>in</strong> potential grow<strong>in</strong>g season,is the most important factor contribut<strong>in</strong>gto risk <strong>and</strong> uncerta<strong>in</strong>ty <strong>in</strong> ra<strong>in</strong>fed cropproduction.Like ra<strong>in</strong>fall, temperatures also fluctuateconsiderably from year to year <strong>in</strong> theW ANA Region, caus<strong>in</strong>g the length <strong>of</strong>the grow<strong>in</strong>g season to vary by as muchas to three to four weeks at any givenlocation (Cooper <strong>and</strong> Bailey 1990).Given the sharp <strong>in</strong>crease <strong>in</strong> evaporativedem<strong>and</strong> due to a rapid rise <strong>in</strong>temperatures <strong>in</strong> spr<strong>in</strong>g <strong>and</strong> earlysummer, wheat <strong>and</strong> barley crops areusually stressed dur<strong>in</strong>g gra<strong>in</strong> set <strong>and</strong>gra<strong>in</strong> fill<strong>in</strong>g.In higher ra<strong>in</strong>fall areas <strong>of</strong> the WANARegion (350-600 mm average annualra<strong>in</strong>fall), the ma<strong>in</strong> crop is usually wheat.Both bread wheat <strong>and</strong> durum wheat aregrown, with the proportion between thetwo determ<strong>in</strong>ed partly by climaticfactors <strong>and</strong> partly by utilization patterns.Bread wheat tends to predom<strong>in</strong>ate at theweller end <strong>of</strong> the ra<strong>in</strong>fall spectrum,while durum wheat tends to predom<strong>in</strong>ateat the drier end.Throughout much <strong>of</strong> the WANA Region,a fallow-wheat rotation was traditionallywidespread, but <strong>in</strong> wetter areas <strong>and</strong> onbetter soils wheat is <strong>in</strong>creas<strong>in</strong>gly be<strong>in</strong>gMOROCCO--," """"'"" ALGERIA" """'"' '-'-,~-LIBYAIIIIIEGYPTII1~ ------------,., I",-.)_1250-500 mm< 50{) mmFigure 8. Distribution <strong>of</strong> ra<strong>in</strong>fed marg<strong>in</strong>al environments, def<strong>in</strong>ed by precipitation, <strong>in</strong> the WANA Region.


12grown <strong>in</strong> two- or three-crop rotationswith food or feed legumes <strong>and</strong> summercrops such as melon, maize, sesame,sunflower, <strong>and</strong> cotton. S<strong>in</strong>ce most wheatfarmers own both sheep <strong>and</strong> cattle, theyalso grow some barley, us<strong>in</strong>g the gra<strong>in</strong><strong>and</strong> straw for feed, together with othercrop residues such as wheat <strong>and</strong> legumestubble.At the drier end <strong>of</strong> the ra<strong>in</strong>fall spectrum,on l<strong>and</strong> adjacent to the dry steppe (200­350 mm average annual ra<strong>in</strong>fall),livestock production is the dom<strong>in</strong>antenterprise, provid<strong>in</strong>g most <strong>of</strong> the <strong>in</strong>come<strong>of</strong> farm families. Animal production(pr<strong>in</strong>cipally sheep <strong>and</strong> goats) is based onannually sown feed crops, notablybarley, with both gra<strong>in</strong> <strong>and</strong> straw used aslivestock feed. In some years barley maybe lightly grazed as a spr<strong>in</strong>g pasture, butits ma<strong>in</strong> purpose is to provide gra<strong>in</strong> <strong>and</strong>Metabolizable energy requirements (Ms/d)20161284ostraw for w<strong>in</strong>ter feed<strong>in</strong>g. S<strong>in</strong>ce barley isthe most important source <strong>of</strong> feed,farmers attempt to sow at least enougharea to be self-sufficient.Because <strong>of</strong> the production risks <strong>in</strong>herent,<strong>in</strong> the environment, barley production <strong>in</strong>these drier areas is frequently based onm<strong>in</strong>imum-<strong>in</strong>put technologies.Throughout the region, a barley/fallowrotation predom<strong>in</strong>ates, although fallowmanagement practices varyconsiderably. In some areas farmerscultivate fallow l<strong>and</strong> to reduce weeds,<strong>in</strong>crease water <strong>in</strong>filtration, <strong>and</strong> maximizemoisture storage. Elsewhere, a morecommon practice is to leave fallowsuncultivated (weedy fallow), s<strong>in</strong>ceweeds <strong>and</strong> volunteer crops provide avaluable source <strong>of</strong> livestock feed.However, as dem<strong>and</strong> for livestock feedrises, fallow is <strong>in</strong>creas<strong>in</strong>gly regarded asan <strong>in</strong>efficient use <strong>of</strong> l<strong>and</strong>, <strong>and</strong>cont<strong>in</strong>uous barley production isbecom<strong>in</strong>g more common.The important role played by livestock<strong>in</strong> the farm<strong>in</strong>g systems <strong>of</strong> WANAcountries directly <strong>in</strong>fluences the cropproduction strategies <strong>of</strong> most cerealfarmers, particularly <strong>in</strong> drier areas wherebarley/livestock systems predom<strong>in</strong>ate. Inthese areas, the largest share <strong>of</strong>agricultural <strong>in</strong>come (i.e., exclud<strong>in</strong>g<strong>in</strong>come from <strong>of</strong>f-farm employment)typically is derived not from crops, butrather from animals <strong>and</strong> animalproducts, <strong>in</strong>clud<strong>in</strong>g milk, cheese, <strong>and</strong>yoghurt. Studies <strong>in</strong> the dry ra<strong>in</strong>fed zones<strong>of</strong> Syria <strong>and</strong> Algeria, for example,<strong>in</strong>dicate that the sheep enterprise aloneprovides up to 82% (Thomson, Bahhady,<strong>and</strong> Nordblom 1982) <strong>and</strong> 77%(Boutonnet 1989) <strong>of</strong> agricultural <strong>in</strong>come,respectively.9In addition to be<strong>in</strong>g an important source<strong>of</strong> <strong>in</strong>come, livestock act as a f<strong>in</strong>ancialbuffer aga<strong>in</strong>st yearly fluctuations <strong>in</strong> cropproduction caused by ra<strong>in</strong>fall variability.In drought years when crops are poor<strong>and</strong> harvest<strong>in</strong>g would be uneconomic,farmers graze animals on their crops <strong>and</strong>also may reduce their flocks throughsales, thereby generat<strong>in</strong>g <strong>in</strong>come <strong>and</strong> atthe same time reduc<strong>in</strong>g feedrequirements <strong>in</strong> the follow<strong>in</strong>g w<strong>in</strong>terwhen stored barley gra<strong>in</strong> <strong>and</strong> straw willbe <strong>in</strong> short supply because <strong>of</strong> the poorharvest.The straw <strong>of</strong> cereal crops, particularlybarley, is one <strong>of</strong> the most importantfeedstuffs, utilized either as graz<strong>in</strong>g <strong>in</strong>situ or as a component <strong>of</strong> supplementarydiets <strong>in</strong> w<strong>in</strong>ter (Figure 9). In drier areas,particularly <strong>in</strong> dry years when theharvest <strong>in</strong>dex is low, the total economicvalue <strong>of</strong> cereal <strong>and</strong> legume straw perhectare can exceed that <strong>of</strong> gra<strong>in</strong>(Table 7).DryAW<strong>in</strong>terFigure 9. Livestock feed<strong>in</strong>g cycle <strong>in</strong> the WANA Region.Source: Cocks <strong>and</strong> Thomson (1988).LactationSpr<strong>in</strong>gM M J9 In bom <strong>of</strong> Ihese studies, the value <strong>of</strong> feed cropsproduced for use on the faml as an <strong>in</strong>put <strong>in</strong>lo melivestock enterprise was not taken <strong>in</strong>to account;therefore, the economic importance <strong>of</strong> cerealswas understated. Nevertheless, even when thevalue <strong>of</strong> cereals produced for feed use on thefann is <strong>in</strong>cluded, the sheep enterprise clearlyrema<strong>in</strong>s <strong>of</strong> major importance.


13The <strong>in</strong>tegration <strong>of</strong> barley <strong>and</strong> livestockmanagement is crucial to the survival <strong>of</strong>many farmers <strong>in</strong> dry areas. Few cropdecisions are made without consider<strong>in</strong>gthe feed requirements <strong>of</strong> livestock, <strong>and</strong>few livestock decisions are madewithout consider<strong>in</strong>g feed availability(Thomson, Bahhady, <strong>and</strong> Nordblom1982). Strategies for improv<strong>in</strong>g cropproduction, such as better fallowmanagement, weed control throughherbicide use, or the <strong>in</strong>troduction <strong>of</strong> newvarieties, must take account <strong>of</strong> these<strong>in</strong>teractions with livestock production<strong>and</strong> not jeopardize vital sources <strong>of</strong> feed.Use <strong>of</strong> Improved TechnologyVarietal development <strong>and</strong> diffusion­Throughout most <strong>of</strong> the WANA Region,adoption <strong>of</strong> modern varieties (MVs) hasproceeded much more slowly than <strong>in</strong>South Asia, where <strong>in</strong> countries such asIndia <strong>and</strong> Pakistan over 60% <strong>of</strong> thewheat area was already sown to MVs <strong>in</strong>1975, ris<strong>in</strong>g to about 90% by 1990. Inthe W ANA Region the area sown toMVs was estimated at 17% <strong>in</strong> 1976-77,ris<strong>in</strong>g to an estimated 42% by 1985-86(Dalrymple 1978, CIMMYT 1989c).Although few comprehensive adoptionstudies have been undertaken <strong>in</strong> recentyears, avai lable evidence suggests thatMVs have been adopted quiteextensively <strong>in</strong> favored environments <strong>and</strong>much less extensively <strong>in</strong> marg<strong>in</strong>alenvironments. For example, <strong>in</strong> 1989 lessthan 7% <strong>of</strong> low ra<strong>in</strong>fall wheat area <strong>in</strong>Syria was sown to MVs, compared tonearly 57% <strong>of</strong> high ra<strong>in</strong>fall <strong>and</strong> irrigatedarea (Syria M<strong>in</strong>istry <strong>of</strong> Agriculture,unpublished data). Similarly, <strong>in</strong> 1983only I % <strong>of</strong> the low ra<strong>in</strong>fall area <strong>in</strong>Tunisia was planted to modern durumwheats, compared to 58% <strong>of</strong> the highra<strong>in</strong>fall area (Johnson, Ferguson, <strong>and</strong>Fikry 1983).Broadly speak<strong>in</strong>g, <strong>in</strong> the WANA Regionuse <strong>of</strong> MVs is highest for spr<strong>in</strong>g breadwheats, followed by spr<strong>in</strong>g durums,w<strong>in</strong>ter bread wheats, <strong>and</strong> facultativebread wheats. Adoption <strong>of</strong> improvedw<strong>in</strong>ter durums, facultative durums, <strong>and</strong>barley has been less common. Thispattern, which roughly corresponds topast availability <strong>of</strong> MVs, notco<strong>in</strong>cidentally also reflects the ra<strong>in</strong>fallgradients under which these differentcereal types grow. Spr<strong>in</strong>g bread wheatsare grown <strong>in</strong> the wettest areas, followedby spr<strong>in</strong>g durums <strong>and</strong> w<strong>in</strong>ter breadwheats. W<strong>in</strong>ter durums <strong>and</strong> barley aregrown <strong>in</strong> the driest areas.Differences <strong>in</strong> adoption patternsaccord<strong>in</strong>g to wheat type <strong>and</strong> ra<strong>in</strong>fallregime also have been evident <strong>in</strong>Turkey. Spr<strong>in</strong>g bread wheats movedrapid ly <strong>in</strong>to the well-watered coastalzones <strong>of</strong> Turkey, <strong>and</strong> by the mid-1970s,less than 10 years after improvedvarieties first appeared <strong>in</strong> the country,the majority <strong>of</strong> farmers <strong>in</strong> these zoneshad adopted them. Meanwhile, adoptionrates <strong>in</strong> the marg<strong>in</strong>al productionenvironments <strong>of</strong> Central Anatolia, wherew<strong>in</strong>ter bread wheats <strong>and</strong> durum wheatsare grown, rema<strong>in</strong>ed extremely low.The pattern <strong>of</strong> adoption <strong>of</strong> MVs <strong>in</strong>Turkey is consistent with the number <strong>of</strong>varietal releases com<strong>in</strong>g out <strong>of</strong> thenational breed<strong>in</strong>g program. Turkishbreeders, work<strong>in</strong>g with colleagues from<strong>in</strong>ternational research <strong>in</strong>stitutes, havebeen very successful <strong>in</strong> breed<strong>in</strong>gvariet~es for favorable productionenvironments, as evidenced by the highproportion <strong>of</strong> spr<strong>in</strong>g wheats released forthese environments. Less success hasbeen achieved <strong>in</strong> breed<strong>in</strong>g for ra<strong>in</strong>fedmarg<strong>in</strong>al environments, where w<strong>in</strong>ter(<strong>and</strong> facultative) durum <strong>and</strong> bread wheatproduction is concentrated. Dur<strong>in</strong>g theI980s, for example, only a smallproportion () 0%) <strong>of</strong> the varietiesreleased were w<strong>in</strong>ter wheats specificallytargeted for the ra<strong>in</strong>fed areas.To some observers, the fact that MVshave diffused relatively slowly <strong>in</strong>to lowra<strong>in</strong>fall areas is puzzl<strong>in</strong>g. Even thoughmany breed<strong>in</strong>g programs <strong>in</strong> the WANARegion have been slow <strong>in</strong> releas<strong>in</strong>gvarieties recommended specifically formarg<strong>in</strong>al areas, most <strong>of</strong> the materialsdeveloped for favorable productionconditions <strong>of</strong>fer a yield advantage <strong>in</strong> allbut the harshest environments, evenwhen grown under low ra<strong>in</strong>fallconditions. Thus, it seems odd thatfarmers <strong>in</strong> low ra<strong>in</strong>fall zones have beenslow <strong>in</strong> adopt<strong>in</strong>g MVs. One possibleexplanation is that the yield ga<strong>in</strong>sachieved from adopt<strong>in</strong>g improvedgermplasm alone tend to be modest <strong>in</strong>drier areas, <strong>and</strong> frequently the extrayield may not be enough to <strong>of</strong>fset pricepremiums comm<strong>and</strong>ed by traditionalvarieties. However, s<strong>in</strong>ce crop <strong>and</strong> soilmanagement practices that conservemoisture <strong>in</strong>teract positively with thehigher yield potential <strong>of</strong> MVs,cont<strong>in</strong>u<strong>in</strong>g improvements <strong>in</strong> cropmanagement practices can be expectedto further stimulate the adoption <strong>of</strong> MVs.If improved wheat varieties are nowavailable that <strong>of</strong>fer limited yield ga<strong>in</strong>s <strong>in</strong>ra<strong>in</strong>fed areas, improved barley varietiesTable 7. Relative value <strong>of</strong> wheat gra<strong>in</strong> <strong>and</strong> straw under different levels <strong>of</strong> ra<strong>in</strong>fall <strong>in</strong>Baluchistan, Pakistan, 1985-88Poor car Average year yood earGra<strong>in</strong> yield (kglha) 16 146 412Straw yield (kglha) 134 335 1,115Gra<strong>in</strong> price (Rs/kg) 2.0 2.0 2.0Straw price (Rs/kg) 1.0 0.5 0.6Gross benefits (Rs/kg) 166 460 1,493Percent <strong>of</strong> gross benefits from straw 81 38 45urce: Rees el aI. (1991).


14that yield more than local materials arestill not common, especially <strong>in</strong> drierareas. In a series <strong>of</strong> multilocational yieldtrials <strong>in</strong> Syria, Cooper (1985) found thatmost improved barley varieties did notperform significantly better than thelocal check. More recently, however, asnational barley breed<strong>in</strong>g programs havebegun to mature, improved barleymaterials have been developed whichperform well even under extremely dryconditions (for example, the improvedvariety Rihane tested <strong>and</strong> selected <strong>in</strong>Tunisia) (JNRAT, unpublished data).Improved management practices <strong>and</strong><strong>in</strong>puts- In the WANA Region,aggregate fertilizer consumption hasexp<strong>and</strong>ed considerably dur<strong>in</strong>g the pasttwo decades, apparently parallel<strong>in</strong>g theadoption <strong>of</strong> MVs. The experience <strong>of</strong>Tunisia typifies this pattern: fertilizeruse on wheat <strong>in</strong> Tunisia doubled from20 kg nutrient/ha <strong>in</strong> 1970 to 40 kgnutrient/ha <strong>in</strong> 1980. Over the wholeregion, farmers now apply an average <strong>of</strong>40-50 kg nutrient/ha to wheat (CIMMYT1989c), although fertilizer use on barleyrema<strong>in</strong>s negligible. As expected,fertilizer is used more extensively <strong>in</strong> theirrigated <strong>and</strong> well-watered ra<strong>in</strong>fed areaswhere MVs are concentrated <strong>and</strong> wherecrop response is highest. In these areas,Table 8. Nitrogen-to-wheat price ratios <strong>in</strong> selected countries, 1989-90Farm level njtrogen "arm level wheat it rogcn-to-wbeatountr prjce ( 8$/1) price f ,$/1) price ratioAfghanistan 216 180 1.2Algeria 360 394 0.9Syria 989 664 1.5Turkey 337 208 1.6India 305 2m" 1.5Pakistan 330 110 3.0Argent<strong>in</strong>a 559 74 7.6Brazil 680 152 4.5Mexico 306 180 1.7Australia 562 104 5.4Canada 530 100 5.3USA 413 96 4.3"urce.: 'IMMYi urvey.Price <strong>in</strong> I.Iryl<strong>and</strong> central India.fertilizer application rates <strong>of</strong>ten exceed100 kg nutrient/ha. Less fertilizer isapplied <strong>in</strong> drier zones where barleypredom<strong>in</strong>ates, on shallower soils, orwhen a legume crop precedes the cerealcrop <strong>in</strong> the rotation (Kukula <strong>and</strong>Dakermanji 1986, Belaid <strong>and</strong> Morris1991). In areas receiv<strong>in</strong>g less than350 mm ra<strong>in</strong>fall, only a small percentage<strong>of</strong> farmers use fertilizer.Many countries <strong>in</strong> the WANA Regiononce provided price <strong>in</strong>centives for us<strong>in</strong>gfertilizer, either by directly subsidiz<strong>in</strong>gfertilizer or by <strong>in</strong>troduc<strong>in</strong>g favorableprices for cereals. The effects <strong>of</strong> thesepolicies are evident <strong>in</strong> the low nitrogento-gra<strong>in</strong>price ratios prevail<strong>in</strong>g <strong>in</strong> manyWANA countries, which are generallybelow those found <strong>in</strong> other major wheatproduc<strong>in</strong>g countries (Table 8). Nonetheless,recent policy reforms may haveadversely affected overall fertilizer use<strong>in</strong> the WANA Region by rais<strong>in</strong>gfertilizer prices.Extensive research on fertilizer use <strong>in</strong>dryl<strong>and</strong> production zones <strong>of</strong> the WANARegion has led to the conclusion thatyields <strong>of</strong> wheat <strong>and</strong> barley grown underra<strong>in</strong>fed conditions can be considerablyimproved by us<strong>in</strong>g nitrogenous <strong>and</strong>phosphorous fertilizers (for example, seeBolton 1979, 1981; Harmsen 1984;Jones, Matar, <strong>and</strong> Pala 1988; ICARDA1989a, 1989b; Mazid 1990). Moreover,fertilizer can substantially enhance theefficiency <strong>of</strong> moisture use. In oneextensive series <strong>of</strong> on-farm experiments<strong>in</strong> dry areas <strong>of</strong> Syria, yields <strong>of</strong> fertilizedbarley plots (measured <strong>in</strong> yield per unit<strong>of</strong> grow<strong>in</strong>g season ra<strong>in</strong>fall) were threetimes that <strong>of</strong> unfertilized plots(Figure 10).However, crops do not benefitautomatically from fertilizerapplications, because response t<strong>of</strong>ertilizer <strong>in</strong> dryl<strong>and</strong> environments variessubstantially through time <strong>and</strong> space as aresult <strong>of</strong> variability <strong>in</strong> climaticconditions. The amount <strong>and</strong> temporaldistribution <strong>of</strong> ra<strong>in</strong>fall is the dom<strong>in</strong>ant<strong>in</strong>fluence on crop response to fertilizer,especially to nitrogen. On average, atprevail<strong>in</strong>g low fertilization levels <strong>of</strong> 40­50 kg/ha <strong>of</strong> nutrient, a 100-mm <strong>in</strong>crease<strong>in</strong> ra<strong>in</strong>fall <strong>in</strong>creases the gra<strong>in</strong>-to-nitrogenresponse ratio by about five (Somel,Mazid, <strong>and</strong> Hallajian 1984).'0Given the strength <strong>of</strong> this relationship,ra<strong>in</strong>fall variability greatly augments therisk <strong>of</strong> us<strong>in</strong>g fertilizer <strong>in</strong> dryl<strong>and</strong>production zones. Many farmers attemptto protect aga<strong>in</strong>st this risk by apply<strong>in</strong>gsplit applications <strong>of</strong> nitrogen. By vary<strong>in</strong>gthe number <strong>and</strong> level <strong>of</strong> fertilizerapplications accord<strong>in</strong>g to ra<strong>in</strong>fall dur<strong>in</strong>gthe course <strong>of</strong> the grow<strong>in</strong>g season,farmers f<strong>in</strong>e-tune doses depend<strong>in</strong>g on theperceived crop potential for thatparticular year. However, the strategy isnot completely foolpro<strong>of</strong>, <strong>and</strong> yieldsmay be reduced by excessive nitrogen ifra<strong>in</strong>fall at the end <strong>of</strong> the season turns outto be <strong>in</strong>adequate.Response to fertilizer is <strong>in</strong>fluenced by alarge set <strong>of</strong> <strong>in</strong>teract<strong>in</strong>g agroclimatic, soil,<strong>and</strong> management factors, many <strong>of</strong> whichare beyond the control <strong>of</strong> the farmer. Forpractical purposes, the importantquestion is whether or not it is pr<strong>of</strong>itablelOA similar response can be observed <strong>in</strong> theMediterranean-type dryl<strong>and</strong> environments <strong>of</strong>Australia (Byerlee <strong>and</strong> W<strong>in</strong>kelmann 1980).


15to use fertilizer <strong>in</strong> low ra<strong>in</strong>fall zones.Economic analysis <strong>of</strong> the extensiveSyrian data set generated by ICARDA<strong>and</strong> the Syrian Soils Directorate led tothe conclusion that us<strong>in</strong>g nitrogenousfertilizer on wheat tends to be pr<strong>of</strong>itableonly under certa<strong>in</strong> conditions, such aswhen application levels are modest (40­80 kg N/ha) <strong>and</strong> the l<strong>and</strong> is cont<strong>in</strong>uouslycropped. Likewise <strong>in</strong> the dryl<strong>and</strong> Settatarea <strong>of</strong> Morocco, results from on-farmtIials <strong>in</strong>dicate that the pr<strong>of</strong>itability <strong>of</strong>fertilizer use varies as a function <strong>of</strong>ra<strong>in</strong>fall, crop rotation, <strong>and</strong> soil type.Depend<strong>in</strong>g on the m<strong>in</strong>imum acceptablerate <strong>of</strong> return on fertilizer required bythe farmer (itself a function <strong>of</strong> thefarmer's risk preference), <strong>in</strong>vestment <strong>in</strong>fertilizer might or might not beconsidered attractive.<strong>Barley</strong> gra<strong>in</strong> yields (t!ha)432aa, ,,~~.~~100200 300Seasonal precipitation (mm)These results from Syria <strong>and</strong> Moroccoillustrate the difficulty <strong>of</strong> translat<strong>in</strong>gexperimental data on crop response t<strong>of</strong>ertilizer <strong>in</strong>to blanket recommendationsfor farmers <strong>in</strong> marg<strong>in</strong>al areas. Based oneconomic analysis, <strong>in</strong>vestment <strong>in</strong> amodest level <strong>of</strong> nitrogenous fertilizerwould appear to be wise under a widerange <strong>of</strong> ra<strong>in</strong>fall outcomes for farmersengaged <strong>in</strong> cont<strong>in</strong>uous cereal cropp<strong>in</strong>g,but the returns to fertilizer use becomefar less certa<strong>in</strong> when cereal crops aregrown after a legume crop or afterfallow. Because the pr<strong>of</strong>itability <strong>of</strong>fertilizer thus depends on a number <strong>of</strong><strong>in</strong>terrelated factors, efforts to promotefertilizer use must concentrate on<strong>in</strong>form<strong>in</strong>g farmers about the complexnature <strong>of</strong> fertilizer response functions<strong>and</strong> lett<strong>in</strong>g them decide for themselveswhat practice to adopt <strong>in</strong> light <strong>of</strong> theirown attitudes toward risk.Figure 10. Relationship between barley gra<strong>in</strong> yield <strong>and</strong> seasonal precipitation undertwo levels <strong>of</strong> fertilizer, northern Syria, mid-1980s.Source: Cooper et al. (1988).400500Mechanical weed control prior toplant<strong>in</strong>g is widely practiced throughoutthe WANA Region. Adequate tillage <strong>and</strong>proper seedbed preparation can beimportant <strong>in</strong> m<strong>in</strong>imiz<strong>in</strong>g weed<strong>in</strong>festation, reduc<strong>in</strong>g the need to resort toexpensive manual or chemical controlmethods once the crop emerges. Farmersusually wait until weeds emerge after theearly ra<strong>in</strong>s to destroy them with a lighttillage before plant<strong>in</strong>g. However, thispractice carries its own risk, s<strong>in</strong>ce yieldlosses result<strong>in</strong>g from late plant<strong>in</strong>g mayactually <strong>of</strong>fset the yield ga<strong>in</strong>s fromimproved weed control.H<strong>and</strong> weed<strong>in</strong>g <strong>of</strong> cereal crops iscommon <strong>in</strong> areas where family labor isavai.lable <strong>and</strong> is <strong>of</strong>ten performed bywomen <strong>and</strong> children. H<strong>and</strong> weed<strong>in</strong>g issometimes preferred to other weedcontrol methods because <strong>of</strong> the higheconomic value <strong>of</strong> weeds as greenfodder for livestock.Farmers <strong>in</strong> many areas supplementmanual weed control with use <strong>of</strong>chemical herbicides, particularly <strong>in</strong>higher ra<strong>in</strong>fall areas where fallow<strong>in</strong>g hasbeen elim<strong>in</strong>ated <strong>and</strong> weed <strong>in</strong>festationcan be severe. For example, more than80% <strong>of</strong> the bread wheat area <strong>in</strong> MeknesProv<strong>in</strong>ce <strong>of</strong> Morocco (a favorablera<strong>in</strong>fed zone) is sprayed with herbicides(Sergh<strong>in</strong>i 1986). In contrast, theproportion <strong>of</strong> wheat area treated withherbicides does not exceed 6% <strong>in</strong> ElJadida Prov<strong>in</strong>ce (an <strong>in</strong>termediate ra<strong>in</strong>fallzone). Likewise <strong>in</strong> Tunisia less than 20%<strong>of</strong> the wheat area is habitually sprayedwith herbicides, <strong>and</strong> <strong>in</strong> drought yearschemical weed control is practiced onless than 5% <strong>of</strong> the total cereal area(Tunisia M<strong>in</strong>istry <strong>of</strong> Agriculture 1989).Chemical weed control is not alwayseffective. Weed-<strong>in</strong>duced yield losses are<strong>of</strong>ten exacerbated by the nearlyexclusive reliance on phenoxy acidherbicides (e.g., 2,4-0), which controlonly broadleaf weeds. Chemicalseffective on wild oats <strong>and</strong> other grassyweeds (e.g., Suffix <strong>and</strong> IIIoxan B) arenot extensively used because <strong>of</strong> limitedsupply, lack <strong>of</strong> <strong>in</strong>formation, <strong>and</strong> muchhigher costs.


