12.07.2015 Views

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

66for every ( X, C ρ X)∈ C A, there exists Equ B(αX, R C ρ X). In this case there exists afunctorial morphism d ϕ : D ϕ → R C U such thatand thus(D ϕ , d ϕ ) = Equ Fun(α C U, R C Uγ C) .[Dϕ((X, C ρ X)), dϕ(X, C ρ X)]= EquB(αX, R( Cρ X)).Proof. Assume first that, for every ( ) ( )X, C ρ X ∈ C A, there exists Equ B αX, R C ρ X .By Propositi<strong>on</strong> 4.46, the isomorphism a X,Y : Hom A (LY, X) → Hom B (Y, RX) ofthe adjuncti<strong>on</strong> (L, R) induces an isomorphismâ X,Y : HomC A(Kϕ Y, ( X, C ρ X))→ EquSets(HomB (Y, αX) , Hom B(Y, R C ρ X)).Let ( D ϕ((X, C ρ X)), dϕ((X, C ρ X)))denote the equalizerD ϕ(X, C ρ X) dϕ RXR C ρ XαX RCXwhere d ϕ(X, C ρ X): Dϕ((X, C ρ X))→ RX is the can<strong>on</strong>ical embedding. Then, byLemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>17 we have(HomB(Y, Dϕ((X, C ρ X))), HomB(Y, dϕ((X, C ρ X))))= Equ Sets(HomB (Y, αX) , Hom B(Y, R C ρ X)).Thus, for every ( )(X, C ρ X ∈ C A and for every Y ∈ B, a X,Y induces an isomorphismâ X,Y : HomC A Kϕ Y, ( )) ( ( ))X, C ρ X → HomB Y, Dϕ X, C ρ X such that the followingdiagram is commutative((43) HomC A Kϕ Y, ( ))X, C â X,Y ( ( ))ρ X Hom B Y, Dϕ X, C ρ XHom A (LY, X)a X,YHom B (Y,d ϕ)Hom B (Y, RX)C ρ X ◦−(C−)◦(βX)Hom A (LY, CX)a CX,YHom B(Y,R C ρ X) HomB (Y, RCX)Hom B (Y,αX)i.e. (K ϕ , D ϕ ) is an adjuncti<strong>on</strong>.C<strong>on</strong>versely, assume now that the functor K ϕ = Υ (ϕ) : B → C A has a right adjointD ϕ : C A → B. Let ̂ɛ : K ϕ D ϕ → IdC A be the counit of the adjuncti<strong>on</strong> (K ϕ , D ϕ ) andletd ϕ = aC U,D ϕ( CÛɛ ) = ( R C Ûɛ ) ◦ (ηD ϕ ) : D ϕ → R C U.We will prove that(D ϕ , d ϕ ) = Equ Fun(α C U, R C Uγ C) .First of all let us compute(α C U ) ◦ d ϕ = ( α C U ) ◦ ( R C Ûɛ ) ◦ (ηD ϕ )= ( Rϕ C U ) ◦ ( ηR C U ) ◦ ( R C Ûɛ ) ◦ (ηD ϕ )η= ( Rϕ C U ) ◦ ( RLR C Ûɛ ) ◦ (RLηD ϕ ) ◦ (ηD ϕ )

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!