12.07.2015 Views

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

42[= Hom A (d ψ K ψ X, X) ◦ ã −1 (IdKψ )X,K ψ X]X(24)= a −1X,K ψ X AU ( ) (Id Kψ X = a−1X,K ψ X IdA UK ψ X)= a −1X,K ψ X (Id RX) = ɛXso that(˜ɛX) ◦ (d ψ K ψ X) = ɛX.(Since ˜ɛX = ã −1X,K ψ X IdKψ X)and ã−1X,K ψ Xis an isomorphism, we deduce that ˜ɛX :D ψ K ψ (X) → X is defined as the unique morphism such that(26) (˜ɛX) ◦ (d ψ K ψ X) = ɛX.On the other hand, for every ( )Y, A µ Y ∈ A B, the unit of the adjuncti<strong>on</strong> (D ψ , K ψ ) ,˜η : A B → K ψ D ψ , is given by˜η ( ) ( ) ( ) (( ))Y, A µ Y = ãDψ (Y, A µ Y ),Y IdDψ (Y, A µ Y ) : Y, A µ Y → Kψ D ψ Y, A µ Y .Then by commutativity of the diagram (24), we deduce thatAU ˜η ( ) (Y, A µ Y = A Uã Dψ (Y, A µ Y ),Y IdDψ (Y, A µ Y ))( (( )) ( )) ( )= a Dψ (Y, A µ Y ),Y ◦ Hom A dψ Y, A µ Y , Dψ Y, A µ Y IdDψ (Y, A µ Y )( (( ))) ( ( ))= a Dψ (Y, A µ Y ),Y dψ Y, A µ Y = Rdψ Y, A µ Y ◦ (ηY ) .Thus we obtain that(27) AU ˜η ( Y, A µ Y)=(Rdψ(Y, A µ Y))◦ (ηY ) .Observe that, for every Y ∈ B we have that A F (Y ) = (AY, m A Y ) . Moreoverso that we get(D ψA F (Y ) , d ψA F (Y )) = (D ψ (AY, m A Y ) , d ψ (AY, m A Y ))= Coequ A (rAY, Lm A Y ) (2)= (LY, rY )(28) (D ψA F , d ψA F ) = (L, r) .In particular(29) d ψ (AY, m A Y ) = rY.Theorem 3.57. Let (L, R) be an adjuncti<strong>on</strong> where L : B → A and R : A → B, letA = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> the category B and let ψ : A = (A, m A , u A ) → RL =(RL, RɛL, η) be a m<strong>on</strong>ad morphism. Let r = Θ (ψ) = (ɛL) ◦ (Lψ). Assume that, forevery ( Y, A µ Y)∈ A B, there exists Coequ A(rY, L A µ Y). Then we can c<strong>on</strong>sider thefunctor K ψ = Υ (ψ) : A → A B. Its left adjoint D ψ : A B → A is full and faithful ifand <strong>on</strong>ly if1) R preserves the coequalizer(D ψ , d ψ ) = Coequ Fun (r A U, L A Uλ A )2) ψ : A → RL is a m<strong>on</strong>ad isomorphism.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!