16Given the ability <strong>of</strong> weeds to depresscereal yields, the importance <strong>of</strong> adequateweed control cannot be overemphasized.Chemical weed control is credited with<strong>in</strong>creas<strong>in</strong>g wheat yields by as much as60% <strong>in</strong> northern Tunisia (Daaloul 1985),from II % to 68% <strong>in</strong> central Turkey(Avci et al. 1988; Durutan et al. 1990),<strong>and</strong> from 22% to 33% <strong>in</strong> Syria (Pala etal. 1987). At prevail<strong>in</strong>g prices, yield<strong>in</strong>crements <strong>of</strong> this order usually justifythe cost <strong>of</strong> chemical weed control. Datafrom Tunisia <strong>and</strong> Turkey <strong>in</strong>dicate thatthe total cost <strong>of</strong> apply<strong>in</strong>g 2-4,D(<strong>in</strong>clud<strong>in</strong>g costs <strong>of</strong> capital <strong>and</strong>equipment) is equivalent toapproximately 100 kg <strong>of</strong> wheat (Byerlee<strong>and</strong> W<strong>in</strong>kelmann 1980).Mechanization has spread rapidlythroughout the WANA Region <strong>in</strong>response to <strong>in</strong>creased labor costsresult<strong>in</strong>g from competition both with<strong>in</strong>as well as outside the agricultural sector.In dryl<strong>and</strong> production zones,mechanization has enabled cerealfarmers to exp<strong>and</strong> total cultivated area<strong>and</strong> to <strong>in</strong>crease cropp<strong>in</strong>g <strong>in</strong>tensity.Perhaps the most strik<strong>in</strong>g example <strong>of</strong>this trend has occurred <strong>in</strong> Turkey, wherethe growth <strong>of</strong> the national tractor fleethas been accompanied by a steadydecrease <strong>in</strong> fallow area (Figure II).Mechanization has also significantlyreduced the time required for criticaloperations such as sow<strong>in</strong>g <strong>and</strong>harvest<strong>in</strong>g, lead<strong>in</strong>g to higher yields (byallow<strong>in</strong>g more timely st<strong>and</strong>establishment) <strong>and</strong> reduced crop losses(by m<strong>in</strong>imiz<strong>in</strong>g gra<strong>in</strong> shatter<strong>in</strong>g because<strong>of</strong> delayed harvest<strong>in</strong>g).Mechanized tillage based on tractorrental is the norm throughout mostWANA countries, although animal drafttillage is still common <strong>in</strong> areas wheretopography makes the use <strong>of</strong> tractorshazardous. Mechanized harvest<strong>in</strong>g hasalso spread rapidly but rema<strong>in</strong>s lesswidespread than mechanized tillage.Mechanization <strong>of</strong> other crop operationshas not been as extensive. For example,mechanical seed drill<strong>in</strong>g rema<strong>in</strong>suncommon, despite its potential toimprove yields by plac<strong>in</strong>g seed <strong>and</strong>fertilizer where they can better utilizethe available moisture. Farmers stillbroadcast wheat <strong>and</strong> barley seed by h<strong>and</strong><strong>and</strong> make use <strong>of</strong> any <strong>of</strong> a variety <strong>of</strong>implements to cover the seed.Farmers <strong>in</strong> the WANA Region have hadlittle experience with reduced orconservation tillage. In dryl<strong>and</strong> wheatareas <strong>of</strong> Australia, Canada, the USA, <strong>and</strong>other <strong>in</strong>dustrialized countries, a grow<strong>in</strong>gnumber <strong>of</strong> wheat farmers practiceconservation tillage based on chemicalweed control (chemical fallow<strong>in</strong>g) <strong>and</strong>establishment <strong>of</strong> a protective soil mulchcomposed <strong>of</strong> crop residues. Suchpractices not only greatly <strong>in</strong>crease theefficiency <strong>of</strong> moisture conservation <strong>in</strong>the fallow period (Greb 1979), but theycan also play an important role <strong>in</strong>reduc<strong>in</strong>g soil erosion. In the WANARegion, conservation tillage may havepotential for conserv<strong>in</strong>g moisture <strong>and</strong>slow<strong>in</strong>g soil erosion, but the complexity<strong>of</strong> manag<strong>in</strong>g conservation tillagepractices, comb<strong>in</strong>ed with the high localvalue <strong>of</strong> crop residues <strong>and</strong> weeds used asfodder, will likely slow adoption.Fallow area milli n hll)In drier areas <strong>of</strong> the W ANA Region,most wheat <strong>and</strong> barley is produced <strong>in</strong> acereal-fallow rotation. Fallow<strong>in</strong>g iswidely regarded as essential forconserv<strong>in</strong>g moisture <strong>and</strong> stabiliz<strong>in</strong>gyields, especially <strong>in</strong> dry years. However,the efficiency <strong>of</strong> moisture conservationthrough fallow<strong>in</strong>g is <strong>of</strong>ten reduced bythe practice <strong>of</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g weedy fallowfor feed<strong>in</strong>g livestock. Recent research onthe role <strong>of</strong> fallow has cast doubt on thebenefits <strong>of</strong> fallow<strong>in</strong>g <strong>in</strong> some marg<strong>in</strong>alenvironments. For example, <strong>in</strong> Syria it isestimated that less than 10% <strong>of</strong> the ra<strong>in</strong>that falls dur<strong>in</strong>g the fallow seasonrema<strong>in</strong>s <strong>in</strong> the soil pr<strong>of</strong>ile by plant<strong>in</strong>gtime for cereal crops (Harris 1989).Similarly, <strong>in</strong> areas <strong>of</strong> Turkey receiv<strong>in</strong>gless than 350 mm <strong>of</strong> annual ra<strong>in</strong>fall <strong>and</strong>where soil depth does not exceed 90 cm,fallow<strong>in</strong>g probably is not beneficial <strong>in</strong>terms <strong>of</strong> accumulat<strong>in</strong>g moisture (GuIer<strong>and</strong> Karaca 1988).Introduc<strong>in</strong>g changes <strong>in</strong> traditionalfallow<strong>in</strong>g practices is not always easy.Even where clean fallow<strong>in</strong>g can improvemoisture storage or facilitate desirableearly sow<strong>in</strong>g, manag<strong>in</strong>g a clean fallowsystem requires changes <strong>in</strong> the method<strong>and</strong> tim<strong>in</strong>g <strong>of</strong> tillage which may disruptII "T"""-------------------------.,1098765432Tractor fleet (00000 units)O+-........-..,..............-..,..............-..,..............-..,..............-..,..............-..,..............--r---.--r---.,....--!1970 1972 1974 1976 1978 1980 1982 1984 1986 1988Figure 11. Growth <strong>in</strong> national tractor fleet <strong>and</strong> associated decrease <strong>in</strong> fallow area <strong>in</strong>Turkey, 1970-88.Source: Turkey M<strong>in</strong>istry <strong>of</strong> Agriculture (1990).


17livestock enterprises. For example,research on early tillage <strong>in</strong> the AnatolianPlateau <strong>of</strong> Turkey revealed that the<strong>in</strong>creased value <strong>of</strong> higher gra<strong>in</strong> yieldsachieved through early tillage may not<strong>of</strong>fset the loss <strong>of</strong> pasture suffered whenweedy fallow or stubble is plowed under.In recent years, ris<strong>in</strong>g dem<strong>and</strong> for food<strong>and</strong> feed, coupled with the rapid spread<strong>of</strong> mechanization, has led to significant<strong>in</strong>creases <strong>in</strong> cropp<strong>in</strong>g <strong>in</strong>tensity throughreduced fallow<strong>in</strong>g. Unfortunately, <strong>in</strong>some areas where fallow<strong>in</strong>g is decl<strong>in</strong><strong>in</strong>g,lack <strong>of</strong> crop diversification poses seriousproblems, s<strong>in</strong>ce the fragile soils whichcharacterize many marg<strong>in</strong>alenvironments will not withst<strong>and</strong>cont<strong>in</strong>uous <strong>in</strong>tensive cultivation <strong>of</strong>cereal crops. Researchers have thusbegun to look for more susta<strong>in</strong>ablerotations.One way <strong>of</strong> reduc<strong>in</strong>g weedy fallow <strong>and</strong>promot<strong>in</strong>g more susta<strong>in</strong>able croprotations is to practice cereal-legumerotations for provid<strong>in</strong>g food or cash orfor <strong>in</strong>creas<strong>in</strong>g the production <strong>of</strong> fodderthrough forage legumes. Ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g (or<strong>in</strong>creas<strong>in</strong>g) legume production isespecially important, s<strong>in</strong>ce the area sownto legumes tends to decl<strong>in</strong>e <strong>in</strong> drierareas. One successful example <strong>of</strong> cropdiversification is the fallow replacementproject undertaken <strong>in</strong> the northernAnatolia region <strong>of</strong> Turkey, where foodlegumes (lentils <strong>and</strong> chickpeas) <strong>and</strong> feedlegumes (mostly Hungarian vetch) havebeen <strong>in</strong>troduced on a large scale <strong>in</strong> therotation as substitutes for fallow, alongwith an improved <strong>in</strong>put package<strong>in</strong>volv<strong>in</strong>g fertilizer, herbicide, improvedvarieties, <strong>and</strong> mechanization. Thissuccessful experience, which isprogressively be<strong>in</strong>g extended to otherregions <strong>of</strong> Turkey where fallowpredom<strong>in</strong>ates, shows that there is scopefor technological change <strong>in</strong> ra<strong>in</strong>fedareas.Another alternative to fallow<strong>in</strong>g whichhas been widely tested <strong>in</strong> the WANARegion is the so-called ley farm<strong>in</strong>gsystem, <strong>in</strong> which annual self-reseed<strong>in</strong>glegume pastures (ma<strong>in</strong>ly medicago) aregrown <strong>in</strong> rotation with wheat. Thissystem is popular <strong>in</strong> areas <strong>of</strong> southernAustralia characterized by aMediterranean-type climate <strong>and</strong> hasplayed a major role <strong>in</strong> <strong>in</strong>creas<strong>in</strong>g theproductivity <strong>of</strong> wheat/sheep farm<strong>in</strong>gsystems. However, when implemented <strong>in</strong>the WANA Region the system has failedto yield significant results, primarilybecause local l<strong>and</strong> use customs impedeprecise control <strong>of</strong> the tim<strong>in</strong>g <strong>and</strong><strong>in</strong>tensity <strong>of</strong> graz<strong>in</strong>g pressure, but alsobecause <strong>of</strong> the system's <strong>in</strong>tensivemanagement requirements.The Policy Environmentfor <strong>Wheat</strong> <strong>and</strong> <strong>Barley</strong>Because wheat is the primary staple foodthroughout most <strong>of</strong> the WANA Region,wheat prices are politically sensitive aswell as economically important. In aneffort to reconcile sometimes conflict<strong>in</strong>geconomic <strong>and</strong> political goals, manygovernments have chosen to pursue<strong>in</strong>dependent producer <strong>and</strong> consumerprice policies. For example, <strong>in</strong> Moroccoreal consumer prices for wheat productsdecreased by 30% between 1970 <strong>and</strong>1987, while real producer prices forwheat <strong>in</strong>creased by 19%. In general,domestic wheat prices are supportedabove import prices (Gardner <strong>and</strong> Skully1986, Boutonnet 1989), althoughovervalued exchange rates <strong>of</strong>ten reduceproducer <strong>in</strong>centives <strong>in</strong> real terms. I IAlthough direct producer price supportfrequently has been extended to wheat,the same cannot be said about barley.Official producer prices for barley areusually published along with those forwheat, but barley prices are rarelysupported through extensive governmentpurchases <strong>of</strong> barley gra<strong>in</strong>. This usuallyresults <strong>in</strong> low barley prices relative towheat prices. On the other h<strong>and</strong>, <strong>in</strong> somecountries government lack <strong>of</strong> <strong>in</strong>terest <strong>in</strong>barley has paradoxically allowed freemarketbarley prices (which are largelyunregulated) to rise above <strong>of</strong>ficial wheatprices (which are strictly enforced). InAlgeria, for example, the strong dem<strong>and</strong>for feed barley <strong>in</strong> recent years has led tothe emergence <strong>of</strong> a thriv<strong>in</strong>g parallelmarket <strong>in</strong> which un<strong>of</strong>ficial barley prices<strong>of</strong>ten are 2-3 times higher than the<strong>of</strong>ficial prices paid for wheat by thegovernment gra<strong>in</strong> procurement agency.Of course, <strong>in</strong> decid<strong>in</strong>g how to allocateresources among alternative enterprises,farmers' primary concern is not absolutepr<strong>of</strong>itability but rather relativepr<strong>of</strong>itability (i.e., the returns they arelikely to earn on resources <strong>in</strong>vested <strong>in</strong>one enterprise relative to the returns theywould earn by <strong>in</strong>vest<strong>in</strong>g the sameresources <strong>in</strong> the most pr<strong>of</strong>itablealternative enterprise). In irrigatedzones, cereal crops have a hard timecompet<strong>in</strong>g with high value crops such asvegetables, oilseeds, <strong>and</strong> fruit, whichmeans cereal prices would have to beraised to unreasonable levels for cerealsto displace these crops. In ra<strong>in</strong>fed zones,attractive alternatives to cereals <strong>in</strong> cropproduction are more limited, but giventhe close <strong>in</strong>tegration <strong>of</strong> cereal crop <strong>and</strong>livestock enterprises, crop-to-livestockprice relationships are <strong>of</strong>ten critical t<strong>of</strong>armers' management decisions. This isparticularly true for barley. In fact, anyattempt to underst<strong>and</strong> historical changes<strong>in</strong> the pr<strong>of</strong>itability <strong>of</strong> barley productionby exam<strong>in</strong><strong>in</strong>g barley gra<strong>in</strong> prices missesthe po<strong>in</strong>t. To beg<strong>in</strong> with, the value <strong>of</strong>barley straw <strong>of</strong>ten equals or evenexceeds the value <strong>of</strong> barley gra<strong>in</strong>, sogra<strong>in</strong> prices tell only part <strong>of</strong> the story. Inaddition, s<strong>in</strong>ce most barley <strong>in</strong> theWANA Region is marketed <strong>in</strong>directly <strong>in</strong>the form <strong>of</strong> livestock, <strong>in</strong> order tounderst<strong>and</strong> the chang<strong>in</strong>g pr<strong>of</strong>itability <strong>of</strong>barley it is necessary to consider longtermmovements <strong>in</strong> livestock prices.In most WANA countries, prices <strong>of</strong>livestock <strong>and</strong> livestock products havedemonstrated strong growth relative toprices <strong>of</strong> wheat, aided by rapid growth <strong>in</strong>consumption averag<strong>in</strong>g 4% per year(Oram 1988) <strong>and</strong> explicit or implicittrade barriers which have effectivelyrestricted imports. For example, <strong>in</strong>1I In a number <strong>of</strong> countries, large differencesbetween domestic prices <strong>and</strong> impon prices,comb<strong>in</strong>ed with high consumer subsidies, haveactually led governments 10 favor impons overdomestic production <strong>in</strong> order to reduce fiscaloutlays for food subsidies.


18Algeria the ratios <strong>of</strong> mutton prices towheat prices more than doubled between1970 <strong>and</strong> 1987, while the price <strong>of</strong> barleygra<strong>in</strong> relative to wheat gra<strong>in</strong> changedonly slightly (Table 9). Significantly,meat-to-gra<strong>in</strong> price ratios <strong>in</strong> Algeria are40 times higher than similar ratios <strong>in</strong>Australia, a major exporter <strong>of</strong> bothproducts <strong>and</strong> therefore representative <strong>of</strong>world price trends. Southern Australiancereal/livestock production systems havebeen established under climaticconditions nearly identical to those <strong>in</strong>much <strong>of</strong> the WANA Region, although(not surpris<strong>in</strong>gly) stock<strong>in</strong>g rates tend tobe considerably higher <strong>in</strong> the WANARegion than <strong>in</strong> southern Australia. InAustralia relative prices strongly favorcereals over livestock <strong>and</strong> provide<strong>in</strong>centives for adoption <strong>of</strong> improved cropproduction technologies that might notbe viable <strong>in</strong> the very different economicclimate <strong>of</strong> WANA countries. 12dramatically, with direct humanconsumption now restricted to a fewrural areas <strong>of</strong> Algeria, Morocco, <strong>and</strong>Tunisia. However, feed use <strong>of</strong> barley hasrisen rapidly because <strong>of</strong> higher dem<strong>and</strong>for livestock products, driven by sharp<strong>in</strong>creases <strong>in</strong> <strong>in</strong>comes associated with theoil boom <strong>of</strong> the 1970s. At the regionallevel, feed use <strong>of</strong> barley has risen from65% <strong>of</strong> total production <strong>in</strong> 1960 to anestimated 90% today.With growth <strong>in</strong> cereal consumptionoutstripp<strong>in</strong>g production ga<strong>in</strong>s, imports <strong>of</strong>both food <strong>and</strong> feed gra<strong>in</strong>s have beennecessary to meet dem<strong>and</strong>. Over the pastthree decades, wheat imports <strong>in</strong>to theWANA Region have risen sharply(Figure 12). The region currentlyimports over 20 million tons per year,represent<strong>in</strong>g over 30% <strong>of</strong> totalconsumption requirements. In an effortto slow growth <strong>in</strong> wheat consumption, anumber <strong>of</strong> countries raised bread pricesconsiderably dur<strong>in</strong>g the 1980s. Ris<strong>in</strong>gprices precipitated protests byconsumers <strong>in</strong> some countries <strong>and</strong>occasionally led to violentdemonstrations, as <strong>in</strong> Tunisia, Morocco,<strong>and</strong> Egypt. These experiencesdemonstrate how policies favor<strong>in</strong>gwheat consumption can provokesituations <strong>in</strong> which policy makers havelimited leeway to implement muchneededeconomic reforms. As a result,the WANA Region rema<strong>in</strong>s the onlypart <strong>of</strong> the world where most countriescont<strong>in</strong>ue to subsidize wheatconsumption heavily.In most WANA countries, wheat'simportance as the lead<strong>in</strong>g staple food<strong>and</strong> a primary wage good is recognizedthrough direct government participation<strong>in</strong> wheat market<strong>in</strong>g. Retail prices <strong>of</strong> bothbread wheat <strong>and</strong> durum wheat areuniversally regulated <strong>and</strong> usually highlysubsidized, with the goal <strong>of</strong> keep<strong>in</strong>gwheat affordable for consumers,especially poor urban consumers.Subsidization <strong>of</strong> consumer wheat priceshas contributed to fall<strong>in</strong>g bread prices<strong>and</strong> high levels <strong>of</strong> wheat consumptionthroughout the WANA Region, whereaverage per capita utilization is currentlyfar higher than <strong>in</strong> all other regions <strong>of</strong> thedevelop<strong>in</strong>g world (Table 10).As a result <strong>of</strong> demographic changes(e.g., urbanization) <strong>and</strong> policy <strong>in</strong>fluences(e.g., consumer subsidies), there hasbeen marked substitution among cereals<strong>in</strong> recent years throughout the WANARegion. Food use <strong>of</strong> barley has fallenTable 9. Gra<strong>in</strong>-to-livestock price ratios <strong>in</strong> Algeria <strong>and</strong> Australia, 1970-72 <strong>and</strong> 1985-87I)roducer Ratio <strong>in</strong> Ilatio <strong>in</strong> PCTcentagcpr-ice ratio 1970-72 1985-87 chan~Algeria<strong>Barley</strong>: bread wheat 0.7 0.7 +3Mutton: bread wheat 23.2 45.5 +96AustraliaMutton: wheat 4.3 1.0 -77(lUrce: alcullllt:d from BQUlo'nl1l:t (19 9) an I dllla pr(lvided by the AU~LrnliaTI Bureau ( rgri ulLlHal <strong>and</strong> Resource Eoon\)mi s.Table 10. Per capita utilization <strong>of</strong> wheat by develop<strong>in</strong>g country region, 1987-89West AsiaNorth Africa1987-89 wheal uliiization(kg per capita)220204nnmd growth rate %)1961·63 to 1987-890.41.812 The higher quality <strong>of</strong> Australian wool. a jo<strong>in</strong>tproduct with mutton. also <strong>in</strong>fluences the relativepr<strong>of</strong>itability <strong>of</strong> livestock as compared to cereals.Sub-Saharan AfricaSouth AsiaSoutheast Asia <strong>and</strong> PacificEast AsiaLat<strong>in</strong> AmericaSour


19Ra<strong>in</strong>fed Marg<strong>in</strong>al<strong>Environments</strong> <strong>of</strong> South Asia 13The second major marg<strong>in</strong>al environment<strong>in</strong> which wheat is grown is the extensivedryl<strong>and</strong> wheat area <strong>of</strong> South Asia, wherewheat production depends largely onresidual moisture from the monsoonra<strong>in</strong>s. The ra<strong>in</strong>fed wheat area <strong>of</strong> SouthAsia is concentrated <strong>in</strong> central <strong>and</strong>southern India, especially the northernpart <strong>of</strong> Madhya Pradesh (Figure 13), aswell as <strong>in</strong> northern Pakistan.Types <strong>of</strong> Farm<strong>in</strong>gSystems <strong>in</strong> South AsiaThe ra<strong>in</strong>fed wheat production zones <strong>of</strong>South Asia <strong>in</strong>clude a range <strong>of</strong>environments, some <strong>of</strong> which receiveabundant ra<strong>in</strong>fall <strong>and</strong> therefore cannot becharacterized as marg<strong>in</strong>al. For example,<strong>in</strong> the higher ra<strong>in</strong>fall areas <strong>of</strong> northernIndia, ra<strong>in</strong>fed wheat production systemsresemble adjacent irrigated systems,which are <strong>of</strong>ten based on a rice-wheatrotation. However, <strong>in</strong> central <strong>and</strong>southern India, dryl<strong>and</strong> farm<strong>in</strong>g systemsare very dist<strong>in</strong>ct from those <strong>in</strong> adjacentirrigated areas. The follow<strong>in</strong>g discussionfocuses ma<strong>in</strong>ly on these more marg<strong>in</strong>alra<strong>in</strong>fed zones <strong>in</strong> central <strong>and</strong> southernIndia. Reference is also made to the dryra<strong>in</strong>fed (baroni) areas <strong>of</strong> northernPakistan, which receive somewhat morera<strong>in</strong>fall <strong>in</strong> the grow<strong>in</strong>g season but arecritically dependent on residual moisture<strong>and</strong> thus share many <strong>of</strong> the samecharacteristics as the systems <strong>of</strong> centralIndia.In central <strong>and</strong> southern India, dryl<strong>and</strong>wheat is grown almost exclusively ondeep black vertisols. Because <strong>of</strong> theirhigh clay content, vertisols areexceed<strong>in</strong>gly sticky when wet; on dry<strong>in</strong>gthey develop large, deep cracks. Thismakes them very difficult to managedur<strong>in</strong>g the monsoon period. However,vertisols have a high moisture retentioncapacity. In the deep vertisols <strong>of</strong>northern Madhya Pradesh, 400 mm ormore <strong>of</strong> moisture may be stored <strong>in</strong> thesoil pr<strong>of</strong>ile at the end <strong>of</strong> the monsoon, atleast half <strong>of</strong> which is available for w<strong>in</strong>ter(rabi) season crops such as wheat.Because <strong>of</strong> these special characteristics,the dom<strong>in</strong>ant rotation is fallow <strong>in</strong> themonsoon (kharij) season followed bywheat grown on stored moisture <strong>in</strong> therabi season, when ra<strong>in</strong>fall is very low(usually under 100 mm). Over two-thirds<strong>of</strong> the moisture available to the wheatcrop comes from stored moisture. Giventhat most ra<strong>in</strong> falls dur<strong>in</strong>g the kharifseason, however, the fallow-wheatsystem is relatively <strong>in</strong>efficient <strong>in</strong> us<strong>in</strong>gavailable moisture, s<strong>in</strong>ce only about one-quarter <strong>of</strong> the annual ra<strong>in</strong>fall is used forcrop evapotranspiration.In addition to limited moisture. the othermajor cl imatic constra<strong>in</strong>t on wheatproduction <strong>in</strong> this zone is hightemperatures. Practically the entiredryl<strong>and</strong> wheat area <strong>of</strong> central <strong>and</strong>southern India lies <strong>in</strong> the tropical zone(def<strong>in</strong>ed as hav<strong>in</strong>g mean Januarytemperatures above 17.S°C). Figure 14illustrates why the relationship betweenra<strong>in</strong>fall <strong>and</strong> temperature is critical fordryl<strong>and</strong> wheat farmers. At the end <strong>of</strong> themonsoon <strong>in</strong> September, stored soilmoisture is at its maximum level.However, the temperature <strong>of</strong> the soil isalso high <strong>and</strong> will impede germ<strong>in</strong>ation<strong>and</strong> seedl<strong>in</strong>g emergence if wheat is sownearly. Over time, temperature decl<strong>in</strong>es,allow<strong>in</strong>g germ<strong>in</strong>ation <strong>and</strong> seedl<strong>in</strong>gemergence rates to <strong>in</strong>crease. However,farmers must be careful not to delayplant<strong>in</strong>g too long; late planted wheatmust develop <strong>in</strong> a steadily reced<strong>in</strong>gmoisture pr<strong>of</strong>ile <strong>and</strong> runs the risk <strong>of</strong>suffer<strong>in</strong>g from severe drought dur<strong>in</strong>gflower<strong>in</strong>g <strong>and</strong> gra<strong>in</strong> fill<strong>in</strong>g. Theoptimum time for plant<strong>in</strong>g currentvarieties <strong>in</strong> these environments is lateOctober; harvest<strong>in</strong>g usually occurs <strong>in</strong>late February or March. This means thatthe critical period <strong>of</strong> heat stress is <strong>in</strong> theseedl<strong>in</strong>g stage.Metric t (millions)70-r----------------------------,605040302011 ul'llpli nProducllonIn the ma<strong>in</strong> dryl<strong>and</strong> wheat belt <strong>of</strong> centralIndia, 70-90% <strong>of</strong> total area is left fallowdur<strong>in</strong>g the kharif season before be<strong>in</strong>gsown to wheat <strong>in</strong> the rabi season,result<strong>in</strong>g <strong>in</strong> an overall cropp<strong>in</strong>g <strong>in</strong>tensity<strong>of</strong> about 100% (Byerlee 1991). Pulses,chickpeas, <strong>and</strong> lentils are also important<strong>in</strong> the rabi cycle <strong>and</strong> tend to dom<strong>in</strong>ate <strong>in</strong>areas where soils are shallow <strong>and</strong> lessfertile. In medium depth, better dra<strong>in</strong>edsoils, soybeans have been found to besuitable for the kharif season <strong>and</strong> havespread quite rapidly <strong>in</strong> recent years <strong>in</strong>some areas. This has implications forwheal: where soybeans are grown <strong>in</strong> thekharif season, l<strong>and</strong> will typically be left1O+"'T""".,......T'"""'1r_'T....,."""T'"_r...,....,_r-r1r-r~__r...,....,_.,......T'"""'1r_'T....,."""T'"_r"'T"""'T'"""'I1961 63 65 67 69 71 73 75 77 79 81 83 85 87 89Figure 12. <strong>Wheat</strong> production <strong>and</strong> consumption <strong>in</strong> the WANA Region, 1961-89.13 This section draws on Byerlee (1991),Hanch<strong>in</strong>al (1990), Sheopuria (1990),<strong>and</strong> JARJ (1990).


