12.07.2015 Views

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

624.<str<strong>on</strong>g>2.</str<strong>on</strong>g> The comparis<strong>on</strong> functor for com<strong>on</strong>ads.Propositi<strong>on</strong> 4.42 ([GT, Propositi<strong>on</strong> <str<strong>on</strong>g>2.</str<strong>on</strong>g>1]). Let (L, R) be an adjuncti<strong>on</strong> where L :B → A and R : A → B and let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad <strong>on</strong> a category A.There exists a bijective corresp<strong>on</strong>dence between the following collecti<strong>on</strong>s of data:M com<strong>on</strong>ad morphisms ϕ : LR = (LR, LηR, ɛ) → C = ( C, ∆ C , ε C)R functorial morphism α : R → RC such that (R, α) is a right comodule functorfor the com<strong>on</strong>ad CL functorial morphism β : L → CL such that (L, β) is a left comodule functorfor the com<strong>on</strong>ad Cgiven byProof. For a given ϕ ∈ M, we computeΘ : M → R where Θ (ϕ) = (Rϕ) ◦ (ηR)Ξ : R → M where Ξ (α) = (ɛC) ◦ (Lα)Γ : M → L where Γ (ϕ) = (ϕL) ◦ (Lη)Λ : L → M where Λ (β) = (Cɛ) ◦ (βR) .(Θ (ϕ) C) ◦ Θ (ϕ) = (RϕC) ◦ (ηRC) ◦ (Rϕ) ◦ (ηR)η= (RϕC) ◦ (RLRϕ) ◦ (ηRLR) ◦ (ηR)η,ϕϕmorphcom (= (Rϕϕ) ◦ (RLηR) ◦ (ηR) =) R∆C◦ (Rϕ) ◦ (ηR) = ( R∆ C) ◦ Θ (ϕ)and( ) RεC◦ Θ (ϕ) = ( Rε C) ◦ (Rϕ) ◦ (ηR) ϕmorphcom= (Rɛ) ◦ (ηR) = R.Therefore we deduce that Θ (ϕ) ∈ R. For a given α ∈ R, we compute(Ξ (α) Ξ (α)) ◦ (LηR) Ξ(α)= (Ξ (α) C) ◦ (LRΞ (α)) ◦ (LηR)= (ɛCC) ◦ (LαC) ◦ (LRɛC) ◦ (LRLα) ◦ (LηR)η= (ɛCC) ◦ (LαC) ◦ (Lα) (R,α)= (ɛCC) ◦ ( LR∆ C) ◦ (Lα)ɛ= ∆ C ◦ (ɛC) ◦ (Lα) = ∆ C ◦ Ξ (α)andε C ◦ Ξ (α) = ε C ◦ (ɛC) ◦ (Lα) = ɛ ɛ ◦ ( LRε C) ◦ (Lα) (R,α)= ɛ.Therefore we deduce that Ξ (α) ∈ M. For a given ϕ ∈ M, we computeϕ[CΓ (ϕ)] ◦ Γ (ϕ) = (CϕL) ◦ (CLη) ◦ (ϕL) ◦ (Lη)= (ϕCL) ◦ (LRϕL) ◦ (LRLη) ◦ (Lη) = η (ϕCL) ◦ (LRϕL) ◦ (LηRL) ◦ (Lη)= (ϕϕL) ◦ (LηRL) ◦ (Lη) ϕmorphcom (= ∆ C L ) ◦ (ϕL) ◦ (Lη) = ( ∆ C L ) ◦ Γ (ϕ)and(ε C L ) ◦ Γ (ϕ) = ( ε C L ) ◦ (ϕL) ◦ (Lη) ϕmorphcom= (ɛL) ◦ (Lη) = L.Therefore we deduce that Γ (ϕ) ∈ L. For a given β ∈ L, we compute(Λ (β) Λ (β)) ◦ (LηR) Λ(β)= (CΛ (β)) ◦ (Λ (β) LR) ◦ (LηR)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!