Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ... Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

eprints.unife.it
from eprints.unife.it More from this publisher
12.07.2015 Views

84i.e. Aα is a functorial morphism between left C-comodule functors. Then thereexists a functorial morphism C (Aα) : C (AF ) → C (AG) such that C U C (Aα) = Aα.Since we also haveC UÃC α = A C U C α = Aαwe deduce thatC U C (Aα) = C UÃC α.Since C U is faithful, this implies that C (Aα) = ÃC α.□5.ong>2.ong> Liftings of monads and comonads.Theorem 5.7 ([Be, Proposition p. 122] and [Mesa, Theorem ong>2.ong>1]). Let A =(A, m A , u A ) be a monad and let C = ( C, ∆ C , ε C) be a comonad on a category A.There is a bijection between the following collections of data:C liftings ( of C to a comonad ˜C on the category A A, that is comonads˜C = ˜C, ∆C e, ε e )Con A A such thatAU ˜C = C A U, AU∆ eC = ∆ C AU and AUε eC = ε C AUD mixed distributive laws Φ : AC → CAM liftings of A to a)monad à on the category C A, that is monadsà =(Ã, mA e, u A e on C A such thatC Uà = AC U,C Um e A= m A C Ugiven by( )a : C → D where a ˜C =andC Uu e A= u A C U( )BUλ B ˜CA F ◦ ( B U B F Cu A )b : D → C where A Ub (Φ) = C A U and A Uλ A b (Φ) = (C A Uλ A ) ◦ Φ i.e.b (Φ) (( )) ( ( ) )X, A µ X = CX, C A µ X ◦ (ΦX) and b (Φ) (f) = C (f))d : M → D where d(à = (C U C F Aε C) ( )◦C Uγ C à C Fm : D → M where C Um (Φ) = A C U and C Uγ C m (Φ) = Φ ◦ ( A C Uγ C) i.e.m (Φ) (( X, C ρ X))=(AX, (ΦX) ◦(A C ρ X))and m (Φ) (f) = A (f) .Proof. In order to prove the bijection between C and D, we apply Proposition 3.24,to the case (A, m A , u A ) = (B, m B , u B ) monad on A and Q = C. In particular wewill prove that the bijection a : F → M, b : M → F of Proposition 3.24 induces abijection between C and D.Let ˜C) ( )∈ C. We have to prove that Φ = a(˜C = AUλ A ˜CA F ◦ ( A U A F Cu A ) ∈ D.We have(CΦ) ◦ (ΦC) ◦ ( A∆ C) =()()C A Uλ A ˜CA F ◦ (C A U A F Cu A ) ◦ AUλ A ˜CA F C ◦ ( A U A F Cu A C) ◦ ( A∆ C)(= AU ˜Cλ)A ˜CA F ◦(AU ˜C) ()A F Cu A ◦ AUλ A ˜CA F C ◦ ( A U A F Cu A CX) ◦ ( A∆ C)

[( ) ( ) ( )= A U ˜CλA ˜CA F ◦ ˜CA F Cu A ◦ λ A ˜CA F C ◦ ( A F Cu A C) ◦ ( AF ∆ C)][( ) (λ=AA U λ A ˜C ˜CA F ◦ AF A U ˜Cλ)A ˜CA F ◦(AF A U ˜C)A F Cu A ◦ ( A F Cu A C) ◦ ( AF ∆ C)][( ) ()= A U λ A ˜C ˜CA F ◦ AF C A Uλ A ˜CA F ◦ ( A F C A U A F Cu A ) ◦ ( A F Cu A C) ◦ ( AF ∆ C)][( ) ()u=AA U λ A ˜C ˜CA F ◦ AF C A Uλ A ˜CA F ◦ ( A F Cu A CA) ◦ ( A F CCu A ) ◦ ( AF ∆ C)][( ) () (= A U λ A ˜C ˜CA F ◦ AF C A Uλ A ˜CA F ◦ AF Cu AA U ˜C)A F ◦ ( A F CCu A ) ◦ ( AF ∆ C)][( )(λ A ,u A )adj,∆= CAU λ A ˜C ˜CA F ◦ ( AF ∆ C A ) ]◦ ( A F Cu A )[( ) (= A U λ A ˜C ˜CA F ◦ AF A U∆ e ) ]CA F ◦ ( A F Cu A )[(λ=AA U ∆ e ) ( ) ]CA F ◦ λ A ˜CA F ◦ ( A F Cu A )(= AU∆ e ) ( )CA F ◦ AUλ A ˜CA F ◦ ( A U A F Cu A ) = ( ∆ C A ) ◦ (Φ)85so thatMoreoverso that(CΦ) ◦ (ΦC) ◦ ( A∆ C) = ( ∆ C A ) ◦ (Φ) .(ε C A ) ◦ (Φ) = ( ε C A ) ( )◦ AUλ A ˜CA F ◦ ( A U A F Cu A )(= AUε e ) ( )CA F ◦ AUλ A ˜CA F ◦ ( A U A F Cu A )[(= A U ε e ) ( ) ]CA F ◦ λ A ˜CA F ◦ ( A F Cu A )[ (λ=AA U (λ AA F ) ◦ AF A Uε e ) ]CA F ◦ ( A F Cu A )= A U [ (λ AA F ) ◦ ( AF ε C AU A F ) ◦ ( A F Cu A ) ]ε C = A U [ (λ AA F ) ◦ ( A F u A ) ◦ ( AF ε C)](λ A ,u A )adj= AU A F ε C = Aε C(ε C A ) ◦ (Φ) = Aε C .Therefore Φ is a mixed distributive law.Conversely let Φ ∈ D. Then we know that b (Φ) = ˜C is a functor ˜C : A A → A Athat is a lifting of C (i.e. AU ˜C = C A U). We have to prove that such a ˜C givesrise to a comonad on the category A A. Let us prove that ∆ C and ε C are A-modulesmorphisms. Indeed, for every ( X, A µ X)∈ A A, by Lemma 5.3 we haveA µ CX = ( C A µ X)◦ (ΦX)and alsoA µ CCX = ( C A µ CX)◦ (ΦCX) =(CC A µ X)◦ (CΦX) ◦ (ΦCX) .