20x 40,000 ha ra<strong>in</strong>fed wheat• 40,000 ha irrigated wheatfallow <strong>in</strong> the follow<strong>in</strong>g rabi season,s<strong>in</strong>ce sufficient moisture is available forwheat after soybeans <strong>in</strong> less than one out<strong>of</strong> every three years (P<strong>and</strong>ey 1986).Much <strong>of</strong> the expansion <strong>in</strong> soybean areahas occurred on larger farms where theopportunities for substitution betweenwheat <strong>and</strong> soybeans are greater. Incontrast, farmers with less l<strong>and</strong> placeconsiderable priority on meet<strong>in</strong>g theirsubsistence needs for gra<strong>in</strong> <strong>and</strong> fodder<strong>and</strong> hence favor wheat production.Farther south where there is no risk <strong>of</strong>frost, farmers replace wheat with rabisorghum as the primary food crop <strong>and</strong>usually grow cotton as the ma<strong>in</strong> cashcrop.Throughout the dryl<strong>and</strong> wheat areas <strong>of</strong>South Asia, wheat is frequently<strong>in</strong>tercropped. In central India, common<strong>in</strong>tercrops <strong>in</strong>clude chickpeas, lentils, <strong>and</strong>l<strong>in</strong>seed, whereas <strong>in</strong> southern India wheatis <strong>in</strong>tercropped between rows <strong>of</strong>safflower. In Pakistan's barani tract,farmers commonly <strong>in</strong>tercrop wheat withmustard, which is removed as a greenfodder before wheat flower<strong>in</strong>g. These<strong>in</strong>tercrop comb<strong>in</strong>ations appear to bemore pr<strong>of</strong>itable than sole cropp<strong>in</strong>g <strong>and</strong>are also likely to reduce risk (Hobbs eta!. 1985, Byerlee 1991).Figure 13. Distribution <strong>of</strong> ra<strong>in</strong>fed <strong>and</strong> irrigated wheat area <strong>in</strong> India.Soil Soiltemp. moisture(0C) (%)at 5 cm at 6-10 cm Emergencedepth depth (seedl<strong>in</strong>gs/m 2 )47- 27 17046- 26 Oermtnullon45- 25 16044- 2443- 2315042- 2241- 21il moi. lure 14040- 2039- 1913038- 1837- 17 Soil temperature12036- 16 11035- 158 Oct 15 Oct 20 Oct 25 Oct 30 Oct 5 NovBecause livestock are important <strong>in</strong> thedryl<strong>and</strong> farm<strong>in</strong>g systems <strong>of</strong> South Asia,straw is a valuable by-product fromwheat production. Straw typicallycontributes one-third <strong>of</strong> the total value <strong>of</strong>the wheat crop (at post-harvest prices),<strong>and</strong> <strong>in</strong> very dry areas or very dry years,the total value <strong>of</strong> straw may equal oreven exceed that <strong>of</strong> gra<strong>in</strong>. With<strong>in</strong>creas<strong>in</strong>g tractor use <strong>and</strong> the spread <strong>of</strong>irrigation, however, the value <strong>of</strong> strawmay be decreas<strong>in</strong>g <strong>in</strong> some areas.Nonetheless, for small-scale farmerswho cont<strong>in</strong>ue to use bullocks, production<strong>of</strong> wheat straw for fodder is an importantobjective.Figure 14. Effect <strong>of</strong> soil temperature <strong>and</strong> moisture on germ<strong>in</strong>ation <strong>of</strong> wheat, Indore,India, 1986-88.Source: lARI. Indore (1990).


21Use <strong>of</strong> Improved TechnologyVarietal development <strong>and</strong> diffusion­Traditionally a large part <strong>of</strong> the dryl<strong>and</strong>wheat area <strong>of</strong> central <strong>and</strong> southern Indiawas sown to durum wheats, which wereused to make chapatis as well as manyspecialized dishes. Durum wheats stillpredom<strong>in</strong>ate <strong>in</strong> the driest <strong>and</strong> hottestareas (e.g., Gujarat, Maharashtra, <strong>and</strong>Karnataka), but most <strong>of</strong> the wheat sownis now bread wheat.Over the past three decades, India hasreleased numerous wheat varieties forra<strong>in</strong>fed production conditions. However,the physical characteristics <strong>of</strong> thesevarieties have varied accord<strong>in</strong>g tora<strong>in</strong>fall zone. Many <strong>of</strong> the varietiesreleased <strong>in</strong> the relatively well-wateredra<strong>in</strong>fed zones <strong>in</strong> northern India <strong>and</strong>Pakistan have been semidwarf varietieswhich are also recommended foradjacent irrigated areas. In contrast,most <strong>of</strong> the varieties recommended forthe dryl<strong>and</strong> areas <strong>in</strong> central <strong>and</strong> southernIndia have tended to be tall. Thisdifference reflects the much harsherconditions prevail<strong>in</strong>g <strong>in</strong> central <strong>and</strong>southern India, where varietalcharacteristics such as drought tolerance,a long coleoptile (allow<strong>in</strong>g the seedl<strong>in</strong>gto emerge from where it has been deeplyplanted to benefit from residualmoisture), <strong>and</strong> the ability to germ<strong>in</strong>ate <strong>in</strong>hot conditions are more important thanthe <strong>in</strong>put-responsiveness associated withsemidwarf materials. To date, wheatbreeders have been unsuccessful <strong>in</strong>f<strong>in</strong>d<strong>in</strong>g semidwarf materials that performwell under these conditions. In recentyears, the proportion <strong>of</strong> varietiesreleased <strong>in</strong> India specifically for ra<strong>in</strong>fedproduction conditions has decl<strong>in</strong>ed. Thisis consistent with the decl<strong>in</strong>e <strong>in</strong> the share<strong>of</strong> ra<strong>in</strong>fed wheat production.Throughout India, over 50% <strong>of</strong> ra<strong>in</strong>fedwheat area is now planted to MVs, upfrom only 15% <strong>in</strong> 1976. Varietaladoption data suggest that use <strong>of</strong>improved materials <strong>in</strong> India has beenclosely correlated with availability <strong>of</strong>irrigation. Beg<strong>in</strong>n<strong>in</strong>g <strong>in</strong> the late 1960s,the first Green Revolution varietiesmoved <strong>in</strong>to irrigated districts. Adoption<strong>in</strong> ra<strong>in</strong>fed areas lagged, despite the factthat traditional l<strong>and</strong> races grown <strong>in</strong>dryl<strong>and</strong> areas were highly susceptible toleaf <strong>and</strong> stem rust, which <strong>in</strong> some yearsresulted <strong>in</strong> severe losses (Sheopuria1990).Adoption <strong>of</strong> MVs <strong>in</strong> dryl<strong>and</strong> areas <strong>of</strong>India has been slowed by the fact thatyield ga<strong>in</strong>s <strong>in</strong> varieties released for theseareas have been relatively modest(Hanch<strong>in</strong>al 1988) or <strong>in</strong> some casesnegligible. For example, experimentsconducted over five years at Indorefound that local varieties yielded morethan the "improved" varietiesrecommended for the area. The slightlybetter performance <strong>of</strong> the local varietiesappeared to be due to their highergerm<strong>in</strong>ation rate <strong>in</strong> hot soils.Nonetheless, despite their lowergerm<strong>in</strong>ation rates, some improvedvarieties have been widely adoptedbecause they possess better diseaseresistance <strong>and</strong> excellent droughttolerance.Another critical factor <strong>in</strong> adoption <strong>of</strong>MVs is quality. Many traditionalvarieties grown <strong>in</strong> ra<strong>in</strong>fed areas producehigh quality gra<strong>in</strong>, which allows them t<strong>of</strong>etch premium prices <strong>in</strong> the market.S<strong>in</strong>ce the quality <strong>of</strong> many MVs currentlygrown <strong>in</strong> irrigated areas is lower, thesupply <strong>of</strong> high quality wheats has tendedto decl<strong>in</strong>e, caus<strong>in</strong>g the price premiumfor gra<strong>in</strong> quality to widen. Farmers <strong>in</strong>dryl<strong>and</strong> areas have responded byspecializ<strong>in</strong>g <strong>in</strong> quality wheats to takeadvantage <strong>of</strong> this price premium.Improved varieties developed fordryl<strong>and</strong> areas therefore must possessqual ity characteristics that meet farmers'criteria. In Gujarat, for example, thesuccessful durum variety GW-I(released <strong>in</strong> 1986) showed only a modestyield advantage under dryl<strong>and</strong>conditions over the farmers' varietyA-206 (released <strong>in</strong> 1954) (<strong>Wheat</strong>Research Institute, Vijapur, unpublisheddata). Nonetheless, GW-I has replacedA-206 over a significant area because <strong>of</strong>its improved rust resistance <strong>and</strong> higherquality (<strong>and</strong> hence higher price).Experiences are simi lar <strong>in</strong> the haranitract <strong>of</strong> Pakistan. In the higher ra<strong>in</strong>fallareas (>500 mm), MVs were adoptedrapidly beg<strong>in</strong>n<strong>in</strong>g <strong>in</strong> the mid-1970s withthe release <strong>of</strong> the semidwarf varietyLyallpur-73. Although orig<strong>in</strong>ally<strong>in</strong>tended for irrigated areas, Lyallpur-73also performed well under ra<strong>in</strong> fedconditions. Dur<strong>in</strong>g the 1980s, Lyallpur­73 was largely replaced by anothervariety recommended for irrigated areas,Pak-81 (based on material fromCIMMYT's spr<strong>in</strong>g x w<strong>in</strong>ter wheatcross<strong>in</strong>g program). However, <strong>in</strong> lowerra<strong>in</strong>fall areas «500 mm), local varietiescont<strong>in</strong>ue to dom<strong>in</strong>ate (Table II).Varietal trials <strong>in</strong>dicate that the firstgeneration semidwarfs such as Lyallpur­73 yield only 5-10% more than localvarieties under improved management;s<strong>in</strong>ce the local varieties enjoy a pricepremium <strong>of</strong> roughly 15%, this yieldadvantage is <strong>in</strong>sufficient to encourageadoption. The second generation MVssuch as Pak-81 show a yield advantage<strong>of</strong> 16% <strong>and</strong> have been adoptedsomewhat more widely. Given theseTable 11. Varietal adoption by ra<strong>in</strong>fall zone, northern Punjab, Pakistan, 1990Higher ra<strong>in</strong>fall (> 500 rom)1% area)Local varieties 15First generation semidwarfs(e.g., Lyallpur-73) 17Second generation semidwarfs(e.g., Pak-81) 68Low nunrall « 500 mm)(% area)73819Source: Ahmad <strong>and</strong> Ahmed (1991).


22experiences, it rema<strong>in</strong>s to be seenwhether Pakistani breeders' strategy <strong>of</strong>rely<strong>in</strong>g exclusively on semidwarfmaterials eventually will succeed <strong>in</strong>produc<strong>in</strong>g varieties suitable for thedry areas.Improved management practices <strong>and</strong><strong>in</strong>puts-For all India, fertilizer use onwheat now averages around I 10 kgnutrient/ha, compared to only 25 kgnutrient/ha <strong>in</strong> 1969. As with MVs,adoption <strong>of</strong> fertilizer began later <strong>and</strong>proceeded more slowly <strong>in</strong> dryl<strong>and</strong> wheatareas than <strong>in</strong> irrigated <strong>and</strong> high ra<strong>in</strong>fallareas. By the mid-1970s, fully 70% <strong>of</strong>the irrigated wheat area was fertilized, atan average rate <strong>of</strong> close to 80 kgnutrient/ha. By contrast, only about 10%<strong>of</strong> ra<strong>in</strong>fed wheat area was fertilized, atan average rate <strong>of</strong> only 35 kg nutrient/ha(Desai 1982).14 While the extent <strong>and</strong>level <strong>of</strong> fertilizer use <strong>in</strong> ra<strong>in</strong>fed wheatareas are still low, substantial progresshas been made over the past decade.Currently perhaps half the dryl<strong>and</strong> wheatarea <strong>in</strong> central <strong>and</strong> southern India isfertilized, <strong>and</strong> <strong>in</strong>creased fertilizer usemay account for much <strong>of</strong> the modest<strong>in</strong>crease <strong>in</strong> dryl<strong>and</strong> wheat yieldsrecorded s<strong>in</strong>ce 1970 (Byerlee 1991).Fertilizer use on ra<strong>in</strong>fed wheat variesdepend<strong>in</strong>g on numerous factors,<strong>in</strong>clud<strong>in</strong>g prevail<strong>in</strong>g moisture conditions,soil types, <strong>and</strong> cropp<strong>in</strong>g patterns. Thegeneral recommendation is to apply40-20-0 kg NPK/ha, but farmersapproximate these doses only <strong>in</strong> areas <strong>of</strong>better ra<strong>in</strong>fall <strong>and</strong> deep soils. In drierareas, farmers who apply fertilizer useonly 10-20 kg nutrient/ha (equallydivided between N<strong>and</strong> P 20J However,<strong>in</strong> the few years benefit<strong>in</strong>g from timelyra<strong>in</strong>fall <strong>in</strong> the grow<strong>in</strong>g season, farmersmay top-dress nitrogen to boost yields.Variation <strong>in</strong> fertilizer use reflectsexpected crop response to fertilizer.At low application levels, the averagegra<strong>in</strong>-to-nutrient response ratio for14 These data. which represent an average for all <strong>of</strong>India. are likely to overestimate the use <strong>of</strong>fertilizer <strong>in</strong> drier areas <strong>of</strong> cenrral <strong>and</strong> southernIndia.ra<strong>in</strong>fed wheat <strong>in</strong> Madhya Pradesh isabout 10 kg wheat!kg nutrient (FertilizerAssociation <strong>of</strong> India 1985, Rao 1976).However, <strong>in</strong> drier areas the response isconsiderably lower; for example, Kohli(1976) reports a response ratio <strong>of</strong> 5.5: 1<strong>in</strong> Maharashtra. In extremely dry areas,the response may even be negligible. Noresponse at all to fertilizer was reported<strong>in</strong> over six years <strong>of</strong> fertilizer trials <strong>in</strong>Gujarat's dryl<strong>and</strong> wheat areas (Maliwal1989).Moisture conservation is critical to thesuccess <strong>of</strong> dryl<strong>and</strong> wheat production <strong>in</strong>South Asia, s<strong>in</strong>ce the wheat cropdepends on stored soil moisture. Dur<strong>in</strong>gthe monsoon season, most farmerstherefore attempt to ma<strong>in</strong>ta<strong>in</strong> a cleanfallow that improves water <strong>in</strong>filtration~nd reduces the amount <strong>of</strong> moisture lostto weeds. Many farmers use a shallowscraper-harrow to kill weeds <strong>and</strong> leave ashallow soil mulch <strong>in</strong> the top 5 cm <strong>of</strong> thesoil surface that helps to conservemoisture.Another widely used soil conservationtechnique is to level <strong>and</strong> bund fields,which allows monsoon ra<strong>in</strong>fall to st<strong>and</strong><strong>in</strong> the field for up to two months. Thistechnique, locally called the havelisystem, achieves several objectives: itprevents run<strong>of</strong>f <strong>and</strong> hence soil erosion; itconserves moisture, s<strong>in</strong>ce 50% <strong>of</strong>monsoon ra<strong>in</strong>fall may be lost to run<strong>of</strong>f(S<strong>in</strong>gh <strong>and</strong> Raje 1984); <strong>and</strong> it helpsprevent the germ<strong>in</strong>ation <strong>of</strong> weeds <strong>in</strong> thekharifseason. The ma<strong>in</strong> disadvantages<strong>of</strong> the haveli system are the high capitalcosts <strong>of</strong> levell<strong>in</strong>g the field <strong>and</strong>construct<strong>in</strong>g bunds, as well as the loss <strong>in</strong>flexibility that results from the need todedicate a bunded field to rahi cropp<strong>in</strong>g(farmers therefore cannot substitutebetween rabi <strong>and</strong> kharifcrops). Despitethese drawbacks, the practice hasbecome widespread <strong>in</strong> the ma<strong>in</strong> dryl<strong>and</strong>wheat belts <strong>of</strong> central India.Improvements <strong>in</strong> the physical structure<strong>of</strong> soils may also help conservemoisture. For example, promis<strong>in</strong>gexperimental results are be<strong>in</strong>g obta<strong>in</strong>edfrom rotat<strong>in</strong>g wheat with deep-rootedcrops like castor, which help to improvethe physical structure <strong>of</strong> soils (IARI1990). Organic manure, such as farmyard manure <strong>and</strong> green manure, alsoimproves moisture conservation.Farmers <strong>in</strong> the dryl<strong>and</strong> wheat area <strong>of</strong>Pakistan concentrate farm yard manureon fields close to the village. Theimproved moisture-hold<strong>in</strong>g capacity <strong>of</strong>these fields not only boosts wheat yieldsbut allows double cropp<strong>in</strong>g. Research <strong>in</strong>the same area has also demonstrated thatdeep tillage with a moldboard plowgreatly <strong>in</strong>creases moisture storage <strong>and</strong>root penetration, provid<strong>in</strong>g an average<strong>in</strong>crease <strong>in</strong> wheat yields <strong>of</strong> 25%. Dur<strong>in</strong>gthe past decade, farmers <strong>in</strong> dry areashave rapidly adopted this practice.By concentrat<strong>in</strong>g crop production <strong>in</strong> thedry season, the current fallow-wheatsystem is <strong>in</strong>efficient <strong>in</strong> utiliz<strong>in</strong>gavailable moisture; on average, less than1 kg/ha <strong>of</strong> gra<strong>in</strong> is produced for each1 mm <strong>of</strong> annual ra<strong>in</strong>fall. One logicalstrategy for us<strong>in</strong>g monsoon ra<strong>in</strong>fall moreefficiently would be to plant kharif l<strong>and</strong>that is currently left fallow. TheInternational Crops Resarch Institute forthe Semi-Arid Tropics (lCRISAT) hasdevoted a decade to research on atechnology to allow kharifcropp<strong>in</strong>g <strong>of</strong>deep vertisols <strong>in</strong> a double cropp<strong>in</strong>gsequence (Foster et al. 1987, Walker <strong>and</strong>Ryan 1990). The ICRISAT technology,which <strong>in</strong>volves the construction <strong>of</strong> broadbeds <strong>and</strong> furrows across the slope t<strong>of</strong>acilitate dra<strong>in</strong>age <strong>and</strong> moistureconservation, has been extensivelydemonstrated over several years <strong>in</strong>central India, with only partial success.Farmers tend to adopt elements <strong>of</strong> thepackage, but the key component-abullock-drawn wheeled tool carrier-hasnot been adopted because <strong>of</strong> high <strong>in</strong>itial<strong>in</strong>vestment, high operat<strong>in</strong>g costs,<strong>in</strong>creased availability <strong>of</strong> tractors, <strong>and</strong> theuncerta<strong>in</strong>ty associated with doublecropp<strong>in</strong>g. Low adoption is alsoexpla<strong>in</strong>ed by farmers' strong desire toma<strong>in</strong>ta<strong>in</strong> a considerable proportion <strong>of</strong>area under wheat both for subsistencegra<strong>in</strong> <strong>and</strong> fodder production. As noted


23earlier, double cropp<strong>in</strong>g by plant<strong>in</strong>gwheat after soybeans greatly decreasesthe probability that sufficient moisturerema<strong>in</strong>s for the wheat crop <strong>and</strong> augmentsthe risk <strong>of</strong> crop failure <strong>in</strong> the rabi season(P<strong>and</strong>ey 1986).Investment <strong>in</strong> irrigation facilities is themost widely used strategy to protectaga<strong>in</strong>st drought <strong>in</strong> central <strong>and</strong> southernIndia. Rural electrification facilitatedrapid growth <strong>in</strong> the number <strong>of</strong> tubewellsover the past two decades, so that over40% <strong>of</strong> total wheat area is now irrigated.However, chronic overexploitation <strong>of</strong>groundwater <strong>in</strong> many areas has loweredwater tables, raised the cost <strong>of</strong> irrigation,<strong>and</strong> <strong>in</strong> some cases, led to serious watershortages <strong>in</strong> dry years. Given thesetrends, the rate <strong>of</strong> expansion <strong>of</strong> irrigatedwheat area is likely to decl<strong>in</strong>e <strong>in</strong> thefuture.In most areas, scarce tubewell water isallocated to wheat before other crops.Nonetheless, tubewell water is <strong>of</strong>tendepleted before the end <strong>of</strong> the grow<strong>in</strong>gseason, so the wheat crop receives only alimited number <strong>of</strong> irrigations. However,most studies show that even oneRatio1.51.41.31.21.11.00.90.80.70.60.50.40.30.20.1oF<strong>in</strong>e white bread wheat(Sagar)irrigation at plant<strong>in</strong>g will <strong>in</strong>crease yieldsby 0.5-1.0 tfha. Hence an importantpriority for research is to developappropriate recommendations for thelarge area <strong>of</strong> wheat grown under limitedirrigation.The Policy Environment for <strong>Wheat</strong>S<strong>in</strong>ce 1965, real prices received byIndian farmers for wheat have steadilyfallen, except for a short period dur<strong>in</strong>gthe world food crisis <strong>of</strong> the mid-1970s(Sidhu <strong>and</strong> Byerlee 1991). Differentgrades <strong>of</strong> wheat comm<strong>and</strong> differentprices <strong>in</strong> India's wheat markets: pricesare higher for bread wheat produced <strong>in</strong>ra<strong>in</strong>fed areas than for bread wheatproduced <strong>in</strong> irrigated areas, reflect<strong>in</strong>g apremium for the higher quality <strong>of</strong>ra<strong>in</strong>fed wheats. As mentioned earlier,farmers <strong>in</strong> ra<strong>in</strong>fed areas have capitalizedon this market opportunity byspecializ<strong>in</strong>g <strong>in</strong> premium quality durum<strong>and</strong> bread wheats. Durum wheat carriesa significant price premium over breadwheat. This price premium, althoughapparent even before the GreenRevolution, had <strong>in</strong>creased by the 1980sto about 50% (Figure 15). Consequently,Durum wheat(central <strong>and</strong> southern India)1954-60 1963-67 1968-74 1981-85--although all Indian wheat farmers haveseen real wheat prices decl<strong>in</strong>e s<strong>in</strong>ce theGreen Revolution, this decl<strong>in</strong>e has beenless marked <strong>in</strong> ra<strong>in</strong>fed areas than itwould have been if these areas did notenjoy a comparative advantage <strong>in</strong>produc<strong>in</strong>g premium quality wheats.Toward a Research Strategy forMarg<strong>in</strong>al <strong>Environments</strong>The evidence reviewed <strong>in</strong> this reportsuggests that researchers have onlypartially succeeded <strong>in</strong> develop<strong>in</strong>gimproved technologies for wheat <strong>and</strong>barley <strong>in</strong> ra<strong>in</strong>fed marg<strong>in</strong>al environments.Not only have yields <strong>in</strong> marg<strong>in</strong>al areasrema<strong>in</strong>ed low, but the rate at whichyields have grown has lagged comparedto favorable areas. These macro-leveltrends have been borne out by microlevelevidence on technology adoption,which shows that, <strong>in</strong> dryl<strong>and</strong> areas, MVs<strong>and</strong> improved crop managementpractices have been adopted relativelyslowly, less extensively, <strong>and</strong> with lessdramatic results.But the less pronounced impact <strong>of</strong>improved production technologies <strong>in</strong>marg<strong>in</strong>al environments does notnecessarily mean that the <strong>in</strong>stitutionsresponsible for develop<strong>in</strong>g technologyhave somehow failed. At least threerelated factors help expla<strong>in</strong> the relativelyslow rate <strong>of</strong> progress <strong>in</strong> marg<strong>in</strong>alenvironments. First, the climate <strong>in</strong>dryl<strong>and</strong> production zones severelyconstra<strong>in</strong>s the yield potential <strong>of</strong> cerealcrops, so the impact <strong>of</strong> improved seedfertilizertechnologies is bound to be lessdramatic than <strong>in</strong> the more favored areas<strong>of</strong> the world where these technologiesare so successful. Second, <strong>in</strong>vestment <strong>in</strong>agricultural research targeted at ra<strong>in</strong>fedareas has been modest, <strong>in</strong> part becausesuch research was perceived (correctly)as hav<strong>in</strong>g a lower potential pay<strong>of</strong>f.Third, largely because <strong>of</strong> the first tw<strong>of</strong>actors, many countries have been slowto implement policies that wouldpromote cereal production <strong>in</strong> ra<strong>in</strong>fedareas, such as policies to developFigure 15. Ratio <strong>of</strong> wholesale prices <strong>of</strong> bread wheat <strong>in</strong> Sagar <strong>and</strong> durum wheat <strong>in</strong>central <strong>and</strong> southern India to prices <strong>in</strong> Ludhiana, Punjab, India, 1954-85.


