12.07.2015 Views

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Propositi<strong>on</strong> 3.54. Let (L, R) be an adjuncti<strong>on</strong> where L : B → A and R : A → B,let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> the category B and let ψ : A = (A, m A , u A ) →RL = (RL, RɛL, η) be a m<strong>on</strong>ad morphism. Let r = Θ (ψ) = (ɛL) ◦ (Lψ). Then thefunctor K ψ = Υ (ψ) : A → A B has a left adjoint D ψ : A B → A if and <strong>on</strong>ly if, forevery ( Y, A µ Y)∈ A B, there exists Coequ A(rY, L A µ Y). In this case, there exists afunctorial morphism d ψ : L A U → D ψ such thatand thus(D ψ , d ψ ) = Coequ Fun (r A U, L A Uλ A )[Dψ((Y, A µ Y)), dψ(Y, A µ Y)]= CoequA(rY, L A µ Y).Corollary 3.55. Let (L, R) be an adjuncti<strong>on</strong> where L : B → A and R : A →B. Let r = Θ (Id RL ) = ɛL. Then the functor K = Υ (Id RL ) : A → RL B has aleft adjoint D : RL B → A if and <strong>on</strong>ly, for every ( Y, RL µ Y)∈ RL B, there existsCoequ A(ɛLY, L RL µ Y). In this case, there exists a functorial morphism d : LRL U →D such that(D, d) = Coequ Fun (ɛL RL U, L RL Uλ RL )and thus[D((Y, RL µ Y)), d(Y, RL µ Y)]= CoequA(ɛLY, L RL µ Y).Remark 3.56. In the setting of Propositi<strong>on</strong> 3.54, for every X ∈ A, we note thatthe counit of the adjuncti<strong>on</strong> (D ψ , K ψ ) is given by( )˜ɛX = ã −1X,K ψ X IdKψ X : Dψ K ψ (X) → X.We will c<strong>on</strong>sider the diagram( (( )) )(24) Hom A Dψ Y, A ã X,Y (( )µ Y , X Hom A B Y, A µ Y , Kψ X )41Hom A(d ψ((Y, A µ Y )),X)Hom A (LY, X)Hom A (rY,X)Hom A(L A µ Y ,X)Hom A (LAY, X)a X,Ya X,AYHom B (Y, RX)(Γ(ψ)X)◦(A−)Hom B( A µ Y ,RX) HomB (AY, RX)defining ã −,Y in the particular case of ( Y, A µ Y)= Kψ X. Note that, since K ψ X =(RX, (RɛX) ◦ (ψRX)) = (RX, lX) , we havei.e.(D ψ K ψ (X) , d ψ K ψ (X)) = (D ψ (RX, lX) , d ψ K ψ (X)) = Coequ B (rRX, LlX)= Coequ B ((ɛLRX) ◦ (LψRX) , (LRɛX) ◦ (LψRX))(25) (D ψ K ψ (X) , d ψ K ψ (X)) = Coequ B (rRX, LlX)where l = Γ (ψ) = (Rɛ) ◦ (ψR) . We compute(˜ɛX) ◦ (d ψ K ψ X) = Hom A (d ψ K ψ X, X) ((˜ɛX))( (= Hom A (d ψ K ψ X, X) ã −1X,K ψ X IdKψ X) )

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!