84i.e. Aα is a functorial morphism between left C-comodule functors. Then thereexists a functorial morphism C (Aα) : C (AF ) → C (AG) such that C U C (Aα) = Aα.Since we also haveC UÃC α = A C U C α = Aαwe deduce thatC U C (Aα) = C UÃC α.Since C U is faithful, this implies that C (Aα) = ÃC α.□5.<str<strong>on</strong>g>2.</str<strong>on</strong>g> Liftings of m<strong>on</strong>ads and com<strong>on</strong>ads.Theorem 5.7 ([Be, Propositi<strong>on</strong> p. 122] and [Mesa, Theorem <str<strong>on</strong>g>2.</str<strong>on</strong>g>1]). Let A =(A, m A , u A ) be a m<strong>on</strong>ad and let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad <strong>on</strong> a category A.There is a bijecti<strong>on</strong> between the following collecti<strong>on</strong>s of data:C liftings ( of C to a com<strong>on</strong>ad ˜C <strong>on</strong> the category A A, that is com<strong>on</strong>ads˜C = ˜C, ∆C e, ε e )C<strong>on</strong> A A such thatAU ˜C = C A U, AU∆ eC = ∆ C AU and AUε eC = ε C AUD mixed distributive laws Φ : AC → CAM liftings of A to a)m<strong>on</strong>ad à <strong>on</strong> the category C A, that is m<strong>on</strong>adsà =(Ã, mA e, u A e <strong>on</strong> C A such thatC Uà = AC U,C Um e A= m A C Ugiven by( )a : C → D where a ˜C =andC Uu e A= u A C U( )BUλ B ˜CA F ◦ ( B U B F Cu A )b : D → C where A Ub (Φ) = C A U and A Uλ A b (Φ) = (C A Uλ A ) ◦ Φ i.e.b (Φ) (( )) ( ( ) )X, A µ X = CX, C A µ X ◦ (ΦX) and b (Φ) (f) = C (f))d : M → D where d(à = (C U C F Aε C) ( )◦C Uγ C à C Fm : D → M where C Um (Φ) = A C U and C Uγ C m (Φ) = Φ ◦ ( A C Uγ C) i.e.m (Φ) (( X, C ρ X))=(AX, (ΦX) ◦(A C ρ X))and m (Φ) (f) = A (f) .Proof. In order to prove the bijecti<strong>on</strong> between C and D, we apply Propositi<strong>on</strong> 3.24,to the case (A, m A , u A ) = (B, m B , u B ) m<strong>on</strong>ad <strong>on</strong> A and Q = C. In particular wewill prove that the bijecti<strong>on</strong> a : F → M, b : M → F of Propositi<strong>on</strong> 3.24 induces abijecti<strong>on</strong> between C and D.Let ˜C) ( )∈ C. We have to prove that Φ = a(˜C = AUλ A ˜CA F ◦ ( A U A F Cu A ) ∈ D.We have(CΦ) ◦ (ΦC) ◦ ( A∆ C) =()()C A Uλ A ˜CA F ◦ (C A U A F Cu A ) ◦ AUλ A ˜CA F C ◦ ( A U A F Cu A C) ◦ ( A∆ C)(= AU ˜Cλ)A ˜CA F ◦(AU ˜C) ()A F Cu A ◦ AUλ A ˜CA F C ◦ ( A U A F Cu A CX) ◦ ( A∆ C)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!