24Research Resource Allocationto Marg<strong>in</strong>al <strong>Environments</strong>transportation <strong>in</strong>frastructure, improved<strong>in</strong>put delivery systems, <strong>and</strong> market<strong>in</strong>gfacilities. Thus, it is not really correct tosay that research <strong>in</strong>stitutions have beenunsuccessful <strong>in</strong> develop<strong>in</strong>g improvedproduction technologies for ra<strong>in</strong>fedmarg<strong>in</strong>al environments. Rather, it wouldseem that some important conditions forsuccessful development <strong>and</strong> adoption <strong>of</strong>improved technologies have simply beenlack<strong>in</strong>g.Policy makers <strong>in</strong> many countries mustdecide what proportion <strong>of</strong> availableresearch resources should be allocated tores arch targeted at marg<strong>in</strong>alenvironments. Although this complexissue cannot be resolved here, it seemsappropriate briefly to describe onesimple approach that can be used to<strong>in</strong>form research plann<strong>in</strong>g. Undercongruency analysis, re earch resourcesare allocated among regions orenvironments <strong>in</strong> relation to their share <strong>in</strong>the value <strong>of</strong> production. For example, iffavorable <strong>and</strong> marg<strong>in</strong>al areas account for70% <strong>and</strong> 30%, respectively, <strong>of</strong> the totalvalue <strong>of</strong> wheat production, then wheatresearch resources should be allocated tothe two types <strong>of</strong> environment <strong>in</strong> a 70:30ratio (Barker 1988, Scobie 1994 .Research managers both <strong>in</strong> the<strong>in</strong>ternational centers <strong>and</strong> with<strong>in</strong> nationalprograms must now decide whether it istime to devote more resources tomarg<strong>in</strong>al areas. A comprehensive answerto this question is beyond the scope <strong>of</strong>this report, but prelim<strong>in</strong>ary analysissuggests that further <strong>in</strong>formation may beneeded before any decision is taken toshift significant amounts <strong>of</strong> researchresources from favored to marg<strong>in</strong>alareas, at least <strong>in</strong> the case <strong>of</strong> wheatbreed<strong>in</strong>g (see box, this page). Onereason for this conclusion is thatalthough marg<strong>in</strong>al environments accountfor a significant proportion <strong>of</strong> totalcereal area, their share <strong>in</strong> total cerealproduction is much lower. S<strong>in</strong>ce mostpolicy makers would agree thatproduction is the s<strong>in</strong>gle most importantconsideration <strong>in</strong> allocat<strong>in</strong>g researchresources (certa<strong>in</strong>ly more important thanarea per se), caution should be exercisedbefore allocat<strong>in</strong>g research resources onthe basis <strong>of</strong> area alone.On the other h<strong>and</strong>, further considerations(especially the desire to alleviatepoverty) might justify <strong>in</strong>creasedallocations to research targeted atmarg<strong>in</strong>al areas. Without a doubt, manypeople who live <strong>in</strong> marg<strong>in</strong>alenvironments are poor. However, theissue is complicated by the fact thatmany <strong>of</strong> the poorest people <strong>in</strong> marg<strong>in</strong>alenvironments are net food purchasers;thus, the most efficient way to alleviatepoverty <strong>in</strong> marg<strong>in</strong>al environments mayactually be to <strong>in</strong>crease productivity <strong>in</strong>favored areas, jf that reduces the realprice <strong>of</strong> food. Alternatively, poverty <strong>in</strong>marg<strong>in</strong>al environments may beTable A. Indices <strong>of</strong> wheat area, production, <strong>and</strong> weighted productionby mega-environmentEstimated Estimated WeightedMega-environment area production production(characteristics) (%) (%) (%)Bread wheat 89.5 92.4 92.1Spr<strong>in</strong>g habitME 1 (irrigated, low ra<strong>in</strong>fall, temperate) 36.1 42.7 43.4ME 2 (high ra<strong>in</strong>fall, temperate) 8.5 10.4 9.5ME 3 (acid soil, high ra<strong>in</strong>fall, temperate) 1.9 1.3 0.4ME 4A (low ra<strong>in</strong>fall, temperate, w<strong>in</strong>ter ra<strong>in</strong>) 6.1 2.3 2.14B (low ra<strong>in</strong>fall, temperate, w<strong>in</strong>ter drought) 3.6 2.1 0.84C (low ra<strong>in</strong>fall, temperate, stored moisture) 4.9 2.5 2.1ME 5A (high temperature, low humidity) 4.4 4.9 5.75B (high temperature, low humidity) 3.6 1.5 1.2ME 7 (severe w<strong>in</strong>ter, spr<strong>in</strong>g sown, high latitude) 6.2 6.8 5.8Subtotal (spr<strong>in</strong>g habit) 75.3 74.5 71.1Facultative/w<strong>in</strong>ter habitME 6A (moderate cold, high ra<strong>in</strong>fall) 5.1 9.8 10.96B (moderate cold, low ra<strong>in</strong>fall) 7.4 2.0 2.46C (severe cold, high ra<strong>in</strong>fall) 6.7 9.2 11.560 (severe cold, low ra<strong>in</strong>fall) 5.5 4.6 4.2Subtotal (facultative/w<strong>in</strong>ter habit) 24.7 25.5 29.0Bread wheat total 100.0 100.0 100.0Durum wheat 10.5 7.6 7.9Spr<strong>in</strong>g habitME 1 (irrigated, low ra<strong>in</strong>fall, temperate) 3.6 7.9 6.9ME 2 (high ra<strong>in</strong>fall, temperate) 23.0 33.6 46.6ME 4A (low ra<strong>in</strong>fall, temperate, w<strong>in</strong>ter ra<strong>in</strong>) 45.6 32.0 23.54C (low ra<strong>in</strong>fall, temperate, stored moisture) 14.5 8.7 5.0Subtotal (spr<strong>in</strong>g habit) 86.7 82.1 81.9Facultative/w<strong>in</strong>ter habitME 6C (severe cold, high ra<strong>in</strong>fall) 1.6 5.6 6.760 (severe cold, low ra<strong>in</strong>fall) 11.7 12.3 11.4Subtotal (facultative/w<strong>in</strong>ter habit) 13.3 17.9 18.1Ourum wheat total 100.0 100.0 100.0Total bread wheat <strong>and</strong> durum wheat 100.0 100.0 100.0


Congruency analysis was recently usedat IMMYT <strong>in</strong> prepar<strong>in</strong>g the Center'sfive-year budget plan (CIMMYT 1989a).To a sist <strong>in</strong> determ<strong>in</strong><strong>in</strong>g an appropriatepattern <strong>of</strong> research resource allocationbetween the different environments <strong>and</strong>wheat types on which CIMMYT's wheatbreed<strong>in</strong>g focuses, an <strong>in</strong>dex wasconstructed <strong>of</strong> wheat production <strong>in</strong>develop<strong>in</strong>g countries. <strong>Production</strong> datawere disaggregated by megaenvironment<strong>and</strong> weighted accord<strong>in</strong>g toa set <strong>of</strong> criteria deemed important <strong>in</strong>light <strong>of</strong> CIMMYT's m<strong>and</strong>ate: I) theexpected value <strong>of</strong> wheat production,2) the per capita <strong>in</strong>come <strong>of</strong> wheatproducers <strong>and</strong> consumers, 3) theperceived ability <strong>of</strong> national researchprograms to carry out effective researchon different types <strong>of</strong> wheat, <strong>and</strong>4) expected rat s <strong>of</strong> progress due towheat breed<strong>in</strong>g <strong>in</strong> different megaenvironment(Table A).The distribution (by type <strong>of</strong> wheat <strong>and</strong>by mega-environment) <strong>of</strong> weightedglobal wheat production was thencompared to the current allocation <strong>of</strong>research re Ource with<strong>in</strong> the CIMMYT<strong>Wheat</strong> Program. The objective was todeterm<strong>in</strong>e whether the resourcesallocated to different wheat researchactivities were congruent with theweighted value <strong>of</strong> production, tak<strong>in</strong>g<strong>in</strong>to account the factors deemedimportant <strong>in</strong> terms <strong>of</strong> CIMMYT'sm<strong>and</strong>ate. Thus, bread wheat was foundto make up approximately 92% <strong>of</strong>weighted production, while durum wheatwas found to make up only 8%. Only10% <strong>of</strong> weighted bread wheat productionwas found to take place <strong>in</strong> low ra<strong>in</strong>fallenvironments, as compared to 90% formoderate <strong>and</strong> high ra<strong>in</strong>fallenvironments. In contrast, fully 40% <strong>of</strong>weighted durum wheat productionoccurs <strong>in</strong> low ra<strong>in</strong>fall environments.These results suggest that caution shouldbe exercised before resources devoted tobread wheat improvement are shiftedfrom favorable to marg<strong>in</strong>al areas, butthat <strong>in</strong> durum wheat improvementconsiderable emphasis should be placedon research targeted at marg<strong>in</strong>al areas.In a more focused application <strong>of</strong>congruency analysis, Byerlee (1991)exam<strong>in</strong>ed whether the current allocationTable B. Summary <strong>of</strong> congruency analysis <strong>of</strong> allocation <strong>of</strong> Indian wheat researchresources by zoneIrrigatedRa<strong>in</strong>fedNorthwest Northeast Central Centralpla<strong>in</strong>s pla<strong>in</strong>s <strong>and</strong> South North <strong>and</strong> SouthPercent <strong>of</strong> area a 38.6 25.4 9.9 10.1 16.1Percent <strong>of</strong> value <strong>of</strong> production b 49.4 24.5 11.5 6.3 8.2Percent weighted production" 31.8 39.5 18.6 4.5 5.6<strong>of</strong> Indian research resources to wheatbreed<strong>in</strong>g for ra<strong>in</strong>fed areas is congruentwith the value <strong>of</strong> production <strong>of</strong> ra<strong>in</strong>fedwheat. Indian wheat production wasdivided <strong>in</strong>to three major zones <strong>and</strong> twomoisture regimes. Table B presents dataon area planted to wheat <strong>and</strong> a weighted<strong>in</strong>dex <strong>of</strong> production <strong>in</strong> each zone (us<strong>in</strong>ga weight<strong>in</strong>g procedure similar toCIMMYT's), as well as a measure <strong>of</strong> theallocation <strong>of</strong> research resources (as<strong>in</strong>dicated by the number <strong>of</strong> varietalreleases for each zone). In general, theshare <strong>of</strong> varieties released for ra<strong>in</strong>fedenvironments corresponds well tora<strong>in</strong>fed environments' share <strong>in</strong> theweighted value <strong>of</strong> production. Althoughdryl<strong>and</strong> areas <strong>of</strong> central <strong>and</strong> southernIndia account for 16% <strong>of</strong> total wheatarea, they account for only 6% <strong>of</strong> theweighted <strong>in</strong>dex <strong>of</strong> production. Thisdifference is due to the very low yields<strong>in</strong> dryl<strong>and</strong> areas, as well as the slow rate<strong>of</strong> yield ga<strong>in</strong>s (0.5% per year) expectedto be obta<strong>in</strong>ed through breed<strong>in</strong>g <strong>in</strong> thiszone. On the other h<strong>and</strong>, rural <strong>in</strong>comelevels <strong>in</strong> the dryl<strong>and</strong> areas wereestimated to be only half <strong>of</strong> those <strong>in</strong> theirrigated northwest, <strong>and</strong> this <strong>in</strong>creasedthe weight assigned to the dryl<strong>and</strong> areas.However, <strong>in</strong> order to justify <strong>in</strong>creasedallocation <strong>of</strong> research resources todryl<strong>and</strong> wheat breed<strong>in</strong>g, planners need tobelieve that research progress <strong>in</strong> the eareas will be much more rapid than <strong>in</strong>the past, or they need to attach a veryhigh weight to alleviat<strong>in</strong>g poverty.Both <strong>of</strong> these examples <strong>of</strong> congruencyanalysis consider only the researchresources <strong>in</strong>vested <strong>in</strong> breed<strong>in</strong>g. Giventhe evidence presented <strong>in</strong> this report, thepotential to <strong>in</strong>crease wheat productivitythrough research on crop <strong>and</strong> resourcemanagement may by relatively high.Hence a congruency analysis <strong>of</strong>allocation <strong>of</strong> resources devoted to crop<strong>and</strong> resource management research maygive quite a different picture.Percent <strong>of</strong> varieties released:1960-85 26.9 21.3 31.5 7.4 13.91976-85 31.0 22.4 36.2 6.9 3.4Source: Byerlee (1991).a Current area <strong>and</strong> production.b Based on projected production <strong>and</strong> prices.C Weighted by reciprocal <strong>of</strong> agricultural <strong>in</strong>come per capita <strong>and</strong> rates <strong>of</strong> research progress.


26alleviated most effectively by creat<strong>in</strong>gopportunities for work <strong>of</strong>f <strong>of</strong> the farm.(For a more detailed discussion <strong>of</strong> this<strong>and</strong> related issues, see the box, p. 27).Despite these caveats, it seems clear thatmore effort will be needed to improvecereal productivity <strong>in</strong> marg<strong>in</strong>alenvironments where yields rema<strong>in</strong> wellbelow potential. However, prospects forfuture ga<strong>in</strong>s <strong>in</strong> productivity, as well aspromis<strong>in</strong>g research strategies, differsomewhat between the WANA Region<strong>and</strong> South Asia.In the WANA Region, cerealproductivity <strong>in</strong> very low ra<strong>in</strong>fall zonesshows little potential for improvement,given the adverse agroclimaticconditions <strong>and</strong> high levels <strong>of</strong> productionrisk, which comb<strong>in</strong>e to limitpr<strong>of</strong>itability. In view <strong>of</strong> the long-termdownward trend <strong>in</strong> world wheat prices,coupled with structural adjustmentreforms currently be<strong>in</strong>g implemented <strong>in</strong>many WANA countries, high-cost localwheat production is unlikely to receiveadditional subsidies, thus lessen<strong>in</strong>g the<strong>in</strong>centives to raise productivity <strong>in</strong> wheat.<strong>Barley</strong> will cont<strong>in</strong>ue to have relativelygreater importance <strong>in</strong> low ra<strong>in</strong>fall zones,especially for use on the farm as an <strong>in</strong>put<strong>in</strong>to the livestock enterprise, but it seemsunlikely that livestock prices-alreadyhigh by global st<strong>and</strong>ards-will rise tolevels capable <strong>of</strong> <strong>in</strong>duc<strong>in</strong>g significanttechnical change <strong>in</strong> barley productionpractices. Meanwhile, <strong>in</strong> higher ra<strong>in</strong>fallzones <strong>and</strong> irrigated areas, both wheat<strong>and</strong> barley are likely to face <strong>in</strong>creas<strong>in</strong>gcompetition from higher valued crops.Elim<strong>in</strong>at<strong>in</strong>g the driest <strong>and</strong> wellest areas<strong>of</strong> the WANA Region leaves a relativelynarrow belt <strong>of</strong> l<strong>and</strong>, characterized byroughly 300-400 mm <strong>of</strong> annual ra<strong>in</strong>fall,where cereal yields are low butconsiderable potential exists to <strong>in</strong>creaseproduction. With<strong>in</strong> this belt,opportunities for exp<strong>and</strong><strong>in</strong>g arable l<strong>and</strong>are limited, so production ga<strong>in</strong>s are mostlikely to be realized through <strong>in</strong>creasedyields, as well as through <strong>in</strong>creasedcropp<strong>in</strong>g <strong>in</strong>tensity achieved by br<strong>in</strong>g<strong>in</strong>gfallow l<strong>and</strong> <strong>in</strong>to cultivation. This beltwill be important <strong>in</strong> meet<strong>in</strong>g the region'sgrow<strong>in</strong>g dem<strong>and</strong> for gra<strong>in</strong>, which givencurrent trends is projected to result <strong>in</strong> animport deficit <strong>of</strong> 60 million tons by theyear 2000.In South Asia's dryl<strong>and</strong> wheat zones, thepotential for <strong>in</strong>creas<strong>in</strong>g wheat yieldsunder residual moisture conditionsappears to be much more limited. Innormal years, maximum yield potentialis only around 2 tfha, <strong>and</strong> <strong>in</strong> a goodgrow<strong>in</strong>g season when ra<strong>in</strong>fall is timely,maximum yield potential rarely exceeds3 tfha. Nevertheless, wheat will cont<strong>in</strong>ueto occupy an important place <strong>in</strong> thefarm<strong>in</strong>g systems <strong>of</strong> these environments.Not only is it a preferred subsistencefood <strong>and</strong> fodder crop, but it is alsoregarded as a secure crop. In higherra<strong>in</strong>fall areas, the level <strong>of</strong> residual soilmoisture is nearly always sufficient toguarantee at least a modest harvest; <strong>in</strong>lower ra<strong>in</strong>fall areas, farmers protectaga<strong>in</strong>st crop failures by adjust<strong>in</strong>g areaplanted accord<strong>in</strong>g to the availablemoisture. Input use is low, as wheatproduction requires only m<strong>in</strong>imumtillage, seed, <strong>and</strong> sometimes a small dose<strong>of</strong> fertilizer; after plant<strong>in</strong>g, no weed<strong>in</strong>g isneeded, <strong>and</strong> the only other necessaryoperation is harvest<strong>in</strong>g. On average,farmers can recoup variable costs with ayield <strong>of</strong> only 200-300 kg/ha. In the ma<strong>in</strong>dryl<strong>and</strong> wheat belt, the probability isvery high that farmers can obta<strong>in</strong> yields<strong>of</strong> at least that level. Because <strong>of</strong> thesecurity it provides, wheat will notdim<strong>in</strong>ish <strong>in</strong> importance <strong>in</strong> the ra<strong>in</strong>fedmarg<strong>in</strong>al environments <strong>of</strong> South Asia,even though only modest ga<strong>in</strong>s <strong>in</strong> .productivity can be expected.Where will future productivity ga<strong>in</strong>scome from <strong>in</strong> marg<strong>in</strong>al environments?Given that moisture is the key yieldconstra<strong>in</strong>t, three strategies <strong>of</strong>fer the mosthope for <strong>in</strong>creas<strong>in</strong>g <strong>and</strong> stabiliz<strong>in</strong>gyields: I) <strong>in</strong>creas<strong>in</strong>g the water supplythrough irrigation, 2) improv<strong>in</strong>g moistureconservation, <strong>and</strong> 3) utiliz<strong>in</strong>g moisturemore efficiently. Of the three options,the first is clearly the most effectivesolution. For this reason, expansion <strong>of</strong>irrigated area has long been the majorstrategy employed <strong>in</strong> India to improveproduction <strong>in</strong> marg<strong>in</strong>al areas; morerecently, many WANA countries havefollowed suit. However, aside from thefact that irrigation is technically feasibleonly <strong>in</strong> some areas, pUll<strong>in</strong>g ra<strong>in</strong>fed l<strong>and</strong>under irrigation is extremely costly.Also, even where irrigation has beensuccessful (such as <strong>in</strong> central India), itslong run susta<strong>in</strong>ability is uncerta<strong>in</strong>,given limited groundwater supplies.Therefore, the two rema<strong>in</strong><strong>in</strong>gstrategies-improv<strong>in</strong>g moistureconservation practices <strong>and</strong> enhanc<strong>in</strong>g theefficiency <strong>of</strong> moisture use-should notbe overlooked. Research has consistentlyhighlighted the critical role <strong>of</strong> improvedcrop <strong>and</strong> soil management practices <strong>in</strong>conserv<strong>in</strong>g moisture <strong>and</strong> rais<strong>in</strong>g theefficiency with which moisture is used <strong>in</strong>marg<strong>in</strong>al areas (Cooper et al. 1988;Durutan, Yilmaz, <strong>and</strong> Kiziltan, 1988;Durutan et al. 1989; Harris <strong>and</strong> Pala1988; Byerlee <strong>and</strong> W<strong>in</strong>kelmann 1980).Although MVs may play some role <strong>in</strong>boost<strong>in</strong>g wheat <strong>and</strong> barley yields <strong>in</strong>marg<strong>in</strong>al areas, germplasm will usuallynot be the ma<strong>in</strong> stimulus for rapidtechnical change, as was the case <strong>in</strong>favorable areas. On the contrary, <strong>in</strong>marg<strong>in</strong>al environments improvements <strong>in</strong>crop <strong>and</strong> soil management practices will<strong>of</strong>ten precede changes <strong>in</strong> variety (as hasalready happened <strong>in</strong> Turkey). Thissuggests a larger role for research oncrop <strong>and</strong> soil management relative tobreed<strong>in</strong>g research, as well as somereorganization <strong>of</strong> research <strong>and</strong> extensionstrategies.Traditional commodity-based researchprograms focus<strong>in</strong>g exclusively on cerealcrops are likely to have limited success<strong>in</strong> marg<strong>in</strong>al environments, given theimportance <strong>of</strong> <strong>in</strong>tercropp<strong>in</strong>g, croprotations <strong>and</strong> fallow<strong>in</strong>g, <strong>and</strong> croplivestock<strong>in</strong>teractions. Instead, a more<strong>in</strong>tegrative approach to crop <strong>and</strong> soilmanagement is needed, <strong>in</strong> whichresearchers give allention to systemwideimplications <strong>of</strong> new technologies.The role <strong>of</strong> extension will also be criticalto diffus<strong>in</strong>g new technologies. The"technology package" approach sowidely employed <strong>in</strong> favorableenvironments is likely to be less relevant


