12.07.2015 Views

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Propositi<strong>on</strong> 3.44. Let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> a category A such that theunderlying functor A preserves coequalizers and let A P A , A Q A ∈ Ob (( A A ← A A)).Then the functor A P AA Q A ∈ Ob (( A A ← A A)).Proof. We will prove that A P AA Q A = A (P AA Q) A . Let us c<strong>on</strong>sider the functorP AA Q : A → A. Since A Q is a right A-module functor by Propositi<strong>on</strong> 3.31, thenalso P AA Q is a right A-module functor by Lemma 3.17. Thus, we can c<strong>on</strong>sider((P AA Q) A, p PAA Q) = Coequ Fun(µAPAA QAU, P AA Q A Uλ A)i.e.Lem3.17= Coequ Fun(PA µ A AQAU, P AA Q A Uλ A)P A preserves coequ= (P AA Q A , P A p A Q)(19) ((P AA Q) A, p PAA Q) = (P AA Q A , P A p A Q) .Now, observe that (P AA Q) Ais a left A-module functor by Propositi<strong>on</strong> 3.30 andP AA Q A is a left A-module functor by Lemma 3.17. So we can c<strong>on</strong>sider both liftingfunctors : A (P AA Q) A and A (P A ) A Q A and we haveandHenceAU A ((P AA Q) A ) Pro3.31= (P AA Q) A(19)= P AA Q APro3.31= A U A (P A ) A Q AAUλ AA ((P AA Q) A) Pro3.30= A µ A (P AA Q) A(19)= µ PAA Q ALem3.17= A µ PA AQ APro3.30= A Uλ AA (P A ) A Q A .A ((P AA Q) A ) Pro3.31= A (P AA Q) A = A (P A ) A Q APro3.31= A P AA Q A .ThusAP AA Q A = A (P AA Q) Awhere P AA Q : A → A is an A-bimodule functor satisfying the required c<strong>on</strong>diti<strong>on</strong>s.□Propositi<strong>on</strong> 3.45. Let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> a category A such that theunderlying functor A preserves coequalizers. Then A A A ∈ Ob (( A A ← A A)) and itis the unit element for the category ( A A ← A A).Proof. Since A is a m<strong>on</strong>ad, in particular an A-bimodule functor. Then we canc<strong>on</strong>sider A A A ∈ Ob (( A A ← A A)) as the object coming from the endofunctor A :A → A. By definiti<strong>on</strong> we have(A A , p A ) = Coequ Fun (m AA U,A A Uλ A ) = ( A U, A Uλ A )and it is a left A-module functor by Propositi<strong>on</strong> 3.13.c<strong>on</strong>siderAA A = A ( A U) = Id A A37By Lemma 3.29, we can

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!