12.07.2015 Views

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

(Q BB F, p QB F ) = Coequ Fun(µBQ B, Qm B)=(Q, µBQ).□(Q B , p Q ) = Coequ Fun(µBQ BU, Q B Uλ B)preserves them. Hence, using that(Q B , Q B λ B ) = Coequ Fun (Q B λ BB F B U, Q BB F B Uλ B ), in view of Lemmas <str<strong>on</strong>g>2.</str<strong>on</strong>g>10 and3.29, we have(Q BB P , Q B λ BB P ) = Coequ Fun (Q B λ BB F B U B P,Q BB F B Uλ BB P )= Coequ Fun(µBQ BU B P,Q B µ P)so that we get Q B λ BB P = p QB P .= (Q BB P , p QB P )Propositi<strong>on</strong> 3.34. Let A = (A, m A , u A ) be a m<strong>on</strong>ad over a category A and letB = (B, m B , u B ) be a m<strong>on</strong>ad over a category B. Assume that both A and Bhave coequalizers and let Q : B → A be an A-B-bimodule functor. Then, withnotati<strong>on</strong>s(of Propositi<strong>on</strong>)3.30, we can c<strong>on</strong>sider the functor Q B where (Q B , p Q ) =Coequ Fun µBQ BU, Q B Uλ B . Then(15) Q BB F = Q and p QB F = µ B Q.Proof. By c<strong>on</strong>structi<strong>on</strong> we have that (Q B , p Q ) = Coequ Fun(µBQ BU, Q B Uλ B). By applyingit to the functor B F we get that(Q BB F, p QB F ) = Coequ Fun(µBQ BU B F, Q B Uλ BB F )= Coequ Fun(µBQ B, Qm B).Since Q is a right B-module functor, by Propositi<strong>on</strong> 3.16 we have that(Q, µBQ)= CoequFun(µBQ B, Qm B)so that we get31□Propositi<strong>on</strong> 3.35. Let B = (B, m B , u B ) be a m<strong>on</strong>ad <strong>on</strong> a category B with coequalizerssuch that B preserves coequalizers. Let G : B B → A be a functor preservingcoequalizers. SetQ = G ◦ B F and let µ B Q = Gλ BB FThen ( Q, µ B Q)is a right B-module functor and(16) Q B = (G ◦ B F ) B= G.Proof. We computeandµ B Q ◦ ( µ B QB ) = (Gλ BB F ) ◦ (Gλ BB F B) λ B= (Gλ BB F ) ◦ (G B F B Uλ BB F )= (Gλ BB F ) ◦ (G ◦ B F m B ) = µ B Q ◦ (Qm B )µ B Q ◦ (Qu B ) = (Gλ BB F ) ◦ (G B F u B ) adj= G ◦ B F = Q.Thus ( Q, µ B Q)is a right B-module functor. Recall that (see Propositi<strong>on</strong> 3.30)(Q B , p Q ) = Coequ Fun(µBQ BU, Q B Uλ B)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!