Interregional Effects <strong>of</strong> Technological Change:Evidence from Favored <strong>and</strong> Marg<strong>in</strong>al <strong>Environments</strong> <strong>of</strong> PakistanIt is now generally accepted thatimproved seed-fertilizer technologieshave succeeded <strong>in</strong> rais<strong>in</strong>g the <strong>in</strong>comes <strong>of</strong>adopt<strong>in</strong>g farmers <strong>in</strong> a wide range <strong>of</strong>production environments. Morecontroversial is the question <strong>of</strong> how thega<strong>in</strong>s attributable to technologicalchange have been shared among varioussocioeconomic groups <strong>and</strong> betweenregions. If MVs <strong>and</strong> associated <strong>in</strong>putshave disproportionally benefitedwealthier farmers <strong>and</strong>/or people liv<strong>in</strong>g <strong>in</strong>favorable production zones, then thetechnology may have widened the<strong>in</strong>come gap between the rich <strong>and</strong> thepoor, as well as between <strong>in</strong>habitants <strong>of</strong>favored <strong>and</strong> marg<strong>in</strong>al areas.This issue was addressed by a recentstudy (Renkow 1991) carried out <strong>in</strong>Pakistan, a country with well-def<strong>in</strong>edfavorable (irrigated) <strong>and</strong> marg<strong>in</strong>al(ra<strong>in</strong>fed) wheat production zones. S<strong>in</strong>ceMVs were <strong>in</strong>troduced <strong>in</strong> the mid-1960s,most <strong>of</strong> the improved germplasmdeveloped for use <strong>in</strong> Pakistan has beenbetter suited to irrigated productionconditions. Follow<strong>in</strong>g a lag <strong>of</strong> about 10years, MVs eventually spread <strong>in</strong>tora<strong>in</strong>fed areas as well, although theresult<strong>in</strong>g yield <strong>in</strong>creases weresignificantly smaller than <strong>in</strong> irrigatedareas (average wheat yields <strong>in</strong> ra<strong>in</strong>fedareas are currently less than half tbose <strong>of</strong>irrigated areas).Interest<strong>in</strong>gly, even though yield<strong>in</strong>creases <strong>in</strong> irrigated areas haveconsistently outpaced those <strong>in</strong> ra<strong>in</strong>fedareas, rural <strong>in</strong>comes <strong>in</strong> ra<strong>in</strong>fed areashave grown more, particularly s<strong>in</strong>ce themid-1970s. In both ra<strong>in</strong>fed <strong>and</strong> irrigatedareas, large farm households haveconsistently enjoyed the highest <strong>in</strong>comesfrom all sources (<strong>in</strong>clud<strong>in</strong>g cropproduction, agricultural labor, <strong>and</strong>nonagricultural employment). However,dur<strong>in</strong>g the past 25 years poorer smallfarm <strong>and</strong> l<strong>and</strong>less households registeredfaster real <strong>in</strong>come growth (ma<strong>in</strong>lybecause <strong>of</strong> relatively greater <strong>in</strong>creases <strong>in</strong><strong>of</strong>f-farm <strong>in</strong>come) (see Figure).Particularly strik<strong>in</strong>g is the rapid growth<strong>of</strong> the <strong>in</strong>comes <strong>of</strong> poorer households <strong>in</strong>ra<strong>in</strong>fed areas.production technology. Aside fromdirectly <strong>in</strong>fluenc<strong>in</strong>g the level <strong>of</strong>production, technological change canalso produce benefits that are transmitted<strong>in</strong>directly, possibly with differentconsequences for various socioeconomicgroups. For example, by <strong>in</strong>creas<strong>in</strong>gproduction <strong>of</strong> a commodity such aswheat, a new technology may help lowerthe price <strong>of</strong> the commodity, mak<strong>in</strong>g itcheaper than it would have been <strong>in</strong> theabsence <strong>of</strong> technological change. For animportant staple food such as wheat <strong>in</strong>Pakistan, net consumers <strong>of</strong> the foodbothnon-producers (such as urb<strong>and</strong>wellers) <strong>and</strong> rural producers for whomproduction fails to meet householdconsumption requirements-st<strong>and</strong> tobenefit from lower wheat prices.Moreover, because poor consumers tendto spend a greater proportion <strong>of</strong> their<strong>in</strong>comes on food, this price effect islikely to benefit poorer consumers to agreater extent than the more well-to-do.It is important to note, however, that<strong>in</strong>creased wheat production will directlylead to a lower wheat price only if theprice is determ<strong>in</strong>ed by the forces <strong>of</strong>domestic supply <strong>and</strong> dem<strong>and</strong>. InPakistan, as <strong>in</strong> most other develop<strong>in</strong>gcountries, the government plays anactive role <strong>in</strong> sett<strong>in</strong>g producer <strong>and</strong>consumer prices for wheat <strong>and</strong> flour, <strong>and</strong>these prices may rema<strong>in</strong> largeJyunaffected by domestic supply <strong>and</strong>Real <strong>in</strong>come (Rs/yr)200016001200800400Irrigated areasRa<strong>in</strong>fed areas1-_..1dem<strong>and</strong> conditions. Thus, whileproducer <strong>and</strong> consumer prices <strong>of</strong> wheat<strong>and</strong> wheat products have been decl<strong>in</strong><strong>in</strong>gover the past 25 years, it is not clear thatthese price changes can be attributeddirectly to technological change <strong>in</strong>wheat production.In addition to <strong>in</strong>creas<strong>in</strong>g productivity,technological <strong>in</strong>novations such as MVsusually require greater amounts <strong>of</strong> laborfor harvest<strong>in</strong>g, thresh<strong>in</strong>g, <strong>and</strong> crop care.As long as agricultural labor is notavailable <strong>in</strong> unlimited supply, <strong>in</strong>creasedlabor requirements put upward pressureon agricultural wage rates (as wel'l as theimplicit return to family labor <strong>of</strong>subsistence producers). Higher wagesobviously have positive effects on the<strong>in</strong>comes <strong>of</strong> poorer rural dwellersdependent on agricultural labor for alarge share <strong>of</strong> their <strong>in</strong>comes. Moreover,such wage <strong>in</strong>creases need not beconf<strong>in</strong>ed to the areas <strong>in</strong> which labor<strong>in</strong>tensivetechnologies are adopted if<strong>in</strong>terregional differences <strong>in</strong> wage ratescause agricultural laborers to migratefrom low wage to high wage areas.In Pakistan, real agricultural wages <strong>in</strong>both ra<strong>in</strong>fed <strong>and</strong> irrigated areas have<strong>in</strong>creased steadily over time, support<strong>in</strong>gthe idea that the <strong>in</strong>creased laborrequirements <strong>of</strong> the Green Revolutiontechnologies have benefited agriculturallaborers <strong>in</strong> both favorable <strong>and</strong> marg<strong>in</strong>al(cont<strong>in</strong>ued, p.2S)Renkow's study attempted to unravel themany factors <strong>in</strong>fluenc<strong>in</strong>g <strong>in</strong>come growth<strong>in</strong> an attempt to isolate the effectsattributable to changes <strong>in</strong> wheat1965 66/71 76/82 84/87L<strong>and</strong>less households1965 66/71 76/82 84/87Small- farm householdsRelative real <strong>in</strong>comes <strong>in</strong> the Punjab, Pakistan, 1965-87.1965 66/71 76/82 84/87Large-farm households


production environments. However,wages <strong>in</strong> nearly all sectors <strong>of</strong> theeconomy have risen dramatically s<strong>in</strong>cethe mid-1970s. This period co<strong>in</strong>cidedwith the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> large-scalemigration to the Middle East, an activitythat created labor shortages <strong>in</strong> many keysectors <strong>of</strong> Pakistan's economy (<strong>in</strong>clud<strong>in</strong>gthe agricultural sector).Foreign migration appears to be thema<strong>in</strong> explanation for the pattern <strong>of</strong>changes observed <strong>in</strong> the <strong>in</strong>comes <strong>of</strong> ruraldwellers <strong>in</strong> Pakistan's ra<strong>in</strong>fed areas s<strong>in</strong>cethe mid-1970s. Particularly for l<strong>and</strong>l 5S<strong>and</strong> smaIl farm households, an<strong>in</strong>creas<strong>in</strong>gly large hare <strong>of</strong> totalhousehold <strong>in</strong>come has come fromnonagricultural sources <strong>of</strong> whichforeign remittance are most important).Between 1965 <strong>and</strong> 1971, about 65% <strong>of</strong>the <strong>in</strong>come <strong>of</strong> small farms came fromagricultural activities; between 1984 <strong>and</strong>1987, nearly 90% <strong>of</strong> the e households'<strong>in</strong> omes came from nonagriculturalsources. The data for l<strong>and</strong>Ie, . <strong>and</strong> largefarm households <strong>in</strong> ra<strong>in</strong>fed areas <strong>in</strong>dicatesimilaT although somewhat Ie'dramatic) trends <strong>in</strong> th composition <strong>of</strong>household <strong>in</strong>come.Meanwhile, s<strong>in</strong>ce 1965 the composition<strong>of</strong> household <strong>in</strong>come for all types <strong>of</strong>households <strong>in</strong> irrigated areas hasrema<strong>in</strong>ed relatively constant. In thesearea " the fortunes <strong>of</strong> rural dwellersappear to have been tied more directly tothe pr<strong>of</strong>itability <strong>of</strong> agriculture.Thus it appear' that rural <strong>in</strong>come growth<strong>in</strong> ra<strong>in</strong>fed areas <strong>of</strong> Pakistan has been duema<strong>in</strong>ly to the ability <strong>of</strong> <strong>in</strong>habitants <strong>of</strong>those areas to take advantage <strong>of</strong> <strong>in</strong>comegenerat<strong>in</strong>gopportunities out:ide theagricultural sector. That the rate <strong>of</strong><strong>in</strong>come growth <strong>in</strong> ra<strong>in</strong>fed areas hasexceeded that <strong>of</strong> irrigated areas over thepast 15 years <strong>in</strong>dicates that thosenonagricultural opportunities proved tobe even more remunerative thanagricultural opportunities <strong>in</strong> the irrigatedareas. An <strong>in</strong>terest<strong>in</strong>g implication <strong>of</strong> thisf<strong>in</strong>d<strong>in</strong>g is that differences <strong>in</strong> wheatproductivity across productionenvironments may have provided animportant <strong>in</strong>centive for the <strong>in</strong>habitants <strong>of</strong>Pakistan's less productive ra<strong>in</strong>fed areato broaden their <strong>in</strong>come-generat<strong>in</strong>gactivities out 'ide <strong>of</strong> the agriculturalsector.<strong>in</strong> marg<strong>in</strong>al areas, where the high degree<strong>of</strong> agroclimatic variability over space<strong>and</strong> through time means that farmersmust be able to select among an array <strong>of</strong>technological options to meet therequirements <strong>of</strong> a specific field orseason. This also implies the need forbetter education <strong>of</strong> farmers to ensure thehigher skill levels needed to manage<strong>in</strong>creas<strong>in</strong>gly complex technologies.Likewise, an appropriate policyenvironment is also critical to encouragethe adoption <strong>of</strong> improved crop <strong>and</strong> soilmanagement practices, especially s<strong>in</strong>cemany marg<strong>in</strong>al areas lack effective <strong>in</strong>putdelivery systems <strong>and</strong> market<strong>in</strong>g<strong>in</strong>frastructure. S<strong>in</strong>ce economic<strong>in</strong>centives <strong>in</strong> many marg<strong>in</strong>al areas stillfavor livestock production, price policyreforms may be necessary to <strong>in</strong>creaseexpected returns to cereal enterprises<strong>and</strong>/or reduce their risk<strong>in</strong>ess. Preciselybecause they are characterized by a highlevel <strong>of</strong> climatic variability, dry l<strong>and</strong>environments will require a strongerjo<strong>in</strong>t technology/policy effort if cerealproduction practices are to changesignificantly.Too, there is a need to rema<strong>in</strong> aware <strong>of</strong>the potential effects <strong>of</strong> technologicalchange on fragile ecologies. Higheryields <strong>and</strong> <strong>in</strong>creased crop-p<strong>in</strong>g <strong>in</strong>tensityare desirable goals only if they can bemet without seriously degrad<strong>in</strong>g theenvironment. Until significantproductivity <strong>in</strong>creases are achieved,ris<strong>in</strong>g dem<strong>and</strong> for food will likely forcefarmers to further exp<strong>and</strong> the area sownto wheat <strong>and</strong> barley <strong>in</strong>to even morefragile ecologies. Thus, as farmers,researchers, <strong>and</strong> policy makers confrontthe formidable challenge <strong>of</strong> rais<strong>in</strong>gproductivity <strong>and</strong> <strong>in</strong>comes <strong>in</strong> ra<strong>in</strong>fedmarg<strong>in</strong>al environments, they must payclose attention to the longer termimplications <strong>of</strong> short- <strong>and</strong> medium-termproduction strategies.One f<strong>in</strong>al po<strong>in</strong>t emerg<strong>in</strong>g from thisreport concerns the extreme diversity <strong>of</strong>marg<strong>in</strong>al environments. The two majorenvironments reviewed here-the w<strong>in</strong>terra<strong>in</strong>fall areas <strong>of</strong> the WANA Region, <strong>and</strong>the residual moisture areas <strong>of</strong> SouthAsia-are characterized by tremendousvariability <strong>in</strong> temperature <strong>and</strong> ra<strong>in</strong>fallpatterns, soils, cereal types, <strong>and</strong>socioeconomic circumstances. Thisvariability poses a special challenge forresearchers seek<strong>in</strong>g to developappropriate technologies capable <strong>of</strong><strong>in</strong>creas<strong>in</strong>g productivity <strong>and</strong>, at least <strong>in</strong>the case <strong>of</strong> the WANA Region,stabiliz<strong>in</strong>g production. Recogniz<strong>in</strong>g thediversity <strong>of</strong> marg<strong>in</strong>al environments alsounderl<strong>in</strong>es the importance <strong>of</strong> identify<strong>in</strong>gthe different types <strong>of</strong> marg<strong>in</strong>alenvironments <strong>in</strong> which wheat <strong>and</strong> barleyare grown as a basis for develop<strong>in</strong>gappropriate research strategies for theyears to come.


Part 2: The Current World <strong>Wheat</strong> SituationIgnor<strong>in</strong>g short-run fluctuations causedby weather variability <strong>and</strong> policychanges, world wheat productioncont<strong>in</strong>ues to rise along a long-termupward trend. However, the sources <strong>of</strong>growth <strong>in</strong> global wheat production havechanged over time (Figure 16). Boostedby <strong>in</strong>creas<strong>in</strong>g use <strong>of</strong> improvedgermplasm, fertilizer, <strong>and</strong> otherpurchased <strong>in</strong>puts, wheat yields at theglobal level have grown strongly at2-3% per year throughout the past fourdecades. In contrast, the rate <strong>of</strong> areaexpansion has slowed dramatically, withtotal area planted to wheat actuallydecl<strong>in</strong><strong>in</strong>g dur<strong>in</strong>g the decade <strong>of</strong> the1980s. Much <strong>of</strong> the contraction <strong>in</strong> areahas occurred <strong>in</strong> the <strong>in</strong>dustrializedcountries, where chronic wheatsurpluses have led to policies encourag<strong>in</strong>gfarmers to take l<strong>and</strong> out <strong>of</strong>production.World wheat production <strong>in</strong> 1990-91 isestimated at a record 589 million metrictons (MT), an <strong>in</strong>crease <strong>of</strong> nearly 10%over the previous year. The enormousworld wheat harvest <strong>of</strong> 1990-91 can beattributed primarily to two factors. First,area planted exp<strong>and</strong>ed considerably <strong>in</strong>response to high prices at plant<strong>in</strong>g time(a legacy <strong>of</strong> reduced North Americanproduction <strong>in</strong> 1987 <strong>and</strong> J988, whichresulted when significant area was keptout <strong>of</strong> production due to policy<strong>in</strong>centives to set aside farm l<strong>and</strong>).Second, favorable weather <strong>in</strong> all majorwheat-produc<strong>in</strong>g zones <strong>of</strong> the northernhemisphere enabled wheat farmers toachieve record yields.Despite a significant <strong>in</strong>crease <strong>in</strong> feed use<strong>of</strong> wheat, world wheat production <strong>in</strong>1990-91 is projected to surpassutilization by 5%, lead<strong>in</strong>g to the biggest<strong>in</strong>crease <strong>in</strong> stock volume s<strong>in</strong>ce the early1980s. This <strong>in</strong>dicates that efforts by themajor export<strong>in</strong>g countries to re<strong>in</strong> <strong>in</strong>chronic overproduction have notsucceeded, <strong>and</strong> it suggests thataggressive surplus-disposal efforts <strong>and</strong>export competition will likely cont<strong>in</strong>ue<strong>in</strong> the near future.<strong>Wheat</strong> <strong>Production</strong>Increased plant<strong>in</strong>gs, comb<strong>in</strong>ed withrecord yields, led to all-time high levels<strong>of</strong> production <strong>in</strong> many <strong>of</strong> the world'slead<strong>in</strong>g wheat producers, <strong>in</strong>clud<strong>in</strong>g theUSSR, Ch<strong>in</strong>a, USA, <strong>and</strong> Canada. Whilenot reach<strong>in</strong>g record levels, productionnevertheless <strong>in</strong>creased significantly <strong>in</strong>the EC-12, Eastern Europe, Australia,<strong>and</strong> Argent<strong>in</strong>a. India <strong>and</strong> Pakistan alsoenjoyed good harvests, while Egypt<strong>in</strong>creased production by 25% on thestrength <strong>of</strong> yields averag<strong>in</strong>g over 5.0 t/ha(all wheat <strong>in</strong> Egypt is produced underirrigation). The only major producer tosuffer a significant production decl<strong>in</strong>ewas Brazil, which experiencedextremely unfavorable grow<strong>in</strong>g-seasonweather.<strong>Wheat</strong> UtilizationBuoyed by demographic growth, wheatfood use at the global level is projectedto grow 3% <strong>in</strong> 1990-91 despite efforts <strong>in</strong>many develop<strong>in</strong>g countries to curtailconsumption <strong>of</strong> imported wheat. Inaddition, fall<strong>in</strong>g prices dur<strong>in</strong>g late 1990<strong>and</strong> early 1991 encouraged <strong>in</strong>creasedfeed use <strong>of</strong> wheat as livestock producerssubstituted large amounts <strong>of</strong> wheat forother relatively more expensive feedgra<strong>in</strong>s such as maize <strong>and</strong> sorghum.Increased feed use helped to raise totalwheat utilization <strong>in</strong> 1990-91 to anestimated 563 MT, up nearly 5% fromthe previous year but still well short <strong>of</strong>world production.International <strong>Wheat</strong> PricesAverage annual growth (%)6-r------------------------..,5432o-IProduct! n (43)<strong>Production</strong> ( .0)<strong>Production</strong> (3.2)Produ ·ti n (1.8)-2 ....1..- ...1World wheat prices fell sharply <strong>in</strong> 1990­91 as a result <strong>of</strong> the record harvest. Thema<strong>in</strong> <strong>in</strong>ternational reference price forwheat (No.2 Hard Red W<strong>in</strong>ter, F.O.B.Gulf Ports) decreased from US$ I69/t <strong>in</strong>January 1990 to US$ I 14/t <strong>in</strong> January1991, a decl<strong>in</strong>e <strong>of</strong> nearly 33%. Thissteep decl<strong>in</strong>e pushed real wheat pricesback below their long-term trend level,which they had rega<strong>in</strong>ed only two yearsearlier <strong>in</strong> response to weather-<strong>in</strong>duceddecl<strong>in</strong>es <strong>in</strong> production, as well as policyadjustments made <strong>in</strong> a number <strong>of</strong>important exporters (Figure 17).Although the US export price is widelyused as a barometer <strong>of</strong> global pricetrends, it is important to note that thisprice does not necessarily reflect theprices at which transactions <strong>in</strong> the global1950s1960s1970s1980sFigure 16. Sources <strong>of</strong> growth <strong>in</strong> world wheat production, 1950s-80s.


30market actually take place. In recentyears, lead<strong>in</strong>g wheat producers such asthe USA <strong>and</strong> the EC-12 have reliedheavily on export promotion measures todispose <strong>of</strong> surplus production. Because<strong>of</strong> these export promotion measures,which <strong>in</strong>clude concessional sales,subsidized credit, <strong>and</strong> food aid, asignificant portion <strong>of</strong> the wheat mov<strong>in</strong>gthrough global markets <strong>in</strong> fact is sold atprices well below commonly cited<strong>in</strong>ternational reference prices based onUS export prices. Figure 18 presents datarelat<strong>in</strong>g to US wheat exports <strong>in</strong> 1987(the latest year for which such figuresare available) show<strong>in</strong>g that only onequarter<strong>of</strong> all US wheat exports weresold at the commercial export price.Subsidized credits provided through theExport Enhancement Program <strong>and</strong> otherprograms reduced the effective price fornearly one-third <strong>of</strong> US exports to around70% <strong>of</strong> the commercial export price,while concessional sales providedthrough P.L. 480 <strong>and</strong> other food aidprograms reduced the effective price onnearly one-quarter <strong>of</strong> US exports to only10% <strong>of</strong> the commercial export price. Alarge portion <strong>of</strong> the wheat exported bythe EC-12 similarly is sold at prices wellbelow <strong>in</strong>ternational reference prices.S<strong>in</strong>ce the proportion <strong>of</strong> the total worldwheat trade affected by exportpromotion programs has been <strong>in</strong>creas<strong>in</strong>gsteadily, the long-term decl<strong>in</strong>e <strong>in</strong>commonly cited <strong>in</strong>ternational referenceprices based on the US export price <strong>in</strong>fact understates the decl<strong>in</strong>e <strong>in</strong> effectivewheat prices actually prevail<strong>in</strong>g <strong>in</strong>global markets. The International <strong>Wheat</strong>Council estimates that traded prices <strong>in</strong>1990 ranged from US$ 68/t toUS$ 85/t, the lowest levels seen s<strong>in</strong>ce1972 (International <strong>Wheat</strong> Council1990).Outlook for <strong>Wheat</strong>Considerable uncerta<strong>in</strong>ty cont<strong>in</strong>ues tosurround the long-term outlook for theworld wheat market. The sharp rise <strong>in</strong>production recorded <strong>in</strong> 1990-91 <strong>and</strong> theresult<strong>in</strong>g <strong>in</strong>crease <strong>in</strong> world wheat stockssuggests that the <strong>in</strong>dustrialized countrieshave done little to curtail overproduction.While import<strong>in</strong>g countries cont<strong>in</strong>ue tobenefit from depressed world prices,policy makers <strong>in</strong> many develop<strong>in</strong>gcountries have begun to express concernover ris<strong>in</strong>g levels <strong>of</strong> dependency onimported wheat <strong>and</strong> wheat flour. Despitelow world prices, strong consumptiongrowth has caused the foreign exchangecost <strong>of</strong> wheat imports to escalatedrastically <strong>in</strong> many develop<strong>in</strong>g countries,prompt<strong>in</strong>g governments to <strong>in</strong>itiate policy(J 985 us $/1)40035030025020015010050Real U export pric .ClfwheaJ#2. Gulf pon.)1976 1981Figure 17. Evolution <strong>of</strong> real world wheat prices, 1961-90.10090807060504030201001961 1966 1971Percentage paid <strong>of</strong> export price (%)00102030 40 50 60 70Percentage <strong>of</strong> US wheat exportsreforms aimed at reduc<strong>in</strong>g consumption.These policy reforms have begun toproduce results <strong>in</strong> a number <strong>of</strong> African<strong>and</strong> Lat<strong>in</strong> American countries, whichhave seen wheat imports level <strong>of</strong>f oreven decl<strong>in</strong>e.In the short run, current high stock levels<strong>and</strong> cont<strong>in</strong>u<strong>in</strong>g support to wheatproducers <strong>in</strong> many <strong>in</strong>dustrializedcountries suggest that wheat will rema<strong>in</strong>plentiful <strong>in</strong> global markets at affordableprices.80901986100Figure 18. Effective price <strong>of</strong> US wheat exports, fiscal year 1987.Source: SkuJly (1990)


31Over the longer term, prospects are moreuncerta<strong>in</strong>. Future developments <strong>in</strong> theworld wheat market are likely to be<strong>in</strong>fluenced by at least three factors. First,much will depend on the ability <strong>of</strong>export<strong>in</strong>g countries to negotiatereductions <strong>in</strong> the level <strong>of</strong> supportextended to wheat producers. Theproblems aris<strong>in</strong>g dur<strong>in</strong>g the UruguayRound <strong>of</strong> the GAIT negotiations(largely over the issue <strong>of</strong> reduc<strong>in</strong>gsupport to agriculture <strong>and</strong> liberaliz<strong>in</strong>gagricultural trade) <strong>in</strong>dicate that seriousdifferences rema<strong>in</strong> between the majorplayers, although the re-open<strong>in</strong>g <strong>of</strong> tal kssuggests that all parties are seriously<strong>in</strong>terested <strong>in</strong> reduc<strong>in</strong>g the current highlevels <strong>of</strong> support. Second, much willdepend on future developments <strong>in</strong> theUSSR, the world's largest producer <strong>and</strong>consumer <strong>of</strong> wheat. Should currenteconomic <strong>and</strong> political difficulties <strong>in</strong> theUSSR be resolved quickly, wheatproduction levels could <strong>in</strong>creasedramatically. But if the Soviet economycont<strong>in</strong>ues to struggle, wheat productioncould be seriously impaired, possiblylead<strong>in</strong>g to a large <strong>in</strong>crease <strong>in</strong> importdem<strong>and</strong> from the world's largest wheatimporter. Third, <strong>in</strong>creas<strong>in</strong>g concern overthe environment <strong>in</strong> many <strong>in</strong>dustrializedcountries may make it more difficult forwheat farmers to respond to short-runprice signals by <strong>in</strong>creas<strong>in</strong>g area planted.Recently enacted farm legislation <strong>in</strong> theUSA, Canada, <strong>and</strong> the EC-12 conta<strong>in</strong>snumerous provisions designed to protectaga<strong>in</strong>st soil m<strong>in</strong><strong>in</strong>g <strong>and</strong> l<strong>and</strong>degradation, with the result that wheatfarmers may f<strong>in</strong>d it difficult to put l<strong>and</strong>back <strong>in</strong>to production withoutjeopardiz<strong>in</strong>g their participation <strong>in</strong> farmprograms.What is likely to happen to the worldwheat market should some sort <strong>of</strong>agreement be reached to reduce supportlevels to cereal producers <strong>and</strong> liberalizeagricultural trade? This question hasbeen addressed by a number <strong>of</strong>researchers work<strong>in</strong>g with econometricsimulation models. While much woulddepend on the precise nature <strong>of</strong> thereforms enacted, several consequencesseem fairly certa<strong>in</strong>. First, assum<strong>in</strong>g ageneral reduction <strong>in</strong> the level <strong>of</strong> supportextended to wheat farmers <strong>in</strong><strong>in</strong>dustrial ized countries, productionwould almost certa<strong>in</strong>ly shift out <strong>of</strong>Europe (where wheat production isheavily subsidized) to countries such asArgent<strong>in</strong>a, Australia, USA, <strong>and</strong> Canada(which have the capacity to be low-costproducers). Second, assum<strong>in</strong>g areduction <strong>in</strong> the current high levels <strong>of</strong>export subsidies <strong>and</strong> an abatement <strong>in</strong> thetrade wars, world wheat prices wouldalmost certa<strong>in</strong>ly rise by 15-30%.What would be the welfare implications<strong>of</strong> these changes for develop<strong>in</strong>gcountries <strong>in</strong> general, <strong>and</strong> <strong>in</strong> particular forthose which participate actively <strong>in</strong> theworld wheat trade? Here, differences <strong>of</strong>op<strong>in</strong>ion arise among the modelers. lsNearly all agree that develop<strong>in</strong>g countrywheat producers which are already ableto compete <strong>in</strong> the world market (e.g.,Argent<strong>in</strong>a <strong>and</strong> Turkey) would st<strong>and</strong> toga<strong>in</strong> significantly from a strengthen<strong>in</strong>g<strong>in</strong> global prices, s<strong>in</strong>ce they are clearlylow-cost producers. But for develop<strong>in</strong>gcountry importers, the prospects aremore uncerta<strong>in</strong>. Some <strong>of</strong> the modelspredict that such countries will suffersignificant welfare losses as the result <strong>of</strong>hav<strong>in</strong>g to pay higher prices for wheatimports. However, other models assumethat higher <strong>in</strong>ternational food prices will<strong>in</strong>duce technological change <strong>in</strong> foodproduction <strong>in</strong> develop<strong>in</strong>g countryimporters, lead<strong>in</strong>g ultimately to<strong>in</strong>creased domestic food productioncapacity <strong>and</strong> net welfare ga<strong>in</strong>s over thelonger term.15 For an excellent review <strong>of</strong> the major trademodels <strong>and</strong> a summary <strong>of</strong> lheir pr<strong>in</strong>cipalconclusions, see Runge (199)).


Part 3: Selected <strong>Wheat</strong> StatisticsThe tables that follow present 44statistics related to wheat <strong>and</strong> barleyproduction, trade, utilization, <strong>and</strong> prices,as well as some basic economic<strong>in</strong>dicators. The statistics were selected toprovide the latest available <strong>in</strong>formation.Countries listed <strong>in</strong> the tables areclassified either as wheat producers orconsumers. <strong>Wheat</strong> consumers <strong>in</strong>cludedevelop<strong>in</strong>g countries consum<strong>in</strong>g over100,000 t <strong>of</strong> wheat per year <strong>and</strong>developed countries consum<strong>in</strong>g morethan one million tons <strong>of</strong> wheat per yearfrom 1987 to 1989. <strong>Wheat</strong> producers<strong>in</strong>clude develop<strong>in</strong>g countries <strong>in</strong> whichwheat production exceeded 100,000 t/yrfrom 1987 to 1989 or accounted for 50%<strong>of</strong> total wheat consumption, <strong>and</strong>developed countries <strong>in</strong> which wheatproduction exceeded one million tonsper year from 1987 to 1989 or accountedfor 50% <strong>of</strong> total wheat consumption.Unless otherwise <strong>in</strong>dicated, the regionalaggregates given <strong>in</strong> the last table <strong>in</strong>cludeall <strong>of</strong> the countries <strong>of</strong> a particular region(see Annex 1, <strong>in</strong>side back cover). Notethat barley imports <strong>and</strong> exports (variable31) gi ven <strong>in</strong> that table do not add up;this is because they do not add up <strong>in</strong> thesource from which CIMMYT obta<strong>in</strong>edthe <strong>in</strong>formation.All prices reported <strong>in</strong> the tables wereconverted to US dollars at <strong>of</strong>ficialexchange rates.Notes on the VariablesVariable 1: This <strong>in</strong>formation is drawnfrom the FAO diskettes <strong>of</strong> populationstatistics (1990).Variables 2-3: The source <strong>of</strong> thesevariables is the World Bank WorldDevelopment Report (1990). Forcountries that are not World Bankreport<strong>in</strong>g members, the source is theUnited Nations Population Fund, TheState <strong>of</strong>World Population 1990.Variables 4-27: Data for these variablesare taken from the FAO diskettes <strong>of</strong>production statistics (1990). Growthrates were calculated us<strong>in</strong>g the st<strong>and</strong>ardformula for annual percentagecompound growth:Where:x, = X o[I + (g/IOO)]'x, = average <strong>of</strong> data for end<strong>in</strong>gperiod;X o= average <strong>of</strong> data for base period;t = number <strong>of</strong> years from themidpo<strong>in</strong>t <strong>of</strong> one period to that<strong>of</strong> the other; <strong>and</strong>g = average annual percent growthrate.In the calculation <strong>of</strong> annual growth rates,figures were rounded to the nearest tenth<strong>of</strong> a percent, so the sum <strong>of</strong> the growthrates <strong>of</strong> harvested area <strong>and</strong> yield may notnecessarily equal the productiongrowth rate.Variables 28-33: The source <strong>of</strong> thesedata is the FAO diskettes <strong>of</strong> tradestatistics (1990). Net imports werecalculated as imports m<strong>in</strong>us exports.Negative numbers <strong>in</strong>dicate that thecountry is a net exporter. Consumptionwas calculated as production plus netimports. Growth rates were calculatedus<strong>in</strong>g the st<strong>and</strong>ard formula given above.Variables 34-39: These data (which arefor 1989-90) were collected through ageneral country survey <strong>of</strong> knowledgeablewheat scientists. Some data wereestimated by CIMMYT staff. Regionaltotals <strong>and</strong> regional averages <strong>in</strong> some<strong>in</strong>stances were based on data from asubset <strong>of</strong> countries <strong>in</strong> the region.Regional data are reported only when<strong>in</strong>formation was available for at least50% <strong>of</strong> the area <strong>in</strong> the region (or 50% <strong>of</strong>wheat production, depend<strong>in</strong>g on thevariable).Variables 40-44: These data werecollected through a general countrysurvey <strong>of</strong> wheat scientists <strong>and</strong>economists. Data for the majority <strong>of</strong> thecountries refer to the wheat cropharvested <strong>in</strong> 1989-90, although <strong>in</strong> somecases 1988-89 is the reference year. Thewheat <strong>and</strong> barley prices are the postharvestprices received by farmers. Thenitrogen price is usually the price paidby farmers for the most commonnitrogenous fertilizer. In some countries,the price <strong>of</strong> compound fertilizer onlywas available, <strong>and</strong> the variable refers tothe price <strong>of</strong> nutrient only, whether it isN, PP5' <strong>and</strong>/or Kp.


Eastern <strong>and</strong> Southern Africa 33~ I. Estimated population, 1990 (millions) 47.8 24.7 25.1 27.2 9.6 15.8 7.5 225.302. Estimated growth rate <strong>of</strong> population, 1988-2000 (%/yr) 3.3 3.4 2.7 3.4 2.7 3.1 3.1 32.~"0 3. Per capita <strong>in</strong>come, 1988 (US$) 120 370 480 160 650 100 170 272.~4. Per capita cereal production, 1987-89 (kg/yr) 131 139 129 163 248 33 82 129~l: 5. Growth rate <strong>of</strong> per capita cereal production, 1961-65 to..0 1987-89 (%/yr) -0.8 -1.5 -0.2 1.8 -0.4 -3.6 0.8 -0.76. <strong>Wheat</strong> area harvested, 1987-89 (000 hal 657 154 142 55 44 4 4 1,1257. <strong>Wheat</strong> yield, 1987-89 (t/ha) 1.29 1.53 1.38 1.51 5.74 1.518. <strong>Wheat</strong> production, 1987-89 (000 t) 845 236 196 83 253 1,7049 Growth rate <strong>of</strong> wheat area, 1967-69 to 1977-79 (%/yr) -4.2 -1.0 10.8 2.4 17.6 -1.110. Growth rate <strong>of</strong> wheat area, 1977-79 to 1987-89 (%/yr) 2.8 2.6 -5.6 2.0 0.6 1.0." II. Growth rate <strong>of</strong> wheat yield, 1967-69 to 1977-79 (%/yr) 1.9 0.0 -0.4 2.1 2.8 2.7-a2 12. Growth rate <strong>of</strong> wheat yield, 1977-79 to 1987-89 (%/yr) 2.8 -0.3 3.0 0.8 3.0 2.1~ 13. Growth rate <strong>of</strong> wheat production, 1967-69 to 1977-79 (%/yr) -2.4 -1.0 10.4 4.5 20.9 1.7'ii 14. Growth rate <strong>of</strong> wheat production, 1977-79 to 1987-89 (%/yr) 5.7 2.4 -2.8 2.8 3.7 3.1"0c


West Africa,-- - - - ~ -- ..- -III• I', .. ~'~.~-\-,;-, ".... '.' .- .. ,L - - - - - ..r. I. Estimated population. 1990 (millions) 10.0 11.4 12,5 15.0 2.0 112.1 7.4 35.8 268.50U 2. Estimated growth rate <strong>of</strong> population, 1988-2000 (%/yr) 3.0 3.2 3.8 3.0 2.7 3.1 3.2 3.0 3.0'ii '" 3. Per capita <strong>in</strong>come. 1988 (US$)" 1,010 770 400 480 290 650 170 365.54. Per capita cereal production, 1987-89 (kg/yr) 36 77 95 83 80 115 143 35 109e... c 5. Growth rate <strong>of</strong> per capita cereal production, J96J -65 toOJ0 1987-89 (%/yr) -4.3 -1.7 -0.3 1.6 -0.5 -1.7 -1.1 1.1 -1.06. <strong>Wheat</strong> area harvested, 1987-89 (000 hal 3 1 0 0 I 35 0 28 747. <strong>Wheat</strong> yield, 1987-89 (t/ha)".. ..".. 1.43 1.14 1.288. <strong>Wheat</strong> production, 1987-89 (000 t)" " ..".. 50 "32 949. Growth rate <strong>of</strong> wheat area, 1967-69 to 1977-79 (%/yr)".. .. " "-0.9"4.7 5.310. Growth rate <strong>of</strong> wheat area, 1977-79 to 1987-89 (%/yr)" " .. .." 13.3 18.0 -0.8.. II. Growth rate <strong>of</strong> wheat yield, 1967-69 to 1977-79 (%/yr) ..".. .. 1.8 .. -2.8 4.8


North Africa 35IibiIfe8r;~ 1. Estimated population, 1990 (millions) 25.2 54.0 4.6 25.1 8.2 117.0S,~.,.c 16. <strong>Barley</strong> area harvesled, 1987-89 (000 h) 921 45 137 2,404 390 3,896.., 'iii 17. <strong>Barley</strong> yield, 1987-89 (t/ha) 0.75 2.77 0.72 1.11 0.68 0.99.c~ 18. <strong>Barley</strong> produclion, 1987-89 (000 t) 693 124 98 2,665 267 3,847....0 19. Growth rate <strong>of</strong> barley area, 1967-69 to 1977-79 (%/yr) 0.9 -3.4 -1.8 1.0 5.01.0l:.2 20. Growth rate <strong>of</strong> barley area, 1977-79 to 1987-89 (%/yr) 2.2 -0.1 -8.0 0.4 -0.1 0.2U£ '"21. Growth rate <strong>of</strong> barley yield, 1967-69 to 1977-79 (%/yr) -2.8 3.9 2.5 -2.9 -0.1 -2.322. Growth rate <strong>of</strong> barley yield, 1977-79 to 1987-89 (%/yr) 4.1 0.2 6.6 3.3 4.0 3.623. Growth rate <strong>of</strong> barley production, 1967-69 to 1977-79 (%/yr) -1.9 0.3 0.7 -2.0 4.9 -1.424. Growth rate <strong>of</strong> barley production, 1977-79 to 1987-89 (%/yr) 6.4 0.1 -1.9 3.7 3.8 3.825. <strong>Barley</strong> area as percent <strong>of</strong> total cereal area, 1987-89 (%) 39 2 32 45 38 3526. Average yield <strong>of</strong> all cereals, 1987-89 (t!ha) 0.7 5.1 0.7 1.2 0.9 1.727. Growth rate <strong>of</strong> yield <strong>of</strong> all cereaJs, 1967-69 to 1987-89 (%/yr) 0.2 1.6 4.5 1.1 1.1 1.528. Net imports <strong>of</strong> wheat, 1987-89 (000 t) 4,055 7,105 733 1,566 1,151 14,60929. Per capita total wheat consumption, 1987-89 (kg/yr) 207 194 218 210 232 204l:.g'" 30. Growth rate <strong>of</strong> per capita wheat consumption, 1967-69.~:::i 101987-89 (%/yr) 1.5 2.8 2.3 1.2 1.3 2.0'"0Ṣ 31. Nel imports <strong>of</strong> barley, 1987-89 (000 I) 395 17 443 -87 240 1,008.., ., 32. Per capita total barley consumption, 1987-89 (kg/yr) 46 3 127 108 65 44f 33. Growth rate <strong>of</strong> per capita barley consumption, 1967-69 to!-1987-89 (%/yr) 1.2 -1.6 2.8 -1.7 3.5 -0.434. Percent <strong>of</strong> total bread wheat area irrigated, 1989-90 I .. .. .. 8 ..~ 35. Percent <strong>of</strong> total durum wheat area irrigated, 1989-90 1 .. .. .. ..0


West Asia,. . - ..- ---- - .- - - .--- - - --- -- -- - - - _. -- - - - --,-- -- -- -- r-=-~~---:-~~-~.I .... - ~~i.. .." >:" " 'f'-~'. -. Y- - - - -_ . ...J... . J,~ I. Estimated population, 1990 (millions) 17.0 56.5 18.9 13.1 12.5 55,8 8.19u 2. Estimated growth rate <strong>of</strong> population, 1988-2000 (%/yr) .. 3.1 3.4 3.8 3.6 2.0 3.6os'i:i 3. Per capita <strong>in</strong>come, 1988 (US$) .. .. .. 6,200 1,680 1,280 640.Se4. Per capita cereal production, 1987-89 (kg/yr) 228 209 107 255 250 517 102


West Asia, cont<strong>in</strong>ued 37r---------------------- ~ --:-------- -=I. Estimated population, 1990 (millions)2. Estimated growth rate <strong>of</strong> population, 1988-2000 (%/yr)3. Per capita <strong>in</strong>come, 1988 (US$)4. Per capita cereal production, 1987-89 (kg/yr)5. Growth rate <strong>of</strong> per capita cereal production, 1961-65 to1987-89 (%/yr)3.33.61,50035-7.72.02.813,40022.910-6.0[,53.95,000)-5.91.62.315.77032.53.043049-0.4197.13.02,531277-0.56. <strong>Wheat</strong> area harvested, 1987-89 (000 ha)7. <strong>Wheat</strong> yield, 1987-89 (!/ha)8. <strong>Wheat</strong> production, 1987-89 (000 t)9. Growth rate <strong>of</strong> wheat area. 1967-69 to 1977-79 (%/yr)10. Growth rate <strong>of</strong> wheat area. 1977-79 to 1987-89 (%/yr)II. Growth rate <strong>of</strong> wheat yield. 1967-69 to 1977-79 (%/yr)12. Growth rate <strong>of</strong> wheat yield. 1977-79 to 1987-89 (%/yr)13. Growth rate <strong>of</strong> wheat production, 1967-6910 1977-79 (%/yr)14. Growth rate <strong>of</strong> wheat production, 1977-79 to 1987-89 (%/yr)15. <strong>Wheat</strong> area as percent <strong>of</strong> total cereal area, 1987-89 (%)890.7870-5.0-3.1-8.28.0-12.74.760 21.~ 22.23.24., 25.<strong>Barley</strong> area harvested, 1987-89 (000 h)<strong>Barley</strong> yield, 1987-89 (!/ha)<strong>Barley</strong> production, 1987-89 (000 t)Growth rate <strong>of</strong> barley area, 1967-69 to 1977-79 (%/yr)Growth rate <strong>of</strong> barley area, 1977-79 10 1987-89 (%/yr)Growth rate <strong>of</strong> barley yield, 1967-69 to 1977-79 (%/yr)Growth rate <strong>of</strong> barley yield, 1977-79 to 1987-89 (%/yr)Growth rate <strong>of</strong> barley production, 1967-69 to 1977-79 (%/yr)Growth rate <strong>of</strong> barley production, 1977-79 to 1987-89 (%/yr)<strong>Barley</strong> area as percent <strong>of</strong> total cereal area, 1987-89 (%)550.5731-2.91.3-11.59.1-14.010.637


South Asia..~ I. Estimated population, 1990 (millions) 115.0 849.2 41.6 19.2 122.3 17.2 1,166.19


Southeast Asia <strong>and</strong> Pacific 39~ I. Estimated population, 1990 (millions) 5.8 181.1 17.3 61.8 2.7 55.6 66.8 411.09 2. Estimated growlh rate <strong>of</strong> population, 1988-2000 (%/yr) 0.9 1.7 2.2 1.9 1.0 1.3 2.0 1.7:a '"3. Per capita <strong>in</strong>come, 1988 (U5$) 9,220 440 1,940 630 9,070 1,000 876.5]4. Per capita cereal production, 1987-89 (kg/yr) 0 273 104 225 453 275 273c: 5. Growth rate <strong>of</strong> per capita cereal production, 1961-65 toOJ1987-89 (%/yr) -30.4 2.5 -0.9 1.0 0.3 0.1 l.l"6. <strong>Wheat</strong> area harvested, 1987-89 (000 ha) 0 0 0 0 0 0 0 07. <strong>Wheat</strong> yield, 1987-89 (t/ha)8. <strong>Wheat</strong> production, 1987-89 (000 t)9. Growth rate <strong>of</strong> wheat area, 1967-69 to 1977-79 (%/yr)10. Growth rate <strong>of</strong> wheat area, 1977-79 to 1987-89 (%/yr)II. Growth rate <strong>of</strong> wheat yield, 1967-69 to 1977-79 (%/yr).. '"12. Growth rate <strong>of</strong> wheat yield, 1977-79 to 1987-89 (%/yr)S v 13. Growth rate <strong>of</strong> wheat production, 1967-69 to 1977-79 (%/yr)'ia 14. Growth rate <strong>of</strong> wheat production, 1977-79 to 1987-89 (%/yr)"0 c:f'S 15. <strong>Wheat</strong> area as percent <strong>of</strong> total cereal area, 1987-89 (%) 0 0 0 0 0 0 0 0»~.2 16. <strong>Barley</strong> area harvested, 1987-89 (000 h) 0 0 0 0 0 0 0 0J


_ ~.=E'"c:...oEast Asia1---r------------------------1~r:: I. Estimated population, 1990 (millions)1,109.59OJ 2. Estimated growth rate <strong>of</strong> population, 1988-2000 (%/yr)1.3:.c "3303293. Per capita <strong>in</strong>come, 1988 (US$)4. Per capita cereal production, 1987-89 (kg/yr)5. Growth rate <strong>of</strong> per capita cereal production, 1961-65 to1987-89 (%/yr)_=~T-';~~~L ~_ ·:?i~.- -----:--==---..---- 11'1--I---'~ii'~1'.' .".- . ',' •./ r'- .....';' I.' .-'- :;~)l~~4,~ _.~~~~ ~.~ -=.;:~.I~~£~22.9 2.2 43.4 19.8 1,197.82.2 3.1 0.9 .. 1.3.. .. 3,600 .. 454540 374 204 144 3252.0 1.7 1.0 -0.5 -2.2 1.96. <strong>Wheat</strong> area harvested, 1987-89 (000 hal7. <strong>Wheat</strong> yield, 1987-89 (t/ha)8. <strong>Wheat</strong> production, 1987-89 (000 t)9. Growth rate <strong>of</strong> wheat area, 1967-69 to 1977-79 (%/yr)10. Growth rate <strong>of</strong> wheat area, 1977-79 to 1987-89 (%/yr)II.Growth rate <strong>of</strong> wheat yield, 1967-69 to 1977-79 (%/yr)~ 12. Growth rate <strong>of</strong> wheat yield, 1977-79 to 1987-89 (%/yr)'" 13. Growth rate <strong>of</strong> wheat production, 1967-69 to 1977-79 (%/yr):; 14. Growth rate <strong>of</strong> wheat production, 1977-79 to 1987-89 (%/yr)] 15. <strong>Wheat</strong> area as percent <strong>of</strong> total cereal area, 1987-89 (%)~] 16. <strong>Barley</strong> area harvested, 1987-89 (000 h)Z 17. <strong>Barley</strong> yield, 1987-89 (!/ha)~ 18. <strong>Barley</strong> production, 1987-89 (000 I)....~ 19. Growth rate <strong>of</strong> barley area, 1967-69 to 1977-79 (%/yr).9 20. Growth rate <strong>of</strong> barley area, 1977-79 to 1987-89 (%/yr)i 21. Growth rate <strong>of</strong> barley yield, 1967-69 to 1977-79 (%/yr)If 22. Growth rate <strong>of</strong> barley yield, 1977-79 to 1987-89 (%/yr)23. Growth rate <strong>of</strong> barley production, 1967-69 to 1977-79 (%/yr)24. Growth rate <strong>of</strong> barley production, 1977-79 to 1987-89 (%/yr)25. <strong>Barley</strong> area as percent <strong>of</strong> total cereal area, 1987-89 (%)29,1343.0087,4241.40.15.15.16.65.2339773.073,000-3.8-4.26.63.32.5-1.0I2144.018601.63.92.25.43.99.582602.436312.93.9-2.31.80.55.8104861.316391.42.12.16.43.58.6771010.9910019.31.62.25.221.96.916


Mexico, Central America, <strong>and</strong> the Caribbean 41- - . -- - --- ----•. e-...._. -...- - ----..... ', .-' ., - - - -- - - - -I. Estimated population, 1990 (millions) 88.1 3.0 10.3 7.1 5.2 9.25U 2. Estimated growth rate <strong>of</strong> population, 1988-2000 (%/yr) 1.9 2.0 0.9 1.8 2.1 2.8.::'"3. Per capita <strong>in</strong>come, 1988 (US$) 1,760 1,690 .. 720 940 900.E4. Per capita cereal production, 1987-89 (kg/yr) 249 110 59 88 148 179f.. g 5. Growth rate <strong>of</strong> per capita cereal production, 1961-65 to0 1987·89 (%/yr) 0.1 0.3 2.0 2.2 1.1 0.66. <strong>Wheat</strong> area harvested, 1987-89 (000 hal 950 0 0 0 0 307. <strong>Wheat</strong> yield, 1987-89 (t!ha) 4.20 .. .. .. .. 1.648. <strong>Wheat</strong> production, 1987-89 (000 t) 3,993 .. .. .. ,. 509. Growth rate <strong>of</strong> wheat area, 1967-69 to 1977-79 (%/yr) -1.6 .. .. .. .. 4.910. Growlh rate <strong>of</strong> wheat area, 1977-79 to 1987-89 (%/yr) 3.3 .. .. .. .. -5.3I I. Growth rate <strong>of</strong> wheat yield, 1967·69 to 1977-79 (%/yr) 3.1 .. .. .. 1.1'"~ 12. Growth rate <strong>of</strong> wheat yield, 1977-79 to 1987-89 (%/yr) 1.4 .. .. .. 4.1ol... 13. Growth rale <strong>of</strong> wheat production, 1967-69 to 1977-79 (%/yr) 1.4.. .. .. -- 6.0-.: 14. Growth rate <strong>of</strong> wheat production, 1977-79 10 [987-89 (%/yr) 4.8 .. .. .. .. -1.4'0§ 15. <strong>Wheat</strong> area as percent <strong>of</strong> total cereal area, 1987-89 (%) 10 0 0 0 0 4>..."516. <strong>Barley</strong> area harvested, 1987-89 (000 h) 274 0 0 0 0 IIT.QoJ 17. <strong>Barley</strong> yield, 1987-89 (t/ha) 1.76 .. .. .. .. ....c:: '-'~ 18. <strong>Barley</strong> production, 1987-89 (000 t) 482.. .. .. .. .......0 19. Growth rate <strong>of</strong> barley area, 1967-6910 1977-79 (%/yr) 0.8.. .. .. .. ..c 2 20. Growth rate <strong>of</strong> barley area, J977-79 10 1987-89 (%/yr) 0.3 .. .. .. .. ..U ::> 21. Growth rate <strong>of</strong> barley yield, 1967-69 to 1977-79 (%/yr) 6.0 .. .. ..e 22. Growth rate <strong>of</strong> barley yield, 1977-79 to 1987-89 (%/yr) 0.8 .. .. .. .."'" 23. Growth rate <strong>of</strong> barley production, 1967-69 to 1977-79 (%/yr) 6.8 .. .. .. ..24. Growth rate <strong>of</strong> barley production, 1977-79 to 1987-89 (%/yr) 1.1 .. .. .. .. ..25. <strong>Barley</strong> area as percent <strong>of</strong> total cereal area, 1987-89 (%) 3 0 0 0 0 026. Average yield <strong>of</strong> all cereals, 1987-89 (t/ha) 2.2 2.4 2.6 3.7 1.8 1.927. Growth rate <strong>of</strong> yield <strong>of</strong> all cereals, J967-69 to 1987-89 (%/yr) 2.2 2.2 3.7 3.0 1.5 3.52.8. Net impons <strong>of</strong> wheat, 1987-89 (000 t) 549 140 1,425 219 121 178,2 29. Per capita total wheat consumption, 1987-89 (kg/yr) 54 49 140 32 24 26,§ 30. Growth rate <strong>of</strong> per capita wheat consumption, 1967-69::; to 1987-89 (%/yr) 1.4 0.5 2.4 1.4 1.8 1.5::I"C31. Net impons <strong>of</strong> barley. 1987-89 (000 t) 44 0 44 0 0 0c..'"32. Per capita total barley consumption, 1987-89 (kg/yr) 6


Mexico, Central America, <strong>and</strong> the Caribbean, cont<strong>in</strong>ued~ I. Estimated populalion, 1990 (millions) 6.5 5.1 2.5 1.3 147.0g 2. ESlimated growth rale <strong>of</strong> population, 1988-2000 (%/yr) 1.9 2.9 0.5 1.4 1.9.~." 3. Per capila <strong>in</strong>come, 1988 (US$) 380 860 1,070 3,350 1,538.64. Per capila cereal production, 1987-89 (kg/yr) 58 123 2 8 189~ 5. Growth rate <strong>of</strong> per capila cereal production, 1961-65 to~ 1987-89 (%/yr) -3.0 -1.2 -3.7 -2.4 0.36. <strong>Wheat</strong> area harvested, 1987-89 (000 hal 0 0 0 9827. <strong>Wheat</strong> yield, 1987-89 (l/ha) 4.128. <strong>Wheat</strong> production, 1987-89 (000 t) 4,0449. Growth rate <strong>of</strong> wheat area, 1967-69 to 1977-79 (%/yr) -1.310. Growth rate <strong>of</strong> wheat area, 1977-79 to 1987-89 (%/yr) 2.9"'- II. Growth rate <strong>of</strong> wheat yield, 1967-69 to 1977-79 (%/yr) 2.8-;12. Growlh rate <strong>of</strong> wheat yield, 1977-79 to 1987-89 (%/yr) 1.7~u 13. Growth rate <strong>of</strong> wheat production, 1967-69 to 1977-79 (%/yr) 1.5-;14. Growth rate <strong>of</strong> wheat production, 1977-79 to 1987-89 (%/yr)."4.6:a 15. Wheal area as percent <strong>of</strong> lolal cereal area, 1987-89 (%) 0 0 0 0 8>.....~.D 16. <strong>Barley</strong> area harvested, 1987-89 (000 h) 0 0 0 0 275ol 17. <strong>Barley</strong> yield, 1987-89 (l/ha) 1.76.t:~ 18. <strong>Barley</strong> production, 1987-89 (000 t)483"-0 19. Growlh rate <strong>of</strong> barley area, 1967-69 to 1977-79 (%/yr)0.8l:.g 20. Growth rate <strong>of</strong> barley area, 1977-79 to 1987-89 (%/yr) 0.4g." 21. Growth rate <strong>of</strong> barley yield, 1967-69 to 1977-79 (%/yr) 6.0~22. Growth rate <strong>of</strong> barley yield, 1977-79 to 1987-89 (%/yr) 0.823. Growth rate <strong>of</strong> barley production, 1967-69 to 1977-79 (%/yr) 6.824. Growth rate <strong>of</strong> barley production, 1977-79 to 1987-89 (%/yr) 1.225. <strong>Barley</strong> area as percent <strong>of</strong>tola1 cereal area, 1987-89 (%) 0 0 0 0 226. Average yield <strong>of</strong> all cereals, 1987-89 (t/ha) L1 1.1 I.d 2.6 2.127. Growth rate <strong>of</strong> yield <strong>of</strong> all cereals, 1967-69 to 1987-89 (%/yr) -0.1 0.0 1.1 -0.1 2.228. Nel imports <strong>of</strong> wheal, 1987-89 (000 t) 181 III 165 130 3,528l:.9 29. Per capila tolal wheal consumption, 1987-89 (kg/yr) 29 23 68 104 53.~30. Growth rate <strong>of</strong> per capila wheat consumption, 1967-69~to 1987-89 (%/yr) 6.0 1.9 -1.2 0.2 1.3." 31. Net imports <strong>of</strong> barley, 1987-89 (000 t) 0 0 0


Andean Region, South America 43- .- -- - ..,'...r.; L Estimated population, 1990 (millions) 22.2 7.3 3L6 10.7 19.6 92.7(;0ti 2. Estimated growth rate <strong>of</strong> population, 1988-2000 (%/yr) 2.1 2.7 1.6 2.2 2.2 2.0'" 3. Per capita <strong>in</strong>come, 1988 (US$) 1,300 570 1,180 1,120 3,250 1,597~4. Per capita cereal production, 1987-89 (kg/yr) 112 115 115 132 117 121e~ ;:: 5. Growth rate <strong>of</strong> per capita cereal production, 1961-65 to"0 1987-89 (%/yr) 0.1 0.0 0.7 0.6 L9 0.6-6. <strong>Wheat</strong> area harvested, 1987-89 (000 hal 112 88 41 37 I 2787. <strong>Wheat</strong> yield, 1987-89 (t/ha) 1.32 0.76 1.76 0.89 .. 1.158. <strong>Wheat</strong> production, 1987-89 (000 t) 147 67 72 33 .. 3209. Growth rate <strong>of</strong> wheat area, 1967-69 to 1977-79 (%/yr) -3.0 3.3 -8.5 -9.3 .. -3.510. Growth rate <strong>of</strong> wheat area, 1977-79 to 1987-89 (%/yr) 0.6 -0.3 2.7 1.2 .. 0.6IL Growth rate <strong>of</strong> wheat yield, 1967-69 to 1977-79 (%/yr) 1.3 0.4 -0.3 0.3 .. -0.2~::12. Growth rate <strong>of</strong> wheat yield, 1977-79 to 1987-89 (%/yr) 2.6 1.4 4.3 -L3 ..2.4~'"'13. Growth rate <strong>of</strong> wheat production. 1967-69 to 1977-79 (%/yr) -1.7 3.7 -8.8 -9.0 .. -3.7-;;14. Growth rate <strong>of</strong> wheat production, 1977-79 to 1987-89 (%/yr) 3.2 LO 7.1 -0.2 ..3.0."= 15. <strong>Wheat</strong> area as percent <strong>of</strong> total cereal area, 1987-89 (%) 12 14 3 4


Southern Cone, South AmericaI, ,- -- - --~ , I- - --.......... --- .. ,'. _.' ....- - - - ::.---=.~ I. Estimated population, 1990 (millions) 32.2 149.7 13.1 4.3 3.1 202.40t> 2. Estimated growth rate <strong>of</strong> population, 1988-2000 (%/yr) 1.1 1.8 1.3 2.7 0.6 1.7~ 3. Per capita <strong>in</strong>come, 1988 (US$) 2,520 2,160 1,510 1,180 2,470 2,160..s4. Per capita cereal production, 1987-89 (kg/yr) 654 302 229 408 404 358-ạ,5. Growth rate <strong>of</strong> per capita cereal production, 196 I-65 toct3 1987-89 (%/yr) -0.5 1.4 0.8 6.0 1.2 0.66. <strong>Wheat</strong> area harvested, 1987-89 (000 hal 4,891 3,418 598 216 190 9,3127. <strong>Wheat</strong> yield, 1987-89 (t/ha) 1.83 1.68 3.00 1.85 2.09 1.858. <strong>Wheat</strong> production, 1987-89 (000 t) 8,933 5,731 1,791 400 398 17,2549. Growth rate <strong>of</strong> wheat area, 1967-69 to 1977·79 (%/yr) -2.3 11.8 -2.0 2.6 -3.3 1.010. Growth rate <strong>of</strong> wheat area, 1977-79 to 1987·89 (%/yr) 0.9 0.5 0.1 19.1 -4.0 0.8II. Growth rate <strong>of</strong> wheat yield, 1967-69 to 1977-79 (%/yr) 3.0 -1.3 0.4 0.8 0.3 0.8'"~ 12, Growth rate <strong>of</strong> wheat yield, 1977-79 to 1987-89 (%/yr) 1.3 7.9 5.5 5.3 8.7 3.8.. " 13. Growth rate <strong>of</strong> wheat production, 1967-69 to 1977-79 (%/yr) 0.7 10.4-1.6 3.5 -3.0 1.8... 14. Growlh rate <strong>of</strong> wheat production, 1977-79 to 1987-89 (%/yr) 2.2 8.4 5.6 25.5 4.3 4.5'g'"15. <strong>Wheat</strong> area as percent <strong>of</strong> total cereal area, 1987-89 (%) 55 15 73 25 36 27>., .,~ 16. <strong>Barley</strong> area harvested, 1987-89 (000 h) 137 108 22 0 78 345.D~ 17. <strong>Barley</strong> yield, 1987-89 (t/ha) 2.26 1.68 .. .. 2.23 2.14.c:t 18. <strong>Barley</strong> production, 1987-89 (000 t) 310 182 .. 174"737'0 19, Growth rate <strong>of</strong> barley area, 1967-69 to 1977·79 (%:yr) -4.8 9.7 .. ,. 3.5 -2.1,§ 20. Growth rate <strong>of</strong> barley area, 1977-79 to 1987-89 (%/yr) -7.7 1.9 .. .. 4.9 -3.7U.a21. Growth rate <strong>of</strong> barley yield, 1967-69 to 1977-79 (%/yr) 1.8 4.0 .. .. 1.9 1.60ll:: 22. Growth rate <strong>of</strong> barley yield, 1977-79 to 1987-89 (%/yr) 5.2 2.9 .. ..6.8 4.223. Growth rate <strong>of</strong> barley production, 1967-69 to 1977-79 (%/yr) -3.1 14.1 .. .. 5.5 -0.624. Growth rate <strong>of</strong> barley production, 1977-79 to 1987-89 (%/yr) -2.9 4.9 .. .. 12.1 0.425. <strong>Barley</strong> area as percent <strong>of</strong> total cereal area, 1987-89 (%) 2


Eastern Europe <strong>and</strong> USSR 45.e0 2. Estimated growth rate <strong>of</strong> population, 1988-2000 (%/yr) 0.1 0.0 0.0 -0.2 0.5 0.5 0.6 0.6 0.5:0 '" 3. Per capita <strong>in</strong>come, 1988 (US$) 2,460 1,860 2,520.S4. Per capita cereal production, 1987-89 (kg/yr) 919 763 636 1,400 684 871 689 653 717~ .,5. Growth rate <strong>of</strong> per capita cereal production, 1961-65 to8'"1987-89 (%/yr) 1.8 2.6 2.5 3.0 1.3 1.6 0.9 0.7 1.2~ I. Estimated population, 1990 (millions) 9.0 15.6 16.7 10.6 38.2 23.3 286.0 23.8 426.46. <strong>Wheat</strong> area harvested, 1987-89 (000 hal 1,135 1,230 763 1,274 2,169 2,500 47,459 1,495 58,2227. <strong>Wheat</strong> yield, 1987-89 (t/ha) 4.20 5.16 4.90 5.06 3.69 2.80 1.81 3.85 2.218. <strong>Wheat</strong> production, 1987-89 (000 t) 4,764 6,352 3,738 6,444 7,995 7,000 86,086 5,749 128,7499. Growth rate <strong>of</strong> wheat area, 1967-69 to 1977-79 (%/yr) -1.2 2.0 2.5 -0.1 -0.5 -2.4 -0.9 -2.0 -0.910. Growth rate <strong>of</strong> wheat area, 1977-79 to 1987-89 (%/yr) 2.0 0.1 0.7 0.1 2.2 1.2 -2.5 -0.8 -1.9II. Growth rate <strong>of</strong> wheat yield, 1967-69 to 1977-79 (%/yr) 3.2 2.9 1.2 4.1 2.2 4.0 2.9 3.0 3.0.. '"t! 12. Growth rale <strong>of</strong> wheat yield, 1977-79 to 1987-89 (%/yr) 1.4 2.6 1.3 2.6 2.2 0.7 0.9 1.9 1.6g..13. Growth rate <strong>of</strong> wheat production, 1967-69 to 1977-79 (%/yr) 2.0 5.0 3.7 4.0 1.7 1.5 1.9 0.9 2.114. Growth rate <strong>of</strong> wheat production, 1977-79 to 1987-89 (%/yr) 3.4 2.7 2.0 2.8 4.4 1.9 -1.6 l.l -0.4"0~ L5. <strong>Wheat</strong> area as percent <strong>of</strong> total cereal area, 1987-89 (%) 55 49 31 45 26 39 44 36 42>..,'i:.rJ '" 16. <strong>Barley</strong> area harvested, 1987-89 (000 h) 333 793 887 250 1,237 633 29,332 226 33,705;iII>17. <strong>Barley</strong> yield, 1987-89 (t/ha) 3.97 4.42 4.77 4.42 3.25 3.05 1.76 2.69 2.03.


Developed Market Economies.-.-~=-~~- -=~- - - - -- - ~ --- - ~ .' -~ ~ --~- ------- . .:_---".'-l.' '-. .' .. ~.,. _-::.~1-~~~-".'-~~t:: I. Estimated population, 1990 (millions) 16.8 7.6 10.3 26.4 5.1 56.3 61.4 10.0 57.69 2. Estimated growth rate <strong>of</strong> population, 1988-2000 (%!yr) 1.4 0.1 0.0 0.9 0.0 0.4 0.0 0.2 0.1.~'0 3. Per capita <strong>in</strong>come, 1988 (US$) 12.340 15,470 14,779 16,960 18,450 16,090 18,480 4,800 13,330a.54. Per capita cereal production, 1987-89 (kglyr) 1,307 673 214 1,740 1,563 993 419 477 3065. Growth rate <strong>of</strong> per capita cereal production, 1961-65 to~ 1987-89 (%!yr) 1.1 3.1 0.2 0.6 0.9 2.5 2.0 1.9 0.4,6. <strong>Wheat</strong> area harvested, 1987-89 (000 hal 8,930 297 202 13,370 384 4,923 1,732 887 2,9717. <strong>Wheat</strong> yield, 1987-89 (!/ha) 1.52 4.91 6.35 1.65 6.59 6.02 6.33 2.41 2.788. <strong>Wheat</strong> production, 1987-89 (000 t) 13,541 1,458 1,283 22,124 2,529 29,636 10,973 2,134 8,2479. Growth rate <strong>of</strong> wheat area, 1967-69 to 1977-79 (%!yr) 0.6 -0.8 -1.1 -0.9 2.1 0.3 1.0 -1.0 -2.510. Growth rate <strong>of</strong> wheat area, 1977-79 to 1987-89 (%!yr) -1.6 0.6 0.3 2.5 12.6 1.8 0.7 -0.9 -0.9II. Growth rate <strong>of</strong> wheat yield, 1967-69 to 1977-79 (%!yr) 2.2 1.0 1.8 2.0 1.3 2.6 1.6 3.8 0.912. Growth rate <strong>of</strong> wheat yield, 1977-79 to 1987-89 (%!yr) 0.9 2.9 2.8 -1.2 2.4 2.5 2.7 0.2 1.0.. "..u 13. Growth rate <strong>of</strong> wheat production, 1967-69 to 1977-79 (%!yr) 2.9 0.2 0.7 1.1 3.4 2.9 2.7 2.8 -1.7:a14. Growth rate <strong>of</strong> wheat production, 1977-79 to 1987-89 (%!yr) -0.7 3.4 3.1 1.3 15.2 4.4 3.5 -0.7 0.1"0i 15. <strong>Wheat</strong> area as percent <strong>of</strong> total cereal area, 1987-89 (%) 66 31 54 62 24 53 37 63 64~"C...Q 16. <strong>Barley</strong> area harvested, 1987-89 (000 h) 2,274 292 133 4,953 1,033 1,913 1,813 229 457j 17. <strong>Barley</strong> yield, 1987-89 (t!ha) 1.47 4.53 5.61 2.41 4.74 5.30 5.13 2.36 3.63:t 18. <strong>Barley</strong> production, 1987-89 (000 t) 3,340 1,322 747 11,947 4,898 10,128 9,305 540 1,658...0 19. Growth rate <strong>of</strong> barley area, 1967-69 to 1977-79 (%!yr) 5.1 3.6 0.3 1.8 2.4 0.1 3.6 1.3 5.3c9 20. Growth rate <strong>of</strong> barley area, 1977-79 to 1987-89 (%!yr) -1.7 -1.9 -2.6 1.5 -4.1 -3.9 -0.6 -4.6 4.4U:I 21. Growth rate <strong>of</strong> barley yield, 1967-69 to 1977-79 (%!yr) 4.0 0.7 2.1 2.2 0.3 1.3 1.4 2.3 4.9l 22. Growth rate <strong>of</strong> barley yield, 1977-79 to 1987-89 (%!yr) 1.6 2.4 1.9 0.0 1.6 3.3 1.9 0.7 3.523. Growth rate <strong>of</strong> barley production. 1967-69 to 1977-79 (%!yr) 9.2 4.3 2.4 4.0 2.7 1.4 5.1 3.6 10.524. Growth rate <strong>of</strong> barley production, 1977-79 to 1987-89 (%!yr) -0.1 0.5 -0.7 1.6 -2.6 -0.8 1.4 -3.9 8.025. <strong>Barley</strong> area as percent <strong>of</strong> total cereal area, 1987-89 (%) 17 30 36 23 64 20 39 16 1026. Average yield <strong>of</strong> all cereals, 1987-89 (t!ha) 1.6 5.3 5.9 2.1 5.0 5.9 5.5 3.4 3.827. Growth rate <strong>of</strong> yield <strong>of</strong> all cereals, 1967-69 to 1987-89 (%!yr) 2.0 2.2 2.1 0.9 1.2 2.6 2.0 3.4 1.9c,228. Net imports <strong>of</strong> wheat, 1987-89 (000 t) -12,581 -579 528 -18,143 -564 -16,521 -1,791 -304 2.93829. Per capita total wheat consumption, 1987-89 (kglyr) 59 116 177 153 383 235 150 \83 195.~30. Growth rate <strong>of</strong> per capita wheat consumption, 1967-69~to 1987-89 (%!yr) -8.9 -0.9 1.3 -4.6 7.3 0.7 1.1 0.0 0.0'0 31. Net imports <strong>of</strong> barley, 1987-89 (000 t) -1,723 -110 623 -4,020 -1,104 -4,208 -459 125 862a~$32. Per capita total barley consumption. 1987-89 (kg/yr) 99 160 134 306 739 106 144 67 4433. Growth rate <strong>of</strong> per capita barley consumption, 1967-69 to1987-89 (%!yr) 0.5 1.0 0.8 0.2 -1.5 -I.I 1.6 0.5 3.134. Percent <strong>of</strong> total bread wheat area irrigated, 1989-90 2 0 0


Developed Market Economies, cont<strong>in</strong>ued 47~ I. Estimated population. 1990 (millions) 35.3 39.4 8.5 57.6 250.1 123.6 14.9 10.392. Estimated growth rate <strong>of</strong> population. 1988-2000 (%/yr) 2.3 0.4 0.4 0.3 0.8 0.4 0.5 0.4.~] 3. Per capita <strong>in</strong>come. 1988 (USS) 2.290 7,740 19.300 12.810 19.840 21.020 14.520 3.6504. Per capita cereal production. 1987-89 (kg/yr) 375 546 610 379 1.046 116 84 163f~ 5. Growth rate <strong>of</strong> per capita cereal production. 1961-65 to~ 1987-89 (%/yr) 0.3 2.8 0.6 2.2 0.6 -2.2 -2.7 -0.46. <strong>Wheat</strong> area harvested. 1987-89 (000 hal 1.914 2.283 287 1.995 23.107 279 121 3197. <strong>Wheat</strong> yield. 1987-89 (I/ha) 1.64 2.59 5.37 6.26 2.34 3.43 7.28 1.618. <strong>Wheat</strong> production. 1987-89 (000 t) 3.135 5.923 1.539 12,494 54.024 957 881 5129. Growth rate <strong>of</strong> wheat area. 1967-69 to 1977-79 (%/yr) 3.7 -4.0 1.7 3.0 1.5 -9.8 -1.8 -5.010. Growth rate <strong>of</strong> wheat area. 1977-79 to 1987-89 (%/yr) 0.6 -1.6 -0.5 4.9 -0.8 9.2 -0.7 0.5II. Growth rate <strong>of</strong> wheat yield. 1967-69 to 1977-79 (%/yr) 0.7 2.2 0.4 2.8 1.3 1.5 2.7 -4.1.. '"e 12. Growth rate <strong>of</strong> wheat yield. 1977-79 to '1987-89 (%/yr) 4.6 4.9 2.4 2.0 0.8 0.4 2.1 6.9u13. Growth rate <strong>of</strong> wheat production. 1967-69 to 1977-79 (%/yr) 4.5 -1.8 2.0 5.9 2.8... -8.4 0.9 -8.8~ 14. Growth rate <strong>of</strong> wheat production. 1977-79 to 1987-89 (%/yr) 5.3 3.2 1.9 7.0 0.0 9.6 1.4 7.5..,a 15. <strong>Wheat</strong> area as percent <strong>of</strong> total cereal area. 1987-89 (%) 28 29 22 51 39 II 63 31~~ 16. <strong>Barley</strong> area harvested, 1987-89 (000 h) 92 4.278 521 1,790 3.507 113 54 81J:Jiu17. <strong>Barley</strong> yield. 1987-89 (I/ha) 2.50 2.43 3.63 4.82 2.53 3.32 5.00 0.89.s::~ 18. <strong>Barley</strong> production, 1987-89 (000 t) 231 10.405 1.892 8,632 8,876 374 272 72...19. Growth rate <strong>of</strong> barley area, 1967-69 to 1977-79 (%/yr)0 7.0 6.5 1.6 -0.2 -0.7 -11.2 -4.4 -3.0~tl20. Growth rate <strong>of</strong> barley area, 1977-79 to 1987-89 (%/yr) -0.6 2.2 -2.3 -2.7 -0.2 1.6 -2.0 0.8"~21. Growth rate <strong>of</strong> barley yield, 1967-69 to 1977-79 (%/yr) 5.2 1.3 1.6 1.6 1.1 0.7 1.8 -2.722. Growth' rate <strong>of</strong> barley yield, 1977-79 to 1987-89 (%/yr) 7.7 1.8 0.6 1.3 -0.2 0.2 0.7 4.923. Growth rate <strong>of</strong> barley production. 1967-69 to 1977-79 (%/yr) 12.6 7.9 3.2 1.4 0.3 -10.6 -2.7 -5.624. Growth rate <strong>of</strong> barley production. 1977-7910 1987-89 (%/yr) 7.1 4.0 -1.7 -1.5 -0.3 1.8 -1.3 5.725. <strong>Barley</strong> area as percenl <strong>of</strong> total cereal area. 1987-89 (%) I 55 40 46 6 4 28 826. Average yield <strong>of</strong> all cereals. 1987-89 (I/ha) 1.9 2.7 3.9 5.5 4.3 5.6 6.4 1.627. Growth rate <strong>of</strong> yield <strong>of</strong> all cereals. 1967-69 to 1987-89 (%/yr) 2.3 2.9 1.2 2.1 1.3 0.4 2.3 1.7c028. Net impons <strong>of</strong> wheat. 1987-89 (000 t) -484 89 -454 -1.793 -37.293 5.188 1.118 50829. Per capita total wheat consumption. 1987-89 (kg/yr) 79 154 128 187 68 50 135 100." ~30. Growth rate <strong>of</strong> per capita wheat consumption, 1967-69:; to 1987-89 (%/yr) 1.0 0.8 1.2 1.4 -2.8 0.1 1.6 -0.2..,c 31. Net impons <strong>of</strong> barley, 1987-89 (000 t) 15 -1,027 -78 -2,770 -2.065 1.303 576 84u"'32. Per capita total barley consumption. 1987-89 (kg/yr) 7 240 215 102 28 14 57 15'0;. 33. Growth rate <strong>of</strong> per capita barley consumption, 1967-69 to1987-89 (%/yr) 7.3 4.4 0.7 -2.0 -2.2 -0.7 2.3 2.734. Percent <strong>of</strong> total bread wheat area irrigated. 1989-90 18 10 0 29 2~ 35. Percent <strong>of</strong> total durum wheat area irrigated, 1989-90 100 I 09Q36. Percent <strong>of</strong> total barley area irrigated, 1989-90 0 10 2 0 2 0~2:- 37. Percentage <strong>of</strong> total bread wheat area which receives'> fenilizer (%) 80 95 100 100 10 100'CU:038. Percentage <strong>of</strong> total durum wheat area which receives£ fenilizer (%) 100 95 10039. Percent <strong>of</strong> total barley area which receives fenilizer (%) 80 95 100 100


..Regional Aggregates- -..-'. ,-II- - - Lrl I. Estimated population, 1990 (millions) 4.025.0 819.4 426.4 5,270.70c:; 2. Estimated growth rate <strong>of</strong> population, 1988--2000 (%/yr) 2.0 0.6 0.5 1.6:0 3. Per capita <strong>in</strong>come, 1988 (US$) 677 16,427 .. 3,551.64. Per capita cereal production, 1987-89 (kg/yr) 249 653 717 352~t> 5. Growth rate <strong>of</strong> per capita cereal production, 1961-65 to§0 1987-89 (%/yr) 0.8 1.0 1.2 0.66. <strong>Wheat</strong> area harvested, 1987-89 (000 hal 98,982 64,486 58,222 221,6917. <strong>Wheat</strong> yield, 1987-89 (t/ha) 2.18 2.69 2.21 2.348. <strong>Wheat</strong> production, 1987-89 (000 t) 216,151 173,401 128,749 518,3019. Growth rate <strong>of</strong> wheat area, 1967-69 to 1977-79 (%/yr) 1.6 0.2 -0.9 0.410. Growth rate <strong>of</strong> wheat area, 1977-79 to 1987-89 (%/yr) 0.5 0.2 -1.9 -0.3J> II. Growth rate <strong>of</strong> wheat yield, 1967-69 to 1977-79 (%/yr) 3.5 1.8 3.0 2.6


ReferencesAhmad, Z., <strong>and</strong> M. Ahmed. 1991. FactorsAffect<strong>in</strong>g Adoption <strong>of</strong>SemidwGlf <strong>Wheat</strong>s <strong>in</strong>Marg<strong>in</strong>al Areas: Evidencefrom Ra<strong>in</strong>fedNorthern Pun;ab. PARC Research Report.Islamabad: Pakistan Agricultural ResearchCouncil (forthcom<strong>in</strong>g).Avci, M., N. Durutan, M. Karaca, <strong>and</strong> M. Guier.1988. Agronomic Practices <strong>in</strong> DifferentCropp<strong>in</strong>g Systems o.fCentral Anatolia.Ankara: Field Crops Improvement Center.Barker, R. 1988. Methods for Sell<strong>in</strong>gAgricultural Research Priorities: Report <strong>of</strong>a Bellagio Conference. Work<strong>in</strong>g Paper <strong>in</strong>Agricultural Economics No. 88-3. Ithaca,N. Y.: Cornell University.Belaid, A., <strong>and</strong> M. L. Morris. 1991. <strong>Wheat</strong> <strong>and</strong><strong>Barley</strong> <strong>Production</strong> <strong>in</strong> Ra<strong>in</strong>fed Marg<strong>in</strong>al<strong>Environments</strong> <strong>of</strong> WANA Region: Problems<strong>and</strong> Prospects. CIMMYT EconomicsWork<strong>in</strong>g Paper 91/02. Mexico, D.F.:CIMMYT.Bolton, F.E. 1979. Agronomic yield constra<strong>in</strong>ts<strong>in</strong> ra<strong>in</strong>fed cereal production systems. Paperpresented at the Fifth Regional CerealsWorkshop, Algiers.Bolton, F.E. 198 I. Optimiz<strong>in</strong>g the use <strong>of</strong> water<strong>and</strong> nitrogen through soil <strong>and</strong> cropmanagement. In J. Monteith <strong>and</strong> e. Webb(eds), Soil, Water, <strong>and</strong> Nitrogen <strong>in</strong>Mediterranean Type <strong>Environments</strong>. TheHague: Mart<strong>in</strong>us Nijh<strong>of</strong>f/Dr. W. J<strong>in</strong>kkPublishers,Boutonnet, J.P. 1989. La speculation ov<strong>in</strong>e enAlgerie: Un produit de la cerealiculture.Serie Notes et Documents, No. 90. Paris:Institut National de la RechercheAgronomique.Byerlee, D. 1991. Dryl<strong>and</strong> <strong>Wheat</strong> <strong>in</strong> India: TheImpact <strong>of</strong>Technical Change <strong>and</strong> FutureResearch Challenges. CIMMYTEconomics Program Work<strong>in</strong>g Paper.Mexico, D.F.: CIMMYT (forthcom<strong>in</strong>g).Byerlee, D., <strong>and</strong> D. W<strong>in</strong>kelmann. 1980.Accelerated <strong>Wheat</strong> <strong>Production</strong> <strong>in</strong> SemiaridDevelop<strong>in</strong>g Regions: Economic <strong>and</strong>Policy Issues. CIMMYT EconomicsProgram Work<strong>in</strong>g Paper 80/2. Mexico,D.F.: CIMMYT.CIMMYT. 1989a. CIMMYT's Five-Year Budget:1990-1994. Mexico, D.F.: CIMMYT.CIMMYT. 1989b. Toward the 21st Century:CIMMYT's Strategy. Mexico, D.F.:CIMMYT.CIMMYT. 1989c. 1987-1988 CIMMYT World<strong>Wheat</strong> Facts <strong>and</strong> Trends. The <strong>Wheat</strong>Revolution Revisited: Recent Trends <strong>and</strong>Future Challenges. Mexico, D.F.:CIMMYT.Cocks, P.S., <strong>and</strong> E.F. Thomson. 1988.Increas<strong>in</strong>g feed resources for smallrum<strong>in</strong>ants <strong>in</strong> the Mediterranean Bas<strong>in</strong>. InE.F. Thomson <strong>and</strong> F.S. Thomson (eds.),Increas<strong>in</strong>g Small Rum<strong>in</strong>ant Productivity <strong>in</strong>Semi-Arid Areas. Aleppo: ICARDA.Cooper, PJ.M. 1985. The potential <strong>of</strong> improvedvarieties. In Farm<strong>in</strong>g Systems AnnualReportfor 1984. Aleppo: ICARDA.Cooper, PJ.M., <strong>and</strong> E. Bailey. 1990. Livestock<strong>in</strong> Mediterranean farm<strong>in</strong>g systems, atraditional buffer aga<strong>in</strong>st uncerta<strong>in</strong>ty: Nowa threat to the agricultural resource base.Paper presented at the World BankSymposium, "Risk <strong>in</strong> Agriculture," 9-10January 1990, Wash<strong>in</strong>gton, D.e.Cooper, PJ.M., M. Jones, H. Harris, <strong>and</strong> A.Matar. 1988. Agroecological Constra<strong>in</strong>tsto Crop <strong>Production</strong> <strong>in</strong> West Asia <strong>and</strong> NorthAfrica, <strong>and</strong> Their Impact on Fertilizer Use.Aleppo <strong>and</strong> Muscle Shoals, Alabama:ICARDA <strong>and</strong> International FertilizerDe"velopment Center.Cornish, P.S., <strong>and</strong> G.M. Murray, 1989. Lowra<strong>in</strong>fall rarely limits wheat yields <strong>in</strong>southern New South Wales. AustralianJournal <strong>of</strong>Experimental Agriculture 29:77-83.Daaloul, A. 1985. Recherches agronomiques surles cereales en Tunisie: Situation actuelleet perspectives. Paper presented at the"Sem<strong>in</strong>aire sur les <strong>Production</strong>s Agricolesen Mediterranee," 5-8 March 1985, InstitutAgronomique et Veter<strong>in</strong>aire Hassan II,Rabat, Morocco.Dalrymple, D. 1978. Development <strong>and</strong> Spread<strong>of</strong>High-yield<strong>in</strong>g Varieties <strong>of</strong> <strong>Wheat</strong> <strong>and</strong>Rice <strong>in</strong> the Less Developed Nations.Foreign Agricultural Economic Report No.95. Wash<strong>in</strong>gton, D.e.: United StatesAgency for International Development,Bureau for Science <strong>and</strong> Technology.Demir, N. 1976. The Adoption <strong>of</strong>New Bread<strong>Wheat</strong> Technology <strong>in</strong> Selected Regions <strong>of</strong>Turkey. Mexico, D.F.: CIMMYT.Desai, G.M. 1982. Susta<strong>in</strong><strong>in</strong>g Rapid Growth <strong>in</strong>India's Fertilizer Consumption: APerspective Based on Composition <strong>of</strong>Use.IFPRI Research Report 41. Wash<strong>in</strong>gton,D.e.: International Food Policy ResearchInstitute.Durutan, N., M. GuIer, M. Karaca, K. Meyveci,A. Avc<strong>in</strong>, M. Avci, <strong>and</strong> H. Eyuboglu.1989. Effect <strong>of</strong> various components <strong>of</strong> themanagement package on weed control <strong>in</strong>dryl<strong>and</strong> agriculture. Paper presented at theWorkshop, "Soil <strong>and</strong> Crop Managementfor Improved Water Use Efficiency," 15­19 May, 1989, Ankara.Durutan, N., K. Meyveci, M. Karaca, M. Avci,<strong>and</strong> H. Eyuboglu. 1990. Annual cropp<strong>in</strong>gunder dryl<strong>and</strong> conditions <strong>in</strong> Turkey: A casestudy. In A.E. Osman et al. (eds.), The Role<strong>of</strong>Legumes <strong>in</strong> the Farm<strong>in</strong>g Systems <strong>of</strong>theMediterranean Areas. Aleppo: ICARDA.Durutan, N., B. Yilmaz, <strong>and</strong> M. Kiziltan. 1988.Small gra<strong>in</strong> <strong>and</strong> food legume productionimprovement <strong>in</strong> Turkey. In J.P. Srivastava,M.e. Saxena, S. Varma, <strong>and</strong> M. Tahir(eds.), W<strong>in</strong>ter Cereals <strong>and</strong> Food Legumes<strong>in</strong> Mouta<strong>in</strong>ous Areas. Aleppo: ICARDA.Fertilizer Association <strong>of</strong> India. FertilizerStatistics (various issues). New Delhi: FA!.Fischer, R.A. 1988. Plant breed<strong>in</strong>g <strong>and</strong> somebroader issues <strong>in</strong> agriculture. Paperprepared for the 9th Australian PlantBreed<strong>in</strong>g Conference, 27-31 June, 1988,Wagga Wagga.Food <strong>and</strong> Agricultural Organization. 1990.Diskettes <strong>of</strong> population statistics. Rome:FAO.___-,---,---=_. 1990. Diskettes <strong>of</strong> tradestatistics. Rome: FAO.Foster, J.H., K.G. Kshirsagar, MJ. Bhende, V.Bhaskar F-ao, <strong>and</strong> T.S. Walker. 1987. EarlyAdoption <strong>of</strong>1mproved Vertisol TechnologyOptions <strong>and</strong> Double Cropp<strong>in</strong>g <strong>in</strong>Begumgunj, Madhya Pradesh. EconomicsGroup <strong>of</strong> Resource ManagementProgramme, Progress Report 77.Patancheru: ICRISAT.French, RJ., <strong>and</strong> J.E. Schultz. 1984. Water useefficiency <strong>of</strong> wheat <strong>in</strong> a Mediterraneantypeenvironment. Australian Journal <strong>of</strong>Agricultural Research 35: 743-775.Gardner, G., <strong>and</strong> D. Skully. 1986. The Conduct<strong>of</strong><strong>Wheat</strong> Market<strong>in</strong>g <strong>in</strong> North Africa. StaffReport No. AGES 860808, InternationalEconomics Division, Economic ResearchService. Wash<strong>in</strong>gton, D.e.: United StatesDepartment <strong>of</strong> Agriculture.Greb. 1979. Technology <strong>and</strong> wheat yields <strong>in</strong> theCentral Great Pla<strong>in</strong>s: Commercialadvances. Journal <strong>of</strong>Soil <strong>and</strong> WaterConservation 34: 264-268.Guier, M., <strong>and</strong> M. Karaca. 1988.Agroclimatological criteria for determ<strong>in</strong><strong>in</strong>gthe boundaries <strong>of</strong> fallow practice. In J.P.Srivastava, M.e. Saxena, S. Varma, <strong>and</strong> M.Tahir (eds.), W<strong>in</strong>ter Cereals <strong>and</strong> FoodLegumes <strong>in</strong> Mouta<strong>in</strong>ous Areas. Aleppo:ICARDA.Hanch<strong>in</strong>al, R.R. 1988. Development <strong>of</strong> wheatvarieties for ra<strong>in</strong>fed conditions. Draftpaper. Dharwad, India: University <strong>of</strong>Agricultural Sciences.Hanch<strong>in</strong>al, R.R. 1990. Background Informationon <strong>Wheat</strong> <strong>in</strong> Karnataka. University <strong>of</strong>Agricultural Sciences, Dharwad, India.Mimeo.Harmsen, K. 1984. Nitrogen fertilizer use <strong>in</strong>ra<strong>in</strong>fed agriculture. Fertilizer Research5:371-382.Harris, H. 1989. Crop water use <strong>and</strong> water useefficiency <strong>in</strong> contrast<strong>in</strong>g barley rotations.In Farm Resource Management ProgramAnnual Reportfor 1988. Aleppo: ICARDA.Harris, H., <strong>and</strong> M. Pala. 1988. Tillage <strong>and</strong>stubble management effect on soilconservation, crop establishment <strong>and</strong> yield,<strong>and</strong> economics <strong>of</strong> production. In FarmResource Management Program AnnualReportfor 1987. Aleppo: ICARDA.


50Hobbs, P., A. Razzaq, N.!. Hashmi, M. Munir,<strong>and</strong> B.R. Khan. 1985. The effect <strong>of</strong>mustard grown as a mixed <strong>in</strong>tercrop on theyield <strong>of</strong> wheat. Pakislan Journal <strong>of</strong>Afiricullural Research 6(4): 241-247.IAR!. 1990. Indian Agricultural ResearchInstitute Regional Station (<strong>Wheat</strong>Breed<strong>in</strong>g). Indore: IAR!. Mimeo.ICAR. 1986. TlVenly Five Years <strong>of</strong>COOl'd<strong>in</strong>aledWheal Research. New Delhi: IndianCouncil <strong>of</strong> Agricultural Research.ICARDA. 1989a. Col/ahoralive ResearchProjecr on Ferlilizer Use on Wheal <strong>in</strong>Northern Syria, 1986-1988. Reportprepared with the Syrian Arab RepublicM<strong>in</strong>istry <strong>of</strong> Agriculture <strong>and</strong> AgrarianReform Soils Directorate. Aleppo:ICARDA.ICARDA. 1989b. Col/ahoralil'e ResearchProject on Fertilizer Use on <strong>Barley</strong> <strong>in</strong>Northern Syria, 1984-1988. Reportprepared with the Syrian Arab RepublicM<strong>in</strong>istry <strong>of</strong> Agriculture <strong>and</strong> AgrarianReform Soils Directorate. Aleppo:ICARDA.International <strong>Wheat</strong> Council. J990. Gra<strong>in</strong>Market Report (December).Johnson, W.F., C.E. Ferguson, <strong>and</strong> M. Fikry.1983. Tunisia: The Wheal DevelopmenlPr<strong>of</strong>iram. A.!.D. Project Impact EvaluationNo. 48. Wash<strong>in</strong>gton, D.C.: United StatesAgency for International Development.Jones, M., A. Matar, <strong>and</strong> M. Pala. 1988. AStrategy for Fertilizer Research <strong>in</strong> VariableRa<strong>in</strong>fed <strong>Environments</strong>: Cereals <strong>in</strong> Syria, aCase Study. In Farm ResourceManafiement Pr<strong>of</strong>iram Annual Reportfor1987. Aleppo: ICARDA.Kohli, A.K. 1976. Yield per unit <strong>of</strong> l<strong>and</strong> <strong>and</strong><strong>in</strong>puts, quantity <strong>and</strong> quality-wise <strong>in</strong>relation to other cereals with reference toMaharashtra. In <strong>Wheat</strong> <strong>in</strong> the ChanfiirlfiSocial Conlexl: Proceed<strong>in</strong>fiS <strong>of</strong>a Sem<strong>in</strong>ar.New Delhi: Government <strong>of</strong> India.Kukula, S., <strong>and</strong> A. Dakermanji. 1986. <strong>Wheat</strong>production practices <strong>in</strong> northwestern Syria.In Farm<strong>in</strong>fi Syslems Pr<strong>of</strong>iram AnnualReporl for 1985. Aleppo: ICARDA.La<strong>in</strong>g, D.R., <strong>and</strong> R.A. Fischer. 1977. Adaptation<strong>of</strong> semidwarf wheat cultivars to ra<strong>in</strong>fedconditions. Euphytica 26: 129-139.Lipton, M., with R. Longhurst. 1989. New Seeds<strong>and</strong> Poor People. London: Unw<strong>in</strong> Hyman.Maliwal, G.L. 1989. Bhal <strong>and</strong> CoastalAgroclimatic Zone: Important ResearchAccomplishments. Arnej Station, GujaratAgricultural University. Mimeo.Mann, C. 1980. The effects <strong>of</strong> governmentpolicy on <strong>in</strong>come distribution: A casestudy <strong>of</strong> wheat production <strong>in</strong> Turkey. InOzbudun <strong>and</strong> Ulusan (eds.), PoliticalEconomy <strong>of</strong>Income Distribution <strong>in</strong> Turkey.New York: Holmes <strong>and</strong> Meier.Mazid, A. 1990. Economic analysis <strong>of</strong>researcher managed trials. In FarmResource Management Program AnnualReporlfor 1989. Aleppo: ICARDA.Oram, P. 1988. Agricultural production <strong>and</strong>food deficits <strong>in</strong> West Asia <strong>and</strong> NorthAfrica: Future prospects <strong>and</strong> the role <strong>of</strong> thehigh-elevation areas. In J. P. Srivastava, M.C. Saxena, S. Varma, <strong>and</strong> M. Tahir (eds.),W<strong>in</strong>rer Cereals <strong>and</strong> Food Legumes <strong>in</strong>Mounla<strong>in</strong>ous Areas. Aleppo: ICARDA.Pala, M., D. Tully, A. Rassam, A. Mazid, <strong>and</strong> P.Cooper. 1987. Fertilizer <strong>and</strong> herbicideeffects on farmers' wheat production <strong>in</strong>Northwest Syria. Paper presented at theFarm<strong>in</strong>g Systems Research Symposium,18-21 October, 1987, University <strong>of</strong>Arkansas, Little Rock.P<strong>and</strong>ey, S. 1986. Economics <strong>of</strong> WaterHarvest<strong>in</strong>g <strong>and</strong> Supplementary Irrigation <strong>in</strong>the Semi-Arid Tropics <strong>of</strong> India: A SystemsApproach. PhD dissertation. Armidale,Australia: University <strong>of</strong> New Engl<strong>and</strong>.Perry, M.W., <strong>and</strong> M.F. D'Antuono. 1989. Yieldimprovement <strong>and</strong> associated characteristics<strong>of</strong> some Australian spr<strong>in</strong>g wheat cultivars<strong>in</strong>troduced between 1860 <strong>and</strong> 1982.Australian Journal <strong>of</strong>AgriculluralResearch 40(3): 457-472.Rao, M.V. 1976. <strong>Wheat</strong> production prospects <strong>in</strong>India. In Wheal <strong>in</strong> Ihe Chang<strong>in</strong>g SocialConrexl: Proceed<strong>in</strong>gs <strong>of</strong>a Sem<strong>in</strong>ar. NewDelhi: Government <strong>of</strong> India.Rees, D.1., M. Islam, A. Samiullah, F. Rehman,S.H. Raza, Z. Qureshi, <strong>and</strong> S. Mehmood.1991. Ra<strong>in</strong>-fed crop production systems <strong>of</strong>upl<strong>and</strong> Balochistan: <strong>Wheat</strong> (Triticumaeslivum), barley (Hordeum vulgare), <strong>and</strong>forage legumes (Vicia species).Experimenlal Agriculture 27: 53-69.Renkow, M. 1991. Technological Change <strong>and</strong>Income Distribution <strong>in</strong> Pakistan's Favored<strong>and</strong> Marg<strong>in</strong>al <strong>Production</strong> <strong>Environments</strong>.CIMMYT Economics Paper No.4. Mexico,D.F.: CIMMYT.Runge, C.F. 1991. The Develop<strong>in</strong>g Counlries<strong>and</strong> Ihe Uruguay Round. Staff Paper P91-9.St. Paul: University <strong>of</strong> M<strong>in</strong>nesotaDepartment <strong>of</strong> Agricultural <strong>and</strong> AppliedEconomics.Scobie, G.M. 1984.lnvestmenr <strong>in</strong> AgriculturalResearch: Some Economic Pr<strong>in</strong>ciples.CIMMYT Economics Work<strong>in</strong>g Paper.Mexico, D.F.: CIMMYT.Sergh<strong>in</strong>i,I.H. 1986. Le cerealiculteur Maroca<strong>in</strong>face au developpement technique. InOplions MMilerraneennes: Cereales I!Iproduits cerealiers. Montpellier: InstitutAgronomique Mediterraneen.Sharpley, A.N., <strong>and</strong> J.R. Williams. 1990.EPlC-Erosion/Productiviry ImpactCalwlalor: I. Model Documentalion.USDA Technical Bullet<strong>in</strong> No. 1768.Wash<strong>in</strong>gton. D.C.: United StatesDepartment <strong>of</strong> Agriculture.Sheopuria, R.R. 1990. A Write Up on <strong>Wheat</strong>Facts <strong>and</strong> Trends <strong>in</strong> Marg<strong>in</strong>al<strong>Environments</strong> <strong>of</strong> Madhya Pradesh, India.Krishi Vishwa Vidyadala ZonalAgricultural Research Station,Powerkheda. Mimeo.Sidhu, D.S., <strong>and</strong> D. Byerlee. 1991. TechnicalChange <strong>and</strong> Wheal Productivity <strong>in</strong> IheIndian Puniab <strong>in</strong> the Post-GreenRevolution Period. CIMMYT EconomicsWork<strong>in</strong>g Paper. Mexico, D.F.: CIMMYT(forihcom<strong>in</strong>g).S<strong>in</strong>gh, A.1., <strong>and</strong> D. Byerlee. 1990. Relativevariability <strong>in</strong> wheat yields across countries<strong>and</strong> over time. Journal <strong>of</strong>AgriculturalEconomics 41(1): 23-32.S<strong>in</strong>gh, R.P., <strong>and</strong> S.R. Raje. 1984. Optimiz<strong>in</strong>gproduction <strong>in</strong> ra<strong>in</strong>fed vertisols: A casestudy <strong>of</strong> an operational research project.Fertilizer News 29(4): 59-71.Skully, D.W. 1990. The International <strong>Wheat</strong>Market: A Public Choice Perspective.Ph.D. dissertation. Fairfax, Virg<strong>in</strong>ia:George Mason University.Somel, K., A. Mazid, <strong>and</strong> M. Hallajian. 1984.Survey <strong>of</strong><strong>Barley</strong> Producers <strong>in</strong> NorthernSyria. 1981/82. Vol. 3: DescripliveStatistics. ICARDA Research Report No.12-III. Aleppo: ICARDA.Thomson. E.F., F. Bahhady. <strong>and</strong> T.L. Nordblom.1982. The role <strong>of</strong> livestock <strong>in</strong> the farm<strong>in</strong>gsystem. FSRP Research Reporr(December). Aleppo: ICARDA.Tunisia M<strong>in</strong>istry <strong>of</strong> Agriculture. 1989. Lacerealiculture en Tunisie. Mimeo.United Nations Population Fund. 1990. TheState o/World Population 1990. NewYork: UNPF.Walker, T.S., <strong>and</strong> J.G. Ryan. 1990. ViI/age <strong>and</strong>Household Economics <strong>in</strong> India' s Semi-AridTropics. Baltimore <strong>and</strong> London:Johns Hopk<strong>in</strong>s.Williams.J.R.. P.T. Dyke, W.W. Fuchs, V.W.Benson, O.W. Rice, <strong>and</strong> E.D. Taylor. 1990.EPIC-ErosionlProductivity ImpactCalculalor: 2. User Manual. USDATechnical Bullet<strong>in</strong> No. 1768. Wash<strong>in</strong>gton,D.C.: United States Department <strong>of</strong>Agriculture.World Bank. 1990. World Devleopmell/ Reporr1990. New York: Oxford Univresity Press.


Annex 1: Regions <strong>of</strong> the WorldEastern <strong>and</strong> North Africa Philipp<strong>in</strong>es PeruSouthern Africa Algeria Samoa Sur<strong>in</strong>amBotswana Egypt S<strong>in</strong>gapore VenezuelaBurundi Libya Solomon Isl<strong>and</strong>sComoros Morocco Thail<strong>and</strong> Southern Cone,Djibouti Tunisia Tokelau South AmericaEthiopia Tonga Argent<strong>in</strong>aKenya West Asia Tuvalu BrazilLesotho Afghanistan Vanuatu ChileMadagascar Bahra<strong>in</strong> Vietnam ParaguayMalawi Cyprus Wallis <strong>and</strong> Futuna Isl<strong>and</strong>s UruguayMauritius Iran Falkl<strong>and</strong> Isl<strong>and</strong>sMozambique Iraq East AsiaNamibia Jordan Ch<strong>in</strong>a Eastern Europe <strong>and</strong> USSRRw<strong>and</strong>a Kuwait Korea, North AlbaniaSeychelles Lebanon Korea, South BulgariaSomalia Oman Mongolia CzechoslovakiaSudan Qatar Taiwan Germany. EastSwazil<strong>and</strong> Saudi Arabia HungaryTanzania Syria Mexico. Central America, Pol<strong>and</strong>Ug<strong>and</strong>a Turkey <strong>and</strong> the Caribbean RumaniaZambia United Arab Emirates Antigua USSRZimbabwe Yemen Arab Republic Bahamas YugoslaviaYemen DemocraticBarbadosWestern <strong>and</strong> Republic Belize Developed MarketCentral Africa Bermuda EconomiesAngola South Asia Cayman Isl<strong>and</strong>s AustraliaBen<strong>in</strong> Bangladesh Costa Rica AustriaBurk<strong>in</strong>a Faso Bhutan Cuba Belgium-LuxembourgCameroon India Dom<strong>in</strong>ica CanadaCape Verde Maldives Dom<strong>in</strong>ican Republic DenmarkCentral African Republic Myanmar EI Salvador Faeroe Isl<strong>and</strong>sChad Nepal Grenada F<strong>in</strong>l<strong>and</strong>Congo Pakistan Guadeloupe FranceCote d'Ivoire Sri Lanka Guatemala Germany. WestEquatorial Gu<strong>in</strong>ea Haiti GreeceGabon Southeast Asia Honduras Greenl<strong>and</strong>Gambia <strong>and</strong> the Pacific Jamaica Icel<strong>and</strong>Ghana American Samoa Mart<strong>in</strong>ique Irel<strong>and</strong>Gu<strong>in</strong>ea Brunei Mexico IsraelGu<strong>in</strong>ea Bissau Cook Isl<strong>and</strong>s Montserrat ItalyLiberia East Timor Netherl<strong>and</strong>s Antilles JapanMali Fiji Nicaragua MaltaMauritania French Polynesia Panama Netherl<strong>and</strong>sNiger Guam SI. Christopher <strong>and</strong> Nevis New Zeal<strong>and</strong>Nigeria Hong Kong SI. Lucia NorwayReunion Indonesia SI. Pierre <strong>and</strong> Miquelon PortugalSao Tome Kampuchea Republic SI. V<strong>in</strong>cent Grenad<strong>in</strong>e South AfricaSenegal Kiribati Tr<strong>in</strong>idad <strong>and</strong> Tobago Spa<strong>in</strong>Sierra Leone Laos UK Virg<strong>in</strong> Isl<strong>and</strong>s SwedenSI. Helena Macau US Virg<strong>in</strong> Isl<strong>and</strong>s Switzerl<strong>and</strong>Togo Malaysia United K<strong>in</strong>gdomZaire Nauru Andean Region United StatesNew CaledoniaBoliviaNiueColombiaNorfolk Isl<strong>and</strong>EcuadorPacific Isl<strong>and</strong>sFrench GuianaPapua New Gu<strong>in</strong>eaGuyana

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!